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1. Introduction

TO DO:
– invt. measures, fun’l analysis; Choquet and erg. decomp
– Kolmogorov and regularity and stationarity
– Hausdorff measure
– Kak equiv
– Osceledec
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– CLT proof; log log proof; Martingale and Gordin proof; Chung-Erd proof
–???
NOTE: “???” in the text is a reminder to me that this part needs completion!

1.1. Purpose of the notes. These very preliminary and incomplete notes have been
developing and expanding gradually since 1993, most of this material having been
presented in graduate courses in dynamics and ergodic theory, or in seminars, at the
State University of New York, Stony Brook, Instituto de Mathemática, UFRGS Porto
Alegre, the Univerity of Marseilles, and especially at the Universidade de São Paulo.

There are many excellent texts in dynamical systems, ergodic theory and proba-
bility. Some of my personal favorites are: [Bil78], [Shu87], [Bow75], [Fur81],[Shi73],
[Lam66],[GS92], [Nit71], [Irw80], both because of the material covered and because
they are such beautiful books.

Other invaluable texts are [Wal82], [Sin76],[Bow77], [PdM82], [PP90], [KH95], each
of these being magnificent in its own way.

The last of these is a remarkable achievement in that it brings together so many
topics in one place, with up-to-date results and methods of proof.

Nevertheless the field has grown so much that many interesting topics are not
included there.

The list should go on to include texts in the closely related areas of fractal geometry,
complex dyamics, Kleinian groups, low dimensional topology, combinatorial group
theory.... After all, divisions in mathematics are entirely artificial, and if we go deep
enough, it seems we find that everything is interesting and of beauty.

I think of these notes as serving three possible purposes: as a central text around
which to build a dynamics course, as supplementary material to accompany a course
based for instance on one or more of the books mentioned above, and as an introduc-
tion to some parts of the research literature.

The material included here is here because I needed to write it down in this way to
have a basis for my own teaching of this material; other topics were already so well
treated elsewhere that I haven’t felt called to write my own version.

When I have taught this material, I have sometimes included entropy theory, basing
my approach on some combination of [Bil78], [Wal82], and [PP90]; circle diffeomor-
phisms, using [CFS82] and [KH95], parts of probability theory, using [Lam66], [GS92],
as well as research papers, in each case. In future versions of the course, I intend to
present stable manifolds and related matters, [Shu87], [KH95], [PdM82]; Markov par-
titions, using [Shu87], [Bow75]; Morse-Smale diffeomorphisms, using [Irw80], [PdM82];
future dreams are to delve into: complex dynamics? Kleinian groups? low dimen-
sional topology? combinatorial group theory? And these notes may expand along
the way.

When I have taught the course, about half the time has been spent discussing
concrete examples, and the blackboard was often full of diagrams and pictures. These
are not (yet?) written down; most of that material forms part of the folklore of the
subject. Anyone teaching this material would do well to view it a bit as a cooking
project: these are some of the ingredients; you need to add and stir in a lot of your
own!
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Corrections, comments, additions and suggestions are welcome.

1.2. Background. A basic knowledge of general topology and measure theory at the
level of, say, [Roy68] will be assumed. My own favorite texts in addition to Royden are:
advanced calculus, “baby analysis”: metric spaces etc.: [Mar74]; set theory [Hal74],
measure theory [Bar66], [Roy68], [Rud87], [Oxt80], and parts of [Hal76], functional
analysis [Rud73], [RS72], parts of [DS57], general topology [Kel75], algebraic topology
[Arm83], complex analysis [Ahl66], [Kno45], [Lan99], [MH87].

1.3. Why dynamics? Dynamical systems can be defined as the study of group or
semigroup actions on a space. The group action defines the way in which the system
changes, and in the most classical setting, with actions of Z,N or R, we think of the
action as giving the evolution of time, as observed either discretely (like frames of a
movie) or continuously.

So dynamics is inherently fascinating because it can be used to study anything
which is evolving or changing in time.

One can think of snowflakes drifting down out of a winter sky, of water rippling
across a lake, of the eddies and vortices of a mountain stream, clouds coalescing in
the heavens, the moon tracing its slow trajectory against a background of stars, a
smile flickering across the face of a child...or the oscillations of prices on the stock
market!

Some of the questions and examples originate in physics (indeed, the term “orbit”
for {T n(x) : n ∈ Z}, the itinerary of the point x over all time, suggests the orbit of
a planet around the sun, recalling the origins of the subject in problems of celestial
mechanics, such as the question as to whether the solar system is actually stable- or
whether at some future time the planets and the sun might not interact with each
other in such a way that one planet gets thrown out of the system!) while other
examples come from pure mathematics: from number theory, algebra, differential
geometry, complex analysis. Two other main sources of examples, problems, ideas
and methods are probability theory and information theory.

Dynamics is a rich subject partly because so many different points of view may be
brought to bear, and because the source of examples is so varied.

INSERT: diagram with arrows-pointing both ways: prob th, ino th, number th, alg
top, functional complex harmonic analysis, diff geom, algebra, ODE, PDE...

FIGURE: torus; free goup graph; Riemann surface
Not only can many different fields of mathematics prove useful within dynamics,

but the dynamical point of view can help pose interesting problems, and often lead
to solutions, in these other areas.

When I chose dynamics as a field, I recall that one of my motivations was that
this choice would give me an excuse to study so many different parts of mathematics!
Thus the study of dynamics can be both very general, and very specific, which nearly
guarantees that it will always be interesting.

1.4. Remarks on Differential Equations. In §35.1 we develop some material on
Linear Algebra which will be referred to throughout these Notes. This “Minicourse”
includes an introduction to Lie Groups and Lie Algebras. This material is collected
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here as basic material needed for the approach we take in the section on Ordinary
Differential Equations. Then in §37 we present a minicourse on ODE.

The study of differential equations played a key role in the beginnings of the study
of Dynamical Systems, but the subjects have largely gone their own ways since then,
occasionally coming back together depending on the interests of authors or the needs
of applications. As a result, books on Dynamical Systems are more or less divided
between some that have avoided differential equations entirely, some that emphasize
differential equations while ignoring “more modern” dynamical systems like ergodic
theory, while others have tried to bridge that gap at least to some degree. The study
of ordinary differential equations itself has divided into the study of specific examples,
usually in one dimension, and the qualitative theory making use of a more topological
point of view.

Our basic emphasis is much more on the ergodic theory side of things. But the
differential equations world is both beautiful and fascinating, so we provide this small
introduction. And as in all of mathematics, learning one part is sure to help with the
others, no matter how far apart they may initially appear!

For this material, in which we are not at all expert, we have benefited especially
from the accounts in [HK03], [HS74], [Lan02], [Lan01], and course notes of Marina
Talet, and references on Lie groups cited in that section.

The emphasis in the minicourse is on the local theory, developed in linear spaces
(Rn and also Banach spaces as in Lang’s treatments), trying to show the key role
of the exponential map, first in the linear case, from linear vector fields (elements
of the Lie algebra of the matrix group) to that group, sending a line {tA} to a
linear flow. For a general vector field this flow is constructed by Picard’s contraction
mapping. Thus a vector field is a tangent vector to a flow, a one-parameter subgroup
of the collection of diffeomorphisms. In the main part of the course we focus on the
global theory, both of flows and maps, but here rather than beginning with a vector
field these dynamical systems are constructed more directly, by algebraic geometric
or probabilistic methods, and studied by smooth, topological and measure theoretic
tools, with much of the focus on the measure theory which leads to the beautiful links
with randomness discovered by the development of ergodic theory.

We also review material on linear algebra, needed throughout these Notes, and also
on vector calculus, up to Stokes’ Theorem, with the emphasis on getting across some
of the key ideas rather than full proofs, and primarily to aid with this part on ODE.

Please Note: there are also Lecture Notes on Vector Calculus on my Webpage,
with some additional material on ODEs. The material her may be moved to there
eventually.

I have tried to cite references, so a lot of the material without citations is original at
least in its presentation. Any orriginal material including figures should be considered
copyrighted by the author and used only with attribution, please!

I owe infinitely much to wonderful teachers and mentors and colleagues and refer-
ence works. In a later version I will be more thorough with acknowledgements.

Many “unfinished” parts are indicated here; we shall see if they actually get finished
up (or not!)

Any and all readers are very welcome to write in with corrections or comments.
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2. Basic concepts

2.1. Transformations, flows and group actions.

Definition 2.1. Given a set X, a transformation T of X is a function T : X → X.
Note that for n ≥ 1, writing T n = T ◦ · · · ◦ T (n times), then T n+m = T n ◦ Tm.
We define T 0 to be the identity map id : X → X, and if T is invertible, we write
T−n = (T−1)n. A flow on X is a collection of transformations {τt : t ∈ R}, such
that τ0 = id and τt+s = τt ◦ τs. The transformation τt is called the time-t map of
the flow; note that each τt is invertible with inverse τ−t, and that for T = τ1, then
T n = τn for all n ∈ Z.

Given a group G with identity element e and a set X, and given a function Φ :
G×X → X, we write

g(x) = Φ(g, x).

If this satisfies:
(i) e(x) = x and
(ii) g1(g2(x)) = (g1g2)(x) for all x ∈ X
then we call this an action of the group G (on the left) on the set X.

For example, an invertible transformation gives an action of the integers Z, while
a flow corresponds to an action of the additive group of the real numbers R.

Note that each element of the group separately defines a transformation of the
space, and these transformations work together so as to be consistent with multipli-
cation in the group. For example, the transformation defined by g is a bijection of
X, as combining properties (i) and (ii) we see that it has an inverse x 7→ g̃(x) where
g̃ = g−1.

We make the similar definition for an action of a semigroup S. A possibly non-
invertible transformation defines an action of the semigroup N = {0, 1, 2, . . . }, with
e(x) = x and n(x) = T n(x).

The orbit of a point x for a group action is O(x) = {g(x) : g ∈ G}. Defining
two points x, y in S to be equivalent x ∼G y iff y ∈ O(x), the set S is partitioned
into orbits, defining the orbit equivalence relation on S; that this is indeed an
equivalence relation follows from (i) and (ii) above plus the fact that each element of
a group has an inverse.

Remark 2.1. Traditionally, the idea of an abstract group could be introduced by way
of a transformation group: a collection of transformations of a space which forms a
group under composition. Thus, the rotations of a triangle form a group, isomorphic
to G = Z3 = Z/3Z. But from the clearer, more modern viewpoint the rotations of
the triangle are a particular action of G. The reason we say “clearer” is because the
any invertible transformation of a space (which is not periodic) gives a transformation
group which is isomorphic to Z, as a group; yet as an action, i.e. as a dynamical
system, these can be very different. The point is that the two notions of isomorphism-
of group, or of action, are not at all the same.

Group actions enter into dynamics in two quite different ways. First, the collection
of orbit equivalence classes, equipped with the quotient topology and measure, defines
the orbit space of the action; this construction can provide a convenient way of
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defining a topological space or manifold on which our dynamical system, given by a
flow, transformation, or (more generally) a further group or semigroup, will then act.

The most basic example is the torus Td of dimension d. To define this space, we
begin with (Rd,+), the additive group of d−dimensional Euclidean space, equipped
with the usual topology and metric. The subgroup Zd, known as the integer lattice,
acts on Rd by translation. Given x ∈ Rd, then x+Zd = {x+y : y ∈ Zd} is a left coset
for the subgroup; since Rd is abelian, the collection of cosets itself defines a group,
Rd/Zd. To see why this is indeed the torus, we note that the product of d half-open
intervals, [0, 1)×· · ·× [0, 1), is a fundamental domain for the action of Zd on Rd: it
contains exactly one representative from each coset. Now for d = 1, R/Z is therefore
homeomorphic to the closed interval [0, 1] modulo the relation 0 ∼ 1; that is the
endpoints are identified to give the circle, T. Similarly Rd/Zd is [0, 1]×· · ·× [0, 1] with
0 identified with 1, hence is the product of d circles. We can make these identifications
before or after taking the product of the closed intervals, so e.g. for d = 2 we have
the square with opposite sides identified, and for d = 3 the cube with opposite sides
identified.

A similar procedure produces a surface of any genus (this is just the number of
“holes” of a surface, so the usual torus T2 has genus one), and with any number of
cusps: these are pointed parts that go out to infinity. For this, beginning with H,
the upper half space with its hyperbolic metric, in the place of R2, we exchange the
lattice Z2 for a discrete group Γ of isometries of H (discrete meaning here that the
points of the subgroup are separated from each other in the continuous group G of
all isometries) and H/Γ will be our surface (known as a Riemann surface). See
Fig. 65, depicting the punctured torus, a torus with one cusp at infinity.

What happens for the topologically nice actions just described is that since the
covering space is continuous while the orbits of the subgroup form a discrete subset,
the geometry of the factor space is locally like that of the original, covering, space.
One calls this a homogeneous space since the geometry is everywhere the same.
This is true in the covering space since a neigborhood of the identity can be translated
to any other point g (by g itself), and that property passes on to the quotient since
the projection is a local homeomorphism and isometry.

Orbits for the next type of action, for instance given by a transformation or flow
acting on one of the nice quotient spaces just described, have the opposite nature:
they may wrap around in the space in a complicated, even dense, way. If so, the
quotient space is no longer nice topologically, as it will be a non-Hausdorff space
(Exercise 4.2)! This quotient space is not at all nice from the measure theory point of
view as well: any attempt to find a fundamental domain for the action will produce
a nonmeasurable set (see §10.7).

To investigate these further actions we need new tools beyond simple topology, pre-
cisely since the orbit space is no longer well-behaved. These interesting complications
lead to new questions, concepts and methods, to the study of the long-term behavior
of the system, and the relation to probabilistic and physical ideas like independence
and entropy.

In any case, the space X on which the dynamics acts will come with some additional
structure, perhaps inherited as above from a covering space (it may be a measure
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space, a topological space, or a smooth manifold), with this structure preserved by
the dynamics. Thus we may be studying a smooth map or flow on a manifold, or
continuous dynamics on a compact topological space, or a measure-preserving map
on a probability measure space (this means the total mass is finite, and has been
normalized to equal one).

For this most basic case, we have a map or flow, where the parameter n or t can be
thought of as time; so as we iterate the transformation we are watching the evolution
of time, as the point moves along its orbit.

This is the usual setting for ergodic theory and dynamical systems theory, but
as we have indicated there are interesting extensions. One is to the action of more
general groups or semigroups, or even to pseudo-groups (sets of partially defined
transformations) or equivalence relations (for example, foliations!). Furthermore, in
all these cases the invariant measure can be infinite; there are interesting, naturally
occuring examples. Beyond this, one can consider transformations which may not
preserve any measure but which do preserve sets of measure zero (so-called measure-
class preserving transformations; this area is known as nonsingular ergodic theory).
There is also an extension is to nonautonomous dynamics (a sequence of maps on
a space) and more generally to nonstationary dynamics: a sequence of maps along
a sequence of spaces [AF05]. Natural examples here come from random dynamical
systems, from renormalization theory, and from the study of time-varying vector
fields.

And indeed, even when we want to focus on transformations and flows, these more
general types of dynamics inevitably will come into play, as will be seen throughout
these notes. But the foundation of the theory, and the source of the motivational
intuition, lies in the study of transformations and flows; it is there that the most
basic examples are found. It is that framework we shall emphasize. Indeed, even
when considering actions of more general groups, we bring in a variety of ways the
discussion back to transformations and flows, since all these are but different aspects
of one unified vision.

For much more regarding group actions see...., and regarding nonsingular maps,
see....

The structure of transformations: conjugacy, isomorphism and classifica-
tion. In developing a mathematical theory, there are usually several ingredients,
studied on an abstract level in category theory. When we have a transformation
T : X → X, we refer to it by the pair (X,T ). Given two transformations (X,T )
and (Y, S), and given an onto map π : X → Y such that π ◦ T = S ◦ π, so that the
following diagram commutes, we say that π is a homomorphism from (X,T ) into
(Y, S).

X
T−−−→ Xyπ

yπ

Y
S−−−→ Y
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If in addition π is surjective then we call this a factor map, and say that (Y, S)
is a homomorphic image or factor of (X,T ), and conversely that (X,T ) is an
extension of (Y, S). We then also say that π is a semiconjugacy from (X,T ) to
(Y, S).

If π is invertible, then π is a conjugacy or isomorphism, and is written T ∼= S
(or more properly, as (X,T ) ∼= (Y, S)).

Thus for example each of these collections of dynamical systems forms a category,
with the objects the pairs (X,T ) and the arrows the homomorphisms π:

-sets and functions from a set to itself
-topological spaces and continuous (self-)maps
-manifolds and differentiable maps
-metric spaces and Lipschitz maps
-groups and group translations, π is a homomorphism
-groups and group endomorphisms
-measure spaces and measure-preserving maps
-measure spaces and measure-class-preserving maps.
Given a type of conjugacy, we have the isomorphism problem: to classify a collec-

tion of dynamical systems up to the equivalence relation generated by this notion of
conjugacy. In spirit, this is much like other classification problems in mathematics,
such as the classifications in algebra of vector spaces or commutative rings or finite
groups, or in topology of compact surfaces or 3−manifolds, and in the same way
one expects the proof of a classification theorem to be of greatly varying difficulty
depending on the category chosen.

If we are given a class of maps with a good deal of structure, e.g. Ck maps on the
circle, one could study these up to Ck conjugacy, or up to Cl conjugacy for any l < k,
including C0 (topological) conjugacy. And, if these maps are in addition supplied
with a natural invariant measure, we can study measure theoretic conjugacy. A great
deal of the richness of dynamical systems theory comes from the interplay of these
different structures. We will see explicit examples of this later on.

So one theme in dynamical systems theory (as in other parts of mathematics) is the
study of conjugacies, and the corresponding attempts to classify collections of maps
or flows up to that notion of equivalence.
Here are some examples of classification theorems:
-Ornstein’s theorem [Orn73], [Shi73]: two Bernoulli shifts are measure-theoretically
isomorphic if and only if they have the same entropy. This is valid also for infinite
entropy. A measure-preserving transformation of a Lebesgue probability space is
Bernoulli (isomorphic to a Bernoulli shift) if and only if it satisfies the property of
very weak Bernoulli. These statements also holds for flows.

-Shub’s theorem (Topological classification of expanding maps of the circle). An
expanding map f of the circle with degree d is topologically conjugate to the linear
map x 7→ dx(mod 1). See §26.
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-Denjoy’s theorem (1932): a C1 orientation-preserving diffeomorphism f of the circle
with irrational rotation number θ and such that the derivative Df has bounded
variation is topologically conjugate to the rotation Rθ.

-Herman’s theorem (and related results of Herman, Yoccoz, Khanin-Sinai, Katznelson-
Ornstein and others) with f as above, but at least C3, then for a measure-one set of
θ, the above conjugacy is C2−ε−smooth.
-Stuctural stability for hyperbolic diffeomorphisms

-Franks’ theorem [Fra69], [Fra70], [Man74]: (Classification of Anosov maps of the
torus) An Anosov map f of the d− torus is topologically conjugate to the linear map
given by its action on homology.

-Kakutani equivalence (theorems of Katok, Feldman, Rudolph)

-orbit equivalence:
(Dye’s theorem)(see [Zim84]) Any two ergodic measure-preserving transformations of
a finite-measure Lebesgue space are orbit-equivalent.
(Krieger’s theorem) there are two more equivalence classes for orbit equivalence:
σ−finite infinite measure and measure-class preserving but with no equivalent in-
variant measure. These ideas are fundamental in C∗−algebra theory.

General theory. Another theme is the development of the general theory, within a
particular category. Thus we have theorems about topological or measure theoretic
recurrence, mixing, and entropy. This can be viewed as a different aspect of the study
of the structure of transformations, and relates to isomorphism theory for instance by
providing constants or properties which are preserved by various types of congugacy.

The theme of recurrence, which begins with a theorem of Poincaré, is remarkably
rich, even for very general systems; this circle of questions has been explored especially
by Furstenberg, who developed for this purpose two fundamental structure theorems,
one in the topological and one in the probability measure-preserving categories.

In the measure theoretic setting there are profound links with probability theory,
with the ergodic theorem of dynamics strengthening the strong law of large numbers,
and with other limit laws such as the central limit theorem also coming into play.
Thus there are applications of probabilistic ideas and methods to dynamics, and
there is also the application of dynamical ideas within probability theory itself. See
for example [FT15], [?].

There is also a fascinating and varied assortment of applications of dynamical
ideas to number theory. For one especially remarkable example of this we mention
Furstenberg’s proof of Szemeredi’s theorem. In 1975 Szemeredi had answered this
long-standing (since 1936) conjecture of Erdös and Turán, that within any subset of
the integers with positive upper density, one can find arithmetic sequences of arbi-
trary length. The ergodic theoretic translation of this is a statement about multiple
recurrence; Furstenberg’s method of proof (in 1977) was to first make this link, then
prove the recurrence result, for which a key element was the structure theorem just
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mentioned. Furstenberg’s dynamical point of view together with Szemeredi’s combi-
natorial approach led to a solution of a famous conjecture of Erdös by Green and Tao.
Erdös had guessed that the primes also contain arbitrarily long arithmetic sequences.
Now by the prime number theorem the number π(n) of primes ≤ n is asymptotically
n/ log n, whence lim π(n)/n = 0 and they have density zero; however the primes are
still a large set in that their integer Hausdorff dimension, defined as in [BF92] to be
d = lim(log π(n)/ log n), is one. We mention that Erdös’ conjecture on arithmetic
sequences in the primes is a special case of a still open conjecture of his from 1976:
that if for A ⊆ N,

∑
n∈N

1
n

= ∞, then A contains arithmetic sequences of arbitrary
length.

Examples. A third theme is the study of specific examples. Much of the fascination
of dynamical systems theory comes from the profound beauty of these examples,
which have been introduced over time by the many researchers in the subject.

The problems of conjugacy, classification, and the general theory can only be appre-
ciated given a firm grounding in the examples. These help to guide the development
of the theory, to provide a constant source of new challenges, and to serve as a test
and check on one’s wilder intuitive guesses. Indeed, they should probably occupy
at least half the time of any dynamics course, and of any student’s or researcher’s
thinking time!

In this course we will begin with some of the classical examples; this will give us
something to think about as we introduce the general theory. These will often be
related to examples in physics, or from ODEs, although we will not emphasize this
aspect of the material, providing only a glimpse in the section referred to aabove. For
more in that direction, the reader may consult the references cited there.

3. Measure and randomness.

We recall the basic definitions, just to get started; however in general an analysis
background at the level of [Roy68] will be assumed. In addition to Royden my own
favorites are: [Bar66], [Oxt80], [Rud73] and the more recent, also excellent [Fol99].
We go into more depth on these matters in §33.1.

Given a set X, an algebra A is a collection of subsets of A such that, where
Ac = X \ A denotes the complement:

• X ∈ A;
• A ∈ A =⇒ Ac ∈ A;
• A,B ∈ A =⇒ A ∪B ∈ A.

It is a σ−algebra if in addition
• Ai ∈ A for i = 1, 2, · · · =⇒ ∪∞i=1Ai ∈ A.

A measurable space is a pair (X,A) where A is an algebra of subsets of X.
A function µ : A → [0,+∞] = [0,+∞) ∪ {+∞} is a finitely additive measure

if µ(∅) = 0 and for A,B disjoint, µ(A ∪ B) = µ(A) + µ(B). It is a measure if in
addition, A is a σ−algebra and µ is countably additive, i.e. for {Ai}∞i=1 disjoint, then
µ(∪∞i=1Ai) = Σ∞i=1µ(Ai). A measure space is a triple (X,A, µ). In the special case
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where µ(X) = 1 then (X,A, µ) is called a probability space and µ a probability
measure.

Given two measurable spaces (X,A), (Y,B) then f : X → Y is measurable iff
f−1(B) ∈ A for all B ∈ B. This is written as f−1(B) ⊆ A. The map is invertible
iff it has an inverse in the category of measurable maps; that is, not only do we
require that the function f is bijective, but that the inverse map is itself measurable.
Thus, for an invertible map, not only the preimage but also the forward image of a
measurable set is measurable. (Exercise: find an example of a map and a measurable
set whose image is nonmeasurable!)

Given a measure µ on X, then f∗µ is the measure on Y defined by (f∗µ)(B) =
µ(f−1(B)). This is called the push-forward of µ. A function “pushes points forward”
while the natural operation on sets is to pull back via the inverse image (as that
preserves the set operations of intersection, union, and complement) which then leads
to the the natural operation on measures, of pushing forward; by contrast, differential
forms pull back hence one uses the upper star, f ∗, for that action, see §45.2.

In the case where f maps X to itself, then f is called a transformation of X.
A set A is invariant for the transformation iff f−1(A) = A; a measure µ on X is
invariant (or is preserved by the map) iff µ(f−1(A)) = µ(A) for all A ∈ A, iff
f∗µ = µ. If a group G acts on a measure space, then A or µ is invariant iff that is
true for the transformation given by each g ∈ G.

If (X, T ) is a topological space, then the Borel σ−algebra is the smallest σ−algebra
containing the topology (i.e. the collection of all open sets) T . Exercise: this makes
sense!

The first idea of measure theory is to generalize length, area, volume from simple
to more wild sets. So for instance Lebesgue measure on Rd is defined to be volume
on balls, and then is extended to the Borel σ−algebra B (in a unique way, which
takes some proof). This can then be further extended to the Lebesgue σ−algebra

B̂, which is the smallest σ−algebra containing B which is complete: if µ(A) = 0, (a

null set), then every subset of A is in B̂.
The second idea of measure theory is to model the notions of probability and

randomness. Following probability convention, let us write our measure space as
(Ω,A, P ); here P is a probability measure. An event is a measurable subset of the
measure space. Thus P (A) is interpreted as the probability that a point, randomly
chosen from the “sample space” Ω, in fact belongs to A; that is, P (A) is the probability
that the event A will occur. (Note: we shall subsequently in general write µ, ν, ρ and
so on for measures).

Example 1. Choosing a point randomly from the circle. What does it mean to choose
a point randomly from the circle? Rigorous mathematical answer: Choose it with
respect to (normalized) Lebesgue measure. That is, we can’t exactly “choose” the
point randomly, but we can tell you what the probability should be that the randomly
chosen point lies in a given Borel subset.

Thinking about this, the justification is that Lebesgue measure is the unique prob-
ability measure on the circle which is invariant by rotations. And by “random” here
we probably mean: chosen in a way that is rotation–independent.
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Example 2. Choosing a point randomly from a compact group. We do the same-
but now the measure is Haar measure, the unique translation-invariant probability
measure on the group.

Example 3. Choosing a point randomly from a finite set. We should have started
with this example, but we wanted to motivate our answer, which is the “obvious”
one: if our set X has n points, then we should give equal mass to each. What is
hidden here is a tacit assumption of invariance: this uniform distribution µ is the
only probability measure invariant with respect to the group of symmetries of X, the
symmetric group σn of all permutations.

Alternatively, we can give X more structure, identifying it with the compact group
Zn, the additive group of integers modulo n, and µ is the Haar measure and is the
only translation-invariant probability measure.

The idea of the symmetric group generalizes to:

Example 4. Group-invariant measures. Suppose a group G acts continuously on a
topological space (X, T ), and that µ is a Borel probability measure on X which is
invariant for this action. Then µ is a candidate for “choosing a point randomly on X”.
If there is only one such µ, then the action is uniquely ergodic. For a first example,
the group of rotations acting on the circle is uniquely ergodic; more generally, this
holds for any compact group, action on itself by left translation (i.e. by multiplication
on the left) by the uniqueness of left Haar measure. Whether or not this holds for
some given transformation or flow will be an important theme in these notes.

Example 5. Choosing a point randomly from a compact Riemannian manifold. Here
the natural choice is normalized Riemannian volume. Now there may not be a group
action to describe the invariance, but at least there is one locally (formally, a groupoid
or pseudogroup).

Example 6. Choosing a point randomly from a fractal set. For a nice fractal set of
Hausdorff dimension d, embedded in Euclidean space Rn, or more generally in a Rie-
mannian manifold, we should use Hausdorff d− dimensional measure Hd (restricted
to the set and normalized). This is defined so as to be translation-invariant (in Rn,
or with respect to the pseudo-group in the manifold), but there is a hidden scaling
invariance as well: Hd is a conformal measure: for any Borel set A and any a > 0,
then Hd(aA) = adHd(A). Noting that this is exactly the scaling property satisfied by
Lebesgue measure in Rn for n = 1, 2, . . . , Hd is a natural generalization to “fractional
dimension”, i.e. to non-integer dimension d ≥ 0. A basic example is the Cantor set;
another is the snowflake curve, see Fig. 1. For the precise definition of Hd see ...
below.

The third idea of measure theory is to generalize the Riemann integral to a much
wider (and very useful) class of functions. Recall that, given a real-valued function
f on X we define its integral with respect to µ as follows. Recall that the indicator
function of a set A is:

χA(x) =

{
1 for x ∈ A
0 for x /∈ A
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Figure 1. The Koch snowflake curve

Figure 2. The dragon region: its boundary is a fractal curve.

Then
∫
X
χAdµ = µ(A). We extend this linearly to all finite sums of indicator

functions (the so-called simple functions) and then extend further to all measurable
functions by taking limits (measurable means as a function from (X,A) to (R,B)
where B is the Borel σ−algebra). One shows this extension is unique [Roy68], [Bar66].
See also Theorem 33.15 below.

This brings us to a fourth idea of measure theory: to define the mean (or average)
value value of a function f . For the special case when µ is a probability measure,
this is written f , and is its integral: f ≡

∫
X
fdµ. Of course any finite measure µ can

be turned into a probability measure by normalization: dividing by the total mass.
Then to compute the mean value of a function with respect to µ we integrate with
respect to its normalization.

In probability theory, a (usually real-valued) measurable function has a special
name: a random variable. Given a probability space (Ω,A, P ), one often writes
X : Ω → R for this function. The idea here is that X is not just a variable (as, say,
in elementary algebra) but one to which a notion of randomness has been attached:
the randomness is supplied by the underlying probability space (Ω,A, P ), and
the probability that X has values in a Borel set B ⊆ R will be P (X−1(B)). Via this
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Figure 3. The mean value of a random variable (a function) equals
the mean value, or center-of-mass, of its distribution (a measure):∫
X
f(x)dµ(x) =

∫
R ydµf (y).

equation, the measure P has been pushed forward to a (probability) measure PX
on R, that is, PX = X∗(P ) = P ◦ X−1. In probability notation, the set X−1(B) is
commonly written as [X ∈ B], interpreted as “the event that the random variable X
is in B”. So the measure PX , called the distribution of X, tells us the likelihood that
this random variable assumes a certain value; thus, PX(B) = P [X ∈ B], read “the
probability that X is is B”. Two different random variables X1, X2 (whether defined
on the same underlying probability space (Ω, P ) or on unrelated spaces (Ω1, P1) and
(Ω2, P2) are termed identically distributed iff PX1 = PX2 .

The expected value of a random variable X is probability language for the mean
value of that measurable function: E(X) ≡

∫
Ω
XdP , and indeed this is also called

the mean of X. The idea is that if you perform the experiment of choosing a point
ω from Ω randomly (i.e. with respect to the measure P ) then the expected value is
the average value of the outcome.

In terms of the distribution PX , this equals
∫
R xdPX , see Fig. 3. We recall that

for a normalized measure µ on R,
∫
R xdµ is its center of mass. This is the average

location of a point with that mass distribution; since the location of the point x is
y(x) = x, we integrate that function against µ. The equality E(X) =

∫
R xdPX says

therefore that E(X) is the center of mass of the distribution PX of X.
We sketch the proof:

Proposition 3.1. Let X : Ω→ R. Then
∫

Ω

XdP =

∫

R
xdPX .

Proof. Suppose first that X = χA. Then

PX(B) =

{
P (A) if 1 ∈ B,

0 if 1 /∈ B.

So ∫

Ω

XdP = P (A)
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but also
∫
R xdPX = x(1) · P (A) = P (A) so the result holds in this case.

Next consider a linear combination X = aX1 +bX2. Then PaX1+bX2 = aPX1 +bPX2 ,
by the properties of inverse images of sets. Now the integral is also linear (in the
measures) so the formula hols for X, and hence for any finite linear combination
X =

∑n
1 aiXi; taking Xi = IAi , these are the simple functions. Lastly this equation

also respects increasing limits, due to the Monotone Convergence Theorem ([Roy68],
p. 84): for fn ≥ 0 and increasing, then

∫
fn →

∫
f . Since simple functions approxi-

mate measurable functions, this holds for all nonnegative measurable functions, and,
including negative values, for all integrable functions.

�

Proposition 3.2. Let f : R→ R be measurable. Then∫

Ω

f(X)dP =

∫

R
f(x)dPX

where one side exists iff the other does.
In analysis notation, this is a change-of-variables theorem: given a measure space

(X,A, µ) and measurable spaces (Y, C), (R,B) with B the Borel sets, f : X → Y and
g : Y → R then ∫

X

g ◦ fdµ =

∫

Y

gd(f∗µ).

Proof. Sketch of proof: just like that above, except we now use step functions for the
function g, instead of for f . (The reader should make this precise!) �

See also pp. 5,6 [Lam66].

In probability theory one also can use the term distribution more generally to refer
to a probability measure (countably additive whenever possible!) on a measurable
space with some additional structure, more than just that of a measure space: possibly
the reals (as above) but possibly a topological vector space, a metric space, or a
manifold.

Calling this space M , with Borel σ−algebra B, then the more general definition of
a random variable is a measurable function X from some probability space Ω to M .
Given a distribution µ on M (by which we mean a Borel probability measure) there
are many possible choices for this underlying space (Ω,A, P ); the simplest such choice
is (M,B, µ) itself, with the random variable X the identity map, and so P = PX = µ,
but it is often both natural and useful to make some other choice.

Remark 3.1. In probability theory, one is often emphasizing distributions (measures)
on R, where it can be convenient to use the Riemann-Stieltjes instead of the Lebesgue
integral. We remind the reader how this works notationally. Given a measure µ on
R, the function F : R→ [0,+∞] defined by

F (x) = µ((−∞, x])

is known as the cumulative distibution function of µ. Note that this is a nowhere
decreasing, right-continuous function (thus a càdlàg function: continu à droite, lim-
ites à gauche: right-continuous, with limits existing from the left). One then can
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reasonably write also dF for dµ, for the following reason. Supposing for simplic-
ity that µ is given by a distribution f(x)dx; then by the Fundamental Theorem of
Calculus, F ′(x) = f(x), whence

∫ a

−∞
dµ =

∫ a

−∞
f(x)dx =

∫ a

−∞

dF

dx
dx =

∫ a

−∞
dF.

In Riemann-Stieltjes integration theory, this notation is extended to measures µ
for which such a function f(x) may not exist: e.g. if µ is a singular measure, whose
mass lives on a subset of Lebesgue measure zero. The simplest example is point mass
at 0, µ = δ0, where we have

F (x) =

{
0 for x < 0,

1 for x ≥ 0

and indeed the “derivative” of this discontinuous function is the measure δ0.
Precisely what we mean by this is explained by the theory of differentiation of mea-

sures (see e.g. [Roy68], [Rud70]). In the measure theory (Lebesgue integral) notation,
writing m for Lebesgue measure on Rd, then if µ is absolutely continuous with respect
to m (µ << m), this theory gives f = dµ/dm whence fdm = (dµ/dm)dm = dµ.
Thus the Riemann-Stieltjes theory allows one to find antiderivatives for singular mea-
sures on R.

In what sense this can be further extended is addressed by the beautiful functional
analysis theory of Schwartz distributions, see e.g. [Rud73]. The terminology can lead
to confusion, since Laurent Schwartz’ distributions are linear functionals defined on
special function spaces, but are not always measures (whereas in probability theory
a distribution is always a probability measure, by definition). For a nice example the
derivative of F is the measure δ0, either by the theory of differentiation of meaures or
by Schwartz’ theory, but what is the derivative of δ0? (Answer: a dipole, which is a
Schwartz distribution but not a measure! And then one can differentiate the dipole,
differentiate that....)

Although here we mostly will use the Lebesgue integral notation, the probability
theory notion of distribution function can be very useful, for instance when trying
to visualize measures on R which are more complicated than say the point masses
pictured in Fig. 3. A good example is provided the Hausdorff measure on the Cantor

set (see §4.5 below), where the distribution function β̂, pictured in Fig. 6, is an
everywhere continuous, almost-everywhere constant function, whose derivative on
the senses just discussed is this singular measure!

We return to the question of what we mean by randomness of a distribution, that
is, to how one might (usefully and meaningfully) model the intuitive notions of ran-
domness, probability, and chance that we have.

In our discussion so far, our idea of randomness comes from invariance of the
distribution on a space M with respect to some symmetries, that is, with respect to
the action of some group G on M . If it is unique, the resulting symmetry–invariant
distribution is called the uniform distribution on M . (If it isn’t, one might look for
a larger symmetry group which will give uniqueness!)
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3.1. Product spaces and independence. A deeper idea of randomness comes via
the notion of independence. Given a measure space (X,A, µ), and subset A with
0 < µ(A) <∞, we define the restriction of µ to A by µ|A(E) = µ(A ∩ E); we then
normalize this to a probability measure, defining for E ∈ A,

µA(E) = µ(E ∩ A)/µ(A).

This is the relative measure on A. In probability terminology, this defines the
conditional probability µ(E|A) = µA(E), and describes the probability of the
event E given the event A.

Two measurable subsets sets A,B of a probability space are independent iff µ(A∩
B) = µ(A)µ(B). Equivalently, µA(B) = µ(B), so if X is a probability space the
probability of the occurence of the event B does indeed not depend on whether (or
not) A occured.

Remark 3.2. One might think intuitively that two events A,B are independent if
they “have nothing to do with each other”, meaning that they are mutually exclusive,
i.e. that P (A∩B) = 0. But that would mean they are in fact dependent, since if one
occurs the other can’t. There is one exception to this:

Exercise 3.1. Show that:
(i)

(P (A ∩B) = 0 and A is independent of B) =⇒ (P (A) = 0 or P (B) = 0).

Furthermore:
(ii)

(∀B,B is independent of A) ⇐⇒ (P (A) = 0 or 1.)

We thank Marina Talet for conversations about these matters.

Two random variablesX, Y defined on the same underlying probability space (Ω, P )
are defined to be independent iff for every Borel set B, the sets X−1(B) and Y −1(B)
are independent, that is, iff the events [X ∈ A] and [Y ∈ B] are.

A geometric model for independence comes from product measure. Given two
measurable spaces (X,A),(Y,B), with algebras A,B then a rectangle or cylinder
is a set of the form A × B, for A ∈ A, B ∈ B. The product algebra is the smallest
algebra containing all the rectangles. We note that:

Exercise 3.2. The product algebra is the collection of all finite disjoint unions of
rectangles.

See [Bar66], Lemma 10.2. The product σ−- algebra is the smallest σ−algebra
containing all the rectangles.

Proposition 3.3. Suppose we are given ... there exists a unique xextension... (???TO
DO)

Given two measure spaces (X,A, µ),(Y,B, ν), then the product measure space is
(X × Y,A × B, µ × ν) where by definition, A × B is the product σ−algebra, while
µ × ν is defined as follows: on rectangles it is simply the product, and then on the
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Figure 4. A geometric model of independence: product measure.

rest of the product σ−algebra one takes the unique extension (which one proves to
exist!). See ??? below.

Assuming X, Y are both probability spaces, then the sets A × Y and X × B are
independent; see Fig. 4.

Exercise 3.3. Given a a probability space (A,A, µ), verify that A is independent
of B iff Ac is. Show A,B are independent iff the random variables χA and χB are.
Prove that if X, Y are independent random variables, then

∫

Ω

XY dP =

∫

Ω

XdP

∫

Ω

Y dP.

Form Lebesgue measure on I = [0, 1], show that if two complex- or real-valued square-
integrable functions f, g with mean zero are independent then they are orthogonal in
L2, but not necessarily conversely. Defining F,G on the square I × I, with Lebesgue
meaure m×m, by F (x, y) = f(x), G(x, y) = g(y), show that F and G are independent
random variables.

How should the definition of independence be changed if we have a finite measure
space of measure c > 0? (See Remark 8.3).

Product measure can be used to model the following situation. We are given a
probability space (X,A, µ), which defines our idea of randomness for choosing a point
from X. Thus, in our previous examples, X may have some symmetry group acting
on it for which µ is the unique invariant measure; X may be a finite set with equal
mass on every point; µ may be the Gaussian distribution on X = R if we have some
reason to say that is the way our probability is distributed. Then the experiment of
choosing not one point from X, but three points in succession, and independently, is
modelled by product measure µ × µ × µ on X ×X ×X. Product measure can also
be written µ ⊗ µ ⊗ µ, since it can be viewed as a tensor product (see Example 63)
with measures viewed as elements of the dual space of continuous functions.
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Product measure is extended to countable infinite products as follows. Given
(Xi,Ai, µi) for i = 1, 2, . . . then Π∞i=1Ai will be the σ−algebra generated by all finite
cylinders, i.e. by all sets of the form (. . . Xk ×Xk+1×Ak+2× · · · ×An×Xn+1× . . . ).
Again, there is a unique additive extension, which will be countable additive if each
µi is.

This leads us to the model for an infinite sequence of independent choices, for
instance an infinite sequence of tosses of a fair coin:

Example 7. Coin-tossing. Recalling the Dirac delta notation δx for point mass on
x, i.e. this is the measure defined by δx(A) = 1 if x ∈ A, 0 otherwise, then we give
the alphabet A = {1,−1} the discrete topology, i.e. every subset is open, and the
measure µi = 1/2(δ1+δ−1) for each i ≥ 0; we then define Ω = Π∞0 {1,−1} with infinite
product measure µ = ⊗∞0 µi and the Borel σ−algebra B generated by the product
topology. A point in Ω is written X = (X0, X1, . . . ). We define Xi : Ω→ A to be the
ith coordinate function, thus Xi(X) = Xi. Then (Xi)

∞
0 is a sequence of independent

random variables.
Note that the following two procedures are equivalent: choose a single point X

randomly from Ω (randomly means with respect to the measure µ); making an infinite
sequence of independent random choices from A. This last corresponds to flipping a
fair coin infinitely many times.

According to Billingsley’s colorful account, [Bil68], it is the Greek goddess of
chance, Tyche, who makes these random choices! Although mathematically equiva-
lent, the point of view and intuition behind these two operations is completely differ-
ent, the first being more measure-theoretic and the second probabilistic. Much of the
power of modern probability and ergodic theory comes from a constant interchange
between these two.

Now consider the map Φ : ω 7→ X = (X0, X1, . . . ); if the random variables take
values in a set R, then X is an element in sequence space Π = Π∞0 R. The map
Φ pushes forward the measure P to a measure PX on Π. More precisely, if A is

the σ−algebra on R, then we define R̃ to be the σ−algebra on Π generated by the
algebra of cylinder sets. These are the subsets of Π which are finite intersections
of sets of the form [Xi ∈ Ai]; that is, the finite collections of events. The stochastic
process is now represented by a measure on sequence space, and we can do away with

the underlying space altogether, and simply consider the measure space (Π, R̃, µ)
with µ = PX = P ◦ Φ−1. From a different viewpoint, the underlying space has
been replaced by this sequence space, and the random variables ω 7→ Xi(ω) by the
coordinate functions X 7→ Xi. This is the path space model of the stochastic
process: a path space with a probability measure, and the sequence of coordinate
functions, with the index interpreted as times . . . , 1, 2, 3, . . . .

The question of “what is randomness” has been converted, in this way, to the
question of how to choose an appropriate measure: on the underlying space Ω, on the
space of possible values R, or, for a stochastic process, on the sequence space Π; as
we saw in the examples, what we really mean by “random” is that this choice should
exhibit some sort of uniformity or invariance, frequently expressed formally by the
action of a group.
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Returning to the example of a finite set, flipping a fair coin will produce the outcome
heads (= 1) or tails (= 0) with equal probability; this is modelled by the group
Z2 = {0, 1} with Haar measure.

3.2. From maps to stochastic processes. We have just encountered, via Kol-
mogorov’s extension, a sequence (Xi)i∈N of random variables defined on the same
underlying probability space (Ω, P ). This defines a discrete-time stochastic (or ran-
dom) process. The choice of ω ∈ Ω determines the sequence of valuesX1(ω), X2(ω), . . . .
That is, an element of a stochastic process is a random sequence. We also encountered
(Xt)t∈R; this defines a continuous-time stochastic process: a random element of RR,
that is, a random function, Xt = X(t).

How, then, do we get reasonable or interesting examples of stochastic processes?
A central example was given in the previous section: that of coin-tossing, based on
the fundamental notion of independence. That is, independence defines the joint
distributions, and Kolmogorov’s extension theorem in this case just yields infinite
product measure.

A basic and simple way to define joint distributions beyond the setting of indepen-
dence is via the Markov property; we describe this below.

Moving beyond even this brings us to the fundamental link between dynamics and
probability. If we are given a measure-preserving transformation T of a measure
space (X,A, µ) of total mass 1, and a measurable real-valued function f on X, then
the sequence of functions fn = f ◦ T n defines a discrete-time stochastic process:
these are the random variables, with (X,A, µ) the underlying probability space. The
measure-preserving property of the dynamical system is reflected in the stationarity
of this process (by definition, that the joint distributions of the random variables are
shift-invariant).

Indeed, coin tosses can be modelled geometrically by means of the measure-preserving
map g(x) = 2x(mod 1) of the unit interval I = [0, 1]; the link to the sequence space of
coin-tossing just described comes from expressing each point in its binary expansion.
See §4.2 below.

Similarly, to find natural examples of continuous-time processes, we can begin with
a measure-preserving flow τt on (X,µ), and an integrable function f ; then ft(x) =
f ◦ τt(x) defines our process. Here we do not need to worry about Kolmogorov’s
extension theorem, as the underlying space (Ω, P ) is just our measure space (X,µ),
and again the stationarity of the process is implied by the fact that τt preserves the
measure.

3.3. Space averages and time averages. For both discrete and continuous time,
the random sequence determined by the choice of the point x, respectively fn(x)
(repectively ft(x)) is called a path of the process. Next consider the following ques-
tion: given a path, what is its average value? Thinking of the parameter n or t as
time, a natural answer is given by the time average:

lim
n→∞

1

n

n−1∑

k=0

fn(x)
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respectively,

lim
T→∞

1

T

∫ T

0

ft(x)dt.

This brings us to the statement of this remarkable theorem of Birkhoff (see Theorem
38.1 for a proof); we give three versions of it.

Theorem. (Birkhoff Ergodic Theorem)
(i) (ergodic case) Let T be a measure-preserving transformation of a probability
measure space (X,A, µ), which is ergodic, i.e. it has no nontrivial invariant subsets.
Then for any f ∈ L1 (see §6.2), for almost any x ∈ X, the limit

lim
n→∞

1

n

n−1∑

i=0

f(T i(x)) = f ≡
∫

X

f(x)dx.

(ii) In the above situation, let A ∈ A, and write NA(x) for the number of returns of
the point x to the set A up to time n. Then almost any x ∈ X,

lim
n→∞

NA(x)/n = µ(A).

(iii)(general case) Let T be a measure-preserving transformation of a probability
measure space (X,A, µ). Then for any f ∈ L1, the limit

lim
n→∞

1

n

n−1∑

i=0

f(T i(x)) = f ∗(x)

exists almost surely; the function f ∗ is invariant and integrable, and for any measur-
able E ⊆ X which is invariant i.e. T−1(E) = E,

∫
E
fdµ =

∫
E
f ∗dµ.

For more on ergodicity, see Definition 5.1 below.
Note that (iii) implies (i) which implies (ii) (just take f(x) = χA(x)). There is

also a flow version. The probability theory version (which by Kolmogorov’s theorem,
see §33.9, is equivalent to (i)) for discrete time is:
(iv) Let (Xi)i≥1 be an ergodic stationary stochastic process with finite mean E(Xi).
Then for a.e. ω,

1

N
(X1 + . . . XN)→ E(X1) as N →∞.

