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THE SCENERY FLOW FOR GEOMETRIC STRUCTURES ON
THE TORUS:

THE LINEAR SETTING

PIERRE ARNOUX AND ALBERT M. FISHER

Abstract. We define the scenery flow of the torus. The flow space is the union

of all flat 2-dimensional tori of area 1 with a marked direction (or equivalently,

on the union of all tori with a quadratic differential of norm 1). This is a
5-dimensional space, and the flow acts by following individual points under

an extremal deformation of the quadratic differential. We define associated

horocycle and translation flows; the latter preserve each torus and are the
horizontal and vertical flows of the corresponding quadratic differential.

The scenery flow projects to the geodesic flow on the modular surface,
and admits, for each orientation preserving hyperbolic toral automorphism,

an invariant 3-dimensional subset on which it is the suspension flow of that

map.
We first give a simple algebraic definition in terms of the group of affine

maps of the plane, and prove that the flow is Anosov. We give an explicit

formula for the first-return map of the flow on convenient cross-sections. Then,
in the main part of the paper, we give several different models for the flow and

its cross-sections, in terms of:

• stacking and rescaling periodic tilings of the plane;
• symbolic dynamics: the natural extension of the recoding of Sturmian

sequences, or the S-adic system generated by two substitutions;

• zooming and subdividing quasi-periodic tilings of the real line, or aperi-
odic quasicrystals of minimal complexity;

• the natural extension of two-dimensional continued fractions;
• induction on exchanges of three intervals;

• rescaling on pairs of transverse measure foliations on the torus, or the

Teichmüller flow on the twice-punctured torus.
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0. Introduction

We begin by recalling some well-known relationships. First, there is the one-
to-one correspondence between closed orbits of the geodesic flow on the modular
surface and conjugacy classes of hyperbolic toral automorphisms. (This can be
seen directly from the definitions; see Remark 3 in §1 below). Secondly, one knows
that it is possible to code this geodesic flow using continued fractions and via
circle rotations (see [Art24],[Ser85],[AF91], [Arn94]). Thirdly, there is a strong
relation between hyperbolic toral automorphisms and rotations by certain quadratic
integers; these rotations appear as the first return map for the flow along the stable
(or unstable) foliation of the toral automorphism.

In this paper we construct a fiber bundle, with torus fiber, over the unit tangent
bundle SL(2,Z)\SL(2,R) of the modular surface, and an Anosov flow on this fiber
bundle, that will make all these relations completely explicit. In particular, this
flow will project to the usual geodesic flow; over a closed geodesic, it will be a
suspension of the corresponding toral automorphism.

We first give in §1 a simple and explicit algebraic model for this flow. For this
we make use of the group SA(2,R) of special affine maps of the plane (the real
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affine maps of determinant 1), which is isomorphic to a subgroup of SL(3,R).
This algebraic presentation allows us to easily show that the flow is Anosov, hence
ergodic, with a natural invariant measure.

In the later sections, we show that the scenery flow appears in a variety of guises:
it can be represented as a flow on the space of points of the plane modulo a lattice of
covolume 1, or on the space of Sturmian (=quasiperiodic of minimum complexity)
tilings of the line; these can be considered as the simplest kind of aperiodic qua-
sicrystals. The flow has a cross-section with a purely combinatoric description; we
relate this to adic systems in the sense of Vershik (cf. [Ver92], [Ver94], [Ver95]). We
also give a purely arithmetic interpretation in terms of inhomogeneous continued
fractions, using the Ostrowsky representation of integers or real numbers. Lastly,
we show how this flow can be viewed as the restriction to a particular stratum of
the Teichmüller flow on the twice punctured torus.

0.1. Organization of this paper. In §1, we give the formal algebraic definitions,
fix our notation and prove basic properties. In §2 we interpret this algebraic model
geometrically, in terms of periodic plane tilings, and we give explicit formulas for
the first return map of the scenery flow to two particular cross-sections, related to
the additive and multiplicative continued fractions respectively.

In §3 we give a simple Markov partition for the additive cross-section. In §4, we
give another viewpoint on this Markov partition, using Sturmian sequences. This
part is the longest section of the paper, due to the need to recall some classical
results on these sequences, which geometrically are just the symbolic itineraries
generated by an irrational rotation with respect to its natural partition, and which
have equally simple and useful purely combinatorial definitions explained below.
Part of the interest of having these quite different descriptions is that one can
see the how the commutation relations between the scenery flow and the vertical
and horizontal translation flows appear at the purely symbolic level, as relations
between a substitution and a shift map.

In §5, we then use this to analyse dynamics for the Sturmian tilings of the line.
In §6, we show how the geometric coordinates of a point in the flow space can
be recovered from the combinatorics explicitly, via the inhomogeneous continued
fraction (the Ostrowsky expansion of real numbers). This gives an arithmetic model
of the scenery flow.

In §7 and §8 we model the scenery flow by means of Rauzy induction on the
interval, and, equivalently, in terms of the Teichmüller flow on the twice punctured
torus.

In §9, we show how the measures on the fibers that naturally appear in this
work can be thought of as Gibbs measures for pressure 0, a generalization to non-
stationary shift spaces of the Parry-Shannon measure for subshifts of finite type (the
measure of maximal entropy). In the final section §10, we indicate some possible
generalizations.

In each of the sections §2 to §8, our main result will be to build a flow, or a map,
on some space, and to exhibit a conjugacy with the flows and maps built in §§1 and
2.

0.2. Underlying ideas. Although the simplicity of the algebraic presentation
might well hide the larger picture we wish to show here, we hope that the next
sections will make clear that we are discussing (for a very explicit example) some
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quite general underlying ideas that certainly have a role to play in a variety of
related situations.

The first idea is to consider a parameter space for a family of dynamical systems,
and to define a map on the parameter space corresponding to inducing a given
dynamical system on a subset. Here, we consider rotations Rθ, by θ an irrational
angle, on the circle of length 1. The induction on a suitable subinterval produces,
in dynamical space, another rotation; this process (also called renormalization)
yields, on parameter space, the continued fraction map. This renormalization can
be viewed also in a symbolic way: the initial system is related to the induced system
by a substitution.

The second idea is to build the natural extension (in the sense of Rohlin, cf.
[Roh64]) for this procedure; here, it corresponds to giving a rule for “un-inducing” a
given rotation. The resulting sequence of choices gives a second parameter. So taken
together, one has a pair of parameters, which correspond to a pair of dynamical
systems (two circle rotations), or, equivalently, to a pair of linear foliations on the
2-torus, with slopes equal to angles of rotation.

The torus provides a dynamical space on which both rotations can act simulta-
neously, as cross-sections to transverse linear flows. The operation of inducing on
the one and un-inducing on the other has a nice geometrical interpretation on the
torus, given by box renormalization: a cutting and stacking of a pair of boxes built
from the rotations, and which form a fundamental domain for the torus.

The next step is to construct a fiber bundle over the set of parameters, with torus
fibers. This places together in a single space all possible pairs of rotations of various
angles. We then define a map on this bundle, given by the renormalization. Building
a suspension of this map, we have the scenery flow. The origin of this name is
that this flow gives the effect of traveling in a landscape: one zooms in toward the
small-scale geometry of the first dynamical system, the forward landscape, while
simultaneously zooming out of the second landscape.

In other words, on the fibers this has a hyperbolic dynamics, as it is expanding
in one direction and contracting in the other. The renormalisation operator is a
discrete-time version of the flow, with times indexed by returns to a cross-section
for the flow on the base space. However this does not produce a map in the usual
sense; one is moving each time to a different fiber. This leads to the notion of
mapping family: a sequence of maps along a sequence of spaces; see [AF00].

In the particular case where the combinatorics of the map, i.e the continued
fraction expansion of the rotation, is periodic, inducing returns us to the original
rotation, and the hyperbolic mapping family can be thought of as a hyperbolic map
in the usual sense; in fact one has, in this case, a very familiar object: a hyperbolic
toral automorphism; this is the map referred to in the second paragraph. The pair
of boxes mentioned above is in this case also familiar: it is a Markov partition.

One of the interests of the fiber bundle construction and the concept of mapping
family is that one can then extend to a union of dynamical systems (organized as
a bundle), to non-periodic combinatorics, and to sequences of maps, results that
previously have been stated only for a specific combinatorics, for single maps, or
for periodic systems.

In terms of the symbolic dynamics, this takes us from the substitution dynamical
systems, which form a countable set (corresponding to closed trajectories of the
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geodesic flow), to S-adic systems, that is, to systems generated by a finite number
of substitutions in a set S.

In summary, essentially what we are doing here is to unify the parameter space
and dynamical space of a family of dynamical systems (in this case, circle rotations).
This single model brings together all of the dynamics: the circle rotations (of all
angles), their extension to continuous time, i.e to a flow along a foliation, and the
dynamics of inducing (renormalization) together with its inverse. This includes
also all Anosov toral maps, together with their “completion” to Anosov mapping
families. This dynamics has, furthermore, been extended to continuous time; and
this gives the scenery flow.

As we will see, this unified object is entirely natural and interesting to study;
also the unified point of view simplifies the overall picture, and leads to interesting
further questions.

0.3. Some generalizations. These ideas generalize immediately and quite com-
pletely to a number of related situations; part of this is already implicit in the work
of Veech ([Vee86]) regarding the moduli spaces of Riemann surfaces, where inter-
val exchange transformations replace rotations, with Rauzy induction replacing the
continued fraction transformation. It is also possible to carry out a similar con-
struction for Hecke groups, by making use of the Rosen continued fraction ([AH98]).

We mention that, although some parts also go through for automorphisms of the
3-torus and translations on the 2-torus, here the picture is still far from complete.
It is a place where the different viewpoints studied in this paper could prove useful,
because the symbolic dynamics, in specific instances, points to facts that are very
difficult to grasp from a purely geometric or arithmetic viewpoint (see for example
[Rau82], [Ito84]).

For the present case (circle rotations, Anosov maps) one can generalize in a
different direction, extending these ideas to the nonlinear setting. We carry this
out in a series of forthcoming papers, developing for the general (non-periodic)
case theorems previously known for single maps: the stable manifold theorem,
structural stability and openness, shadowing and the existence of Markov partitions,
the existence of Gibbs states, and the smooth classification of de la Lave-Marco-
Moriyon and Cawley. We study the higher genus situation as well, both for the
linear and nonlinear case. In particular, we unify and extend theorems previously
known in more restricted situations regarding unique ergodicity.

0.4. Related work. In this paper we bring a different perspective to bear on sev-
eral classical topics, which have been investigated by many authors: the continued
fraction map, and the relation with inducing or renormalization for rotations; the
modular space and its geodesic and horocycle flows; linear Anosov maps and their
codings.

Although our point of view seems to be new, we are building on this classical
mathematics; and our work is closely related to that of many people. We mention
in particular the studies of coding of the geodesic flow in [Art24], [Ser85], [AF91],
[Arn94]; of arithmetic expansions by [Ost22], [Sòs58], [Kea71] among others; we
note that various of the present ideas are, in a different terminology, explored in the
works of Vershik and collaborators ([Ver92], [Ver95], [VS93]), and also in [GLT95].
The generalized continued fractions we consider have been already studied in [Ito86].
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We mention some works related to symbolic dynamics of rotations: [HM40],
[Hed44], [CH73], [Pau74], [BS94], [MS91]; this is but part of a long list of related
papers.

Regarding the study of tilings of the line and of the plane, we wish to mention
especially the work of deBruijn [deB81],[deB89] on the Fibonacci tiling, which is
the simplest periodic case. In §5, we generalize to the non-periodic case the results
deBruijn obtains for the Fibonacci tiling. The interesting recent work of Robinson
([Rob96]) on Penrose tilings is also related to what we do here.

For background on hyperbolic toral automorphisms and the construction of
Markov partitions, we refer the reader to the fundamental paper of Adler and
Weiss ([AW70]).

For other related references see also [AF00].

1. The algebraic model

We denote by G = SA(2,R) the special affine group, the group of measure-
preserving and orientation preserving affine maps of the plane. This is a generaliza-
tion to two dimensions of the affine group (the ax+b group) on the line. An element
g of G is the composition of a linear map M of determinant one with a translation
by a vector −→v . This composition can be taken in either order. For g ∈ G the linear
part M is well-defined, but the vector depends on whether one first translates or
first applies the linear part. For (x, y) ∈ R2, we write the action of g ∈ G on the
right; for the first decomposition, we have (x, y) · g = (x, y) ·M +−→v , in which case
the vector is the image of the origin; for the second (x, y) · g = ((x, y) +−→w ) ·M.

Notations 1. We will denote by (M,−→v ) ∈ SL(2,R)× R2 the element g defined by
(x, y) · g = (x, y) ·M + −→v , and by (−→w ,N) ∈ R2 × SL(2,R) the element g defined
by (x, y) · g = ((x, y) +−→w ) ·N .

The point here is that G is not a direct product, but rather a semidirect product,
with R2 as the normal subgroup. Both ways of presenting g are natural, and each
will turn out to be useful.

The group G is isomorphic to the subgroup of SL(3,R) of matrices whose last

column is

0
0
1

, via the isomorphism:

(M,−→v ) 7→

M 0
0

−→v 1


Remark 1. We have the following relationship between these two notations for
g ∈ G: writing −→v ,−→w also as row vectors (as we did for the point (x, y)) and M as
a matrix, then (−→w ,M) = (M,−→w ·M). where −→w ·M is matrix multiplication.

The group multiplication is given by (M,−→v ) · (M ′,−→v ′) = (M ·M ′,−→v ·M ′+−→v ′)
in the first notation, and by (−→v ,M) · (−→v ′,M ′) = (−→v + −→v ′ ·M−1,M ·M ′) in the
second.

We have written the action of G on the right and chosen to use row vectors for
elements of R2 in order to later get standard formulas for actions and for quotients
by discrete groups.

The group G projects naturally (by taking the linear part) onto SL(2,R).
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The kernel of this projection is the group of translations of the plane, which is
isomorphic to R2. As mentioned above, G is the semi-direct product SL(2,R)nR2,
with the usual action of SL(2,R) on row vectors in R2, i.e. multiplying the row
vector on the right by the matrix.

We will write Γ for the subgroup SA(2,Z) of elements of G with integral entries
(for the vector as well as for the matrix). (This makes sense in both notations,
since SL(2,Z) preserves Z2; note that Γ is clearly a subgroup of G). This subgroup
acts on G by left multiplication. The object of interest in this paper is the quotient
E = Γ\G. An element here is a coset (SL(2,Z) ·M,−→v + Z2 ·M). The space E is
five-dimensional, and projects naturally onto SL(2,Z)\SL(2,R). The points that
project to SL(2,Z) ·M are just the translates of the lattice Z2 ·M ; hence the fiber
over SL(2,Z)·M is R2/(Z2 ·M), which is the torus defined by the lattice in the plane
spanned by the rows of M . Therefore E is a fiber bundle over SL(2,Z)\SL(2,R),
with torus fibers.

We remark that this fiber bundle has base SL(2,Z)\SL(2,R), and not the mod-
ular surface SL(2,Z)\H; in the latter case, there would be a problem because
SL(2,Z) acts on H with fixed points, giving rise to singular points on the modular
surface (as is well known) and there would be singular fibers in the bundle. This
does not happen for the action of SL(2,Z) on SL(2,R).

