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Abstract

We prove an almost sure invariance principle in log density for renewal processes with gaps
in the domain of attraction of an α-stable law. There are three different types of behavior:
attraction to a Mittag-Leffler process for 0 < α < 1, to a centered Cauchy process for α = 1
and to a stable process for 1 < α ≤ 2. Equivalently, in dynamical terms, almost every renewal
path is, upon centering and up to a regularly varying coordinate change of order one, and after
removing a set of times of Cesáro density zero, in the stable manifold of a self-similar path for
the scaling flow. As a corollary we have pathwise functional and central limit theorems.
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1 Introduction

Given a self-similar process Z of exponent γ > 0, a second process Y satisfies an almost sure invari-
ance principle (or asip) of order β(·) if Z and Y can be redefined to be on the same probability space
so as to satisfy:

||Y − Z ||∞[0,T] = o(β(T )), a.s. (1.1)

where || f ||∞[0,T] = sup0≤s≤T | f (s)|.

Supposing now for simplicity that both processes have continuous paths, and that β(t) = O(tγ), this
equation has a natural dynamical interpretation. Defining for each t ∈ R a map τt of index γ on the
space of continuous real-valued functions C (R+) by

(τt f )(x) =
f (et x)

eγt (1.2)

then this collection of maps forms a flow, since τt+s = τt ◦τs, called the scaling flow of index γ, and
the γ-self-similarity of the process means exactly that the measure on path space for the process Z
is flow-invariant. Recalling that a joining (or coupling) of two measure spaces is a measure on the
product space which projects to the two measures, then (1.1) is equivalent to: there exists a joining
of the two path spaces so that, for almost every pair (Y, Z), writing du

1 ( f , g) = || f − g||∞[0,1], the paths
Y and Z are forward asymptotic under the action of τt , for:

du
1 (τt Y,τt Z)→ 0 as t →∞. (1.3)

In the language of dynamical systems, Y is in the du
1 -stable manifold of Z , written W s,du

1 (Z).

For a first example, when (X i)i≥0 is an i.i.d. sequence of random variables of mean zero with finite
(2 + δ)-moment, then for Sn = X0 + · · · + Xn−1, we know from Breiman [Bre67] that one has a
discrete-time asip with a bound stronger than β(n) =

p
n. This estimate extends to continuous

time for the polygonally interpolated random walk path (S(t)), and so the dynamical statement
(1.3) holds. For finite second moment however, something striking happens. Despite having the
Central Limit Theorem and functional CLT in this case, due to counterexamples of Breiman and
Major [Bre67], [Maj76a], see also p. 93 of [CR81], the asip of order

p
n now fails, and the best

one can get is Strassen’s original bound of
p

n log log n [Str64], [Str65]. Though this bound still
allows one to pass certain asymptotic information from Brownian motion to the random walk, such
as the upper and lower bounds given by the law of the iterated logarithm, it does not give the flow
statement of (1.3).

This raises the question as to whether one can nevertheless find an appropriate dynamical statement
for finite second moment. What we showed in [Fis] is that the asip still holds if one is allowed
to discard a set of times of density zero. Thus, defining the Cesáro stable manifold of Z to be

W
s,du

1
Ces (Z) = {Y : du

1 (τt Y,τt Z) → 0 (Cesáro)}, where (Cesáro) means except for a set of times of
Cesáro density zero, we proved that there exists a joining of S with B such that for a.e. pair (S, B), S

belongs to W
s,du

1
Ces (B). This provides just enough control that the pathwise (or almost-sure) CLT and

pathwise functional CLT for Brownian paths [Fis87] carry over to the random walk path S.

An exponential change of variables in the corresponding equation du
1 (τt B,τtS)→ 0 (Cesáro) yields

the equivalent statement
||S− B||[0,T] = o(

p
T ) (log), (1.4)
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where (log) means this holds off a set of logarithmic density zero, i.e. except for a set of times

B ⊆ R with limT→∞
1

log T

∫ T

1
χB(t)dt/t = 0. We call this type of statement an asip in log density or

asip (log).

Berkes and Dehling in [BD93] proved a statement like (1.4) for i.i.d. X i with distribution in the
domain of attraction of an α−stable law for α ∈ (0, 2], with discrete time. Their work lacked
however the full strength of an asip (log) as described above, in two respects: first, being given
for discrete time, it said nothing about closeness of the continuous-time paths (the stable paths are
discontinuous on a dense set of times for α < 2); secondly, it involved a spatial rescaling of each
stable increment, which bore no clear relation to either the continuous-time stable process nor to
the dynamics of the scaling flow.

In [FT11a], building on the work of [BD93], we proved a dynamical asip (log) for random walk
paths. Our purpose in the present paper is to prove such theorems for renewal processes. We build
on results and methods of [FT11a]; as in that paper, the dynamical viewpoint naturally enters in
the methods of proof, as well as in the statement of the theorems.

We first review the parts of [FT11a] needed below regarding random walks, and then move on to
the renewal processes which are the focus of this paper.

Using the same notational conventions as in [FT11a], a random variable X has a stable law if there
are parameters α ∈ (0, 2],ξ ∈ [−1, 1], b ∈ R, c > 0 such that its characteristic function has the
following form:

E(ei tX ) =







exp
�

i bt + c · Γ(3−α)
α(α−1) |t|

α
�

cos πα
2
− sign(t)iξ sin πα

2

�

�

for α 6= 1,

exp
�

i bt − c · |t|
�π

2
+ sign(t)iξ log |t|

�

�

for α= 1,

where sign(t) = t/|t| with the convention sign(0) = 0. The parameters α, ξ, c and b are called the
exponent or index, symmetry (or skewness), the scaling and the centering parameters respectively. We
write Gα,ξ,c,b for the distribution function of X , shortening this to Gα,ξ for Gα,ξ,1,0.

Let (X i)i≥0 be a sequence of i.i.d. random variables with distribution function F in the domain of
attraction of Gα,ξ an α-stable law (0 < α ≤ 2) of skewness ξ ∈ [−1,1]. That is, there exists a
positive normalizing sequence (an), and a centering sequence (bn), such that

Sn− bn

an

law−→ Gα,ξ n→∞ (1.5)

where
law→ stands for convergence in law; one knows that then (an) is regularly varying of order

1/α. Writing S for the step-path random walk with these increments, so S(t) = S[t] where S0 = 0,
Sn = X0+ · · ·+Xn−1 for n> 0, we proved asips (log) with attraction to a self-similar process. This is
the (α,ξ)-stable process Z for α 6= 1. For α= 1, one has the Cauchy distribution G1,ξ; this case as we
shall see is in all respects more subtle, and needs a different approach since (unless ξ= 0) the (1,ξ)-
stable process is not self-similar. We then replace the Cauchy process Z by Ž(t) = Z(t)− ξt log t,
which (while no longer a Lévy process) is 1-self-similar.

For 0 < α < 2 the stable paths are discontinuous with a dense set of jumps so we replace the
space C (R+) used in (1.3) by the Skorokhod space D, and replace the uniform pseudometric du

1
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by a suitable pseudometric for the Skorokhod topology. Thus D = DR+ denotes the set of functions
from R+ to R which are càdlàg (continuous from the right with left limits), and we let µ denote
the measure on Skorokhod path space D given by the step-path random walk S with increments X i
defined above.

Writing ν (respectively ν̌) for the law on D of the (α,ξ)−stable process Z (resp. of Ž in the Cauchy
case), then self-similarity of Z (resp. Ž) translates into the invariance of ν (respectively ν̌) for τt ,
the scaling flow of index 1/α acting on D by:

(τt f )(x) =
f (et x)

et/α
.

The flow τt on D with the measure ν (resp. ν̌) is a Bernoulli flow of infinite entropy (Lemma 3.3
of [FT11a]), so in particular is ergodic; this is a key ingredient at various points in the proof of our
results.

We use the following notation: given a sequence 0 = x0 < x1 < · · · going to infinity, letting P
denote the partition {[xn, xn+1)}n≥0 of R+, then for Z ∈ D,

ZP (t) = Z(xn) for xn ≤ t < xn+1 (1.6)

defines the step path version of Z over the partition P .

Writing now d1 for Billingsley’s complete metric of [Bil68] for the Skorokhod J1 topology on D[0,1],
here is the statement we prove in [FT11a]: there exists a normalizing function a(·) and centering
function %(·) explicitly defined from F , which have properties described shortly, and a joining bν of
µ, the law of S, with ν , such that for bν-almost every pair (S, Z) we have for the partition Q ≡
{[n, n+ 1)}n≥0:

lim
t→∞

d1(τt( (S−%)Q ◦ (a
α)−1),τt Z ) = 0 (Cesáro), (1.7)

with Z replaced by Ž(t) in the Cauchy case. As in (1.4), we can then reformulate (1.7) in terms

more familiar to probability theory as follows. Defining dA to be a rescaling of d1 to the interval
[0, A], with

dA( f , g) = A1/α d1(∆A( f ),∆A(g)), f , g ∈ D (1.8)

where ∆t is the multiplicative version of the scaling flow of index 1/α, defined by ∆t = τlog t ,
statement (1.7) is then equivalent to: the processes S, Z can be redefined so as to live on a (larger)
common probability space (Ω, P) such that for a.e. ω in the underlying space Ω, the pair (S(ω), Z(ω))
satisfies

dT ((S−%)Q ◦ (a
α)−1, Z) = o(T

1
α ) ( log) (1.9)

(with Ž in the Cauchy case), meaning this is o(T
1
α ) off of a setB =Bω ⊆ R+ of log density zero.

Next we integrate dA, giving a complete metric d∞ on D, with:

d∞( f , g) =

∫ ∞

0

e−A dA( f , g)
1+ dA( f , g)

dA. (1.10)

As shown in Lemma 3.6 of [FT11a], equation (1.7) then implies the corresponding statement with
the metric d∞ in place of the pseudometric d1.
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From this we can conclude that, as for Brownian motion, the time-changed random walk path is in
the Cesáro stable manifold W s,d∞

Ces (·) of the stable path Z (respectively Ž) with respect to the scaling
flow of index 1/α. This dynamical statement using d∞ leads to the proof, as a corollary, of the
pathwise functional CLT and pathwise CLT, in §6 of [FT11a].

We note that the normalizing and centering functions a(·) and %(·) in (1.7) are constructed to have
the following properties; for the precise definition of a(·) see [FT11a] and of %(·) see (4.1) below.
When sampled discretely, an = a(n) does give a normalizing sequence in the sense of equation
(1.5); for its continuous time version, aα(t) ∼ t L(a(t)) where L(t) is the slowly varying function
equal to tα−2

∫ t

−t
x2dF(x). Moreover a(·) is a C1 increasing, regularly varying function of order 1/α

with regularly varying derivative. These last facts have a special importance in the proofs, as log
averages are preserved by the resulting parameter change. The centering function %(·) is in fact
zero for α ∈ (0,1) and linear (proportional to the mean) for (1,2], and is only nonlinear for the
Cauchy case α= 1, see below.

This describes the results of [FT11a]; now we move on to the setting of renewal processes.

The i.i.d. gaps X i of the renewal process are assumed a.s. strictly positive; in other words, for the
distribution function F of the law of X i we assume that F(0) = 0. The limiting law Gα,ξ in (1.5) is
then completely asymmetric stable, with ξ= 1; we write Gα for Gα,1.