For continuous-time stochastic processes the statement is equivalent to the theorem
for flows.

Birkhoff’s ergodic theorem can be expressed in words as follows:

For an ergodic transformation or flow, the time average of a function equals its space
average.

Part (ii) says that the frequency of time the point x spends in the set is equal to
the measure of that set; that is, the frequency of times the event is observed equals
the overall probability of that event.

In the next sections we describe how these questions fit into a wider context.
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3.4. A fifth motivation for measures: linear functionals and the dual space
as a system of coordinates. Let us recall, given a finite-dinensional vector space
V over a field K (for example, R or C) the definition of the dual space V ∗ of V .

Definition 3.1. The dual space is the collection of all linear functionals, that is, all
linear maps λ : V → K.

Now V ∗ itself is a vector space, and one proves in Linear Algebra that it has the
same dimension as V .

We remark on how we prove that V ∗ itself is a vector space: to define the sum
operation, we have to specify which function is λ1 + λ2, and for this we simply add
the values at each point: (λ1 + λ2)(v) = λ1(v) + λ2(v). This seems “obvious” but
what is not so obvious is that it is necessary to make this definition!

Indeed, in the same way, the collection of functions from any set X to any vector
space W forms a vector space, verification of the axioms being immediate. A key
example is for C(R), the collection of all continuous real-valued functions on the
reals. Other examples are the Lp spaces, see below.

One reason for being careul with the definitions is that things change radically
exactly in these cases, where the dimension of V is infinite. Here one should specify
a topology (it is then called a topological vector space) and then V ∗ is defined to be
the space of continuous linear functionals.

Now for V finite dimensional, suppose we are given an inner product defined on
V . Then we can represent an element λ ∈ V ∗ by an element of V itself, since given
w ∈ V , then

λw(v) = w · v = 〈w,v〉
defines a linear functional, and conversely, given λ ∈ V ∗, there exists a unique such
w which represents it (consider what
lambda does on a basis).

Similarly for (signed) measures one often writes:

〈µ, f〉 = µ(f) =

∫

J

f(x)dµ.

For an example, as shown by the Riesz Representation Theorem (see... below),
for C([a, b]), the topological vector space of continuous real-valued functions on the
compact interval J = [a, b], with the topology of uniform convergence (i.e. the sup
norm), see below???), then each finite measure µ defines a linear functional λµ via

λµ(f) =

∫

J

f(x)dµ.

Moreover if we include signed measures, that is, µ = µ1−µ2 where µ1, µ2 are finite
measures, then we have found all linear functionals.

We then think of these are providing a system of coordinates for V . These coordi-
nates are indexed by V ∗ itself; that is, the “µth-coordinate” of f is

µ(f) ≡
∫

J

f(x)dµ.
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For example, if µ = δx is point mass at x, then δx(f) = f(x). Thus, the value of f
at x is the xth-coordinate of f . In fact, this agrees with our usual understanding of
coordinates of Rn: for x = (x1, x2, . . . , xn) then this vector is a finite sequence, hence
a function x : {1, 2, . . . , n} → R and x(j) = xj = δj(x).

Indeed, this provides a way of visualising the coordinate axes of the vn- dimensional
space Rn or, just as easily, of the infinite-dimensional space C([a, b]). If n = 3, we
can locate the axes perpendicular to each other, but already for n = 4 this no longer
works, but what we can do is to place these four real lines vertically parallel. And
the same works for C([a, b])! Every vertical line in the plane is now a coordinate axis.

Every other measure can be approximated by a linear combination of point masses,
but rather than trying to find the most efficient system of coordinates, by choosing a
topological basis of V ∗, it is often more convenient to simply take all of V ∗ at once.

This is the “idea” of Functional Analysis: we use the dual space to coordinatize the
infinite-dimensional topological vector sspace (TVS) V , and then we “do analysis”
on these coordinates, which are just real numbers!

Thus it becomes important to identify the dual spaces of the TVS of interest. Here
are some examples encountered below:

– For X a compact metric space, then for V = C(X,R) then V ∗ is the space of
finite signed (countably additive) measures;

– For X a noncompact metric space, then for the space of continuous bounded
functions with the sup norm, V = CB(X,R) then V ∗ is the space of finite signed
finitly additive measures.

– For 0 < p < ∞, where 1
p

+ 1
q

= 1, then for the spaces Lp(X) where X is some

measure space, then the dual space of Lp is Lq (and vice-versa). The case L∞ is
similar to C. The special case of p = q = 2 is Hilbert space, the only one of these
Banach spaces where the norm comes from an inner product.

– the spaces of Schwartz distributions also come up as dual spaces of appropriate
function spaces. See [Rud73].

In some sense the whole point in Functional Analysis is to choose the function space
and topology (and hence dual space) which is suited to the problem being studied.
And unlike the case of finite dimensions, where all norms are equivalent, these choices
bring up interesting and subtle differences.

As we have just mentioned, for a noncompact space like R, the the linear func-
tionals of C are represented by the finitely additive signed measures. A concrete and
very important example of this is given by the time averages of the Birkhoff ergodic
theorem, which can be extended to a linear functional, as we next describe.

The important tool here is:

Theorem 3.4. (Hahn-Banach) Let V be a real Banach space (a topological vector
space with a norm). Let W be a subspace of V , and suppose that λ : W → R is
continuous linear; that is, λ ∈ W ∗. Then there exists a continuous linear extension

λ̃ to V , that is, λ̃ ∈ V ∗.

Proof. We follow the proof of Theorem 3.2 in [Rud73].
�
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Remark 3.3. The theorem is (with basically the same proof) valid for a locally convex
complex TVS, see [Rud73] Theorem 3.6.

Example 8. Consider C = CB(R,R) with the sup norm. Let W denote the subspace
such that

λ(f) = lim
T→∞

1

T

∫ T

0

f(x)dx

converges. By Theorem 3.4 there exists an extension λ̃ to all of C. One immediately

verifies that λ̃ is translation-invariant, positive and normalized.

We could instead have considered L∞. Thus λ̃ is an invariant mean on R, see
below.

This extension of the time average gives a reasonable version of the mean value of

f . Note however that λ̃ is weighted at +∞; that is, it is unaffetced by any changes to

f on (−∞, a] for any a. To have a more symmetric version we can define ν+ = λ̃ and

ν− by ν−(f) = λ̃(f(−x), and then set ν = 1/2(ν+ + ν−. Or, equivalently we could

have begun with the symmetric time average lim 1
2T

∫ T
−T fdm.

The Hahn-Banach extension is in general highly non-unique. This is already showed

by λ̃ 6= ν. Further nonuiniqueness can be seen by replacing the usual ( Cesáro) time
averages by e.g. the log averages described below.

(To DO ???)

3.5. Time averages and mean values on infinite groups. Given a group G
acting on a space, say a left action, a time average is in its essence an average value
calculated along the group. Thus we want to first understand averages on the group,
as a group orbit is an image of G or of a factor group of G. If the group is finite,
then we just average over this finite set of values, and note that this corresponds to
integration over the natural invariant probability measure on the group, and this idea
extends to compact groups via the Haar measure, the unique left-action-invariant
probability measure on the group.

For infinite groups this notion is replaced by that of an invariant mean, equivalently
a finitely additive (left)-invariant probability measure. However new phenomena now
appear, which make the subject both more problematic and more interesting. In
particular, invariant means are nonunique; however in the nicest cases (finite measure
spaces and ergodic transformations) this is not much of an issue as, by the Birkhoff
Theorem, the usual Cesáro average works just fine.

A further complication arises in the case of certain infinite groups which are nonamenable,
by definition those for which no such invariant mean exists.

Nevertheless there is still a way to proceed! Then we can replace the notion of
average value by that of an average function; the value depends on the point in
the orbit we are looking out from. The result defines an operator from bounded
functions, taking values in the class of harmonic functions. This harnonic projection
then replaces the notion of time average.

Even in the case of space average, there can be ambiguities when the measure is
infinite. In particular, the interaction between both nonamenable groups and infinite
ergodic theory leads quickly to unexplored questions of active research.
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To begin our discussion, we focus on the already interesting case of the simplest
infinite group, the integers.

There the idea of time average brings us to an earlier theme in a different setting:

Example 9. Choosing a point randomly from the integers and from the real line.
Beginning with R, by analogy with the above examples, we would like to find a

translation-invariant probability measure on the real line. However this is impossible.
Indeed, suppose that µ is a translation-invariant probability measure; since R is a
countable union of intervals [k, k + 1), all translates of each other, each must have
zero measure, giving a contradiction. What is hidden here is the use of countable
additivity; indeed, if we are willing to throw out the word “countable” from our
definition of measure, there may still be chance of finding something reasonable.

For this purpose, let us begin with the usual notion of time average just encoun-
tered.

A set A ⊆ R+ has (Cesàro) density c ∈ [0, 1] iff the Cesàro average of χA exists
and equals c, i.e.

lim
T→∞

1

T
m(A ∩ [0, T ])→ c as T →∞.

Let us denote by A the algebra of sets where the limit exists, defining a function
µ : A → [0, 1] by µ(A) = c, the Cesàro density of A. This satisfies, for A,B ∈ A
disjoint,

µ(A ∪B) = µ(A) + µ(B),

µ(A+ t) = µ(A),

and
µ(R) = 1.

That is, µ defines a finitely additive, translation-invariant probability measure on
the algebra A. Now in fact integration makes perfect sense also for finitely additive
measures: first we define∫

R
χA(x)dµ(x) ≡ µ(A) = lim

T→∞

1

T
m(A ∩ [0, T ])

and then we extend this to all bounded A− measurable functions by linearity. We
then denote

λ+(f) ≡
∫

R
f(x)dµ(x) = lim

T→∞

1

T

∫ T

0

fdm

when the limit exists. To make this symmetric in time, we define for f : R → R
λ−f(t) = λ+(f(−t) and then set

λ(f) ≡ (λ+(f) + λ−(f))/2 = lim
T→∞

1

2T

∫ T

−T
fdm

when this exists. This is a two-sided Cesàro average.
We mention that this Cesàro average is just one of an enormous collection of possible

averaging methods which have been studied in the literature. Other possibilities would
be for instance to average over any sequence of intervals whose length goes to infinity.
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To test some given choice of averaging method, we can consider various naturally
occuring examples and see, first, whether or not the limit exists, and second, whether
the answer agrees with our intuition as to what the average value should be, and third,
whether the method exhibits various desirable symmetry or invariance properties.

A rich source of examples of such test functions is provided by dynamics; given an
integrable function ϕ on a measure space acted on by a flow, we choose a point x
in the space and then sample our function along the orbit of a flow, giving the test
function f(t) = ϕ(τt(x)).

The Birkhoff ergodic theorem then states exactly that our choice of averaging
method works: for an ergodic flow on a probability space, for any such observable ϕ,
for almost any choice of x, then the time average λ+(f) exists and equals the space
average

∫
ϕ of our observable, which is the value our intuition would have chosen.

So to test this method with more difficult functions, we have to move beyond
dynamics, or at least beyond the dynamics of finite measure spaces.

We note first that there are other simple examples where the Cesáro average exists,
occuring in harmonic analysis. The Cesáro average of any bounded periodic function
on R exists, since the “tail effects” due to averaging over different long intervals vanish
in the limit. And, moreover, the same logic works for any almost periodic function,
such as sin(x) + sin(

√
2x). See ??? below.

Intriguingly, any almost periodic function can be realized in a natural way from
dynamics; see ???? , so this gives nothing new!

So perhaps we should look for examples where this limit does not exist, and then
ask if there is some reasonable way to extend the definition of our measure to a wider
class of sets, or functions? And then consider whether, despite the Birkhoff theorem,
it might not be possible to find such functions arising in a natural way in a dynamical
context?

First, there is an abstract general approach:

Definition 3.2. An invariant mean on R is a continuous positive normalized trans-
lation invariant linear functional on L∞(R).

One way to define an invariant mean is to begin with a reasonable averaging
method, such as the Cesáro average, defining that to be the mean value when it
exists, and then extending to all bounded functions, via the Hahn-Banach theorem.
This does give some notion of average value, as it is translation-invariant, yet this
abstract approach is not completely satisfying as the value depends on the choice of
intervals, and furthermore because the extension, and hence the mean value, is not
uniquely determined.

Let us consider a concrete example of a function for which the Cesáro average does
not exist: f(x) = sin(log x). Here perhaps one should look for a different averaging
method which will work.

Among the other possible averaging methods, also with nice symmetry properties,
are the hierarchy of log averages : The Hardy-Riesz log average of f is

lim
T→∞

1

log T

∫ T

1

f(x)
1

x
dm;
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the log log average is

lim
T→∞

1

log log T

∫ T

e

f(x)
1

x log x
dm,

and so on.
And indeed, these are all consistent in that if one exists, the limit for the next

stronger method exists as well.
One can, moreover, show that there exists an invariant mean λ on R which is

Cesáro- invariant and also is invariant with respect to an exponential change of scale;
this means it is compatible with all the log averages! For an explanation, see Theorem
48.1 below.

Now the time average can be thought of as integration with respect to a finitely
additive measure on R and the meaning of measure-linearity is that Fubini’s theorem
still holds, for the product of a countably additive measure with this special type of
finitely additive measure (while in general that fails). In our setting, this means that
the time-average and space- average can always be interchanged, which sounds just
like Birkhoff’s theorem!

Indeed, from this point of view, the content of Birkhoff’s theorem is the following:
that for functions arising from an integrable observable on an ergodic flow, one doesn’t
need the full power of such an invariant mean, as the Cesáro time average is sufficient.

We mention that the relationship between finite and countable additivity is explored
in §33.1: on a compact space, a finitely additive measure is in fact countably additive.
The difficulty and beauty of the Birkhoff theorem comes from the time average being
taken over the noncompact group R (or Z); see §33.1.

We mention that although the Cesáro average is sufficient for the classical situation
of ergodic theory, as soon as infinite measures come into the picture, the log averages
can indeed play a role; see §49.

4. Basic examples of dynamics

We have encountered in the last section the most basic independent system (the
Bernoulli coin toss) and next we contrast this with some of the most basic non-
independent systems. In fact a theme we find in this section (and throughout the
notes) is that often these two types of behavior go hand-in -hand.

4.1. Rotations of the circle and torus. The d−dimensional torus is the additive
topological group Td = Rd/Zd. The one-dimensional torus T1 has another model, in
complex notation: defining S1 = {z ∈ C : |z| = 1}, then S1 is a subgroup of the
multiplicative group C \ {0}, and the map α : T1 → S1 defined by x 7→ e2πix is a
group isomorphism; similarly the torus Td is isomorphic to S1 × · · · × S1(d times).

If x, y ∈ R/Z we write the group operation additively, as x+ y, since the group is
abelian. Another way of writing this x + y(mod 1) where x, y are real numbers; the
word “mod” means “modulo the equivalence relation”; that is, addition is defined up
to x being considered “equal” to y iff they are equivalent, x ∼ y.

Now consider an irrational number θ. On R the translation map Rθ : x 7→ x + θ
has a quite boring dynamics, but on the factor space R/Z the induced map is much
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more interesting. This is the map x 7→ x+ θ(mod1), an irrational rotation on the
circle.

When we write the circle as S1 this is a multiplicative group, and the corresponding
irrational rotation map is z 7→ wz for w = e2πiθ.

Definition 4.1. A topological transformation (or flow ) is minimal iff every orbit is
dense.

It is uniquely ergodic if there is a unique invariant probability measure.

Exercise 4.1. Show that Rθ is minimal if and only if it is an irrational rotation,
i.e. θ 6= Q.

Show that with respect to normalized Lebesgue measure µ, Rθ is ergodic iff θ is
irrational.

Show that in fact it is in this case uniquely ergodic.

Let v = (a, b) ∈ R2, and define τv,t : T2 → T2 by τv,t : (x, y) → (x, y) + t(a, b).
This is the rotation flow on the torus of velocity v. The time-one map Rv = τv,1 is
a rotation of the torus. We say this is an irrational rotation if one (hence every)
orbit is dense.

Exercise 4.1. Show that τv,t is a minimal flow iff it is an irrational rotation flow,
i.e. b/a /∈ Q. Show this is false in general for Rv, and find a condition on a, b which is
equivalent to minimality of this transformation. Extend these results to the d−torus.

Now we recall:

Definition 4.2. A relation from a set X to a set Y is a subset of the product space,
R ⊆ X × Y ; one writes xRy iff (x, y) ∈ R, read “x is related to y”. An equivalence
relation is a relation on X (i.e. R ⊆ X ×X) which satisfies:
(i) (symmetry) xRx
(ii) (reflexivity) xRy =⇒ yRx
(ii) (transitivity) xRy and yRz =⇒ xRz.

A partition P of a set X is an indexed collection P = {Pi}i∈I of subsets of X
such that:
(1)Pi ∩ Pj = ∅ iff i 6= j
(2)∪i∈IPi = X.

A fundamental domain for an equivalence relation is a subset A of X which
contains exactly one point from each equivalence class. We shall say a fundamental
domain is nice if it is, in the topological category, well-behaved topologically in that
it is locally homeomorphic to X; if X is connected, one may require A to share
this property as well. In the measure-theoretic category, a nice fundamental domain
should be a measurable subset. An example is the torus, where the group Rd/Zd
is given the quotient topology; a fundamental domain is the product of d half-open
intervals, [0, 1) × · · · × [0, 1). This verifies what was stated above, that Td is the
product of d circles: T× · · · × T.

An important example is given by the orbit equivalence relation of a group action,
defined by its name: x ∼ y iff x ∈ O(y).
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Figure 5. Doubling map on circle and interval; measure is preserved:
the inverse image of an interval has two pieces, each half its size.

Exercise 4.2. Verify that the notions of equivalence relation and partition are equiv-
alent (what are the equivalence classes?) Verify that group orbits do partition the
space.

Exercise 4.2. On the topological space Td, d ≥ 1, consider a rotation transformation,
and for d ≥ 2 a flow. Show the quotient topological space Td/ ∼ is a non-Hausdorff
space iff this dynamical system is minimal.

4.2. Doubling map on the circle and interval. Define a map T : T1 → T1 by
T : x 7→ 2x(mod 1). Define f : S1 → S1 by f : z 7→ z2.

Exercise 4.3. For α as defined above, show the following diagram commutes:

T T−−−→ Tyα
yα

S1 f−−−→ S1

Define g : I → I for I = [0, 1] by g(x) = 2x − [2x] where [a] denotes the greatest
integer ≤ a (the integer part of a), so

g(x) =

{
2x for x ∈ [0, 1/2)

2x− 1 for x ∈ [1/2, 1].

(One often sees this map written as g(x) = 2x(mod 1), though strictly speaking that
isn’t correct, as 0 = 1(mod 1).)

The three maps T, f, g are called doubling maps (of the circle, and the interval).
On the circle one can imagine streching out a rubber band to twice its length, doubling
it over and then projecting, see Fig. 5. Note that while Lebesgue measure is not
preserved locally in the forward direction (it is doubled!) it is preserved by the
inverse map, and so fits the definition of invariant measure.

Exercise 4.3. Prove this last statement.
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4.3. Shift maps. Given a finite set A, called the alphabet, define Σ = Π∞−∞A,
Σ+ = Π∞0 A and Σ− = Π−1

−∞A, so Σ = Σ+ × Σ−.
A point in Σ will be written as (. . . ab.cde . . . ) where the “decimal point” serves to

locate the 0th coordinate, c in this case.
A map σ : Σ→ Σ is defined, for x = (. . . x−1.x0x1 . . . ), by σ(x) = (. . . x−1x0.x1 . . . ).
The transformation (Σ, σ) is called the (left) shift on k symbols, where k = #A.

This is also known as the bilateral or two-sided shift. We define a map, also
denoted σ, on Σ+ by σ(.x0x1 . . . ) = (.x1x2 . . . ). This is the one-sided shift. We
call x0 the present coordinate of x; the coordinates x0, x1 . . . are the future and
. . . x−2, x−1 the past. Given a point x ∈ Σ, we write x+ = (.x0x1 . . . ) ∈ Σ+ and
x− = (. . . x2x1.) ∈ Σ−.

We give A the discrete topology and Σ the corresponding product topology. Note
that Σ is compact, by Tychonoff’s product theorem; an example of a compatible
metric is d(x, y) = 1 if x0 6= y0, otherwise d(x, y) = 2−i where i is inf{|k| : xk 6= yk}.

This space itself is certainly not discrete, as:

Exercise 4.4. Show that the product Πi∈IXi of discrete topological spaces (Xi, Ti) is
discrete if and only if the index set I is finite.

A word is a finite sequence of symbols from the alphabet, e.g. x0x1 . . . xn. A string
is a one- or two-sided infinite such sequence, .x0x1 . . . or . . . x−1.x0x1 . . . (so strings
are the points in Σ+,Σ.) Following Billingsley [Bil65], we define a thin cylinder set
for l ≤ n to be a subset of Σ of the form [al . . . an] = {x ∈ Σ+ : xl = al, . . . , xn = an},
thus all the strings which begin with a given word. A general cylinder set is a finite
intersection of thin cylinders. We use the symbol “∗” to denote “any symbol”, so the
cylinder set [a0a1] ∩ [a3a4] can be written as [a0a1 ∗ a3a4]. We also make use of the
decimal point here, writing e.g. [ba. ∗ ∗cb]. The reason for the name cylinder is that
these are cylinders in the infinite product space ΠA; indicating time by a subscript;
thus [.ab] = . . .A−2 ×A−1 × {a}0 × {b}1 ×A2 × . . . .

Exercise 4.5. Show that cylinder sets form a subbase for the topology on Σ, and that
these are clopen (both closed and open) sets.

Show that the map π : x 7→ x+ is continuous, and identify the fiber over x+

(its inverse image). Check that the following diagram commutes, semiconjugating
this invertible map with the everywhere k−to-one map on the one-sided space. More
generally, this works for subshifts: let Ω ⊆ Σ be a closed invariant subset; then the
bilateral shift (Ω, σ) factors onto the unilateral shift (Ω+, σ):

Σ
σ−−−→ Σyπ

yπ

Σ+ σ−−−→ Σ+

Ω
σ−−−→ Ωyπ

yπ

Ω+ σ−−−→ Ω+

.

The most basic case is the two-shift, where A has two letters, usually labelled 0
and 1, so the one-sided shift is Σ+ = Π∞0 {0, 1}. We claim that we can visualize this
geometrically as the doubling map on the interval.
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Exercise 4.6. Defining a map π : Σ+ → I by

π(x) =
+∞∑

i=0

xi2
−(i+1), (1)

show the following diagram commutes.

Σ+ σ−−−→ Σ+

yπ
yπ

I
g−−−→ I

(2)

Show that π is one-to-one except at a countable set of points, where the map is
two-to one.

Show that the (1/2, 1/2) infinite product measure µ on Σ+ is preserved by that shift
map, and that it pushes forward via π to Lebesgue measure on I.

So the inverse of the map assigns the binary expansion x to a point x ∈ I; this is
uniquely defined except at a countable set where there are two possible expansions.

Thus the doubling maps on T and on I provide geometric models for the shift map.
Including the measures, since infinite product measure models the infinite toss of a
fair coin, the doubling maps give geometric, “deterministic” models for the thoroughly
random process of coin-tossing.

If we replace the above coin-tossing measure on Σ+ by infinite product measure ν
where the symbols 0, 1 are given probabilities p, q for p, q > 0 with p+q = 1, then the
measure is again shift-invariant, and now models tosses of an unfair coin. To study
tosses of a fair die we would use an alphabet with six letters, 1, 2, . . . 6, each with
probability 1/6.

4.4. Symbolic dynamics. We have just seen how independent coin-tosses provide
a shift map with an invariant measure which models the doubling map. The homo-
morphism π : Σ+ → I was defined by the arithmetic expression of writing a point in
the binary expansion of (1).

Symbolic dynamics can be viewed as the converse procedure, that of starting with
a dynamical system defined in some other way, e.g. geometrically or algebraically
and associating with it the stationary process of a shift map; sometimes a converse
arithmetic expansion for a point is possible, with the symbols serving as the digits,
but the general idea goes far beyond that most ideal situation. What is achieved
thereby is that the geometric and dynamical point of view ergodic theory is brought
into probability theory, and conversely.

Given a map T : X → X and a partition P with a countable (i.e. finite or countably
infinite) index set A (called as above the alphabet), then we consider for T invertible
the shift space Π ≡ Πi∈ZA, for the noninvertible case Π+ ≡ Πi∈NA, with the left shift
map σ. Then there is a map from X to Π defined by x 7→ x = (. . . .x0x1 . . . ) where
x0 = a iff x ∈ Pa. By definition, the diagram commutes:
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X
T−−−→ Xyϕ

yϕ

Π
σ−−−→ Π

and similarly for the noninvertible case.
One says that the partition generates iff it separates points in the sense that

for x 6= y, there exists k such that T kx, T ky are in different partition elements. It is
clear that this happens exactly when ϕ is injective. If the partition doesn’t generate,
then we have a factor map to the image α(X) ⊆ Π.

Any partition which generates gives in this simple way a combinatorial representa-
tion of the dynamical system. This has some clear advantages:
- the shift dynamics is very simple, in particular we know exactly where x will be at
time k;
-since the index set A is discrete, its points (called symbols or letters, or digits if
they are natural numbers) can be treated analogously to letters of words in a language,
and one can bring in ideas from linguistics, coding theory, and information theory; in
particular, a code can be considered to be a map between two symbolic dynamical
systems, with the infinite string of letters x representing an infinitely long message.

Moreover, given an invariant measure for (X,A, µ, T ) and a partition P consisting
of measurable sets, the measure µ pushes forward to an invariant measure µ̃ on the
shift space.

(A side remark is that there must indeed be many invariant measures on Π, as any
dynamical system can be modelled in this way. Another way of looking at this is:
any system can be modelled by coin-tosses- where the tosses are stationary but in
general very far from independent).

However, there are some problems with this approach:
-it is too general: unless the partition is chosen with care, to reflect geometrical,
arithmetic, algebraic or dynamical properties of the system, it may be next to useless;
indeed, by a theorem of Krieger, any finite entropy ergodic measure-preserving trans-
formation has a finite generating partition, and any infinite entropy map a countable
generating partition. When the invariant measure is transported from the original
map to the shift space, that means we have a measure-theoretically isomorphic model
for any measure-preserving ergodic map.
-in choosing a symbolic model we may lose a great deal of information: for instance,
topological information: if T is a continuous map of a topological space, then the best
we can do may be to have a partition into clopen sets which form not a partition but a
partition mod zero, that is, after throwing away a null set; the partition boundaries
are thus ripping apart the space, (an example is given by the baker’s transformation,
which we encounter shortly) and points there have an ambigous name (the string of
symbols).

In this case, if P generates, then it is more natural to draw the diagram in the
opposite way, with the shift space on top, as we may then have a topological factor
map from a set which is topologically disconnected (the shift space) to the space X,
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with partition elements being glued along their boundaries to form X; if the identi-
fications of symbolc sequences can be nicely specified in a given case, the symbolic
model is more useful. This is exactly what happens in Figure 2 above.

How to choose such a partition appropriately, and to understand which properties
will or will not be preserved, is, then, the real work of symbolic dynamics, and will
be a recurrent theme in these notes.

If we choose such a nice partition, one speaks of the resulting measure-preserving
homomorphism to the shift space as giving a nice way of “coding” the original dy-
namical system.

???
We saw above how symbolic dynamics gives a semicongugacy from the shift map

to the the doubling map on the interval. Next we examine a dynamical model which
is conjugate to the shift.

4.5. The Cantor set. Recall that the (middle-third) Cantor set C is constructed
by removing succesive open middle third intervals from I. Thus, writing C0 = I,
C1 = I0 ∪ I1 where I0 = [0, 1/3] and I1 = [2/3, 1] and C2 = I00 ∪ I01 ∪ I10 ∪ I11 where
I00, I01 are the left and right closed thirds of I0 and similarly for I1. Continuing in
this manner, the Cantor set is, by definition,

C = ∩+∞
n=0Cn.

This is a compact set which is nowhere dense (so it contains no open intervals) and
is dense in itself (there are no isolated points, i.e. every point is a limit point of other
points in C). It has Lebesgue measure zero, since m(Cn+1) = 2/3m(Cn) for all n.
Furthermore it has the cardinality of the continuum: each point in C is the endpoint
of an infinite binary tree, branching to the left or right at level n depending on which
subinterval the point belongs to; the set of infinite branches corresponds to Π∞0 {0, 1},
which has cardinality of the continuum.

The tripling map on the interval is defined by h(x) = 3x(mod 1). Exactly as
for the doubling map, there is a projection from the shift space Σ+

3 = Π∞0 {0, 1, 2}
to I given by the ternary (or base three) expansion, π(a) = a =

∑+∞
i=0 ai3

−(i+1) for
a1 = 0, 1 or 2.

This defines a dynamics on the Cantor set: writing each point x ∈ I in ternary
expansion x =

∑+∞
i=0 ai3

−(i+1) for ai ∈ {0, 1, 2}, then each point in I0∪I1 has expansion
a = (.a0a1 . . . ) with the restriction a0 ∈ {0, 2}; for C2 we have a0 and a1 ∈ {0, 2} and
so on. Therefore, C is the collection of points a =

∑+∞
i=0 ai3

−(i+1) for a1 = 0 or 2. Let
us write Σ+

2 for Π∞0 {0, 1} and Σ+
3 for Π∞0 {0, 1, 2}.

Next we define a function from C to I which sends a point in ternary expansion to
binary expansion with the same 0− 1 digits.

Thus, defining α : Σ+
2 → I by α(x) =

∑+∞
i=0 2xi3

−(i+1), and β : C → I by β :∑+∞
i=0 2xi3

−(i+1) 7→∑+∞
i=0 xi2

−(i+1), then β gives a map from C to I which is bijective
except at countably many points. These points are exactly the interior endpoints of
the subintervals I0, I1; I00, I01 . . . , which get glued together by the map β to form the
continuum I. We have the following commutative diagram, where g is the doubling
map on I.
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Figure 6. The conjugacy β extends to the Cantor function β̂: the
distribution function of the Cantor measure.

Σ+ σ−−−→ Σ+

yα
yα

C
h−−−→ Cyβ

yβ

I
g−−−→ I

.

Exercise 4.7. Show that α is a homeomorphism and that β is continuous.

The function β has a unique nondecreasing extension to I, giving a continuous

function β̂ from I onto I which is flat on the gaps of the Cantor set. This is the
Cantor function, see Fig. 6.

We have given two definitions of C, by removing middle thirds or by expressing the
points in ternary expansion with no 1’s. Here is a third definition, which, since it is
dynamical rather than combinatorial or geometric, leads to interesting generalizations.

First we need:

Definition 4.3. Let f : X0 → X for X0 ⊆ X. The eventual domain of f is
X−∞ = ∩+∞

k=1f
−k(X).

Proposition 4.1. The eventual domain is the largest subset of X such that f(x) is
defined for all k ≥ 0.

Proof. Since fn(x) ∈ X ⇐⇒ x ∈ f−n(X), the statement follows.
�
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We now consider the map f : C1 = I0 ∪ I1 → I defined to be the restriction of the
tripling map to this set, except at 1/3 where we define f(1/3) = 1 (in order to make
f continuous).

Then the Cantor set C is the eventual domain of this map, since f−1(I) = I0∪I1 =
C1, f−2(I) = f−1(I0 ∪ I1) = I00 ∪ I01 ∪ I10 ∪ I11 = C2, and so on.

Now we use the same idea to define a much wider class of Cantor sets. Let I0, I1 be
two disjoint closed subintervals of I, and let fi be a Ck+α diffeomorphism from Ii onto
I. Write Cf for the eventual domain of this map. Again there is a homeomorphism
α from Σ+

2 onto Cf ; if f is a nonlinear map then Cf is called a hyperbolic Ck+α

Cantor set (or cookie-cutter set), and the sequence of 0’s and 1’s which is the
itinerary of the point x ∈ Cf with respect to the sets I0, I1 gives a nonlinear analogue
of the ternary expansion. See Fig. ?? and e.g. [Sul87], [BF97].

Returning to the middle-thirds Cantor set C, we summarize some of its basic
properties:
–C is a compact set which is nowhere dense and dense in itself (i.e , every point x ∈ C
is a limit point of C \x). In particular it is a perfect set (closed and dense in itself).
–C is an exactly self-similar set: at each scale, it is a union of small pieces which are
exact replicas of C; precisely, at scale 3−n it consists of 2n pieces C ∩ Ix0...xn−1 such
that 3n· = C. It has Hausdorff dimension d = log 2/ log 3.
–measure-theoretically, the Bernoulli (1/2), (1/2) coin-tossing measure on Σ+ pushes
forward to a probability measure µ on C which turns out to be Hd|C , the Hausdorff
measure Hd of dimensionrestricted to C.
–The Cantor function can therefore be understood as the cumulative distibution
function of the measure µ, since β̂(x) = µ([0, x].

Since we have just talked about the eventual domain of a map, this is a good place
to introduce a related idea which we need later on:

Definition 4.4. Let f : X → X. The eventual range of f is X+
∞ = ∩+∞

k=0f
k(X).

Proposition 4.2. Let X be a metric space and f a continuous map such that the
closure of f(X) is compact. Then the eventual range is the largest subset A such that
f maps A onto itself.

For the proof we first recall that a topological space has the Bolzano-Weirstrass
property iff every sequence has an accumulation point. It is sequentially compact
iff every sequence has a convergent subsequence. The Bolzano-Weirstrass property
implies compactness; for metric spaces sequential compactness is equivalent to com-
pactness and also to separability [Roy68].

Lemma 4.3. Let f : X → X be a continuous map on a topological space X, and let K
be a compact subset of X which has the Bolzano-Weirstrass property. If f(K) ⊆ K,
then for Kn = fn(K) and K∞ = ∩∞i=0Ki, we have that K = K0 ⊇ K1 ⊇ K2 . . . and
that f(K∞) = K∞.

Proof. Since A ⊆ B =⇒ f(A) ⊆ f(B), the nesting of the Ki follows by applying
induction to the containment f(K) ⊆ K. This also implies that f(A ∩ B) ⊆ f(A) ∩
f(B), and similarly for infinite intersections, whence f(K∞) ⊆ K∞. To show this
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is onto, we give the proof given sequential compactness; this is easily modified to
work assuming the Bolzano-Weirstrass property. Let x ∈ K∞; we claim there exists
w ∈ K∞ with f(w) = x. Since x ∈ Ki+1 for all i, there exists wi ∈ Ki with f(wi) = x.
By compactness there exists a subsequence wik and point w with wik → w; w ∈ Kik

for each k, so w ∈ K∞, and by continuity, f(w) = x. �

Proof. (of Proposition) From the lemma it follows that f(X+
∞) = X+

∞, and this is
clearly the largest such subset. �

This idea is closely related to the following:

Definition 4.5. If W is a sequentially compact topological space with T : W → W
continuous, then given U open such that the closure of f(U) is contained in U , one calls
C ≡ ∩+∞

k=0f
k(U) an attractor of the map. The basin of the attactor is ∪n≥0f

−n(U).

Proposition 4.4. For an attractor C of T : W → W as above, then f(C) = C and
for any x in the basin of C, fn(x) converges to C in the sense that for any open set
V ⊇ C, this orbit is eventually inside of V. The basin is the collection of all points in
W which converge to C, hence does not not depend on the choice of open set U with
attractor C.

Proof. Setting X = U , with the relative topology, we are in the situation of Proposi-
tion 4.2, with C the eventual range. �

Remark 4.1. For the definition of attractor we are following [BS02]. We note that by
the same proof, in Proposition 4.2 we can conclude that every x ∈ X is attracted to
the eventual range. Proposition 4.4 is stated, for compact topological spaces, in the
discussion at the beginning of §1.13 of [BS02]. However we warn that the argument
given there that f(C) = C seems to us to be incomplete: reasoning like that above,
using the compactness, (and perhaps as we did, the Bolzano-Weirstrass property) is
needed.

Exercise 4.4. Investigate whether a counterexample can be found (for a space which
is compact but not sequentially compact).

4.6. The baker’s transformation. This map, written with a small “b” as the baker
is someone who is kneading bread, is defined on the half-open square, X = [0, 1) ×
[0, 1), Despite the fact that it is not everywhere continuous, it gives a good model
for what is happening geometrically with the full (two-sided) shift map, and with
hyperbolic (or “chaotic”) dynamics in general. This map is also sometimes known as
Arnold’s cat map (evidently because of the illustration on p. 9 of [AA68]) although it
appears on p. 9 of Halmos’ book of 1956 [Hal60] (but it must predate not only Arnold
but Halmos).

We define F1 : R2 → R2 by F1(x, y) = (2x, 1/2y); writing X1 = F (X), then we
define F2 : X1 → X by

F2(x, y) =

{
(x, y) for x ∈ [0, 1/2)

(x, y) + (−1, 1/2) for x ∈ [1/2, 1)

and then F : X → X by F = F2 ◦ F1. See Fig. 7. The map F is a bijection of X
which is continuous off of the line segment x = 1/2, while F−1 is continuous off of
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Figure 7. The baker’s transformation, showing P and TP .

y = 1/2. So it is a homeomorphism off of the union of those two segments. Note that
Lebesgue measure on the square is preserved by F .

Exercise 4.8. Defining the map π+ : Σ+ → [0, 1] by π+(x+) =
∑+∞

i=0 xi2
−(i+1) and

π− : Σ− → [0, 1] by π−(x−) =
∑−∞

i=−1 xi2
i, and finally π : Σ→ [0, 1]× [0, 1] by

π(x) = (π+(x+), π−(x−)),

and setting E = {x : x+ = .11111 . . . or x− = . . . 11111.}, show that the following
diagram commutes, with (1

2
, 1

2
)- infinite product measure on the shift space finite taken

by π to Lebesgue measure on the square. Find the smallest set of points N ⊆ Σ such
that the restriction of π gives a topological conjugacy of the two dynamical systems.
(Remember: by our definition a dynamical system is required to be an onto map).

Σ
σ−−−→ Σyπ

yπ

X
T−−−→ X

.

Defining a partition P = {P0, P1} of X where P0 = {(x, y) : x ∈ [0, 1/2)} and
P1 = {(x, y) : x ∈ [1/2, 1)}, then show that the digits of x ∈ Σ \ E satisfy xi = j if
and only if T i(x) ∈ Pj. Draw T−1(P) and

∨1
i=−2 T

−i(P).

Exercise 4.9. Show that for I the unit interval with Lebesgue measure m, (I,m) and
(I × I,m×m) are measure-isomorphic. (Hint: coding.)

4.7. The odometer transformation. We define a second map on the one-sided
shift space Σ+ = Π∞0 A which will in a certain sense be transverse to the dynamics of
the shift map σ. For x = (.x0x1 . . . ) ∈ Σ, we map x as follows, illustrated by example:
(.000 . . . ) 7→ (.100 . . . ) 7→ (.010 . . . ) 7→ (.110 . . . ) 7→ (.0010 . . . ) 7→ (.1010 . . . ) 7→
(.0110 . . . ) 7→ (.1110 . . . ) 7→ . . .

This is like watching the odometer of a car, the device which measures miles (or
kilometers!) travelled, except written in binary and in reverse.

Note that if the 0 coordinate turns over every second, the 1 coordinate turns over
every 2 seconds, the 2 coordinate every 4 seconds, then every 8, 16 seconds and so
on.



44 ALBERT M. FISHER

1
2

3
4

7
8

1
2

1
4

1
8

Figure 8. Graph of the odometer transformation on the unit interval:
an exchange of infinitely many intervals.

From a different point of view we proceed in anti-lexicographic order, where the
letters are from the alphabet A = {0, 1} with order 0 < 1. Given two infinite strings
x, y then supposing they are in the same stable set for the shift map σ, thus there
exists n such that xk = yk for every k ≥ n, then x < y iff xn−1 < yn−1.

Then T sends x to its successor in this order. There is one point where the map
is not defined: x = (.111 . . . ). In this case, it is natural to define the image to be
(.000...) the unique point with no preimage. As one checks, this is the unique way
to extend the map continuously to all of Σ+. That’s like the odometer in your car
turning over to 0 after it reaches 99, 999!

This defines the Kakutani-von Neumann dyadic odometer. Another name for
this is the adding machine transformation, since we succesively adding 1 in binary
(written in reverse).

Algebraically, Σ+ is an abelian group with respect to addition, and the map T is
a rotation in this group. We have already encountered a group rotation: irrational
rotation Rθ on the circle. We mention that just as for this map, the odometer is also
minimal and uniquely ergodic (exercise: verify this!)

Representing Σ+ as the unit inteval via binary expansion, T has the graph given
in Fig. 8, which shows it to preserve Lebesgue measure and to be an exchange of
countably many intervals (Here we have to remove a set of measure zero, the countably
many points in the interval with two binary expansions). Note that restricting to
cylinder sets of finite length, T simply permutes them, e.g. [.000] 7→ [.100] 7→ [.010] 7→
[.110] 7→ [.001] 7→ [.101] 7→ [.011] 7→ [.111] 7→ [.000]. Thus T is a limit of finite
permutations of intervals, see Fig.9.

The maps σ and T of Σ+ are linked by an interesting commutation relation:
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0 1

0 1

Figure 9. Odometer transformation as a limit of finite interval exchanges

Proposition 4.5. T, σ satisfy

σ ◦ T 2 = T ◦ σ.
Thus, the following diagram is commutative:

Σ+ T 2

−−−→ Σ+

yσ
yσ

Σ+ T−−−→ Σ+

The odometer map on the interval has a different construction, as a cutting-and-
stacking construction.

We explain this by picture: beginning with the unit interval I with Lebesgue
measure, we dvide it into two halves, I0, I1 corresponding to the cylinder sets [.0], [.1].
Stacking the second on top of the first, we define the map T to go upward. This is the
first stage of the definition; not that it is equivalent to the exchange of two intervals.

In the second stage, we cut the tower into two halves, and stack the right on top
of the left.

There are several simple yet important observations:
–at stage n, the map is defined everywhere except at the top of the tower, and its
inverse is defined everywhere except at the bottom;
–once defined, the definition never changes;
–Lebesgue measure is preserved, where the map is defined, both forwards and back-
wards;
–the measure of the set of points where T or T−1 are defined goes to one.
–at each stage n, the tower definition is equivalent to the exchange of 2n intervals,
hence in the limit does give the odometer map.
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Figure 10. Cutting-and-stacking constructions of the odometer map
and of the solenoid and baker’s transformation.

The importance of this construction is that it generalizes considerably, permitting
the definition of a wide variety of interesting maps. We examine other cases below.

4.8. The solenoid. The cutting-and-stacking constuction for the odometer should
be reminiscent of the definition above of the baker’s transformation. This is not
accidental; the link between the two can be explained via a further example, the
(dyadic) solenoid. This is a topological space which is locally a product of a Cantor
set and an interval; just as for the odometer, it posesses two types of dynamics, one
transverse to the other and satisfying a similar commutation relation. And in fact, the
space can be built in two ways: based on extending the doubling map of the interval,
or based on extending the odometer map. The first of these will give a hyperbolic
map corresponding to the shift, while the odometer map will now be replaced by a
flow: the rotation flow on the solenoid. We explain, first considering the doubling
map on the circle S1 = {z ∈ C : |z| = 1, the map f : z 7→ z2.

This already has two types of dynamics: in addition to f there is the rotation flow
ht, defined additively (i.e. on T = R/Z) by Rt : x 7→ x+ t(mod 1) or multiplicatively
(on S1) by Mt : z 7→ e2πit · z.

The map f is of course not invertible (it is 2 − 1) but we can remedy this by

creating the natural extension f̂ : Ŝ → Ŝ; the construction is treated in generality
below, but here we give the basic idea. Given z0 ∈ S1, we choose an infinite string
of preimages, . . . zn 7→ zn+1 7→ . . . z−1 7→ z0. This can be continued uniquely to the
future as z0 7→ z1 7→ . . . , giving a biinfinite string z = (. . . z−1.z0z1 . . . ) ∈ Π∞−∞S

1.
The reader may recognize this as an inverse limit space; with the natural (inverse

limit) topology, this defines the topological space Ŝ called the solenoid.
One can picture this as follows. ...
(quote two-sided preprint!!!) rotation flow/ doubling map
Natural extension of z 7→ z2; of shift map, as limits of covers.

4.9. A Cantor set baker’s transformation, and Smale’s horseshoe.

4.10. Subshifts. As we have seen, the general measure-theoretic framework of in-
variant measures on shift spaces is in some sense too general, as it models any ergodic
transformation. More interesting and more useful symbolic representations will come
about by restricting the topological space on which the shift acts.

Thus, given an alphabet A with d = #A and the corresponding shift space Σ, a
subshift is a closed (hence compact) shift-invariant subset of Σ; by contrast, Σ is then
known as the full shift on d symbols. On the one hand, given such a restriction,
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one will then study the invariant measures which occur, perhaps with additional
properties; on the other, given a dynamical system, the aim will be to search for a
subshift which models the dynamics as closely as possible, e.g. from a topological
perspective. What this means will best be seen through examples.

We shall need a definition:

Definition 4.6. Given a topological dynamical system (X,T ), the ω−limit set ω(x)
of a point x ∈ X is

∩∞i=0Ō+T i(x) = ∩∞i=0closure({T n(x) :≥ i}).
One way to define a subshift is to choose a sequence in Σ+ or Σ, and define the

subshift Ω to be the ω− limit set ω(x) Furstenberg in [Fur81] calls this a Bebutov
system. It is possible that the point itself will not be in Ω, but if blocks in the
sequence recur infinitely often it will be. Indeed any point in the subshift will ex-
hibit the recurrence behavior of x. Thus we can choose a pattern we wish to model
dynamically, and this construction will build such a model.

Exercise 4.10. Verify these statements, taking care to make the last one precise.
Find an example of a point in the shift space Σ+ such that its ω− limit set is strictly
contained in its orbit closure O+(x).

4.11. Substitution dynamical systems. An example of a sequence we might wish
to model is one which exhibits some self-similar behavior: each letter is replaced by
a block of k letters, then each of these is replaced and so on. A basic example is the
Thue-Morse sequence, defined inductively by starting with the symbol 1, replacing
this by 10, and thereafter replacing each 1 by 10 and each 0 by 01. Note that the
limiting sequence 1001011001101001 . . . can be grouped into blocks of length 2n, each
labelled 1 or 0, and which exhibits exactly the same structure.

Another example imitates the self-similar structure of the Cantor set. Beginning
with an infinite string of 1’s, we replace these by 0 where there is a middle-third
interval to be removed, giving the sequence .101000101000000000101000101 . . .

Here are our corresponding dynamical systems:

Example 10. The Thue-Morse subshift is defined as follows. Consider the sequence
x = (. . . 00000.10010110 . . . ) ∈ Σ; thus xi = 0 for i < 0, and x+ is the Thue-Morse
sequence. Now define Ω to be the ω−limit set of x in Σ.

Example 11. The Chacon subshift: given the substitution ρ(0) = 0, ρ(1) = 1101
we consider the fixed point asociated to ρ, lim ρn(.1) = (.1101 1101 0 1101...) ≡
(.a0a1 . . . ). Extending this in an arbitrary fashion to a biinfinite string a = (. . . a−1.a0a1 . . . ),
we then define Ωρ,a ≡ ∩n≥0(cl{σk(a)}k≥n) where cl denotes the closure. That is, Ωρ,a

is the ω−limit set of a within the compact space Π+∞
−∞ acted on by the left shift σ.

Example 12. The integer Cantor set example is defined similarly, now taking the
ω−limit set of the sequence . . . 00000000.101000101 . . . . (Note that the past of the
sequence, chosen to be all zeroes, is completely irrelevant to the definition of the
ω−limit set). See [Fis92] and below.....
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Figure 11. A stable equivalence class of the Integer Cantor Set trans-
formation, depicted in the curtain and stable tree models, showing si-
multaneously the edge paths for the Bratteli diagram and a point in
the substitution dynamical system.
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Figure 12. Spacer cutting-and-stacking construction of Integer Can-
tor Set map; induced map on I is the odometer.