Remark 2. An element of E can be viewed as a translate of a lattice Z2 ·M of
covolume 1 in R2, with the translation vector defined up to an element of the
lattice. There are two natural ways to give coordinates to this translation vector:
we can either decompose it with respect to the canonical basis of R2, which gives
as coordinates a row vector −→v , or use any basis for the lattice Z2 ·M , for example
the image by M of the canonical basis, which gives a different row vector −→w . This
amounts to chosing one of the two possible notations (M,−→v ) or (−→w ,M); the relation
noted in Remark 1 gives the obvious change of basis. Most of the time we will use
the first notation, as it is better suited to a study of the translation flows. The
second notation will be more natural when we restrict attention to a single torus
fiber, Z2 ·M\R2. See Remark 3 below.

The group G acts on itself by translation on the right, and this induces a right
action on E; this allows us to define the main object of study in this paper:

Definition 1. The scenery flow is the flow defined on E by the action on the

right of the 1-dimensional subgroup gt =
((

et/2 0
0 e−t/2

)
, (0, 0)

)
.

We remark that this is a lift to E of the classical modular flow, the geodesic
flow on SL(2,Z)\SL(2,R) = PSL(2,Z)\PSL(2,R), which is naturally identified
with the unit tangent bundle of the modular surface (the hyperbolic plane modulo
SL(2,Z)).

The reason for the name will become clear in §5; in §8, we will show that this
flow can also be considered as the Teichmüller mapping flow.

Certain other one-dimensional subgroups of G are of special interest. We give
the following names to the corresponding R-actions:

— the positive horocycle flow h+
s =

((
1 s
0 1

)
, (0, 0)

)
— the negative horocycle flow h−s =

((
1 0
s 1

)
, (0, 0)

)
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— the vertical translation flow T+
u =

((
1 0
0 1

)
, (0, u)

)
— the horizontal translation flow T−u =

((
1 0
0 1

)
, (u, 0)

)
It is immediate from the definition that the translation flows preserve each fiber

of the projection to SL(2,Z)\SL(2,R). Thus one can consider each translation
flow as a collection of linear flows on tori. In fact these flows are familiar: each
fiber carries a natural quadratic differential, and these are what are known as the
horizontal and vertical flows of the quadratic differential.

The horocycle flows project to the usual flows on SL(2,Z)\SL(2,R), whence the
names. Since these latter flows are completely defined by their linear part, we will
use the same names for the corresponding flows on SL(2,R).

Remark 3. Let us consider for example a closed orbit for the modular flow, i.e. the
geodesic flow on the space SL(2,Z)\SL(2,R). By definition of cosets, associated to
this orbit are a real matrix M and an integer matrix A such that M · gT = A ·M ,
where T is the length of the closed geodesic, A is determined up to conjugacy in
SL(2,Z), and M is determined up to multiplication on the right by gt, and on
the left by SL(2,Z). Looking at the fiber above SL(2,Z) · M , the image of a
point (−→v ,M) by gT is (−→v ,M · gT ) = (−→v ,A ·M). This is equivalent, by action on
the left of (

−→
0 , A−1), to (−→v · A,M). This shows that gT preserves the fiber over

SL(2,Z) ·M , with the action by A on the fiber being a hyperbolic map. This is
what we referred to in the introduction: the return map to the fiber is an Anosov
toral automorphism. (Here it is easier to use the (−→v ,M) notation, as mentioned
in Remark 2).

A basic property of these flows is that they satisfy the following commutation
relations:

Proposition 1. The flows h+
s and T+

u commute. Similarly, h−s and T−u commute.
These flows satisfy the following commutation relations with the scenery flow:

h+
s gt = gth

+
se−t h−s gt = gth

−
set

T+
s gt = gtT

+
se−t/2 T−s gt = gtT

−
set/2

These relations are immediately checked by computation. The first ones are the
classical commutation relations between geodesic and horocycle flow. They imply
that together h+

s and T+
u generate a 2-dimensional foliation, which is the stable

foliation for the scenery flow, while h−s and T−u generate the unstable foliation.
This implies, by the classical argument due to Hopf (cf. [Hop39], [Hop71]):

Proposition 2. The flow gt on E is ergodic for the measure on E given by the
Haar measure on G.

Proof. The set E has finite measure for the natural Haar measure on G. (The
reason is that it is a fiber bundle, with fibers of area 1, over SL(2,Z)\SL(2,R);
and this is isomorphic to the unit tangent bundle of the modular surface, which has
finite volume).

The tangent bundle to E splits in three parts, invariant by the scenery flow: the
tangent to the flow itself, and the stable and unstable foliations defined above. It is
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then easy to check that the scenery flow is Anosov, which implies that it is ergodic,
by Hopf’s argument: the only point that requires checking is that the foliations
are absolutely continuous, and this is true since these foliations are defined by the
action of 2-parameter subgroups of G.

�
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2. Cross-sections for the scenery flow:
the plane tiling model

We will want to make explicit computations for the scenery flow. For this purpose
we will define a hypersurface in SA(2,R), transverse to the geodesic flow, and study
the first return map of the flow to this surface.

The first step will be to define coordinates on E. A good way to do this is to
make a careful choice of fundamental domain for the action of SA(2,Z) on SA(2,R).
We shall in fact make use of two different fundamental domains. The first one is
simpler to use for our proofs; it will be called Ωa (the a refers to its relationship
to the additive continued fraction algorithm). The second choice is related to
more classical approaches, and will be denoted Ωm (m because it is related to the
multiplicative, or ordinary, continued fraction algorithm). We will use for these two
domains the construction given in detail in [Arn94], following ideas developed in
[Vee84].

The idea for the construction of these domains is to consider SL(2,Z)\SL(2,R)
as the space of lattices in the plane of covolume 1. Indeed, we can consider a matrix
in SL(2,R) as a pair of row vectors which generate an integer lattice of covolume 1;
the left action by SL(2,Z) amounts to choosing another basis of the same lattice.
A point in E is then defined by giving first a lattice, and then a point modulo this
lattice.

Be careful: we will be defining fundamental domains at two levels: for the lattice
Z2 ·M acting on the plane R2, and also for the group SA(2,Z) acting on SA(2,R);
this point may seem confusing at first. These domains are related: given a lattice
in the plane, we first give a rule to define a fundamental domain for this lattice; this
rule will then also define a fundamental domain for the action of Γ on G, since it
will allow us to put coordinates on the space of lattices, and also will let us choose a
unique representative for a class of points modulo this lattice, by taking the unique
representative contained in the fundamental domain.

Notations 2. In the sequel, for a real number x, we will denote by bxc the greatest
integer less or equal to x, and by dxe the least integer greater than or equal to x.
We will write {x} = x− bxc for the fractional part of x.

We will denote by [a, b] the closed interval a ≤ x ≤ b, and by ]a, b[ the open
interval a < x < b.

2.1. The domain related to the additive continued fraction. For each lat-
tice, we want to find a canonical fundamental domain. This is usually done by
taking the unit square for some particular basis of the lattice. However, to study
the vertical and horizontal flow, it is better to have a fundamental domain whose
boundary segments are parallel to the axes (and hence to these flows).

An L-shaped form, made of two joined rectangles with sides parallel to the axes,
will always tile the plane. In fact, any lattice has a fundamental domain with this
shape. (One of the two boxes in this L-shape may be degenerate, as follows: if the
lattice contains a vertical vector, it is possible that a rectangle degenerates to a
line, or even to a point, which is the case for the lattice Z2). In fact, the lattice has
in general a (countably) infinite number of such fundamental domains. Therefore
we will add an additional condition on the width of the rectangles that will ensure
a unique such choice.
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x,y

-l0,0

-l0,h0

l1,0

l1,h1

Figure 1. The L-shaped domain

This picture may remind the reader of the construction by Adler and Weiss
[AW70] (and independently Ken Berg) of Markov partitions for hyperbolic toral
automorphisms. This is no accident, as that situation turns out to correspond to
the periodic orbits of the modular flow.

Definition 2. We denote by Ωa,1 the subset of SA(2, R) given by pairs (M,−→v ),

with M =
(
l0 h1

−l1 h0

)
and −→v = (x, y), where M satisfies the following inequalities:

0 < l0 < 1 ≤ l1 < 1 + l0 h0, h1 > 0

and −→v satisfies the inequalities:

−l0 ≤ x < l1 and 0 ≤ y < h0 if x < 0, or 0 ≤ y < h1 if x ≥ 0.

We denote by Ωa,0 the subset defined by imposing on M the condition

0 < l1 < 1 < l0 < 1 + l1

while keeping the above condition on −→v . We define Ωa = Ωa,0 ∪ Ωa,1.

This definition is best understood by way of a picture. We note that SL(2, Z)·M
defines a lattice in R2, with basis (l0, h1) and (−l1, h0); the vectors −→v satisfying
the condition of the definition form a fundamental domain for this lattice, as shown
in Figure 1. This fundamental domain can have its wider rectangle on the right
or on the left. We partition Ωa into two corresponding subsets Ωa,1 (with wider
rectangle on the right) and Ωa,0 (with wider rectangle on the left).

We have the following Proposition:

Proposition 3. The set Ωa is, up to a set of measure 0, a fundamental domain
for the action of Γ on G.

Proof. It is proved in [Arn94] that each lattice of unit covolume, with the excep-
tion of a set of measure 0, has exactly one fundamental domain consisting of two
rectangles of the given width and height; this is what we need. �
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Figure 2. the box renormalization

In summary, a point (M,−→v ) in SA(2,Z)\SA(2,R) has a representative in the
group SA(2,R) with coordinates (l0, l1, h0, h1, x, y), satisfying the above inequali-
ties, where the first four give the matrix entries of M ; the rows of M are the basis
for a lattice in the plane; these four numbers also determine an L-shaped funda-
mental domain for the lattice, and (x, y) gives the coordinates of a point in that
subset of the plane R2, with the origin (0, 0) located as in Figure 1.

Remark 4. It is possible to give an exact fundamental domain (rather than just up
to measure zero) (cf. [Arn94] for the details). However we do not include that here
as the formulas become tedious to write down. The problem is caused by lattices
which contain vertical vectors. It is easy to give examples where the fundamental
domain of such a lattice is made of just one rectangle, with arbitrary width; these
are degenerate cases, which go to infinity under the scenery flow. They correspond,
by projection to the linear part, to geodesics on the modular surface that go to the
cusp. Such degenerate cases will come up again in the next sections.

We now analyze the scenery and translation flows with the help of this funda-
mental domain. For the scenery flow, the idea is the following. Begin with a lattice
whose fundamental domain consists of two rectangles, the first a rectangle of width
1 and the second with width < 1, together with a point in one of these boxes; to
fix ideas, let us suppose l0 = 1 . The action of the scenery flow is something like
the “Baker’s Transformation”: it multiplies the abscissa by et/2, and the height
by e−t/2. At some point we leave the domain Ωa, either because l1 becomes 1,
or because the l0 no longer satisfies the condition l0 < 1 + l1. One sees that the
limiting condition is l1 = 1/2. After leaving Ωa, the next return to Ωa has the
following description: we return by choosing a new fundamental domain for the
lattice, cutting the widest rectangle in two parts and restacking one of the parts
on the thinnest rectangle. We then choose a new representative of the point in this
fundamental domain (cf. Figure 2).

To be precise, we give a cross-section for the scenery flow by fixing sup(l0, l1) = 1,
calling ∆a the set defined by this condition.
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Definition 3. We denote by ∆a,1 the subset of SA(2, R) given by pairs (M,−→v ),

with M =
(
l0 h1

−1 h0

)
and −→v = (x, y), where M satisfies the following inequalities:

0 < l0 < 1 h0, h1 > 0

and −→v satisfies the inequalities:

−l0 ≤ x < 1 and 0 ≤ y < h0 if x < 0, or 0 ≤ y < h1 if x ≥ 0.

We denote by ∆a,0 the subset given by pairs (M,−→v ), with M =
(

1 h1

−l1 h0

)
,

and the symmetrical conditions.
We define ∆a = ∆a,0 ∪ ∆a,1, and we write Φa for the first return map of the

scenery flow to ∆a.

The set ∆a is in the topological boundary of Ωa, and it is of dimension 4. Recall
that to points in Ωa we have assigned coordinates (l0, l1, h0, h1, x, y); on the subset
∆a we simplify these to (l, h, x, y, ε), where ε = 0 or 1, indicating that we are in
the subsets ∆a,ε, and where l and h are the width and height of the narrowest
rectangle. The width and height of the wider rectangle are then determined, since
by definition of the crosssection ∆a the width is 1, while its height is 1− lh, as the
fundamental domain for the lattice has area detM = 1.

On each of the subsets ∆a,ε, we can take coordinates (l, h, x, y, ε), where ε = 0
or 1, l and h are the width and height of the narrowest rectangle. The width of
the wider rectangle is 1, and its height is 1 − lh, since the fundamental domain
is of area 1. One can compute explicitly the return map Φa; we do this in the
next Proposition. In the next section, we will use this stacking construction in an
essential way. We mention that the formula itself is of interest for its arithmetic.

Proposition 4. In these coordinates, the first return map Φa of the scenery flow
on ∆a is given as follows on ∆a,1:

• if l < 1/2 ε is not changed and:

(l, h, x, y) 7→
(

l

1− l
, (h+ 1− lh)(1− l), x

1− l
, y(1− l)

)
if x < 1− l

(l, h, x, y) 7→
(

l

1− l
, (h+ 1− lh)(1− l), x− 1

1− l
, (y + h)(1− l)

)
if x ≥ 1− l

• if l > 1/2 ε is changed to 1− ε and:

(l, h, x, y) 7→
(

1− l
l
, (1− lh)l,

x

l
, yl

)
if x < 1− l

(l, h, x, y) 7→
(

1− l
l
, (1− lh)l,

x− 1
l

, (y + h)l
)

if x ≥ 1− l;

• the case l = 1/2 is degenerate.

The map Φa is defined by similar formulas on ∆a,0. It preserves the Lebesgue
measure (for the coordinates (l, h, x, y) on ∆a; the total mass of this measure is
infinite.

Proof. The computation comes directly from the geometry. We have depicted in
Figure 2 the case l < 1/2, with the other cases being similar. The formulas on ∆a,0

are left to the reader; one finds the same result for the coordinates l, h, y, but the
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Figure 3. The additive continued fraction map

condition x ≥ 1 − l is replaced by x ≤ l − 1, and x−1
1−l is replaced by x+1

1−l . The
Jacobian matrix of the map, at each point where it is continuous, is a triangular
matrix of deteminant 1, hence it preserves Lebesgue measure, and the computation
shows that the total mass of ∆a for this measure is infinite. �

As a consequence we have:

Theorem 1. The scenery flow is measurably isomorphic to the special flow built
over the map Φa : ∆a → ∆a (with invariant Lebesgue measure), with return time
function r∆ whose value at a point (l, h, x, y) in ∆a is equal to r∆(l, h, x, y) =
inf(− ln l,− ln(1 − l)). The isomorphism from the special flow to the scenery flow
is an almost surely 1-1 topological extension, and can be made a topological iso-
morphism by suitable identifications on the boundary of the domain of the special
flow.