With S(·) ∈ D denoting the polygonal interpolation extension between Sn and Sn+1, the assumption
of a.s. positive gaps implies that S(·) is a.s. increasing; we let N denote the inverse of S. The
step path S is nondecreasing a.s.; our step-path renewal process N is defined to be the generalized
inverse of S, that is

N(t) = inf{s : S(s)> t}.

Noting that N(0) = 1 (while N(0) = 0), N(t) gives number of events up to time t plus one; the
more usual definition for renewal process is N − 1 = NS(Q), the step process of the polygonal path
N over the partition S(Q). We work with N rather than N − 1 for notational convenience, noting
that all results stated for N will hold for N − 1 as well.

The limiting behavior of renewal processes (in the discrete setting) was identified by Feller in
[Fel49]. A special feature for renewal processes as compared to random walks is that this behavior
passes through three distinct “phases”, depending on the parameter r > 0 which gives the exponent
of the tail behavior of F , the gap distribution. For the phase r ≥ 2 one has convergence to a stable
distribution of index α = 2, that is, the Gaussian distribution; after r moves past that mark each
limiting law is distinct, indexed by α= r, with a completely asymmetric α-stable distribution Gα for
r ∈ (1, 2), and a Mittag-Leffler distribution of parameter α for r ∈ (0,1).

Corresponding functional CLTs were then given by Billingsley for the Gaussian case [Bil68] p. 148,
also see §5 of [Ver72], by Bingham for the Mittag-Leffler regime, see Prop. 1a of [Bin71], this last
work building on the completely different Darling-Kac approach to the one-dimensional case for this
regime [DK57], and by Whitt for the stable regime in his book [Whi02], pp. 235- 238 (where all
ranges are treated).

These functional theorems describe convergence respectively to Brownian motion for r ≥ 2, then to
a completely asymmetric α-stable process when r = α ∈ (1,2), shifting to a Mittag-Leffler process
of parameter r = α ∈ (0, 1). In the same spirit we prove in this paper dynamical asips (log) for all
parameter values. At the “critical point” r = 1 the limiting 1-self-similar process we encounter is
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eZ(t) = Z(t)− t log t+ t = Ž(t)+ t, with Z the completely asymmetric Cauchy process; the reason for
this choice of nonlinear centering, which has better properties than that used for the random walks,
will be seen below. Then as a corollary of our main theorem, as in [FT11a], we derive pathwise
functional CLTs and CLTs for all cases. As will be seen from the proofs, passage to the corollary
becomes especially clear in the dynamical formulation of the asips (log) as a convergence along
stable manifolds of the flow.

Concerning the critical points α = 1 and α = 2, despite a comment of Feller (for α = 1) that “This
case is rather uninteresting and ... requires lengthy computations which are here omitted”– we find
the study of these points to be interesting both from a technical and conceptual viewpoint. Indeed,
here the mean and variance respectively exhibit a phase transition, passing from finite to infinite.
Moreover at both these points one has mixed regimes, with the Cauchy case α = 1 including laws
F of both finite and infinite mean, while the domain of attraction of G2 contains distributions of
both finite and infinite variance. The extra technical challenge is echoed in the need to find the
appropriate formulation for the theorems: while for r > 2 one has an actual asip, at the critical
point r = 2 this is replaced by an asip (log), for the finite variance case, accompanied by a nonlinear
time change for the infinite variance part of the domain; for r = 1 we precede this by an appropriate
nonlinear coordinate change.

We mention a basic example of a renewal process, the occupation time of a state in a recurrent
countable state Markov chain; from the ergodic theory point of view one studies the dynamics of
the shift map on path space for the corresponding shift-invariant measure. Here the critical point
α = 1 plays a special role, as it marks the transition from finite to infinite invariant measure, see
[FT11b]. In later work [FLT11] we build on these results to study further examples of measure-
preserving transformations which exhibit the same changes of phase: a class of doubling maps of
the interval with an indifferent fixed point.

We now present our results, beginning with the case α < 1.

For this range of α, the stable process Z has increasing paths, with a dense set of (positive) jumps.
Its generalized inverse bZ is continuous; by definition this is the Mittag-Leffler process of index α.

Theorem 1.1. (Mittag-Leffler case) Let (X i)i≥0 be an i.i.d sequence of a.s. positive random variables
of common distribution function F in the domain of attraction of a (completely asymmetric) α−stable
law with 0 < α < 1. Then there exist a C1, increasing, regularly varying function a(·) of order 1/α
with regularly varying derivative, and a joining of N with a Mittag-Leffler process bZ of index α, so that
for almost every pair (N , bZ),

lim
t→∞
||bτt(a

α ◦ N)− bτt(bZ)||∞[0,1] = 0 (Cesáro), (1.11)

where bτt denotes the scaling flow of index α. This also holds for the metric du
∞ constructed from the

uniform pseudometrics du
T ( f , g) = || f − g||∞[0,T] by integration as in (1.10).

Equivalently to (1.11), we have the asip (log):

||aα ◦ N − bZ ||∞[0,T] = o(Tα) (log). (1.12)

Furthermore we have,
�

�

�

�

�

�

�

�

N(T ·)
a−1(T )

−
bZ(T ·)

Tα

�

�

�

�

�

�

�

�

[0,1]
−→ 0 a.s. (log). (1.13)
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Defining maps (bτa
t )t∈R by (bτa

t f )(x) = f (et x)/a−1(et), this implies

du
∞
�

bτa
t (N), bτt(bZ)

�

→ 0, a.s. (Cesáro). (1.14)

All the above results hold also for the polygonal path N(·) and for the actual renewal process N − 1. In
particular, therefore, the path (aα ◦ N) is an element of W

s,du
∞

Ces (bZ).

Note that bτa
t in (1.14) is a nonstationary dynamical system; it is not a stationary dynamical system,

i.e. a flow, unless a(t) = t1/α.

We proceed to the case α ∈ (1, 2], where the X i ’s have finite mean µ > 0. In this regime and also for
the transition point α = 1, the completely asymmetric distribution Gα has support on all of R and
so a.s. the α−stable process Z is no longer monotone. As explained above, for α 6= 2, the attraction
for these renewal processes will be considered in the Skorokhod path space D. A difference to the
random walk case is that here and for the Cauchy case convergence will be stated with respect to a
noncomplete pseudometric d0

T and its integrated version, the noncomplete metric d0
∞; this is due to

interesting technical reasons, addressed after the statement of the theorem.

A simple yet insightful idea introduced in [Fel49] gives the key for passing results from S(·) to N(·)
for this region: since S(·) is increasing, from the equation S(t) − µt = −µ(N(u) − u/µ) where
u= S(t), information regarding the random walk can be passed over to renewal process.

A version of this idea, written out for step paths, is behind our proof as well. First, with I denoting
the identity map, the two centered processes S −µI and N − 1

µ
I are related in the following way.

Defining
N̆ =−µ (N(·)−I /µ)S(Q), (1.15)

the above relation becomes, recalling from above that Q ≡ {[n, n+ 1)}n≥0,

(S(·)−µ I )Q = N̆ ◦ S. (1.16)

The pathwise asymptotic behavior of this centered step path process N̆ is described in the following:

Theorem 1.2. (Stable non-Gaussian and infinite variance Gaussian case) Under the assumptions
of Theorem 1.1 but with 1< α≤ 2, in the case α= 2 assuming infinite variance, then for N̆ as defined
in (1.15) there exist a C1, increasing, regularly varying normalizing function a(·) of order 1/α with
regularly varying derivative and a joining of N̆ with an α−stable process Z so that for almost every pair
(N̆ , Z), we have the asip (log):

d0
T (N̆ ◦µ · (a

α)−1, Z) = o(T1/α) (log) (1.17)

and the equivalent dynamical statement: for τt the scaling flow of index 1/α, then

lim
t→∞

d0
1 (τt(N̆ ◦µ · (aα)−1),τt(Z)) = 0 (Cesáro). (1.18)

This also holds for the metric d0
∞; that is, the path (N̆ ◦µ(aα)−1) is an element of W

s,d0
∞

Ces (Z).

In the case α= 2, d0
T and d0

∞ reduce to || · ||∞[0,T] and du
∞ respectively.
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We comment on the different metrics which appear in the statements and proofs. Besides the com-
plete metric d∞ on D, we also employ a noncomplete metric d0

∞, constructed as follows. Denoting
by d0

1 Billingsley’s noncomplete metric on D[0,1] [Bil68], then for any T > 0, we extend d0
1 to a

metric d0
T on the time interval [0, T] exactly as done in (1.8) for the complete metric dT .

Lifted to f , g ∈ D, this gives the pseudometric

d0
T ( f , g) = inf{ε : ∃λT ∈ ΛT with ||λT −I ||∞[0,T] ≤ εT1−1/α and || f − g ◦λT ||∞[0,T] ≤ ε} (1.19)

where ΛT is the collection of increasing continuous maps of [0, T] onto itself. We define from this a
noncomplete metric d0

∞ on D by integration of d0
T as in (1.10).

Although d0
∞ is not complete, it defines the same topology as the complete metric d∞, see [Whi80]

and Lemma 8.1 of [FT11a]; this is the same “J1 topology” on D = DR+ defined in a different way
by Stone [Sto63]. In the proofs we make use as well of a second noncomplete metric ed0

∞, more
closely related to Stone’s original definition, and which also gives that topology, see Proposition 8.4
of [FT11a]; this plays a key role in deriving Corollary 1.1. The fact that there exists a complete
equivalent metric shows in particular that D with Stone’s topology is a Polish space. That is an
important point for the application of ergodic theory methods, see Lemma 2.2 and also Remark 1.1.

We next move to the case α = 1. For Z completely asymmetric Cauchy (so the distribution of Z(1)
is G1), we recall that eZ denotes the centered Cauchy process eZ(t) = Z(t) − t log t + t, which is
1-self-similar. We define

eN =−(e% ◦ N −I )S(Q),

with e%(t)
de f
= tev(a(t)) where ev(t) =

∫ t

0
V (x)/x2d x and where V (x) =

∫ x

0
s2 dF(s) is the truncated

variance of F up to time x; the function e%(·) now has the same properties as a(·), as stated in the
theorem to follow. Note that e% ◦ a−1 = ev a−1 so, for finite mean, this has the same form as µ(aα)−1,
the time change for the case α > 1. We remark that the centering function used here has nicer
properties than that we used for random walks in [FT11a]; the present choice has to do with the
technically subtle aspects of the Cauchy renewal case, as seen in the proofs.

Here we show:

Theorem 1.3. (Cauchy case) Under the assumptions of Theorem 1.1, but now with α= 1, there exist
C1, increasing, regularly varying functions of order 1 with regularly varying derivative, a(·) and e%(·),
and a joining of eN =−(e% ◦ N −I )S(Q) and eZ such that for almost every pair (eN , eZ) we have:

d0
T (eN ◦ e% ◦ a−1, eZ) = o(T ) (log). (1.20)

This implies, for τt the scaling flow of order 1:

lim
t→∞

d0
∞(τt(eN ◦ e% ◦ a−1),τt(eZ)) = 0 (Cesáro); (1.21)

that is, the path (eN ◦ e% ◦ a−1) belongs to W
s,d0
∞

Ces (eZ).