These give examples of a substitution dynamical system; here is the general
definition. We write A∗ for the collection of all finite words from the alphabet; define
a product operation on A∗ by concatenation, which forms a semigroup (the empty
word ∅ is the identity element). A substitution is a function ρ : A → A∗. (In the
Morse example, ρ(0) = 01 and ρ(1) = 10; for the Cantor example, ρ(0) = 000 and
ρ(1) = 101.) In all cases, the function ρ extends to all of A∗ by concatenation, and
the map ρ : A∗ → A∗ is a homomorphism of this semigroup.

The map ρ also extends to Σ+ and to Σ− naturally (the images of a sequence
beginning with a given word are pushed out towards the right and left respectively)
although not to Σ; a central portion of the concatenation of limiting strings x+ and
x− might not be in the image of ρ. Instead we consider first the map ρ : Σ+ → Σ+,
and write Ω+ = ∩∞n ρn(Σ+); then we imbed Ω+ in Σ and take the limit of the left
shift of this set.

We have:

Proposition 4.6. Defining γ : Ω+ → Ω by x+ 7→ x = . . . 00000.x+, we let Ω =
∩∞n σn(γ(Ω+). Ω+ is a compact invariant subset of Σ+, and similarly for Ω ⊆ Σ.

In the special case where ρ(a) = a ∗ · · · ∗ for some a ∈ A, the limit ρn(a ∗ . . . ) = w
exists, is a fixed point for ρ, and O(w) = Ω+ in Σ+, and in Σ, O(γ(w)) = Ω.

In both our examples, for the Morse-Thue system for the integer Cantor set ex-
ample, ρ is a constant length substitution, of length k = 2 and 3, and so these
substitution dynamical systems exhibit a more direct form of self-similarity than in
the general case.
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Figure 13. Curtain models for odometer and Morse substitutions

Regarding invariant measures, we mention (proved later) that both the Morse and
Chacon substitution dynamical systems are uniquely ergodic (have a single invariant
probability measure). For the Chacon system this was shown by Ferenczi [Fer95],
[Fer02]. The Integer Cantor Set map is uniquely ergodic in an infinite measure sense:
there exists a unique invariant measure, up to multiplication by a constant, which is
positive finite on some open subset. See [Fis92].

4.12. Subshifts of finite type. Now let A be a (k × k) matrix with entries 0 and
1, where k = #A. We assume A is ordered, and so we write A = {0, 1, 2, . . . , k − 1}.
We count rows and columns of the matrix A starting with 0, and we say x ∈ Σ is an
allowed string iff Axixi+1

= 1, and write ΣA for the collection of all allowed biinfinite
strings x = (. . . x−1.x0x1 . . . ).

We associate to A a finite graph, with one vertex for each symbol and a directed
edge ( an arrow) from symbol i to symbol j exactly when the transition from i to j
is allowed, i.e. when Aij = 1. Note that there is at most one edge between any two
symbols. This gives the vertex-shift model of a (two-sided) subshift of finite
type (sft). The corresponding one-sided vertex sft is Σ+

A, the collection of allowed
strings x+ = (.x0x1 . . . ).

Note that the projection x 7→ x+ defines a semiconjugacy from the two-sided to
the one-sided sft.

The simplest example is the full two-shift Σ = Πk∈ZA for A = {0, 1}, along with
its one-sided version Σ+ = Πk≥0A, which we used above to model coin-tossing. Note

that Σ = ΣA for A =

[
1 1
1 1

]
.

To define the edge-shift model for a subshift of finite type, we begin with a finite
graph G with k vertices, but allow any finite number Mij of directed edges from vertex
i to vertex j. We associate to this a (k × k) matrix M , but now with nonnegative
integer entries.
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Now we build a new graph Ĝ, whose vertices are the m edges of G. This will have
the single-edge property. We define ΣM to be the vertex shift on this new graph, so
the new alphabet is the edges, labelled 0, 1, . . .m− 1.

Coin-tossing also has an edge-shift model: ΣM with M =
[
2
]
. There is one vertex

with two edges, labelled 0 and 1.
For more interesting examples, see Fig. 14, the golden vertex shift with alphabet

A = {A,B} and matrix A =

[
1 1
1 0

]
. Its graph is indicated on the left side of Fig. 14.

The name “golden” refers to the golden ratio

φ = 1 +
1

1 +
1

1 + · · ·
We see from this continued fraction expansion that 1/φ = φ−1 whence φ2−φ−1 = 0,
which has roots (1±

√
5)/2, and so

φ =
1 +
√

5

2
= 1.618 · · ·

Calculating the eigenvalues of A (see Definition 16.1) these are the roots of the

characteristic polynomial of A, p(λ) = det(A − λI) =

∣∣∣∣
1− λ 1

1 −λ

∣∣∣∣ = λ2 − λ − 1;

this factors as p(λ) = (λ − λ+)(λ − λ−) for λ± = 1±
√

5
2

. So φ = λ+ is the largest
eigenvalue of A (the Perron-Frobenius eigenvalue, see §16). We shall see the usefulness
in calculating the topological entropy in a moment, see Example ??.

Taking the square of the matrix gives M = A2 =

[
2 1
1 1

]
we have a nonnegative

integer matrix with graph on the right side of Fig. 14, giving the golden edge shift
ΣM . The alphabet A gives the vertex set in both cases; note that for the edge shift,
multiple edges are allowed. We can also represent the edge shift ΣA as a vertex shift.
For this we define a new alphabet: the collection of edges; this gives three symbols
{e, f, g} with a (3× 3) 0− 1 matrix

N =




1 1 0
0 0 1
1 1 0


 .

The shift spaces ΣA and ΣN are naturally isomorphic via a two-block code: given
x = (. . . x1.x0x1 . . . ) we send this to the sequence (. . . (x−1, x0).(x0, x1)(x1, x2) . . . ) of
two-blocks and then on to the sequence of edges (. . . e−1.e0e1 . . . ) ∈ ΣN such that ei
goes from vertex xi to vertex xi+1. For an excellent introduction to this coding and
information theory perspective on ergodic theory, see [LM95].

We can do this also for the golden edge shift. Our new alphabet is the edge set E
with the 5 symbols {a, b, c, d, e}; then the edge set E has become the vertex set for
the corresponding vertex shift, with now a (5× 5) 0− 1 matrix. This illustrates the
advantage of dealing with edge shifts rather than vertex shifts: the (2× 2) matrix is
easier to handle than the (5× 5) version.
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Figure 14. Graphs for the golden vertex shift and edge shift.

For example, the (2× 2) matrix leads to these observations. First, M has a second
nice factorization, as

[
2 1
1 1

]
=

[
1 1
1 0

] [
1 1
1 0

]
=

[
1 1
0 1

] [
1 0
1 1

]

Secondly, for n ≥ 0,
[
1 1
1 0

]n
=

[
1 0
0 1

]
,

[
1 1
1 0

]
,

[
2 1
1 1

]
,

[
3 2
2 1

]
,

[
5 3
3 2

]
,

[
8 5
5 3

]
. . .

with entries in the upper left corner given by the Fibonacci sequence 1, 1, 2, 3, 5, 8, 13, . . .
We note also that the sum of the matrix entries gives this sequence beginning at 2.

Exercise 4.11. Show that for a nonnegative matrix A, the number of allowed words
of length n in ΣA is the sum of the entries in the matrix An.

We can give here a preliminary definition of a much more general concept:

Definition 4.7. Given a subshift Ω ⊆ Σ, the topological entropy of (Ω, σ) is

lim
1

n
log #( allowed words of length n)

Proposition 4.7. In the case of the golden shift, the topological entropy is log φ.

Proof. We recall (see Definition 35.10 below) that the operator norm of a matrix is
||A||op = sup||v||=1 ||Av||. To apply this we take the L1 norm on Rd, that is ||v||1 =∑n

i=1 |vi|. (See §6.2.)
As shown in Lemma 35.41, in a finite dimensional vector space all norms are equiv-

alent.
Now we refer to Proposition 16.9: the number of words of length n is equal to the

he L1-norm of An, where ||A||1 =
∑

i,j |Aij|. Then, as in the third proof of Corollary

16.10, this is within constant multiples of (λ+)n. It follows that the topological
entropy is log λ+.

�

Remark 4.2. In fact the limit used in the above definition of topological entropy
always exists; this follows from a subadditivity lemma applied to the operator norm,
see below ???.

Invariant measures for subshifts of finite type are a much-investigated and fasci-
nating subject; we return to this below, in §16.6.
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4.13. Toral endo- and automorphisms. We have noted above that the d− torus
is the factor space (quotient topological space, and factor group) Rd/Zd. Now let A
be a (d × d) matrix with integer entries. Acting on, say, column vectors, this maps
Zd into itself which implies that A gives a well-defined map on the torus: Rd/Zd is
the collection of cosets v +Zd and A(v +Zd) = Av +AZd ∼ Av +Zd. This is called
a toral endomorphism.

We claim that this map of the torus is invertible iff determinant A is ±1.
Consider first the (2× 2) case.
Now more generally, if detA = ±1, then A ∈ GL(d,Z) so its inverse also has integer

entries. ??

For one of the the simplest examples, consider A =

[
1 1
1 0

]
, which we encountered

already in a different setting (defining a subshift of finite type).

Example 13. The golden toral automorphism is the map of the torus given by the

action of A =

[
1 1
1 0

]
on column vectors.

Our aim here is to show how the geometry of this map gives a continuous analogue
of the (very discontinuous!) baker’s transformation.

For this purpose, we diagonalize the matrix by finding its eigenvalues

λ± =
1±
√

5

2

An eigenvector corresponding the eigenvalue λ is (x, 1) satisfying

[
1 1
1 0

] [
x
1

]
=

[
x+ 1
x

]
=

[
λx
λ

]
so x = λ.

Noting that λ+λ− = −1, the eigenvectors (λ±, 1) are orthogonal and can be nor-
malized to have length one, as v±. Letting Q be the matrix with columns v−,v+,

then Q−1AQ = D is diagonal with D =

[
λ− 0
0 λ+

]
.

(That one can find an orthogonal change-of-basis matrix Q is a consequence of a
general fact for (d× d) real symmetric matrices, the Spectral Theorem. See Theorem
35.56.)

We find the continued fraction expansion of the eigenvalues. Setting λ = ϕ−1, let
us first find the expansion for ϕ+ ≡ (λ+)−1. Since λ satisfies λ2 − λ− 1 = 0, we have

ϕ−2−ϕ−1−1 = 0 whence ϕ2+ϕ−1−1 = 0, so from the quadratic formula, ϕ± = −1±
√

5
2

which indeed is the inverse of λ±. Consider x = [111 . . . ]; then 1/x− x = 1, whence
x2 + x− 1 = 0 and so indeed x = ϕ+. Thus, λ+ = 1/x = 1 + [111 . . . ]. This is in the
literature usually written as [1; 111 . . . ], denoting the continued fraction expansion of
an irrational in (0,+∞).

Example 14. In discussing subshifts of finte type, we have already encountered A =[
2 1
1 1

]
=

[
1 1
1 0

]2

, one of the most famous maps in ergodic theory. Now detA = 1, so
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it is orientation-preserving. Of course the eigenvectors are the same as for

[
1 1
1 0

]
, and

its eigenvalues are the squares. As mentioned above, it has a second factorization, as

A =

[
1 1
0 1

] [
1 0
1 1

]
, which will have dynamical as well as geometric significance, and

will greatly aid in a study of related maps, see below.

Example 15. We return to further examples throughout these notes. But for now we
mention another example: an endomorphism of the torus which perhaps deserves to

be called the doubling map on the torus. This is given by A =

[
1 −1
1 1

]
. Note that

in complex notation this is the map T : C→ C given by

T : z 7→ (1 + i)z.

Since detA = 2, this doubles area, and is two-to-one, and for these reasons is a
two-dimensional analogue of the doubling map of the circle.

Furthermore,as seen below in §22.1, one can code the map in the same way as for
the doubling map of the circle: by a one-sided Bernoulli two-shift, modelled proba-
balistically by the tosses of a fair coin. This coding is given by by the construction of
special Markov partitions, of both geometric and arithmetic origin, which have fractal
boundaries, and this will lead us off into fascinating directions.

4.14. A Markov partition for a hyperbolic toral automorphism.
Here we shall link the previous two sections by showing how a hyperbolic toral

automorphism can be represented symbolically by a subshift of finite type.

Definition 4.8. A finite partition P for a continuous map T of a topological space
(X.T ) is a (topological) Markov partition if there exists a (d × d) nonnegative
integer matrix M which codes the map as an (edge or vertex) subshift of finite type.
More precisely, for the case of T invertible, there exists a semiconjugacy

ΣM
σ−−−→ ΣMyπ

yπ

X
T−−−→ X

such that π is a continuous surjection which is a homeomorphism off of an invariant
set of measure zero; for T noninvertible we replace ΣM by the one-sided shift space
Σ+
M .

The term “Markov partition” indeed comes from a connection with the Markov
processes of probability theory; see §15.3 regarding this part of the theory.

The “bad” set of measure zero can be thought of as the forward and backward iter-
ates of the partition boundaries. In the two-dimensional case, that is, for hyperbolic
automorphisms of T2, the partitions are rectangles and the boundaries are just line
segments: subsets of the stable and unstable eigendirections at the point (0, 0). For
higher dimensions, partitions become much more complicated, typically with fractal
boundaries; see §22.1.



54 ALBERT M. FISHER

We have already encountered the simplest examples: the doubling map g : I → I,
and the baker’s transformation ĝ of the square I × I. For the doubling map the
Markov partition of I is P = {P0 = [0, 1/2], P1 = [1/2, 1]}, leading to the binary
expansion of a point x ∈ I and so to a coding of g by the one-sided Bernoulli shift
(Σ+, σ). For the baker’s transformation the pair of rectangles codes the map by the
bilateral shift.

The first step beyond this was carried out by Adler and Weiss for hyperbolic au-
tomorphisms of the two-torus T2 in [AW70]; their construction of Markov partitions
represents these maps symbolically by subshifts of finite type (ΣM , σ). The next step
is to find an appropriate measure on this shift space; this will represent the toral
automorphism, with Lebesgue measure on the (square or parallelogram, see below)
torus, as a Markov shift of probability theory, see §15.3 regarding the connection
between the topological and probability Markov properties in general.

Now for a toral automorphism the natural invariant measure is Lebesgue measure
on the square [0, 1) × [0, 1), since this is a fundamental domain for T2 = R2/Z2.
What Adler and Weiss discovered was that when transferred to the symbolic space,
this has a wonderfully simple and elegant combinatorial expression as a very special
Markov measure, called the Parry measure of the sft. This can be characterized as
the unique measure of maximal entropy (for both maps: the toral automorphism and
the topological shift space defined by the sft). We explain this below in §16.6. The
situation is exactly analogous to the the doubling map and baker’s transformation on
the interval or square, where Lebesgue measure corresponds to the infinite product
measure of coin-tossing on the symbol space (the full shift). The maximum entropy
property is related to ideas from both information theory and from the physics of
lattice models.

The key new idea of Adler and Weiss is essentially this. They interpret the Markov
property of probability theory geometrically, in terms of how the preimage of the
partition meets the partition. This property is intrinsically related to the hyperbol-
icity of the map, an insight so striking and important that that it was soon pushed
far beyond the original setting, to Anosov and Axiom A diffeomorphisms and to
the “thermodynamic formalism” of Sinai, Bowen and Ruelle [Bow75], [Bow77]; see
e.g. [KH95].

We mention that Ken Berg had a similar idea to that of Adler and Weiss, at about
the same time, in his (unpublished) thesis at the University of Maryland.

In this section we explain the symbolic part of this (construction of the Adler-
Weiss Markov partition) for the simplest example, the golden toral automorphism

A =

[
1 1
1 0

]
, see Example 13. Our partition will have the remarkable property that

M = A, i.e. the transition matrix is that same as that for the map itself.
It will be convenient to choose a different change-of-basis matrix from the orthogo-

nal matrix Q used above in §4.12. For this, beginning with the matrix whose columns

are the eigenvectors we found,

[
λ− λ+

1 1

]
, we leave the first column unchanged and

normalize the second so the matrix has determinant 1. The result is B =

[
a c
−b d

]
,
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where a = λ−, b = 1, c = λ+/
√

5 and d = 1/
√

5. We define vs,vu to be these
columns, also eigenvectors, and again we have the diagonalization B−1AB = D where

D =

[
λ− 0
0 λ+

]
. That is, the following diagram commutes, where matrices are acting

on column vectors:

R2 A−−−→ R2

xB
xB

R2 D−−−→ R2

Now let Λ be the lattice subgroup of R2 generated by the column vectors of B−1 =[
d −c
b a

]
. That is, Λ is the image by B−1 of the integer lattice Z2. This implies that

the commutative diagram passes on to a conjugacy of maps on the quotient spaces,
the square torus defined by R2/Z2 and the parallelogram torus R2/Λ:

R2/Z2 A−−−→ R2/Z2

xB
xB

R2/Λ
D−−−→ R2/Λ

Proposition 4.8. P = {P0, P1} defined above is a Markov partition for the toral

automorphism A =

[
1 1
1 0

]
of T2 = R2/Z2. That is, the map π defined by the symbolic

dynamics is a semiconjugacy from (ΣA, σ) to (T2, A) which is 1-1 off of an invariant
set of Lebesgue measure zero, consisting of the iterates of the partition boundaries,
and the inverse image inside of ΣA of that set.

Proof. For A = {0, 1}, we define a relation R on Π∞−∞A × T2 determined by the
symbolic dynamics of the map A and partition P . That is, R ⊆ Π∞−∞A × T2) is
defined by: for x = (. . . x−1.x0x1 . . . ), x ∼R x iff Ai(x) ∈ Pxi for all i ∈ Z.

We claim that R is a function π from ΣA to T2, that is, (x, x) ∈ R iff x = π(x),
which satisfies the claimed properties.

�

Fig. 16 illustrates how, using the Markov partition, the toral automorphism A can
be thought of as a continuous version of the baker’s transformation. The illustration
of Fig. 15 has been rotated by angle π/2 so as to make this analogy clearer. The
expansion is now along the x−axis, and the automorphism acts via the diagonal map[
λ+ 0
0 λ−

]
. Since −1 < λ− < 0, the two boxes are reflected and contracted in the

y−axis. A cutting and stacking then takes us back to the original configuration. To
this point the analogy to the baker’s transformation construction is exact (although to
be sure the boxes have different sizes, and the orientation reversal of the map causes
the boxes to be reflected in the y−axis.) However now there is a big difference: the
cutting-and-stacking is also given by an identification by the lattice Λ, and so in R2/Λ
we haven’t actually done anything! As a result the map is indeed a homeomorphism:
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−d− c −d c

b− a
a

b

c

a

d

b

−d c

a+ b

a

b

Figure 15. Markov partition for the automorphism D of the par-
allelogram torus R2/Λ: contracting and reflecting along the x−axis,
expanding along the y−axis. On the left is the partition (dotted lines)
with its inverse image; in the center, the partition joined with pullbacks
of image and preimage; on the right, partition with its image. The par-
tition boundary consists of two line segments which meet at the origin:
the upside-down T of the central figure.

a a+ b

c

d
b b+ a b+ a+ b

d− c
−d

Figure 16. Rotating 90◦ from Fig. 15 , we see the toral automorphism
is a continuous version of the baker’s transformation. First we expand
along the x−axis while contracting and reflecting along the y−axis;
then we cut and stack this image Markov partition to return to the
original pair of boxes (modulo the lattice). The smaller box is labelled
1 and the larger 0, giving the transition matrix A for the subshift of
finite type.

the space has not been ripped apart (as for the baker’s transformation), which for
that map resulted in discontinuities along the partition borders.

In this way, our toral automorphism is a continuous (hence “improved”) version
of the baker’s transformation, and so one might wonder if there is an analogue for
the doubling map in this case as well, that is, if there is a noninvertible map of the
interval which the toral automorphism will have as a homomorphic image.

The answer (Yes!) is shown in Fig. 17. What we do is to consider two line segments
l1 = [−a, 0] and l0 = [0, b] of the Markov partition of Fig. 16, the lower sides of each

of the two boxes; apply the matrix D̃, and project these vertical segments back down
to l1 ∪ l0. This is the map of the interval [0, b + a] given by f : x 7→ λ+x, where
λ− = b/a > 0, so it is orientation-preserving, and is hyperbolic i.e. |Df | = b/a > 1.
There is no natural way to decide whether the interval is [−a, b] or [0, a + b], so
a better topological model is given by the circle R/(a + b)Z. But an even more
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natural model is given by identifying the endpoints of both intervals, to a single point,
giving a bouquet of circles, the first of length l0 and the second of length l1. This
topological space is a special case of a train track (a concept introduced by Thurston
and also by Williams, who called it a branched one-manifold, [Wil74]), and this
type of Markov map is a train track map (see e.g. Bestvina-Handel [BH92] and
Los [Los93]). Thus the map of the interval factors onto a map of the circle which in
turns factors onto the train track map; this is analogous to the doubling map of the
interval factoring onto the doubling map of the circle.

The image of each segment is a union of copies of the li, since the image of the
partition is a pair of boxes which horizontally are made up of the original ones. In
other words, for f : l0 ∪ l1 → l0 ∪ l1, the forward image of l0 is l0 ∪ l1 and of l1 is l0,

giving the matrix A =

[
1 1
1 0

]
for the combinatorial model Σ+

A.

Note, however, that Lebesgue measure is not preserved by this map. Due to some
quite general and more advanced considerations, there is a unique invariant probabil-
ity measure which is absolutely continuous with respect to (and indeed is equivalent
to) Lebesgue measure. But what is it? In fact the description is easy given our in-
vertible version of the transformation, the toral automorphism depicted in Fig. 16:
the measure is f(x)dx where the graph of f , with the intervals drawn with l1 on the
left, is given on the left-hand side of the figure!

Exercise 4.5. Verify that this is indeed an invariant probability measure for the
Markov map.

From the combinatorial perspective of the shift spaces ΣA and Σ+
A, both of these

invariant measures (for the toral automorphism and the Markov interval map) have
remarkable formulas, as the Parry measure, which will be explained in §16.6. The
existence of this formula is one of the main reasons why Markov partitions have turned
out to be so important.

Remark 4.3. Very nice Markov partitions, with the Adler-Manning property, can
be constructed for any orientation-preserving hyperbolic automorphism of T2, by a
similar method. The construction given above, which we learned from Arnoux, will
be returned to in §§ 11.4 and 25.5. However one change must be made. In the above
example, since matrix entries are 0, 1, we can use a vertex shift space to represent the
combinatorial space. For general hyperbolic automorphisms of T2, one first shows
there exists a conjugacy to an integer matrix with nonnegative entries; one then
constructs a Markov partition for this map, such that the transition matrix will be
this same matrix, now using the edge shift convention for the sft. This discovery of
such a nice is due (in different contexts) to Adler [Adl98], Manning [Man02], and also
to [AF05].

Let us for example consider the action of

M = A2 =

[
2 1
1 1

]
=

[
1 1
1 0

] [
1 1
1 0

]
.

This matrix defines a hyperbolic toral automorphism, which is now orientation-
preserving, with the same eigenvectors as A but now with eigenvalues (λ+)2, (λ−)2.
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b a+ b

b

a+ b

b+ a+ b

l0

l1

f

Figure 17. Analogue of the doubling map: a Markov map of the
interval l0∪ l1 by f : x 7→ λ+x, which factors on to the map of the circle
R/(a+b)Z and from there onto the train-track map where the endpoints
of l0 and l1 are identified. This is a factor of the toral automorphism
of Fig. 16, via projection to the x−axis.

By the Adler-Manning theorem, there is a Markov partition for M which repre-
sents it as an edge shift space with exactly the same matrix M . Therefore, the
edge alphabet and partition have 5 elements, and one can see exactly these five
rectangles in the center drawing of Fig. 15, which depicts a generating Markov par-
tition Q = A(P) ∨ P ∨ A−1(P) for the map M . Another choice which will work is
P ∨ A−1(P) ∨ A−2(P); the reader can sketch this partition as an exercise.

5. Recurrence: measure-theoretic and topological

5.1. Four proofs of the Poincaré recurrence theorem. Already one can quite
easily prove a rather amazing result. This is so important that we shall encounter a
number of proofs; the first three we learned from the books of Walters, Halmos and
Furstenberg; each has its own points of interest, it is well worth studying them all.
The fourth proof isolates some key ideas that remain valid in the setting of infinite
measure transformations.

Theorem 5.1. (Poincaré) Let T : X → X be a measure-preserving transformation
of a probability measure space (X,A, µ). Let A ⊆ X with µ(A) > 0. Then µ−almost
every point in A returns to A infinitely often.

Proof. (I)([Wal75]) A point x ∈ X is in A at time k iff T k(x) ∈ A iff x ∈ T−k(A). So
the point enters A after time N iff x ∈ ∪+∞

k=NT
−k(A). It is in A infinitely often iff it

is in A for some time ≥ N for all N > 0. Thus the set of “good” points G, which
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begin in A and return to it infinitely often, is

G = A ∩
+∞⋂

N=0

+∞⋃

k=N

T−k(A).

Write AN for ∪+∞
k=NT

−k(A), so G = A ∩⋂+∞
N=0AN . Note that

A ⊆ A0 ⊇ A1 ⊇ . . .

and that T−1(Ai) = Ai+1. Since T preserves the measure, µ(A1) = µ(A0), yet A0 ⊇
A1; since µ(X) < ∞, therefore µ(A0∆A1) = 0, and similarly, µ(A0∆ ∩+∞

N=0 AN) = 0.
Thus µ(G) = µ(A ∩⋂+∞

N=0AN) = µ(A ∩ A0) = µ(A) since A ⊆ A0. �

Proof. (II)([Hal60]) For this approach we look at the set of “bad”points B, those
points in A that never return. This is

B = A ∩ T−1(Ac) ∩ T−2(Ac) ∩ . . . .
Now if x ∈ B, it never returns to B, since B ⊆ A. Thus B ∩ T−l(B) = ∅ for any
l ≥ 1. Hence for any k ≥ 0,

T−k(B ∩ T−l(B)) = ∅
but this is T−kB∩T−(l+k)(B) = T−kB∩T−nB for n = l+k. So the setsB, T−1(B), T−2(B), . . .
are all disjoint. Now they have the same measure; µ(X) <∞ then forces µ(B) = 0.
What we have shown so far is that a.e. x ∈ A returns at least once. The remaining
step is:

Lemma 5.2. Suppose we know that with the hypotheses of Theorem 5.1, a.e. x ∈ A
returns to A at least once. Then a.e. x returns infinitely often.

Proof. We apply the proof just given to each of the transformations (X,T k, µ) for
k ≥ 1. This produces sets Ak ⊆ A of measure = µA whose points return at least once
for the map T k. Therefore x ∈ Ak returns for the map T for some time > k. So each
x ∈ ∩+∞

k=1Ak returns under the map T for some time > n for each n, hence returns to
A infinitely often. �

�

Each of these arguments has its interesting aspects: Walters’ brings in the impor-
tant notion of the lim sup of a sequence of sets (see Exercise 5.2 below; this notion also
occurs in the proof of Lemma 12.4 of Borel-Cantelli and Proposition 5.7 on transitive
points; see also [Bar66], [Loè77]), while Halmos’ use of the finiteness of the measure
space is more transparent, as he constructs directly a sequence of disjoint sets with
the same measure (and hence of measure 0). But my favorite is this beautiful little
argument due to Furstenberg [Fur81]:

Proof. (III) We shall show that a.e. point in A returns at least once, then apply the
lemma given above. Now µ(A) > 0 and the sets A, T−1A, T−2A, . . . each have the
same measure, hence cannot all be disjoint. So there exist i < j = i+k and a point x
which belongs to both T−iA and T−jA. Thus T i(x) and T k(T i(x)) are in A. Calling
y = T i(x), we have found a single point y ∈ A which returns to A. Rather amazingly,
this is enough to finish the proof!
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Let B ⊂ A be the points which don’t return. But if B has positive measure, then
there exists x ∈ B which returns to B, by the previous argument, hence to A ! So
a.e. point in A does return. �

Definition 5.1. Let (X,A, µ) be a (possibly infinite) measure space and T : X → X
a measure-preserving transformation. A measurable subset A ⊆ X is invariant iff
T−1(A) = A. The opposite case is that the subset A is wandering: that {T−i(A)}i≥0

are all disjoint. A is compressible iff A ⊇ T−1A and µ(A \ T−1A) > 0.
One says A ⊆ X is trivial iff either µ(A) = 0 or µ(Ac) = 0. A measurable

transformation is ergodic iff any invariant set A is trivial; it is conservative iff any
wandering set has measure zero. It is recurrent iff for any set A of positive measure,
for a.e. x ∈ A there exist infinitely many n > 0 such that T n(x) ∈ A. A set is
invariant for a (semi)group action if that holds for each element individually, and is
wandering if all the inverse images are disjoint. Ergodic and conservative actions are
then defined in the same way.

Exercise 5.1. given a map T : X → X, let us say a set A is forward–invariant iff
A = T (A).
(i) Show that an invariant set is forward invariant.
(ii) Find an example of a map with a subset A that is forward-invariant but not
invariant.
(iii) If T is invertible, meaning by definition that it is invertible as a measurable
transformation; i.e. it is a bijection and is bimeasurable, then T−1 is also a measure-
preserving map. Then T is ergodic iff T−1 is.
(iv) Let us say T : X → X is locally invertible if there exists a countable partition
{Pi}i∈N into measurable sets such that each image T (Pi) is measurable, each restric-
tion T |Pi is measurable and and is invertible onto its image. In this case the forward
image of any measurable set is measurable.
(v) Find a measure space (X,A, µ) and f : X → X measurable with a measurable
A ⊆ X such that the forward image is nonmeasurable. (Hint: in a complete sigma-
algebra, all subsets of a set of measure zero are measurable; let A be a subset of a
Cantor subset of the interval which maps forward to a nonmeasurable subset of the
interval).

We remark that by a deep result of Rochlin, a bijective map on a Lebesgue space
is in fact bimeasurable, so it is invertible in the above stronger sense.

Proposition 5.3. If µ(X) <∞ then for a measure-preserving transformation T on
X:
(i) There are no wandering sets of positive measure;
(ii) There are no compressible sets;
(iii) T is recurrent.

Proof. Parts (i) and (ii) are immediate; part (iii) is the Poincaré recurrence theorem.
�

In the infinite measure setting we can take these conclusions as (desirable) proper-
ties; then the first question will be to understand how they are related.

We have:
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Proposition 5.4. There exists a nontrivial wandering set iff there exists a nontrivial
compressible set.

Proof. Given A wandering we take B = ∪∞i=0T
−iA; if µA > 0, this is compressible.

Conversely, given A compressible, define B = A \ T−1A; this is wandering. �

(Draw the pictures!)

Proposition 5.5. T is conservative iff it is recurrent.

Proof. First we prove the easy part: that recurrent implies conservative.
Suppose T is not conservative. Then there exists a wandering set A. Hence µ(A) >

0 and for all k > 0, A ∩ T−kA = ∅. Thus x ∈ A =⇒ x /∈ T−kA; equivalently,
T kx /∈ A. So x never returns.

Now assume T is conservative. We imitate the proof of Walters for the Poincaré
recurrence theorem given above. Thus, given A of measure > 0, we set

G = A ∩
+∞⋂

N=0

+∞⋃

k=N

T−k(A) = A ∩
+∞⋂

N=0

AN ,

and wish to show that µ(A \G) = 0.
As before,

A ⊆ A0 ⊇ A1 ⊇ . . .

and T−1(Ai) = Ai+1. Since T is conservative, there exists no compressible set; hence
µ(Ai \ Ai+1) = 0. Therefore just as before, µ(A0∆ ∩+∞

N=0 AN) = 0, µ(G) = µ(A ∩⋂+∞
N=0AN) = µ(A ∩ A0) = µ(A) since A ⊆ A0. Hence up to a set of measure 0, A

equals G. �

Now since finite measure implies conservative, we have as a corollary yet another
proof of the Poincaré recurrence theorem.

We remark that the arguments of Halmos and of Furstenberg also work in this
setting, showing that if T is conservative, then for A with measure > 0, a.e. point
returns once. However to prove that it returns infinitely often, we would need to
answer:

Question 1. Does T conservative imply T n conservative for all n > 0?

Exercise 5.2. Given a measure space (X,A, µ) we consider the map from A to L∞

given by A 7→ χA. Find function-space interpretations for these operations on sets:
intersection, union, symmetric difference. Find set interpretations for these operations
on functions: product, |f − g|,

∫
X
|f − g|dµ, sup fi, inf fi, lim sup fi, lim inf fi.

5.2. Transitive points and Baire category. The usual understanding of a prop-
erty holding for “almost all” points of a space is measure theoretical, that the comple-
ment of the subset where this is valid have measure zero. A complementary topological
notion is provided by sets of second Baire category. Given the remarkable recurrence
theorem just discussed, it is natural to wonder if there is a purely topological version,
based on the notion of Baire category.
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Given a homeomorphism T of a complete separable metric space X, a point x ∈ X
is transitive iff it has a dense orbit. The aim of this section shall be to show that if
there exists one transitive point, the set E of transitive points is residual.

The fascinating relationship between these two very different but in many ways
parallel ideas of measure and category is explored in Oxtoby’s wonderful little book
[Oxt80] of exactly that title (which cannot be recommended too highly, e.g. for grad-
uate students refining their knowledge for analysis qualfying exams, for professors
preparing for a lecture course, or for anyone with the time to pursue beautifully pre-
sented ideas for their own sake). Here we bring in some basic definitions and one
result, specifically related to dynamics. And indeed, the methods involved may re-
mind one of Poincaré recurrence, specifically of Walters’ proof of the previous section.

The statement, moreover, might recall Furstenberg’s proof of Poincaré recurrence:
there, proving first that a single point recurs to a positive measure set A, we then
used this to show it holds for (measure theoretically) a.e. point in A, and moreover
that a.e. point returns infinitely often.

This always surprising type of logical argument, where an apparently much weaker
statement is used to draw a stronger conclusion, is called (bootstrapping, as it seems
like the genuinely impossible act of “pulling oneself up by one’s own bootstraps”.

Definition 5.2. A set X with topology T is a Polish space iff there exists a com-
patible metric d(·, ·) which makes X a complete separable metric space.

Exercise 5.3. Show that the following spaces are Polish: (i)a compact metric space;
(ii) the real line; (iii) the open interval (0, 1) with the usual topology; (iv) an open
disk minus one point; (v) Π∞−∞R with the product topology; (vi) a countable product
of Polish spaces; (vii)the space of continuous functions from R to R with the topology
of uniform convergence on compact sets.

Definition 5.3. Let (X, T ) be a topological space. A A subset A is nowhere dense
if there is no nonempty open set in which it is dense. It is meagre or of first (Baire)
category iff it is a subset of a countable union of nowhere dense sets. It is residual
or of second category iff it contains a countable intersection of dense open sets.

Thus, the complement of a meagre set is residual and vice-versa.
We recall that a countable union of closed sets is called an Fσ−set, while its com-

plement, a countable intersection of open sets, is a Gδ. Thus a meagre set is contained
in an Fσ of a special type, while a residual set contains a Gδ. Much of the utility of
this notion comes from the Baire Category Theorem, which guarantees in fact a dense
Gδ subset:

Theorem 5.6. Let X be a Polish space. Then a residual set is dense.

Proof. Let Gi be open and dense, for i = 1, 2, . . . . We shall show that

E = ∩∞i=1Gi

is dense. Let U be an open subset of X, and assume that d(·, ·) is a metric compatible
with the topology of X, for which X is complete. Since G1 is dense, there exists x1 ∈
U ∩G1, and there exists δ1 > 0 such that for the ball of that radius, Bδ1(x1) ⊆ U ∩G1

where B indicates the closure of B. Now there exists x2 ∈ Bδ1(x1) ∩ G2 and δ2 > 0
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such that Bδ2(x2) ⊆ Bδ1(x1) ∩G2. Continuing in this manner, and choosing δn so as
to decrease to 0, the sequence (xi)i≥1 is Cauchy; by completeness this sequence has a
limit point x, and the fact that the closure of each ball is contained in the previous
set guarantees that x ∈ U ∩Gk for all k. �

Exercise 5.4. Show that the Q, the set of rational numbers, is not a Polish space.

Definition 5.4. Let T be a homeomorphism of X. A point x ∈ X is transitive iff
it has a dense orbit. The map T is transitive iff there exists a transitive point.

If T is continuous but not necessarily invertible, we say a point is forward tran-
sitive iff it has a dense forward orbit, and the map is forward transitive iff there
exists a forward transitive point.

Proposition 5.7. Let (X, T ) be a Polish space with no isolated points.
(i)Let T be a homeomorphism. Then if T is transitive, the set E of forward transitive
points is residual.
(ii)Let T be a continuous map. Then if T is forward transitive, the set E of forward
transitive points is residual.

We note that in (i), by having biinfinite orbits in the hypothesis and forward orbits
in the conclusion, the statement is stronger in both respects. That is, the existence
of a single biinfinitely transitive point implies existence of (many) forward transitive
points: a residual set hence (by the Baire Category Theorem) a dense Gδ of them.
Without the assumption of no isolated points this can fail, as shown by a simple
example on p. 129 of [Wal82], of a homeomorphism with a dense biinfinite orbit
but no dense forward orbit (imagine the left shift map n 7→ n − 1 on Z, extended
continuously to its two-point compactification Z ∪ {−∞,+∞} by declaring ±∞ to
be fixed points).

Proof. With metric d as above, since X is a separable metric space there exists a
countable base {Ui}i≥1 for the topology. Then E is the set of points x such that
for each j ≥ 1, the forward orbit of x meets Uj. That is, for each j, E ⊆ Gj ≡
∪n≥0T

−n(Uj), so we can write:

E = inf Gj = lim
j≥1

sup
n≥0

T−n(Uj) = ∩j≥1 ∪n≥0 T
−n(Uj).

We claim that each of the open sets Gj is dense. We wish to show that for each i ≥ 1,
Ui meets Gj. Now there exists a transitive point w; that is, for (i), the biinfinite
orbit (T n(w))n∈Z is dense; for (ii) we know this for the forward orbit. Furthermore,
since X has no isolated points this collection of points must be infinite. Now any
dense infinite sequence of distinct points must meet an open set U infinitely often:
singletons are closed sets in a metric space, so U \ {x} is again nonempty open and
we can find the next such element. Given i, j ≥ 0, therefore, in either case, the orbit
of w enters both Ui and Uj infinitely often, one of them first. If we know w is forward
transitive, then from this we know there is a pair of times such that Ui occurs first.
That is, there exists a point x and an k > 0 such that x ∈ Ui and T k(x) ∈ Uj,
equivalently, x ∈ Ui ∩ T−k(Uj) ⊆ Ui ∩ Gj. Thus Ui ∩ Gj is nonempty and hence Gj

is dense as claimed, so E is a countable intersection of open dense sets and hence is
residual.
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If we only know w is biinfinitely transitive, we have to be slightly more careful. Now
if Ui occurs first, the rest of the argument is the same. But for a general argument, we
know there exists n ≥ 0 such that either Ui∩T n(Uj) or Uj ∩T n(Ui) is nonempty. Call
this set U in either case. We claim that there exists k > 0 such that Ui ∩ T k(Uj) is
nonempty, and then will proceed as before. But the transitive point enters U infinitely
many times, so there exists m > 0 and x such that x ∈ U and Tm(x) ∈ U , and we
take simply k = m in the first case, or k = m− n in the second and then proceed as
before. �

We remark that something similar can be proved for group actions; see §51.

6. Analysis background I: Dual spaces give coordinates; Lp spaces

In this section we first develop some analysis tools which will be needed throuhout
the notes. This includes reviewing some basics on Fourier series and transforms, and
on dual spaces.

6.1. Duality: Why “functional” analysis? Functional Analysis could be defined
to be the study of analysis on infinite-dimensional vector spaces. Generally, these
are function spaces, Now the study of functions brings in all the richness of calculus
and analysis: derivatives, integrals, measures, series. And since all of that involves
limiting operations, we shall need first of all a topology on the space. (Indeed, there
are texts with the alternate title Topological Vector Spaces (TVS) [Bou13], or Linear
Topological Spaces [KN+63]).

What makes this study so fascinating and useful is reflected in the fact that, unlike
for finite dimensions, there can be various possible choices for this topology, and
moreover it will be important to study several topologies on the same space.

But then why is the subject called Functional Analysis rather than perhaps Func-
tion Space Analysis? That is because of the key role played by the dual V ∗ of the
vector space V . In infinite dimensions we define V ∗ not to be all linear functionals on
V , but instead all continuous linear functionals. The role of V ∗ is then to coordinatize
V : the V ∗-coordinates of v ∈ V are all the values λ(v) such that λ ∈ V ∗. If we think
of the finite-dimensional case, then choice of a basis, for example the standard basis
(ei)

n
i=1 in Euclidean n-dimensional space defines three dual basis vectors (λi)

n
i=1 via

the inner product, λi(v) = ei · v ≡ vi, and this defines an isomorphism from V to
the coordinate space Rn via v 7→ (v1, . . . , vn). This choice of basis vectors has coor-
dinatized the space. Now we can transport all we know about analysis on R and Rn

to V by this correspondence. In the same way, for the infinite dimensional space V
we do analysis on V via analysis on the coordinate values given by the functionals.
However now it is easier to simply take all of V ∗, rather than trying to select an
efficient subset, i.e. a basis, as this step not only is not necessary but may indeed not
be possible (!).

This is a rough sketch, which becomes more concrete when we encounter the norm,
weak and weak-star topologies on a given space. Identifying the dual space of some
given TVS occupies a central part of the classic [DS57] which includes a large table
of spaces and their duals; here “identify” may mean describing the dual in terms of
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some other space of functions or measures. Proving these theorems always goes deep
and tells us a lot about the spaces involved.

Functional Analysis thus provides both an essential and powerful collection of tools
and a clarifying viewpoint on many questions in Analysis, with key applications in
geometry, physics, probability and differential equations.

So to look at Functional Analysis we first need to recall some basics of the finite
dimensional case, before we can dip into the even more fascinating and richer world
of infinite dimensions.

We consider a vector space V ; for our purposes, the scalar field will be C or R. For
those used to real vector spaces, the main difference is the formulas is that an inner
product has to take account of complex conjugates, as we shall explain.

Let us recall:

Definition 6.1. A norm || · || on V is a function with values in R which satisfies:
(i) ||av|| = |a| · ||v|| (homogeneity);
(ii) ||v + w|| ≤ ||v||+ ||w|| (triangle inequality);
(iii) ||v|| ≥ 0, and ||v|| = 0 iff v = 0. (positive definiteness).

Having a norm of course allows us to define a metric space structure on V , with
the distance between points defined by d(v,w) = ||w − v||.
Definition 6.2. When the field is R, an inner product is a function from V × V to
R, written v ·w or 〈v,w〉, satisfying the following;
(1) v ·w = w · v (commutative law);
(2) (av) ·w = a(v ·w) (associativity of scalar multiplication)
(3) u · (v + w) = u · v + u ·w (distributive law)
(4a) v · v ≥ 0 and
(4b) If v · v = 0 then v = 0.

These imply that also:
(2′) v · (aw) = a(v ·w).
(3′) (u + v) ·w = u · v + u ·w.

Properties (2, 2′), (3, 3′) tell us that this is a bilinear form; (1), (4a), and (4b) add
that the form is symmetric, positive and positive definite. See §35.6 below. Note that
a positive definite bilinear form defines a norm, via

||v|| ≡ (v · v)1/2.

When the field is C, one replaces that with the notion of an Hermitian inner
product: all axioms are as above except now (1) are exchanged for:
(1) v ·w = w · v (conjugate-symmetry). This implies that (2a, b) are replaced by:
(2a) (av) ·w = a(v ·w) (just like (2a)) but now
(2b) v · (aw) = a(v ·w).

Since the Hermitian definition reduces to the real one when the field is R, sometimes
in the literature one begins by defining an inner product via the Hermitian axioms
for both C and R; see [Axl97].

We note that from (1) v · v ∈ R; from (4a, b) we have as before that we have a
norm, with ||v||2 = v · v.
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An example is Cn, where the standard Hermitian inner product of v = (v1, · · · , vn)
and w = (w1, · · · , wn) is defined to be

v ·w =
∑

viwi. (3)

To verify (4a, b) note that for n = 1 then with v = z ∈ C we have ||v|| = (zz)
1
2 = |z|,

while for general n,

||v|| =
(∑

vivi

) 1
2

=

(∑
|vi|2

) 1
2

.
In a real vector space one defines the angle θ between two vectors v and w via the

equation

v ·w = ||v||||w|| cos θ.

Note that since cos(θ) = cos(−θ) = cos(2π − θ) this does not depend on the order
in which we choose the vectors with respect to some orientation chosen on the plane
containing v,w.

When the field is C, we define orthogonality in the same way: v,w are orthogonal
iff v ·w = 0. More generally one defines the Hermitian angle between two vectors by
the equation

|v ·w| = ||v||||w|| cos θ

so −π/2 ≤ θ ≤ π/2.
One could also consider the angle between the vectors as elements of the real vector

space R2n, but this will in general give a different number. That is already true for
C1, since e.g. z = a+ bi and w = −b+ai are orthogonal as vectors in R2, yet zw 6= 0.
(Indeed, in any one-dimensional vector space with a Hermitian inner product, no two
nonzero vectors can be orthogonal.) So, we have to be a bit careful with our intuition
of what angle means here!

Writing K for our field, for finite dimensions, V is isomorphic to Kn. Now if we
have a norm on V , for instance the Euclidean norm, the L1 or L∞ norm, then a key
point is that all norms are equivalent, meaning that they all give the same topology.
See Lemma 35.41.

That is decidedly not the case for infinite dimensions, which in fact is exactly
what makes functional analysis such a useful and fascinating subject. Here we sketch
an explanation, of how one can visualize infinite dimensions, and of how one can
approach these different possible topologies.

Now for an infinite dimensional space, one proves (by the Axiom of Choice, or
equivalently by Zorn’s Lemm–exercise!!) that there always exists an algebraic basis,
called a Hamel basis B. This makes V isomorphic to an abstract space of functions,
since one can identify v with its coordinates (λ(v))λ∈B.

The subject of Functional Analysis is the study of infinite dimensional spaces, hence
spaces of functions. But rather than algebraically via the Hamel basis, we impose
some interesting, useful or natural topology on V . Thus a topological vector space V
is a vector space with a topology T such that the operations + and · (multiplication
by a scalar) are continuous. The key to the study of (V, T ) is to replace the Hamel
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basis by the dual space V ∗ of (V, T ), by definition the set of all continuous linear
functionals on V .

For our function space V , there are many possible choices of topology, some given
by (now nonequivalent!) norms, hence many possible dual spaces. This leads to many
of the different notions of convergence of sequences of functions, which one encounters
in analysis.

Choice of a basis in finite dimensions gives coordinates on V , as it defines an
isomorphism to Kn, which can then be thought of as a space of coordinates for V .

For infinite dimensions, there may not exist a good choice of basis. So instead one
takes all of V ∗, and considers for v ∈ V , the entire set of coordinates

{λ(v) : λ ∈ V ∗}.
This is overkill, but works out very well.

The idea of Functional Analysis is to do analysis with these functionals. In other
words, properties we want to study are examined by way of the coordinates defined
by V ∗.

Recalling that an inner product is denoted by 〈v,w〉, we more generally write

〈λ,v〉 = λ(v).

This is a pairing of V and V ∗, as it is a bilinear function on V ∗ × V .
In finite dimensions, V is isomorphic to V ∗. This isomorphism is not natural, as it

is not unique: it depends on the choice of an inner product on V , as follows Given
such an inner product, written 〈v,w〉 or v ·w, then we define the isomorphism from
V to V ∗ by

v 7→ 〈v, ·〉.
Then, choosing a basis (e1, . . . en) for V , we consider the dual basis (〈e1, ·〉, . . . , 〈en, ·〉, )
for V ∗. Then the map v 7→ (e1 · v, . . . , en · v) defines an isomorphism from V to Kn.