Remark 5. Our reason for the choosing this particular cross-section ∆a is that, if
we project on the first coordinate l, we get the “tent map” f (see Figure 3) defined
by:

l 7→ l

1− l
if l < 1/2

l 7→ 1− l
l

if l > 1/2,

which is isomorphic to the one-sided shift given by additive continued fraction
expansions. Projecting the invariant measure on the first coordinate, we get the
invariant Gauss measure dx/x on the interval [0, 1] (which has infinite total mass).
We will consider below another cross-section for which we get the more familiar
transformation l 7→ {1/l}, (the Gauss map), which is isomorphic to the shift for
multiplicative continued fractions. This second cross-section is better for arithmetic
purposes, while the first one gives a simpler combinatorics; the second map is also
nicer measure-theoretically as there the mass is finite, but has the disadvantage
of having countably many branches. We observe that the usual Gauss map is an
“acceleration” of the tent map f , in the sense that fb1/xc(x) =

{
1
x

}
.
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A key observation is that the map Φa can be considered as a skew product
in several different ways, each of which leads to a different interpretation for the
formulas, as will become clear in the later sections.

Thus, projecting to the first two coordinates, we get the first return map of the
geodesic flow on the modular surface to a cross-section; projecting further, onto the
first coordinate, we get the additive continued fraction map. One can also project on
the coordinates (l, x), obtaining then a certain two-dimensional continued fraction.
The map Φa is in fact measurably isomorphic to the natural extension (in the sense
of Rohlin [Roh64]) of this particular continued fraction; we will return to this point
later.

The first return map of the vertical translation flow is simpler to describe; it
preserves each torus fiber, and it is a linear flow. A cross-section is given by y = 0,
and we have:

Proposition 5. The first return map of the vertical translation flow to the cross-
section, for chosen (l0, l1, h0, h1), is given by:

x 7→ x+ l1 if x < 0
x 7→ x− l0 if x > 0

This map is just a rotation of angle l1 on a circle of length l0 + l1. There are
similar formulas for the horizontal translation flow; here we take for cross-section
union of the left boundaries of the rectangles, that is the points where x = −l0
and x = 0. We note that the first return map for the vertical flow only depends on
l0, l1, x, while for the horizontal flow it depends on h0, h1, and y.

2.2. The domain related to the standard (multiplicative) continued frac-
tion. This domain Ωm is defined in a similar way, except that, instead of imposing
the condition sup(l0, l1) < 1 + inf(l0, l1), we ask only that the width of the wider
rectangle be greater than 1, and that the width of the other be less than 1, together
with the further condition that the narrowest rectangle be the shortest, i.e. that
h0 > h1 if and only if l0 > l1. In that case, there is a largest rectangle, which is
both wider and taller than the other rectangle.

Definition 4. We denote by Ωm,1 the domain of SA(2, R) given by pairs (M,−→v ),

with M =
(
l0 h1

−l1 h0

)
and −→v = (x, y), where M satisfies the following inequalities:

0 < l0 < 1 ≤ l1 0 < h0 < h1

and −→v satisfies the inequalities

−l0 ≤ x < l1 and 0 ≤ y < h0 if x < 0, or 0 ≤ y < h1 if x ≥ 0.

We denote by Ωm,0 the domain defined by imposing on M the conditions:

0 < l1 < 1 < l0 0 < h1 < h0

and keeping the same condition on −→v . We define Ωm = Ωm,0 ∪ Ωm,1.

It is proved in [Arn94] that this is also, up to a set of measure 0, a fundamental
domain for the action of SA(2,Z) on SA(2,R). We can once again give explicit
formulas for the first return map of the scenery flow, starting from the cross-section
sup(l0, l1) = 1. The algorithm is the following. Beginning with a L-shape whose
largest rectangle is of width 1, apply the scenery flow until the smallest rectangle has



16 PIERRE ARNOUX AND ALBERT M. FISHER

Figure 4. The multiplicative box renormalization

width 1. Then choose a new fundamental domain, by cutting the largest rectangle
in subrectangles of width 1, and stacking these over the smallest one, as depicted
in Figure 4.

We consider now a cross-section ∆m to the scenery flow, defined to be the subset
of Ωm where sup(l0, l1) = 1.

Definition 5. We denote by ∆m,1 the subset of SA(2, R) given by pairs (M,−→v ),

with M =
(
l0 h1

−1 h0

)
and −→v = (x, y), where M satisfies the following inequalities:

0 < l0 < 1 0 < h0 < h1

and −→v satisfies the inequalities:

−l0 ≤ x < 1 and 0 ≤ y < h0 if x < 0, or 0 ≤ y < h1 if x ≥ 0.

We denote by ∆m,0 the subset given by pairs (M,−→v ), with M =
(

1 h1

−l1 h0

)
,

and the conditions:

−1 ≤ x < l1 and 0 ≤ y < h0 if x < 0, or 0 ≤ y < h1 if x ≥ 0.

We define ∆m = ∆m,0 ∪∆m,1, and we write Φm for the first return map of the
scenery flow on ∆m.

One sees from the definition that ∆m ⊂ ∆a. In fact, we have that ∆m,ε =
∆a,ε∩Φa(∆a,1−ε). One easily checks that the first return map Φm exchanges ∆m,0

and ∆m,1; it is the induced map of Φa on ∆m. More precisely, for any point p
of ∆m, Φm(p) = Φna(p), where n is the smallest integer such that Φna(p) is not in
the same component ∆a,ε as p. Taking for coordinates (l, h, x, y), where l, h are
respectively the width and height of the smallest rectangle, and with x, y defining
the translation vector, we check that n = b 1

l c. One can then work out explicit
formulas:

Proposition 6. The first return map Φm of the scenery flow on ∆m is defined on
∆m,1 by:
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(l, h, x, y) 7→
({

1
l

}
, l − hl2, x

l
, yl

)
if x < l

{
1
l

}
(l, h, x, y) 7→

({
1
l

}
, l − hl2,−

{
1− x
l

}
, yl + hl + (l − hl2)

⌊
1− x
l

⌋)
if x ≥ l

{
1
l

}
,

and similarly on ∆m,0. This map preserves the Lebesgue measure dl dh dx dx, which
has a finite total mass 2 ln 2.

Proof. The formula comes from the geometric interpretation. Since Φm is the in-
duced map of Φa on ∆m, it preserves the Lebesgue measure; this can also be checked
directly by computing the Jacobian of the map at a continuity point. The total mass
is obtained by a straightforward computation of the corresponding integral. �

This tells us that we now have a model of the scenery flow which is based on the
classical Gauss map:

Theorem 2. The scenery flow is measurably isomorphic to the special flow built
over the map Φm∆m → ∆m (with invariant Lebesgue measure), with return time
the function r′∆ whose value on a point (l, h, x, y) in ∆m is equal to r′∆(l, h, x, y) =
− ln l. The isomorphism from the special flow to the scenery flow is an almost
surely 1-1 topological extension, and can be made a topological isomorphism by
suitable identifications on the boundary of the domain of the special flow. �

Remark 6. We note that the map defined in the Proposition has, once again, a nice
a skew product structure: the projection on the first coordinate is the continued
fraction map l 7→ {1/l} that takes l to the fractional part of its inverse, with the
first two coordinates giving a natural extension of this map, (l, h) 7→ ({1/l}, l−hl2).
The projection of the invariant measure to the first coordinate gives the usual Gauss
measure dx

1+x , and this provides a way of understanding that measure.
The projection on the first and the third coordinates gives rise to a two-dimen-

sional continued fraction map, of which the complete map is the natural extension.
We mention that a closely related two-dimensional skew continued fraction has
been studied by Shunji Ito in [Ito86]. The difference between Ito’s algorithm and
the present one lies essentially in the choice of coordinates; one can get Ito’s contin-
ued fraction by taking a different transverse surface in place of ∆. This is part of
a general phenomenon; the modular flow provides a unified framework in which to
understand many classical variants of continued fractions considered in the litera-
ture; thus, among others, the Usual continued fraction, Optimal continued fraction,
Nearest Integer continued fraction, α-continued fraction, and Backwards continued
fraction and their natural extensions can be obtained by choosing an appropriate
cross-section of the modular flow. See [Kra93] for a general presentation.

Which cross-section one should take depends on one’s viewpoint, and on what
use one wants to make of the resulting formulas. Thus, as we will see below, a
choice which may be more natural for its symbolic dynamics or geometry can lead
to quite obscure arithmetic formulas, and vice versa.

We mention that some even more exotic continued fractions (for example the
Rosen continued fraction) are also related to flows, but on different spaces: in that
case, it is the geodesic flow on a Hecke surface.
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3. Symbolic dynamics for the scenery flow:
Markov coding

3.1. Overview. Our aim in this and the next section is to give symbolic descrip-
tions of the scenery flow and the related translation flows. The basic idea is to
consider a cross-section and its associated return map, and to obtain symbolic dy-
namics by choosing an appropriate partition of the cross-section. The remarkable
fact is that in doing this we shall make use of the different flows, obtaining in that
way very different symbolic systems. We described earlier the commutation rela-
tions which are satisfied by the scenery and translation flows; here, we will recover
these commutation relations at the symbolic level.

In short, we will associate to the scenery flow a subshift of finite type, for which
the natural measure will be infinite, and to the vertical flow the shift on the collec-
tion of all Sturmian sequences; this last set, to be defined precisely in §4.2, can be
considered as a generalization of substitution minimal sets, and gives rise to finite
measure, uniquely ergodic systems of entropy zero.

Each of these two symbolic descriptions is particularly suited to one of the flows,
in the sense that the first return return map of the flow is conjugate to the shift
on the related set; however, in each case the other flow also enters the picture. In
the framework of the subshift of finite type, the return map of the scenery flow
appears as the (bilateral) shift, while the return map of the vertical translation
flow appears as an adic transformation (in the sense of Vershik, see [Ver95]) on the
unilateral shift. In the framework of Sturmian sequences, the return map of the
vertical translation flow appears as the shift, while the return map of the scenery
flow now appears as the natural extension of the coding map on Sturmian sequences
defined in §4.4. We will obtain in this way a completely combinatorial model, using
only classical notions of theoretical computer science.

Some points need special attention: first, of course, the geometric meaning of the
shift map depends entirely on the symbolic space on which it acts, that is, on which
subset of the full shift is defined by the allowed words. Second, we use different
cross-sections for the scenery flow and the translations flows, and this difference will
appear at the symbolic level as well. This explains why, for example, the scenery
flow gives a bilateral shift, while the vertical flow gives an adic tranformation on
the corresponding unilateral shift.

The plan of this section and the next one is as follows: in §3.2, we give a symbolic
dynamics for the first return map of the scenery flow on the additive section ∆a, as
a subshift of finite type on four symbols. In §4.1, we define, in an informal way, an-
other symbolic description of the additive cross-section, using the translation flows;
this will help motivate the three parts which follow . In §4.2, we give a symbolic
dynamics for the vertical translation flow on each torus fiber. As mentioned before,
this will amount to giving a symbolic dynamics for circle rotations. In §4.3, we use
the combinatorial properties of the sequences obtained there (Sturmian sequences)
to define a coding map, to which we associate a symbolic dynamics. In §4.4, we
show that the natural extension of this coding map is conjugate to the map Φa.
This gives a purely combinatorial definition of the coding defined in §4.1, and shows
the relation with the initial coding of §3. In §4.5, we explain how we can express the
first return map of the vertical flow as an adic transformation (generalized odome-
ter) on a nonstationary subshift of finite type (cf. [AF00]). In §4.6, we sketch
the analogous results for the map Φm, first return map of the scenery flow on the
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multiplicative section ∆m: this map is conjugate to a subshift of finite type on a
countable number of symbols. We write down the conjugacy explicitly later, in §6).

Remark 7. As often happens when symbolic dynamics is introduced for a dynamical
system, one gets problems for coding particular points, since the original space is
continuous while the topology of the symbolic space is totally disconnected, i.e. is
a Cantor set. We encounter two different problems of this type, one related to the
dynamics on the base space, and the other related to the dynamics on individual
fibers.

First, there is a problem caused by the pairs of rectangles with commensurable
heights or widths. (These correspond to fibers in which one of the translation flows
has only periodic orbits, and in the base space to orbits of the geodesic flow that go
to the cusp at infinity). It is possible to include these points, but one needs then in
the combinatorics to treat particular cases, which would substantially complicate
the picture.

Hence we will always make the simplifying assumption in what follows that the
pairs of rectangles have incommensurable heights and widths; formally,
instead of the set E = SA(2,Z)\SA(2,R), we consider the subset E∗ of points
(l0, l1, h0, h1, x, y) such that l0/l1 and h0/h1 are irrational. This removes an in-
variant set of measure 0.

Second, some ambiguities arise when coding points in the orbit of the boundary of
the rectangles; this is also a set of measure 0, on which the coding is not unique. We
identify explicitly the symbolic sequences corresponding to these boundary points.

3.2. Symbolic dynamics for the scenery flow. The cross-section ∆a we defined
in the preceding section admits a natural partition in two sets ∆a,0 and ∆a,1. This
is however not a generating partition for the map Φa, since it only depends on the
first coordinates. Therefore, if p = (l, h, x, y, ε) and p′ = (l, h, x′, y′, ε) are points of
∆a that differ only in the x, y coordinates, the images Φna(p) and Φna(p′) will belong
to the same partition element for all n ∈ Z. In other words, this partition does not
separate the points in a torus fiber. It does however separate the different fibers;
by projecting this partition to SL(2,Z)\SL(2,R), one can prove the following:

Proposition 7. The first return map, to the projection of ∆a, of the geodesic flow
on the modular surface, restricted to the orbits that are not asymptotic to the cusp
(in the past and in the future), is topologically conjugate to the shift on the subset
of {0, 1}Z consisting in sequences that are not eventually constant (in the past and
in the future).

Via this conjugacy the measure on the flow space corresponds to the natural
Lebesgue measure on the cross-section, which in turn maps isomorphically to an
infinite invariant measure on the shift space.

We now define a finer partition which will generate.

Definition 6. We write ∆0
a,0 (resp ∆1

a,0)for the set {(l, h, x, y, 0) ∈ ∆a|x < 0}
(resp. x ≥ 0). We denote by ∆0

a,1 (resp ∆1
a,1) the set {(l, h, x, y, 1) ∈ ∆a|x < 0}

(resp. x ≥ 0).

In the geometric model, ∆0
a,0 corresponds to pairs of rectangles where the left

rectangle is the widest, while the point corresponding to (x, y) is in the left rectangle;
for ∆1

a,0, the point is in the right rectangle. Note that, by our convention, the central



20 PIERRE ARNOUX AND ALBERT M. FISHER

boundary of the partition (corresponding to x = 0) is considered to be a part of
∆1
a,0 or ∆1

a,1, not ∆0
a,0 or ∆0

a,1.
Write A for the alphabet on four letters A = {(0,0), (0,1), (1,0), (1,1)}, and

denote by ν the map ν : ∆a → A that takes a point in ∆0
a,0 (resp. ∆1

a,0,∆
0
a,1,∆

1
a,1)

to (0,0) (resp. (0,1), (1,0), (1,1)). The sequence (ν(Φna(p)))n∈Z gives our symbolic
dynamics for the map Φa. We have:

Theorem 3. Let (Λ, S) be the subshift of finite type in AZ defined be the conditions:
(0,1) is not followed by (0,0) or (1,0), and (1,0) is not followed by (1,1) or (0,1).
The map p 7→ (ν(Φna(p)))n∈Z is one-to-one from E∗ to an explicit shift-invariant
subset of Λ, and conjugates Φa to the shift S on Λ.

Proof. We first note that the sequences obtained from Φa are indeed in Λ. The
reason is that, on ∆a,0, the map Φa stacks a part of the left rectangle on the right
rectangle; hence, if the point was initially in the right rectangle, its image will also
be in the right rectangle. Symmetrically, in ∆a,1, a point in the left rectangle will
stay in the left rectangle. These are exactly the conditions that define Λ.