We turn to the remaining part of the Gaussian regime α = 2. The first part of (i), assuming finite
moments higher than two, is due to Horvath (with discrete-time scaling) and is an actual asip, for
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there is no exceptional set of log density zero to discard. For completeness we give a proof in §5.
In fact as Horvath shows this statement is sharp; in contrast to the random walks (see [CR81]
pp. 107 and 108), for renewal processes one can do no better than o(T

1
4 ). See Theorem 2.1 of

[Hor84] for the precise bounds. For part (ii), with finite second moment only, we make use of the
asip(log) for random walks proved in [Fis]. We emphasize that, just as in the random walk case
(see the explanation in the proof of Proposition 5.1 of [FT11a]), the infinite variance Gaussian case
is treated separately as the method of proof is completely different, having more in common with
the case α ∈ (1,2).

Theorem 1.4. (Finite variance Gaussian case) Let (X i) be an i.i.d sequence of a.s. positive random
variables with common mean µ and distribution function F lying in the domain of attraction of the
Gaussian.

(i) Assuming that F has finite r > 2 moment (and variance σ2), then there exists a joining of the
polygonal process N and a standard Brownian motion B such that for a.e. pair (N , B),

||(µN −I )(
µ

σ2 ·)− B||∞[0,T] =

(

o(T
1
r ) for r ∈ (2,4)

o(Tγ) for any γ > 1/4, for r ≥ 4;

equivalently, for τt the scaling flow of index 1/2:

||τt
�

(µN −I )(
µ

σ2 ·)
�

−τt(B)||∞[0,1] =

(

o(e(1/r−1/2)t), for r ∈ (2, 4)
o(e(γ−1/2)t) for any γ > 1/4, for r ≥ 4.

As a consequence, the path (µN −I )( µ
σ2 ·) belongs to W

s,du
∞

Ces (B).

(ii) There exists a distribution function F with finite variance (and with all higher than second moments
infinite) such that no joining exists with the bound of order o(T

1
2 ). However, there exists a joining of N

and B such that for a.e. pair (N , B),

||(µN −I )(
µ

σ2 ·)− B||∞[0,T] = o(
p

T ) (log) (1.22)

and equivalently:

||τt
�

(µN −I )(
µ

σ2 ·)
�

−τt(B)||∞[0,1]→ 0 (Cesáro).

All the above statements hold for the step paths N(·) as well.

Lastly we arrive at the limit theorems proved as corollaries of our asips (log), recalling first this
definition from dynamical systems.

For Ω a Polish space with a metric d, acted on by an ergodic flow τt preserving a probability measure
ν , an element x of Ω is said to be a generic point for the flow iff for any ϕ ∈ CB(Ω, d), the collection
of real observables bounded and continuous for the topology defined from d, we have

1

T

∫ T

0

ϕ(τt x)dt →
∫

ϕ dν , as T →+∞. (1.23)

Fomin’s theorem [Fom43] tells us that in this setting ν-a.e. x is a generic point.
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Corollary 1.1. (Generic points; pathwise functional CLTs and pathwise CLTs) Under the assump-
tions of the above theorems, keeping the same notation, we have the following:

(i) For α < 1, almost every path (aα ◦ N) is a generic point for the scaling flow bτt of index α of the
Mittag-Leffler process bZ, and denoting by C (R+) the continuous real-valued functions on R+, then for
any ϕ ∈ CB(C (R+), du

∞),

lim
T→∞

1

log T

∫ T

1

ϕ

�

N(t·)
a−1(t)

�

dt

t
=

∫

ϕ dbν .

(ii) For α ∈ (1, 2), almost every path (N̆ ◦ µ(aα)−1) is a generic point for the scaling flow τt of index
1/α of the α-stable process Z, and for any ϕ ∈ CB(D, d∞) we have:

lim
T→∞

1

log T

∫ T

1

ϕ

�

N̆(t·)
a(t/µ)

�

dt

t
=

∫

ϕ dν . (1.24)

For α= 2 in the infinite variance case, this holds for any ϕ ∈ CB(C (R+), du
∞).

(iii) For α = 1, almost every path (eN ◦ e% ◦ a−1) is a generic point for the scaling flow τt of index one
of the centered Cauchy process eZ with law eν , and for any ϕ ∈ CB(D, d∞):

lim
T→∞

1

log T

∫ T

1

ϕ

�

eN(t·)
a ◦ e%−1(t)

�

dt

t
=

∫

ϕ deν .

(iv) For α = 2, in the finite variance case, assuming for simplicity σ = 1, almost every polygonal path
(µN −I )(µ·) is a generic point for the scaling flow τt of index 1/2 of Brownian motion, and for any
ϕ ∈ CB(C (R+), du

∞),

lim
T→∞

1

log T

∫ T

1

ϕ

�

(µN −I )(µt·)
p

t

�

dt

t
=

∫

ϕ dν .

Furthermore, setting · = 1 and ϕ ∈ CB(R) in all the above pathwise functional CLTs, we have the
corresponding pathwise CLTs.

Remark 1.1. The proof of the pathwise functional CLTs follows the same reasoning as in [FT11a]:
first, the similar statements hold for the corresponding self-similar flow by Fomin’s theorem. The
asymptotic convergence of paths given by the asip (log) then allows these results to pass over from
the self-similar processes to the coordinate-changed random walk, by Lemma 6.1 of [FT11a]; we
note that this step makes use of the fact that we are working with Lebesgue spaces. This gives the
generic point statements of the corollary, in all cases.

Passage to the statement for the renewal path itself is direct for the Mittag-Leffler and Brownian
regimes. For the case α ∈ [1,2) and α = 2 with infinite variance, the argument is more subtle,
involving an interplay of the different metrics mentioned above for the Skorokhod topology.

For this range of α, deriving the a.s. CLTs from the functional results is also not so straightforward
as for the Mittag-Leffler and Gaussian cases, since the time-t projections in D are measurable but
not continuous. We circumvent this difficulty as we did in [FT11a], by convolving along the flow.
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We remark that the limit in (i) can equivalently be written as:

lim
T→∞

1

T

∫ T

0

ϕ(bτa
t (N))dt =

∫

ϕ dbν ,

and that the limits of the other parts of the corollary can be expressed in terms of nonstationary
dynamical systems in a similar way.

We mention further that in the above statements, as in the preceding theorems, one can allow the
alternative normalizing functions of Proposition 1.2 of [FT11a]: any ea(·) which is asymptotically
equivalent to a(·) and which shares its properties of being C1, increasing, and with a regularly
varying derivative.

The outline of the paper is as follows. In §2 we study the case α ∈ (0,1). The finite mean framework
α ∈ (1,2) and α= 2 in the infinite variance case is addressed in §3. We move on to the Cauchy case
α = 1 in §4. Lastly, we turn to the finite variance Gaussian case α = 2 and then sketch the proof of
the corollary, in §5.

Acknowledgements: We thank an anonymous referee for their very careful reading of the
manuscript and for helpful remarks and suggestions.

2 The Mittag-Leffler case: α < 1

On the road to the proof of Theorem 1.1, we present a lemma which concerns the relationship
between Skorokhod’s J1 and M1 topologies, see [Sko57].

Let D+ be the subset of D of nondecreasing functions which go to ∞ as t goes to +∞ and let D0+
denote the subset of D+ of functions vanishing at zero.

We endow D with the J1 topology; as mentioned before, the inherited topology on C , the subspsace
of continuous functions, is then the topology of uniform convergence on compact sets.

For f be an element of D+, the generalized inverse f −1 of f is by definition

f −1(t) = inf{s : f (s)> t}.

We note that for f ∈ D0+, then f −1 ∈ D+, and the generalized inverse of f −1 is f .

When studying the relationship between f and its generalized inverse, it is natural to replace Sko-
rokhod’s J1 with his M1 topology. Though we do not need a formal definition of M1 metric, we use
a similar basic idea.

Let f be an element of D+. The completed graph Γ f of f is defined to be the subset of R2 which is
the graph of f union the vertical segments which fill in the jump discontinuities, i.e. which connect
(x , f (x−)) and (x , f (x+)) ≡ (x , f (x)) for each x ≥ 0, where f (x−) denotes the limit from the left
at x .

In other words,
Γ f ≡ {(η, u) ∈ R+×R+ : f (η−)≤ u≤ f (η)}.
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The inverse Γ−1 of Γ = Γ f is {(u, t) : (t, u) ∈ Γ}; we just flip it with respect to the diagonal; we note
that Γ f −1 = (Γ f )−1.

A parametrization of a complete graph Γ f is a continuous onto function γ f : R+ → Γ f ⊂ R2 such
that the path γ f is nondecreasing with respect to the natural order along the graph.

For x , y ∈ R, we write ||(x , y)||R
2
= |x |+ |y|. The next lemma in fact shows that convergence for

the J1 topology gives convergence for the M1 topology.

Lemma 2.1. Let f and g be two elements of D0+ and suppose A,ε > 0. Assuming that d0
A( f , g) < ε,

then there exist two parametrizations γ f = (η, u), γg = (η′, u′) of the completed graphs Γ f and Γg

such that ||γ f − γg ||
R2,∞
A

de f
= sup{t: η(t),η′(t)∈[0,A]} ||γ f (t)− γg(t)||R

2
< 8ε.

Proof. We first prove the lemma for A= 1. By definition of the d0
1 distance (see (1.19)), if d0

1 ( f , g)<
ε then there exists a continuous and increasing function λ of [0, 1] onto itself such that:

||λ−I ||∞[0,1] < ε and || f − g ◦λ||∞[0,1] < ε. (2.1)

We take γ f (t) = (η(t), u(t)) and γg(t) = (ρ(t), v(t)) with η, u,ρ, v nondecreasing and continuous,

“tuned” to each other in such a way that ||γ f − γg ||
R2,∞
1 = sup{t: η(t)∈[0,1]} ||γ f (t)− γg(t)||R

2
< 8ε.

Given η(·), we shall define from this ρ = λ ◦ η. That already gives good control for the first
coordinate, since by (2.1), then sup{t:η(t)∈[0,1]} |λ ◦η(t)−η(t)| = ||λ−I ||∞[0,1] < ε. Note that for t
such that η(t) is a continuity point of f , respectively of g ◦λ, then u(t), respectively v(t) are defined
from this by applying f and g to the first coordinate. The other values of t will serve to fill in the
completed graphs where one of f or g ◦λ has a jump. The idea is the following: if the jump is small
for one it must be small for the other, and (say for f ) u(t) is defined to move continuously along the
vertical segment of γ f while η(t) remains constant. If the jump for f is large, then the jump for g ◦λ
is of comparable size, and u and v are chosen to accompany each other along this vertical segment.
To do this, extra time intervals are inserted for each vertical segment. There are a countable number
of discontinuities for f and g; enumerating these, the parametrizations are constucted as a limit
where these jump segments are sucessively filled in. Since paths in D+ are nondecreasing, the total
length of jumps and hence of the extra time added is finite. For simplicity we do not write down
any of the many possible explicit parametrizations, providing instead the estimates which work for
all such choices.

Thus, defining the jump Jl(t) of an element l of D at time t by:

Jl(t) = l(t)− l(t−),

and writing c = η(t), then

Jg◦λ(c) = g ◦λ(c)− g ◦λ(c−) = (g ◦λ− f + f )(c) + (− f + f − g ◦λ)(c−)
= (g ◦λ− f )(c) + ( f − g ◦λ)(c−) +J f (c).