This gives the coordinates for v in terms of the basis of V , or equivalently in terms
of the dual basis for V ∗.

6.2. Lp spaces and Fourier series. Some of the principal examples are the Lp and
lp spaces.

Given a measure space (X,A, µ) then for 0 < p < ∞, the space Lp = Lp(X,A, µ)
is defined to be the vector space of all f : X → K such that

∫
X
|f |pdµ <∞. We set

||f ||p =

(∫

X

|f |pdµ
)p
.

For p =∞ we make the special definition that

||f ||∞ = sup |f(x)|.
These are norms, and make Lp into a Banach space, by definition a complete normed
topological vector space.

If q is such that
1

p
+

1

q
= 1,

then p, q are called conjugate exponents.
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Particularly important examples are where X is [0, 1] or [0, 2π] or Rn, with Lebesgue
measure, or where X is a subset of the integers Z and µ is counting measure. In this
last case one writes lp for the space of sequences Lp(Z, µ). Thus for an index set
I ⊆ Z, l2(I) = {a = (a0, a1, . . . ) : ||a|| < ∞} ⊆ RI where 〈a, b〉 =

∑
I aibi and so

||a||2 =
(∑

I a
2
i

) 1
2 .

Note that for index set I = {1, 2, . . . , d} this is the usual Euclidean norm on Rd.
We note that in probability terms, E(|f |) = ||f ||1 while var(f) = ||f − E(f)||2.

More generally, f has finite pthmoment iff it is in Lp, since E(fp) = (||f ||p)p.
Theorem 6.1.
(i) For 0 < p <∞, the dual space of the Banach space Lp is Lq. For L1 the dual space
is L∞. As above, for f ∈ Lp and g ∈ Lq, we define the pairing 〈f, g〉 =

∫
X
fgdµ.

(ii) Since L2 is self-dual, 〈f, g〉 defines a (Hermitian) inner product. This makes L2

into a Hilbert space, i.e. a complete inner product space, with norm

||f || = 〈f, f〉 12 =
(∫

X

ffdµ
) 1

2 .

(iii) The dual space of L∞(X) where X is a finite measure space is bca(X), the space
of bounded countably additive signed measures. For X an infinite measure space, it is
ba(R), the bounded finitely additive signed measures. Note that L1 embeds naturally
in this dual space in both cases.

For the most classical example of an infinite-dimensional Hilbert space we take
the measure space X to be the one-dimensional torus (i.e. the circle) T = R/2πZ.
We let m denote normalized Lebesgue measure so µ(T) = µ[0, 2π) = 1; that is,
dm = 1/2πdx, and consider the complex or real field K. Then, given f : T→ K, we
identify this with the corresponding 2π-periodic function on R, also written f .

For the space L2(T) we then have the Hermitian inner product 〈f, g〉 =
∫ 2π

0
fgdm.

We define en(x) = e2πinx for n ∈ Z.

Lemma 6.2. For the Hilbert space L2(T), the complex exponentials (en)n∈Z provide
an orthonormal basis.

We write an = f̂(n) = 〈en, f〉, the Fourier coefficients of f .
Now for f ∈ L2, the Fourier series

∑

n∈Z

f̂(n)en (4)

converges and equals f .
More generally, for other function spaces (e.g. L1) one wishes to know whether and

in what sense the Fourier series converges to f .
A further question is: considering a given Banach space of functions L, what is

the corresponding space L̂ of coefficients, and vice-versa: given a space of sequences,
what is its image by formula (4)?

The Fourier series ia also called the Fourier expansion of f . One thinks of this in
two quite different ways: geometrically, as the expression of a vector in terms of an
orthonormal basis in Hilbert space; and physically, as providing a harmonic analysis
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of the function. Thus in (4) we have written a periodic signal or vibration f as a sum
of waves which are harmonically related (as the frequencies n are integer multiples
of the basic frequency 1). These are complex waves, i.e. spirals (or more accurately,
helices) but can be decomposed as real waves as we explain.

We set

f̂(n) = an =

∫ 2π

0

enfdm =

∫ 2π

0

e−2πinxf(x)dm.

This is the nth Fourier coefficient of f .
Given a = (an)n∈Z ∈ l2, we define f : T→ C by Ť (a) = f where

f(x) =
∑

n∈Z

anen.

Theorem 6.3. The map T : f 7→ f̂ = a = (an)n∈Z is an isometry from L2(T) to

l2(Z). That is, 〈f, g〉 = 〈f̂ , ĝ〉. The inverse map is given by a 7→ Ť (a) =
∑

n∈Z anen.

The connection with (real-valued) waves is seen via Euler’s formula

eiθ = cos θ + i sin θ,

from which it follows that
1
2
(eiθ + e−iθ) = cos θ; 1

2
(eiθ − e−iθ) = sin θ whence if an = a−n then

1

2

N∑

−N

anen =
N∑

0

an cos(nθ)

while if bn = −b−n then

−i · 1

2

N∑

N

bnen =
N∑

0

bn sin(nθ).

Thus given (an)n≥0, (bn)n≥0 and defining an, bn for −n by a−n = an and b−n = −bn,
and setting for n ∈ Z, cn = an − ibn, we have that

N∑

0

an cos(nθ) +
N∑

0

bn sin(nθ) =
1

2

N∑

−N

cnen.

In this way, any series in cos and sin can be realized as a Fourier series, in a unique
way.

This is for an, bn complex, but includes the case of real Fourier series, which by
definition is such a series with (an)n≥0, (bn)n≥0 real.

Conversely, any C-valued fuction f can be uniquely decomposed into its real and
imaginary parts fR = Re(f), f Im = Im(f) : R → R, with f = fR + if Im. Consider
(dn)n∈Z with dn ∈ C, and decompose it as dn = dRn + idImn .

Let cn be one of these. Now since (exercise!) since any function f on R or Z can
be decomposed uniquely into its even and odd parts, f = fe + fo, given (cn)n∈Z with
cn ∈ R, uniquely write an = bn + cn.
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Thus we can separate a series

1

2

N∑

−N

cnen

into four series in sin and cos with real coefficients, in a unique way.
∑N

N anen =∑N
0 bn cos(nθ) +

∑N
0 cn sin(nθ).

We define µ to be counting measure on Z, and l2 = L2(Z, µ) to be all C-valued
sequences (an)n∈Z such that

∑ |an|2 < ∞. This is a Hilbert space with Hermitian
inner product 〈an, bn〉 =

∑
anbn. (See (129)). Thus the norm of this Banach space is

||a(·)||2 = (
∑ |an|2)1/2.

Theorem 6.4.

6.3. Taylor series, Fourier Series and Laurent Series. We just want to touch
here on the beautiful relationship between these notions.

A real power series is
the radius of convergence is
MacLaurin’s Series, or the Taylor series at 0, is
Examples are

7. Analysis background II: signed measures as dual spaces; Riesz
representation, Krein-Milman and Choquet; existence of invariant

measures, the ergodic theorem, generic points, mixing

At this point it will be healthy to recall a bit more of fundamental measure theory,
by way of functional analysis.

Let (X, d) be a compact metric space, and C(X) = C(X,R) the space of continuous
real-valued functions on X. We give C(X) the sup norm, ||f ||∞ = supx∈X |f(x)|, with
respect to which it is a Banach space. Then ....

Radon-Nikodym theorem
product spaces (top and measure) : Tychonoff theorem

-product measure
separability of space of continuous functions
dual of continuous functions on interval and reals (Riesz (Markov Kakutani) rep-

resentation) Rudin R and C, D and S for ftly add...
Stone-Weir: Kelley Top
used by Nelson for Brownian M
Weak* topology

Banach-Alaoglu: X compact metric then prob measures are weak* compact Walters82
p. 150).

dual space of uniformly bdd cts functions on Polish space;
tightness

Banach-Alaoglu and Krein-Milman;
Choquet theorem
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7.1. Existence of invariant measures.

Theorem 7.1. Let (X,A) be a measurable space (a set X with a σ−algebra A).
Let T : X → X be measurable.
The transformation is ergodic iff each invariant measurable real-valued function is

a.s. constant. [Bil65] p. 13. (This statement is true also for C-valued functions,
since f = u+ iv is invariant iff u and v are.)

We call µ an ergodic measure iff the transformation (X,A, T ) is ergodic.
(i) (see Billingsley [Bil65] p. 38 ff.) Two ergodic probability measures µ, µ̂ are either
identical or mutually singular.
(ii) the collection PA of invariant probability measures is a convex set, whose extreme
points are exactly the ergodic invariant measures.

If (X, T ) is a topological space and T : X → X is continuous, then we write
M(X,T ) for the collection of all probability Borel measures, and give this the weak-*
topology. Then:
(iii) (Krylov-Bogliubov) If X is compact metric, then M(X,T ) is a nonempty convex
compact set. (See e.g. of [Wal82] p. 152).
(iv) (Fomin) [?] In fact the statement of (ii) holds if (X, T ) is a Polish space (Def.
5.2).
(v) (Krein-Milman) Any element ofM(X,T ) can be expressed in a unique way as an
(integral) convex combination of extremem points. That is,....
(v) (Choquet), see [Phe01]

Proof. �

Definition 7.1. A topological transformation (or flow ) is uniquely ergodic iff
there exists a unique invariant probability measure.

generic points

Definition 7.2. Recall that when (X, T ) is a topological space with Borel probability
measure µ and T a measure-preserving transformation on X, then x ∈ X is a generic
point for T iff for each F ∈ C(X), the ergodic averages converge to the expected value:

lim
N→∞

1

N

N−1∑

n=0

F ◦ T n(x) =

∫

X

Fdµ. (5)

One has the following important, easy to prove but at first surprising result:

Theorem 7.2. (Krylov-Bogliubov) If (X, T ) is a compact metric space, with probabil-
ity measure µ and continuous, ergodic measure-preserving map T , then µ-a.e. point
is a generic point.

Proof. By the Birkhoff ergodic theorem, for every continuous function F ∈ C(X)
there is a full measure set EF ⊆ X such that for every x ∈ EF (116) holds true.
Since X is compact, C(X) is separable (for the sup norm). Let D = {Fi}i∈N be a
dense subset of C(X). Then (116) holds for every x in E = ∩i∈NEFi , simultaneously
for every F ∈ D. Now every F ∈ C(X) is ε-uniformly approximated by F ∈ D. So
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both sides of (116) are within ε hence the equation holds for every F ∈ C(X); that
is, µ-almost every x is a generic point. �

Theorem 7.3. (Fomin) The same holds if X, T ) is a Polish space (a topological space
such that htere exists an equivalent metric which makes this a complete separable
metric space).

This is [Fom43], see below (???)

Exercise 7.1. Show that for the rotation Rv, minimality is equivalent to unique
ergodicity.

TO DO...
existence of invariant measure for compact space
Furst defn of amenable
ergodicity and extreme points, ergodic decomposition
Lebesgue spaces; example: Polish spaces.
finitely additive measures and compactness
unique ergodicity

Hint: For the flow part you may need .... (flow cross-section)
Extend these results to the d−torus.

Theorem 7.4. (Birkhoff 1931) Let T be a measure-preserving transformation of a
probability space (X,A, µ), and let f ∈ L1(X,µ). Then there exists an invariant L1

function f and an invariant set of full measure X1 ⊆ X such that

1

n

n−1∑

k=0

f(T kx)→ f

for all x ∈ X1 and
∫
X
fdµ =

∫
X
fdµ.

In particular, if T is ergodic then f =
∫
X
fdµ is constant, so we have the famous

statement “time average= space average”:

1

n

n−1∑

k=0

f(T kx)→
∫

X

fdµ almost surely.

Given (X,A, µ, T ) as above, we define a linear operator U on L2(A, µ) (with com-
plex values) by U(f) = f ◦ T ; this is the Koopman operator. Since T preserves µ,
〈Uf, Ug〉 = 〈f, g〉 i.e. U is a unitary operator.

As a corollary of Birkhoff’s theorem one has von Neumann’s L2 (mean) ergodic
theorem (since convergence a.s. implies convergence in L2):

Theorem 7.5. (von Neumann 1932) Let T be a measure-preserving transformation
of a probability space (X,A, µ), and let f ∈ L2(X,µ). Then for f the projection of f
to the subspace of invariant functions, we have

∣∣∣∣
∣∣∣∣
1

n

n−1∑

k=0

f(T kx)− f
∣∣∣∣
∣∣∣∣
2

→ 0.
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Remark 7.1. In fact despite the dates of the articles, von Neumann’s theorem pre-
ceded Birkhoff’s and inspired it- Birkhoff was the editor at the Annals to whom von
Neumann sent his article (!). See [Bir31], [Neu32b], [Neu32a].

–choosing a point from circle by dynamics
Krylov- Bougliobov

8. Mixing, weak mixing and ergodicity

Definition 8.1. Given a measure-preserving transformation T of a probability space
(X,A, µ), T is mixing iff for every A,B ∈ A we have
(i)

µ(A ∩ T−nB)→ µAµB as n→∞.
It is weak mixing iff
(ii)

1

N

N−1∑

n=0

|µ(A ∩ T−nB)− µAµB| → 0 as N →∞.

A third related condition, which we come back to, is
(iii)

1

N

N−1∑

n=0

µ(A ∩ T−nB)→ µAµB as N →∞.

Remark 8.1. If T is invertible, the apparent time asymmetry is illusory, since the
above statements with limit at +∞ can be replaced equivalently by limits at ±∞,
since µ(A ∩ T−nB) = µ(T n(A ∩ T−nB)) = µ(T n(A) ∩B).

Proposition 8.1. Each of (i), (ii), (iii) implies ergodicity.

Proof. Suppose A is invariant. Then taking B = A in (i), we have µ(A) = µ(A ∩
T−nA) → (µA)2 as n → ∞, so for x = µA, x = x2, x2 − x = x(x − 1) = 0 leaving
x = 0 or x = 1, and A is trivial. The same proof works assuming (ii) or (iii). �

Lemma 8.2. Let (X,A, µ, T ) be a measure-preserving transformation of a probability
space. Then for any A,B ∈ A, we have

lim
N→∞

1

N

N−1∑

n=0

µ(A ∩ T−nB) =

∫

X

χAχBdµ

where χB is the projection of χB to the space of invariant functions.

Proof. By the Birkhoff ergodic theorem,

lim
N→∞

1

N

N−1∑

0

χB(T n(x))→ χB

for a.e. x, where by the projection to the space of invariant functions we mean that for
any invariant subset E,

∫
E
χBdµ = µ(B ∩E). Multiplying both sides of the equation
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by the function χA, we still have almost-sure convergence:

χA

(
1

N

N−1∑

0

χB ◦ T n
)
→ χAχB

Making use of the Lebesgue dominated convergence theorem (i.e. that a.s. con-
vergence for bounded functions implies the integrals converge), while noting that
χA(χB ◦ T n) = χAχT−nB = χA∩T−nB, yields

1

N

N−1∑

0

µ(A ∩ T−nB)→
∫

X

χAχBdµ.

�

Proposition 8.3. In fact (iii) of Definition 41.1 is equivalent to ergodicity.

Proof. We have already proved that (iii) implies ergodicity. Now assuming T is
ergodic, then in the proof of Lemma 8.2, χB is the constant function µ(B), so by the

lemma, lim 1
N

∑N−1
n=0 µ(A ∩ T−nB) = µ(A)µ(B). �

Exercise 8.1. Show that the odometer transformation is not weak mixing. Show the
same for an irrational circle rotation.

We have already shown that, separately, mixing and weak mixing imply ergodic,
but it is worth noting that one now has a different argument:

Proposition 8.4. Mixing implies weak mixing implies ergodic.

Proof. For a sequence (ak)
∞
k=0, then ak → 0 iff |ak| → 0, which certainly implies that

1
n

∑n−1
k=0 |ak| → 0. Furthermore | 1

n

∑n−1
k=0 ak| ≤ 1

n

∑n−1
k=0 |ak|. Therefore in Def. 41.1,

taking ak = µ(A ∩ T−kB)− µAµB we have (i) =⇒ (ii) =⇒ (iii). �

Exercise 8.2. Show, directly from the definition, that the odometer transformation
is ergodic but is not weak mixing. Show the same for an irrational circle rotation.

Lemma 8.5. For a bounded complex-valued sequence (ak)k≥0, these are equivalent:
(a)

1

n

n−1∑

k=0

|ak| → 0

(b)

1

n

n−1∑

k=0

|ak|2 → 0

(c)

ak → 0 in density ,

i.e. along a set of times of density one.
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Proof. As noted above, clearly ak → 0 =⇒ 1
n

∑n−1
k=0 ak → 0. It follows that for ak

bounded, (c) =⇒ (a). To show (a) =⇒ (c), we shall construct a set J ⊆ N of
density zero such that ak → 0 for n /∈ J . A naive approach would be the following.
We know that for each m ∈ N the set Jm = {n : |an| > 1/m} has density zero;
we could hope that J = ∪m≥1Jm will work. The problem with this argument is
that ∪Jm may not have density zero (one way of looking at this is that density
only leads to a finitely additive measure on the integers; see §33.1). Instead, noting
that J1 ⊆ J2 ⊆ ..., we define J to be J1 on a first interval [0, n1] ∩ N, then J2 on
[n1 + 1, n2] ∩ N, and so on. We choose this increasing sequence nm so that a density
estimate of 1/m has kicked in for the set at the next stage, Jm+1, at that point. That
is, for all m, for all L ≥ nm, 1

L
#{Jm+1 ∩ [0, L]} < 1/m. Then for nm < L ≤ nm+1 we

have J ∩ [0, L] ⊆ Jm+1 ∩ [0, L] so 1
L

#{J ∩ [0, L]} ≤ 1
L

#{Jm+1 ∩ [0, L]} ≤ 1/m, so J
does have density zero, and an → 0 off of J as desired.

Lastly, from the equivalence of (a) and (c), applied instead to the sequence |an|2, we
have that (b) ⇐⇒ a2

n → 0 in density, but this last statement is certainly equivalent
to (c).

�

Proposition 8.6. These are equivalent, for a measure-preserving transformation T
of a probability space (X,A, µ):
(i) T is weak mixing;
(ii) Given A,B ∈ A, there is a subset K ⊆ N of density one such that T is mixing
along K; that is, if K = {k1, k2, . . . } then limi→∞ µ(A ∩ T−kiB) = µAµB.

Proof. Taking as above an = µ(A∩T−nB)−µAµB, then this follows from (a) ⇐⇒ (c)
in the lemma. �

Exercise 8.3. Use part (ii) above to give another proof that the odometer and the
irrational rotation are not weak mixing.

Remark 8.2. Now mixing states that for all A,B,

µ(A ∩ T−nB)→ µAµB.

An interpretation of this statement is that the events A and T−n(B) are asymptotically
independent.

From Prop. 8.6, weak mixing then has the interpretation of the sets becoming
asymptotically independent except for a rare set of times.

Here are two further interpretations of mixing, via relative measures. First, the
above has this equivalent phrasing: that for each fixed B, then for all chosen A,

µT−nB(A)→ µA;

this expresses that T−nB is getting thoroughly dispersed throughout the space, as

µT−nB → µ as n→∞
in this natural sense.

Secondly, for each fixed A, then for all B,

µA(T−nB)→ µB as n→∞,
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which says that each set B is getting evenly dispersed throughout A as n→∞.
Again, from Prop. 8.6, weak mixing has a corresponding version for both of these.

As pointed out by [EW10] p. 70, the key Lemma 8.5 (which we learned from Walters
[Wal82]) is due to Koopman and von Neumann [KN32]. Part (ii) of Prop. 8.6 will
bear further fruit when we return to further properties of weak mixing in §14 below.

Remark 8.3. It is important in the definitions that we are working with a probability
space. (See Exercise 3.3). Indeed, suppose µ is a probability measure and ν = cµ for
c > 0, so ||ν|| = ν(X) = c; then A,B are independent iff µ(A ∩ B) = µ(A)µ(B) and
so iff ν(A ∩ B) = ν(A)ν(B)/||ν||, so this is the natural definition of independence
if the measure is finite; the definitions of mixing and weak mixing in 41.1 should be
changed accordingly.

We mention that as a consequence one has a possible definition of mixing in the
infinite measure setting: the limit, taken as we induce on ever-larger sets of finite
measure, yields

ν(A ∩ T−nB)→ 0 as n→∞.
........
Reason for proving with squares wil be seen below in ...
....
Lemma: enuf to chack any on generating collection of sets
example: Bernoulli shift, golden toral aut. are mixing hence ergodic

9. Information and entropy.

-20 questions, information content of a subset -information of a partition: expected
value of information function -information and independence -information of a trans-
formation -ergodic theorem of information.

10. Basic constructions

We begin with definitions for the set category, whose objects are a set X together
with a map f : X → X, i.e. for sets and functions with no additional measure-
theoretic or topological structure. For a category of dynamical systems with more
structure, e.g. the topological category, with continuous maps on compact metric
spaces, or the smooth or the measurable and measure- preserving category, the natural
changes in the definitions are made. We learned much of this material in an excellent
course in Ergodic Theory given by Doug Lind.

10.1. Products.

Definition 10.1. The product of two transformations (X,T ) and (Y, S) is the map
T × S on the product space X × Y where by definition (T × S)(x, y) = (Tx, Sy).

This provides the simplest example of a factor of a dynamical system, as both
(X,T ) and (Y, S) are homomorphic images of (X × Y, T × S).
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Exercise 10.1. Show that the product of two circle rotations (T, Rθ) and (T, Rφ)
is isomorphic (via a measure-preserving homeomorphism) to a rotation on the two-
torus; the measures are the product of Lebesgue measure on the circles, and Lebesgue
measure on the torus, respectively. Show that Rθ ×Rθ is not ergodic.

10.2. Natural extension. We have already seen an example of the projection of
an invertible onto a non-invertible transformation: a two-sided shift factoring onto
a one-sided shift (Exercise 4.5). A related example is the projection of the baker’s
transformation onto the doubling map of the interval, by considering only the x
coordinate, see Figs. 7, 5, and the projection of a hyperbolic toral automorphism
onto a Markov map of the interval in Figs. 16, 17.

But is this a general phenomenon, that is, does every non-invertible map arise
as a factor of an invertible one? In other words, can one always find an invertible
extension of any map? And, if this can be done, is there a natural choice for this
covering transformation?

Now such an extension is certainly not unique: given one invertible extension,
another, in some sense larger, one can be produced simply by taking the product
with any invertible map. To be more precise, we consider dynamical systems in a
given category: set, topological, and measure-theoretic, and make this

Definition 10.2. We define a partial order on the collection of all dynamical systems
in one of the above categories, with (X,T ) ≤ (Y, S) iff there is a factor map from (Y, S)
to (X,T ). (Recall that by definition, this is a surjective map which semiconjugates
the dynamics).

The natural thing to do is, then, to look for a smallest invertible extension, with
respect to this order. There is a general mathematical procedure to try in such a
situation, known as an inverse limit construction. We describe how to carry this
out in each of the above categories.

Let T : X → X, perhaps not invertible. Writing Π = Π+∞
i=−∞X, we give this space

the dynamics of the left shift map σ. We then define X̂ ⊂ Π to be the set of all
biinfinite sequences of points x ≡ (. . . x−1.x0x1 . . . ) such that xi+1 = T (xi) for all

i ∈ Z. We write T̂ for the shift restricted to X̂, and define π : X̂ → X by π(x) = x0.
In what follows we note that if T is not surjective, then we can replace (X,T ) by

the restriction to the eventual range (Proposition 4.2).

Proposition 10.1. T̂ : X̂ → X̂ is an invertible map. satisfying (X̂, T̂ ) ≥ (X,T ).

We have T ◦ π = π ◦ T̂ , and π is surjective if and only if T is.
If S : Y → Y is an invertible map and ϕ : Y → X satisfies ϕ ◦ S = S ◦ ϕ, then

there exists a unique ϕ̂ : Y → X̂ such that π ◦ ϕ̂ = ϕ, and ϕ̂ is surjective iff ϕ is.

If T is a continuous map of the topological space (X, T ), let T̂ be the relative

topology on X̂ induced from the product topology on Π. Then T̂ is a homeomorphism

of X̂ and π̂ : X̂ → X is continuous. If S is a homeomorphism of the topological space
(Y,S) such that the map ϕ : Y → X as above is continuous, then ϕ̂ is continuous.

If T is a measure-preserving map of the measure space (X,A, µ), then defining Â
to be the relative sigma-algebra on X̂ induced from the product sigma-algebra on Π,
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there exists a unique measure µ̂ on (X̂, Â) such that π∗(µ̂) = µ; µ̂ is T̂ -invariant,
and if S is an invertible measure-preserving of a measure space (Y,B, ν) such that

the map ϕ : Y → X takes ν to µ, then ϕ̂ : Y → X̂ as above is a measure-preserving
homomorphism.

Proof. Beginning in the set category, supposing T is onto, then given x0 ∈ X there
exists a sequence of preimages, (. . . x−2, x−1) such that xi+1 = T (xi) for all i ≤ −1.
Defining the biinfinite string x ≡ (. . . x−1.x0x1 . . . ) so this holds for all i ≥ 0 as

well, we have found x ∈ X̂ such that π(x) = x0, whence π is onto. Conversely,

given x0 ∈ X, then if π is onto we have some x ∈ X̂ such that π(x) = x0. Here
x ≡ (. . . x−1.x0x1 . . . ), whence T (x−1) = x0 and T is onto.

Now given S : Y → Y invertible with a semiconjugacy ϕ : Y → X, and given
y0 ∈ Y , let y = (. . . y−1.y0y1 . . . ) be the (unique) sequence such that S(yi) = yi+1.

Define ϕ̂ : Y → X̂ by ϕ̂(y0) = x ≡ (. . . ϕ(y−1).ϕ(y0), ϕ(y1) . . . ); that x ∈ X̂ follows
from the fact that ϕ ◦ S = S ◦ϕ. Then ϕ̂ ◦ S = S ◦ ϕ̂; and ϕ̂ is the unique such map;
moreover ϕ̂ is indeed surjective iff ϕ is.

Moving to the topological category, for i ∈ Z, let πi : Π → X denote the ith

coordinate projection; thus π = π0. The product topology on Π is the smallest

topology to make each coordinate projection πi continuous, so a fortiori π : X̂ → X

is continuous. More concretely, for U open in X, then Û ≡ π−1(U) = (· · · ×X ×X ×
U ×X × . . . ) ∩ X̂ which is open in the relative topology on X̂.

Now the product topology is generated by sets of the form π−1
i (U). And for any

k ∈ Z, T̂ k(π−1
i (U)) = π−1

i+k(U) which is open; in particular this holds for k = ±1,

proving that T̂ is a homeomorphism.
Lastly we consider the category of measure-preserving mappings.

For n ≤ k ≤ m ∈ Z, consider An, . . . , Am ∈ A and set Âk = π−1
k (Ak). The

sigma-algebra Â is generated by sets of the form Ân ∩ · · · ∩ Âm = (· · · × X × X ×
An × · · · × Am × X × . . . ) ∩ X̂. We define µ̂ on such a set by µ̂(Ân ∩ · · · ∩ Âm) =

µ(πn(Ân ∩ · · · ∩ Âm)) = µ(π0(T−n(Ân ∩ · · · ∩ Âm)). This is additive since for two

disjoint such sets, (Ân ∩ · · · ∩ Âm) and (B̂n ∩ · · · ∩ B̂m), the image by T−n and then

by π is disjoint and µ is additive. Since µ is T -invariant, µ̂ is T̂ -invariant. We show
that for the map ϕ : Y → X, given that ϕ∗(ν) = µ, then ϕ̂∗(ν) = µ̂. Now for A ∈ A,
µ(A) = µ̂(π−1(A)) but also µ(A) = ν(ϕ−1(A)), and since ϕ̂−1(π−1(A)) = ϕ−1(A) we
are done.

�

Now we see that the natural extension satisfies a universal property.

Corollary 10.2. Given a dynamical system (X,T ) with T surjective, in the set,

topological or measure-preserving categories, then the the natural extension (X̂, T̂ ) is
the unique (up to isomorphism) smallest extension of (X,T ) which is an invertible
transformation.

Proof. If there is another minimum extension (Y, S) then there exists ϕ : Y → X

and Φ : X̂ → Y both surjective such that π = ϕ ◦ Φ. We also know than since X̂ is
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minumum, for this same ϕ there exists ϕ̂ : Y → X̂ with ϕ̂ ◦ π = ϕ. We claim that
Φ ◦ ϕ̂ is the identity idY . Suppose that for some y ∈ Y , Φ ◦ ϕ̂(y) = ỹ. Let x = ϕ̂(y).
Then we can identify x = (. . . x−1.x0x1 . . . ), since x0 = π(x) = π ◦ ϕ̂(y) = ϕ(y), and
similarly, xk = π(T k(x)) = ϕ(Sk(y)).

Now we are given that Φ(x) = ỹ. We claim that y = ỹ. Since Φ is surjective,
there is some x̃ which maps to y. But we know the sequence x̃, since ϕ ◦ Φ(x̃) =
ϕ(y) = π(x̃) = x̃0 but this is also ϕ(y) = x0; similarly x̃k = xk for all k ∈ Z. Thus
y = Φ(x̃) = Φ(x) = ỹ.

Thus ϕ̂ is an isomorphism from (Y, S) to (X̂, T̂ ). It follows that in the topological
and measure categories this is a topological, respectively measure, isomorphism. �

Remark 10.1. REMARK: (no dynamical Schröder-Bernstein theorem).??? examples:
solenoid/shift space

10.3. Towers. Beginning in the set category, given X with a map T : X → X and
a function r : X → N∗ = {1, 2, . . . } (for the time being, no measure or σ−algebra
is involved) we define a countable partition P = {X1, X2, . . . , } of X by the values
taken, with Xn = {x : r(x) = n}.

We define subsets of the product space X × Z as follows. For n ∈ Z we write
Xn,k = Xn × {k}. The nth column over Xn is Cn = ∪n−1

k=0Xn,k. The kth level of this
column is Xn,k, so Cn has n levels. We define the tower space to be the union of

the columns, X̂ = ∪n∈N∗Cn; thus X̂ = {(x, k) : 0 ≤ k < r(x)}. See Fig. 18.

The kth level of the tower is the union of the column levels, so Lk = {(x, k) ∈ X̂}.
The zeroth level L0 is called the base of the tower, and is naturally identified with
X via (x, 0) 7→ x. The top ≡ ∪∞n=1Xn,n−1 is the union of all the highest levels of
the columns; a point (x, 0) in the base corresponds to the point above it in the top,
(x, r(x)− 1).

We define a map T̂ on X̂ as follows: in each column (excluding its top level) we
ascend like an elevator, sending Xk,n to Xk+1,n by (x, k) 7→ (x, k+ 1), and on the top
define:

T̂ (x,m) = (Tx, 0).

The set X̂ is known as the tower or Kakutani skyscraper over X with return-
time function or height function r, since the time it takes for a point (x, 0) in L0

to return to the base is r(x), which equals the height of the tower. We write (X̂, T̂ , r)
for the tower space and map.

So far we have been working with sets; now we bring in measures. Given a measure-
preserving transformation (X,A, T, µ), with µ finite or infinite σ−finite, together with
a measurable function r : X → N∗, we extend µ to the tower as follows: letting m

denote counting measure on N, we define µ̂ on X̂ to be the restriction of product

measure µ ×m to X̂ ⊆ X × N; that is, we copy the measure on the base vertically
on each column.

Lemma 10.3. If (X,A) is a measurable space and T : X → X and r : X̂ → N∗
are measurable functions, then the tower map T̂ : X̂ → X̂ is measurable and µ̂ is

invariant for T̂ .
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Proof. For E a measurable suset of a level ≥ 1, T−1(E) is one level down hence is
measurable and has the same measure. It remains to check this for E ∈ A with
E ⊆ L0. Identifying X with L0, we have T : L0 → L0; we compare T−1(E) to

T̂−1(E). For each n, En ≡ Xn ∩ T−1(E) is a measurable set; we ride this up to

the top of the column Cn over Xn to E ′n = T̂−1(E) ∩ Cn, which is measurable and

of the same measure. But T̂−1(E) equals ∪n≥1E
′
n, so µ̂(T̂−1(E)) = µ̂(∪n≥1E

′
n) =

µ(∪n≥1En) = µ(T−1(E)) = µ(E). �

We remark that in the above, we have not assumed T is an invertible map.

10.4. Return times and induced maps. Beginning with T : X → X measurable,

and given A ⊂ X, we set B = Ac and define the return-time function rA : A→ N̂∗
by

rA(x) = inf{n > 0 : T n(x) ∈ A}
with rA(x) =∞ if x never returns to A.

Setting
Ak = {x ∈ A : rA(x) = k}, (6)

we call the collection {Ak : k ∈ N̂∗} = N∗ ∪ {∞} the return-time partition of A.
Note that A1 = A ∩ T−1(A), and in general: Ak = A ∩ T−1(B) ∩ · · · ∩ T−(k−1)(B) ∩
T−k(A). As a consequence, these are measurable sets, and so rA is a measurable
function.

The induced map or first-return map of T on A \ A∞ is:

TA(x) = T rA(x)(x),

that is, TA = T n on the set An.
We write XA = ∪n∈NT n(A). Since these are forward (rather than inverse) images,

whether or not this set is measurable is a subtle point; that is true for instance if T
is locally invertible (see Exercise 5.1).

The dynamics of T on this subspace of X is indicated in Fig. 19; points move
upwards in a bijective way.

Now we restrict attention to invertible maps. We use the return-time data to build

the tower of height rA over the induced map (A, TA), denoting this by (X̂A, T̂ ). We

define a map α : X̂A → XA by α(x, k) = T k(x); see Fig. 18.
(We return to consider further the non-invertible case below in §50.1.)

Theorem 10.4. Given an invertible measure-preserving transformation T of a mea-
sure space (X,A, µ), and a recurrent subset A ∈ A of positive measure, then the
induced (first-return) map TA is measurable and measure-preserving. The tower with
height rA built over (A,A|A, µ|A, TA) is isomorphic to the restriction of the original
map (X,A, µ, T ) to the set XA swept out by A, via the map α. In particular, if T is
conservative ergodic then the tower map is isomorphic to the original map.

Proof. We have already noted that each Ak is a measurable set, with rA a measurable
function.

Since T is invertible as a measurable transformation, as noted in Exercise 5.1, T−1

is also a measure-preserving map, whence XA is a measurable set.
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· · ·
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A4 A3 A2 A1· · ·
···

Figure 18. The conjugacy from the external to the internal tower.

That A is recurrent means µ(A∞) = 0. Given E ⊆ A measurable, T−1(E) is
a measurable subset of the top of the tower. As in the proof of Lemma 10.3, we

compare Ẽ ≡ T−1(E) to T−1
A (E), except now we use the converse argument. Thus to

show the measurability of T−1
A (E), we move each piece on the top of a given column

Cn (that is, Cn ∩ Ẽ) down to the base, getting En ≡ T−(n−1)(Cn ∩ Ẽn). The union
of these sets is the inverse image: T−1

A (E) = ∪En, which is measurable and has the
same measure as T−1(E) and hence as E. �

In summary, there is a duality between the operations of inducing and tower-
building: the tower built over an induced map is isomorphic to the original map, and
the induced map on the base of a tower map is the original map on that base. The
figure on the right, since it consists of points from the original space X, can be called
an internal tower, in contrast to an external tower on the left which has been
built by adding points to the space.

10.5. Four applications of the tower construction. We illustrate the importance
and power of Kakutani’s tower idea, coupled with that of the the natural extension,
with four results.

Poincaré Recurrence via towers.
First we have yet another proof of the Poincaré Recurrence Theorem, which is

perhaps the most transparent of all, because of the geometric picture that comes
from the idea of representing a transformation as the tower over an induced map.

Theorem 10.5. Given a measure-preserving transformation (X,A, µ, T ) and A ∈ A
with µ(A) > 0, writing Ã for the set of points in A which return at least once, then if
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Figure 19. The tower proof of Poincaré recurrence.

Ã has positive measure, a.e. point of Ã returns infinitely many times. If µ(X) <∞,
then this is a.e point of A.

Proof. (invertible case) We build the tower XA = ∪n∈NT n(A) of Fig. 19. We are not
assuming rA is everywhere finite; the points which never return define the set A∞,
with an infinite height column C∞ = ∪k∈NA∞,k above it. We know the points in the
complement A1 ≡ A \ A∞ = ∪∞i=1Ai,0 all return at least once. Since T is invertible,
the levels A∞,k of the column C∞ are all measurable, with the same measure. If X
has finite measure then A∞ must have measure zero whence µ(A \ A1) = 0.

In Theorem 50.1 we have shown the map TA : A → A is measure-preserving.
Thus A2 ≡ T−1

A (A1) has full measure in A. And x ∈ T−1
A (A1) iff TA(x) ∈ A1 iff

(TA)2(x) ∈ A. Continuing in this way, the sets A1 ⊇ A2 ⊇ A3 ⊇ . . . nest down to
a set of full measure in A, so indeed a.e. point of A returns to A infinitely many
times. �

Proof. (noninvertible case) Supposing now that (X,A, µ, T ) is noninvertible, we con-
struct its natural extension, denoted now (Y,B, ν, S); we write π : Y → X for the
natural homomorphism. Let A ⊆ X have positive measure, and consider C = π−1(A).
Then ν(C) = µ(A) since π is measure-preserving. From the proof for the invertible
case, there exists a set G ⊆ C of full measure such that every x ∈ G returns to C
infinitely many times. Consider the points B ⊆ A which do not return to A infinitely
many times. Then any w ∈ π−1(B) is not in G. Hence µ(B) = 0. �

Note by the above that if (X,A, µ, T ) is conservative, then given A of positive
measure, by the above µ(A∞) = 0, and hence a.e. point returns infinitely often. This
gives a second proof that conservative implies recurrent, see Proposition 5.5.
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Figure 20. The integral equals the total mass.

Kac’ theorem via towers.
The Poincaré Recurrence Theorem states that we return to A; a next question will

be: how long will it take to return? A precise answer is given by the following famous
theorem of Kac:

Theorem 10.6. Let (X,A, µ, T ) be a measure-preserving transformation of a prob-
ability space. We assume that the future iterates of A sweep out all of X (e.g. if the
map is ergodic). Then the expected return time to A is 1/µ(A).

Proof. (invertible case) Since A sweeps out X, it has positive measure. We draw the
tower picture of Fig. 18. We draw also the graph of the return-time function rA. Now
the expected return time is just the expected value (see §3 and Fig. 3) of rA, and
is the integral over the normalized (i.e. the relative) measure µA. The integral with
respect to the non-normalized restricted measure µ|A can be found by summing the
mass of each horizontal rectangle on the left, which equals the sum of the mass of
each level on the right. And this total mass is exactly µ(X) = 1.

This gives

E(rA) =

∫

A

rAdµA =
1

µ(A)

∫

A

rAdµ|A =
1

µ(A)
· 1.

Proof (noninvertible case) Given (X,A, µ, T ) noninvertible, we construct its natural
extension (Y,B, ν, S), with π : Y → X the natural homomorphism. Now consider
A ⊆ X and its lift B = π−1(A); these have the same measure. Note that the return-
time function lifts:

rB = rA ◦ π.
Thus

E(rA) = E(rB) =
1

µ(B)
=

1

µ(A)
.

�

Rochlin’s Lemma via towers.
We next introduce the following basic tool of ergodic theory:
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···
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Figure 21. Proof of Rochlin Lemma for n = 2, 3; Rochlin tower of
height n.

Theorem 10.7. (Rochlin) Given an ergodic invertible measure-preserving transfor-
mation (X,A, µ, T ), an integer n ≥ 1 and ε > 0, then there exists a set A ∈ A such
that the return time to A is greater than n and the column of the tower of height n
over A has mass greater than 1− ε.
Proof. For n = 2, we setB0 = ∪k≥2Ak, B2 = T 2(∪k≥4Ak), . . . , B2j = T 2j(∪k≥2(j+1)Ak)
so B0 ⊆ L0, B2 ⊆ L2, . . . , B2n ⊆ L2n. We define B = ∪k≥0B2k, see the left-hand side
of Fig. 21, and build the tower of height 2 over B, with two equal measure levels
B, T (B). Now we estimate the measure of what is left over, the set X \ B ∪ T (B);
these are the circled sets in the Figure. Pushing these sets down to the base, we get
A1 ∪ A3 ∪ A5 which has the same measure and is ≤ µ(A).

Thus if we choose A to have measure < ε, we have found a set B such that
µ(X \ (B ∪ T (B)) < µ(A) < ε.

For n = 3, we proceed in a similar way, shown in the right-hand side of Fig. 21.
Now our “error estimate” is µ(X \ (B ∪ T (B) ∪ T 2(B)) < 2µ(A), so if we choose A
to have 2µ(A) < ε we are done.

For height n, beginning with µ(A) < ε/n, we have a Rochlin tower of height n with
error less than ε, as desired.

�

Remark 10.2. From Rochlin’s lemma one draws the quite startling conclusion that
all transformations are nearly alike, the only difference between them being in that
tiny part of arbitrarily small measure at the top of the very high tower. The reason
this is surprising is that there are maps that we know have very distinct behavior, for
instance with entropy zero, finite or even infinite; maps that have strong independence
properties, and maps that have many invariant measures, while others are uniquely
ergodic. So what is going on? Part of the answer is that Rochin’s Lemma is a
purely measure-theoretic statement, while many of these properties involve a rich
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mix of categories, topological and geometric. Now measure entropy is purely measure-
theoretic; however what happens in the above construction is simply this: one could
redefine the metric inside the column so that the motion up the column is an isometry,
and so contributing no entropy; but then all we will have done is to concentrate all
the entropy inthat last tiny but crucial little bit.

In other words this apparent closeness gives less than at first meets the eye. Never-
theless, in special situations, and in the right hands, the lemma is a powerful tool in-
deed: a remarkable example is given by the tower constructions (employing a stronger
form of Rochlin’s Lemma) used in Ornstein’s isomorphism theory [Orn73], [Shi73],

Nonmeasurable sets via towers; 2 partitions; forward image nonmeas
In every analysis course one sees the construction of a nonmeasurable set, usually

using a coset space and the Axiom of Choice (see e.g. §3.4 of [Roy68], p.69 of [Hal50]).
Looking at the same example through the eyes of dynamics (and in particular the
tower construction) makes it especially clear what is the essential point here.

Proposition 10.8. Let (X,A, µ, T ) be a conservative ergodic invertible measure-
preserving transformation, and assume that a.e. orbit is countably infinite. Then a
set A formed by choosing a single point from each orbit gives a fundamental domain for
the action of Z generated by the transformation; this set is nonmeasurable, i.e. cannot
be in A. The same holds for an action of a countably infinite group or semigroup.

Proof. Let N ⊆ X be the collection of periodic points, i.e. those with finite orbits; we
are given that µ(N) = 0. We consider (see Example 4.2) the orbit equivalence relation
on X. This partitions the space; we choose (via the Axiom of Choice!) one point from
each partition element; this is the set A. By definition this is a fundamental domain
for the associated Z-action on X \ N . As for any fundamental domain for a group
action, all iterates T n(A) are disjoint, and their union is the whole space. Directly, if
x ∈ A ∩ T n(A), then T n(x) ∈ A but T n(x) ∈ O(x) and A contains exactly one point
from each orbit. Furthermore, ∪n∈ZT n(A) = X for the same reason.

The proof of nonmeasurability will be by contradiction. Suppose, then, that A is
measurable. We arrive at the conclusion in three slightly different ways:
(1) Since A is measurable, then if A has positive measure, by recurrence, a.e. point
in A returns, but every point in A \N never returns. Thus A has measure zero, but
this contradicts that ∪n∈ZT n(A) = X.
(2) Since A is measurable and its iterates sweep out the space, by Theorem 10.4
the tower of height rA over the induced map (A, TA) is isomorphic to the original
map. However rA(x) = ∞ for every x ∈ A \ N , so this is a wandering set, hence by
recurrence must have measure zero, giving a contradiction as before.
(3)The iterates of A \ N are all disjoint so the future iterates form a tower over
this set, which consists of a single column, as on the left-hand side of the tower in
Fig. 19. That is, A \ N = A∞, and if A is measurable it must have measure zero,
since otherwise this contradicts conservativity.

Note that for the finite measure case, since the set A is wandering, its measure
cannot meaningfully assume any nonnegative real value- even assuming only finite
additivity of µ! �
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For a concrete example, let (T, Rθ) be the circle rotation x 7→ x + θ(mod 1). The
collection of orbits {O(x) : x ∈ T} partition T. From the algebraic point of view,
since T = R/Z is a group, letting H denote the (dense) subgroup of T generated by θ,
then the orbits are exactly the cosets of x. As above, by the Axiom of Choice we form
a set A which contains exactly one point from each of these equivalence classes. Then
each orbit is countably infinite iff θ is irrational, and in this case rA(x) = +∞ for all
x ∈ A, and (T, Rθ) is isomorphic to the tower map with a single biinfinite column.
If on the other hand θ is a rational number, then the tower is a single column of
constant height.

Remark 10.3. In conclusion, from Example 4.2 together with the above, forming the
quotient space (factoring out by the orbit equivalence relation) is problematic for any
except the simplest dynamics: that which we encounter in geometry when building
homogeneous spaces. Here are some related questions:

Exercise 10.1. Does there exist a measure space with a countable collection of
nonmeasurable sets whose union is measurable? Can there exist a finite collection of
nonmeasurable sets whose union is measurable?

Show that a similar idea works for flows: given an irrational rotation flow on the
torus for n ≥ 2, τt(u) = u+tv(modZd), let E be a collection of representatives for the
orbit equivalence relation. Show that for ε sufficiently small, the set {τt(E) : t ∈ [0, ε]}
is not measurable.

Find two measurable spaces (X,A) and (Y,B), a measurable function f : X → Y
and a set a ∈ A such that f(A) is not measurable.

A silly answer to the last exercise is this: take X = Y = {0, 1} with f the identity
map, A the power set sigma-algebra (all subsets) and B the trivial sigma-algebra (∅
and X). Here is a hint for a more interesting example: consider X = Y = I, with f
the Cantor function, and with A = B the Lebesgue sigma-algebra (the completion of
the Borel sigma-algebra with respect to Lebesgue measure).

10.6. Flow built under a function and Poincaré cross-section. The tower idea
has a continuous-time version, also due to Kakutani.

We begin with an invertible measure-preserving map (X,A, µ, T ) and a measurable
function r : X → [0,∞). For the product space X × R, with the product measure
where R has Lebesgue measure, we then consider the subset {(x, t) : 0 ≤ t ≤ r(x)}
and lastly define Xr to be this subset modulo the identification (x, r(x)) ∼ (Tx, 0).

We then define a flow τt on Xr by (x, s) 7→ (x, s+ t).
Conversely, given a flow (X, τt), a cross-section is a subset A ⊆ X such that each

orbit meets A in a discrete set of times. This is also referred to as a transversal to
the flow.

We require A to be measurable cross-section in the sense that a small rectangle
{τt(A) : t ∈ [0, ε]} is a measurable subset of X.

We then define a map TA on A, the first return or Poincaré map; this preseves
the measure µA defined by µA(E) = 1

ε
{τt(E) : t ∈ [0, ε]} for ε < rA on E.
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(Tx, 0)

(x, r(x))

⌧t

(x, 0)

Figure 22. The special flow

Theorem 10.9. (Ambrose-Kakutani) Given a conservative ergodic measure-preserving
flow (X, τt), there exists a measurable cross-section A. The first return map TA is
ergodic, and the special flow built over (A, TA, µ

A)

Given a flow (X, τt), one way to discretize it is to consider the time-t0 map for some
fixed time (such as the time-1 map τ1). A very different way is to consider the return
map to a cross-section of the flow; the Ambrose-Kakutani theorem guarantees that
this can be done.