We next prove that the partition is generating. The idea is to first notice that
the itinerary of the orbit with respect to the partition {∆a,0, ∆a,1} defines the
size of the two rectangles: the positive orbit defines the width of the rectangles,
while the negative orbit defines the height; hence, if two points in ∆a have the
same symbolic dynamics, they have same first two coordinates. Next, note that
the map Φa is locally a dilation on the x coordinate; thus, if two points have
different x coordinates, then after sufficient iteration, the difference will be increased
to more than 1, at which time they will not belong to the same element of the
partition. The same holds for the y coordinate, using the inverse of Φa. Hence
the partition generates. In §6, we give complete arithmetic formulae for the inverse
map (recovering the geometric coordinates from the symbolic dynamics), and this
can be used to give a second, and more contructive, proof of this fact.

This map is not onto: we cannot get the ultimately constant sequences, because
in that case we would always be stacking in the same direction, and this is only
possible if one of the rectangles has width (or height, for a sequence that is con-
stant for all n < N) zero. In fact, sequences that are ultimately constant in the
future (resp. in the past) correspond to the pairs of rectangles with commensurable
widths (resp. heights) that we have excluded. We also cannot get sequences which
contain ultimately only (0,0) and (1,0); this would mean that, after some time,
the point (x, y) is always on the left. This is possible only if x = 0, and by our
convention, as noted above, the point then belongs to the right rectangle, and the
corresponding sequence only contains (0,1) and (1,1). (We could consider such
sequences as a second (not admissible) coding for points on the central boundary.)
These restrictions only remove a small set in Λ.

Except for these bad points, we get all of Λ. One way to prove this is to show that
the above partition is a Markov partition for Φa; this involves easy, but somewhat
tedious, computations. A second way involves proving that the projection of the
partition on the coordinates (l, x) gives a Markov partition in the standard sense
for the noninvertible projected map, hence all allowed strings occur, and then using
the fact that Φa is the natural extension. We give a similar (and easier) explicit
proof in §4.4. �



THE SCENERY FLOW FOR THE TORUS 21

Figure 5. The horizontal and vertical orbits

We remark that this coding is well behaved with respect to the projection to the
base space SL(2,Z)\SL(2,R): if we project the alphabet A to {0, 1} by forgetting
the second letter of each pair, we recover the symbolic dynamics for the geodesic
flow that was given in the above Proposition.

4. Symbolic dynamics for the scenery flow:
Sturmian sequences and adic transformations

4.1. Another symbolic description of the scenery flow. We can describe in
another way the points of E∗ by a pair of symbolic sequences. Let p be a point
in ∆a ∩ E∗, with coordinates = (l0, l1, h0, h1, x, y). We consider the positive orbit
{T+

u (p)|u ≥ 0} of p under the vertical flow. In the model given in §2 (tiling of
the plane), this orbit consists in vertical segments contained in the two boxes; we
write (u0, u1, . . . ) ∈ {0,1}N for the sequence that describes the order in which the
orbit crosses the two rectangles. In a similar way, let (vn)n∈N be the sequence that
describes the order in which the orbit T−u (p) of p under the horizontal flow crosses
the two rectangles (cf. Figure 5). We claim that these two sequences completely
define the point p.

An informal proof goes like this: suppose that the frequency of 1 in u is well
defined; this frequency is equal to the ratio of the width of rectangle 1 to the total
width; but since the width of the widest rectangle is 1, because the point is in ∆a,
both widths are completely determined. Moreover, because the ratio is irrational,
by definition of E∗, the sequence u defines the coordinate x. (This would be false if
the ratio of width were rational: in that case, the orbits of the vertical flow would
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be closed, so there would only be a finite number of possible sequences u, all of them
periodic, and the sequence u would not specify the coordinate x.) In a similar way,
the sequence v defines the ratio of heights, hence, using the fact that the total area
is 1, it completely defines the heights, and also the coordinate y.

We will give a formal proof of this in the next parts, and explicit arithmetic
formulae in §5. We just remark here that the sequence u can be described as
symbolic dynamics of the first return map of the vertical flow to the cross-section
defined in §2, with respect to the natural partition into right and left rectangles; we
only need to project the point p to the point (l0, l1, h0, h1, x, 0) in the cross-section
for the vertical flow.

The action of the scenery flow (or more exactly of its return map) on these
symbolic coordinates, the pair of sequences (u, v), is not the shift map. Indeed, the
sequences u and v are not changed locally by that flow, but only by the stacking
operation; if we suppose that p is in ∆a,1, the rightmost part of rectangle 1 is
stacked onto rectangle 0, and we see that the effect on the sequence u is a deflation,
erasing each 1 following a 0, while the effect on v is an inflation, replacing each 1
by 10. (A more subtle question is what will be the first letter of the new word; we
study that in detail in §4.3 and §4.4.)

The purpose of the next three parts is to give precise definitions and proofs; we
will see that this can be done in a purely combinatorial way, although it can help to
keep in mind the geometry when considering the special cases that occur in some
proofs. (These correspond to the boundaries of the rectangles and their iterates.)

4.2. Sturmian sequences: basic definitions. In this section, we build symbolic
dynamics for the vertical flow . Let us consider the restriction of this flow to a torus
fiber. It is clear from the formula that the dynamics depends only on x, l0, and
l1. The first return map is a rotation, as noted above, with its domain naturally
divided into two intervals, which we label 0 and 1. We associate to the point x the
sequence (εn)n∈Z, where εn is the symbol 0 or 1 of the interval that contains the
nth iterate of x. This gives a natural symbolic dynamics for the vertical flow: if
we denote by S the shift map on infinite sequences, which sends the sequence u to
the sequence v defined by vn = un+1, it is clear from the definition that the shift
map S is topologically semiconjugate to the first return map. (That is, there is is
a continuous onto map from the symbolic space to the circle such that the diagram
commutes.) The sequences we get are well-known (cf. [HM40], [Hed44], [CH73]);
we recall some definitions and facts. We shall refer to the literature for some of the
proofs.

In this section, we normalize the rotation to the circle R/Z of length 1, which
we shall parametrize by [0, 1[ or ]0, 1]. (The original notation will prove more
convenient in §6). We write Rα for the rotation x 7→ x + α(mod 1). We first give
a precise definition for the sequences described above.

Notations 3. Let α ∈ [0, 1[. To code the rotation Rα symbolically, it will be
convenient to partition the circle R/Z in two intervals determined by the points 0
and 1−α (preimage of 0 by the rotation of angle α). There are two consistent ways
to carry this out, and it will be useful to keep track of both possibilities. Denote
by I0 the interval [0, 1− α[, and by I1 the interval [1− α, 1[. In the same way, we
denote by J0 the interval ]0, 1−α], and J1 the interval ]1−α, 1], the only difference
between Ia and Ja being whether it is closed on the left or the right. We call I
(resp. J) the map with values in {0,1} and defined by I(x) = a if x ∈ Ia (resp.
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J(x) = a if x ∈ Ja). We write I = {I0, I1} resp. J = {J0, J1} for these partitions
of the circle.

Definition 7. We say that a sequence (un)n∈N taking values in {0,1} is generated
by the rotation Rα if there exists a point β such that either for all n, un = I(Rnα(β))
or for all n, un = J(Rnα(β)).

In other words, the sequence is given as the itinerary of a point for Rα with
respect to the partition. Since there is no canonical way to code the endpoints, we
allow all consistent codings, choosing them so as to be all closed either on the right
or on the left. Note that points in the past orbit of 0, and only those (remember
that the coding un is defined for times in N and not in Z), will have two possible
codings.

Notations 4. We will say that the sequence u is a rotation sequence if (and only
if) it is generated by some rotation Rα. An equivalent definition is that there exist
numbers α, β ∈ [0, 1[ such that for all n either we have un = b(n+1)α+βc−bnα+βc,
or for all n we have un = d(n+ 1)α+ βe − dnα+ βe; these are the sequences given
by partitions I,J respectively.

A remarkable fact is that these rotation sequences can be given a completely
combinatorial description. To explain this we first need a few definitions.

Definition 8. Let u = (un)n∈N be a sequence taking values in a finite alphabet A.
The language Lu of u is the set of all the finite words uiui+1 . . . ui+k that occur
in u. The complexity p(n) of u is the function that counts the number of words
of length n occuring in u: p(n) = #(Lu ∩ An).

Lemma 1. If the complexity of the sequence u satisfies p(n) ≤ n for some n, then
u is eventually periodic.

Proof. The given condition implies that for some n we have p(n) = p(n+ 1), since
p(1) is at least 2 for a non-constant sequence; p is non-decreasing because each word
occuring in u can be extended. Thus, each word of length n can be extended in
exactly one way. This means that, knowing n letters, we then will know the next
one. But, since there is only a finite number of admissible words of length n, one
of these will occur at a second location in u; hence from the first occurence of that
word on, the sequence is periodic. �

We will be interested in the non-periodic sequences of minimal complexity. By
the Lemma, these are the sequences of complexity p(n) = n+ 1.

The basic fact, known to Hedlund and Morse ([HM40],[Hed44],[CH73]), is that
there are three equivalent characterizations of these sequences, two purely combi-
natorial and the third geometrical. We need first this:

Definition 9. A sequence u taking values in a finite alphabet is said to be bal-
anced if for any two words U and V of the same length occuring in u and for any
element a in the finite alphabet, the number of a’s in U and V differ by at most 1.

Proposition 8. The following are equivalent for a sequence (un)n∈N on two sym-
bols:
(i) the sequence has complexity p(n) = n+ 1;
(ii) it is a non-eventually-periodic balanced sequence;
(iii) it is generated by a rotation Rα for some α irrational.
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For logical definiteness we take the first of these conditions as our definition:

Definition 10. A sequence satisfying (i) above is called a Sturmian sequence.

Proof of Proposition. The proof of (i) ⇐⇒ (ii) is combinatorial; it can be found
in [HM40].

We show (iii) =⇒ (i). Let u be a rotation sequence associated to α, β with α
irrational and write U for a word U0U1 . . . Un−1 of length n. This occurs at the
beginning of the sequence u if and only if β belongs to all the intervals R−kα (IUk

) (or
similarly with I replaced by J); more generally the word U can occur somewhere
in the sequence u if and only if this intersection is not empty. It follows that there
are as many possible words of length n in a rotation sequence as elements in the
join of the partitions I, R−1

α I, R1−n
α I. But this finer partition is determined by the

orbits of the endpoints of the intervals, the points 0, 1 − α = R−1
α (0), . . . , R−nα (0).

Since α is irrational these are distinct, and so there are n+ 1 endpoints and hence
n+ 1 components. Thus p(n) = n+ 1, proving (i).

We next give a proof of (iii) =⇒ (ii), which is quite short, and which helps
show the importance of the second combinatorial condition. We count the number
of 1’s in the word of length p of a rotation sequence, beginning with un; this is
un+ · · ·+un+p−1 = b(n+p)α+βc−bnα+βc, and this number, as a function of n,
can take on only two values. One concludes that a rotation sequence is balanced.

Proving (iii) from the other statements is more difficult; a detailed proof is
given in [HM40]. A proof can also be obtained from the ideas developed below:
a Sturmian sequence can be infinitely recoded in a similar way to the continued
fraction; one can then prove that this Sturmian sequence is one of the rotation
sequences associated to the number α defined by that continued fraction. See §6 for
explicit arithmetic formulae, which yield a constructive proof of the Proposition. �

By (iii) and Weyl’s equidistribution theorem it follows that for a Sturmian se-
quence u the limiting frequency of of any symbol in the sequence exists. An (ele-
mentary but not altogether easy) exercise is to prove this directly from part (ii),
the property of being balanced.

We will be interested in the set of all Sturmian sequences, which we will denote
by Σ. This forms a subset of the full one-sided symbol space {0,1}N. As is usual,
we give this space the product topology, with respect to which it is homeomorphic
to the Cantor set.

Remark 8. The set Σ is not a closed subset of the space {0,1}N. It is contained in
the set of all balanced sequences, which is closed (if a sequence is not balanced, this
can be checked on a finite subsequence, so a non-balanced sequence cannot be a
limit of balanced sequences). One can prove that every balanced sequence is a limit
of Sturmian sequences, hence the closure of Σ is the set of all balanced sequences;
what needs to be added is the countable set of all the eventually periodic balanced
sequences.

We recall the shift dynamics on the space {0,1}N: the image Su of a sequence
u is the sequence v such that, for all integers n ≥ 0, vn = un+1. The subset Σ
inherits this dynamics.

We are also interested in a much smaller subset of {0,1}N. Given a Sturmian
sequence u, we write Ω = {Snu} for the closure of the orbit of u under the shift S.
The next Proposition shows these are the smallest shift-invariant subsets of Σ.
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Proposition 9. Let Ω be the orbit closure of a Sturmian sequence. The dynamical
system (Ω, S) is minimal, and S is one-to-one on Ω except for a single point which
has two preimages.

Proof. If the sequence is Sturmian, by (ii) of Proposition 8 it is not eventually
periodic; the shifted sequence keeps this property, and is clearly balanced. Certainly
all its shifted sequences share this property. By (ii) =⇒ (i) of Proposition 8
therefore, since p(n) = n + 1, every word that occurs in the sequence occurs an
infinite number of times. This implies that every word that occurs in the sequence
can be extended in at least one way on the left. Because there are (n+ 1) words of
length n (for each n), there is exactly one word Ln that can be extended on the left
in two ways. The word Ln is a prefix of Ln+1, and this sequence of finite length
words increases to a unique infinite word l. This word has two preimages in Ω, with
all the others having exactly one preimage.

The proof of minimality is more difficult; we do not give it now, as it will follow
from the recoding given below. �

We remark on the difference between Ω and the set Σ of all Sturmian sequences:
as one can show, Ω consists of Sturmian sequences where 1 occurs with a fixed
given frequency, while for Σ all possible irrational frequencies occur. This explains
why, unlike the closure of Σ, Ω does not contain periodic sequences. It follows from
the Proposition that the set Σ is an uncountable disjoint union of the closed sets
Ω; we note that Σ is not itself closed.

Remark 9. One of the implications of Proposition 9 is that one could instead work
with biinfinite sequences, indexed by Z, since a countable number of sequences (in
the positive orbit of 0) can be extended on the left in two ways, while all the others
can be extended in only one way. Another way to understand this is: since this
shift is a zero entropy system, the future almost surely determines the past. For
clarity of exposition, it is more convenient to work for the moment with one-sided
sequences, however we will in §5 use biinfinite sequences.

Definition 11. We will call the unique sequence that has two preimages under the
shift on Ω the special word or the special sequence of the system Ω.

This notion has a geometric interpretation, contained in the following:

Proposition 10. The dynamical system (Ω, S) is an almost surely 1-1 topological
extension of a rotation (S1, Rα), via the coding given by the two natural partitions
I and J ; the special word corresponds to the image of the point 0, which has a
non-ambiguous coding, while each of its preimages by the rotation has two possible
codings.

The quotient of the set Ω by the equivalence relation that identifies for each n ≥ 1
the two preimages of order n of the special word is, with its natural (quotient)
topology, homeomorphic to the circle.