Thus
|Jg◦λ(c)−J f (c)| ≤ 2|| f − g ◦λ||∞[0,1],
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and hence, from (2.1), we know that

|Jg◦λ(c)−J f (c)| ≤ 2ε. (2.2)

Suppose first that f and g ◦λ are continuous at c = η(t). Then by (2.1)

|u(t)− v(t)|= | f (η(t))− g(λ(η(t)))|= | f (c)− g ◦λ(c)|< ε.

Assume next that least one of f , g ◦λ has a jump at c and the jump of f is small: J f (c)≤ 2ε. In this
case we will add a small time interval to bridge the vertical gaps.

Supposing first that f is continuous at c while g ◦λ has a jump there, so g ◦λ(c−) < g ◦λ(c), with
c = η(t0), then we insert a small time interval [t0, t1] so that η(t) ≡ c on that interval, (hence
ρ = λ ◦η also remains constant there) while v(t) increases continuously from g ◦λ(c−) to g ◦λ(c),
so that for these times, g ◦λ(c−)≤ v(t)≤ g ◦λ(c).

Now if 0< J f (c)≤ 2ε, then we insert a small time interval on which u(t), v(t) traverse respectively
the jumps of f and of g; if g is continuous then the curve γg is constant along this time interval.

For any of theses cases, using (2.2),

|u(t)− v(t)| ≤ J f (c) + ε+Jg◦λ(c)≤ 2J f (c) + 3ε ≤ 7ε.

Let us now suppose that the jump is big, i.e. J f (c) > 2ε. Since || f − g ◦ λ||∞[0,1] < ε, by the first
inequality in (2.2), Jg◦λ(c)> 0 and so g ◦λ must jump at c.

In fact the jump intervals of f and g ◦ λ contain a common interval [ f (c−) + ε, f (c)− ε]. For u(t)
with values in this interval, we define v(t) = u(t); for u(t) ∈ [ f (c−), f (c−) + ε], we define v(t) to
be any nondecreasing continuous function onto the interval [g ◦ λ(c−), f (c−) + ε], and for u(t) ∈
[ f (c)−ε, f (c)] we define v(t) to be any nondecreasing continuous function onto [ f (c)−ε, g◦λ(c)].

So for u(t) and v(t) in the common interval, |u(t)− v(t)| = 0; and if they are above or below then
|u(t)− v(t)| ≤ 2ε. Hence for all these t, |u(t)− v(t)| ≤ 2ε.

Choosing the functions u and v in this way, where we have carried this out for each discontinuity
point, we have therefore that

sup
{t: η(t)∈[0,1]}

||γ f (t)− γg(t)||R
2
= sup
{t:η(t)∈[0,1]}

�

|λ ◦η−η|+ |u− v|
�

< 8ε,

as claimed.

This completes the proof for A= 1; from this we deduce the result for any A> 0. Since d0
A( f , g) =

A1/αd0
1 (∆A f ,∆Ag), if d0

A( f , g) < ε, there exist two parametrizations of the completed graphs of the
rescaled functions, γ∆A f = (ηA, uA) and γ∆Ag = (bηA,buA), such that bηA = λ ◦ ηA for λ a continuous
increasing map of [0,1] onto itself with

sup
{t:ηA(t)∈[0,1]}

�

|ηA− bηA|+ |uA− buA|
�

< 8ε/A1/α.

Setting γ f = (A ηA, A1/αuA) and γg = (A bηA, A1/α
buA), we have two parametrizations for Γ f and Γg

such that ||γ f − γg ||
R2,∞
A = sup{t: η(t)∈[0,A]} ||γ f (t)− γg(t)||R

2
< 8ε, as in this case α < 1 and so

A< A1/α. This finishes the proof of the lemma.
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Proving Theorem 1.1 hinges upon the next three results; we write h= aα and bh= h−1.

Theorem A: (see [FT11a]) Under the assumptions and notation of Theorem 1.1, there exists a joining
of S and an α−stable process Z such that

dT (S ◦bh, Z) = o(T1/α) a.s. (log)

and equivalently, with τt the scaling flow of index 1/α:

d1(τt(S ◦bh),τt Z) = o(1) a.s. (Cesáro).

This last statement also holds for d∞.

Remark 2.1. Here as in [FT11a], dT is the rescaled version of Billingsley’s complete metric on [0, 1]
defined as in (1.8). We recall that for ε > 0 small enough, if d1( f , g) ≤ ε then d0

1 ( f , g) ≤ 2ε; see
[Bil68] p. 113.

Lemma A: (see Theorem 1.20 of [Wal82]) Let f : R+ → R be a locally integrable function. Then
these are equivalent:

(i) ∀ε > 0, {t : | f (t)|> ε} has Cesáro density zero,

(ii) there exists a set B ⊆ R of Cesáro density 0 such that limt→∞,t /∈B f (t) = 0.

Let us write τt and bτt for the scaling flows of index α and 1/α, respectively.

Lemma 2.2. For α ∈ (0, 1), the map f 7→ f −1 on D0+ is an isomorphism between τt and bτt/α. The
flow bτt is ergodic and is in fact a Bernoulli flow of infinite entropy.

Proof. The scaling flow τt for f ∈ D0+ maps the graph of the path f (·) by action of this matrix on

column vectors in R2 :

�

e−t 0
0 e−t/α

�

. Via the correspondence f 7→ f −1, which is Borel measurable

on D0+, this action is by

�

e−t/α 0
0 e−t

�

=

�

e−s 0
0 e−αs

�

which is that of bτs on f −1, for s = t/α. In

other words,
(τt Z)

−1 = bτt/αbZ .

The last part of the proof follows from Lemma 3.3 of [FT11a]; we note that this makes use of the
fact that since D0+ with the Skorokhod topology is Polish, we have a Lebesgue space.

This brings us to:

Proof of Theorem 1.1. We start by proving (1.11); here τt and bτt denote the scaling flows of
orders 1/α and α respectively. So as not to overburden the notation, as above we abbreviate aα

by h and h−1 by bh, and then write ft ≡ τt(S ◦bh) and gt ≡ τt Z . By definition both ft and gt are
nondecreasing, and their generalized inverses are f −1

t = bτt/α(h ◦ N) and g−1
t = bτt/α(bZ).

We want to prove that || f −1
t −g−1

t ||
∞
1 → 0, a.s. (Cesáro); from Lemma A this is equivalent to showing

that for all ε > 0, for the limit of the Cesáro density up to time T (CT for short) of the set

W ≡ {t > 0 : || f −1
t − g−1

t ||
∞
1 > ε}
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we have

lim
T→∞

CT (W ) = lim
T→∞

1

T

∫ T

0

χW (t) dt = 0, a.s.

We say a continuous function ϕ defined on an interval J is (ε,δ)- continuous iff for all x , y ∈ J , if
|x − y|< δ then |ϕ(x)−ϕ(y)|< ε.

Now, for any ε,δ,δ > 0, A> 0 let us write:

UA ≡
�

t : ft(A)∧ gt(A)> 1
	

,

Vε,δ ≡
¦

t : g−1
t is (ε,δ)− continuous on [0,3/2]

©

,

Xδ ≡ {t : d0
A( ft , gt)≤ δ}.

Thus, for any ε, A,δ,ε,δ > 0 we have that

W ⊆ (W ∩Xδ)∪X c
δ

= (W ∩Xδ ∩UA∩Vε,δ)∪ (W ∩Xδ ∩U
c
A )∪ (W ∩Xδ ∩V

c
ε,δ
)∪X c

δ .

So

CT (W ) ≤ CT (W ∩Xδ ∩UA∩Vε,δ) + CT (Xδ ∩U c
A ) + CT (V c

ε,δ
) + CT (X c

δ)

≡ (I) + (II) + (III) + (IV). (2.3)

In [FT11a], we proved that as t →∞, d1( ft , gt)→ 0 a.s. (Cesáro). For all fixed A> 0, from (1.8)
for d0

T we have A−1/αd0
A( ft , gt) = d0

1 (∆A( ft),∆A(gt)) which from Remark 2.1 goes a fortiori a.s. to
0 (Cesáro) as t goes to∞. This implies that for all δ > 0, (IV) goes to 0 as T →∞.

Now whenever d0
A( ft , gt) ≤ δ, from (1.19) we have | ft(A) − gt(A)| ≤ δ, so that if in addition

gt(A)∧ ft(A)≤ 1, then gt(A)≤ 1+δ. Thus, (II) is less than or equal to

CT
�

{t : gt(A)≤ 1+δ}
�

=
1

T

∫ T

0

χ{Z∈D:Z(A)≤1+δ}(τt Z) dt,

which converges to ν({Z ∈ D : Z(A)≤ 1+δ}) = P(Z(A)≤ 1+δ) as T →∞ by the Birkhoff Ergodic
Theorem, where ν is the α−stable measure on D. (We generally use the first way of writing the
measure of this set; though it is natural from the path space point of view we take in this paper, it
can be confusing from the probability perspective). By the scaling property, this implies that

lim sup
T→∞

(II)≤ ν
�

�

Z ∈ D : Z(1) ∈
�

0,
1+δ

A1/α

�	

�

.

In the same fashion, by the Ergodic Theorem, now applied to bτt , it follows that:

lim
T→∞

(III)= bν
�

{bZ : bZ is (ε,δ)− continuous on [0, 3/2]}c
�

.

We shall now prove that for suitably chosen ε,ε,δ,δ, then we have (I) ≡ 0, by showing that if
d0

A( ft , gt)≤ δ, gt(A)∧ ft(A)> 1 and t ∈ Vε,δ, then || f −1
t − g−1

t ||
∞
1 ≤ ε.
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From Lemma 2.1, there exist two parametrizations of the completed graphs Γ ft
and Γgt

of ft and

gt , written as γ ft
= (ηt , ut) and γgt

= (η̂t , ût), such that ||γ ft
− γgt

||R
2,∞

A ≤ 8δ. We choose the
parametrizations constructed in the proof of Lemma 2.1.

A natural way of parametrizing the completed graphs of the generalized inverses of ft and gt comes
from interchanging the coordinates, with γ f −1

t
= (ut ,ηt) and γg−1

t
= (ût , η̂t). Since gt(A)∧ ft(A)> 1,

ft([0, A]) and gt([0, A]) contain [0,1], and so for any x ∈ [0,1] there exist a and b such that:

| f −1
t (x)− g−1

t (x)| = ||(x , f −1
t (x))− (x , g−1

t (x))||
R2
= ||γ f −1

t
(a)− γg−1

t
(b)||R

2

≤ ||γ f −1
t
(a)− γg−1

t
(a)||R

2
+ ||γg−1

t
(a)− γg−1

t
(b)||R

2

≤ ||γ ft
− γgt

||R
2,∞

A + |ût(b)− ût(a)|+ |η̂t(b)− η̂t(a)|

≤ 8δ+ |ut(a)− ût(a)|+ |g−1
t (ut(a))− g−1

t (ût(a))|;

we have used the fact that f −1
t (1)≤ A in deriving the second inequality, then ut(a) = ût(b) and the

fact that g−1
t is continuous in deriving the last one.

If 8δ < δ then the last quantity above is less than or equal to 8δ+ 8δ+ ε, and so choosing 8δ <
δ < ε = ε

3
yields (I)≡ 0.