We remark that infinite measures can occur for the flow space, the cross-section, or
both: we can have a finite measure for the cross-section with a nonintegrable return-
time function r; or we can have a finite measure for the flow but a cross-section with
infinite measure, and a function r that is so small that it integrates to give that finite
number.

Definition 10.3. Given an invertible map T : X → X, in the special case where
r(x) ≡ 1, the special flow is known as the suspension flow of the map, and the flow
space Xr is a suspension space.

When T : M → M is a diffeomorphism of a manifold M then the suspension
construction can give an interesting way of creating a new manifold M1. Any manifold
which can arise in this way is know as a manifold which fibers over the circle. The
reason for this name is that the identification of the top and bottom of the flow space
projects each vertical segment over (x, 0) in the base horizontally to the circle S1.
Therefore the flow space is a fiber bundle with base this circle and with fibers equal
to X. (This is a switch of perspective, since from the dynamical point of view the
base of the special flow is the space M !) This manifold is the product space S1×M
modulo the identification of the fibers over 1 and 0 via the map T , known as the
holonomy map for this fiber bundle. In particular, if T is not homotopic to the
identity, then the fiber bundle is nontrivial in the sense that it is not homeomorphic
to the product space M × S1. We will see examples of this below.
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Exercise 10.2. Show that for the rotation flow on the torus, flow τv,t, minimality is
equivalent to unique ergodicity.

A quite different, more abstract construction of the special flow is given in §29.1.
In fact, this is more general, as it allows for nonpositive “return times”.

10.7. A further application of towers: Kakutani equivalence. Kakutani’s idea
of induced map with the converse operation of tower-building is remarkably power-
ful and useful. An excellent illustration is given by the methods of proof presented
here, which will be entirely geometric, regarding the basic properties of an equiva-
lence relation on transformations- much weaker than measure-theoretic isomorphism-
introduced by Kakutani.

Definition 10.4. We begin by defining an order on conservative ergodic measure-
preserving transformations, writing (Y,B, ν, S) ≤ (X.A, µ, T ) ≤ iff there exists A ∈
A with µ(A) > 0 such that the induced map (A,A|A, µ|A, TA) is isomorphic to
(Y,B, ν, S). For short, we write this as S ≤ T . We then define two relations: T1 ∼	 T2

iff there exists T such that T1 ≤ T and T2 ≤ T ; T1 ∼⊕ T2 iff there exists S such that
S ≤ T1 and S ≤ T2.

Lemma 10.10. Given an invertible conservative ergodic measure-preserving trans-
formation (X,A, µ, T ), then for A ∈ A with µ(A) > 0 with B ≡ T n(A), we have that
(A,A|A, µ|A, TA) is isomorphic to (B,A|B, µ|B, TB).

Proof. Defining Φ : A → B by Φ = T n, we claim that rB ◦ Φ = rA. This follows
immediately from the definitions. Then TA �

From the Ambrose-Kakutani theorem an ergodic measure-preserving flow can be
modelled by a special flow over a discrete-time transformation, the induced map to
some “transversal”. But for this to be useful, one would like to know how, given a
fixed flow, such return maps might be characterized. This will be a central motivating
idea in what follows. We begin with the same question for discrete time:

Definition 10.5. Two transformations (X,A, µ, T ) and (Y,B, ν, S) are said to be
Kakutani equivalent iff there exists a third transformation (Z, C, R, ρ) of which
each is an induced transformation.

Theorem 10.11. This defines an equivalence relation.

Theorem 10.12. Two transformations are Kakutani equivalent iff there exists a
measure-preserving flow with measurable cross-sections for which both are first return
maps.

A key step is:

Lemma 10.13. Two transformations are Kakutani equivalent iff each has a subset
of positive measure such that the induced maps are isomorphic.

Remark 10.4. A finite measure transformation can be Kakutani equivalent to an
infinite one; see Example ??? (invertible renewal shift).
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11. Further examples

11.1. Stationary stochastic processes.

11.2. Almost-periodic functions.

11.3. Symbolic dyns for rotations, irrational flow on torus.

11.4. Continued fractions and the Gauss map; infinite measure version. We
recall some basics about continued fractions. (We return to this topic in §19.1.) We
shall use the notation

x = [n0n1 . . . ] =
1

n0 +
1

n1 + · · ·
As is easy to show, rationals have a finite expansion, while every x irrational in (0, 1)
has a unique such expansion. It is known that a quadratic irrational (a root of a
quadratic equation) has an eventually periodic expansion.

We mention that when we study general Anosov automorphisms of T2, continued
fractions of (all!) other quadratic irrationals will come into play. See §??.

11.5. Double suspension, commutation relation.

11.6. The scenery flow of the Cantor set. The informal idea of zooming down
towards a point in a fractal set (one can google for examples!) can be turned into
real mathematics with the help of a flow. To make things precise, let Ω denote the
collection of all closed subsets of Rd, and define the magnification flow on Ω by

gt : A 7→ etA

Thus, we dilate A about the central point 0 by the exponential factor et. We give Ω

the geometric topology, which can be described as follows: let R̂d = Rd ∪ {∞} be

the one-point compactification of Rd, let Ω̂ be the collection of closed subsets of R̂d.

We take the Hausdorff metric on Ω̂, and define the geometric topology on Ω to be

the the relative topology on Ω ⊆ Ω̂.

Exercise 11.1. Show that a sequence of sets An converges to A in the geometric
topology iff given ε,K > 0 there exists N such that for all n > N , dK(An, A) < ε
where dK is the Hausdorff metric for closed subsets of the ball of radius K about 0.

Given F ∈ Ω, we define Sx(F ), the scenery at x ∈ F to be the ω−limit set of
the translated set (F − x) with respect to the magnification flow, and we define the
scenery of F to be SF = ∪x∈FSx(F ).

The scenery flow of F is (SF , gt). Thus, it is the magnification flow acting on the
asymptotically small scenes of F .

Now for a smooth object such as a differentiable manifold M embedded in Rd, the
scenery flow is rather boring: the scenery at x ∈ M is Sx(M) = Tx(M), the tangent
space at x, which gives a fixed point for the flow; the scenery space SF is the tangent
bundle.

But for a complicated object like a fractal set, the scenery keeps changing, and the
flow can be interesting. And since we have the tangent space analogy, we can think
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Figure 23. Zooming toward the point x = 0 of the Cantor function by
the scaling scenery flow of exponent d = log 2/ log 3; upper envelope td,
lower envelope (t/2)d. The first picture shows the Cantor function for
the extended Cantor set; this is a scaling flow orbit of period log 3, at
time 0. Then zooming toward the right-hand side of the periodic point
x = 1/4; these represent snapshots from a periodic orbit of period
2 log 3 at times 0 and log 3. The upper and lower envelopes have
changed!

of the space of sceneries as a sort of tangent space for the fractal set, which comes
equipped with a natural flow action.

Now if one looks at small scales of the Cantor set, on first thought zooming down
towards it is rather boring, since it is “the same everywhere”, at every location and
all scales. But there is a hidden assumption: the eye of our imangination naturally
shifts its origin to the beginning of each subinterval. If instead we choose a point,
and perform the zoom with a microscope fixed at that point, what we see will keep
changing. It may in fact change in a periodic way, corresponding to a periodic orbit
for the scenery flow, but the general behavior is much wilder: a nonperiodic orbit,
representing positive entropy.

Indeed one can prove for the Cantor set C:
Scenery flow entropy equals the Hausdorff dimension of the limit set.
This same formula holds for some other especially nice fractal sets: hyperbolic C1+α

Cantor sets, hyperbolic Julia sets, and the limit sets of geometrically finite Kleinian
groups. See [BF92], [BF96], [BF97], [BFU02], [Fis04]. It is not always true: for fractal
sets associated with probability theory, the tendency is for scenery flow entropy to
be infinite (this holds for the zero sets of Brownian motion and more general stable
processes, see...)

To understand Fig. 24, the point x = 1/4 has ternary expansion .020202... The
limiting scenery has large-scale structure given by . . . 20202.; thinking of this like the
tree that determines the adic transformation for the Integer Cantor Set, we see, after
the centrally located copy of C (centered at 1/4) to its right a gap of 3, followed by
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Figure 24. Zooming toward the point x = 1/4 via the scaling flow:
this shows the two-sided (integrated) scenery. The right-handed scenery
of x = 3/4 has been reflected in the origin to give the left-handed
scenery for x = 1/4!

another copy of C, then a gap of length 33 = 27; on the left we see a gap of length
32 = 9, followed by a copy of C, followed by a gap of length 34, and so on.

Here we sketch the proof for the middle-third Cantor set.
DO ??

Exercise 11.2. Show the upper and lower envelopes for a periodic point are (at)d for
some a > 0. Show that any such curve is invariant for the scaling flow. Understand
the above comment about the Integer Cantor Set and large-scale structure. Show
that while there is a universal upper envelope, there is no universal lower envelope.
(Hint: consider periodic points!)

Just as the Cantor set can be more easily visualized by drawing the graph of the
Canotr function, we can picture the scenery flow as acting on a space of continuous
paths.

Thus, defining C = C(R,R) to be the space of continuous functions f : R → R,
equipped with the topology of uniform convergence on compact subsets, and given
α > 0, we define a linear map τt : C → C by

τs : f(t) 7→ f(est)

esα
.

This is the scaling flow of exponent α; here we take α = d = log 2/ log 3. Regarding
other scaling flows see SS12.1.

Proposition 11.1. The scenery flow on the Cantor set is natually isomorphic to the
scaling flow on Cantor functions.

Proof. ... �

12. Limit theorems of probability theory

In §3.5 above, we explained how given a measure-preserving transformation T of
a probability space (X,A, µ) and a measurable real-valued function (an observable)
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f on X, the sequence of functions fn = f ◦ T n defines a discrete-time stationary
stochastic process. Kolmogorov’s theorem gives a converse: any stationary process
defines a measure-preserving transformation, the shift map on the space of paths, see
§33.9.

Despite this equivalence, the points of view are very different. In ergodic theory
and dynamical systems we want to understand the dynamics of the map and how
that interacts with the structure of the space. Part of this study involves finding
natural and interesting invariant measures, then choosing appropriate observables
which determine a variety of interesting stochastic processes. In probability theory,
the main emphasis is on a given stochastic process which exhibits a certain behavior,
such as independence, the Markov or martingale property, with certain corellation or
mixing properties. Thus what one observes is the main focus, while the underlying
probability space itself has no particular importance.

A further difference is that in ergodic theory, we imagine choosing an initial point
x randomly, i.e. with respect to the invariant measure µ, and then following its orbit
while measuring the observable along the orbit, giving a sample path fn(x) = f(T nx)
for the stationary process (fn)n≥0. In probability theory, by contrast, one thinks of
the stochastic process as really a process, that is, one sees the values of, say, a coin
toss Xi up to time n, and the next value is unknown until one again flips the coin.

Further, we think of the X1, X2, . . . as really “random variables”, like the unspec-
ified quantities in elementary algebra but with a given distribution of values. Each
distribution is by definition a probability measure PXi on the reals; if these are the
same for all i, the process is termed identically distributed. The correlation properties
of the process tell us how the next value depends on what came before. In the most
random case, as for the tosses of a coin or die or the spin of a roulette wheel, the
result at time n is independent of all that came before and all that will come after.
This gives an i.i.d. (independent and identically distributed) process. Then we are
essentially repeating the same experiment over and over again, starting each time
from scratch which gives the independence.

Given this strong but natural assumption of i.i.d. plus some information about
the distribution PX , one then proves in probability theory a series of limit theorems
regarding the long-term behavior.

These are, for example, the Strong Law of Large Numbers (there is also a weak
law as we explain below), the Central Limit Theorem, and the Law of the Iterated
Logarithm.

The first of these, the Strong Law, has been extended far beyond the original
i.i.d. setting to Birkhoff’s ergodic theorem. For the CLT and LIL, however, one
in general (though there are special exceptions- see e.g. ??) needs something close
enough to independence. What conditions on the dynamics of the map and observable
can guarantee this is an active theme in research as we introduce in these notes.

Beginning with the probability prespective, let now (Ω,A, P ) be a probability space,
and X : Ω→ R a random variable. As explained above in §3, the expected value, mean
or first moment of X is just the integral of this measurable function: µ = E(X) =∫

Ω
X(ω)dP. As depicted in Fig, 3, this is indeed the mean value of the measurable

function X, and is also the center of mass of its distribution PX . For a > 0, E(Xa)
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defines the ath moment of X. The most important of these are integer powers,
a = n = 2, 3, . . . , defining the second, third, and so on, moments.

The second moment of |X − µ| has a special name, the variance of X, written σ2.
There is a clear connection with the spaces Lp. Recall that given a measure space,

for example our probability space (Ω,A, P ), then for 0 < p <∞, X ∈ Lp iff
∫
|X|p <

∞, the norm defined by ||X||p = (
∫
|X|p) 1

p makes Lp a Banach space, i.e. a complete
normed topological vector space. (So the pth moment is (||X||p)p). Let us recall
that only for p = 2 is this an inner product space, hence, since complete, a Hilbert
space. For real values, the inner product is defined by 〈X, Y 〉 =

∫
XY dP and ||X|2 =

〈X,X〉 12 . (For complex values, as in quantum mechanics, we have a complex vector
space of functions X : Ω → C with a Hermitian inner product, see 35.11, [Rud73].)
On a finite measure space, finite pth moment implies finite qth moment for any q < p,
so in particular having any finite pth moment for p ≥ 1 implies finite expectation.
Thus X has finite variance iff it is in the Hilbert space L2.

Definition 12.1. Random variables X, Y defined on the same underlying space
(Ω, P ) are independent iff for all A,B ∈ A, then the sets X−1(A), Y −1(B) are inde-
pendent. In probability language, the events [X ∈ A] and [Y ∈ B] are independent;
here by definition [X ∈ A] = {ω ∈ Ω : X(ω) ∈ A} = X−1(A).

Lemma 12.1.
(i) If X, Y are independent, then

(a)

E(XY ) = E(X)E(Y );

(b) var(X + Y ) = var(X) + var(Y ).
(ii) If (Xi)

∞
i=1 are i.i.d., then for Sn = Σn

1Xi, var(Sn) = n · var(X1).

Proof. Part (a) is part of Exercise 3.3: For X = χA, Y = χB we have χAχB = χA∩B
and the result follows. We extend to simple functions by linearity and then to limits
by the Monotone Convergence Theorem, and have proved, as claimed:

∫
XY dP =

∫
XdP

∫
Y dP.

For (b),
E(X + Y ) = EX + EY = µ+ ν so
∫

Ω

((X + Y )− E(X + Y ))2dP =

∫

Ω

((X − µ)) + (Y − ν))2dP (7)

=

∫

Ω

(X − µ)2dP +

∫

Ω

(Y − ν))2dP +

∫

Ω

2(X − µ)(Y − ν)dP = var(X) + var(Y ),

(8)

(9)

by the previous lemma, since (X − µ) and (Y − ν) are also independent.
Part (ii) follows by induction. �
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We mention that in L2, since X, Y are orthogonal iff 〈X, Y 〉 = 0, then in particular
if X, Y have mean zero, if they are independent then they are orthogonal. (Exercise:
find an example of two functions which are orthogonal but not independent!)

The next statement (the Strong Law of Large Numbers) is in fact a corollary of
the Birkhoff Ergodic Theorem. Nevertheless we present the proof here, for several
reasons: not only is this a very important special case, but the proof is quite a bit
easier and so is a good place to start to “believe” the more general statement. Also,
it provides a good introduction to some methods of proof which occur frequently in
probability theory.

We prove the Strong Law in stages, first assuming finite fourth moment, then finite
second moment, and finally finte first moment. This simple, direct proof we learned
from Marina Talet; it follows unpublished lecture notes of Grimmett.

Theorem 12.2. (Strong Law of Large Numbers: finite fourth moment) Let (Xi)
∞
i=1

be an i.i.d. sequence of random variables. We write Sn = Σn
1Xi. If E(X4

1 ) = µ <∞,
then

Sn
n
→ µ a.s.

Proof.

Lemma 12.3. We have:

E
(
Sn − nµ

)4
< Kn2. (10)

Proof. Let Zk = Xk − µ and Tn = Z1 + · · ·+ Zn = Sn − nµ. Then for all n ≥ 1,

E(T 4
n) = nE(Z4

1) + 3n(n− 1)E(Z2
1Z

2
2) ≤ n(c1 + c2n) ≤ n ·Kn = Kn2 (11)

for an appropriate constant K, since when we multiply out

(Z1 + . . . Zn)(Z1 + . . . Zn)(Z1 + . . . Zn)(Z1 + . . . Zn)

the terms come in three types: those where all are the same, where there are two
pairs, and where at least two are different, e.g. Z2

1Z3Z4; this last case has mean zero.
(We are using independence, part i(a) of Lemma 12.1). To count the pairs, note that
there are

(
n
2

)
= n(n− 1)/2 ways to choose two letters i, j without order and then 6

ways to rearrange these, e.g. 1122, 1221 . . . , giving 3n(n− 1). �

Now by the Lemma,

E
(
Sn
n
− µ

)4

≤ c

n2

Thus

E
∞∑

1

(
Sn
n
− µ

)4

≤
∞∑

1

E
(
Sn
n
− µ

)4

≤ ∞

Now certainly for 0 ≤ f , E(f) <∞ implies f <∞ almost surely. Thus
∞∑

1

(
Sn
n
− µ

)4

<∞

a.s., and so the terms of this series converge to 0, giving for a.e. ω,
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(
Sn
n
− µ

)4

→ 0 =⇒ Sn
n
→ µ.

Next we develop two simple but key tools of probability theory: the Borel-Cantelli
Lemma and Chebyshev’s inequality. Making use of these we give a second proof of the
Strong Law for finite fourth moment, which will lead us, combined with interpolation
arguments, to the proofs for finite second and first moments.

Here we recall De Morgan’s laws. These state for logic that when P,Q are proposi-
tions then ∼ (P ∨Q) ⇐⇒ (∼ P∧ ∼ Q) and ∼ (P ∧Q) ⇐⇒ (∼ P∨ ∼ Q). For sets
A,B ⊆ X the corresponding laws state that (A∩B)c = Ac∪Bc and (A∪B)c = Ac∩Bc.
This extends to intersections and unions with an arbitrary index set:

(∩i∈IAi)c = ∪i∈IAci and (∪i∈IAi)c = ∩i∈IAci . (12)

Exercise 12.1. Prove the De Morgan logical laws by using truth tables; see [Sig66].
Prove the two-set De Morgan laws from the corresponding logical laws. State a logical
law corresponding to the set law with arbitrary index set, and prove both the logical
and set versions.

The proof of the (easier) first part of the next item will remind the reader of the first
proof we gave of the Poincaré Recurrence Theorem (Theorem 5.1), as both involve
the lim sup of a sequence of sets. See Exercise 5.2!

Lemma 12.4. (Borel-Cantelli) Let (Ai)
∞
i=1 be measurable subsets of Ω.

(i) If Σ∞i=1P (Ai) <∞, then P [Ai occurs infinitely often (i.o.) ] = 0.
(ii) If Ai are independent events, and Σ∞i=1P (Ai) =∞, then P [Ai occurs i.o. ] = 1.

Proof. The event “Ai occurs infinitely often” is, more formally and precisely, the
following subset of Ω: {ω ∈ Ω : ω ∈ Ai for infinitely many i}, which equals

lim supAi = ∩N≥1 ∪i≥N Ai.
Writing ÂN = ∪i≥NAi, we note that these are nested decreasing, with measure
bounded above by

∑
i≥N P (Ai) < ∞. This is the tail of a convergent series hence

decreases to 0 as N →∞.
To prove (ii), we shall show that for all N , P (ÂN) = 1. Now for all x ∈ R,

1−x ≤ e−x (draw the tangent line to the graph of f(x) = e−x at 0); setting ai = P (Ai),
then by De Morgan’s law, together with independence,

1− P (ÂN) = P (ÂcN) = P ((∪i≥NAi)c) = P ((∩i≥NAci) = Πi≥NP (Aci)

and this is the limit as k →∞ of

ΠN+k
i=N (1− ai) ≤ ΠN+k

i=N exp(−ai) = exp

(
−ΣN+k

i=N ai

)

which is zero as for each N , Σ∞i=Nai =∞. �

Lemma 12.5. (Chebyshev inequality)
(i)For r > 0, then

P [|X| > a] ≤ E(|Xr|)/ar.
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(ii)Let f be an increasing function on R+. Then

P [|X| > a] ≤ E(f ◦ |X|)/f(a).

Proof. Part (i) is a corollary of (ii), taking f(x) = xr and applying it to the random
variable |X|. The most common cases in applications will be r = 1, 2, . . . .

For the proof of (ii), we note first that for g ≥ 0, then

cP [g > c] ≤
∫

Ω

g(x)dP (13)

(since 0 ≤ c · χ[g>c] ≤ g (draw the graph!). Assume for simplicity that X ≥ 0. So for
f increasing, then g = f ◦X ≥ 0 and setting c = f(a), we have

f(a) · P [f ◦X > f(a)] ≤
∫

Ω

f ◦XdP

but f ◦X > f(a) ⇐⇒ X > a, whence (using the fact that the values of f are ≥ 0,
so (13) applies),

P [X > a] ≤ E(f ◦X)/f(a).

Replacing a general X by |X|, we are done. �

Second proof of the SLLN, assuming E(X4
1 ) < ∞: Here, following Lamperti

[Lam66] pp 26-27, we make use of the two previous lemmas. Without loss of generality,
assume µ = 0.

By Chebyshev’s inequality,

P [|Sn| > εn] ≤ E(S4
n)

(εn)4
(14)

We have shown above in (10) that

E
(
Sn
)4
< Kn2.

Thus

P [|Sn| > εn] ≤ c

n2
. (15)

Then by the first part of the Borel-Cantelli Lemma, since this series converges,

P [|Sn| > εn infinitely often] = 0 (16)

and indeed Sn/n→ 0 almost surely.

Assuming E(X2
1 ) < ∞: The idea here is to show convergence along the subse-

quence n2, by a similar argument to that just given. To conclude the proof, we then
interpolate between these values.

First we show how this interpolation argument will work. We now assume that
X1 ≥ 0. This will be enough, since we can find X+

1 , X
−
1 nonnegative such that

X1 = X+
1 −X−1 : simply define X+

1 to be the max of X1 and 0, similarly for X−1 ; then
by linearity we will be done.

Thus we assume that for Xi ≥ 0, we have proved that

Sn2

n2
→ µ (17)
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almost surely, and want to conlude that

Sm
m
→ µ.

Now since Xi ≥ 0, Sn is nondecreasing in n. Hence we have for any m with
n2 ≤ m ≤ (n+ 1)2 that

Sn2 ≤ Sm ≤ S(n+1)2

and so

n2

(n+ 1)2

Sn2

n2
=

Sn2

(n+ 1)2
≤ Sm

m
≤ S(n+1)2

n2
=

S(n+1)2

(n+ 1)2

(n+ 1)2

(n)2
.

Since both the right and left-hand sides converge to µ = E(X1), we are done.
Next we prove (17), now with a different hypothesis: without loss of generality, we

assume that E(Xi) = µ = 0. Taking r = 2 in part (i) of Chebyshev’s Lemma 12.5,
and using part (ii) of Lemma 12.1 :

P [|Sn2| > n2ε] ≤ var|Sn2 |
n4ε2

=
n2var|X1|
n4ε2

=
σ2

n2ε2
(18)

which is summable. Therefore, by Borel-Cantelli,

P [|Sn2| > εn2 infinitely often] = 0. (19)

Removing now the assumption that µ = 0 we have:

P [|Sn2 − n2µ| > εn2 infinitely often] = 0 (20)

and so Sn2/n2 → µ as n→∞.
Assuming E(|X1|) <∞:

The idea here is to prove convergence along an exponential subsequence of times,
growing like αn for α > 1. We then interpolate, as for n2, but now we follow this by
taking the limit as α decreases to 1.

This method of proof is originally due to Etemadi [Ete81]. We borrow parts from
both [GS92] and [Bor95], filling in details. Here we give special thanks to conversations
with M. Talet.

First we make the assumption that Xi ≥ 0. We define a new, truncated sequence
of random variables by

Yi = Xiχ[Xi≤i] =

{
Xi if Xi(ω) ≤ i

0 otherwise

and note that (Yi)
∞
i=1 is an independent not identically distributed sequence (since

the bound i changes with time), for which:
(1) E(Yi)→ EX1 as i→∞;
(2)

Σ∞n=1P [Xn 6= Yn] = Σ∞n=1P [Xn ≥ n] ≤ E(X1) <∞.
The first statement follows from the Monotone Convergence Theorem: for fn ≥ 0

and increasing to f , then
∫
fn →

∫
f . The second can be seen from the tower in Fig. 20

we used for the proof of Kac’ Theorem: since the Xi are identically distributed, this
is Σ∞n=1P [X1 ≥ n] and ≤ E(X1) the first level of the tower has mass P [X1 ≥ 1] the
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second P [X1 ≥ 2] and so on, and the sum of these equals the integral on the left,
which is E(X1).

Now consider An = [Xn 6= Yn]; we have shown that Σ∞n=1P (An) < ∞, so by the
first part of the Borel-Cantelli Lemma, P [Xn 6= Yn infinitely often] = 0. Therefore
almost surely

1

N

N∑

i=1

(Xi − Yi)→ 0. (21)

So it will be enough to show that

1

N

N∑

i=1

Yi → µ. (22)

Now we fix α > 1 and define kn = bαnc, the integer part of αn.

Definition 12.2. We make use of the folllowing (standard) notation: given f, g :
R+ → R, f ≈ g ⇐⇒ limt→∞ f(t)/g(t) = 1, and similarly for sequences. This is
called asymptotic equivalence.

For example, we claim that

kn ≈ αn. (23)

We have:

αn − 1 ≤ kn ≤ αn

Therefore
αn − 1

αn
≤ kn
αn
≤ αn

αn
= 1

so the limit is 1.
It follows that

kn+1

kn
≈ α (24)

which we shall need below.
We write S ′n =

∑n
i=1 Yi. Then by Chebyshev’s inequality, independence of the Yi,

and the fact that var(Yi) ≤ E(Y 2
i ), we have

∞∑

n=1

P [
1

kn
|S ′kn − ES ′kn| > ε] ≤ 1

ε2

∞∑

n=1

varS ′kn
k2
n

=
1

ε2

∞∑

n=1

1

k2
n

kn∑

i=1

varYi (25)

≤ 1

ε2

∞∑

n=1

1

k2
n

kn∑

i=1

E(Y 2
i ) (26)

≤ C
∞∑

i=1

E(Y 2
i )

i2
(27)

We explain this last step: the idea is to change the order of summation, just like
changing the order of integration of an iterated integral. We set f(t) = αt. Since
αn − 1 ≤ kn ≤ αn, 1 ≤ i ≤ kn iff 1 ≤ i ≤ αn = f(n). Now for s = f(t),
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f−1(s) = t = log s/ logα. Thus “1 ≤ n ≤ ∞ and for each fixed n, 1 ≤ i ≤ kn” is
equivalent to “1 ≤ i ≤ ∞ and for each fixed i, f−1(i) ≤ n”, that is, n ≥ log i/ logα.

Since from (23) kn ≈ αn, 1/k2
n ≈ 1/α2n so we have, for r = log i/ logα,

1

ε2

∞∑

n=1

1

k2
n

kn∑

i=1

E(Y 2
i ) =

1

ε2

∞∑

i=1

E(Y 2
i )
∑

n≥r

1

k2
n

≈ 1

ε2

∞∑

i=1

E(Y 2
i )
∑

n≥r

1

α2n
(28)

Now for a positive decreasing function g : R→ R, then for any r ∈ R,
∑

i≥r

g(i) ≤
∫ ∞

r−1

g(x)dx.

Here g(x) = 1/α2x = e−x logα2
, so for C1 = 1/2 logα,

∫∞
s
g(x)dx = C1α

−2s. Note
that

α−2r =
1

i2
.

So we have, for C = C1α
2,

∑

n≥log i/ logα

1

α2n
=
∑

i≥r

g(i) ≤
∫ ∞

r−1

g(x)dx = C1α
−2(r−1) = C1α

2α−2r =
C

i2
.

Next, writing PX for the distribution of X, then

E(Y 2
i ) =

∫ i

0

x2dPX =
i−1∑

k=0

∫ k+1

k

x2dPX .

Thus our sum is

(28) ≤ C
∞∑

i=1

1

i2

i−1∑

k=0

∫ k+1

k

x2dPX . (29)

Now for ak ≥ 0

∞∑

i=1

1

i2

i−1∑

k=0

ak = 1 · a0 +
1

4
(a0 + a1) +

1

9
(a0 + a1 + a3) + . . . (30)

= a0

∑

i≥1

1

i2
+ · · ·+ am

∑

i≥m+1

1

i2
+ . . . (31)

≤
∑

k≥1

ak
k

(32)

because
∑

i≥m+1

1

i2
≤
∫ ∞

m

1

x2
dx =

1

m
.
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Thus, using the facts that for x ∈ [k, k+1], 1/(k+1) ≤ 1/x and that (k+1)/k ≤ 2,
(29) is

≤ C
∑

k≥1

1

k

∫ k+1

k

x2dPX ≤ 2C
∑

k≥1

1

k + 1

∫ k+1

k

x2dPX (33)

≤ 2C
∑

k≥1

∫ k+1

k

1

x
x2dPX ≤ 2C

∑

k≥0

∫ k+1

k

xdPX = 2CE(X1) <∞. (34)

We have shown that

∞∑

n=1

P

[∣∣∣∣
S ′kn
kn
− E(S ′kn)

kn

∣∣∣∣ > ε

]
≤ ∞. (35)

Now since E(Yi)→ EX1,

ES ′kn
kn
→ ESkn

kn
= E(X1) = µ.

Hence also
∞∑

n=1

P

[∣∣∣∣
S ′kn
kn
− µ

∣∣∣∣ > ε

]
≤ ∞. (36)

Therefore by the Borel-Cantelli Lemma, almost surely

S ′kn
kn
→ µ.

Next we interpolate. For kn ≤ m ≤ kn+1, we have

αn − 1 ≤ kn ≤ m ≤ kn+1 ≤ αn+1

thus

S ′kn
kn

kn
kn+1

≤ S ′m
m
≤
S ′kn+1

kn+1

kn+1

kn
(37)

By (24) we know that kn+1/kn ≈ α.
Thus we shown that for all α > 1, almost surely

α−1µ ≤ lim inf
S ′m
m
≤ lim sup

S ′m
m
≤ αµ (38)

whence almost surely, by letting α→ 1,

S ′m
m
→ µ.

and now by (22), we are done!
�
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12.1. Random walk and the CLT. A different view of these limit theorems comes
from considering the stochastic process (Sn)n≥0 defined from the partial sums. Thus,
let Xi be an i.i.d. sequence of random variables taking values in R with probabil-
ities given by a probability distribution ρ. We define Sn for n ≥ 0 by S0 = 0,
Sn =

∑n−1
k=0 Xk; then Sn is a random walk with independent increments (the

increments of a process Sn being Xn ≡ Sn+1 − Sn), or an i.i.d. random walk for
short.

For the most basic example, the simple random walk, ρ is the distribution on
{−1, 1} ⊆ R giving each of these points equal probability 1/2.

From the ergodic theory point of view, we can begin with the Bernoulli shift
∑+ =

Π∞0 {0, 1} with the left shift map σ, and define f(x) = 1 if x0 = 1,= −1 if x0 = 0;
then Sn =

∑n−1
k=0 f(σk(x)). Conversely, for any i.i.d. random walk Sn, the increment

process (X0, X1, . . . ) is a point in the shift space Π+ = Π∞0 R with independent product
measure ⊗∞0 ρ.

The location of the random walk path Sn at time n has a distribution we can
understand by drawing Pascal’s triangle, which counts the number of paths from the
initial point to another vertex. Note that to arrive at a vertex we have to pass through
a vertex above it, so the number is the sum of these if there are two. Considering
the numbers occuring along level n of Pascal’s triangle, starting at level 0 we have
a single 1, then 1, 1, next 1, 2, 1 and for level 3 we have 1, 3, 3, 1 and so on; note the
symmetry and that the total along level n is 2n. The formula for k heads in n tosses
is for the number of ways to choose k items from a set of n elements, without order;
this is “n choose k” or

(
n

k

)
=
n · (n− 1) · · · · · (n− k + 1)

k!

If we assign transition probabilities 1/2 to each downward edge, see Fig. 25, and
multiply these along each path, then the total becomes 1 along each level, a probability
measure πn on {0, 1, . . . , n}, where πn(k) is the number of coin-tosses of length n such
that there are k heads.

The path space for the random walk (connected by polygonal interpolation, to give
the polygonal random walk) can be visualized as a Pascal’s triangle turned on its
side, Fig. 26.

We translate the distribution πn to the left by n/2; it now has mean 0. A graph
for n = 49 is shown in Fig. 12.1. This can be shown to, in the limit (we normalize
the scale so the variance is always 1) to converge to the Gaussian or standard normal
distribution Φ, where “standard” specifies that this probability distribution has mean
0 and variance σ2 = 1. The type of convergence is that which is natural for measures:
on each open interval J , πn(J) → Φ(J). This is called in probability theory weak
convergence or convergence in distribution; from the point of view of analysis it is
weak − ∗ convergence; see... below. The formula for Φ is:

Φ(J) =

∫

J

ϕ(x)dx

where
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Figure 25. Pascal’s triangle, with and without weights

Figure 26. A random walk on the integers

ϕ(x) =
1√
2π
e−x

2/2;

see Fig. 12.1.
The reason for these factors is, as one recalls from Calculus (a beautiful argument

using a double integral together with polar coordinates) that
∫∞
−∞ e

−x2dx =
√
π;

division by 2 gives a probability measure with variance 1.
We take a different perspective on this example in §15.4, as a countable state

Markov shift.
We have already seen via the Strong Law of Large Numbers that the mean value of

the partial sums converges to the mean value of Xi, that is, Sn/n→ 0 for a.e. sequence
of the Bernoulli tosses of our fair coin.

The further classical limit theorems of probability theory emerge from considering
a different rescaling, by

√
n.
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Figure 27. Gaussian distribution with mean 0 and variance σ2 = 1,
approximated by a binomial distribution of parameter n+ 1 for n = 49
steps of the simple random walk. The height of the dot indicates the
value of the point mass.
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Figure 28. Bernoulli random walk, rescaled: n = 24 steps.

We define for a > 0 and α > 0 the scaling transformation ∆a : C → C by

(∆a(f))(t) =
f(at)

aα
.

In this case, we take α = 1/2; Wiener measure ν on C is preserved by ∆a, and the

parabola h(x) = ±x 1
2 is a fixed point.

In keeping the dimensions of the figures constant, the graphics program we used
(rStudio) has essentially automatically rescaled the graphs by ∆a for a = 2n. The
parabola is {(x, y) : x = y2}; all parabolas y = ±c√x for c > 0 are fixed points for
the scaling flow of exponent 1/2, and this one is of special imprtance as it indicates ±
the location of the variance,

√
t, for the distribution at time t, and gives the scaling

used for the CLT.
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Figure 29. Bernoulli random walk: n = 26 steps.
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Figure 30. Bernoulli random walk: n = 26 steps.

−10

0

10

0 100 200

t

S
_t

Figure 31. Bernoulli random walk: n = 27 steps. The parabola
√
t is

a scaling flow fixed point, and indicates a constant times the variance.
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Figure 32. Bernoulli random walk: n = 28 steps. These graphs were
all produced with the same data (i.e. the same random number gener-
ator seed) so you can follow how the graph gets rescaled.

What these figures show is the convergence under scaling of the random walk paths
to paths for a continuous-time stochastic process with nowhere differentiable, but
continuous, paths: Brownian Motion. Indeed, for the last figure, we show a random
walk with i.i.d. normal increments. Such an increment sequence Xk is (by the Markov
property of Brownian motion) given by B(k+1)−B(k) for a Brownian path B. More
precisely, the map Φ : B 7→ (Xk)k≥0 is measure-preserving from Wiener measure ν
on C to Π+ ≡ Π∞0 with infinite product measure µ = ⊗∞0 ρ, where ρ is the normal
distribution on R. This gives a good picture of Brownian motion, since a.e. such
random walk path is embedded in an actual Brownian path.

The challenge is to think about in what sense one has convergence to this rather
crazy process. A dynamical approach is described below, via the scaling flow τs on
path space C, defined by τs = ∆exp(s).

But for now we describe a (remarkable) first step.

Definition 12.3. Let (X, d) be a metric space, and µ a measure on X. Given a
bounded uniformly continuous function f : X → R, we write µ(f) ≡ 〈µ, f〉 ≡

∫
X
fdµ.

Note that this defines a bilinear map 〈·, ·〉 : M× UCB → R where M is the vector
space of signed Borel measures on X; such a map (generalizing the idea of inner
product) is known as a pairing of the two spaces.

Recall that given a probability space (Ω,A, P ) and f : Ω→ X, the distribution of
f is Pf = P ◦ f−1, the push-forward of P by f .
(i)Let (µn)n≥0 be measures on X. We say that µn → µ weak* (“weak-star”) or, in the
probability terminology, weakly, iff for each bounded uniformly continuous function
f : X → R,

µn(f)→ µ(f)

as n→∞.
(i) Given and a sequence of random variables fi with values in the metric space
(X, d), we say that fi → f in distribution iff the distributions converge weakly, i.e. iff
Pfi → Pf weakly.
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Theorem 12.6. (Central Limit Theorem) Let (Xi)i≥0 be i.i.d. random variables with
mean zero and variance one, and let (Sn)n≥0 denote the random walk S0 = 0, Sn =∑n−1

i=0 Xi. Then

Sn√
n
→ e−x

2/2dx in distribution, as n→∞.

That is, for all a ∈ R,

P

[
Sn√
n
< a

]
→ 1√

2π

∫ a

−∞
e−x

2/2dx

as n→∞.

For the proof of the CLT we need some facts about the Fourier transform, some
basics of which we dig into next.

12.2. Fourier series and transforms. The Fourier transform will be defined for a
variety of functions: elements of L1, L2 of the reals. Further, this initial definition
can be extended to finite measures and beyond that to tempered Schwartz distribu-
tions. We mention that this makes sense much more widely, to Rn, and other locally
compact abelian groups, this is the subject of Abstract Harmonic Analysis, and even
to compact nonabelian groups, which takes one into Representation Theory. See e.g.

The intuitive initial idea is that the Fourier transform of a real-or complex-valued
function on R should map us from position to frequency space, or in Quantum Me-
chanics, from position to momentum space.

This is supposed to imitate the Fourier series of a periodic function. Thus, for
example, the spectral analyis of a periodic wave with one pure frequency, such as
sin(t·) or the complex wave eit· should be a pure frequency, that is, point mass δt at
frequency t. One should also have an inversion formula, as for Fourier series, that
takes us back. And, as for that case, this inverse map F̌ should essentially just be
the Fourier transform itself.

However things are not quite this simple, which is what makes the subject so
interesting!

We begin with L2(R) = L2(R,C;m) where for notational simplicity we take m to
be Lebesgue measure normalized as follows: dm = 1√

2π
dx.

As above Theorem 6.1, we make L2(R) into a Hilbert space by defining the inner
product 〈f, g〉 =

∫
R fgdm.

Now by part (iii) of Theorem 6.1, the dual space of L∞(R) is ba(R), the bounded
additive signed measures. If λ ∈ ba, and g ∈ L∞, we write this pairing as 〈λ, g〉 =∫
R gdλ. Given f ∈ L1, we know that L1 embeds in ba, by integration. That is, we can

write this pairing as 〈f, g〉 =
∫
R fgdm.

For t ∈ R we write et : R→ R for the function

et(x) =
1√
2π
eitx.

Noting that from Euler’s formula eiθ = cosθ + i sin θ, we have et = e−t.

Given f ∈ L2(R,C), we define its Fourier transform f̂ = F(f) by
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f̂(t) = 〈f, et〉 =

∫

R
fetdm =

∫

R
f(x)e−t(x)dm(x) =

1√
2π

∫ ∞

−∞
f(x)e−itxdx. (39)

For the first formula we have used the above observation regarding f ∈ L1 ⊆ ba,
and that et ∈ L∞.

We define the inverse Fourier transform f̌ = F̌(f) by:

f̌(t) = 〈f, et〉 =

∫

R
fetdm =

1√
2π

∫ ∞

−∞
f(x)eitxdx. (40)

Note that f̌(t) = f̂(−t).
Lemma 12.7. On the Hilbert space L2(R), F is an isometry, with inverse map F̌ .

As we shall see, the Fourier transform can be extended by linearity and continuity
to a variety of other spaces, of functions, measures and Schwartz distributions. Note

that the definition of f̂ and f̌ also makes sense for L1, and beyond that to finite
measures, since et is a bounded function so the integrals clearly exist there. However,

the inverse transform may not be defined on f̂ , as we see by example.
Clearly, the basic idea of the Fourier transform is to generalize the spectral (i.e.

frequency) analysis of Fourier series to the real line.
To get an intuitive feeling for this map, we begin with some examples:

–For δ0, point mass at 0, the transform of δ̂0 is the constant function 1

–More generally, δ̂t = e−t = e−it, and so by linearity, the transform of
∑n
−n akδk is

...
sin/cos series...
Note however that for these examples, F̌ is not defined on these transforms, as

they arr nonintegrable functions.
We note further that:
–the Gaussian function e−x

2/2 is a (unique, up to multiples by a nonzero constant)
fixed point for the Fourier transform. This is normalized for the measure dm, as it
has mean zero, integral one, and variance one.

–the transform of the Gaussian function e−x
2/2 scaled by σ is scaled by 1/σ.

Note that this relates to F(δ0) = 1: the sequence ϕn = . . . converges to δ0,
and....converges to 1.

Convolution.... ϕn is an approximate identity in that....
These are all related to the uncertainty principle: that for f ∈ L2,

||f ||2||f̂ ||2 ≥ 1.

Thus, on the space § = §(R) of tempered distributions, F is an isometry, with
inverse map F̌ .

Given a measure µ on r we define F(µ) = µ̂ = g where

g(t) =
1√
2π

∫

R
e−itxdµ (41)

Here is an example from probability theory:
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Definition 12.4. Given a R- or C- valued random variable X defined on a probability
space (Ω,A, P ) then the characteristic function of X is the inverse Fourier transform
of the distribution PX of X.

Thus ...???

Remark 12.1. Much of the usefulness of the Fourier transform in analysis is due to
its basic properties, see Theorem 7.2 of [Rud73]; in particular, that
-convolution is turned into multiplication.

In probability theory (see Chapter 15 of [?], the normalized inverse Fourier trans-
form is known as the characteristic function of a probability distribution on R. One
shows that sums of i.i.d. random variables yield convolutions of their distributions and
so again one can use multiplication in extimates. We shall next see some important
applications of this idea.

It is not an accident that the Gaussian distribution is a fixed point for the Fourier
transform. In physics, the Fourier transform takes you from position to momentum
space, and in wave analysis from position space to frequency space.

We mention that the Laplace transform has similar properties, since in faact the
Laplace transform on the imaginary axis is exactly the characteristic function, hence
also is of use in probability, where it is known as the moment generating function.
See Postscript 1 in Chapter 15 of [?].

12.3. Proof of the CLT. We shall need the following basic fact from analysis:

Lemma 12.8.

ex = lim
n→∞

(
1 +

x

n

)n
(42)

and hence also

lim
n→∞

(
1 +

x

n
+ o

(
x

n

))n
= ex. (43)

Proof. The first statement is a basic fact from analysis, one of the common equivalent
definitions of the exponential function (the others being as a solution of a differential
equation, or as the Taylor expansion). It can be proved from the Taylor series by
using the Binomial Theorem to turn the product into a series. We skip the details
(see e.g. Wikipedia, exponential function.)

Recall that that f(x) = o(x) means for all ε > 0, ∃x0 such that for all x ≥ x0 we
have |f(x)| < εx. We write this as

f(x) = ±εx.
Thus f(x) = o(x) is equivalent to: “given ε > 0, eventually f(x) = ±εx.” Now (43)
means given a function f(x) such that f(x) = o(x) then

lim
n→∞

(
1 +

x

n
+ f(x/n)

)n
= ex

but, (
1 +

x

n
+±εx

n

)n
=

(
1 +

x

n
(1± ε)

)n
→ e(1±ε)x
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for every ε, proving the statement.
�

Lemma 12.9. Suppose that ϕ : R→ R satisfies

ϕ(x) = 1− 1

2
x2 + o(x2).

Then for

ϕn(x) =

(
ϕ

(
x

n
1
2

))n
=

(
1− x2

2n
+ o

(
x2

n

))n
,

we have

ϕn → e−x
2/2

as n→∞.

Proof. This now follows from (43). �

The idea for proving the CLT is as follows. The Fourier transform will convert the
partial sum to a product, where we apply the above argument. The Gaussian is a
fixed point for the Fourier transform. Taking the Fourier transform again, proves the
CLT.

Proof. (of CLT) We take Xn i.i.d. with finite second moment, moreover for simplicity
of the constants, with mean zero and variance one. Thus Sn = X1 + · · · + Xn has
variance n.

Let PX be the distribution of X = Xk (for any k).
Let us write F for the Fourier transform operator.
Let ϕX = F(PX) denote the Fourier transform of PX . Then because X has first

and second moments 0, 1 we have

ϕX(x) = 1− 1

2
x2 + o(x2).

The Fourier transform of the distribution of Sn is

F(Pn) ≡ F(PSn) = ϕn(x) =

(
ϕ

(
x

n
1
2

))n
.

Hence by the Lemma, limn→∞F(Pn) = e−x
2/2. Also, F(limn→∞ Pn) = limn→∞F(Pn)

by linearity and continuity of the Fourier transform.
Thus
limn→∞ Pn = F(F limn→∞ Pn) = F(e−x

2/2) = e−x
2/2dx, finishing the proof. �

The CLT describes convergence of the distribution of the random walk at time n to
the standard normal distribution (that with mean µ = 0 and variance σ2 = 1). This
applies to the simple random walk, where Sn has the binomial distribution of point
masses shown in Fig. 12.1. But it applies to any i.i.d. (Xi)i≥0 with finite positive
variance, including continuous distribution or a mixture of continuous and discrete.
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When one changes the formula to include any µ and any σ2 > 0, the CLT states
that

Sn − nµ√
nσ2

converges to the standard normal.
There are also precise asymptotic upper and lower envelopes for the random walk

path, curves slightly larger than the above parabola which follows the variance of Sn:

Theorem 12.10. (Law of the Iterated Logarithm) For (Xi)i≥0 as above, then almost
surely,

P

[
lim sup

|Sn|√
n log log n

=
√

2

]
= 1.

We note that X1 having finite pth moment implies finite qth moment for any q < p,
so having any finite pth moment for p ≥ 1 implies finite expectation (hence the strong
law) and finite pth moment for p ≥ 2 implies the distributional convergence of the
CLT, and the upper and lower bounds of the Law of the Iterated Logarithm (which
of course implies the strong law for this case).

But what can one say for 0 < p < 2, still with the i.i.d. assumption? This is a
fascinating story answered by Paul Lévy: one then gets the α-stable distributions for
α ∈ (0, 1). There now is an additional skewness parameter ξ ∈ [−1, 1], with ξ = 0
being the symmetric stable law (law means distribution!) and ξ = ±1 being the
completely asymmetric case.

Lévy completely characterized those distributions which converge to the (α, ξ)-
stable laws not only for the standard normalization Sn/n

1/α but for any normalization
Sn/a(n). This is called the basin of attraction of the (α, ξ)-stable law. The character-
ization is in terms of the Fourier transform of the distribution. This can be thought
of as a stable central limit theorem; see [Lam66] and also see the introduction to ??.