We remark that the minimality of an irrational circle rotation can be proved in
two ways, therefore, as a consequence of Proposition 9 via this continuous projection
to the circle, or directly from the geometry by an easy compactness argument;
however the converse argument would not work, that is, the minimality of the map
does not lift from the circle to the space Ω.
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4.3. Recoding Sturmian words: the coding map. Since we will be using
sequences of several different types, we will from now on speak of Sturmian infinite
words, or Sturmian words for short, instead of Sturmian sequences, and reserve
the term sequence for the coding sequences to be defined below.

Definition 12. A substitution on the alphabet {0,1} is a map from {0,1} to
the set {0,1}∗ of finite words on the alphabet {0,1} that sends each letter to a
non-empty word. It extends naturally to finite words and infinite sequences on this
alphabet, replacing each letter by the corresponding word.

Recall that the set {0,1}∗ admits a natural structure of free monoid for the
concatenation operation; in this setting, a substitution appears as a non-erasing
morphism of the free monoid.

In this section we show how to recode a Sturmian word on the alphabet {0,1}
to another Sturmian word, using a substitution, the choice of which depends on the
initial word. We then iterate this process, keeping track of the different substitu-
tions used. This produces a sequence (the coding sequence) on another alphabet.
We next show that the set of coding sequences is a subshift of finite type, and that
the correspondence between Sturmian words and the associated coding sequences
is almost surely one-to-one. Finally we recover, in a completely combinatorial way,
the symbolic dynamics for the scenery flow described in §3.

Let u be a Sturmian word; from the definition, there are only three words of
length 2 occuring in u. Since 01 and 10 must occur (for otherwise u would be
eventually constant) this means that exactly one of the words 00 or 11 does not
occur. (Geometrically this corresponds, of course, to having rotation angle α ∈]0, 1

2 [
and ] 1

2 , 1[ respectively.)

Definition 13. A Sturmian word will be said of type 0 if 11 does not occur, and
of type 1 if 00 does not occur.

Notations 5. We will denote by Σ0 (resp. Σ1) the set of Sturmian words of type
0 (resp. 1), and Σ0 (resp. Σ1) the set of Sturmian words that begin with 0 (resp.
1); we will denote by Σ0

0 (resp. Σ1
0) the set of Sturmian words of type 0 that begin

with 0 (resp. with 1), with the corresponding notation for words of type 1.

Suppose that the word u is of type 0. Then every 1 is followed by a 0, so we can
certainly recode u by using as new symbols the words 0 and 10. The interesting
fact is that, possibly after removing the first letter, the word thus obtained will
again be Sturmian. The next Proposition states this precisely. We need first:

Definition 14. We denote by σ0, σ1 the two substitutions, defined from {0,1} to
{0,1}∗ by

σ0 : 0 7→ 0

1 7→ 10

σ1 : 0 7→ 01

1 7→ 1

Lemma 2. If v is not balanced, then for any letter a, σ0(av) is not balanced.

Proof. We suppose that v is not balanced. It is not hard to prove that we can
then find two words U and V of the same length and containing the same number
of 0’s, such that the words 0U0 and 1V 1 occur in v. Because 0U0 occurs in v,
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there exists b such that b0U0 occurs in av (the only problem is the case when
it is the initial word; this is why we needed a). Because σ0(b) ends with 0 in all
cases, the words 00σ0(U)0 and 10σ0(V )10 occur in σ0(av). But now it is clear
that σ0(U) and σ0(V ) have same length and same number of 0’s; hence the two
words 00σ0(U)0 and 10σ0(V )1 occur in σ0(av); they have same length; and their
number of 0’s differs by two. �

We can now explain how one recodes Sturmian words.

Proposition 11. Let u be a Sturmian word of type 0.
(i) If u is not a special word, then either u = σ0(v), where v is a Sturmian word,

or u = Sσ0(v), where v is a Sturmian word that starts with 1 (but not both).
(ii) If u is a special word, we can write both u = σ0(v0) and u = Sσ0(v1), where

Sv0 = Sv1 is a special Sturmian word.
If u is of type 1, the same property holds, by exchanging the symbols 0 and 1.

Proof. It is immediate that if u is of type 0 then we can express it in a unique way
as u = σ0(v), as noted above.

(i) Suppose that u is not a special word. Then exactly one of 0u and 1u is
Sturmian.

Supposing now that 0u is Sturmian, we can write 0u = σ0(v′), where v′ starts
with 0. Taking v = Sv′, then by the preceding Lemma v is Sturmian, and u = σ0(v).
If u begins with 1 then we certainly cannot write u = Sσ0(v′), with v′ beginning
with 1. If u begins with a 0, then v also begins with a 0. We can then replace the
first letter of v by a 1, getting a new word w, and can then write u = Sσ0(w). But
if w is also Sturmian, since Sw = Sv, then Sv is a special word; it is easy to check
that this then implies that u is also a special word.

Suppose next that 1u is Sturmian. Then its preimage is 01u, since 1 is isolated,
and we can write 01u = σ0(0v), where v is Sturmian and begins with 1. It is then
clear that u = Sσ0(v), where v is Sturmian and begins with 1. As before, we can
write u = σ0(w) where w is the word obtained from v by replacing the first letter
by a 0. But again, if this word w is Sturmian, then u is a special word.

(ii) Suppose next that u is a special word of type 0. Then its preimages are
01u = σ0(01v) and 10u = σ0(10v), since u must begin with a 0. The two words
0v and 1v are Sturmian, by the Lemma, so v is a special word; and we clearly have
that u = σ0(0v) = Sσ0(1v).

This same proof works for words of type 1, using σ1 in place of σ0. �

A direct consequence of this Proposition is that second preimages of special
words (under the shift map) recode to each other:

Corollary 1. Let v be a special word of type 0 (respectively type 1). Then there
is a special word v′ such that 10v = σ0(10v′) and 01v = σ0(01v′) (resp. 10v =
σ1(10v′) and 01v = σ1(01v′)).

We see that these second preimages of special words play an important role, and
they deserve a name:

Definition 15. The two shift preimages of order 2 of the special word of a Sturmian
system are called the fixed words of the system.

We will see later that there is an easy algorithm (Rauzy rules) to compute an
arbitrary long prefix of a fixed word, and that algorithm will explain the reason for
this terminology.
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The content of the preceding Corollary is that the two fixed words of a system
recode to the two fixed words of (another) system, or equivalently, the image of a
fixed word by either one of the substitutions σ0, σ1 is a fixed word, of type 0 or 1
respectively, which begins with the same letter.

We can use Proposition 11 to define a transformation on the space Σ:

Definition 16. We define the coding map Φ : Σ → Σ to take a Sturmian word
u of type 0 (resp. 1) to the unique word v such that u = σ0(v) (resp. u = Sσ1(v)),
or, if such a word does not exist, to the unique word v such that u = Sσ0(v) (resp.
u = σ1(v)).

Note that, in this definition, in case of ambiguity, we have made a choice, taking
as image the word whose initial letter is 0.

Proposition 11 ensures that Φ is well-defined; its definition entails an arbitrary
choice for the special word. It is easy to check that Φ is a 3-1 map; the partition
{Σ0

0 ,Σ
1
0 ,Σ

0
1 ,Σ

1
1} defined above is a Markov partition. The map Φ is one-to-one

from Σ0
0 to Σ and from Σ1

1 to Σ; it is one-to-one from Σ1
0 to Σ1, and from Σ0

1 to
Σ0.

We will use this partition to associate, to any Sturmian word, the itinerary of
its orbit by Φ.

Definition 17. The coding sequence for a Sturmian word u is the sequence
which takes values in the set A = {(0,0), (0,1), (1,0), (1,1)}, obtained by recoding
u an infinite number of times by the map Φ.

The symbolic dynamics thus defined can be explained as follows: beginning with
a Sturmian word u, we find a new Sturmian word u(1). We can then iterate the
process, recoding u(1). In this way we obtain an infinite sequence of Sturmian words
u(i) = Φi(u) such that u(i) = σau

(i+1) or u(i) = Sσau
(i+1).

We remark on the choice we made in defining Φ. If one of the words u(i) is
special, we have a choice for the recoding; these are the two preimages of a special
word, and Φ in that case chooses the word that starts with 0. At the next step,
one of the recoded words is a fixed word, and then from this point on, the choice
of recoding is completely determined (by the above Corollary). As is easily seen,
the alternative sequence of words consists of preimages of special words for a finite
time, and then (when the type of the recoding substitution changes), of fixed words.

It is clear that a special word can appear in the process if and only if we start
with a word in the positive orbit of a special word by the shift; in this case, there
are two possible sequences of words, and both, after a finite time, consist of fixed
words. The sequence of words obtained by applying Φ consists eventually of fixed
words starting with 1. (At the first step, we obtain a word that begins with 0, but
after a finite number of steps, we get a word beginning with 1.)

It is natural to ask whether the partition generates, and what are the admissible
coding sequences (that is, the coding sequences obtained by Φ).

Theorem 4. (i) The admissible coding sequences are contained in a one-sided
subshift of finite type, on the alphabet A, defined by the following condition:

(0,1) is not followed by (0,0) or (1,0) and (1,0) is not followed by (0,1) or
(1,1).

They can be obtained as sequences of vertices for paths in the graph shown in
Figure 6, where we have represented all the possible transitions, labelling each edge
by the corresponding transformation.
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Figure 6. The transition graph for additive coding

(ii) all sequences in this finite type subshift are obtained, except for:
–the eventually constant sequences,
–the sequences of the form U(0,0)(0,1)a(1,1)v or U(1,1)(0,1)a(1,1)v, where U

is any admissible word on the alphabet A, v is a sequence that contains only the
symbols (0,0) and (1,0), and a ∈ N is an integer.

(iii) The partition almost generates, that is, it separates all Sturmian words,
except for the pairs of preimages of order k, k > 2, of special words, whose coding
sequence consists eventually of blocks of type alternatively (0,0)n and (1,1)n.

Proof. (i) The fact that all admissible sequences are of the given type is clear: if
a word is of type 0 and begins by 1, it must be recoded using σ0, so the recoded
word must begin also with 1; hence (0,1) cannot be followed by (0,0) or (1,0). In
the same way, (1,0) cannot be followed by (0,1) or (1,1).
(ii) An eventually constant path on the graph ends on words which are all of the
same type. If all the recoded words are of type 0, the initial word u must contain
arbitrarily long strings of 0’s, and this is impossible for a balanced word. Applying
the same reasoning to the recoded words u(n), we see that the sequence cannot be
eventually constant.

The fact that all the other sequences defined by the graph are admissible is a
direct consequence of the fact that the partition by the Σa

i is a Markov partition
for Φ, as we remarked above; the only trouble comes from the convention in the
definition of Φ. Namely, it is easily checked, from the Corollary give above, that
fixed words are recoded to fixed words beginning with the same letter. Hence the
cooresponding coding sequence consists only of the letters (0,1) and (1,1) if the
initial letter is 1, or (0,0) and (1,0) if the initial letter is 0. Suppose now that a
coding sequence consists eventually only of letters (0,0) and (1,0); by inspection
of the graph, we see that the last letter not of this type must be (1,1), which may
be preceded a finite number of times by (0,1), and then (0,0) or (1,1). But a
detailed study of cases shows that the corresponding word is a special word, which
can be recoded, using Φ, in a sequence that consists eventually only of the letters
(0,1) and (1,1); hence, by our convention, these sequences are not admissible. Note
that sequences of type (0,1)a(1,1)v, where v contains only (0,0) and (1,0), are
admissible: they code for the preimages of order 1 of special words that begin with
1. (These are the ones that we removed when defining the images of special words
by Φ.)
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(iii) Suppose that the sequence contains only letters (0,0) and (1,1). One checks
by induction that, from the knowledge of the first letter of the recoded word u(n),
we can deduce only the first letter of the initial word; the second letter is not
possible to determine. One can then check that the two preimages of order 3 of the
special word, a10l and a01l, admit this sequence as symbolic dynamics, verifying
the claim. A similar proof applies when the coding sequence is eventually of this
type.

�

Remark 10. In the cases where the coding sequence corresponds to two Sturmian
words, these words differ by exactly two letters, since this is the case for the preim-
ages of order 2 or more of a special word.

Writing Λ+ for the one-sided subshift of finite type defined by the graph above,
we can rephrase Theorem 4 as follows:

Corollary 2. The map that takes a Sturmian word to its coding sequence semi-
conjugates the dynamical system (Σ,Φ) to the subshift of finite type (Λ+, S); the
semi-conjugacy is one-to-one, except on the negative orbit of fixed points, and its
image contains all of Λ+, except the eventually constant sequences and the sequences
specified in part (ii) of the Theorem 4.

If two Sturmian words belong to the same Sturmian system Ω, then the recoded
words (their images by Φ) also belong to the same system. Thus they have the
same type, and will be recoded by the same substitution, the only difference being
that perhaps a shift appears in the coding process. Therefore recoding makes sense
at the level of systems, as follows:

Definition 18. The coding sequence for a Sturmian system Ω is the sequence
(in)n∈N of indices of substitutions, with in = 0 or 1, obtained by recoding the fixed
words of Ω.

This sequence is uniquely defined; it is what we call the additive coding of Ω. We
can write the sequence as σa0

0 σa1
1 . . . σa2n

0 σ
a2n+1
1 . . ., by grouping together strings of

σ0 and σ1. The sequence (an) of integers, which are all strictly positive except
perhaps for a0, is called the multiplicative coding for the system. This sequence has
a natural interpretation in terms of rotations. In particular, as we will see in §6, if
a0 6= 0, then (an) is the continued fraction expansion of α/(1 + α), where α is the
angle of the rotation associated to the Sturmian sequence.

If we know the additive coding (in)n∈N of a system Ω, it is possible to obtain
the fixed words. Namely, the fixed word beginning with the symbol 0 is infinitely
recoded in fixed words also beginning with 0. Hence it admits as a prefix all the
finite words σi0σi1 . . . σin(0).

These words are in fact easy to compute, using the fact that we have, for any
substitution ρ, that ρ(σ0(0)) = ρ(0), and ρ(σ1(0)) = ρ(01) = ρ(0)ρ(1).

Remark 11. Now we can explain why we have termed these the fixed words; it
is a generalization of the standard situation, where one has a single substitution
ρ. Indeed, as the reader who is familiar with the classical theory of substitution
dynamical systems will note, the above procedure is very similar to the process by
which one constructs what is known in that subject as the fixed word of ρ, i.e. the
infinite word which is a fixed point for the action of ρ on sequence space. Indeed,
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if the sequence (in)n∈N happens to be periodic, of period p, then we can reduce
to that case as the p words we obtain are fixed for the composed substitutions
ρ = σi0σi1 . . . σip−1 (and its cyclic permutations). What we are doing here can
be considered as a generalization of that idea to an infinite, and not necessarily
periodic, sequence of substitutions.

We summarize this as follows:

Proposition 12. (Rauzy rules) Let Ω be a Sturmian system with coding sequence
(in)n∈N. Define two sequences of finite words (Un)n∈N and (Vn)n∈N by recurrence:
U0 = 0, V0 = 1; if in = 0, then Un+1 = Un, Vn+1 = VnUn; if in = 1, then
Un+1 = UnVn, Vn+1 = Vn. Then Un (resp. Vn)is a sequence of prefixes of the fixed
word with initial letter 0 (resp. 1).

4.4. Recoding Sturmian words: the natural extension of the coding map,
and the symbolic dynamics for the scenery flow. An important consequence
of the previous section is that the coding sequences for Sturmian words appear as
the non-eventually-constant sequences in a subshift of finite type.