In (2.3), for chosen ε > 0, let T → ∞ for δ, A,δ fixed and related as just described. Next, let A
increase to +∞, then finally let δ decrease to 0. The Cesáro density of W = Wε is therefore zero
for any ε > 0; this finishes the proof of (1.11). The uniform convergence over the unit interval in
Cesáro density implies uniform convergence in Cesáro density over compact intervals of R+ in the
place of [0,1], and hence convergence for du

∞, following the proof of Lemma 3.6 of [FT11a].

The equivalence of (1.11) and (1.12) is immediate from the definition of the scaling flow bτt . We
now show that (1.12) holds true for the polygonal path N(·) as well. For this we shall prove that
indeed

||h(N(t))− h(N(t))||∞[0,T] = o(Tα), a.s. (2.4)

Here one can replace [0, T] by [T0, T] with T0 large.

From the definitions of N and N , for all t ≥ 0 we have that 0 ≤ N(t) − N(t) ≤ 1. Since h(·)
is a regularly varying function of order one with a regularly varying derivative, we know from
Karamata’s theorem (see [BGT87], Proposition 1.5.8) that sh′(s) ∼ h(s) and so using the facts that
h(s+ 1)/h(s)→ 1 and that h is increasing, we have for any c0 > 1 that for t large enough,

0≤ h(N(t))− h(N(t)) =

∫ N(t)

N(t)
h′(s) ds ≤

∫ N(t)+1

N(t)
s
h′(s)
h(s)

h(s)
s

ds ≤ c0
h(N(t))

N(t)
, a.s.

Hence,
1

Tα
||h(N)− h(N)||∞[T0,T] ≤

c0

Tα
sup

T0≤t≤T

h(N(t))
N(t)

≤ c0 sup
T0≤t≤T

h(N(t))
tαN(t)

, a.s.

We shall show that h(N(t))/N(t) = o(tα) a.s. Indeed, writing h(x) = x l(x) with l slowly varying,
for all ε > 0 we have h(N(t))/N(t) = l(N(t)) = o((N(t))ε). By the law of large numbers, Sn/n
a.s. goes to infinity so N(t)/t a.s. goes to 0 as t →∞. Thus for all ε > 0, h(N(t))/N(t) = o(tε) a.s.
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This finishes the proof of (2.4), and hence the proof of (1.12) for the polygonal path N(·).

Proving (1.13). We start by demonstrating that

||N −bh ◦ bZ ||∞[0,T] = o(bh(Tα)) a.s. (log). (2.5)

From the definition of h(·), bh(tα) = a−1(t). We set pT (x)≡ h(N(T x))/Tα and qT (x)≡ bZ(T x)/Tα.

Statement (2.5) says exactly:

1
bh(Tα)

||bh(TαpT )−bh(TαqT )||∞[0,1] −→ 0 a.s. (log). (2.6)

By Lemma A it is then equivalent to show that for all ε ∈ (0, 1),

lim
T→∞

1

log T

∫ T

0

χ{t: ||bh(tαpt )−bh(tαqt )||∞[0,1]>ε
bh(tα)}

dt

t
= 0 a.s. (2.7)

We shall show that it will be enough to prove (2.7) with [0, 1] replaced by any interval [ε′, 1] for
0< ε′ < 1. For this, we claim that ε′ can be chosen so that the log density in (2.7) for the supremum
taken over the interval [0,ε′] is as small as desired. But since pT (·), qT (·) and h are nondecreasing,
it will be sufficient to check that the sets where bh(TαpT (ε′)) and bh(TαqT (ε′)) are > εbh(Tα) each a.s.
have arbitrarily small log density.

To show this, note that from the definition of pt , while recalling that S(s) ≤ S(s), the set {t :
bh(tαpt(ε′)) ≥ εbh(tα)} is contained in {t : S(εbh(tα)) ≤ tε′}. Since a(·) is regularly varying, after
making the change of variables x = εbh(tα) we get from the pathwise CLT, Corollary 1.4 (iii) of
[FT11a], that the log density of the last set is less than or equal to that of {x : S(x)≤ 2ε′ ε−1/α a(x)},
which a.s. equals ν({Z : Z(1)≤ 2ε′ ε−1/α}), where ν is the α−stable measure.

For qt , we use the ergodicity of the scaling flow bτt for the Mittag-Leffler process bZ . Letting b∆t
denote bτlog t , Birkhoff’s Ergodic Theorem implies that the log density of {t : bh(tαqt(ε′)) > εbh(tα)}
is less than or equal to the log density of {t : b∆t bZ(ε′)> ε/2} which equals bν({bZ : bZ(1)> ε/2ε′α}).

Now ν({Z : Z(1) < 2ε′ε−1/α}) and bν({bZ : bZ(1) > ε/2ε′α}) approach 0 as ε′ goes to zero. So by
choosing ε′ small, the log density in (2.7) for the sup taken over the interval [0,ε′] is a.s. as small
as we want. Therefore once we show that the log density with [ε′, 1] replacing [0,1] is a.s. zero,
equation (2.7) will be proved.

Since (a(·) hence) bh is of slowly varying derivative, we know from Karamata’s theorem as before
that tbh

′
(t)∼bh(t), so that for all x ∈ [ε′, 1] we have:

1
bh(tα)

|bh(tαpt(x))−bh(tαqt(x))| ≤ 1+
�

�

�

�

�

∫ tαqt (x)

tαpt (x)

bh(s)
bh(tα)

ds

s

�

�

�

�

�

= 1+
�

�

�

�

�

∫ qt (x)

pt (x)

L(stα)
L(tα)

ds

�

�

�

�

�

,

≤ 1+
�

�

�

�

�

∫ qt (x)

pt (x)

�

L(stα)
L(tα)

− 1
�

ds

�

�

�

�

�

+ 1+ |qt(x)− pt(x)|

where 1+ is a constant > 1 and L(t)≡bh(t)/t (and so is slowly varying).
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Recalling from (1.11) in Theorem 1.1 that ||pt − qt ||∞[0,1]→ 0 a.s. (log), all we have to check is that

the log density of
�

t : sup
x∈[ε′,1]

�

�

�

�

�

∫ qt (x)

pt (x)

�

L(stα)
L(tα)

− 1
�

ds

�

�

�

�

�

> ε

�

is a.s. zero.

Now from Birkhoff’s Ergodic Theorem we get that for all M > 0 the log density of {t : qt(1) > M}
is bν({bZ : bZ(1) > M}), while for all ε > 0 the log density of {t : qt(ε′) ≤ 2ε ε′} is bν({bZ : bZ(1) ≤
2ε ε′1−α}) (here α < 1), so both log densities can be made small by choosing ε′ small and M large.

As a result, all that remains to show is that for all ε′, M > 0, the log density of the set Tε′,M defined
as:

(

t : sup
x∈[ε′,1]

�

�

�

�

�

∫ qt (x)

pt (x)

�

L(stα)
L(tα)

− 1
�

ds

�

�

�

�

�

> ε; ||qt − pt ||∞[ε′,1] ≤ ε ε
′; qt(1)≤ M ; qt(ε

′)> 2ε ε′
)

can be rendered as small as desired.

Since qt(·) is nondecreasing, then for any t ∈ Tε′,M and any x ∈ [ε′, 1], one has:

�

�

�

�

�

∫ qt (x)

pt (x)

�

L(stα)
L(tα)

− 1
�

ds

�

�

�

�

�

≤
∫ qt (x)+εε′

qt (x)−εε′

�

�

�

�

L(stα)
L(tα)

− 1

�

�

�

�

ds

≤
∫ M+εε′

εε′

�

�

�

�

L(stα)
L(tα)

− 1

�

�

�

�

ds ≤ M sup
s∈[εε′,M+1]

�

�

�

�

L(stα)
L(tα)

− 1

�

�

�

�

.

This means that, at fixed ε′, M > 0, the log density of Tε′,M is bounded from above by the log density

of {t : sups∈[εε′,M+1]

�

�

�

L(stα)
L(tα) − 1

�

�

� > ε/M} which is 0 from a well known property of slowly varying

functions; see for instance [BGT87] p. 22.

This completes the proof of (2.7) hence that of (2.5), which in turn is equivalent to:

�

�

�

�

�

�

�

�

N(T ·)
bh(Tα)

−
bh(Tα(b∆T bZ))
bh(Tα)

�

�

�

�

�

�

�

�

∞

[0,1]
→ 0 a.s. (log).

Hence, in order to prove (1.13), we only need to guarantee the following: that

||KT (b∆T bZ))||∞[0,1] ≡
�

�

�

�

�

�

�

�

bh(Tα(b∆T bZ))
bh(Tα)

− b∆T bZ

�

�

�

�

�

�

�

�

∞

[0,1]
→ 0 a.s. (log). (2.8)

As we will see, this is true for f any regularly varying function of order 1 in the place of bh. From
Lemma A, this reduces to proving that the log density of {t : ||Kt(b∆t bZ))||∞[0,1] > ε} is zero for any

ε > 0. But bZ is nondecreasing and moreover for any M > 0, either (b∆t bZ)(1)> M or ≤ M , thus

{t : ||Kt(b∆t bZ))||∞[0,1] > ε} ⊆ {t : ||Kt(·)||∞[0,M] > ε} ∪ {t : (b∆t bZ)(1)> M}.
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Now the log density of the rightmost set above is, by the Ergodic Theorem, bν({bZ : bZ(1) > M}); we
turn to the set preceding that. Since bh is regularly varying of order 1, from [BGT87] p. 22 we have
that for any 0 < δ < M , ||Kt(·)||∞[δ,M] converges to 0 as t →∞. Moreover since bh(·) is increasing,

||Kt(·)||∞[0,δ] ≤ bh(t
αδ)/bh(tα) + δ. So for fixed δ > 0, as t →∞, ||Kt(·)||∞[0,δ] ≤ 3δ, by the regular

variation of bh. Putting all that together yields that ||Kt(·)||∞[0,M] → 0 as t → ∞, and so the log
density of the first set in the previous union is a fortiori 0.

This finishes the proof of (1.13). From Lemma 3.6 of [FT11a] this then extends to [0, A] for any
A> 0, and thus after integration holds for the metric du

∞ as well, proving (1.14).

The proof of Theorem 1.1 is now complete.

3 The stable case: α ∈ (1,2]

We begin by recalling two results from [FT11a]. Here as before Q denotes the partition Q ≡
{[n, n+ 1)}n≥0.

Theorem B: Under the assumptions and notation of Theorem 1.2, there exist a C1, increasing, regularly
varying function h(·) of order 1 with regularly varying derivative, and a joining of S and an α−stable
process Z such that for almost every pair (S, Z),

||(S−µ I )Q ◦ h−1− Zh(Q)||∞[0,T] = o(T1/α), a.s. (log).

Lemma B: Let Z be an ergodic self-similar process of index β > 0 with paths in D; equivalently, assume
we are given a probability measure ν on D such that the scaling flow τt of index β is ergodic for ν . Let
η be a positive, increasing and regularly varying function of index 1. Then for ν-a.e. Z ∈ D,

d1(τt( Zη(Q)),τt(Z))→ 0 (Cesáro),

and equivalently,
dT (Zη(Q), Z) = o(Tβ) (log).

Proof of Theorem 1.2. We start by showing (1.17). As in the previous proofs, we set for simplicity
h(·) = aα(·) anf bh= h−1.