Most conventionally in applications to ergodic theory and dynamical systems the
only limit law that comes up other than the Ergodic Theorem (i.e. the Strong Law) is
the CLT, but that is not quite true: all of the laws for α > 0, completely asymmetric
with ξ = 1, occur naturally in the context of expanding maps with indifferent fixed
points. (For α ∈ (0, 1) one gets the Mittag-Leffler distributions, which correspond to
the inverses of the stable processes). See Fig.??

Furthermore, Poisson distributions and Pareto distributions can naturally occur.
See ??

–Markov process
–Limit theorems
–recurrence; infinite measure

12.4. Brownian motion and the scaling flow. We consider the space C+ =
C(R+,R), of continuous functions from R+ to R, with the topology T of uniform
convergence on compact subsets of R+. This topology makes C+ a Polish space (Def.
5.2), which is good from the point of view of measure theory. We call this one-sided
path space. Similarly we define two-sided path space to be C = C(R,R).

We define a flow on on path space C, respectively C+, by (τsB)(t) = B(est)/es/2.
This is the scaling flow τs of exponent 1/2.
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Theorem 12.11. There exists a unique probability measure ν on C+ satisfying:
(i) B(0) = 0, for a.e. B ∈ C;
(ii) the increments B(t+ s)−B(s) for t > 0 are independent of B(r) for all r < s.
(iii) the distribution of B(t+ s)−B(s) is N (0, t).

Parts (i) − (iii) can be summarized as: B has stationary, in fact i.i.d. Gaussian
increments, with mean zero and variance var(B(t)) = t.

Thus the distribution of B(t) is N (0, t) = 1√
2πt
e−x

2/2tdx.

This is called the Wiener process or Brownian Motion. The measure ν+ can be
extended to C(R,R), i.e. to paths B(t) with t ∈ R; we call this two-sided path space.
We do this by taking an independent copy of the one-sided process, reflecting the
paths and joining them at time 0.

We define the increment flow hs on C by

hs : B(t) 7→ B(t+ s)−B(s).

Theorem 12.12.
(i)The scaling and increment flows for Brownian motion are ergodic, moreover are
each Bernoulli flows of infinite entropy.
(ii)Let Sn be a random walk on R with i.i.d. increments Xi of mean 0 and variance
1. Write S(t) for the corresponding polygonal path in C+, and µ for the measure on
path space corresponding to S(t). Then µ-a.e. path S(t) is a generic point for the
scaling flow (C+, ν, τt).
iii the two flows satisfy the commutation relation

hbτa = τahe−sb.

For proofs of (i), (ii) , see [Fis87], [FT12]. Part (iii) is immediately verified. This
says that the following diagram commutes; a consequence is that the increment flow
has the interesting property of being isomorphic to a speeded-up copy of itself! Com-
pare the discussion of the geodesic and horocycle flows below in Fig. 66.

C he−a·b−−−→ C
τa

x
xτa

C −−−→
hb

C

12.5. Fundamental solution of the heat equation. There is a close relationship
between the Heat Equation and Brownian motion: the fundamental solution to the
heat equation is just the distribution of B(t) ! For one dimension (this is true much
more generally, for example on manifolds with a Riemannian metric), this fundamen-
tal solution is therefore Φ : R× R+ →
R+ where

Φ(x, t) = 1√
2πt
e−x

2/2tdx. The interpretation is that one begins at time 0 with point

mass concentrated at 0; it evolves as a normal distribution with variance t at time t.
See Fig. 12.4.
Click HERE for rotatable 3-d image!
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Figure 33. Typical path of an i.i.d. random walk with standard nor-
mal increments, here with n = 215 steps, now close to a Brownian path..

Figure 34. Distribution of B(t): evolution of fundamental solution

12.6. The shift flow on the Ornstein-Uhlenbeck velocity process.

12.7. The shift flow on White Noise.
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Figure 35. Fundamental solution of heat equation

13. Proofs of ergodicity

14. Weak mixing, eigenfunctions and rotations

Here we follow mostly [Fur81]; property (iii) is so central that Furstenberg takes
it as his definition of weak mixing!

Proposition 14.1. These are equivalent, for a measure-preserving transformation T
of a probability space (X,A, µ):
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Figure 36. The black curve projects to a parabola on the t−x plane:
it is where a vertical paraboloid t = c ·x2 (indicating constant σ) meets
the surface.

(i) T is weak mixing
(ii) T × T is weak mixing
(iii) T × T is ergodic
(iv) for any ergodic measure-preserving transformation of a probability space (Y,B, ν, S),
T × S is ergodic.

Exercise 14.1. Given T an irrational circle rotation Rθ, show that T × T (which is
a map on the torus T2 = R2/Z2) is not ergodic.

For the proof of the proposition we shall need:
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Lemma 14.2. For a measure-preserving transformation T of a probability space
(X,A, µ), then T is mixing if and only if T × T is mixing.

Proof. If T × T is mixing then T is: we just consider the sets A×X, B×X. For the
converse,

µ× µ(T × T )−k(A× C) ∩ (B ×D) = µ× µ(T−kA ∩B)× (T−kC ∩D) (44)

= µ(T−kA ∩B)µ(T−kC ∩D)→ µAµBµCµD = µ× µ(A× C)µ× µ(B ×D). (45)

But it is enough to have verified mixing for rectangles, as they generate the product
σ−algebra. �

Proof. of Proposition: Applying the lemma to convergence along a subsequence of
density one, by 8.6 we have a proof of (i) ⇐⇒ (ii).

For (ii) =⇒ (iii) we apply Proposition 8.1 to the transformation T × T .
We next show that (iii) =⇒ (i). By Lemma 8.5 it will be enough to show that

1

n

n−1∑

k=0

(µ(A ∩ T−kB)− µAµB)2 → 0.

We have:

1

n

n−1∑

k=0

(µ(A ∩ T−kB)− µAµB)2 (46)

=
1

n

n−1∑

k=0

(µ(A ∩ T−kB))2 + (µAµB)2 − 2µ(A ∩ T−kB)µAµB. (47)

Now

1

n

n−1∑

k=0

(µ(A ∩ T−kB))2 =
1

n

n−1∑

k=0

µ× µ(A× A) ∩ (T × T )−k(B ×B)→ (µA)2(µB)2

(48)

by the ergodicity of T × T . And

1

n

n−1∑

k=0

µ(A ∩ T−kB)→ µAµB

since T is ergodic. Therefore

1

n

n−1∑

k=0

(
µ(A ∩ T−kB)− µAµB

)2→ 2(µAµB)2 − 2(µAµB)2 = 0

finishing the proof.
Next is (iv) =⇒ (iii): assume that T is such that for any S ergodic, the product

T × S is ergodic. Let Y be a singleton with point mass and S the identity map on
Y ; this is ergodic. So T × S is ergodic by (iv), and this is isomorphic to T , and we
have that T itself is ergodic. Then again by (iv), T × T is ergodic, giving (iii).



116 ALBERT M. FISHER

Finally we show (i) =⇒ (iv). Write X̂ = X × Y , Â = A × B, µ̂ = µ × ν and

T̂ = T × S. From Prop. 8.3, T̂ is ergodic iff for any A,B ∈ Â, f1 = χA, f2 = χB we
have

1

N

N−1∑

n=0

∫

X̂

(f1) (f2 ◦ T̂ n)dµ̂→
∫

X̂

f1dµ̂

∫

X̂

f2dµ̂ as N →∞. (49)

We prove this for L2(X̂) = L2(X×Y ), where it will be enough to verify for a dense
set: the collection of all finite sums of functions of the form f(x, y) = g(x)h(y) for
g ∈ L2(X), h ∈ L2(Y ).

For this we verify (49) for f1(x, y) = g1(x)h1(y), f2(x, y) = g2(x)h2(y), extending
to the rest of the dense set by linearity (of the integral and the sum). Now by Fubini’s
theorem ∫

X̂

f1dµ̂

∫

X̂

f2dµ̂ =

∫

X

g1dµ

∫

X

g2dµ

∫

X

h1dµ

∫

X

h2dµ. (50)

We wish to show that

1

N

N−1∑

n=0

∫

X̂

f1 · f2 ◦ T̂ ndµ̂ =
1

N

N−1∑

n=0

(∫

X

g1 · g2 ◦ T ndµ

∫

Y

h1 · h2 ◦ Sndν

)
(51)

converges to (50) as N →∞.
...
OBS: can use erg of T also
...
We carry this out first for g1 constant, then for

∫
g1 = 0; the general case follows

by linearity.
For g1 constant,

∫
X
g1 · g2 ◦T ndµ =

∫
X
g1dµ

∫
X
g2 ◦T ndµ =

∫
X
g1dµ

∫
X
g2dµ (since∫

X
g2 ◦ T ndµ =

∫
X
g2d(µ ◦ T−n) =

∫
X
g2dµ) so these constants can be pulled out of

the sum and (51) reduces to showing:

1

N

N−1∑

n=0

∫

Y

h1 · h2 ◦ Sndν →
∫

Y

h1dν

∫

Y

h2dν

which is true by the ergodicity of S.
We move on to the case

∫
g1 = 0, where we use a different trick to separate the

factors under the sum of (51). We recall Hölder’s inequality:

||φψ||1 ≤ ||φ||2‖|ψ||2 (52)

which we use in these two forms, one for L2 and one for Rd:
(∫

X

φψdµ

)2

≤
(∫

X

|φψ|dµ
)2

≤ (||φ||2)2(‖|ψ||2)2 (53)

and: (
1

N

N−1∑

k=0

akbk

)2

≤
(

1

N

N−1∑

k=0

|akbk|
)2

≤ 1

N

N−1∑

k=0

|ak|2
1

N

N−1∑

k=0

|bk|2. (54)
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Defining ak =
∫
X
g1 · g2 ◦ T n and bk =

∫
Y
h1 · h2 ◦ Sndν, we are to show that

1

N

N−1∑

k=0

akbk → (50)

which equals 0 in this case. Now from (54),
(

1

N

N−1∑

k=0

akbk

)2

≤ 1

N

N−1∑

k=0

|ak|2
1

N

N−1∑

k=0

|bk|2. (55)

We shall show the first of these→ 0 while the second remains bounded. From Lemma
8.5, 1

n

∑n−1
k=0 |ck| → 0 ⇐⇒ 1

n

∑n−1
k=0 |ck|2 → 0; taking

ck =

∫

X

g1 · g2 ◦ T ndµ−
∫

X

g1dµ ·
∫

X

g2dµ

then having

1

N

N−1∑

n=0

(∫

X

g1 · g2 ◦ T ndµ−
∫

X

g1dµ ·
∫

X

g2dµ

)2

→ 0

for g1, g2 ∈ L2 is equivalent to weak mixing of T . We are assuming T is weak
mixing, so this is true for our particular choice of g1 which has integral 0, whence
1
N

∑N−1
n=0

(∫
X
g1 · g2 ◦ T ndµ

)2
= 1

N

∑N−1
k=0 |ak|2 → 0. On the other hand, by (53),

1

N

N−1∑

k=0

|bk|2 =
1

N

N−1∑

n=0

(∫

Y

h1· h2◦Sndν

)2

≤ 1

N

N−1∑

n=0

(||h1||2)2 (||h2||2)2 = (||h1||2)2 (||h2||2)2

which is finite. Hence (55)→ 0, finishing the proof. �

Two consequences are:

Corollary 14.3.
(a)If T is weak mixing then T × T × · · · × T is weak mixing.
(b)If T is weak mixing then Tm is weak mixing.

Proof. The proof of (a) will use several of the elements of Prop. 14.9. Since T is weak
mixing, by (iii) T × T is ergodic, so by (iv) T × (T × T ) is ergodic. By induction,
S = (T × T × · · · × T ) (n times) is ergodic. That isn’t quite enough! But so is
S × S = (T × T × · · · × T ) (2n times); hence now by (ii), we do know that S is weak
mixing.

For an alternative argument, we wish to prove (iv): that for any S ergodic, (T ×
T × · · · × T ) × S is ergodic. But since T is weak mixing, by (iv)T × S is ergodic;
again by (iv) T × (T × S) = (T × T )× S is ergodic, and by induction we are done.

To prove (b), consider the discrete space Y = Zm with normalized counting measure
ν and with transformation S the cyclic permutation, k 7→ k + 1(modm). This is
ergodic, so by (iv) above, T × S on the product space X × Zm is ergodic. Now the
induced map of T × S on the set X ×{0} is isomorphic to Tm; and we know that an
induced map is ergodic iff that holds for the original map. Thus Tm is ergodic. To
show it is weak mixing, we repeat the proof beginning with T ×T , since that is weak
mixing; so (T × T )m ∼= Tm × Tm is ergodic, and by (ii) Tm is weak mixing. �



118 ALBERT M. FISHER

Definition 14.1. f ∈ L2(X,µ) (with complex values) is a eigenfunction for T with
eigenvalue λ if f 6= 0 and U(f) = λf for U the Koopman operator f 7→ f ◦ T .

Lemma 14.4. If f is an eigenfunction for T , then |λ| = 1. If T is ergodic then |f |
is constant, and if T is weak mixing, then f is constant.

Proof. Since U is unitary, 〈f, f〉 = 〈Uf, Uf〉 = 〈λf, λf〉 = |λ|2〈f, f〉 so since f 6= 0,
|λ| = 1.

If T is ergodic, then |f(Tx)| = |λ| · |f(x)| = |f(x)| so |f | is constant, and since f
is an eigenfunction this constant is nonzero.

If T is weak mixing, then T × T is ergodic. Since |f | 6= 0, the exists a set X1

of measure one such that f(x) 6= 0 for every x ∈ X1; for (x, y) ∈ X1 × X1, define
g(x, y) = f(x)/f(y). Then g(Tx, Ty) = λf(x)/λf(y) = g(x, y) is constant (say = c)

on a subset X̂ ⊆ X1×X1 of measure one; this may not be symmetric, but it contains
a symmetric set of measure one (take the intersection with its image under the map
(x, y) 7→ (y, x)) and so now, switching x and y, c = 1 and then f(x) = f(y) so f is
indeed a.s. constant as well. �

Definition 14.2. A rotation factor is Rθ acting on R/Z for some θ ∈ [0, 1) together
with an invariant probability measure µ. We know that there are two cases: θ /∈ Q
and µ is Lebesgue measure, or θ is rational and µ is normalized counting measure on
a finite invariant subset of the circle.

Theorem 14.5. These are equivalent:
(i) T is weak mixing;
(ii) T has no nonconstant eigenfunction;
(iii) T has no rotation factor.

Proof. We just proved (i) =⇒ (ii) (in Lemma 14.12).
We show (ii) ⇐⇒ (iii). First we remark that the equation for an eigenfunction,

f(Tx) = λf(x), has this dynamical interpretation: we have the commutative diagram

X
T //

f
��

X

f
��

f(X)
·λ // f(X)

.

We can improve this semiconjugacy so the image f(X) ⊆ C is contained in the
circle, by normalization: indeed, if T has a nonconstant eigenfunction f then we
know its eigenvalue is λ = eiθ, for some θ ∈ [0, 2π). Now define ϕ : X → S1 =
{z ∈ C : |z| = 1} by ϕ(x) ≡ f(x)/|f(x)| and define Rθ on S1 by z 7→ λz. Then
ϕ ◦ T (x) = λf(x)/|λ||f(x)| = λϕ(x) so we have this commutative diagram:

X
T //

ϕ
��

X

ϕ
��

S1 Rθ // S1

Let ν = µ ◦ϕ−1 be the pushed-forward measure on S1. Then ϕ is a semiconjugacy
from (X,µ, T ) to (Y, ν,Rθ) where Y ⊆ S1 is the image of X. Since this latter map is a
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factor of an ergodic transformation, it too must be ergodic. There are two possibilites,
that θ is rational or irrational, leading to the two types of rotation factor.

To prove the converse, given a rotation factor we have the above commutative
diagram. We define f(x) = ϕ(x), and note that this is a (nonconstant) eigenfunction
with eigenvalue λ, since f(Tx) = ϕ(Tx) = Rθ(ϕ(x)) = λf(x). �

Definition 14.3. A transformation has pure point spectrum iff the collection E
of its eigenfunctions spans L2(X,µ).

Example 16. We note that for any θ ∈ [0, 1), Rθ has pure point spectrum; indeed
there are many more eigenfunctions for Rθ : for n ∈ Z and g = einθ the eigenvalue is
λn. In multiplicative notation, for g(z) = zn then g(λz) = λnzn. And these form a
basis for L2 of the circle. Note that the spectrum is finite or dense depending on the
irrationality of the angle.

Example 17. -skew products

-isometric extensions
-subsequence ergodic theorem via random ergodic theorem
-statement of Furstenberg-Zimmer

14.1. Weak mixing for flows.

Definition 14.4. Let τt be a measure-preserving flow on a probability space (X,A, µ).
The flow is mixing iff for every A,B ∈ A we have for
(i)

µ(A ∩ τtB)→ µAµB as t→ ±∞.
It is weak mixing iff
(ii)

1

T

∫ T

t=0

|µ(A ∩ τtB)− µAµB| → 0 as T → ±∞.

We also consider, as for transformations, the third condition:
(iii)

1

T

∫ T

t=0

µ(A ∩ τtB)→ µAµB as T → ±∞.

As for transformations,

Proposition 14.6. For flows on a probability space, mixing implies weak mixing
implies ergodic.

Lemma 14.7. For a bounded f : R→ C these are equivalent:
(a)

1

T

∫ T

t=0

|f(x)|dx→ 0

(b)

1

T

∫ T

t=0

|f |2(x)dx→ 0
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(c)
f(x)→ 0 in density ,

i.e. along a set of times of Cesáro density one in the positive reals.

Proof. In fact, the arguments given above for sequences in the proof of Lemma 8.5
generalize immediately to the integrals. �

Proposition 14.8. These are equivalent, for a measure-preserving flow τt of a prob-
ability space (X,A, µ):
(i) τt is weak mixing;
(ii) Given A,B ∈ A, there is a subset K ⊆ R+ of Cesáro density one such that τt is
mixing along K; that is,

lim
t∈K; t→∞

µ(A ∩ τtB)→ µAµB.

Proposition 14.9. These are equivalent, for a measure-preserving flow τt of a prob-
ability space (X,A, µ):
(i) τt is weak mixing
(ii) τt × τt is weak mixing
(iii) τt × τt is ergodic
(iv) for any ergodic measure-preserving flow ηt of a probability space (Y,B, ν), τt× ηt
is ergodic.

Example 18. The rotation flow on the circle T = R/Z, τt : x 7→ x+t(mod1) is ergodic,
but the flow τt × τt on the torus T2 = R2/Z2 is not ergodic.

Lemma 14.10. For a measure-preserving flow τt of a probability space (X,A, µ),
then τt is mixing if and only if τt × τt is mixing.

Two consequences are:

Corollary 14.11.
(a)If τt is weak mixing then τt × τt × · · · × τt is weak mixing.
(b)If τt is weak mixing then τs is a weak mixing transformation for each s ∈ R.

Definition 14.5. f ∈ L2(X,µ), we define the action of the Koopman one-parameter
group Ut : f 7→ f ◦ τt. We say f is a eigenfunction for τt with eigenvalue λ ∈ C iff
f 6= 0 and for every t, Ut(f) = λtf .

Lemma 14.12. If f is an eigenfunction for τt, then |λ| = 1. If τt is ergodic then |f |
is constant, and if τt is weak mixing, then f is constant.

Definition 14.6. A rotation factor is Rθt = Rt
θ acting on R/Z for some nonzero

θ ∈ R together with the unique invariant measure µ, equal to Lebesgue measure.
Thus Rθt(x) = x+ θt(mod1).

This is just a linear time-change of the speed-one rotation flow Rt, where θ = 1.

Theorem 14.13. These are equivalent:
(i) τt is weak mixing;
(ii) τt has no nonconstant eigenfunction;
(iii) τt has no rotation factor.
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15. Markov shifts

15.1. Markov measures on the full shift. We recall some of the notation and
definitions from §4.3. We begin with a finite set A called the alphabet, consisting
of d symbols or letters; these can also be called digits in the case where A =
{1, 2, . . . , d} or A = {0, 1, 2, . . . , d− 1}.

We write Σ = Π∞−∞A; we define the left shift map σ : Σ → Σ: for x =
(. . . x−1.x0x1 . . . ) ∈ Σ, then (σ(x))i = xi+1. To keep track of locations, we have
placed a “decimal point” immediately to the left of the 0th coordinate; thus σ :
(. . . x−1.x0x1 . . . ) 7→ (. . . x−1x0.x1 . . . ). The one-sided shift space is Σ+ = Π∞0 A,
acted on by the left shift map, (also denoted σ, with the same definition for i ≥ 0,
so now σ : (.x0x1 . . . ) 7→ (.x1 . . . ). Giving the set A the discrete topology and Σ
the product topology, then Σ is a compact topological space which is metrizable; a
convenient metric is d(x, y) = 2−m where m = inf{i : xi 6= yi}.
Exercise 15.1. The spaces Σ+ and Σ are homeomorphic to the middle-thirds Cantor
set, the shift on Σ is a homeomorphism and on Σ+ it is a d−to-1 continuous map.
(See Exercise 4.7.)

We define a thin cylinder set to be a subset of Σ of the form, for k ≤ m ∈ Z,
[xk . . . xm] = {w ∈ Σ : wk = xk, . . . , wm = xm} this is a clopen (closed and open) set.
The collection of these is denoted Cm

k . The decimal point again helps us keep track
of the 0th coordinate; taking A = {1, 2, . . . , d}, then [.2] ∈ C0

0 and [01.0] ∈ C0
−2. A

general cylinder set is a finite union of thin cylinders; we write ∗ for “no restriction
on the symbols” so e.g. for an alphabet with 3 symbols, some general cylinders which
are unions of sets in C4

0 are [∗ ∗ . ∗ 2∗] or [. ∗ 12 ∗ 0].
The cylinder sets are clopen sets which generate the topology and hence the

Borel σ−algebra B for ΣA. For the one-sided shift space for Σ+
A, the thin cylinders

[.x0 . . . xm] generate the σ−algebra B+.

Exercise 15.1. Let B+
0 denote the algebra generated by the collection of thin cylinder

sets. Show that this algebra contains all general cylinder sets, and consists of all sets
which are finite unions of thin cylinders.

We write ∆ for the unit simplex in Rd: ∆ ≡ {π = (π1, . . . , πd) : πi ≥ 0,
∑d

i=1 πi =
1}. Thus ∆ is the convex set spanned by the standard basis column vectors. An
element π of ∆ is a probability vector; a choice of π serves to define a probability
distribution on the alphabet, equivalently on the collection C0

0 of 0-cylinder sets. We
next examine what is needed to extend this to all of B+.

One says M is row-stochastic iff each of its rows is a probability vector. Writing 1
for the column vector with entries identically 1, then M is row-stochastic iff M1 = 1.
Other common names for this are a probability or stochastic matrix.

We shall need the following, the proof of which is delayed until Lemma 16.6:

Lemma 15.1. A (d× d) matrix M is row-stochastic if and only if it is nonnegative
and ∆tM ⊆ ∆t M .

But first we relax these hypotheses, so as to see exactly what is needed. Thus,
given a (d × d) C− or R− valued matrix M and a vector π, we define a function µ
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on the collection of all thin cylinder sets in Σ+
A as follows:

µ([x0 . . . xm]) = πx0Mx0x1 · · ·Mxm−1xm (56)

We have:

Lemma 15.2. M satisfies M1 = 1 iff µ as defined in (56) extends by additivity to
general cylinder sets of Σ+

A, in which case it is finitely additive on the algebra generated
by the thin cylinder sets. µ is σ−invariant if and only if πtM = πt. In this case, µ
extends to an invariant function on the algebra for the two-sided shift space.

If M and π are nonnegative, then µ is a finitely additive measure on Σ+
A, and

extends in a unique way to be countably additive on the Borel σ−algebra of Σ+
A. This

is a probability measure iff π ∈ ∆, and as above extends to ΣA by invariance iff
πtM = πt.

Proof. As in Exercise 15.1, the algebra B+
0 generated by the thin cylinders is the

collection of all finite unions of thin cylinders. So we extend µ to such a set A by
additivity. Thus for example consider a cylinder set which terminates in a given sym-
bol, taking e.g. A = {0, 1}, with A = [.11∗0], we add the contributions from the thin
cylinders of length 4 which make it up, which is well-defined as that decomposition
is unique.

Note however that a thin cylinder set is itself a union of longer thin cylinders; thus
e.g. [.11] = [.11∗] = [.111]∪ [.110]. But here, µ([.11]) = µ([.11∗]) = µ([.111]∪ [.110]) =
µ([.111]) + µ([.110])), making use of the fact that M1 = 1.

If A = A1 ∪ A2, disjoint, with each a union of thin cylinders, then we let n be
the longest length of any of these cylinders, and decompose each of the cylinders for
A1, A2 into cylinders of length n. Then by the previous observation the measure of
each Ai is the sum of the measures of these longer cylinders, and moreover, µ(A) =
µ(A1) + µ(A2). Thus µ is defined additively on B+

0 .
We observe that this part remains valid for real or complex entries.
For the case of nonnegative entries, M is stochastic, and µ is a finitely additive

measure on the algebra B+
0 . The extension to a countably additive measure on the

Borel sigma-algebra B+ is guaranteed by Alexandroff’s extension theorem, Theorem
33.15 below, making use of the fact that the shift space is compact.

To prove shift-invariance it is sufficient to check this on thin cylinders; we need to
show that e.g. µ([.11]) is equal to µ(σ−1([.11])) = µ([.111]∪[.011]) which by additivity
we know is equal to µ([.111])+µ([.011]); this now follows from the hypothesis πtM =
πt. Thus µ is invariant on the one-sided space. We extend this measure to the two-
sided space first on cylinders (invariantly), defining e.g. µ([011.]) ≡ µ([.011]); this
extends to the full sigma-algebra B as before. �

From now on, a probability matrix will generally be denoted by P .
Given P together with a nonnegative row vector πt, we write µ(P,π) for the

invariant measure just defined. The quadruple (Σ+
A,B, µ, σ) is termed a Markov

chain. In the special case where πt is invariant and hence so is the measure µ,
this quadruple is known as a Markov shift, and as noted above, the measure then
extends invariantly to the bilateral shift space ΣA.
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These are both special cases of the more general concept in probability theory of a
Markov process. For this probabilistic interpretation the symbols of the alphabet
of Σ+ are thought of as the states of the system.

To explain this, given a measure space (X,A, µ), we recall the definition of condi-
tional measure: for A ⊆ X with 0 < µ(A) <∞, we define µA(E) = µ(A ∩ E)/µ(A).
This is a probability measure; one also writes µ(E|A) (the probability of E given A)
for µA(E).

For k ≤ m, we define Bmk to be the σ−algebra generated by the cylinder sets Cm
k .

We write B∞k for the σ−algebra generated by ∪m≥kCm
k and similarly for Bm−∞ and

B∞−∞, which equals B.
We say µ on Σ is a Markov measure (or satisfies the Markov property) iff

relative to any given time k, the future depends at most on the present; precisely, for
A ∈ Bk−1

−∞ , B ∈ Bkk and C ∈ B∞k+1, then

µA∩B(C) = µB(C).

We note that a Markov chain satisfies this property, as e.g. for k = 0, taking
A = [l.], B = [.i] and C = [. ∗ j] then µA∩B(C) = µ(A ∩ B ∩ C)/µ(A ∩ B) =
µ([l.jk])/µ([l.j]) = πlPljPjk/πlPlj = Pjk = πjPjk/πj = µB(C), the same calculation
working for other cylinder sets. Hence, the matrix entry Pij gives the probability of
making a transition from state i to state j, and for this reason, the matrix P is called
the transition matrix of the Markov chain.

Remark 15.1. A Markov chain is a Markov measure with stationary (i.e. unchanging
in time) transition probabilities. The concept of Markov measure is more general
than this; one can consider stochastic processes for which the state space is infinite,
or even continuous (such as a manifold or Lie group) and time can also be continuous;
moreover the transition probabilities (now a Markov operator rather than a matrix)
for such a Markov process may depend on time.

For example, assuming we have discrete time and discrete states, then a nonsta-
tionary sequence of (d × d) probability matrices (Pk)k≥0, together with an initial
nonnegative vector πt, determines a Markov measure on Π∞0 known as a nonhomo-
geneous Markov chain.

Returning to the current setting, we note that the definition of the Markov property
is inherently time-asymmetric; however, this lack of symmetry is an illusion, as one
has the equivalent expression:

µB(A ∩ C) = µB(A)µB(C); (57)

This says that the past and future are independent relative to the present, and is valid
for any “present” time k.

In this case where µ is invariant, one can write the corresponding transition matrix

from future state j to present state i: assuming that π > 0, this is it is P̃ where

P̃ij = µ([.ij]])/µ([. ∗ j]) = (πi/πj)Pij;

here we have used the fact that by invariance, µ([. ∗ j]) = µ([.j]). Writing Π for the
diagonal matrix with entries Πii = πi, in matrix form this is

P̃ = ΠPΠ−1. (58)
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Figure 37. Matrix multiplication as a “sum over histories”: (AB)12 =
A11B12 + A12B22

Note that the matrix P̃ is column-stochastic, i.e. column sums are 1, since (equiv-

alently) 1tP̃ = 1t. Note also that P and P̃ are similar matrices; we return to this
point below in equations (65) and (66).

The next proposition illustrates the probabilistic significance of the powers of the
matrix P . The key to understanding this is an interesting representation of a matrix,
illustrated in Fig. 37. Given a (l ×m) matrix A, we define alphabets A = {1, . . . , l}
and B = {1, . . .m} (considered as disjoint sets, with A followed by B), and draw
a graph whose vertices are the elements of A ∪ B, and draw an edge from symbol
i ∈ A to j ∈ B iff Aij 6= 0. We label this edge with the corresponding entry. Now
we interpret matrix multiplication as follows. Given a second, (m × n) matrix B,
then we add the vertices for C = {1, . . . , d}, with the corresponding edges from B to
C labelled by the entries of B. Now the ijth entry of the product AB is the inner
product of the ith row of A with the jth column of B; that is,

(AB)ij =
m∑

k=1

AikBkj,

and in the graph this is exactly the sum over all edge paths connecting i to j (and
passing through some k) of the products AikBkj of the entries along this path.

The same works for an arbitrary product M0M1 . . .Mn of matrices; the graph is a
finite version of a Bratteli diagram, see §??.

Remark 15.2. This interpretation of a matrix product as the sum over all possible
paths yields an easy proof of the associative law for matrix multiplication. Thus
for matrices A, B, C which are (m × n), (n × o) and (o × p) respectively, we have
(AB)ik =

∑n
j=1 aijbjk and (BC)kl =

∑0
k=1 bjkckl whence

((AB)C)il =
0∑

k=1

(
n∑

j=1

aijbjk)ckl =
0∑

k=1

n∑

j=1

aijbjkckl =
n∑

j=1

0∑

k=1

aijbjkckl =
n∑

j=1

aij(
0∑

k=1

bjkckl)

where the middle sums are the sum over possible paths of length three. The point is
that this path composition has erased all of the previous association information.

( This sum over paths is perhaps reminiscent of the “sums of histories” of Feynman
diagrams in quantum mechanics!)
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Proposition 15.3. Given a (row) stochastic matrix P , probability row vector πt and
Markov measure µ on Σ+, the matrix entry of the mth power Pm

ij for m ≥ 1 gives
the transition probability from state i to state j after a gap of time m, and hence
πtm = πtPm gives the distribution of states at time m, for initial distribution πt.

Proof. The probability of being in state j at time (m+ 1) given that we are in state
i at time m is µ([. ∗ ∗ · · · ∗ ij])/µ([. ∗ ∗ · · · ∗ i]), and from the definition of µ this is Pij.
For m > 1, the matrix product automatically sums over all the possible paths in the
shift space (see Fig. 37), completing the proof. �

We are most interested in the case where µ is a σ−invariant probability measure.
Recall from Definition 41.1 that (Σ, µ, σ) is mixing iff for all A,B ∈ B, µ(σ−mA∩B)→
µAµB as m→∞. Given a probability row vector πt, let us write Qπ for the (d× d)
matrix each of whose rows is πt.

Proposition 15.4. Given a Markov shift (Σ,B, µ, σ) defined by a (d× d) probability
matrix P and invariant probability row vector πt, then
(i)

lim
N→∞

1

N

N−1∑

k=0

P k = Q

exists; this satisfies Q2 = Q, PQ = QP = Q;
(ii) the Markov shift is ergodic iff the limit is Q = Qπ.
(iii) the Markov shift is mixing iff limk→∞ P

k = Qπ.

Proof. Recalling the proof of Lemma 8.2, by the Birkhoff ergodic theorem, for any
A,B ∈ B,

lim
N→∞

1

N

N−1∑

0

χB(T n(x))→ χB, almost-surely, whence

χA

(
1

N

N−1∑

0

χB ◦ T n
)
→ χAχB a.s., and so, integrating,

1

N

N−1∑

k=0

µ(A ∩ T−kB)→
∫

X

χAχBdµ as N →∞.

Choosing now a, b ∈ A, we set A = [.a] and B = [.b], and define a matrix Q by
Qab = 1

πa

∫
X
χAχBdµ. Let us note that for the special case when the map is ergodic,∫

X
χAχBdµ = µAµB whence Qab = πb and hence each row is πt.

Now for x0 = a, xk = b we have µ[x0 . . . xk] = πaPax1Px1x2 · · ·Pxk−1b.
Thus µ[a ∗ ∗ · · · ∗ b] =

∑
πaPax1Px1x2 · · ·Pxk−1b where the sum is taken over all

thin cylinders of length k beginning with a and ending with b. From Proposi-
tion 15.3,

∑
Pax1Px1x2 · · ·Pxk−1b = P k

ab while [a ∗ ∗ · · · ∗ b] = A ∩ σ−kB whence

limN→∞
1
N

∑N−1
k=0 P

k
ab = 1

πa
limN→∞

1
N

∑N−1
k=0 µ[a∗∗ · · ·∗b] = 1

πa
limN→∞

1
N

∑N−1
k=0 µ(A∩

T−kB) = 1
πa

∫
X
χAχBdµ = Qab.

Hence the limit is Q with rows πt in the ergodic case.



126 ALBERT M. FISHER

Conversely, we are given that for each a, b, limN→∞
1
N

∑N−1
k=0 P

k = Qπ. This is
equivalent to

1

N

N−1∑

k=0

µ(A ∩ T−kB)→ µAµB

for the special sets A = [.a], B = [.b]. We shall prove this remains true for general
thin cylinders; from there it will extend by additivity to general cylinders and so to
arbitrary Borel sets.

Given then A = [.x0x1 . . . xn = a] and B = [.b = y0x1 . . . ym], we have that for any
k ≥ 1,

µ(A ∩ T−k−nB) = µ[.x0 . . . xn−1a ∗ ∗ · · · ∗ ∗by1 . . . yn]

= πaPax1 · · ·Pxn−1xn · P k
ab · Pby1 · · ·Pym−1ym

(59)

whence

lim
N→∞

1

N

N−1∑

k=0

µ(A ∩ T−k−nB)

= πaPax1 · · ·Pxn−1xn ·
(

lim
N→∞

1

N

N−1∑

k=0

P k
ab

)
· Pby1 · · ·Pym−1ym

= πaPax1 · · ·Pxn−1xn · (πb) · Pby1 · · ·Pym−1ym = µAµB.

To prove (iii), if the shift is mixing, then for A = [.a] and B = [.b],

µ(A ∩ T−kB)→ µAµB

so P k
ab = 1

πa
µ[a ∗ ∗ · · · ∗ b] = 1

πa
µ(A ∩ T−kB) → πb whence P k → Qπ. Conversely,

checking for thin cylinders, by (59)

lim
N→∞

µ(A ∩ T−k−nB) = πaPax1 · · ·Pxn−1xn · ( lim
N→∞

P k
ab) · Pby1 · · ·Pym−1ym

= πaPax1 · · ·Pxn−1xn · (πb) · Pby1 · · ·Pym−1ym = µAµB.

�

Definition 15.1. A (d×d) matrix M with nonnegative real entries is M is primitive
iff for some m > 0, Mm is strictly positive, i.e. has entries all nonzero.

The basic fact about primitive matrices is the Perron-Frobenius Theorem, proved
below in §16: that there exist (up to normalization) unique nonnegative left, and
right, eigenvectors.

Proposition 15.5. The Markov shift is ergodic iff the transition matrix P is irre-
ducible. It is mixing iff P is primitive.

Proof. Since P is row-stochastic, by Lemma 15.1 it preserves ∆t
∞. If P is primitive,

then the unique left and right eigenvectors must, up to positive multiples, be πt and
1. As in the proof of Theorem 16.1, the images ∆t

k = ∆t ·P k nest down to ∆t
∞ = {πt}.

Thus for every v ∈ ∆, vtPm → πt. We choose e.g. for the (3× 3) case, vt to be the
row vector

[
1 0 0

]
, noting that

[
1 0 0

]
Pm gives the first row of Pm. Hence Pm

converges to the matrix Qπ. Then the previous Proposition implies mixing for the
Markov shift.
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Conversely, if the Markov shift is mixing then by (iii) of Proposition 15.4 limk→∞ P
k =

Qπ, whence it has a unique fixed point πt in ∆t
∞ hence a unique (up to multiples)

nonnegative left eigenvector. By the Perron-Frobenius Theorem for the nonprimi-
tive case §18.5, if the matrix P is not primitive then there exist other eigenvectors,
contradicting this fact.

DO: Proof for ergodic case ! ?? �

Summarizing, we have:

Corollary 15.6. These are equivalent, for a Markov chain on a finite state space
with transition matrix P and invariant row vector πt, determining the measure µ on
path space Π, with left shift map σ:
(a) P is primitive;
(b) the transformation (Π, µ, σ) is mixing;
(d)P n converges (to → Qπ).

And these are equivalent:
(e) P is irreducible;
(f) the transformation (Π, µ, σ) is ergodic;

(g) 1
N

∑N−1
k=0 P

k converges.

15.2. Markov measures for subshifts of finite type. Given a (d× d) matrix A
with entries 0 and 1,p we define ΣA ⊆ Σ to be the set of all x ∈ Σ such that Axixi+1

= 1
for all i ∈ Z. These are the allowed strings. We call ΣA a (bilateral, or two-
sided) subshift of finite type or sft for short. An alternative name is topological
Markov shift. The one-sided sft is the corresponding subset Σ+

A ⊆ Σ+.
The matrix A defines a finite graph, whose vertices are the symbols and whose

edges indicate the allowed transitions. That is, Aij = 1 iff there is a (directed) edge
from state (vertex) i to state j. See Fig. ???

Exercise 15.2. If d > 1 and A is primitive, then Σ+
A and ΣA are homeomorphic to

the Cantor set.

Given an allowed string x and k,m ∈ Z with k ≤ m, we write [xk . . . xm] = {w ∈
ΣA : wk = xk, . . . , wm = xm; this is a thin cylinder set, and the collection of these
is denoted Cm

k . The decimal point again helps us keep track of the 0th coordinate;
thus [01.0] ∈ C0

−2. A general cylinder set is a finite union of thin cylinders; we
write ∗ for “no restriction on the symbols” so e.g. for an alphabet with 3 symbols,
some general cylinders which are unions of sets in C4

0 are [∗ ∗ . ∗ 2∗] or [. ∗ 12 ∗ 0].
The cylinder sets are clopen sets which generate the topology and hence the Borel

σ−algebras B for ΣA and B+ for Σ+
A.

A matrix M which satisfies (Aij = 0) =⇒ (Mij = 0) will be termed compatible
with A. Given a compatible probability matrix P and a nonnegative vector π, we
define the Markov measure on Σ+

A and ΣA as above.
Given now a 0 − 1 matrix A and a probability matrix P which is compatible

with A, we decorate the graph of the sft ΣA, labelling each edge with the transition
probabilityPij. This is a probability graph, with the outgoing edges from a symbol
indicating the chance of taking that path, while the unlabeled graph for the subshift
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Figure 38. Possibility graph; probability graph.

of finite type is a graph of possibilities; see Fig. 38, where the matrix A =

[
1 1
1 0

]
has

been replaced by the compatible probability matrix

[
1
3

2
3

1 0

]
.

15.3. Markov partitions and the geometric Markov property. In Fig. 4 we
see how independence can be interpreted geometrically as product measure. From
(57), the Markov property can be expressed as: the past and future are independent
relative to the present, more precisely where A,B,C are elements of the past, present
and future sigma-algebras respectively, then

µB(A ∩ C) = µB(A)µB(C) (60)

Note that the independence in Fig. 4 could just as well be illustrated using paral-
lelograms. Thus the relative independence of the Markov property is shown in the
left-hand side of Fig. 39. In the middle and final picture the probabilities do not
satisfy the Markov property; this is easiest to see in the final picture, where assuming
A,B, and C are the 1- cylinders [a.], [.b] and [. ∗ c], [a.b] and [.bc] are allowed but
[a.bc] is not allowed. Hence the transitions are not given by a subshift of finite type.

In Definition 4.8 we defined a topological Markov partition to be a partition which
codes a map as a subshift of finite type. So the first figure depicts a toplogical Markov
partition, while the third is certainly not.

Now suppose that for a hyperbolic automorphism M of T we choose segments lu,
ls of Eu, Es respectively, such that:
(1) these segments include the origin;
(2) the endpoints of segment lu belong to ls and vice-versa.

We claim that if extended far enough, these segments form the boundaries of rect-
angles which satisfy the geometric Markov property.

The reason is remakable in its simplicity. Since M−1(lu) ⊆ lu, a rectangle like A in
Fig. 39 cannot occur, since its upper boundary is part of M−1(lu) but not a subset
of lu, and similarly for the rectangle C. The interior of the rectangle B does not
contain any of lu ∪ ls. Thus the upper boundary of A which is part of M−1(lu) and
hence lu must either be part of the boundary of B or outside of B. Therefore A must
“pass completely through”, giving independence of A and C relative to B. This same
argument also guarantees the topological Markov property for the partition.

Thus properties (1), (2) give another version of the geometric Markov property.
We mention that while the Figure illustrates the case of a two-torus automorphism,
something very similar works in all dimensions.
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B

AA

C

B

A

C

B

A

C

Figure 39. The Markov property: future and past partition elements
A,C pass completely through present element B, giving relative inde-
pendence; two examples of nonMarkov intersections.

This beautiful connection between the geometry and the probabilty of the Markov
property is due to Adler and Weiss [AW70]; the extension of these ideas to higher
dimensions were first made by Bowen and Sinai.

...Lebesgue and Parry measures

15.4. Countable state Markov shifts: key examples. Although in these notes
finite state Markov shifts are of primary importance, the countable (or even uncount-
able) state case comes up naturally even in the study of these simpler objects.

We treat here some basics, returning later for a deeper study. Let Xi be an i.i.d. se-
quence of random variables taking values in R with probabilities given by a probability
distribution ρ. We define Sn for n ≥ 0 by S0 = 0, Sn =

∑n−1
k=0 Xk; then Sn is a ran-

dom walk with independent increments (the increments of a process Sn being
Xn ≡ Sn+1 − Sn), or an i.i.d. random walk for short.

The simplest example (not surprisingly known as the simple random walk) is
where ρ is a distribution on Z ⊆ R giving probabilities 1/2 to 1 and to −1.

Note that we have already encountered i.i.d. partial sums Sn in the limit theorems
of probability theory, §12.
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From the ergodic theory point of view, we can begin with the Bernoulli shift Σ+ =
Π∞0 {0, 1} with the left shift map σ, and define f(x) = 1 if x0 = 1,= −1 if x0 = 0;
then Sn =

∑n−1
k=0 f(σk(x)). Conversely, for any i.i.d. random walk Sn, the increment

process (X0, X1, . . . ) is a point in the shift space Π+ = Π∞0 R with independent product
measure ⊗∞0 ρ.

Of course Xn is a Markov shift. But the partial sum process Sn is also a Markov
chain: now the transition matrix P with index set Z and Pij = 1/2 iff |i − j| = 1, 0
otherwise, and the initial probability vector is π with πi = 1 for i = 0.

Note that P cannot be easily drawn in traditional matrix form, as the index set is
biinfinite; however it fits a more general definition of matrix perfectly well; see below
??.

The process Sn has the Markov probability measure denoted µ defined from the
stochastic matrix P and initial probability vector π as in (56). Of course this is not
shift invariant, as π is not an invariant vector. Indeed, setting πt0 = πt, πtn = πtP n,
then πtn gives the distribution of the random walk Sn at time n.

This has a binomial distribution, which can be understood by drawing Pascal’s
triangle, which counts the number of paths from the initial point to another vertex,
and then assigning transition probabilities 1/2 to each edge, see Fig. 25, giving at
time n the probability distribution πn. Indeed, the path space for the random walk
(connected by polygonal interpolation, to give the polygonal random walk) can
be visualized as a Pascal’s triangle turned on its side, Fig. 26.

One might search for an initial distribution which is invariant, so as to come up
with a stationary Markov process for the random walk.

There is a natural choice: let ρ be counting measure on Z, so now π satisfies πi = 1
for all i ∈ Z. Note that indeed πtP = πt; however the resulting shift-invariant
measure ν is now infinite.

Writing as above µ for the random walk starting at 0 at time 0, then the relationship
between the two is that µ is the conditional measure for ν, relative to the set A =
{(Sn) : S0 = 0}. That is, µ = νA. In probability language, we say that this is the
random walk conditioned to start at 0.

There is a natural way to approximate this by finite-state Markov shifts: let Ad =
Zd = Z/dZ, the integers mod d; this is our state space, with (d×d) transition matrix
Pij = 1/2 iff |i − j| = 1(mod d), 0 otherwise. Then taking πtd to be [1, 1, . . . 1], this
is invariant, and the resulting measures νd on paths in ΠZ converge to ν. ?? (edge
effect) (reflected better?)

example: renewal shift; recoding doubling map; induced of renewal is ctable state
Bernoulli; fte and inf measure; prove basic thms- invariance; bilateral iff unilateral;
extension; all Markov shifts are r walks; fte state approx...existence of invariant vector
w/o PF ??? recoding doubling map.

16. The Perron-Frobenius Theorem

We present a simple and entirely geometric proof of the Perron-Frobenius Theo-
rem. The proof may be original in this form, although it borrows ideas from several
sources; in particular, parts of the proof are like that in [KH95], and another part
can be seen as a finite-dimensional version of an argument of Walters [Wal75]. Our
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inspiration originally came from a construction of a certain measure, in the ergodic
and information theory of subshifts of finite type, given by Shannon and later inde-
pendently by Parry; further references will be given and this history will be explained
in §2.

We thank Jarek Kwapisz and Pierre Arnoux for helpful suggestions regarding the
proof.

There are many proofs in the literature; one of the nicest is without doubt the
projective metric proof of Birkhoff and Samelson ([Bir57], [Bir67], [Sam56]), which is
also geometrical, see references and comments below. Our proof has the advantage
that it can be presented more readily in an undergraduate or graduate course, as less
background preparation is necessary.

16.1. Proof of the theorem. To understand the action of a linear transformation
on a vector space, it is clearly a good idea to try to identify any invariant subspaces, as
a way of simplifying the description of the map. Since the zero-dimensional subspace
{0} is always invariant, we should start by considering subspaces with dimension 1.

Definition 16.1. Given a complex (d×d) matrix M , a vector v ∈ Cd is an eigenvector
for M iff v 6= 0 and there exists λ ∈ C (possibly zero) such that Mv = λv. (Note
that v = 0 should not be allowed here as it gives the 0-dimensional space mentioned
above, and furthermore since then any λ would work!) For a real matrix M , we
consider it as a complex matrix acting on Cd, so eigenvectors and eigenvalues are
allowed to be complex.

See Lemma 35.60 for the geometric meaning of complex eigenvalues and eigenvec-
tors for real matices.