We could account for the eventually constant sequences on this graph by coding
periodic rotations, but we will not do so as it is tedious and not so useful to write
down the details.

This dynamics is very different from the one discussed in §3.2, given by the shift
on Sturmian words. The Sturmian words gave symbolic dynamics for the rotations;
the coding sequence, on the other hand, gives us symbolic dynamics for the map Φ.
A fundamental difference between these two maps is that the rotation is of entropy
0, while Φ is of positive entropy. In this section we compute the natural extension
(in the sense of Rokhlin [Roh64]) for this map, and recover in this way symbolic
dynamics for the scenery flow.

Of course one could easily build abstractly the natural extension of the subshift
of finite type, by simply taking the allowed biinfinite sequences. In this way we
recover the 2-sided subshift defined in §3. However we prefer to build the natural
extension in a more concrete way. There is some freedom in this construction of
the natural extension; the choices we make may seem arbitrary, but in fact it will
be seen that they come directly from the geometric construction sketched in §4.1.

We use for this purpose a slight modification of the above coding: instead of
working with σ0, σ1, consider the maps τ0, τ1 defined from {0,1} to {0,1}∗ by

τ0 : 0 7→ 0

1 7→ 10

τ1 : 0 7→ 10

1 7→ 1

so that τ0 = σ0, but τ1 and σ1 differ by their order.
We can use these two substitutions also to recode Sturmian sequences, which

leads to the following Proposition:

Proposition 13. Let u be a Sturmian word. If u is of type 0, then:
(i) If u is not a special word, then either u = τ0(v), where v is a Sturmian word,

or u = Sτ0(v), where v is a Sturmian word that starts with 1 (but not both).
(ii) If u is a special word, we can write both u = τ0(v0) and u = Sτ0(v1), where

Sv0 = Sv1 is a special Sturmian word.
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Figure 7. The dual graph for additive coding

If u is of type 1 then, if u0 = 1, we have u = τ1(v), and if u0 = 1, we have
u = Sτ1(v), where v is a Sturmian word.

The proof is similar to that of Proposition in §4.3, but slightly easier since for τ1,
unlike for σ1, we do not need to treat special cases. We can then define a variant
of the map Φ:

Definition 19. We denote by Ψ the map Ψ : Σ → Σ that takes u to the unique
Sturmian word v such that u = τ0(v) or u = τ1(v), or, if it does not exist, to the
unique Sturmian word v such that u = Sτ0(v) or u = Sτ1(v).

Using the map Ψ, we can again code all Sturmian sequences using the same
alphabet as before, now with the graph given in Figure 7.

The restrictions posed on coding sequences are the same as before. Consider now
a biinfinite sequence (εn,an)n∈Z. We associate to this biinfinite sequence the pair of
infinite sequences (εn,an)n∈N and (δn,bn)n∈N, where bn = a−n and δn = 1−ε−n−1.

It is easy to check that this is a one-to-one and onto correspondence between ad-
missible biinfinite sequences, and pairs of admissible infinite sequences; for example,
suppose that (δn,bn)n∈N is not admissible, and that for some n, (δn,bn) = (0,1),
bn+1 = 0. Then we compute (ε−n−1,a−n−1) = (1,0) and a−n = 1; hence the
biinfinite sequence (εn,an)n∈Z is not admissible.

This gives us a concrete combinatorial model for the natural extension as follows.
To any biinfinite admissible sequence (εn,an)n∈Z, first associate a pair of infinite
admissible sequences (εn,an)n∈N and (δn,bn)n∈N. To the first infinite sequence,
we associate a Sturmian word u+, using substitutions σ0, σ1; to the second, we
associate a Sturmian word u−, using τ0, τ1. We get two Sturmian words with same
initial letter, and the process is now clearly one-to-one: u− tells us how we must
decode u+, and gives us the past.

Formally, we define Σ̃ = {(u, v)|u, v ∈ Σ, uO = v0}; this is the space of pairs of
Sturmian words with same initial letter; we write φ̃ : Σ̃ → Σ̃ for the map which
recodes the first word and decodes the second. This map is the natural extension
of Φ. We obtain:

Proposition 14. The map Φ̃ : Σ̃ → Σ̃ is conjugate to the subshift of finite type
S : Λ → Λ by associating to each biinfinite coding sequence a pair of Sturmian
words.
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Figure 8. The recoding of Sturmian words.

It is not an accident that we recover the same symbolic system as in §3. In fact
we have the following:

Theorem 5. The transformation Φa : ∆a → ∆a is conjugate to Φ̃ : Σ̃→ Σ̃.

Proof. We first define a map from ∆a to Σ̃. Consider some point in the cross-
section ∆a for the scenery flow, with coordinates (l0, l1, h0, h1, x, y). To this point
we associate two Sturmian words in the following way. We have a fundamental
domain for a lattice consisting of two rectangles, the left one labelled 0 and the
right one labelled 1, and a point (x, y) in this fundamental domain. We consider the
Sturmian word which is the itinerary of the orbit of this point for the vertical flow;
it is a Sturmian word associated to the rotation by angle l1 on an interval of length
l0 + l1. Hence it determines l0, l1 up to a factor. But because we are in ∆a, we
have sup(l0, l1) = 1, so these are completely determined. In fact, to compute l0, l1,
we do not need to know here the precise word we get, only the system to which it
belongs, that is, the sequence an above. Knowing this word itself determines the
number x. (We give the precise formulas in §6). In the same way, the Sturmian
word given by the horizontal flow determines the vector (h0, h1) up to a factor;
but since we have h0l0 + h1l1 = 1, it is in fact completely determined. Moreover,
the word also defines y. In this way we have associated to each point of ∆a an
element of Σ̃ (which is uniquely determined, except for degenerate cases when the
point (x, y) happens to be in the horizontal or vertical trajectory of the origin;
in this case, we have two or four possible sequences; it is easy to check that this
corresponds to the exceptional sequences we have seen before).

Next we will describe the effect of the map Φa on this pair of Sturmian words.
We have two cases to consider, depending on whether l0 is larger or smaller than
l1; we shall consider only the first case. There are three situations, summarized in
Figure 8.

In each case, we are stacking the left part, or rectangle 0, over rectangle 1; we
are given two words u, v for the first domain, and we want to find the corresponding
words for the restacked domain. If (x, y) is in rectangle 1, then u′ and v′ also begin
with 1, and we can write u = σ0(u′), v′ = τ1(v). If (x, y) is in the left part of
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rectangle 0, then we have u = Sσ0(u′) and v′ = τ1(v); if (x, y) is in the right part
of rectangle 0, then we have u = σ0(u′) and v′ = Sτ1(v).

We see that the return map for the scenery flow is exactly the map Φ̃ we have
described before: take the σ-coding for the vertical orbit, the τ -coding of the hori-
zontal orbit, remove the first term (ε0,a0) of the vertical orbit and add (1− ε0,a1)
to the coding of the horizontal orbit. �

From the point of view of the geometry, the reason for using σ in one direction
and τ in the other is that the process we have described is not symmetric: we stack
always on the upper part, but we unstack alternatively on the right and on the left.

4.5. Shift dynamical systems on Sturmian sequences: the adic viewpoint.
Recall that the system (Ω, S) denotes the shift map S on Ω, the orbit closure of some
Sturmian word u. In fact one can check, just by looking at the coding sequences,
whether or not u belongs to Ω, as follows. The coding sequence for u is written
using an alphabet A of four letters. At the end of §4.2, we defined the coding
sequence for a system, using the alphabet of two letters {0, 1}. There is a natural
projection from the first alphabet onto the second, taking (εn,an) to εn. We note
that u belongs to the system defined by the projection of the coding sequence.

Fixing a Sturmian system and its coding sequence, we would like to express
in terms of coding sequences the shift on Sturmian words corresponding to the
rotation. There is a simple answer to this question:

Proposition 15. Let u be a Sturmian word, and let (εn,an) be its coding sequence.
Let N be the smallest integer (if it exists) such that (εN ,aN ) is different from (0,0)
and (1,1). The coding sequence for Su is the sequence (εn,bn) with bn = an if
n > N , and bn = 1 − aN for n ≤ N . If N is not defined, then u is one of the
two preimages of the fixed point, and the coding sequence for Su is either (εn,0) or
(εn,1).

We can consider this map as a sort of odometer; the operation consists in finding
the first term of the sequence which is not (0,0) or (1,1), changing the correspond-
ing letter aN to its opposite, and carrying this letter for the first N ranks.

However, for this purpose it is more natural and interesting to use the multi-
plicative notation alluded to at the end of §4.3. We will see this below, showing
that it is, in a slightly different notation, an adic system, as defined by Vershik
(cf.[Ver95], [VS93]). The precise formulas will be given in §6.

4.6. Symbolic dynamics for the first return map of the scenery flow to
the multiplicative cross-section. We will here only give the main results.

When we recode a given Sturmian word, instead of recording each step we can
continue until we get a word of a different type. If the initial word u is of type 0,
the new word v will be of type 1. We can write u = σa0 (v) if the symbol Sσ0 was
not used, or u = σb0Sσ

c
0(v); in the latter case, the first letter v0 of v must be 1,

and it is easy to check that one can write u = Sb+1σb+c0 (v). If we write k for b+ 1
and a for b + c, since c ≥ 1, we see that the admissible sequences correspond to
paths in the graph represented in Figure 9 with the condition 0 < k ≤ a (this graph
corresponds to the graph given in Figure 6, after grouping all the arrows that stay
on the same level of the graph).

Each admissible sequence is uniquely defined by a sequence of pairs (an, kn) of
integers, with 0 ≤ kn ≤ an. It is clear from the graph that the admissible sequences
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Figure 9. The transition graph for multiplicative coding

are exactly those for which the maximal runs with kn = 0, (except perhaps for the
initial one) are of even length.

This is a sofic condition. One would like to in fact achieve a Markov condition;
for that we will give a new related coding. The idea behind the first one was
to approximate the given sequence u by shifting one of the fixed points of the
sequence of substitutions, writing u = Sk0σa0

0 (Sk1σa1
1 (. . .)). We can instead try to

approximate u by preimages, writing: u = 0b0σa0
0 (1b1σa1

1 (. . .)).
We could start again as in §4, by proving that each Sturmian sequence u of type

0 can be written in a unique way u = σ0(v) or u = 0σ0(v), and defining in this way
additive and multiplicative coding sequences. We leave this to the reader, giving
here only the result:

Proposition 16. Let u be a Sturmian word of type 0. Then one can write in a
unique way u = 0b0σa0

0 (1b1σa1
1 (. . .)), where (an) is a sequence of strictly positive

integers, where (bn) is a sequence of integers such that 0 ≤ bn ≤ an; and where, if
bn = an, then bn−1 = 0. Moreover the sequence (an, bn) uniquely defines u unless
the sequence (bn) is 0 except for a finite set. In that case there are two possible
values for u, each a preimage of the same order of the special word of the Sturmian
system of u.

The relation between bn and kn is simple: let N be the smallest integer such
that kn > 0. Then we have:

• for n < N , bn = kn = 0
• bN = aN − kN + 1
• for n > N and kn > 0, then bn = an − kn
• for n > N and kn = 0, if bn−1 = 0, then bn = an; if bn−1 > 0, then bn = 0.

The admissible sequences are read from the graph shown in Figure 10. We have
adopted the convention that 0 < b < a. Each state is given by the type of the word
u, together with the initial letter of the preimage of u (which is well-defined except
when u is the special word).

A slightly different system will be produced if in place of the substitutions σ0, σ1

we use τ0, τ1. In this case, it turns out to be best to use a third multiplicative
system given by:
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τ0τ
a−1
1 : 0 7→ 1a−10

1 7→ 1a0

τ1τ
a−1
0 : 0 7→ 10a

1 7→ 10a−1

We can also find coding sequences for Sturmian words by using this set of sub-
stitutions; the idea is as follows: a word of type 0 can be recoded using some
τ1τ

a
0 if and only if it starts with 1; therefore, for a general word u, we can write

u = 0bτ1τa0 (v). It is then clear that one has 0 ≤ b ≤ a. Using the other substitution
is more subtle: u can be recoded only if its preimage starts with 0; therefore we
are led to look for the preimages (by the shift) of the word u. It is not difficult to
prove that one can write u = Sbτ0τ

a−1
1 (v), with the same condition as above. By

alternating the two types of substitutions, we have in this way associated to any
Sturmian word a biinfinite sequence (an, bn).

It is now possible to prove that this sequence is well-defined, and that it com-
pletely defines the Sturmian word, except for the orbit of the special words. What
is more interesting is that the set of admissible sequences is defined by the Markov
condition 0 ≤ bn ≤ an, and bn = an implies bn+1 = 0. This is dual to the condition
given above for the substitutions σ0, σ1.

We will not give proofs for these facts here, since we will see later an arithmetic
interpretation which will make them clear.

5. A line tiling model and the natural extension
of rotation renormalisation

We gave in §1 a completely algebraic expression for the scenery flow, and in §3, 4
two distinct completely symbolic expressions. Here we shall give a partly symbolic
expression, using tilings of the real line; see [Arn98] for more detailed explanations
from the view point of quasi-crystals.

We begin with a tiling of the plane associated to a lattice and its L-shaped
fundamental domain. For a point (x, y) in this fundamental domain, we can consider
the non-periodic tiling induced on the horizontal line by the intersection with the
translates of the two basic rectangles (cf. Figure 11). This is a tiling of the line
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Figure 11. The horizontal tiling

by two kinds of intervals, each of length l0, l1, with a marked origin point x. We
assume from now on that l0 and l1 are incommensurable. Such a marked tiling is
completely defined by the following:

• a biinfinite rotation sequence (un)n∈Z (We note that, since the one-sided
sequence (un)n∈N is Sturmian, we will be able to apply the results of the
previous section).

• the lengths l0, l1 of the two intervals
• the position x of the marked point, counted positive (from the left endpoint)

if x is in the interval labelled 1, and negative (from the right endpoint) in
the interval 0.

The action of the scenery flow is geometrically that of zooming in toward smaller
scales at a constant rate. That is, we are multiplying by et/2 the three numbers
l0, l1, x. At a certain time, we will exit the fundamental domain (when inf(l0, l1) =
1); we have then to subdivide the largest tile. We subdivide either the tiles 0 in two
pieces, labelled by 1 and 0 on the left and right respectively, while not changing
tiles labelled 1, or we subdivide the tile 1 by taking 1 and 0 on the left and right,
while leaving the tiles 0 unchanged. Thus there are two cases:

If l0 > l1, we replace (l0, l1) by (l0 − l1, l1); in this case, if x > 0, we keep x
and replace u by τ1(u). If l1 − l0 < x < 0, we keep x and replace u by Sτ1(u); if
−l0 < x < l1 − l0, we replace x by x + l0 and u by τ1(u). We have the analagous
formulas if l0 < l1, replacing τ1 by τ0.

We mention that these different cases do not depend on the sequence u, but
rather on the values l0, l1, x. On the other hand, if one wishes to consider negative
time for the scenery flow, one needs need to take into account the sequence u.
This sequence can be written in a unique way as u = σa(u′) or u = Sσa(u′),
and this determines the formulas used to compute the new lengths. One can view
this as follows: l0 and l1 determine the small-scale structure of the tiling, while u
determines the large-scale structure.