Recalling the definitions of d0
T , Billingsley’s noncomplete pseudo-metric for D on the interval [0, T],

and of N̆ , keeping identity (1.16) in mind and writing Nµ = h ◦ N ◦µbh, we have:

d0
T

�

N̆ ◦µbh, Z
�

= d0
T

�

(S−µ I )Q ◦ N ◦µbh, Z
�

,

= d0
T

�

(S−µ I )Q ◦bh ◦ Nµ, Z
�

.

By the triangle inequality, this is

≤ d0
T

�

(S−µ I )Q ◦bh ◦ Nµ, Zh(Q) ◦ Nµ
�

+ d0
T

�

Zh(Q) ◦ Nµ, Zh(Q)
�

+ d0
T (Zh(Q), Z),

de f
= (I) + (II) + (III).
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We note first of all that since h(·) is positive, increasing and regularly varying of exponent 1, applying
Lemma B we get T−1/αdT (Zh(Q), Z) = d1(∆T (Zh(Q)),∆T (Z)) = o(1) a.s. (log), but then from
Remark 2.1 and the fact that d0

T and dT scale in the same way, the same holds true with d0
1 , d0

T
replacing d1, dT . This shows that (III) = o(T1/α) a.s. (log).

Next we turn to (I). Since d0
T ( f , g)≤ || f − g||∞[0,T], we have:

(I) ≤ ||(S−µ I )Q ◦bh ◦ Nµ− Zh(Q) ◦ Nµ||∞[0,T]

= ||(S−µ I )Q ◦bh− Zh(Q)||∞[0,Nµ(T )] (3.1)

Now as t →∞, S(t)/tµ thus equivalently µN(t)/t tends to 1 a.s. Since h(·) is regularly varying of
exponent 1, it follows that as t →∞, h(t x)/h(t) goes to x uniformly on a compact interval around
x = 1. Then taking s = µbh(t), we have:

Nµ(t)
t
=

h(N(s))
h(s/µ)

=
h(µN(s)

s
s
µ
)

h(s/µ)
→ 1, a.s.

Let Ω denote a common probability space for the two processes, guaranteed by Theorem B. By the
above, there exists therefore a set Ω1 ⊆ Ω of full probability such that for all ω in Ω1 and all ε > 0,
we have Nµ(T )(ω)≤ (1+ ε)T for large T (T ≥ T0(ω)).

On the other hand, now using the joining, there exists a set of full probability Ω2 ⊆ Ω such that for
all ω in Ω2 there is a setBω of logarithmic density zero such that, with (S, Z) = (S, Z)(ω):

||(S−µ I )Q ◦bh− Zh(Q)||∞[0,M](ω) = o(M1/α), M /∈Bω.

Thus, for any ω in Ω1 ∩Ω2, and any fixed ε > 0, taking fBω to beBω/(1+ ε)∪ [0, T0(ω)] we have:

||(S−µ I )Q ◦bh− Zh(Q)||∞[0,Nµ(T )] ≤ ||(S−µ I )Q ◦bh− Zh(Q)||∞[0,(1+ε)T] = o(T1/α), T /∈ fBω.

Since multiplication by a positive factor preserves log density, fBω is of zero log density and we have
proved that (I) = o(T1/α) a.s. (log).

So all that is left to show is: (II) = o(T1/α) a.s. (log).

Recalling from (1.6) the definition of a step path of a process over a partition, one checks that:

(II) ≡ d0
T

�

Zh(Q) ◦ Nµ, Zh(Q)
�

= T1/αd0
1

�

∆T ZQT
◦ NµT ,∆T ZQT

� de f
= T1/α× (IV),

with NµT (x)≡ Nµ(T x)/T for x in [0, 1] and Qt
de f
= h(Q)/t, the rescaled partition.

We are done if we show that (IV) = o(1) a.s. (log); the first part of the proof is like that of Proposition
4.2 of [FT11a]. By Lemma A this is equivalent to saying that for all ε > 0,

lim
T→∞

1

log T

∫ T

1

χ{Z: d0
1

�

ZQt ◦N
µ
t ,ZQt

�

<ε}(∆t Z)
dt

t
= 1 a.s, (3.2)
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where χA denotes the indicator function of the set A.

Since h(·) is regularly varying, h(x + 1)∼ h(x) so the mesh |Qt | of Qt tends to 0 as t →∞.

Now since Nµ is positive and increasing and satisfies Nµ(t) ∼ t a.s., the same holds for its (true)
inverse Sµ. Hence both Nµt (·) and Sµt (·) converge uniformly to the identity on any compact interval
of R+, as t goes to infinity.

For all δ
′
> 0, let C↑

δ
′ denote the set of continuous, increasing functions, vanishing at 0 and which

are δ
′
-close to the identity uniformly on [0, 2]. Now for any ε > 0, for any δ,δ′ > 0 small enough,

and for t large enough, the event {Z : d0
1

�

ZQt
◦ Nµt , ZQt

�

< ε} contains the set

Gε
δ,δ′ ≡ {Z : ∀ P partition of [0, 2] with |P |< δ, and ∀η ∈ C↑

δ
′ then d0

1 (ZP ◦η, ZP )< ε}.

By the ergodicity of the scaling flow, the log density of Gε
δ,δ′ is ν(Gε

δ,δ′)with ν the law of the α−stable
process Z . So the log density in (3.2) is bounded from below by ν(Gε

δ,δ′).

Therefore all that is left to prove is that for fixed ε > 0, ν(Gε
δ,δ′) increases to 1 as both δ and δ′

decrease to 0.

As in the proof of Lemma 4.1 of [FT11a], from the σ-continuity of ν together with the fact that
the set D∗ ⊂ D of paths that are continuous at all positive integers has ν-full measure, we need
only prove the following pointwise statement: for all ε > 0 (with ε < 1) and all Z ∈ D∗ there exist
δ = δ(ε, Z) and δ′ = δ′(ε, Z) such that for any partition P of mesh less than δ and any η ∈ C↑

δ
′ we

have d0
1 (ZP ◦η, ZP )< ε.

To this end we construct an increasing, continuous function λ of [0,1] onto itself such that

||λ−I ||∞[0,1] < ε and ||ZP ◦λ− ZP ◦η||∞[0,1] < ε. (3.3)

Here we assume that η(1) 6= 1; if η(1) = 1, taking λ to be the restriction of η to [0, 1] delivers
(3.3).

Now since Z has no jump at 1, there exists a positive δ1 = δ1(ε, Z)< ε such that

sup
1−δ1≤s,t≤1+δ1

|Z(s)− Z(t)|< ε/3. (3.4)

We define n= n(ε, Z)≥ 1 to be the integer part of ε/δ1 (so ε/(n+ 1)< δ1 ≤ ε/n).

We proved in Lemma 4.1 of [FT11a] that for all ε > 0 and all Z continuous at 1 there exists
δ00 = δ00(ε, Z) > 0 such that for any partition P of R+ of mesh less than δ00, d1(ZP , Z) < ε.
Recalling Remark 2.1, the same holds a fortiori for d0

1 and hence for d0
2 , since one can replace [0, 1]

by any compact interval, for instance [0,2].

It follows that there exists an increasing, continuous function λ of [0, 2] onto itself (depending on
P , ε and Z) such that:

||λ−I ||∞[0,2] < ε/(n+ 2) and ||ZP ◦λ− Z ||∞[0,2] < ε/(n+ 2).
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We set

δ
de f
=
�

δ00 ∧
(n+ 1)δ1− ε

3(n+ 2)

�

and δ′ is any positive number< δ,

writing x ∧ y for inf(x , y) and x ∨ y for sup(x , y).

Let P be any partition of the positive reals, P = {[x i , x i+1)}i≥0 with x0 = 0, which has mesh less
than δ, and let η be any element of C↑

δ
′ satisfying ||η−I ||∞[0,2] ∨ ||η

−1−I ||∞[0,2] < δ
′.

Since δ′ < δ, the interval (1−2δ,η(1)∧η−1(1)) contains at least one boundary point of P ; letting
xp+1 be the largest of these, we then have xp+1 < η(1)∧η−1(1)< 1.

We define the function λ to be equal to η on [0, xp+1] and linear on [xp+1, 1], so that η(xp+1) =
λ(xp+1) and λ(1) = 1. Accordingly, ||λ−I ||∞[xp+1,1] = |η(xp+1)− xp+1|, so

||λ−I ||∞[0,1] = ||η−I ||
∞
[0,xp+1]

< δ′ < ε.

It follows that

||ZP ◦λ− ZP ◦η||∞[0,1] = ||ZP ◦λ− ZP ◦η||∞[xp+1,1]

≤ ||ZP ◦λ− Z ◦λ
−1
◦λ||∞[xp+1,1]+ ||Z ◦λ

−1
◦λ− Z ◦λ

−1
◦η||∞[xp+1,1]+ ||Z ◦λ

−1
◦η− ZP ◦η||∞[xp+1,1]

≤ ||ZP − Z ◦λ
−1
||∞[0,1]+ sup

λ
−1
(η(xp+1))≤u,v≤λ

−1
(1∨η(1))

|Z(u)− Z(v)|+ ||Z ◦λ
−1
− ZP ||∞[0,η(1)]

≤ 2 ||ZP ◦λ− Z ||∞
[0,λ

−1
(1∨η(1))]

+ sup
λ
−1
(η(xp+1))≤u,v≤λ

−1
(1∨η(1))

|Z(u)− Z(v)|. (3.5)

Since Z is continuous at 1, from the construction of λ in [FT11a], one sees that λ(1) = λ
−1
(1) = 1

and so λ
−1
(1∨η(1)) = 1∨ (λ

−1
(η(1))).

Thus,

|1−λ
−1
(1∨η(1))| ≤ |1−λ

−1
(η(1))|

≤ |1−η(1)|+ |η(1)−λ
−1
(η(1))|

≤ ||η−I ||∞[0,1]+ ||λ−I ||
∞
[0,2]

< δ′+
ε

n+ 2
< δ1 (3.6)

where we have used η(1)< 1+δ
′
< 2 in deriving the third inequality above.

Furthermore,

|1−λ
−1
(η(xp+1))| ≤ (1− xp+1) + |xp+1−η(xp+1)|+ |η(xp+1)−λ

−1
(η(xp+1))|

< 2δ+ ||η−I ||∞[0,1]+ ||λ
−1
−I ||∞[0,1]

< 2δ+δ
′
+

ε

n+ 2
< δ1 (3.7)

from the definition of δ.
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Now (3.6) and (3.7) imply that the second sup in (3.5) is less than the sup in (3.4) which is < ε/3.

Therefore, putting all the previous results together, we arrive at:

||ZP ◦λ− ZP ◦η||∞[0,1] < 2
ε

n+ 2
+
ε

3
< ε.

We have just shown that d0
1 (ZP ◦ η, ZP ) < ε, and hence using the observation right before (3.3),

for all ε > 0, we have that ν(Gε
δ,δ′) increases to 1 as δ and δ′ decrease to 0.

This proves (3.2) and hence (II), finishing the proof of Theorem 1.2.

4 The Cauchy case: α= 1

As for the previous two regimes, we build on the corresponding results for the random walk:

Theorem C: ([FT11a]) Under the assumptions and notation of Theorem 1.3, there exists a joining of
the step random walk S and the centered Cauchy process Ž (Ž(t)≡ Z(t)− t log t) such that

dT ( (S−%)Q ◦ a−1, Ž ) = o(T ) a.s. (log) (4.1)

where %(t) = t v(a(t)) and v(t) =
∫ t

0
x dF(x) is the truncated mean for F up to time t.