The theorem shows that any primitive nonnegative (d× d) matrix defines what is
called a partially hyperbolic map of Rd. Here is the definition:

Definition 16.2. Let M be a differentiable manifold. A diffeomorphism f of M
is partially hyperbolic iff there exists an invariant splitting of the tangent bundle
TM = Es ⊕ Eu such that there exist µ < λ ∈ R and c > 0 such that for all n ≥ 1,

||Dfn(v)|| ≤ µn||v||
for all v ∈ Es(p), for all p ∈M , and

||Dfn(v)|| ≥ λn||v||
for all v ∈ Eu(p). It is hyperbolic if we can take µ < 1 < λ here. We recall
that f is an Anosov diffeomorphism iff it is hyperbolic (i.e. on all of M) for M
a compact manifold. The idea behind the study of partial huperbolicity is to see
which properties originally proved for Anosov diffeomorphisms may go through in
the presence of weaker conditions. Note in particular that for partial hyperbolicity
we may well have µ < λ < 1 or ! < µ < λ < 1 or a triple splitting TM = Es⊕Ec⊕Eu

where µ < 1 < λ and there is no asymptotic expansion or contraction at all in Ec;
this is an important special case where Ec is called the central direction.

We note that Birkhoff’s proof (see Theorem 24.5) offers explicit extimates on both
|µ| and λ. This becomes especially critical when studying a sequence of maps, i.e. non-
stationary dynamics.
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Of course for M = Rd, just multiplying f by a constant c shifts the spectrum {µ, λ}
to {cµ, cλ}. The real content of (partial) hyperbolicity is when there is a finite invari-
ant measure, forcing recurrence, or when M is a compact manifold. There are many
fascinating examples to go with the theory, see e.g. .Rodriguez-Hertz, Hasselblatt......

Theorem 16.1. Let M be a (d × d) matrix with nonnegative real entries which is
primitive.
(i) Then there exists (up to multiplication by a constant) a unique strictly positive
right eigenvector; there is a unique strictly positive left eigenvector as well. The
eigenvalues are equal and positive.
(ii) Any other (possibly complex) eigenvalue has modulus strictly less than this eigen-
value λ.

Proof. We note that since M is nonnegative, for any positive eigenvector the corre-
sponding eigenvalue is necessarily positive.

First we go through the proof of (i), then fill in the details in several lemmas. Part
(ii) will follow from (i), by an argument which we borrow from [KH95].

To prove (i), we begin by showing that M has at least one positive right eigenvector.
The positive cone is (Rd)+ = {v : vi ≥ 0}. We write ∆ for the unit simplex in

Rd, i.e. ∆ is the convex set spanned by the standard basis column vectors. We set
||w|| = ∑d

i=1 |wi|; note that with this choice of norm the map w 7→ w/||w|| projects
the positive cone, minus its vertex 0, onto ∆. We define fM : ∆→ ∆ by

fM(v) =
Mv

||Mv|| .

Note that fM has a fixed point in ∆ if and only if M has an eigenvector in the positive
cone.

Thus, we wish to show that fM has at least one fixed point. One approach is to
apply the Brower fixed point theorem, since fM is a continuous map of a topological
(n− 1)-ball. This would provide a nonnegative eigenvector. We shall instead give an
elementary argument, as we will need the same method later on. Writing ∆0 = ∆,
∆1 = fM(∆), . . . ,∆k = (fM)k(∆), and ∆∞ = ∩∞n=0∆k, we have (Lemma 16.3) that
∆∞ is compact and convex. Since some power of M is positive, ∆∞ is contained
in the interior of ∆ (so if there is an eigenvector in the positive cone, in fact it is
strictly positive). We show ∆∞ has at most d extreme points (Lemma 16.3). The
map fM permutes this finite set, hence some power m fixes all of these points. So
(equivalently) there exists a positive right eigenvector for Mm. This part of the proof
is like that in [KH95].

Next for M itself we show existence, and at the same time uniqueness, first under
a special additional assumption: that M is column-stochastic, i.e. it preserves ∆ in
its action on column vectors.

This implies that the map fM on the simplex ∆∞ is the restriction of M and so is
affine. From the previous step we know that ∆∞ has at most d extreme points; we
claim that in fact it has a single point.

If there are ≥ 2 extreme points for ∆∞, consider the line segment in ∆ containing
these points. Since fmM fixes these two points, and is affine, it fixes the entire segment;
hence it fixes the point where the line extending the segment encounters the boundary
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of ∆. But any fixed point in ∆ for fmM is in ∆∞ which we know is strictly inside of
∆, giving a contradiction.

Next we show how to reduce to the column-stochastic case. We begin with the
general matrix M ; we know from above that for some power m, there exists a column
vector w and λ > 0 such that

Mmw = λw.

Therefore, in its action on row vectors vt (∗t indicates transpose), the matrix
(1/λ)Mm preserves the hyperplane

H t
w ≡ {vt : v ·w = 1}

(Lemmas 16.5, 16.6). A change of basis produces a positive matrix P whose action on
row vectors maps the simplex ∆t into itself (see §16.3). Now P is row-stochastic, and
some power is positive, so applying the above proof (on rows rather than columns),
P has a unique positive left eigenvector π.

The conjugacy of M with P shows that Mm also has a unique positive left eigenvec-
tor. Since the left and right positive eigenvectors for P both have the same eigenvalue
(= 1), this fact passes by similarity over to M . A simple argument then implies exis-
tence and uniqueness for M itself (Lemma 16.4). By duality (i.e. exchanging the role
of left and right), M has a unique positive right eigenvector. This finishes the proof
of part (i). �

Remark 16.1. We mention that the fact that the maximum eigenvalues λ for M and
M t are equal is general: from Lemma 35.52 below, for any real rectangular matrix A,
||A|| = ||At|| where this is the operator norm.

16.2. Some details.

Lemma 16.2. For M as in the Theorem, the image by fM of any convex set is
convex, and moreover for any finite set of points, the image of their convex hull is the
convex hull of the image of the points.

Proof. For two points, the statement is that the image of the segment [v,w] with
endpoints v,w is the segment (possibly a point) [fM(v), fM(w)]. Indeed, since M is
linear, the image of a line segment in the positive cone (Rd)+ = {v : vi ≥ 0} is a
line segment, and when normalized to ∆ this gives either a line segment or a point,
with those extreme points. It follows from this statement that the image by fM of a
convex set is convex.

Now consider the case of three points v,w, z ∈ ∆; given a point x = av + bw + cz
where a+ b+ c = 1 and a, b, c ≥ 0, there is a point x̃ on the segment [v,w] such that
x lies on the segment [x̃, z]. Indeed, take x̃ = a/(a+ b)v + b/(a+ b)w. Since by the
above each of these segments is mapped by fM to a segment with the corresponding
extreme points, the result follows; the general induction step is similar. �

Lemma 16.3. For M as in the Theorem, ∆k = fkM(∆) is convex, compact and
nonempty and the number of its extreme points is at most d. The same holds for
∆∞. Also, fM(∆∞) = ∆∞. The map fM acts on the set of extreme points as a
permutation.
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Proof. Since fM is continuous, each ∆k is a compact set. From the previous lemma,
we have that ∆k is a convex set, and that the extreme points Ext(∆k) satisfy
fM(Ext(∆k)) ⊇ Ext(∆k+1). Thus #Ext(∆k) ≤ d for all k. Since ∆k is compact,
convex and nonempty, so is the intersection ∆∞ = ∩∞n=0∆k.

We next show that fM(∆∞) = ∆∞. We make the following more general
CLAIM: Let f : X → X be a continuous map on a topological space X, and let K
be a compact subset of X. If f(K) ⊆ K, then for Kn = fn(K) and K∞ = ∩∞n=0Kn,
we have that K = K0 ⊇ K1 ⊇ K2 . . . and that f(K∞) = K∞.

But this is exactly Lemma 4.3 above!

Now we return to ∆∞. We need to show Ext(∆∞) is finite. For x ∈ ∆∞, for each

l, there are real numbers λ
(l)
i and an integer j = j(l) such that

x =

j∑

i=1

λ
(l)
i ei

(l)

where {e1
(l), . . . , ej

(l)} = Ext(∆l). Let us write m = minl≥0{j(l) = #Ext(∆l)}.
Thus there exists J such that for every l ≥ J , #Ext(∆l) = m. We claim that
#Ext(∆∞) ≤ m.

Now by compactness of ∆l and ∆∞, there exists for each i a subsequence of (ei
(l))∞l=J

which converges to some point ei
(∞) ∈ ∆∞. We claim that Ext(∆∞) ⊆ {ei

(∞)}mi=1.
(Here the order on each set Ext(∆l) is of no importance, once it has been fixed.)
Indeed, any point x ∈ ∆∞ can be written as a convex combination

x =
m∑

i=1

λ
(l)
i ei

(l)

for each l ≥ J ; by compactness of [0, 1], for each i there exists a subsequence of λ
(l)
i

converging to λ∞i such that we have x =
∑m

i=1 λ
∞
i ei

(∞); hence {ei
(∞)}mi=1 ⊇ Ext(∆∞),

as stated.
Finally we show fM permutes Ext(∆∞). First we show that given b ∈ Ext(∆∞),

there exists some a ∈ Ext(∆∞) which maps onto it. Indeed, since the map is onto,
there exists some preimage c ∈ ∆∞; if c is not extreme, it is a nontrivial convex com-
bination of the extreme points; but by the previous lemma, its image is a (generally
different, since fM may not be linear)) convex combination of the images of these
points; yet b is extreme; so this combination must be trivial, and at least one of these
extreme points must map onto b.

Then, since Ext(∆∞) is finite, it follows that fM acts as a permutation. �

Lemma 16.4. Let f : X → X be a function on a set such that for some m > 1, fm

has a unique fixed point. Then the same is true for f .

Proof. Let x be the unique fixed point for fm. Then x is a periodic point for f , of
(least) period k which divides m. We want to show that k = 1. But this is true, since
the orbit of x provides k distinct fixed points for fm. Lastly, uniqueness for f follows
from uniqueness for fm. �
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As noted in the proof of the theorem, the previous lemma lets us work in what
follows with M rather than Mm.

Lemma 16.5. Let M be a (d×d) real matrix. Then Mw = λw ⇐⇒ (1/λ)M maps
the hyperplane

H t
w = {vt : v ·w = 1}

into itself (by multiplication on the right of row vectors).

Proof. This can be deduced from the fact that taking the orthogonal complement is
idempotent in finite-dimensional vector spaces, but we include a simple proof for com-
pleteness. By associativity of matrix multiplication, (vt(1/λ)M)w = vt(1/λ)(Mw) =
1. This shows ( =⇒ ). The hypothesis of the converse states:

For fixed w, defining z = (1/λ)Mw, then v ·w = 1 =⇒ v · z = 1. (61)

We shall show:
If (61) holds then w = z.

Without loss of generality, assume ||w|| = 1. Now by (61), since w · w = 1 then
w · z = 1. Since z · w = 1, then using (61) again, z · z = 1 so also ||z|| = 1. Now
we can write z = (z · w)w + ŵ where w · ŵ = 0 (since, defining ŵ by the first
equation, the second follows). We claim ŵ = 0, which will finish the proof. But
w · ŵ = 0 implies that (w + ŵ) · w = 1, so by (61) (w + ŵ) · z = 1, but this is
(w + ŵ) ·

(
(z ·w)w + ŵ

)
= z ·w + ŵ · ŵ, so ŵ · ŵ = 0 as desired. �

Write 1 for the column vector all of whose entries are 1, and 1t for the corre-
sponding row vector. Making use of that notation, we have this useful linear algebra
characterization of being row- and column- stochastic:

Lemma 16.6. For a nonnegative (d × d) matrix M , M is row-stochastic ⇐⇒
M1 = 1 ⇐⇒ ∆tM ⊆ ∆t; M is column-stochastic ⇐⇒ 1tM = 1t ⇐⇒ M∆ ⊆ ∆.

Proof. This is immediate from the definition and Lemma 16.5. �

16.3. The change of basis. For of notation let us now assume we are in the (3× 3)
case. Given M and w such that Mw = λw, with

w =



w1

w2

w3


 ,

then defining

W =



w1 0 0
0 w2 0
0 0 w3




we set

P =
1

λ
W−1MW.

Note that P1 = 1, so the matrix W has given a change of basis which transforms
(1/λ)M to P which is row-stochastic; this completes the proof as explained above.
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Remark 16.2. The change-of-basis from (1/λ)M to P can be visualized as follows:
the standard basis for P of row vectors, which spans the simplex ∆t, is taken to the
row vectors

[
w1 0 0

]
,
[
0 w2 0

]
,
[
0 0 w3

]
, which span a hyperplane which is

orthogonal to w, and which is preserved by the matrix (1/λ)M . Figure ?? shows the
row-action of M on the simplex formed by the intersection of this hyperplane with
the positive cone.

16.4. The maximum eigenvalue. Now we show that the eigenvalue λ is maximal
in modulus.

Now we give the proof of (ii) of Theorem 16.1, for which we follow [KH95].

Lemma 16.7. Let M be as in the Theorem, with λ the eigenvalue for the positive
eigenvector v. Suppose µ is another eigenvalue. Then |µ| < λ.

Proof. First suppose that µ is real. Then there is a column vector w ∈ Rd such that
Mw = µw. Now consider the plane spanned by v and w. If µ = λ, then the action
of M simply dilates this plane by the constant λ, so the ray where (Rd)+ meets this
plane is taken to itself. However we know the image of ∆ lies inside int∆, giving a
contradiction. If µ > λ, then that ray is mapped outside of the cone. If −µ ≥ λ, the
same argument works for the map M2.

Next suppose µ is complex. By Lemma 35.60, there is a plane where the matrix
acts with respect to a (possibly non-orthogonal, as noted above) basis {u1,u2} by[
a −b
b a

]
= ρ

[
cos θ − sin θ
sin θ cos θ

]
. We consider the action of M on the 3−dimensional

space generated by u1,u2,v. If θ is rational, then some power (say k) of this matrix
dilates the (u1,u2)-plane by ρk. Considering say the (u1,v) plane, we are now in the
situation considered above for a real eigenvalue. If θ is irrational, some power of the
rotation returns us arbitrarily close to the identity, and the same argument works
again. �

16.5. Acknowledgements and history.
The proof we give here of the Perron-Frobenius Theorem arose in the following

way: we realized that the definition of Shannon-Parry measure as given in [AW70]
could be rewritten in matrix form, and that this amounted to a change-of-basis; in
trying to produce a simple proof of the Perron-Frobenius Theorem for use in a class on
dynamical systems given at Stony Brook in Fall 1993, we gave first the proof for the
stochastic case, and noticed that the same equation could reduce the general case to
this one. Later we realized that this approach is essentially a translation of Walters’
proof of the Ruelle-Perron-Frobenius Theorem [Wal75] to the Markov case. There an
abstract fixed point theorem is used to give the first step; here because of the finite
dimensions, we are able to give an elementary argument. It turns out that the first
part of this was anticipated in the book by Katok and Hasselblatt [KH95].

We wish to thank Jarek Kwapicsz, then (in 1993) a student in the dynamics class
at Stony Brook, who made a nice observation which simplified the part of the proof
about affine maps, and Pierre Arnoux, who read and commented on the whole section
and contributed the proof of Lemma 16.5.
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16.6. Parry measure. We return to considering a 0 − 1 (d × d) matrix A and its
subshift of finite type Σ+

A.
If we draw the graph for the matrix A, then each edge corresponds to an entry 1

of the matrix, that is, Aij = 1 iff there is a (directed) edge from state (vertex) i to
state j. Given a row-stochastic matrix P which is compatible with A, we can now
label each edge by the transition probabilityPij. One can think of the graph with
these labels as the probability graph, while the unlabeled graph for the subshift of
finite type is a graph of possibilities. There are in general many possible probability
matrices to choose from!

We denote by MMark
A the set of all the shift-invariant measures (P,πt). These are

the invariant (one-step) Markov measures on Σ+
A. We also write MA for the set of

all invariant probability measures on Σ+
A.

Out of all the possible choices of such measures, there is one probability matrix P
and hence one Markov measure inMMark

A of special importance, for two reasons men-
tioned above: first it turns out to be the measure of maximal entropy (for which the
measure theoretic entropy equals the topological entropy), and second, geometrically
it corresponds to Lebesgue measure on the torus. The formula for this measure was
discovered by Shannon [SW63] and later independently by Parry [Par64] (we follow
convention in naming this after Parry); it can be defined as follows.

Suppose our 0−1 matrix A is primitive. Now from the Perron-Frobenius Theorem,
we know such a matrix has, up to constant multiples, a unique strictly positive right
eigenvector w and unique positive left eigenvector vt, both with eigenvalue λ > 0.
We normalize these so that

∑
viwi = 1.

We define the diagonal matrix W from w as before. We set P = 1
λ
W−1AW . We

know that P has a unique left eigenvector πt, normalized to be in ∆t; one checks that
in fact πi = wivi. This is a left eigenvector with eigenvalue 1, so is invariant. Hence
it defines an invariant measure, µ = µ(P,πt); this is Shannon-Parry measure.

Theorem 16.8. (equidistribution property) The measure is equidistributed on
cylinders in the sense that for all sets [x0 . . . xm] ∈ Cm

0 , setting c1 = min{viwj} and
c2 = max{viwj}, then for all m ≥ 0,

c1λ
−m ≤ µ([x0 . . . xm]) ≤ c2λ

−m. (62)

Proof. From P = 1
λ
W−1AW we have that (equivalently)

Pij =
1

λ

wj
wi
Aij.

Hence for an allowed string x,

µ([x0 . . . xm]) = πx0Px0x1 · · ·Pxm−1xm = λ−m(vx0wx0)
wx1
wx0

. . .
wxm
wxm−1

= λ−mvx0wxm

(63)
as everything else cancels. �

As an application we would like to count the number of cylinder sets of length
m, #Cm

0 . We give three methods, the first based on the equidistribution of Parry
measure, the second which relies on the graph interpretation of matrix multiplication
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given above in Fig. 37, and the third making use of the opertor norm. First we note
that in the special case of matrices with entries 0, 1 we have the following:

Proposition 16.9. Given a (d × d) nonnegative integer matrix A, the number of
cylinder sets #Cm

0 is the number of paths in the finite (stationary) Bratteli diagram
from time 0 to time m, and equals

∑
i,j A

m
ij = ||Am|| = ||Am1|| where the first norm

is the L1-norm of the matrix and the second of the vector.

Remark 16.3. A basic fact is that in a finite dimensional vector space all norms are
equivalent (see Lemma 35.41) In the statement above we used the L1 norm ||M || =∑

i,j |Mij|. But for linear operators there is a second norm: ||M ||op = max||v||=1 ||Mv||
which is very useful because of the following submultiplicative property:

||AB||op ≤ ||A||op||B||op
(Exercise: prove this, and interpret it geometrically).

The next statement tells us that the topological entropy of the subshift of finite
type ΣA for A primitive with entries 0, 1 is h = log λ, see Def. 4.7.

Corollary 16.10. The number of cylinder sets grows exponentially with exponent h;
that is there exist C1, C2 > 0 such that for all m ≥ 0,

C1 e
hm ≤ #Cm

0 ≤ C2 e
hm.

Proof. For the first proof, by the equidistribution property (62), setting C1 = 1/c2

and C2 = 1/c1. For the second, note that from Proposition 16.9, #Cm
0 =

∑
i,j A

m
ij =

||Am1||. Now by the Perron-Frobenius Theorem the growth rate of any nonnegative
vector under the action of A is given by λm. Thus

C1λ
m ≤ #Cm

0 ≤ C2λ
m

as claimed.
Lastly, from the Remark, there are c̃1, c̃2 > 0 such that for all n, c̃1||An||op ≤
||An|| ≤ c̃2||An||op but since Aw = λw with λ the largest eigenvalue, necessarily
||An||op = λn, giving the third proof.

�

As a consequence we have that

lim
1

m
log #Cm

0 = log λ = h

which corresponds to the weaker statement: for all ε > 0 then for m sufficiently large,
we have

λm(1−ε) ≤ #Cm
0 ≤ λm(1+ε). (64)

Remark 16.4. Equation 64....Shannon-McMillan-Breiman Theorem (sometimes known
as the Ergodic Theorem of Information)......
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Remark 16.5. We have seen above in (57) and (58) how to write the time-reversed

matrix P̃ for a general Markov shift; it is P̃ = ΠPΠ−1; for the Shannon–Parry
measure, this is

P̃ = ΠPΠ−1 = VWPW−1V −1 = V AV −1 (65)

which makes sense, as we have

µ([x0 . . . xm]) = πx0Px0x1 · · ·Pxm−1xm = λ−mvx0wxm = P̃x0x1 · · · P̃xm−1xmπxn . (66)

This new formula will be useful below.

Example 19. Let’s calcuate the Parry measure for the golden shift; this will lead us
to the natural invariant measure for the Markov interval map of Fig. 17.....

17. Entropy

-variational principle (Misz proof)

18. Measure theory of adic transformations

18.1. Primitive case: Unique ergodicity for stationary adic transforma-
tions.

18.2. The lemma of Bowen and Marcus. As above, we have a (d×d) 0-1 matrix
A, and assume A is primitive. Thus we have the Perron-Frobenius right and left
eigenvectors w,vt with eigenvalue λ. First we give a quite different characterization
of Shannon-Parry measure. The significance of this will become clear below.

On the space Σ+
A, we define a second measure ν, by

ν([x0 . . . xm]) = µ([x0 . . . xm])/vx0 = wx0Px0x1 · · ·Pxm−1xm = λ−mwxm . (67)

Here we have used (63). This is a Markov measure with initial distribution wt; note in
particular that ν[a] = wa. The measure ν is respectively invariant and is a probability
measure if and only if wt happens to be invariant and a probability vector, but that
is not the general case.

We shall call ν the Shannon-Parry eigenmeasure; the reason for this name will
only become clear in section §27.

We say a measure m on Σ+
A has the Bowen-Marcus property iff mt(s) =

m([x0 . . . xt]) for xt = s ∈ A is well-defined; that is, the measure of a thin cylin-
der set depends only on the last letter.

Note that the Shannon-Parry eigenmeasure ν has this property.

Lemma 18.1. (Bowen-Marcus) If A is a primitive 0− 1 (d× d) matrix, then for a
measure m on Σ+

A which has the Bowen-Marcus property, m is a constant multiple of
ν.

Proof. As above, , we have Perron-Frobenius eigenvectors Aw = λw, vtA = λvt. We
shall show that ∃γ > 0 such that for any a ∈ A,

m[a] = γ · ν[a].

This same proof will work for any cylinder set [a0 . . . al], with the same constant γ.
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The key idea is to use the mixing property of the invariant measure µ. Choosing
two symbols a and s, and fixing a length t, write [∗ ∗ · · · ∗ s] for σ−t([s]), the cylinder
set of length t ending in symbol s, and [a ∗ · · · ∗ s] for [a] ∩ [∗ ∗ · · · ∗ s]; mixing tells
us that:

µ([a ∗ · · · ∗ s])→ µ[a]µ[s]

as t→∞; for the equivalent but non-invariant measure ν, from (67) this becomes:

ν[a ∗ · · · ∗ s]→ µ[a] · µ[s]/va = ν[a] · µ[s]. (68)

We next define a number γt,s by

m([∗ ∗ · · · ∗ s]) = γt,sν([∗ ∗ · · · ∗ s]). (69)

We shall prove that γ = γt,s does not depend on t or s; this will be our constant,
with m = γν.

First note that the same factor γt,s works for all thin cylinders [b0b1 . . . bt = s]. This
is because by assumption both m and ν have the property that all cylinders of this
length ending in s have the same measure, and adding them up gives (69).

Now we fix the choice of the symbol a. Then m([a ∗ · · · ∗ s]) = γt,sν([a ∗ · · · ∗ s])
since this is a union of thin cylinders.

Now
m[a] =

∑

s∈A

m([a ∗ · · · ∗ s]) =
∑

s∈A

γt,s · ν([a ∗ · · · ∗ s])

for each t ≥ 1, so by (68) this equals

lim
t→∞

∑

s∈A

γt,s · ν([a ∗ · · · ∗ s]) = ν[a] · lim
t→∞

∑

s∈A

γt,s · µ[s] = γ · ν[a]

where γ = limt→∞
∑

s∈A γt,s · µ[s] exists.
For clarity we rephrase this last step of the argument: we know that given ε > 0,

for any a, s, we have for t large enough,

ν[a ∗ · · · ∗ s] = (1± ε)ν[a] · µ[s];

therefore, for a different ε′,

(1± ε′)m[a] =
∑

s∈A

γt,s · ν[a] · µ[s];

so
(1± ε′)m[a]/ν[a] =

∑

s∈A

γt,s · µ[s],

and hence the limit indeed exists.
So

m[a] = γ · ν[a].

The constant γ does not depend on s, t or a. Indeed, starting with any other cylinder
set [a0 . . . ak] in place of [a], at each stage γt,s is the same (for T > k) and we end up
with the same equation:

m([a0 . . . ak]) = γ · ν([a0 . . . ak]).

This proves that for all sets in the Borel σ−algebra, the same is true, so we are
done. �
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This is Lemma 2.4 in [BM77]; the proof above is based on the one given there.

18.3. Finite coordinate changes. We define a group of transformations on Σ+
A as

follows. Consider two finite allowed words (x0 . . . s), (y0 . . . s) which have the same
length and end in the same letter s; we define a map γ : Σ+

A → Σ+
A as follows: for

w ∈ [x0 . . . xt−2s], with w = (x0 . . . xt−2swtwt+1 . . . ), γ(w) = (y0 . . . yt−2swtwt+1 . . . );
on the rest of Σ+

A we define γ to be the identity. This is well-defined as γ(w) is an
allowed string. We call the group of all such maps the group of finite coordinate
changes of Σ+

A.
Given a group of homeomorphisms acting on a topological space, we say the action

is uniquely ergodic if there is a unique invariant probability measure.
We have:

Proposition 18.2. If A is a primitive (d × d) 0 − 1 matrix, then the action of the
group of finite coordinate changes on Σ+

A is uniquely ergodic.

Proof. If m is a probability measure which is invariant for this group, then the Bowen-
Marcus property is fulfilled; hence m = ν/ν(Σ+

A). �

18.4. Stationary adic transformations. We next see how essentially the same
orbits can be generated by a single transformation, an adic transformation in the
terminology of Vershik [Ver94], [Ver95].

Given an (d× d) 0− 1 matrix A, we define an equivalence relation on Σ+
A by:

x ∼ y ⇐⇒ ∃N : ∀k ≥ N, xk = yk.

We note that the equivalence class < x > of x ∈ Σ+
A is exactly the stable set W s(x)

of x for the shift map; this is the set of all y such that d(σm(x), σm(y)) as m → ∞
(indeed, the distance equals 0 eventually).

We put an order on this countable set as follows. First, assume we are given an
order on the symbol set which depends only on the symbol which follows. That
is, for each fixed j ∈ A, defining Aj = {i : Aij = 1}, there is a function Oj :
Aj → {1, 2 . . . ,#Aj}. We call O an edge order. We then use this to order Ws(x)
lexicographically, defining this inductively as follows: if N is the least i such that
xi 6= yi, then writing j = xN+1 = yN+1, we define x < y iff Oj(xN) < Oj(yN). We
define the successor of x ∈ Σ+

A, succ(x), to be the least point in Ws(x) which is
greater then x, if that exists. One can prove [FT23] that the number of points in
Σ+
A without a successor or immediate predecessor is at most countable. Call this set
NO. We define a transformation TO : Σ+

A \ NO by TO(x) = succ(x). This is the adic
transformation defined by the edge order O.

For the simplest example, let Aij = 1 for all i, j so Σ+
A = Σ+ = Π∞0 {1, . . . , d} is the

full shift, and order the symbols by their labels, 0 < 1 < 2 < · · · < (n− 1). There is
one point which has no successor, the point (.111 . . . ); if we define the map there to be
(.0000 . . . ), the only point with no predecessor, then this extension T is continuous.
Then T is the Kakutani-von Neumann adding machine or d-adic odometer.

We now extend the definition of unique ergodicity as follows. Let (X,B) be a set
with a σ−algebra, and let T : X \ N → X be a measurable map where N is a
countable set. We shall now say that T is uniquely ergodic if there is a unique
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invariant non-atomic probability measure. Note that in the case of a shift space Σ+
A,

nonatomic is equivalent to points having mass zero.

Theorem 18.3. (Unique ergodicity for stationary adic transformations) Let A be an
(d×d) primitive 0− 1 matrix, and let O be an edge order. Then (Σ+

A, TO) is uniquely
ergodic, and m = ν/ν(Σ+

A) is the unique TO-invariant non-atomic measure on Σ+
A.

Proof. Consider the set of words of length t which end in the same symbol s. By
induction, this finite set is totally ordered, that is, there is a 1-to-1 order-preserving
map to {1, . . . , wt(s)} where wt(s) is the number of such words.

We write Σ+
A,O ≡ Σ+

A\ < NO > where < NO > is the countable set of points

equivalent to NO, i.e. Σ+
A,O is the set of points whose whose TO-orbit is defined for all

past and future times.
Now consider two cylinder sets [x0x1 . . . xt−2s] and [y0y1 . . . yt−2s] of length t. By the

above observation, one of these words is least, say (x0x1 . . . xt−2s), and there exists k
such that T k([x0x1 . . . xt−2s]) = [y0y1 . . . yt−2s] in Σ+

A,O. If m is a probability measure

on Σ+
A which gives mass 0 to points, then m(< NO >) = 0, and if m is TO−invariant,

then m satisfies the Bowen-Marcus property. Hence m = ν/ν(Σ+
A). �

Remark 18.1. In fact primitivity is necessary and sufficient for adic transformations,
if we assume the measure is nonatomic. Primitivity implies minimality for stationary
adics; see Theorem 41.8 below. However for minimality, even in the stationary case,
this is sufficient but not necessary; see

Remark 18.2. For more on adic transformations see [Ver94], [Ver95] and the references
cited therein.

18.5. Perron-Frobenius theory for nonprimitive matrices: irreducible ma-
trices. Given a nonnegative (d× d) matrix M , we say a state a ∈ A (the alphabet)
communicates to state b iff there exists an n ≥ 0 such that Mn

ab > 0. Here M0 = I,
so every state communicates to itself. Note that this partitions A into communi-
cating classes: the largest subalphabets for which every state communicates with
every other. The matrix is termed irreducible iff there is a single communicating
class, A itself. Equivalently, M is irreducible iff given a, b ∈ A then there exists n ≥ 0
such that Mn

ab > 0; for the stronger condition of primitive, the iterates are eventually
positive, i.e. there exists N such that for all n ≥ n this works simultaneously for all
pairs of states.

The basic example of a matrix which is irreducible but not primitive is a permu-

tation matrix, e.g. the matrix M =




0 1 0
0 0 1
1 0 0


 encountered in Example 45. Here M

permutes the states in a cycle (a, b, c) of period 3, that is, M : a 7→ b 7→ c 7→ a. Note
also that M3 = I.

As we shall see, essentially, up to a grouping of elements, this is all that can happen.
Consider for example M with block form like the permutation matrix, with the blocks

Bi and 0 each (k × k) and primitive: M =




0 B1 0
0 0 B2

B3 0 0


 , so for As = B3

s , then for



FROM ADIC TRANSFORMATIONS TO GIBBS STATES 143

A1 = B3B2B1, A2 = B1B3B2, A3 = B2B1B3 we have M3 =



A1 0 0
0 A2 0
0 0 A3


, with a

block form like the identity matrix I; moreover since the diagonal blocks are primitive,
there is a further power with diagonal blocks all strictly positive.

There is no need here for the blocks to be all square. Indeed, with M a (d × d)
matrix, let l1 + l2 + · · · + lk = d with li ≥ 1 and let Bi be (li+1 × li) for i < k and
(l1× li) for i = k, so the matrix sizes are compatible, then Ai is is square, (li× li) for
each i. (A way of expressing that the matrix sizes are compatible is to state that the
diagonal 0 blocks of M are square).

For an example, consider M =




0 0 1
0 0 1
1 1 0


 =




0 0 1
0 0 1
1 1 0


 =

[
0 B1

B2 0

]
so M2 =

[
A1 0
0 A2

]
=




1 1 0
1 1 0
0 0 1


 with A1 = B1B2 and A2 = B2B1.

In fact, what happens in general is exactly this, after a change of order on the
alphabet:

Theorem 18.4. Let M be a nonnegative irreducible (d×d) matrix. Then the alphabet
can be partitioned into equivalence classes called period classes B1, . . . ,Bk such that
after a change of order on A, the block form of the matrix is a permutation matrix of
these classes. Furthermore, each subblock MBiBi is primitive, and there exists n ≥ 0
(the period of M) such that Mn has block form like the identity matrix: there are
primitive blocks on the diagonal.

To prove this, we can assume that M is a 0 − 1 matrix. This defines a map fA
on A, by f(a) = b iff Mab = 1. We consider the forward orbit O(a) = {b : fM(a) =
b for some n ≥ 0} Note that since M0 = I, a ∈ O(a). Note that for a communicating
class C and some a ∈ C, then C ⊆ O(a), and a, b ∈ C have the same orbit.

Now suppose that a belongs to two cycles, of lengths p, q. We claim that if
gcd(p, q) = 1, i.e. p, q are relatively prime, then there exists n > 0 such that a
communicates to all of both cycles at time n.

For this we recall that for p, q ∈ N∗, then gcd(p, q), the greatest common divisor,
has an equivalent definition as the least k ≥ 0 such that there exist n,m ∈ Z with
np + mq = k. Since for this to hold one of n,m has to be positive and the other
negative, equivalently there are n,m > 0 such that k = np − mq or k = mq − np.
This means that (in the first case) k = np(mod q). That is, counting by p units along
a circle of length q, we return with a minimum distance of gap k to 0, and hence with
future iterates will cover all multiples of k.

Hence if k = 1, if we allow ourselves to walk with step lengths either p or q, after
some time l we can step on any integer. Equivalently, restricting the the subalphabet
of the two orbits, M l has row a all positive. But it follows that this is true for any
other b in the two cycles, and hence M l is strictly positive.

One can moreover say the following about the eigenvalues of M .
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18.6. Perron-Frobenius theory for nonprimitive matrices: reducing to the
irreducible case.

19. An example: arithmetic codes for hyperbolic toral
automorphisms

DO FIRST: example. Introduce NS dynamics. Periodic case. Diagram. Diag/ev’s/Boxes.
Write down arithmetic code!!!

NEXT: factorization-semigp
NEXT- periodic; general; statement;
NEXT- eqn/split/MP
LATER: skew/ randm/ T flow
Here we analyse in detail a special case, hyperbolic orientation-preserving auto-

morphisms of the two-torus, which will serve to introduce and illuminate a number
of important themes in these nores.

In §4.13, see also Example 13, we analysed one particular example, the golden map

given by the action on column vectors of the matrix A =

[
1 1
1 0

]
. In particular, we

found explicitly the eigenvalues and eigenvectors, giving us the decomposition of the
tangent space R2 of the torus T = R2/Z2 into expanding and contracting subspaces,
R2 = Eu ⊕ Es. For this we diagonalized the matrix by finding the roots of the
characteristic polynomial. Then we used this decomposition to construct a Markov
partition for the map.

The key idea of this construction, pioneered by Adler and Weiss in [AW70], is that
any partition of the torus whose boundaries consist of line segments from the stable
and unstable subspaces of 0 will give a Markov partition, due to their remarkable
insight in giving a geometric interpretation to the Markov property of probability
theory.

Moreover, if this partition is sufficiently fine, it will generate, i.e. separate points,
thus providing an a.s. bijective code of the map as a subshift of finite type.

What was discovered by Manning and Adler later on, see also [AF05], was that a
more careful construction can yield an especially nice coding. In particular, given a
(2 × 2) nonnegative integer matrix M which is hyperbolic (equivalently, trace ≥ 2),
then one can find a Markov partition such that the dynamics of M is coded by the
edge shift defined by exactly the same matrix.

The partition is algorithmically and arithmetically defined. The construction is due
to Pierre Arnoux in his thesis, [Arn94]. In fact, understanding this procedure is aided
by extending our purvue to include nonstationary dynamics, given by a sequence
of such matrices, as explained in this section, see [AF05]. A deeper look, see §??,
takes us into the Teichmüller flow and Veech’s way of studying interval exchange
transformations, which in fact led to Arnoux’ insights.

This same example will lead us in other directions. First, to a concrete case of
the Perron-Frobenius theorem; next, to nonstationary dynamics, adic transforma-
tions, interval exchanges, the Teichmüeller flow, group boundaries, and the Osceledec
theorem, as well as some questions in number theory.
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We begin with the following observation, noted above in §4.12. The matix M = A2

has a second nice factorization, as
[
2 1
1 1

]
=

[
1 1
0 1

] [
1 0
1 1

]
.

We recall that SL(2,Z) is the group of (2 × 2) matrices with integer entries and
with determinant 1. We shall write SL(2,N) for the subsemigroup whose entries are
all ≥ 0.

The next lemma is well-known and we do not know the proper attribution; we
learned this simple proof a long time ago, perhaps from Rauzy. See also [ES80].

Lemma 19.1. SL(2,N) is the free semigroup on the two generators

Q =

[
1 0
1 1

]
and P =

[
1 1
0 1

]
.

Proof. We note that the identity I =

[
1 0
0 1

]
is included here as I = Q0 = P 0. Let

A ∈ SL(2,N), with A =

[
a b
c d

]
. We claim that if A 6= I, then either the first column

is ≥ the second, in the sense that a ≥ b and c ≥ d, or the reverse. If both of these
conditions fail then either a > b and d > c or the reverse. We verify this formally:

∼ ([(a ≥ b) ∧ (c ≥ d)] ∨ [(a ≤ b) ∧ (c ≤ d)])

⇐⇒ [(a < b) ∨ (c < d)] ∧ [(a > b) ∨ (c > d)]

⇐⇒ [(a < b) ∧ (c > d)] ∨ [(c < d) ∨ (a > b)]

However the second of these (i.e. the reverse condition, b > a and c > d) cannot
happen as this would imply that bc > ad so ad − bc < 0, but by assumption the
determinant is one.

Since therefore a > b and d > c, we have: a ≥ b+1 and d ≥ c+1 so the determinant
is:

ad− bc ≥ (b+ 1)(c+ 1)− bc = bc+ b+ c+ 1− bc = b+ c+ 1.

Since detA = 1, we have b and c = 0 in which case A = I, as claimed.
Now we show that A ∈ SL(2,N) can be factored as a product of nonnegative

powers of Q and P . Writing A = A0, if A0 6= I then remove the smaller column from
the larger to form A1. This amounts to writing

A1 = A0Q
−1 or A1 = A0P

−1;

note that the new matrix A1 is still in SL(2,N). If A1 again has one column larger
than the other then we continue, producing a sequence A0, A1, . . . , An. This process
terminates with a matrix An with determinant one and which has neither column
larger than the other. So as shown above, An = I. Thus, reversing the process, we
have factored A as a product of nonnegative powers of Q and P .

We have proved a little more: the preceding argument shows that an element of
SL(2,N) which is not the identity can be factored either as A = A1P or as A = A1Q,
but not both. Therefore the decomposition of A in terms of Q and P is unique, and
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-a0

d0

b0

c0

Figure 40. Two Boxes

this implies that there can be no nontrivial relations in the semigroup SL(2,N); hence
it is free. �

19.1. The additive and multiplicative families. Consider a matrix B =

[
a c
−b d

]

satisfying:

(1) a, b, c, d ≥ 0
(2) detB = 1
(3) and either (parity 0) 0 < a < 1 ≤ b and d < c, and for or (parity 1)

0 < b < 1 ≤ a and c < d.

Each B can be pictured as defining a pair of rectangles or boxes, a× d and b× c, of
total area one, since detB = ad + bc = 1. Note that the longer of a, b is 1, and that
for parity 0 the smaller box is on the left (smaller both in width and in height) and
the larger on the right; for parity 1 this switches.

Next we describe a process for defining an infinite sequence of such pairs of boxes,
associated to a biinfinite contined fraction expansion.

Theorem 19.2. Given a sequence (. . . n−1.n0n1 . . . ) ∈ Π∞−∞N∗, plus a choice of parity
0 or 1, we define matrix sequences Bk, Dk, Ak, all of determinant one, by

Bi =

[
ai ci
−bi di

]
,

Di =

[
λi 0
0 λ−1

i

]

and
for parity 0:

ai = [nini+1 . . . ], bi = 1, di/ci = [ni−1ni−2 . . . ], and λi = 1/ai, and Ai =

[
1 0
ni 1

]
,

for parity 1:

bi = [nini+1 . . . ], ai = 1, ci/di = [ni−1ni−2 . . . ], and λi = 1/bi and Ai =

[
1 ni
0 1

]
.

Then these satisfy the equation Bi+1 = AiBiDi.
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TO DO: diagram; splitting; Anof fam; Markov coding).
A sequence (Ai)i∈Z of (2 × 2) integer matrices defines a linear mapping family on

the square torus, via the action on the left on column vectors. Thus, Ti = T = r2/Z2

for all i.
As we see in the next proposition, a sequence of diagonalizations defines a second

mapping family, now on the tori TΛi = R2/Λi where Λi is a sequence of parallelogram
lattices, each generated by the columns of the corresponding matrix B−1

i .
We have:

Proposition 19.3.
(a)These are equivalent for a sequence (Ai)i∈Z in GL(2,Z):
(i) Column vector sequences v0

i ,v
1
i are an eigenvector sequence pair with eigenvalues

λ0
i , λ

1
i for the mapping family on columns defined by fi(v) = Aiv.

(ii)For the sequences of invertible real matrices Bi and Di defined by: the columns of
Bi are the vectors v0

i ,v
1
i ; the Di are diagonal matrices with entries λ0

i , λ
1
i , then these

satisfy the equation:

AiBi = Bi+1Di.

(iii) The following diagram commutes, for the action on column vectors, with Bi

invertible and Di diagonal:

· · ·R2 A0−−−→ R2 A1−−−→ R2 A2−−−→ R2 · · ·xB0

xB1

xB2

xB3

· · ·R2 D0−−−→ R2 D1−−−→ R2 D2−−−→ R2 · · ·
(b) In the above situation, the following diagram commutes, where Λi is the lattice in
R2 generated by the columns of B−1

i , and where T = R2/Z2 and TΛi = R2/Λi.

· · ·T A0−−−→ T A1−−−→ T A2−−−→ T · · ·xB0

xB1

xB2

xB3

· · ·TΛ0

D0−−−→ TΛ1

D1−−−→ TΛ2

D2−−−→ TΛ3 · · ·
The eigenvectors for the second mapping family Di are the same as for Ai, taking

for the second family the standard basis vectors as the eigenvector sequence.
(c)In the above situation, the eigenvector matrices Bi can be normalized to have de-
terminant ±1; we can additionally have the max of the entries of v0

i be 1. The
eigenvalues then satisfy λsiλ

u
i = 1 or −1.

Proof. Assuming (ii),

AiBi = Bi+1Di

so

Aiv
0
i = AiBi

[
1
0

]
= Bi+1Di

[
1
0

]
= λ0

iv
0
i+1

The converse argument works, so (i) ⇐⇒ (ii).
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(iii): From equation (ii), we have

B−1
1 A0B0 = D0,

with change-of-basis matrices B−1
i diagonalizing the actions of the Ai on column

vectors. This gives equivalently the commutative diagram.
(b):The image by B−1

i of the column vectors (0, 1) and (1, 0) which generate the integer
lattice Z⊕Z are the columns of B−1

i , giving the image lattice Λi. On the other hand
the standard basis vectors (0, 1), (1, 0) are an eigenvector sequence for the diagonal
mapping family and are taken by Bi to the eigenvector sequences v0

i ,v
1
i . Since these

are eigenvectors, f(Λi) = Λi+1 so the maps are well-defined on the tori. The diagram
commutes, and by linearity the λi are the same for the two families.
(c): Since Ai is an invertible matrix with integer entries, detAi = ±1; if detBi 6= ±1,
we replace it by αBi such that α2 = |detBi|−1. Then ±1 = det(B−1

i+1A1Bi) = detD−1
i

so λsiλ
u
i = ±1. Then let β be the max of the moduli of the entries of v0

i ; multiply
Bi on the right by the diagonal matrix with entries β−1, β; this new matrix still has
determinant 1 and has the property desired. �

Frequently in math it turns out that by considering an apparently harder or more
general actually simplifies...shed light on...

Tree of free semigroup; not just vertices but path to boundary at infinity.
We return to this subject below in §25.6 from a different perspective.
We call Q,P the additive generators because of their connection with the addi-

tive continued fraction.
–nonstationary subshift of finite type
–mult family/ add family, infinite/ fte measure base
We have introduced continued fractions and the Gauss map in §11.4.
There, we wrote the continued fraction of an irrational x ∈ (0, 1) as

x = [n0n1 . . . ] =
1

n0 +
1

n1 + · · ·

,

with ni ∈ N∗ = {1, 2, . . . }, and noted that the Gauss map is isomorphic to the left
shift σ on Π∞0 N∗.

We shall need a bilateral version of the continued fraction: x = [. . . n−1.n0n1 . . . ] ∈
Π∞−∞N∗, with the left shift map σ.

We begin the expansion of x with n0 rather than with the more traditional choice
of n1 to agree with the usual shift notation of ergodic theory, where 0 indicates the
coordinate of present time; this is especially natural since we are considering the
bilateral shift.

We call Q,P the additive generators because of their connection with the addi-
tive continued fraction.

–nonstationary subshift of finite type
–mult family/ add family, infinite/ fte measure base
We have introduced continued fractions and the Gauss map in §11.4.



FROM ADIC TRANSFORMATIONS TO GIBBS STATES 149

There, we wrote the continued fraction of an irrational x ∈ (0, 1) as

x = [n0n1 . . . ] =
1

n0 +
1

n1 + · · ·

,

with ni ∈ N∗ = {1, 2, . . . }, and noted that the Gauss map is isomorphic to the left
shift σ on Π∞0 N∗.

We shall need a bilateral version of the continued fraction: x = [. . . n−1.n0n1 . . . ] ∈
Π∞−∞N∗, with the left shift map σ.

We begin the expansion of x with n0 rather than with the more traditional choice
of n1 to agree with the usual shift notation of ergodic theory, where 0 indicates the
coordinate of present time; this is especially natural since we are considering the
bilateral shift.

We define B to be the collection of matrices B =

[
a c
−b d

]
satisfying:

(1) a, b, c, d ≥ 0
(2) detB = 1
(3) B is a union of disjoint sets B = B0 ∪ B1, where for B ∈ B0, 0 < a < 1 ≤ b

and d < c, and for B ∈ B1, 0 < b < 1 ≤ a and c < d.

We say B ∈ B has parity ε = 0 or ε = 1 when it is in B0 or B1 respectively.

20. Nonstationary and random dynamics

20.1. Skew products.

Exercise 20.1. Show the Morse-Thue substitution dynamical system can be modelled
as a skew product over the odometer transformation. (Hint: you can do this with two
points in the fiber over each point).

20.2. Examples and introduction. There are several initial motivations for a study
of nonstationary dynamics:

–it can provide a sort of “completion” for a class of stationary dynamical systems;
–even for a fixed map, a limiting procedure used in some construction (e.g. for

Markov partitions, for the scenery flow, for stable manifolds) may be viewed as a
nonstationary system;

-”random perturbations” of a stationary system give a nonstationary one;
–a stationary non-hyperbolic system may arise as the transverse dynamics to a

hyperbolic stationary one;
–nonstationary dynamics can arise in renormalization theory for the “non-fixed-

point” case;
–nonstationary constructions already arise naturally in ergodic theory, e.g. in cutting-

and-stacking constructions;
example: toral auts; conj to parallelogram model
–defn; mapping fam (cts along cpt metric)
–conjugacy/ stable sets.
–hyperbolicity/ uniqueness
–additive/ mult family
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20.3. Random transformations. –random ergodic theorem
–Markov operator erg thm
–harmonic projection !!!
–subsequence erg thm (Furst; Bourgain !)