There is also a dual tiling, on the vertical orbit of (x, y), with similar properties.
However here we always take coordinates from the left of the interval, and therefore
change formulas according to the permutations σ0, σ1 rather than τ0 and τ1.
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We can now make completely precise the relation between these tilings and
the set E∗ we defined in §3.1. By definition a biinfinite Sturmian sequence is a
sequence (vn)n∈Z such that for each k, the sequence (un)n∈N defined by un = vk+n

is Sturmian.

Definition 20. An irrational Sturmian quasi-crystal is a line tiling by two types
of intervals, of rationally independent lengths, with combinatorics defined by a
biinfinite Sturmian sequence, and with a chosen origin. Two irrational Sturmian
quasi-crystals are equivalent if they differ only on a finite number of tiles.

Two distinct equivalent quasi-crystals differ in exactly two tiles; they correspond
to a horizontal line through the origin of the L-shaped fundamental domain.

The subdivision map defined above acts on the set of Sturmian quasicrystals,
and respects equivalence.

Definition 21. The set of equivalence classes of irrational quasi-crystals up to
equivalence and subdivision is called the set of quasi-crystal hierarchies, denoted
by T .

It is immediate that the scenery flow acts on T , by multiplying all real coordi-
nates by e

t
2 . It is now straightforward to check:

Theorem 6. The scenery flow on T is topologically conjugate to the scenery flow
on E∗.

This was the first model the authors found for the scenery flow, and it explains
the origin of the name: combining the ideas of [Arn94] and [Fis92], we wanted to
model how the “scenery” one sees changes as one zooms down to a point in a nested
tiling of the line given by renormalization. Thus, what one sees as time progresses
in the flow defined by this magnification is that the hierarchy in the nested tiling
will change, and smaller details will come into view, while the structure visible at
the beginning remains recorded in the large-scale combinatorial structure of the
tiling. See also [AF00].

Remark 12. A particular interesting case is the one where the sequence of subdivi-
sions, written as τa0

0 τa1
1 . . . is periodic; this is the case when l0/l1 is a Galois integer

(a quadratic number with an immediately periodic continued fraction expansion).
In that case, there is a natural way to get a backward orbit when only l0, l1 are
given. This consists of extending backwards the coding sequence as a periodic orbit,
and then taking the sequence u this determines. This sequence appears as fixed
point for some substitution; hence we get the (much studied) case of self-similar
Sturmian tilings, and in particular the simplest case related to the golden number,
the Fibonacci tiling (cf. [deB81]). These are closely related to the study of toral
automorphisms. Indeed, in that case the fundamental domain for the plane lattice
appears as Markov partition for a toral automorphism (cf. [AW70]); we will give
below the explicit arithmetic formulae.

Remark 13. If we restrict ourselves to the central two intervals 0 and 1, we see a
sequence of rotations of smaller and smaller domain. This is what we get from the
usual continued fraction; we can view this process as a renormalization of circle
rotations. However, there is no well-defined way to invert this process, because
for any rotation, there are always two rotations from which it can come via an
elementary renormalization. If we renormalize for some time, we get a tiling of the
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circle by two intervals by looking at the intervals given by the orbit of 0. We can
then come back in a unique way to the initial rotation, by considering this finite
tiling (but no further). One can see the scenery flow we describe in this section
as the natural extension of the renormalization of circle rotations: each Sturmian
tiling describes a possible past for the renormalization of the rotation defined by
the two basic intervals. We will elaborate on this remark in the next section.

Remark 14. We have shown, in particular, that the space of Sturmian tilings cor-
responding to given tiles and a given Sturmian system can be parametrized by a
torus. However as before this paramerization is only almost one-to-one: to recover
the torus, we have to identify equivalent pairs of Sturmian tilings, corresponding
to the special word of the Sturmian system, which differ only on two tiles and are
parametrized by the same point of the torus. Modulo this identification, the space
of tilings becomes homeomorphic to a torus. More complicated cases, for example
Penrose tilings, can be studied in the same way, cf. [Rob96].

6. An arithmetic interpretation

We have shown above that the symbolic dynamics completely defines a point
in the cross-section ∆m defined in §2, so that the two Sturmian words completely
determine the geometrical coordinates of the point. We will give in this section
precise arithmetic formulae, and recover the connection with continued fractions.

The results given here were worked out in a seminar at Luminy, cf. [AFH99] for
more details. Vershik and Sidorov also (independently) found these results in the
framework of adic systems (cf. [VS93]).

6.1. The Ostrowsky number system. In this section we will define two num-
ber systems that correspond to the coding sequence above. Such systems have
been studied by a number of authors previously ([Ost22], [Sòs58], [Kea70], [Kea71],
[VS93]).

To discuss the first system, it will be best to change our convention for circle
rotations. Now we take a rotation of angle α on the circle written as the interval
[−1, α[, together with the two natural continuity intervals [−1, 0[ and [0, α[. We
will give an explicit formula for recovering the geometric location of a point x in the
circle from its combinatorial coordinates given by the first coding sequence of the
Sturmian word u corresponding to x, in terms of the sequence of pairs of integers
(an, bn) defined in §4.6.

The main theorem is the following:

Theorem 7. Let u be the Sturmian word determined by the itinerary of a point
x with respect to the rotation of angle α on [−1, α[. Let (an, bn) be the sequence
determined by the coding of u in sequences of prefixes for σ0, σ1. Then (an) is the
continued fraction expansion of α, and if we define α0 = α, αn+1 = {1/αn} and
βn = (−1)n+1α0α1 . . . αn, we have:

x =
∞∑
n=0

bnβn

Proof. The main point to notice is that the substitution σ0 appears naturally when
one looks at the first return map on the complement of the image of [0, α[. Indeed,
consider the initial rotation R and the induced map R′ (which is also a rotation)
and a point x in the domain of R′. To this point we associate a Sturmian word
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Figure 12. The Ostrowsky induction process

u defined by the action of R, and another Sturmian word v, defined by the action
of R′. The relation between these words is simple, since the orbit of x under the
action of R′ is a subset of the orbit under the action of R, and since, by definition,
we have removed all points in the orbit that follow immediately a point of the orbit
in interval 0 (the removed points must be in the interval 1). Thus, to obtain u
from v, we simply replace all symbols 0 in v by 01 while keeping all symbols 1
unchanged; this tells us that u = σ0(v).

After repeating this operation at most [1/α] times, we get a rotation defined
on the interval [α[1/α − 1], α[, with associated substitution σ

[1/α]
0 . If the point x

is in this interval, we can proceed; otherwise, we must take the first point in the
positive orbit of x which is in the inducing interval. This point is easily seen to be
x′ = Rb(x) if the associated Sturmian word u can be written as 0bσa0 (v).

We now renormalize the induced rotation, as shown in Figure 12, to get a biggest
interval of length 1 on the left; all that is needed is to multiply by −1/α; this gives
a rotation of angle {1/α}, and a new point x1 = −x′/α. We have clearly:

x = −b0α− x1.α

Since we have now returned to the initial situation (except that now the interval
1 is on the left), we can repeat the process, using alternatively σ0 and σ1. We have
proved that an = [1/αn], where (αn) is the orbit of α under the continued fraction
map. That is, [a0, a1, . . .] is the continued fraction expansion of α.

A simple recurrence shows that one can define a sequence of points xn, all
bounded by 1, such that:

x =
n∑
i=0

biβi + βnxn

Since the βn converge exponentially fast to 0, the series converges, completing
the proof. �

Remark 15. It is a classically known fact that if pn/qn are the best rational ap-
proximations for α, given by the first n terms for the continued fraction expan-
sion, then pn − qnα = βn. Here the numbers βn satisfy the recurrence relation
βn+1 = βn−1 − anβn.

We mention that it is possible, although not very helpful to one’s understanding,
to give a proof of the Markov condition on the coefficients bn by means of this
relation.
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6.2. The dual number system. To make use of use the dual coding given by the
substitutions τ0, τ1 defined in §4.4, it will be more convenient to consider a rotation
of angle α on [0, 1[. We will induce on the smallest interval if is on the left, and on
the image of the smallest interval otherwise; all of the properties of the coding can
be deduced from this algorithm.

Theorem 8. Let u be the Sturmian word determined by the itinerary of a point
x with respect to the rotation of angle α on [0, 1[. Let (an, bn) be the sequence
determined by the third multiplicative coding of u from §4.6, using τ0 and τ1. Then
(an) is the continued fraction expansion of α, and if we define α0 = α, αn+1 =
{1/αn} and γn = α0α1 . . . αn, we have:

x =
∞∑
n=0

bnγn

Proof. We reproduce the preceding proof almost exactly, except that one needs here
to make a distinction between words of type 0 and of type 1. For words of type
0, we consider the first point in the forward orbit that is in the inducing interval,
while for words of type 1, we take the first such point in the backward orbit.

There is in this case an easier interpretation: we think of the sequence γn as
a basis for a number system, and try to express x in this basis, using the greedy
algorithm. The digits we then get will be the bn, with the Markov condition an
immediate consequence of the recurrence relation γn−1 = anγn + γn+1. �

6.3. An explicit conjugacy between the symbolic and algebraic models
for the scenery flow. In §4.1, given a point in E∗, we defined an associated
pair of Sturmian sequences given by the symbolic dynamics for the horizontal and
vertical flows.

We can now compute the inverse of this map:

Theorem 9. Let (u, v) be two Sturmian sequences with the same initial letter. Let
(an, bn)n∈N be the multiplicative coding of u, and (a′n, b

′
n)n∈N be the dual multi-

plicative coding of v, as explained in §4.6. Let α (resp. α′) be the number whose
continued fraction expansion is (an)( (resp. (a′n)), and let x (resp. y) be the number
whose Ostrowski expansion is (an, bn)n∈N (resp. whose dual Ostrowski expansion is
(an, bn)n∈N). Let k = 1 + αα′. Then, the two Sturmian sequences correspond to a
pair of boxes of total area 1, with respective dimensions (1, 1/k) and (α, α′/k), and
a point with the coordinates (x, y/k). Whether the largest box is on the left or on
the right is given by the type of the sequence u. �

6.4. Remarks. The role of the constant k above is simply to normalize the total
area.

We mention that there are integer number systems which are closely related to
these real number systems. Consider the sequence qn defined by qn+1 = anqn+qn−1,
q0 = 1, q−1 = 0 where these are the denominators of the best approximations
associated with the continued fraction expansion [a0, a1, . . .]; then every positive
integer N can be written in a unique way as N =

∑n
i=0 biqi, where the integers bi

satisfy the conditions that 0 ≤ bi ≤ ai, and that if bi = ai then bi−1 = 0. This fact
is clear from the greedy algorithm and the above recurrence relation.

This number system is very close to the first one we considered, the main differ-
ence being that here we have finite sums. It turns out that it corresponds in fact to
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those points in the positive orbit of 0 which have a finite coding. The point 0 itself
gives two Sturmian words, the two fixed words of the sequence of substitutions; its
second image corresponds to the special word of the system.

It is in fact possible to recover everything just using the integers; this is carried
out in Vershik and Sidorov ([VS93]). One can define a distance on the integers in
the following way: if N =

∑n
i=0 biqi and N ′ =

∑n
i=0 b

′
iqi, define d(N,N ′) = 2−k,

where k is the smallest number such that bk 6= b′k. If we take the completion of
N for this distance, and identify a countable number of pairs of elements in the
completion (the two maximal elements for the lexicographic ordering, and their
backwards orbit), we obtain the circle; the addition of 1 on the integers extends to
a map on this completion which is the rotation by angle α.

One can proceed similarly with the dual system, writing each integer (this time
positive or negative) as N =

∑n
i=0 bi(−1)iqi. It is remarkable that the first number

system allows us to write positive or negative reals, but only positive integers,
while with the the dual system we can write positive or negative integers, but only
positive real numbers.

One would like to try to extend these results to other recurrent sequences, in
particular to recurrent sequences of higher order. This has already been carried out
for certain recurrent sequences, in particular for the recurrent sequence of degree
three (the “Tribonacci” numbers) defined by Tn+3 = Tn+2 + Tn+1 + Tn. In that
case one gets a translation on a 2-torus, coded by a fractal domain (cf. [Rau82],
[Mes96]).

We remark that with this system, one can develop real numbers only in a compact
set. However, if instead of an infinite sequence (an)n∈N we take a biinfinite sequence
(an)n∈Z, we can give developments for any real number, in the form of sequences
(bn)n>−k. The same type of development allows one, for example, to give arithmetic
formulas for special Sturmian tilings of the line. Here again, we can define an adic
topology; the completion, which consists of biinfinite sequences (bn), corresponds
to the space of all Sturmian tilings.

A special case arises when the continued fraction sequence is periodic. (The
simplest case of this is the well-known Zeckendorf expansion, which corresponds to
the golden number.) It is then easy to build the natural extension of the coding
process, by taking the binfinite extension of the stationary Markov process associ-
ated to the periodic continued fraction. (This has no meaning in the general case,
since there is no single natural way to extend on the left a given continued fraction
if it is not periodic). In that way, we come to the theory of hyperbolic toral auto-
morphisms, and the formulas above give an explicit description of certain Markov
partitions for these maps of the torus. We can then obtain explicit coordinates for
a Markov partition of the type (x, y) = (

∑∞
n=0 εnλ

n,
∑−1
n=−∞ ηnλ

′n), where λ′ is
the conjugate of a Galois integer λ, εn, ηn belong to a finite set of elements of Q[λ],
and where the sequence is subject to some explicit Markov condition.

7. Rauzy induction on the exchange of three intervals

We present here a further model of the scenery flow in terms of exchanges of
three intervals.

Recall that an interval exchange transformation (IET) is a one-to-one map of
an interval to itself, which is everywhere continuous on the right, and is continuous
with derivative 1 except on a finite set. Thus geometrically, an interval exchange
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transformation consists in cutting the given interval in a finite number of (left-
closed, right-open) subintervals and permuting them by translations. Therefore, an
interval exchange transformation on k intervals is completely defined by a vector
λ = (λ1, . . . , λk) of positive reals, giving the length of the intervals, together with
a permutation π of k symbols.

A fundamental property is that the first return map of a IET with k intervals
on a subinterval is an IET with at most k+ 2 intervals. Moreover, if the induction
subinterval is carefully chosen, then the first return map will again be an IET on k
intervals. (For this, the induction interval must be an admissible subinterval, that
is, both extremities must be of the type T k(ai), for k ∈ Z and ai a discontinuity
point; and the interval must contain no point of the orbit between ai and T k(ai),
cf. [Vee82].)

A basic tool for studying dynamics of interval exchanges is the Rauzy induction
procedure: given an interval exchange (λ, π), we then induce on the largest admis-
sible subinterval containing 0; one checks from the definition that this interval is
[0,min(λn, λπ−1n)[.

The first non-trival example of an interval exchange is the exchange of two in-
tervals, that is, a rotation. In the preceding section, the coding using τ0 and τ1 is
the coding one obtains from the Rauzy induction for this rotation. If one instead,
however, induces on a non-admissible interval, then one will have produced not a
rotation but an exchange of three intervals.

The next case to consider is the exchange of three intervals. In order to get
something non-trivial, one needs to use the permutation (321). The reason is that
three of the other permutations yield interval exchanges with an interval of fixed
points, while the remaining two permutations on three letters yield a rotation.
However, as is well-known (cf. [KS67]), the Rauzy induction applied to an exchange
of three intervals will give a rotation.

Now this induced map is indeed a rotation, but in fact it contains more infor-
mation than just the rotation: there is also a distinguished point in one of the
two continuity intervals, coming from the removable discontinuity. In particular,
the Rauzy induction for this interval exchange will not be the same as Rauzy in-
duction applied to the corresponding rotation, since it will take into account that
distinguished point.