We start with two lemmas.

Lemma 4.1. Under the assumptions of Theorem 1.3, we have

||S− e%||∞[0,T] = o(e%(T )) a.s. (log), (4.2)

where e%(·) is the function of regularly varying derivative e%(t) = tev(a(t)), with ev(t) =
∫ t

0
V (x)/x2d x

and with V (x) =
∫ x

0
s2 dF(s) the truncated variance of F up to time x.

We need a further result:

Lemma 4.2. Let g be a nondecreasing function on the positive reals satisfying

||g −I ||∞[0,T] = o(T ) (log). (4.3)

Then for any f continuous, nondecreasing, and regularly varying of order 1 we have:

|| f ◦ g − f ||∞[0,T] = o( f (T )) (log). (4.4)

Remark 4.1. We recall from Proposition 2.5 of [FT11a] that if f is increasing, differentiable and
with regularly varying derivative, then f preserves zero log density sets.

Proof of Lemma 4.1. We begin with the time change a(·) of [FT11a] defined using the distribution
function of F . Now the centering function %(·) of (4.1) does not necessarily have a regularly varying
derivative; as a first step, then, we shall produce a better behaved centering, as follows.
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A crucial step from [FT11a] in the proof of (4.1) was to first show that

Sn− nv(a(n))
a(n)

−
Ž(a(n))

a(n)
P→ 0, (4.5)

where
P→ stands for convergence in probability and v(·) is the truncated mean for F .

Recalling that F has support on R+ (a subtle point is that we continue to work with the original
F rather than with the smoothed distribution used to produce the normalizing function a(·)), then
after performing an integration by parts we have for t > 0:

v(t)≡
∫ t

0

xdF(x) =
V (t)

t
+

∫ t

0

V (x)
x

d x

x
.

We have used the fact that for all t > 0,

0≤
V (t)

t
= t

∫ t

0

x2

t2 dF(x)≤ t,

so that V (t)/t goes to 0 as t → 0 and V (t)/t2 is bounded hence integrable at 0.

Hence setting bv(t)≡ V (t)/t, we rewrite v(t) as:

v(t) = bv(t) +

∫ t

0

bv(x)
x

d x
de f
= bv(t) + ev(t). (4.6)

Now as F lies in the domain of attraction of a Cauchy law, V (t) ∼ t L(t) and a(t) ∼ t L(a(t)) for L
some slowly varying function.

As a result bv is slowly varying. From p. 26 of [BGT87], we see that ev is slowly varying as well,
and that bv(t) = o(ev(t)); equation (4.6) shows that the truncated mean v(·) is a so-called de Haan
function.

We note that F has a finite mean iff ev converges to a finite constant as t → +∞, in other words iff
bv(x)/x is integrable on R+. In particular, bv(t) = o(ev(t)) means that bv, hence equivalently L, goes
to 0 as t →∞.

Now plugging the expression for v(t) given by (4.6) into (4.5), while keeping in mind that
nbv(a(n)) = nV (a(n))/a(n) ∼ nL(a(n)) ∼ a(n), then (4.5) can be rewritten, where eZ(t) = Ž(t) + t,
as:

Sn− nev(a(n))
a(n)

−
eZ(a(n))

a(n)
P→ 0. (4.7)

Therefore upon replacing Ž by eZ , we can trade %(·) for e%(t)≡ tev(a(t)) in (4.1).

We now show that this new centering e%(·) is increasing, differentiable, regularly varying of order 1
and has a slowly varying derivative.
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Now from its definition, ev(·) is increasing and differentiable; this is also the case for a(·) thus also
for e%(·). On the other hand, since the derivative of a(·) is slowly varying it follows that

(ev ◦ a)′(t) =
bv(a(t))

a(t)
a′(t)∼

a′(t)
t

which is regularly varying of order −1. Thus ev ◦ a is slowly varying and hence e%(·) is regularly
varying of order 1 (with a slowly varying derivative), as claimed.

Next, we know from (4.7) that

Sn− e%(n)
a(n)

=
e%(n)
a(n)

�

Sn

e%(n)
− 1
�

law−→ 1+ G1.

Bearing in mind that bv(t) = o(ev(t)), it follows that e%(n)/a(n)∼ ev(a(n))/bv(a(n)) goes to infinity as
n→∞. As a result, as n→∞, Sn/e%(n) converges to 1 in probability. Equivalently,

1

e%(n)

∑

0≤i≤n−1

�

X i − (e%(i+ 1)− e%(i))
� P−→ 0.

This is a sum of independent random variables normalized by a regularly varying sequence of order
1. Therefore Corollary 4 of [BD93] will imply that

sup
0≤k≤n

|Sk − e%(k)|= o(e%(n)) a.s. (log) (4.8)

provided we are able to show that for some p > 0

E
�

�

�

�

Sn− e%(n)
e%(n)

�

�

�

�

p

= O(1). (4.9)

But for all p < α= 1, from (1.5) together with Theorem 6.1 of [dAG79], we have that

E
�

�

�

�

Sn− e%(n)
a(n)

�

�

�

�

p

−→
∫

(1+ x)pdG1(x)<∞,

as n→∞; recall that 1− G1(x) ∼ x−1. This together with the fact that a(n)/e%(n)→ 0 yields (4.9)
which guarantees (4.8).

As we shall see, proving the desired (4.2) follows from (4.8) together with the fact that e% is regularly
varying.

We start with
||S− e%||∞[0,T] ≤ sup

0≤n≤[T]
( sup

n≤t<n+1
|S(t)− e%(t)|).

Since S is the polygonal extension of Sn, it is (a.s.) increasing on each n≤ t < n+ 1, so

|S(t)− e%(t)| ≤ |Sn− e%(n)|+ |Sn+1− e%(n+ 1)|+
�

e%(n+ 1)− e%(n)
�

,
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as e%(·) is increasing. It follows that

||S− e%||∞[0,T] ≤ 2

�

sup
0≤n≤[T]+1

|Sn− e%(n)|+ sup
n≤[T]

(e%(n+ 1)− e%(n))
�

. (4.10)

Now letB be the integer set of zero log density from (4.8) and define fB to be the set of t such that
[t]+1 belongs toB . Then fB is a set of zero log density in the reals. Accordingly, the first supremum
of (4.10) is o(e%(T )) for T /∈ fB . On the other hand, since the sequence (e%(n)) is regularly varying
we have e%(n+1)∼ e%(n). This is equivalent to supn≤[T](e%(n+1)− e%(n)) = o(e%(T )). Putting these
facts together yields (4.2).

We now move to:

Proof of Lemma 4.2. The proof is akin to that of (2.8). It is equivalent to show:
�

�

�

�

�

�

�

�

f (T∆T g)
f (T )

−
f (T ·)
f (T )

�

�

�

�

�

�

�

�

∞

[0,1]
−→ 0 (log), as T →∞ (4.11)

where ∆T is the scaling transformation of order 1.

By the triangle inequality, the left-hand side of (4.11) is

≤
�

�

�

�

�

�

�

�

f (T∆T g)
f (T )

−∆T g

�

�

�

�

�

�

�

�

∞

[0,1]
+ ||∆T g −I ||∞[0,1]+

�

�

�

�

�

�

�

�

f (T ·)
f (T )

−I
�

�

�

�

�

�

�

�

∞

[0,1]
. (4.12)

By definition of ∆T , (4.3) is equivalent to ||∆T g − I ||∞[0,1] → 0 (log). Now since f is regularly
varying of order 1, just as in the proof of (2.8) the last term of (4.12) approaches 0 as T →∞.

Since g is nondecreasing, the first term of (4.12) is bounded from above by

UT ≡ || f (T ·)/ f (T )−I ||∞[0,∆T g(1)].

Now for all δ > 0 and all δ
′
> 0, we have:

{t :Ut > δ} ⊆ {t : || f (t·)/ f (t)−I ||∞
[0,1+δ′]

> δ} ∪ {t : ||∆t g −I ||∞[0,1] > δ
′
}.

And since the log density of these last two sets is zero, by Lemma A we have proved that the first
term in (4.12) goes to 0 (log). This finishes the proof of (4.11) and hence that of (4.4).

Proof of Theorem 1.3. We start off just as in the proof of Theorem 1.2. By definition of eN , we have:

d0
T (eN ◦ e% ◦ a−1, eZ) = d0

T ( (S− e%)Q ◦ N ◦ e% ◦ a−1, eZ)

which is less than or equal to the following sum:

||(S− e%)Q ◦N ◦ e%◦a−1− eZa(Q)◦a◦N ◦ e%◦a−1||∞[0,T]+d0
T (eZa(Q)◦a◦N ◦ e%◦a−1, eZa(Q))+d0

T (eZa(Q), eZ)
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de f
= (I)+ (II)+ (III).

That (III) = o(T ) a.s. (log) follows from Lemma B. Indeed, since eZ is 1-self-similar while the

corresponding scaling flow (of order 1) is ergodic, we have that d1(∆T (eZa(Q)),∆T (eZ)) = o(1) a.s.
(log) and a fortiori for d0

1 from Remark 2.1. This together with (1.8) for d0
T yields (III) = o(T ), as

claimed.

Proving that both (I) and (II) are o(T ) (log) requires a crucial step we shall show next, that:

||a ◦ N ◦ e% ◦ a−1−I ||∞[0,T] = o(T ) a.s. (log). (4.13)

We showed above that e% is of regularly varying derivative and so (recalling Remark 4.1) it preserves
sets of log density zero.

Accordingly, since e% is increasing, a change of variables in (4.2) leads to:

||S ◦ e%−1−I ||∞[0,T] = o(T ) a.s. (log).

Applying Lemma 4.2 with f ≡ a ◦ e%−1 continuous, increasing, regularly varying of order 1 and with
g ≡ S ◦ e%−1 increasing gives

||a ◦ e%−1S ◦ e%−1− a ◦ e%−1||∞[0,T] = o(a ◦ e%−1(T )) a.s. (log).

Once again, since e% is regularly varying of order 1 with regularly varying derivative, then so is its
inverse and therefore so is a ◦ e%−1; as a result a ◦ e%−1 preserves sets of zero log density. So we can
change variables to get:

||a ◦ e%−1 ◦ S ◦ a−1−I ||∞[0,T] = o(T ) a.s. (log).

Setting for simplicity f ≡ a ◦ e%−1 ◦ S ◦ a−1, this is equivalent to

||∆T f −I ||∞[0,1] = o(1) a.s. (log);

moreover, we can replace the interval [0, 1] here by the interval [0, a] for any a > 0.

We shall prove that
||(∆T f )−1−I ||∞[0,1] = o(1) a.s. (log),

which is exactly (4.13), since (∆T f )−1 =∆T f −1.

To this end, all we need is the increasingness of f . Indeed, ||(∆T f )−1 − I ||∞[0,1] = ||∆T f −
I ||∞
[0,(∆T f )−1(1)]

and for any ε > 0 and δ > 0, we have:

{t : ||(∆t f )−1−I ||∞[0,1] > ε} ⊆ {t : ||(∆t f )−I ||∞[0,1+δ] > ε} ∪ {t : (∆t f )−1(1)> 1+δ}

⊆ {t : ||(∆t f )−I ||∞[0,1+δ] > ε} ∪ {t : ||(∆t f )−I ||∞[0,1+δ] > 1+δ}

each of which has zero log density by Lemma A. This finishes the proof of (4.13).
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Turning to (I), after a change of variables we have:

(I)= ||(S− e%)Q ◦ a−1− eZa(Q)||∞[0, a◦N◦e%◦a−1(T )]
de f
= V (a ◦ N ◦ e% ◦ a−1(T )).