One can check that, considering the sequence of permutations obtained by the
Rauzy induction procedure for three intervals, the sequences obtained will consist
of all of the non-eventually-constant infinite paths in the following graph:

↪→ (231)←→ (321)←→ (312)←↩

In fact, these are equivalent: giving an exchange of three intervals, or giving
a rotation together with a distinguished point in its domain. It follows that any
Sturmian word determines (as above) a unique exchange of three intervals.

The Rauzy induction is a two-to-one map, corresponding to the additive con-
tinued fraction. Veech (in [Vee82], [Vee84]) explains how to build explicitly the
natural extension of this map. The idea is to build rectangles of respective heights
h1, . . . hk over the intervals of length λ1, . . . , λk, and to chose a point on each ver-
tical boundary of these rectangles. These heights must be chosen in such way that
it is possible to identify the boundaries so as to get a flat surface, the point on the
boundaries giving singularities (cone points) of this surface. This condition on the
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Figure 13. Plane tilings given by exchanges of 3 intervals

heights is given by a set of linear equations that depends only on the permutation.
We will not go into detail here, remarking only that, for example for the permu-
tation (321), the condition is h2 = h1 + h3, while for the permutation (231), the
condition is h2 = h3. The meaning of these conditions will be clear from Figure
13.

One can then use the Rauzy induction to build a flow on the space of rectangles.
Starting with a set of rectangles with total base width equal to 1, we apply Rauzy
induction, and then multiply the first coordinate by e

t
2 and the second by e−

t
2 , to

reduce the new base width to again be 1. We can show:

Theorem 10. The natural extension of Rauzy induction is the first-return map of
the scenery flow to a cross-section.

This now is a different cross-section from those we gave in §2; it is made of three
rectangles instead of two. One can in this context find a symbolic dynamics and
arithmetic; we leave the computation of the precise formulae to the reader.

It would seem at first sight that this version does not provide anything new. It is
however interesting to note that, for Rauzy induction on three intervals, the lengths
of intervals are given by 3 × 3 matrices. Therefore in the periodic case we should
get for the matrix eigenvectors of order three. However, since this corresponds
to a periodic continued fraction, we can get in this case only quadratic integers,
and not cubic integers as might be expected. In fact one can, in a similar way,
produce matrices of arbitrary size by introducing extra points and thus considering
the rotation to be an exchange of k intervals. By applying the Rauzy induction,
we will then get interval exchanges “of rotation class” (cf. [NR97]). This leads
to a generalization of the scenery flow, where we now follow a finite set of points
in the torus (see the section which follows). There is a similar notion for general
interval exchanges: some interval exchanges can be reduced, by Rauzy induction,
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to interval exchanges on a smaller number of intervals, with marked points, while
others are primitive in this respect. It would be interesting to have a combinatorial
condition that would insure primitivity.

We mention that a deep study exchanges of 3 intervals has been made recently,
by Ferenczi, Holton and Zamboni, using a different induction procedure; this yields
many surprising results, notably an example of an interval exchange on 3 intervals
that is measurably, but not topologically, conjugate to a rotation. It would be
interesting to understand the link with the viewpoint of Veech and Rauzy.

Another point of interest is that the flow on the natural extension of the Rauzy
induction has a well-defined geometric interpretation, as the Teichmüller flow on
strata of quadratic differentials (cf. [Vee86]). In the next section, we will show how
to interpret the scenery flow as Teichmüller flow on the twice punctured torus.

8. A geometric model: pairs of foliations and
the Teichmüller scenery flow

It is well known that the diagonal flow on the quotient SL(2,Z)\SL(2,R) is nat-
urally isomorphic to the geodesic flow on the modular surface, and can be identified
with the Teichmüller flow of conformal structures on the torus.

If we consider the once-puctured torus, the Teichmüller flow stays the same.
The reason is that the torus is a homogeneous space, with a transitive group of
automorphisms. So, if T and T ′ are two tori equipped with conformal structures,
and if there is a conformal automorphism from T to T ′, then, for any x ∈ T and
x′ ∈ T ′, there is a conformal automorphism that sends x to x′.

Another way to explain this is as follows. The Teichmüller flow acts on the
space of quadratic differentials. (A quadratic differential q is locally defined by
q = f(z) dz2, where z is a local complex coordinate and f is a holomorphic function;
a change of coordinates z = φ(w) tranforms this formula in q = g(w) dw2, where
g(w) = f ◦ φ(w) · φ′2(w); the function f is allowed to have poles only at the
punctures, if any, of the surface). On the compact torus, a quadratic differential
has no pole, so, by the index formula, it has no zero and hence must be a constant.
On the once-punctured torus, a quadratic differential has at most a simple pole,
at the puncture; its quotient by a constant quadratic differential gives a conformal
function on the torus with at most a simple pole, whence this conformal function
must be constant, i.e. the puncture is a removable singularity. We see therefore that
the space of quadratic differentials is the same for the torus and the once-punctured
torus, so their Teichmüller flows are the same.

Things are different for the twice-punctured torus: we have here (see [MS93])
three possible cases, describing three strata of quadratic differentials:

–two simple poles and two zeroes of order 1, giving a stratum of non-orientable
quadratic differentials (this is the “main stratum”, of maximal dimension: almost all
(in the measure or topological sense) quadratic differentials on the twice punctured
torus belong to this stratum);

–two simple poles and a zero of order 2, giving a stratum of non-orientable
quadratic differentials;

–no pole and no zero, giving a stratum of constant (orientable) quadratic differ-
entials.
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For the same reason as above, it is impossible to have only one simple pole:
either the two singularities are removable and the quadratic differential is constant,
or neither is removable.

The first two strata are quite complicated; the last one seems almost trivial,
and one could think that, since it consists in constant quadratic differentials, it is
isomorphic to the case of the non-punctured torus. This however is not the case: the
formal definition of this constant quadratic differential includes the two punctures,
and since the group of conformal automorphisms is transitive, but not 2-transitive
on the torus, a given quadratic differential with different choices for the punctures
will give different elements of this stratum.

In fact, as one can check, the space of constant quadratic differentials on the
twice punctured torus is a set of full measure in the space SA(2,Z)\SA(2,R) we
defined in §1 (since the two punctures must, by definition, be distinct, we cannot
get the points (M,~0); the corresponding punctures would in that case be the same).
Using the fact that a quadratic differential can be locally (away from the zeroes and
the punctures) written as the square of a holomorphic one-form q = ω2, one gets
two transverse foliations, given by the real and imaginary part of this holomorphic
one-form. It is elementary to check that these two foliations possess a well-defined
transverse invariant measure. In fact these two foliations together with their trans-
verse invariant measures define a flat structure on the surface, hence a conformal
structure, and moreover a quadratic differential.

In particular, if a quadratic differential on the twice punctured torus is non-
singular, it is constant, and so it defines a pair of tranverse linear measured foliations
on the torus. We choose by convention one of the punctures to be 0; taking the
universal cover of the torus, the two foliations lift to transverse measured foliations,
which can be used as coordinates; the puncture 0 lifts to some lattice Γ, and the
other puncture lifts to some distinct translate of Γ. The choice of which of these
two punctures is 0 is irrelevant, since it amounts to a change by −Id, while we must
in any case quotient by the group of automorphisms of the twice-punctured torus.

The Teichmller flow consists in multiplying one of the transverse measures by
et/2 and the other by e−t/2. Restricting to the stratum of constant quadratic dif-
ferentials, and coordinatizing by means of the space SA(2,Z)\SL(2,R), we obtain:

Theorem 11. The Teichmüller flow on the stratum of constant quadratic differen-
tials on the twice punctured torus is conjugate to the restriction of the scenery flow
gt defined in §1 to the subset {(M,~v)|~v 6= 0} in E.

It is clear that the analogous procedure can be carried out in the general case,
the modular space of a Riemann surface. One then gets a fiber bundle, with fiber
the given surface; this contains a suspension of any pseudo-Anosov diffeomorphism
(sitting over periodic orbits). We expect to come back to this subject in a future
paper.

9. Shannon-Parry measures for induction on Sturmian sequences

If one considers the Sturmian system associated to a fixed periodic continued
fraction expansion, by taking the coding sequence one gets a subshift of finite type.
By taking the natural extension, one can code in this way all toral automorphisms.
We get here three measures: the invariant measure for the automorphism, and the
invariant transverse measures for the stable and unstable foliations.
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It is possible to recover these measures directly at the symbolic level. The
recoding of Sturmian sequences gives a subshift of finite type, and we construct the
Parry-Shannon measure (which is the measure of maximal entropy for the subshift)
as in [AW70]. In other words it is the Gibbs measure for the potential function which
is identically zero; so we call it the Gibbs state. Via the isomorphism to the flat
torus, this is exactly Lebesgue measure projected from R2.

The transverse measures are the following symbolically: they are the conditional
Gibbs measures. These are dual, one conditioned on the past, and one on the
future, and there are two interpretations for each: as transverse measure to one
foliation, and as a measurement of length along the other. This measurement of
length defines a sequence of scaling functions, when evaluated on 0-cylinders at
successive levels k; the scaling function assigns lengths to nested sub-tiles. In this
way one builds up the scenery (a nested tiling of the real line), labelled by an infinite
past or future in the symbol space, with lengths given by the sequence of scaling
functions or equivalently by the conditional Gibbs measure for that tail.

These ideas are just as valid for the non-constant case. Consider a Sturmian
system Ω0; to each element of this system, we associate a coding sequence, and by
shifting, some element in a Sturmian system Ω1. In this way we define a sequence
of Sturmian systems Ωn, together with shift maps σn : Ωn → Ωn+1. Taking the
natural extension, let us suppose that this sequence is biinfinite. We then define
an operator L : C(Ωn) → C(Ωn+1) by L(f)(x) =

∑
y:σn(y)=x f(y). We also define

the dual operator L∗. Here, the notion of eigenvector is replaced by a sequence of
positive vectors invariant by the operator. We have the following Proposition:

Theorem 12. Let Ω be a Sturmian system of type 0, defined by the coding sequence
(an)n∈N. Let Ωn be the sequence of Sturmian systems obtained by recoding, and let
(νn) be a sequence of measures invariant by the associated dual operator. If α is the
number with [a0, a1, . . .] as continued fraction expansion, and if we denote by [0]
and [1] the basic cylinders in Ω (in the usual notation, and not with the recoding),
we have:

ν0([1])
ν0([0])

= α

Proof. The essential property is that it is easy to compute ν0([0]) and ν0([1]) if
we know the same quantity for ν1. Indeed, we have ν0([0]) = ν1([0]) + ν1([1]) and

ν0([1]) = ν1([1]). More generally, if we denote by Vn the vector
(

νn([0])
νn([1])

)
, we

compute immediately Vn = MnVn+1, where Mn =
(

1 1
0 1

)
if Ωn is of type 0, and

Mn =
(

1 0
1 1

)
if it is of type 1.

This means that, if we denote by Λ the positive cone of R2, V0 must belong to the
positive cone that is the intersection of the M0M1 . . .MnΛ. But it is classical that
this intersection reduces to a line whose slope is given by the continued fraction. �

We deduce from this that the measure ν0 (and hence the eigenmeasure sequence
νn) is uniquely defined up to a multiplicative constant; the Theorem is true for all
νn, and knowing the measure νn on cylinders of length 1 allows one to compute the
measure ν0 on cylinders of length n.
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The same turns out to be true for the eigenfunction: by the same proof, it is
constant on each of the two cylinders, and the ratio of the two values is defined by
the negative part of the biinfinite sequence (an). The product of the eigenfunction
by the eigenmeasure is a sequence of invariant measures for the shift. We think
of this in the following way: instead of finding an invariant measure for a toral
automorphism, we are now given a sequence of toral automorphisms on a sequence
of tori, and we can define a natural invariant measure. This brings us to the notion
of mapping families; see [AF00].

Remark 16. What we have found here are special cases of invariant measures for
adic systems, cf.[Ver95]. However, it is interesting to consider not only invariant
measures for a given dynamical system, but sequences of related measures for se-
quences of dynamical systems linked by induction. Examples are provided by a
generalization of the Ruelle-Perron-Frobenius Theorem to nonstationary subshifts
of finite type. This is related to random dynamics on the one hand and to the
study of invariant differentiable structures on the other (see [AF00], [BF97] and
the references given there).

10. Some generalizations

There are two main possible generalizations. The first one is to extend these
ideas to other surfaces than the torus. A large part of this has already been done in
the work of Veech (cf. [Vee82], [Vee84], [Vee86]); in fact, one of the starting points
for this paper was the study of [Vee86], and in particular the role of the punctures
that turn out to be removable singularities.

The symbolic dynamics associated to this situation is well understood: these are
some types of sequences of complexity (k − 1)n + 1, generated by a finite number
of substitutions, the admissible sequences of substitutions being defined by a sofic
system (given by the so-called Rauzy graph)

There are still some unclear points: in particular, there should be a dual al-
gorithm to the Rauzy algorithm; some other algorithms have been proposed (cf.
[Car94], [daR94]), [Ld94]) and they are probably the dual algorithm we are looking
for. What kind of arithmetical formulas one should get is not yet clear.

Another possible generalization is to go to a higher dimension; the paradigm
here should be the Markov partitions for hyperbolic automorphisms of the torus
Tn. The situation here seems to be much more difficult, due to the fact that, by
a theorem of Bowen (cf. [Bow78]), the boundaries of such Markov partition, in
dimension larger than 2, and for irreducible automorphisms, cannot be smooth. In
fact, some explicit examples (with nice fractal boundaries) are known (cf. [Rau82],
[Mes96]); in these cases, it has been possible to give explicitly symbolic dynamics
and arithmetic formulas.

However, the only cases that have been explicitly studied as of this writing
are “periodic” cases, and in particular those for which the eigenvalue is a Pisot
number. The work of Dumont, Kamae and Takahashi (cf. [DKT96]) could open
some possibilities for the study of non-Pisot examples. We hope that it will be
possible to extend the methods of the present paper to cover some non-periodic
cases.

It is worth remarking that these two different generalizations could be linked: it
is known ([Arn88]) that some particular symbolic dynamical systems can represent
both an interval exchange and a translation on a torus of dimension three or more.
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One can also try to extend to multidimensional continued fraction algorithms,
such as the well-known Jacobi-Perron algorithm. A step in this direction has been
made in [ABI00], where this algorithm has been linked to Z2-action by rotations
on the circle. In that case, one can obtain a generalized Ostrowski expansion for
elements of R2, but as yet it is unclear whether there is in this case any structure
which corresponds to the scenery flow.
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translation sur le tore. Bullletin de la Société Mathématique de France, 116:489–500,
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[MS93] Howard Masur and John Smillie. Quadratic differentials with prescribed singularities

and pseudo-Anosov diffeomorphisms. Commentarii Math. Helv., 68:289–307, 1993.
[NR97] Arnaldo Nogueira and Dan Rudolph. Topological weak-mixing of interval exchange

maps. Ergodic Theory and Dynamical Systems, 17:1183–1209, 1997.
[Ost22] A. Ostrowsky. Bemerkungen zur Theorie der Diophantischen Approximationen i, ii. Abh.

Math. Sem. Hamburg, 1:77–98 and 250–251, 1922.

[Pau74] M. Paul. Minimal symbolic flows having minimal block growth. Mathematical System
Theory, 8:309–315, 1974.
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