From (4.7), exactly as we proved (4.8), one can derive that sup0≤k≤n |Sk− e%(k)−eZ(a(k))|= o(a(n))
a.s. (log) and hence that V (T ) = o(T ) a.s. (log); see Proposition 5.2 of [FT11a] for this last step.

We prove that (I) = o(T ) a.s.(log) following the above reasoning. For all ε,ε
′
> 0, the set of times

{t : V (a ◦ N ◦ e% ◦ a−1(t))> εt} is contained in the disjoint union

{t : V (t(1+ ε′))> εt} ∪ {t : ||a ◦ N ◦ e% ◦ a−1−I ||∞[0,t] > ε
′
t},

each of which has zero log density, which delivers (I)= o(T ) a.s.(log).

Lastly, proving (II) = o(T ) a.s.(log) goes the same way as for the proof that (II) = o(T ) a.s.(log) in
Theorem 1.2. Indeed, we write:

T−1× (II)= d0
1 (∆T ( eZa(Q)) ◦ηT , ∆T ( eZa(Q)) )

where ηT ≡ ∆T (a ◦ N ◦ e% ◦ a−1). From (4.13), for any b > 0, ||ηT −I ||∞[0,b] → 0 (log) as T →∞.

This reduces to proving (3.2) with eZ replacing Z and ηt replacing Nµt . We split the log density
into two pieces depending on whether ||ηT − I ||∞[0,1] ≤ δ

′ or > δ′. Since the log density of {t :
||ηt − I ||∞[0,2] > δ

′} is zero, all that is left to treat is the part where ηt is δ′-close to the identity,
uniformly on [0, 2] and we can borrow that argument from the proof of Theorem 1.2.

This completes the proof of Theorem 1.3.

5 The finite variance Gaussian case

Upon dividing the X i ’s by σ, one can assume that σ ≡ 1; we give the proof for this simpler case.

Proving (i). This is Horvath’s asip, Theorem 2.1 of [Hor84]. From [KMT76], and Major [Maj76b],
see also [CR81] pp. 107 and 108, there exists a joining of S and a normalized Brownian motion B
such that for almost every pair (S, B),

||(S−µI )− B||∞[0,T] = o(T1/r). (5.1)

Note that in the statement of (i) we can replace B by −B since these processes have the same law.
Remembering that S is the inverse of N , performing a change of variables and using the triangle
inequality, we have

||(µN −I )(µ·) + B||∞[0,T] = ||(S−µI ) ◦ N(µ·)− B||∞[0,T]

≤ ||(S−µI )− B||∞[0,N(µT )]+ ||B− B(S(·)/µ)||∞[0,N(µT )]. (5.2)

From the law of large numbers, N(µt)/t goes a.s. to 1. So as in (3.1) one can replace [0, N(µT )]
in the inequality above by [0, 2T]. Consequently, (5.1) implies that the first term of (5.2) a.s. is
o(T1/r).
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As for the second term, we claim that for any γ > 1/4, we have

||B− B(S(·)/µ)||∞[0,T] = o(Tγ) a.s.

For this, from the law of the iterated logarithm for S (see for instance [Dur91] p 394), we have for
S(·) that

limsup
t→∞

S(t)−µt
p

2t log log t
= 1, a.s.

So almost surely, for all ε > 0 and t large enough, |S(t)−µt| ≤ (εµ
p

t) log log t. Accordingly, for T0
large enough and all δ > 0, we have

P(||B− B(S(·)/µ)||∞[T0,T] > δTγ) ≤ P
�

sup
T0≤s≤T

sup
|u|≤ε

p
s log log s

|B(s)− B(s+ u)|> δTγ
�

≤ P
�

sup
s,t≤2T ; |t−s|≤ε

p
T log log T

|B(s)− B(t)|> δTγ
�

= P
�

sup
0≤s≤t≤1, |t−s|≤(ε log log T )/2

p
T
|B(s)− B(t)|> 2−1/2δ Tγ−1/2

�

≤ c

p
T

log log T
exp
�

−c
′ T2γ−1/2

log log T

�

,

for some constants c and c
′
, where we have used a Brownian scaling in deriving the equality above

followed by an estimate for the Brownian oscillation, see for instance [CR81], p. 24. Hence, since
γ > 1/4, our claim now follows by the Borel-Cantelli Lemma.

For 2 < r < 4, we take γ = 1/r > 1/4, in which case the order of the sum (5.2) is that of the first
term, namely o(T1/r); for r ≥ 4 the order of the sum is o(Tγ), with γ > 1/4. (See the second part
of Theorem 2.1 (c) of [Hor84] for a proof that this last result is in fact sharp.)

Lastly, the proof that the path (µN −I )( µ
σ2 ·) belongs to W

s,du
∞

Ces (B) follows from the corresponding
statement for du

1 via the Lebesgue Dominated Convergence Theorem; see Lemma 3.6 of [FT11a].

Proving (ii): We know from a counterexample of Breiman [Bre67], see [CR81] p. 93, that there
exists a distribution F with mean µ and with variance one such that for any Brownian motion B

limsup
n→∞

|Sn−µn− B(n)|
p

n
=+∞ a.s.;

this a fortiori holds for continuous time t as well.

Accordingly, as above replacing −B by +B, since

(µN −I )(µt) + B(t) =−
�

(S−µI )N(µt)− B(N(µt))
�

+ (B(N(µt))− B(t)),

then the lim sup of the absolute value of the first term on the right-hand side, divided by
p

t, is +∞
(here we again use the fact that N(µt)/t → 1). And we proved in (i) that ||B(N(µ·))− B||∞[0,T] =
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o(Tγ) a.s. for any γ > 1/4, in particular, for γ = 1/2. Thus we are done by dividing the identity
above by

p
t, then taking the lim sup.

Hence no asip of order
p

T is possible for F with finite variance and higher moments infinite. How-
ever in that case, we proved in [Fis] that there exists a joining of S and a standard Bownian motion
B such that for almost every (S, B),

||(S−µI )− B||∞[0,T] = o(
p

T ) (log) (5.3)

In this light, running the proof of (i) we arrive at (5.2); the second term is still o(
p

T ) whereas the
first one is only o(

p
T ) (log), a.s.

Thus we are done so long as we clarify one point, which we previously encountered while studying
(I) in the case where α > 1: we can replace [0, N(µT )] by [0, T] in (5.3) without altering the asip
(log) since by the law of large numbers N(µT )≤ (1+ε)T for any ε > 0 (T large), while multiplying
by a constant does not alter the log density of a set.

This completes the proof of (1.22) and so of Theorem 1.4.

6 Proving Corollary 1.1

We only give a sketch here as the proof follows similar reasoning as for Proposition 1.3 in §6 of
[FT11a].

Proof of (i). Let C denote the space of continuous functions defined on R+. For α < 1, the law
bν of the Mittag-Leffler process bZ is a bτt -invariant ergodic probability measure on C . By Fomin’s
theorem, we know that for bν-a.e. path bZ we have for any ϕ ∈ CB(C , du

∞):

lim
T→∞

1

T

∫ T

0

ϕ(bτt bZ) dt =

∫

ϕ dbν . (6.1)

This says exactly that the occupation measures 1
T

∫ T

0
δ
bτt bZ

dt converge weakly to bν . Note that by
p. 12 of [Bil68], it is equivalent to state (6.1) for ϕ ∈ UCB(C , du

∞), the uniformly continuous and
bounded functions.

From (1.11) written for du
∞, there exists a joining bν of N and bZ such that for a.e. pair (N , bZ), the

paths aα ◦N and bZ are du
∞-forward asymptotic for the flow bτt ; that is, aα ◦N is in the Cesáro stable

manifold W
s,du
∞

Ces (bZ). Accordingly, for any ϕ ∈ UCB(C , du
∞), (6.1) also holds with aα ◦N in the place

of bZ; this then passes back to CB(C , du
∞), telling us that aα ◦ N is a bτt -generic point for bν .

From (1.13), in the same fashion, (6.1) passes over to N(et ·)/a−1(et) and the change of variables
s = et finishes the proof of (i).

Proof of (ii). We begin as for part (i), with d∞ replacing du
∞. We set h= aα to simplify the notation.

From Theorem 1.2 we have that for any ϕ ∈ CB(D, d0
∞) = CB(D, d∞),

lim
T→∞

1

log T

∫ T

1

ϕ

�

N̆(µh−1(s·))
s1/α

�

ds

s
=

∫

ϕ dν , (6.2)
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which is not quite the equation that we want, (1.24). Making the change of variables s = h(t/µ),
we have d t/t = (h−1)′(s)/h−1(s)ds ∼ ds/s by Karamata’s Theorem, so (1.24) is equivalent to:

lim
T→∞

1

log T

∫ T

1

ϕ

�

N̆(µh−1(s)·)
s1/α

�

ds

s
=

∫

ϕ dν . (6.3)

Thus we want to compare (6.2) and (6.3). Now in the process of proving Proposition 1.3 (ii) of
[FT11a], we encountered a similar situation; we use the same argument, borrowing notation from
that proof.

First, for any f , g ∈ D, and λ defined on R+, continuous, increasing and onto, we define

tλ = tλ, f ,g = sup{t ≥ 0 : || f − g ◦λ||∞[0,t] ≤
1

t
and ||λ(x)− x ||∞[0,t] ≤

1

t
} (6.4)

and then write

ρ( f , g) =min
�1

2
; ( sup
λ∈Λ∞

tλ)
−1	.

Lastly we set
ed0
∞( f , g) = ρ( f , g) +ρ(g, f ).

As we showed in [FT11a], ed0
∞ defines a metric on D which gives the same topology as does d∞.

Now setting

λs(x)≡
h−1(sx)
h−1(s)

,

this gives a continuous, increasing and onto function on R+. Since h(·) and hence h−1(·) are regu-
larly varying of order 1 and increasing, for all A> 0 we have that ||λs(x)− x ||∞[0,A] → 0 as s →∞.
On the other hand, defining

fs(x) =
N̆(µh−1(s)x)

s1/α
, and gs(x) =

N̆(µh−1(sx))

s1/α
,

we have, for any s > 0:
fs ◦λs − gs ≡ 0.

It follows that tλs , fs ,gs
→∞ as s→∞, which tells us that ρ( fs, gs), ρ(gs, fs) and hence ed0

∞( fs, gs) go
to 0 as s→∞.

Accordingly, for any ϕ ∈ UCB(D, ed0
∞) and hence again by p. 12 of [Bil68] for any ϕ ∈ CB(D, ed0

∞) =
CB(D, d∞) as well, the log average of ϕ( fs) is the same as that of ϕ(gs). But these are exactly the
log averages appearing in (6.3) and (6.2) respectively, finishing the proof of (1.24) and hence of
(ii).

The proofs of (iii) and (iv), which we omit, follow the same pattern.

Finally, deriving pathwise CLTs from the pathwise functional CLTs for the cases where α < 1 and
α= 2 is immediate, as the projection in C to the time-one coordinate is continuous.

For the remaining cases, the proof follows the pattern we used in [FT11a], by convolving along the
flow. This completes the proof of the corollary.
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