21. Adic transformations

(TO DO: Introduce edge shifts and nsfts)

21.1. Sturmian sequences and the golden rotation. What we have defined
above in 4.11 is a stationary substitution dynamical system; one can more gen-
erally have a nonstationary situation, built from an infinite sequence of substitutions
. . . ρ−1, ρ0.

The precise general definition will be given below, but we mention an important
example, the golden substitution dynamical system (because of its relation to the
golden number, see below...). We define ρ0(0) = 01, ρ0(1) = 1 and ρ0(0) = 0, ρ0(1) =
01, and then alternate ρ0 and ρ1. Since these switch periodically, we can replace then
by a single substitution ρ = ρ1 ◦ ρ0 which sends 0 to 010 and 1 to 10; the sequence
x+ = .010100101001010010 . . . is a fixed point for ρ, and its ω−limit set, or rather
that of (. . . 0000.x+), defines Ω. We mention that this sequence is a particular case
of a Sturmian sequence. General Sturmian sequences can be built in a similar way
but now we really have to allow ρ0 and ρ1 to be chosen in a nonperiodic way. See
[AF01].

21.2. Cutting and stacking: Interval exchange transformations; Rauzy in-
duction.

22. Group actions and the Cayley graph.

To get a feeling for more general infinite group actions, we need a geometric ap-
proach to the groups themselves, based on the twin notions of Cayley graph, factor
space, and the related idea of the boundary at infinity.

We recall Definition 2.1: group action, and the orbit of an element.
The orbit of a point should be thought of as a copy of the group (or semigroup)

itself, wrapped around inside the space on which it acts. So to visualize an orbit, we
should first visualize the (semi)group itself.

We begin with a finitely generated group G or semigroup S, and a list of generators,
G = (g1, . . . gn). The Cayley graph of G or S consists of one vertex for each element,
connected by edges labelled by the generators. For a semigroup draw an edge labelled
by gi ∈ G from vertex g to h iff gig = h. For the case of a group, we do the same for

the augmented list of generators together with their inverses, G̃ = (g1, g
−1
1 , . . . gn, g

−1
n ).

A word is a finite string of generators. We consider a finite collection R or words,

with R̂ denote the subgroup generated by R. A relation is an element of R̂.

We denote by Fn the free group on n generators, and form the factor group Fn/R̂.
For semigroups we proceed similarly: we write FSm for the free semigroup on m

generators (also called letters); we can get from this construction the free group as
follows: beginnign with m = 2n generators, labelled (g1, g

−1
1 , . . . gn, g

−1
n ), we factor by
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the collection of relations R̂ generated by R = {gig−1
i :, 1 ≤ i ≤ n}e. That is, we

mod out by the relations gg−1 = e.
Conversely, any finitely generated group G can be represented in this way, as a

factor group of Fn, and so as a facto semigroup of FS2n. The relations R̂ are,
geometrically, the words which form closed loops starting at e in the Cayley graph.

For the case of an abelain group, the law ab = ba is achieved by including the
relation f−1g−1fg.

The Cayley graph in the case of a group is homogeneous in that its geometry
everywhere is the same, and is just like that n the identity e.

A homomorphism from a group G to a group H can be visualized by a continuous
map of the Cayley graphs; a good example to keep in mind is the homomorphism from
the free group F2 on two generators (a, b) to the free abelian group on two generators,
Z2, and from Z2 to Z6 = Z2 ⊕ Z3. See Fig. ??.

Remark 22.1. From the point of view of Category Theory, the directed edges ...??

factor groups, free semigroup, free group, free abelian group, finite abelian group
fundamental domain; lattice subgroup
random walk
boundary at infinity
hitting measure
example: Parry measure
normal subgroup
left/right actions; free semigroup boundary and IFS/ Cantor set
Free semigroup and group automorphisms
Kleinian limit set, Patterson measure

22.1. A Markov partition for the doubling map on the torus. Sinai and Bowen
proved the existence of Markov partitions for hyperbolic toral automorphisms in any
dimension; however when the stable and unstable manifolds no longer have dimension
one, as in the case of the two-torus, the partition boundaries are no longer pieces of
these smooth submanifolds but rather are constructed by an approximation proce-
dure using a geometric series. In fact, as shown by Bowen, for dimension ≥ 3 for
automorphisms and ≥ 2 for expanding endomorphisms of the torus, Markov parti-
tion boundaries can never be smooth. But remarkably, they can still be found with
a wonderful fractal geometry. These developments are due in the first instance to
Bedford in his thesis [Bed86b], [Bed86a], building on Dekking’s work on L-systems
and substitution dynamical systems, and on Gilbert’s study of complex number bases
[Dek82], [Gil82].

We illustrate this with the most basic example, the 2-to-1 endomorphism we call
the doubling map on the torus,

T : z 7→ (1 + i)z.

In Fig. 41 we see a Markov partition with fractal boundaries for this map, the
twindragon Markov partition, which has two partition elements and codes the map
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as a Bernoulli coin-tossing shift. So this partition is not just Markov, it’s the simplest
case of Markov: it is truly independent!

This can be understood as arithmetic expansions with a complex base. For the first,
the base is (1+i). We are following Misutani and Ito [MI87]. That is, any point in the
torus can be expressed as x =

∑∞
0 xk(1+ i)−k, for x+ = (.x0x1 . . . ) ∈ σ+ = Π∞0 {0, 1}.

This expression is unique except on the partition boundaries, where there may be two
or, exceptopnally three, expressions, as is clear from the figure. We return to consider
this example more deeply in §22.2.

22.2. Dynamics and construction of fractal Markov partitions for the dou-
bling map on the torus; a free semigroup homomorphism and a free group
automorphism. In §22.1 we described a Markov partition for the the doubling map
on the torus

T : z 7→ (1 + i)z,

defined via arithmetic expansions with (complex) base (1 + i), with digits x+ =
(.x0x1 . . . ) where xi ∈ {0, 1}. The union of the two partition elements gives a funda-
mental domain for the action of Z2 on R2, better adapted to studying the dynamics
than the usual fundamental domain (the unit square).

Here we take a different approach. First we describe the dynamics of the map
geometrically with the help of a re-coding of the map as a renewal shift. Next we
illustrate how to draw the boundary of the new fundamental domain by a limiting
procedure. After that we explain how a similar limiting procedure produces a non-
stationary Markov partitions which converges to the limiting stationary partition.

We recall that a renewal shift is a countable state Markov shift, see ???
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Figure 41. On left: complex base expansion for the base 1+i, giving a
fundamental domain for the torus acted on by the map T : z 7→ (1+i)z,
modulo the lattice Z + iZ. Thus, the region shown tiles the complex
plane by action of this lattice. For the first figure on the left each point
shown corresponds to one of the 210 cylinder sets of the Bernoulli 2-shift
of length 10. The second figure shows an approximation to the Markov
partition P = {P0, P1} for a0 = 0, 1, using the cylinder sets of length
5. Next is the Markov partition with 13 digits, and lastly P ∨ T−1(P).
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Figure 42. A renewal process coding for the doubling map on the
torus, showing the dynamics of the map z 7→ (1+i)z on the twindragon
fundamental domain of Fig. 41, on the left with a point for each of the
210 cylinders of length 10. The regions correspond in the shift space to
[.000000001] 7→ [.000000001] 7→ · · · 7→ [.001] 7→ [.01] 7→ [.1] which maps
to the whole space Σ+, as the large blue region on the left maps to that
on the right, which translates by the element −1 of the lattice Z[i] to
the fundamental domain.

The approximation construction of a fractal boundary Markov partition for the
map T can be motivated as an actual nonstationary Markov partition sequence, for
this stationary map. See Fig. 44. For this, beginning with a pair of rectangles at
time 0, we pull this back by the inverse image to four sets at time −1, 8 at time −2
and so on. The result is a commutative diagram of finite “shift” spaces, for time 0
being one set (the square) and hence a combinatorial space with a single point, {∅}
(the semiconjugating sequence of maps ϕi are defined everywhere but the partition
boundaries):

· · · T T //

ϕ−3

��

T T //

ϕ−2

��

T T //

ϕ−1

��

T
ϕ0

��
· · · Π0

−2{0, 1}
σ // Π0

−1{0, 1}
σ // {0, 1} σ // {∅}

Next, following Misutani and Ito in [MI87], we show how to construct this sequence
of partition boundaries directly, and hence algorithmically by computer.

As explained by Misutani and Ito [MI87], this construction can be seen as a two-
dimensional analogue of a substitution dynamical system. We consider the free group
on two generators F2 with generating set {a, b}. Extending this to include the inverses,
we take A = {a, b, a−1, b−1} and consider this as an alphabet, with A∗ denoting the
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Figure 43. To draw the boundary curve of the invariant fundamental
domain of Fig. 41, we begin at time 0 with the square to the lower left
of the point 0 ∈ C. Then we double it by adding 1, and take the inverse
image by the map z 7→ (1 + i)z on the plane, giving the domain for
time −1. Repeating this procedure gives a nonstationary sequence of
fundamental domains for the torus, shown here for times 0,−1, . . . ,−5.
Each element of the tiling at stage n is mapped onto a union of two
pieces at stage n − 1. Modulo the lattice this image is a single copy,
with the map giving a double cover. The limiting fundamental domain
is stationary and so works for infinite future times as well.
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Figure 44. A nonstationary Markov partition sequence mapping for-
ward by the stationary map T : z 7→ (1 + i)z; the partition at time
n− 1 consists of a pair of inverse images from time n. Shown for times
−9,−8, . . . ,−1, 0; the limit at −∞ is the stationary fractal Markov
partition of Fig. 41.
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collection of finite (non-reduced) words in these four letters, including the empty
word denoted ∅; this is the free semigroup on four generators, FS4. Then F2 = A∗/ ∼
where ∼ is the equivalence relation generated by aa−1 = a−1a = e (with e the identity
element) and similarly for b. Note that A∗ → A∗/ ∼ is the semigroup homomorphism
from FS4 to F2 given by moving from non-reduced to reduced words.

We define a substitution ρ : A → A∗ by

ρ(a) = ab; ρ(b) = a−1b

and extending to the inverses by ρ(g−1) = (ρ(g))−1. Then ρ extends via concatenation
to ρ : A∗ → A∗. Setting ρ(e) = e, then ρ is a homomorphism of the free semigroup.
Passing to A/ ∼ we have a homomorphism of F2. (Note that conversely any homo-
morphism of F2 is defined by a substitution satisfying the property ρ(g−1) = (ρ(g))−1.

Next we define a homomorphism ϕ from FS4 to (C,+), the additive subgroup of
C, by defining it on {a, b} via

ϕ(a) = 1, ϕ(b) = i.

Moreover, as in that key paper, we describe a second Tetradragon Markov par-
tition, which codes the map as a subshift of finite type with an alphabet of four
symbols, as contrasted to the first twindragon Markov partition, which codes the
map as a Bernoulli shift.

The figures show convergence to a space-filling curve which fills in Markov partition
elements of the tetradragon. Here is how the curve is defined. We are following [MI87],
which in turn builds on Dekking [Dek82].

Considering a word (a0, a1, . . . an) ∈ A∗, we define a curve K in C which connects
the “dots”, the images by ϕ of e, a0, a0a1, . . . , a0a1 · · · an, by line segments, as follows.
Writing z0 = 0, zi = ϕ(a0a1 · · · ai), then we set inductively K(t) = zi + t(zi+1 − zi)
for t ∈ [i, i+ 1]. This defines a continuous curve K : [0, n]→ C.

Writing Kn for this curve for the words ρn(a), we have that Kn : [0, 2n]→ C. The
figures depict these curves as n increases. (For clarity, the square corners have been
rounded off.) Recalling from §11.6 the scaling flow τs of exponent α > 0 on C(R,R),
we now extend this idea:

Definition 22.1. Given α > 0, we topologize C by an extension of the geometric
topology: we use uniform convergence on compact subsets of time in the domain and
the geometric topology in the range. We now define the scaling flow of exponent α
on the space of continuous functions C from R to C by

τs : f(t) 7→ f(est)

esα
.

We claim the following:

Proposition 22.1. Kn ⊆ Kn+1. Denoting K̂ = ∪n≥1Kn, then for τt the scaling flow
of exponent α = 1/2, there exists a periodic point K of period log 2 for τt, such that

τtk(K̂) → K as k → ∞ in the geometric topology, where tk = 8 · 2k. In fact, taking

Gk = (1 + i)−kK̂(2kt), then Gk is a Cauchy sequence, uniform in time, with

|Gk+1(t)−Gk(t)| ≤ 2−k/2
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for all t.

Convergence of Gk is shown in Fig. 45.
Restricting the domain of the space-filling curve K to [0, 1], the image of the interval

is the dragon fractal shown in Fig. 46. This ilustrates four rotated copies of the
dragon, which give a fundamental domain for the torus and so tile the plane when
translated by the integer lattice Z⊕Z. The large square shown here is [−1, 1]× [−1, 1]
so the torus is R2/(2Z)2, or in complex notation C/2Z[i].

This defines a second fractal Markov partition for the doubling map of the torus,
the Ito-Misutani Tetradragon.

To study its coding, and to understand the relationship to the construction of the
curve K, we begin with alphabet A = {0, 1, 2, 3} and transition matrix

M =




1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1


 .

We consider the vertex subshift of finite type Σ+
M and a string x = (.x0x1 . . . ) ∈

Σ+
M . We also consider the edge paths e = (.e0e1 . . . ) with edge alphabet labelled

by two-blocks: E = {e = e(ab) :, a, b ∈ A,Mab = 1}. An edge path determines,
and is determined by, a vertex path via e−i = xi, ei+1 = xi+1 where ei = e(ab) and
xi = a, xi+1 = b.

We can realize the expanding Markov map defined by M as a discontinuous map
of the interval or circle, see Fig. 47, or as a continuous, piecewise differentiable
map of the cloverleaf T : CL → CL (topologically a bouquet of four circles), see
Fig. 48, represented by the substitution with alphabet A = {a, b, c, d}. and ρ(a) =
ab, ρ(b) = cb, ρ(c) = cd, ρ(d) = ad. Here the substitution maps from left to right in the
(stationary) Bratteli diagram. The space-filling curve is then given by the continuous
map γ : CL → T. This is a semiconjugacy from the cloverleaf to the doubling map
of the torus, and moreover is a measure-preserving transformation, indeed it takes
one-dimensional Lebesgue measure to two-dimensional Lebesgue measure.

The tetradragon curve factors onto the twindragon via the map given by rotation
R of π/2. What does this do to the torus? It maps it to the quotient space of R2

with factor group generated by {Z2, R}. A fundamental domain is the triangle which
is 1/4 of the unit square.

23. Hyperbolic space and the Hilbert and projective metrics

Now we take an excursion through some basic complex analysis and hyperbolic
geometry (the theory of Möbius transformations on the upper half space); this will
serve two purposes in these notes. First, it will give us the background for discussing
the important examples of geodesic and horocycle flows on Riemann surfaces; second,
it will bring us to the Hilbert metric on a convex set, and the related projective metric
on a positive cone. These provide powerful tools in dynamics, leading in particular
to a second, contraction-mapping proof of the Perron-Frobenius theorem, which will
prepare the way for our proof of the Ruelle Perron-Frobenius theorem.
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Figure 45. Convergence to a self-similar path in C with exponent
α = 1/2: a periodic orbit of period 8 · log 2 of the scenery flow. The
figures depict (parts of) Gk, Gk+1 for k = 5, 6, 7, 8, 9. Note that the
inital step rotates through eighth roots of unity.
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Figure 46. Approximating the Tetradragon, the image of four space-
filling curves, each a rotated copy of the dragon.

a b c d

a

b

c

d

Figure 47. Markov map of the interval corresponding to substitution ρ.

23.1. Complex Möbius transformations and the cross-ratio. We shall work

with the extended complex plane Ĉ = C ∪ {∞}, or equivalently the Riemann sphere
S2 with the complex structure coming from its embedding as the unit sphere in R3.

The map ϕ : S2 → Ĉ called stereographic projection describes this correspondence
explicitly: one projects radially from the north pole N = (0, 0, 1) of S2 to C embedded

in R3 as the xy− plane. Sending N sent to∞ gives a bijection from S2 to Ĉ, see Fig.
50. See [Ahl66] for a proof of the following:

Proposition 23.1. Stereographic projection ϕ : S2 → Ĉ is biholomorphic and sends
circles to lines and circles. �
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T �

a b

c

d

Figure 48. On the left a train-track map on the “cloverleaf”, on
the right a fundamental domain for the the Ito-Misutani Tetradragon,
showing the four elements of a Markov partition for the doubling map
z 7→ (1 + i)z on the torus C/Z[i] (the vectors shown are 1/2 of the
standard basis vectors). The space-filling curve γ gives a measure-
preserving semiconjugacy from this Markov map on the cloverleaf to
the doubling map on the torus.

The extended complex plane is also identified with one-dimensional complex pro-
jective space, by definition the space of lines through 0 in C2 \ {0}.

To explain this, we begin with the general setting of a vector space V over a
field F . Projective space PV is then the collection of lines through the origin in V
with the quotient topology. That is, we define an equivalence relation on V \ 0 by
v ∼ w ⇐⇒ v = λw for some λ 6= 0 in F . For example, PR2, one-dimensional real
projective space or the real projective line, is homeomorphic to a circle. We can see
this in three different ways: first, a collection of representatives for these equivalence
classes is given by the upper half circle; the endpoints are identified, resulting in a
topological circle. Secondly, let S1 denote the circle of radius 1 with center (0, 1) in
R2. A line through (0, 0) passes through a unique point of the circle, giving our map.
Note that the x−axis is sent to the point S = (0, 0) which is the “south pole” of
the circle. Thirdly, this same line passing through a point (x, y) with y > 0 passes
through a unique point in the line y = 1, mapping (x, y) to (x̃, 1) where x̃ = x/y; we
then send (x̃, 1) to x̃ ∈ R. We include the x−axis by sending it to ∞, giving a map

from PR2 to R̂ = R ∪ {∞}. This is the one-point compactification of R, which we
know is the circle. This defines homogeneous coordinates for projective space PR2:
the coordinates for the point (x, y)/ ∼ being (x̃, 1) in the line y = 1.

A fourth correspondence comes out of this same picture: define a map from the

circle S1 about (0, 1) to R̂ by sending a point (x, y) ∈ S1 to its homogeneous coordi-

nates. Indeed this is like the stereographic projection defined above for Ĉ, but using
the south rather than north pole. See Fig. ??

Now a general projective space PV is not just a topological space; it also comes
equipped with a collection of natural transformations, the projective transformations,
which are induced from linear maps on V .
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Figure 49. Dynamics on the blue Dragon: after applying z 7→ (1+i)z,
the red region translates by the element −1 of the lattice Z[i] to the
red Dragon.

Figure 50. Stereographic projection
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We shall examine this for one- dimensional complex projective space, PC2, which

as we explain below can be identified with Ĉ. But first we recall some basics from
complex analysis.

Definition 23.1. One has these three definitions:
(i) a map is holomorphic iff it is complex differentiable, i.e. its derivative, given by
the usual limit, exists and is a complex number. If this number is z ∈ C, then writing
z = reiθ for r ≥ 0, since by Euler’s formula eiθ = cos θ + i sin θ = c + is, we see that
the multiplication map w 7→ z · w is in real coordinates

[
w1

w2

]
7→ r

[
c −s
s c

] [
w1

w2

]

In other words the function has a very special type of R2-derivative: a dilation com-
posed with a rotation.
(ii) This implies the map is conformal: angles and orientation are preserved infinites-
imally. By contrast, an anticonformal map preserves angles but reverses orientation;
the simplest example is z 7→ z where for z = a+ib, its complex conjugate is z = a−ib.
A general antiholomorpic map is given by a holomorphic map preceded or followed
by complex conjugation, so the R2-derivative is a rotation composed with a reflection
in a line through (0, 0). Note that for both conformal and anticonformal maps, in-
finitesimal circles are taken to infinitesimal circles (not ellipses, which is the general
case).
(iii) A function is (complex) analytic iff it has a power series expansion near a point.

The first remakable fact from complex analysis is that all three defintions are equiv-
alent. In particular, knowing a function has one continuous complex derivative, i.e. in
C1, implies, very differently from the real case, it is not only infinitely continuously
differentiable (C∞) but has a power series (is Cω).

The most basic examples are the biholomorphic maps of the Riemann sphere; these
form a group under composition, the Möbius transformations. Given a disk in the
Riemann sphere, its complement is another disk, the simplest examples being the two
hemispheres of the sphere S2, or the upper and lower half-planes which make up C.

Each such disk has an interesting hyperbolic metric defined on its interior; the
Möbius transformations are essential for understanding this geometry.

These maps are defined as follows. Given a (2 × 2) matrix with complex entries

A =

[
a b
c d

]
, such that det(A) = ad− bc 6= 0, we define a map of Ĉ by

fA(z) = (az + b)/(cz + d),

extending by continuity to ∞, so fA(∞) = a/c. This is a complex Möbius trans-
formation; we write Möb(C) for the collection of all such maps. Another name is
linear fractional transformation. This comes from viewing fA as a map of pro-
jective space. The connection with projective space shall also allow us to see exactly
what this collection of maps is algebraically, as we next explain.

Recall that GL(2,C) is the group of (2×2) complex invertible matrices; one writes
SL(2,C) for the subgroup of matrices with determinant 1, and PGL(2,C), PSL(2,C)
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for the projective spaces, that is for the quotient groups given by the equivalence
relation A ∼ λA for λ 6= 0.

We let GL(2,C) act on C2 by multiplication of column vectors on the left. This
induces an action on the quotient space PC1 = {lines through the origin inC2} (as
above, the projective line, or one-dimensional complex projective space) since linear

maps preserve lines and the origin. Defining a projection π : C2 \ {(0, 0)} onto Ĉ by

π : (z, w) 7→ z/w, (where for z 6= 0, z/0 =∞)

we see that π induces a bijection of PC1 with Ĉ. (Note that the homogeneous
coordinates of (z, w) are (z/w, 1), a point in a complex plane inside of C2, which we

then map to simply z/w ∈ Ĉ).

C2 \ {0} A−−−→ C2 \ {0}yπ
yπ

Ĉ fA−−−→ Ĉ

(70)

We have:

Proposition 23.2. The action of the matrix A on the left on the collection of lines in

C2 is isomorphic via π to the Möbius transformation fA of Ĉ. The map A 7→ fA from
GL(2,C) onto Möb(C) takes matrix multiplication to composition: fAB = fA ◦ fB.
In particular, each fA is invertible, with inverse fA−1. The Möbius transformations
form a group under composition; it is a factor group of GL(2,C).

Proof. The composition of π with matrix multiplication by A applied to the vector
(w1, w2) is the extended complex number (aw1 + bw2)/(cw1 + dw2) = (a(w1/w2) +
b)/(c(w1/w2) + d) = fA(π(w1, w2)). Thus the action on projective space is given

by fA via the identification π of PC1 with Ĉ. Automatically, the action of GL on
lines is a group; so this passes over to Möbius transformations. The rest follows
immediately. �

Remark 23.1. The picture in Fig ?? simultaneously shows the map from P (R2) to S1

and R̂ via homogeneous coordinates. It is tempting to think this same thing works
for P (C2), but that is not true. We do have the sterographic projection of Fig. 50

from S2 to Ĉ but clearly we cannot realize C2 in this drawing since we would need
four real dimensions. Indeed P (C2) is the collection of complex lines through the
origin in C2 \ {0}, and each line itself is a copy of C. Now the drawing of Figg.??
suggests looking instead at P (R3), but this space is not topologically the same as
the sphere; it is a more complicated topological space called a crosscap: a disk with
opposite points identified. This is because it is the upper hemisphere, with opposite
points on the boundary circle identified. Now the boundary itself is therefore RP 1,
that is a circle; it can be visualized as twisting and folding over itself a rubber band
to make a circle half as long. Fig.???, which we learned from [Thu97], compares the
torus, Klein bottle and crosscap, the last two being nonorientable surfaces. It is easy
to picture the first two, but it seems hard to visualize the crosscap surface! Spivak
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nevertheless tries to draw it, on p. 17 of Vol. I of his Differential Geometry series,
[Spi79].

Proposition 23.3.
(i) There exists a unique h ∈ Möb(C) that fixes the points 0, 1 and ∞: the identity
map.

(ii) Given three distinct points x, y, w ∈ Ĉ, there exists a unique f ∈ Möb(C) that
takes x to 0, y to 1, and w to ∞.

(iii) Given three distinct points x, y, w ∈ Ĉ, there exists a unique f ∈ Möb(C) (the
identity map) that fixes these points.

(iv) Given two triples x, y, w and x̃, ỹ, w̃ of distinct points in Ĉ, there exists a unique
f ∈ Möb(C) that takes x to x̃, y to ỹ, and w to w̃.

Proof. The proof is broken down into these simple steps; note that case (iv) includes
all the others as the triples need not be disjoint sets.

For (i), if h(z) = (az+ b)/(cz+ d) then h(0) = b/d so if h fixes 0 then b = 0. Next,
h(∞) = a/c so we have that c = 0. Hence h(1) = (a+ b)/(c+ d) = a/d and so a = d,
and h = fA for A = λI for some λ ∈ C, where I is the identity matrix; and h is
therefore the identity map.

To prove (ii), setting

f(z) =
x− z
x− y ·

y − w
z − w, (71)

we see that f takes x, y, w to 0, 1,∞ and is Möbius, so f = fA for some A ∈ GL.
This proves existence.

Now if there is another such map fB, then f−1
B ◦ fA is Möbius and fixes 0, 1,∞ so

equals the identity map by part (i), hence fA = fB.
To prove (iii), let f be the map from part (ii) and suppose g is a map that fixes

the points x, y, w. Then the conjugate f ◦ g ◦ f−1 fixes 0, 1,∞ so is the identity by
part (ii), hence g = f−1 ◦ id ◦ f = id also.

To prove (iv), let f be as in (ii) and let f̃ be the unique map which takes x̃, ỹ, w̃ to

0, 1,∞. Then considering f̃−1 ◦ f proves existence. Now let g, h be two such maps;
then h−1 ◦ g fixes x, y, w and so from part (iii) it follows that g = h. �

Corollary 23.4. The group Möb(C) is isomorphic to the factor group PGL(2,C),
which is naturally identified with PSL(2,C) and SL(2,C)/{±I}.
Proof. Let ∼ denote the equivalence relation A ∼ λA for λ ∈ C\{0}, so PGL(2,C) =
GL(2,C)/ ∼. Now given A ∈ GL(2,C), the maps fA and fλA are equal; conversely,
as in (i) of Proposition 23.3, if fA is the identity map then A ∼ I; it follows that
if fA = fB, then A ∼ B. Hence PGL(2,C) is isomorphic to Möb(C). Now for
A,B ∈ SL(2,C), if A ∼ B then A = λB but since 1 = detA = det(λB) = λ2detB =
λ2, λ = ±1. Thus PSL(2,C) = SL(2,C)/{±I}. Lastly, given A ∈ GL(2,C),
since detλA = λ2detA, we can find an equivalent matrix with determinant 1, and so
PGL = PSL. �

Remark 23.2. We shall write an element of PSL(2,C) as a matrix A of determinant
one though actually it is the equivalence class {A,−A}.
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Definition 23.2. The cross-ratio of x, y, z, w ∈ Ĉ where x, y and w are distinct
points is

[x, y, z, w] =
x− z
x− y ·

y − w
z − w. (72)

Thus, defining a function by f(z) = [x, y, z, w], this is by the above the unique
Möbius transformation that takes x, y, w to 0, 1,∞.

The name cross-ratio perhaps comes from the following mnemonic for the above
formula:

x y z w

Proposition 23.5. Möbius transformations preserve cross-ratios.

Proof. Let g ∈ Möb(C); we are to show that, given three distinct points x, y, w, then

for any z ∈ Ĉ,
[g(x), g(y), g(z), g(w)] = [x, y, z, w].

We define two further Möbius transformations, the first by

f(z) = [x, y, z, w]

and the second by
h(z) = [g(x), g(y), z, g(w)].

We wish to show that h(g(z)) = f(z).
Now h ◦ g agrees with f on the three points x, y, w. And part (iv) of Proposition

23.3 says that a Möbius transformation is determined by where it sends three distinct
points. Therefore h(g(z)) = f(z) for all z, as desired. �

Lemma 23.6. A Möbius transformation f can be written either as a composition
Tγ ◦Mβ or as Tγ ◦Mβ ◦ J ◦ Tα where Tγ is translation Tγ(z) = z + γ, Mβ is complex
multiplication Mβ(z) = βz, and J is multiplicative inversion J(z) = 1/z.

Proof. We start with the general form for a Möbius transformation

f(z) = (az + b)/(cz + d).

If c = 0, we have f(z) = (a/d)z+(b/d) and we are in the first case with f = Tb/d◦Ma/d.
If c 6= 0, we can assume that c = 1, so

f(z) =
az + b

z + d
;

comparing this with the equation

f(z) = Tγ ◦Mβ ◦ J ◦ Tα(z) = γ +
β

z + α
=
γz + (γα + β)

z + α

we see that taking α = d, γ = a and β = b−ad, or equivalently b = γα+β, we can pass
from one form to the other, so the two representations for a Möbius transformation
with c 6= 0 are also equivalent. �
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anti

Remark 23.3. We call J multiplicative inversion to distinguish it from geometric
inversion (inversion in a circle or line), which we call simply inversion. The formula

for inversion in the unit circle is z 7→ 1/z = J(z) = J(z). Inversion in the real axis
is conjugation, i.e. reflection, z 7→ z. Unlike J , these are anticonformal maps; see
Example 23 below.

Proposition 23.7. Möbius transformations preserve {circles, lines} ⊆ C.

Remark 23.4. Equivalently, from Proposition 23.1, f ∈ Möb(C) takes circles to circles
in the Riemann sphere.

Proof. It is clear that translations, rotations and real dilations preserve lines and pre-
serve circles (separately), so it remains to show that inversion preserves the collection
of circles and lines. We follow [MH87]; essentially the same proof, but written in
purely complex notation, is given in [JS87].

We know a line or circle in the plane can be written as the solution to

Ax+By + C(x2 + y2) = D

where not all three of the constants A,B,C are zero, the lines corresponding to
C = 0. For z = x + iy, note that 1/z = z/|z| = u + iv with u = x/(x2 + y2)
and v = −y/(x2 + y2). Since u2 + v2 = 1/(x2 + y2), we have x = u/(u2 + v2) and
y = −v/(u2 + v2). Thus the previous equation is equivalent to

Au−Bv −D(u2 + v2) = −C
and the condition that not all of A,B,C are zero is equivalent to that not all three
of A,B,D are zero. This is a circle for D 6= 0. (Note that lines through zero go to
lines through zero via inversion, the case with both C and D equal to 0.) �

23.2. Real Möbius transformations and central projection. Let us first note
that:

Lemma 23.8. For any n ≥ 1, GL(n,C) is pathwise connected.

Proof. Given A,B ∈ GL(n,C), the simple idea to connect them by a path tA+(1−t)B
for t ∈ [0, 1] doesn’t work as the determinant may be zero along the way. However,
working instead in the Lie algebra, which is Mn(C) (the collection of all (n × n)
complex matrices) does the trick: the exponential map A 7→ exp(A) (defined for
matrices by the power series for numbers, see 35.5) sends Mn(C) (the collection of
all (n × n) complex matrices) onto GL(n,C). For this proof we do need the basic
fact that exp is onto the largest connected subgroup containing the identity element,
which in this case is the whole group. �

We define Möb(R), the real Möbius transformations, to be the subgroup of
Möb(C) such that the matrix A has real entries. Using the canonical embeddings of

R2 in C2 and R̂ = R ∪∞ in Ĉ = C ∪∞, the commutative diagram (70) becomes:



FROM ADIC TRANSFORMATIONS TO GIBBS STATES 169

R2 \ {0} A−−−→ R2 \ {0}yπ
yπ

R̂ fA−−−→ R̂

(73)

We write H = {z = x+ iy : y > 0} for the upper half plane. We have:

Proposition 23.9. Möb(R) is isomorphic to PGL(2,R) via the map A 7→ fA. These
are the complex Möbius transformations which preserve the real line. PGL(2,C)
is pathwise connected, while PGL(2,R) has two connected topological components,
those with determinant > 0 and < 0. Those with positive determinant form a normal
subgroup PGL+(2,R) which is isomorphic to PSL(2,R); these correspond via fA to
the subgroup Möb+(R) of maps in Möb(C) which preserve the orientation of R and
preserve the upper half plane.

Proof. Certainly a matrix in PGL(2,R) gives a Möbius transformation which maps
R to R. For the converse, let x, y, w be the images by f of the points 0, 1,∞; the
formula for the inverse of f is given in formula (71), and the matrix has real entries.

From Corollary 23.4 therefore Möb(R) is isomorphic to PGL(2,R).
Given A ∈ PGL(2,C) with det(A) > 0, then iA has determinant < 0, and γ(t) =

tA+ (1− t)iA is a path between them with nonzero determinant for each time t. By
contrast, since det(·) is a continuous function on the matrix entries, in PGL(2,R)
such a path must pass through a point with the value zero.

�

Remark 23.5. By definition the Lie algebra g of a Lie group G is the tangent space
at the identity; the exponential map takes g to G but may not be onto: exp(0) = e
the identity in G, and the image of g is the largest connected subgroup containing e.
Indeed, the proof just given of Lemma 23.8 shows that the image of the exponential
map from the Lie algebra is connected. See §35.5 and 35.15.

The simplest nonconnected example is the multiplicative subgroup G(1,R) = G−∪
G+ = R∗,− ∪ R∗,+ of R, where R∗,− = (−∞, 0 and R∗,+ = (0,+∞); then gR = R
and of course the image exp(R) = R∗,+ = G+(1,R). Note that by contrast for the
multiplicative group G(1,C) = C\{0}, which is connected, the Lie algebra is gC = C
and exp(C) = G(1,C). Now the coset (but not subgroup) G−(1,R) also has to be
the image of something in gC, and indeed, exp(t+ πi) = −et.

One way to understand that with the real field the image of the map exp(·) is
the collection of orientation-preserving matrices comes from the formula exp(trA) =
det(exp(A)), where tr is the trace.

Remark 23.6. In contrast to the complex case, PSL(2,R) and PGL(2,R) are not

the same: consider the matrix A =

[
−1 0
0 1

]
, which has determinant −1 so is not

in SL(2,R), whereas in PGL(2,C), A is equivalent to iA which has determinant 1.
Thus A is an element of PSL(2,C) and PGL(2,R) though not of PSL(2,R). Here
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fA : z 7→ −z. Another example is A =

[
0 1
1 0

]
, again with determinant −1; now

fA : z 7→ 1/z.

For perspective drawing in art, objects in R3 are centrally projected from the point
of view of the artist onto a plane (think of a window, or a canvas); an example we

have already encountered is sterographic projection from the sphere to Ĉ, though in
that case the “window” lies beyond the object! Another example is homogeneous
coordinates in P (Rn). Here we consider such projections in R2.

Let l1, l2 be two extended real lines in R2 (that is, each includes a point ∞ which
gives the one-point compactification) which do not pass through the origin. To be
more precise, these are lines in RP 2, the real plane with a projective circle at infinity;
each line has a distinct point at infinity, which are equal if and only if the lines are
parallel; see Remark 23.7 below.

We define a map Pl2,l1 : l1 → l2 by sending v1 = (x1, y1) ∈ l1 to the unique
point v2 = (x2, y2) in l2 which is projectively the same. That is, they have the same
homogeneous coordinates (x1/y1, 1) = (x2/y2, 1) in the line y = 1.

We call Pl2,l1 the central projection from l1 to l2.
We note that:

Lemma 23.10. Central projections compose: given three lines l1, l2, l3 in RP 2 which
miss the origin, Pl1,l2 ◦ Pl2,l3 = Pl1,l3. In particular, P−1

l1,l2
= Pl2,l1 .

Proof. The first statement is immediate from the picture; the second is then a corol-
lary. �

Next, we identify each line with R̂ by choosing a point of origin, an orientation
and a scale. These three are determined by specifying two distinct points v,w ∈ l:
the first is the origin, while the second plays the role of 1 ∈ R̂, indicating both the
positive direction and choice of scale. We write l(v,w) for the line with this choice
of origin, orientation and metric. We call the points v,w base points.

Given two lines l1, l2, which miss the origin and base points v1,w1 and v2,w2, the

central projection Pl2,l1 thus induces a map from R̂ to R̂. We will characterize such
maps:

Proposition 23.11. A central projection Pl1,l2 from line l2 to line l1, both of which
miss the origin and with base points v2,w2, v1,w1 induces a real Möbius transforma-

tion f of R̂, and conversely all f ∈ Möb(R) arise in this way.

Proof. We begin with l1 the horizontal line y = 1, with base points v1 = (0, 1) and
w1 = (1, 1). Let ϕ denote the isometry from l1 to R determined by this choice of base
points. Thus, ϕ(x, y) = x and ϕ−1(x) = (x, 1).

Let l2 be a second line which misses the origin, with a choice of base points v2,w2.
We define A to be the unique real (2 × 2) matrix such that v2 = A(v1) and w2 =
A(w1). Here A acts by multiplying column vectors on the left. Since A is invertible

it has nonzero determinant. We write A =

[
a b
c d

]
.
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Note thatA : l1 → l2 is an (origin- and orientation-preserving) isometry, by linearity
plus the definition of metric on the two lines.

We consider the map from l1 to itself defined by sending l1 to l2 via A, followed by

central projection from l2 to l1. We denote by fA the map of R̂ induced from this via

the identification of l1 with R̂. That is, f̂A = ϕ ◦ Pl1,l2 ◦ A ◦ ϕ−1. We claim this is

exactly the Möbius transformation fA of R̂ defined as in diagram (130).
Now as noted, A and ϕ are isometries; therefore the map Pl1,l2 from l2(v2,w2) to

l1(v1,w1) is isometrically conjugate to fA, and

f̂A(x) = ϕ ◦ Pl1,l2 ◦ A ◦ ϕ−1(x) = ϕ ◦ Pl1,l2
[
a b
c d

] [
x
1

]
=
ax+ b

cx+ d
= fA(x)

This handles the case of central projection from a general line with a pair of base
points to the specific line l1 with base points (0, 1) and (1, 1).

Next suppose we have two general lines l2, l3 with arbitrary chosen base points. But
by the lemma, the central projection from l2 to l3 is Pl3,l2 = Pl3,l1 ◦Pl1,l2 = P−1

l1,l3
◦Pl1,l2

and each of these is Möbius. So we are done: any central projection is Möbius.
We note that changing the base points on a line l(v.w) is conjugate to a composition

of a translation, multiplication and possibly an inversion of R.
For the converse, begin with a real (2×2) matrix A with nonzero determinant, and

reverse the above procedure: for l2 we take the line A(l1); we define the base points
to be the images v2 = A(v1) and w2 = A(w1). Since A is invertible, l2 also misses
the origin and these image points are also distinct.

The previous argument now shows that Pl1,l2 : l2(v2,w2)→ l1(v1,w1) is isometri-
cally conjugate to the Möbius transformation fA, finishing the proof. �

For an example, note that the central projection from the line l̃: x = 1 with base
points (1, 0), (1, 1) to l, the line y = 1, with base points (0, 1), (1, 1), is inversion

x 7→ 1/x, and indeed the above construction gives us the matrix A =

[
0 1
1 0

]
, whose

Möbius transformation fA is inversion. Indeed, central projection sends (−1, 1), the

point corresponding to −1 in l̃, to (1,−1), which corresponds to −1 in l; (1, 1) is fixed
by central projection, and that corresponds to 1 in both lines.

Remark 23.7. Above we said that given two lines inside R2, then when considered as
extended real lines, their points at infinity should be equal iff the lines are parallel.
To understand this precisely we need a projective space of one higher dimension, the
projective plane RP 2, in addition to the projective line RP 1. In fact, we shall model
RP 1 as lines through the origin in an extended plane which is a model for RP 2: the
plane z = 1 sitting inside R3, compactified by a circle at infinity.

To explain this, recall that RP 2 = P (R3), the space of lines through the origin.
We want to understand lines as well as points in this space, and for this we consider
several models.

First is the unit sphere S2 in R3 with antipodal points identified, writtten S2/ ∼.
The second is the upper hemisphere, with antipodal points identified on its circle
boundary. The third is the plane z = 1, with a circle added at infinity: for instance the
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unit circle in the plane z = 0 with antipodal points identified, as for the hemisphere
model.

This describes the points in RP 2 and the topology. Now a line in RP 2 is by
definition a plane through 0 in R3 modulo the projective equivalence relation ∼,
where v ∼ λv for λ 6= 0. Let us see what this gives in each of our models.

A plane through the origin meets S2 in a great circle, so these are the lines in
S2/ ∼. Note that any two distinct points determine a line and that any two distinct
lines meet in a single point.

In the hemisphere model, a line is either half of a great circle with endpoints
identified, or the equator with antipodal points identified. In the plane model, a line
is either a straight Euclidean line or the circle at infinity c.

Note that in the first case a line l meets c in one point. Note also that two distinct
Euclidean parallel lines l1, l2 in the plane meet in one point at infinity. Thus if we
denote the point at infinity of l by l∞ = l ∩ c, then (l1)∞ = (l2)∞.

Now we consider any two distinct extended lines l1, l2 in the Euclidean plane R2.
These correspond to two lines (but not the line at infinity c) in the plane model for
RP 2. Then l1, l2 meet in a unique point, and this is their point at infinity iff they are
parallel.

Next we consider a line l in the plane model of RP 2 such that l 6= c (the line at
infinity) and also l does not pass through 0.

Then this extended line is in bijective correspondence with the collection of lines
through the origin in this plane, since each such line m meets l in a unique point.
Note that if m is the unique line through the origin parallel to l then this is the point
at infinity of l.

Lastly we consider the central projection Pl1l2 from l2 to l1, where these lines
do not pass through the origin, from this viewpoint. Since each li is in bijective
correspondence with RP 1, the map Pl1l2 simply sends a point in the extended line l2
to the corresponding point in l1.

In conclusion, our lines l1, l2, which do not pass through the origin of R2, should
be thought of as lines in a specific model of RP 2, that is the (extended) plane model
z = 1.

Regarding RP 2, a nice observation is made on p. 18 of Thurston [Thu97]: if we
identify opposite sides of the unit square, preserving orientation of the boundary
segments as we do so, we of course get the torus. If we identify two opposite sides
in this way, but change the direction of one of the other two segments, we get the
Klein bottle. If, now, we change the other also, we have the projective plane. See
Remark 23.1. In all cases, geodesics are (locally) straight lines. The last two are
nonorientable- follow a frame (a pair of orthonormal vectors) along a geodesic!

23.3. The hyperbolic and Hilbert metrics. We begin with the Euclidean metric.
Let us say that a metric d(·, ·) on R is additive if for x < y < z, the triangle
inequality is exact, i.e. if d(x, z) = d(x, y) + d(y, z). Then:

Lemma 23.12. The Euclidean metric d(x, y) = |x− y| is the unique additive metric
on R which is translation-invariant, up to change of scale. It is also invariant for the
additive inversion x 7→ −x.
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Proof. The metric is nonzero since otherwise it would be a pseudometric. Since it is
additive this extends to a measure on the Borel sets. But there is a unique translation-
invariant measure on R, up to multiplication by a constant. �

Exercise 23.1. Find a nonadditive translation-invariant metric on R.
(Hint: consider a helix embedded in R3!)

Now we transport this metric to R>0 ≡ (0,+∞) via the exponential map, defining
d0,+∞(x, y) = d(log x, log y) = | log x− log y|. This defines (up to a constant multiple)
the hyperbolic metric on a half-line.

Next, given an open segment (α, β) ⊆ R, we map this to the half-line via a Möbius
transformation f , which sends α, x, β to 0, 1,∞. Hence f is defined by the cross-ratio:
f(y) = [α, x, y, β] and so our metric is:

dα,β(x, y) = | log[α, x, y, β]|. (74)

Given a circular arc γ in Ĉ with endpoints α, β (so possibly a straight line segment)
we define dγ,α,β on γ by the same formula (74).

Proposition 23.13. The hyperbolic metric d0,+∞ on R> 0 is the unique (up to multi-
plication by a constant) additive metric which is dilation-invariant; it is also invariant
for the multiplicative inversion x 7→ 1/x. The hyperbolic metric dα,β on (α, β) ⊆ R
and more generally on the circular arc γ ⊆ Ĉ is the unique (up to multiplication by a
constant) additive metric which is invariant for the group of Möbius transformations
which preserve this arc.

Proof. Both statements are a consequence of the lemma, since the group of Möbius
transformations which preserve R> 0 is generated by the dilations (those which fix
the endpoints) plus inversion (which interchanges them). �

Note that formula (74) works also for the first case α = 0, β = +∞, and that a

half-line in Ĉ is a circular arc in the Riemann sphere.

Remark 23.8. Multiplying the metric by a constant corresponds to taking the loga-
rithm with respect to a different base. That is, for a > 0, then for s = e1/a, then
a · dα,β(x, y) = a| log[α, x, y, β]| = | logs[α, x, y, β]| since logs(t) = log t/ log s.

Now we define the hyperbolic metric on half-space H. We should really say “a”
hyperbolic metric since the definition could differ from this by a constant multiple, as
above; on a segment this doesn’t make much difference, but in higher dimensions it
does: for instance for the Poincaré disk, taking a multiple will change the curvature
constant.

We need:

Lemma 23.14. Given w, z distinct points in the interior of H, there is a unique
half-line or circular arc containing them which meets ∂H orthogonally.

Proof. If w, z lie on the imaginary axis in H then this is clear; for any other choice we
move them to this position via a Möbius transformation, and we know the line is taken
to a circle, which meets the boundary orthogonally, since conformal maps preserve
angles. Alternatively, the center of the circle can be constructed with compass and



174 ALBERT M. FISHER

straightedge: this is the point where the bisector of the segment from w to z meets
the x−axis. �

Definition 23.3. For x.y ∈ H, we define dH(x,y) = c ·dγ(x,y) where γ is the unique
circle or vertical half-line which passes through x and y and meets the boundary R
orthogonally. This is the hyperbolic metric on H determined by the choice of c.
Taking c = 1/2 is the traditional choice for H, as it gives constant curvature −1. This
choice is called the Poincaré metric,. Then H together with this metric is known as
the upper half space model of the hyperbolic plane.

The usual approach to this metric encountered in the literature is via the infinites-
imal formula for arc length

ds2 =
dx2 + dy2

y2

which means the following: ds2 = (ds)2, where ds is the line element, i.e. it gives the
(infiinitesimal) length of a tangent vector to which it is applied. This means that we
calculate the length of a curve γ : [a, b]→ H by

l(γ) =

∫

γ

ds ≡
∫ b

a

||γ′(t)||dt.

Note that if we change this to the Euclidean line element

ds2 = dx2 + dy2

then this formula gives the usual arc length.
Now let us for example consider the curve along the y− axis in R2 γ(t) = (0, t) for

t ∈ [a, b]. Then for the previous formula,

∫

γ

ds =

∫ b

a

1

t
dt = log(b)− log(a)

which is the same as dH(ai, bi).
Next, let us consider the curve η(t) = (t, y) for t ∈ [a, b]. Then

∫

η

ds =

∫ b

a

t
1

y
dt = (b− a)/y.

Writing y = es, thus parametrizing the y−axis by arc length in the Poincaré metric,
we have

l(η) = e−s(b− a)

.
See Fig. ??.
One shows in differential geometry that any such infinitesimal formula, given by

a Riemannian metric on a manifold, i.e. a smoothly varying inner product on each
tangent space, also called the first fundamental form, gives an arc length and thence a
metric (defined to be the infimum of the curve lengths between two points), since the
triangle inequality is automatically satisfied. The work then comes in showing that
this locally equals arc length along geodesics, the existence of which has to be proved.
We take a different approach below, by measuring distance along circular arcs, which
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will be the geodesics. We then first prove the triangle inequality in Klein model, in
much more general circumstances, and then relate this to the Poincaré model.

There is also a hyperbolic metric for 3−dimensional half-space H3 ⊆ R3, defined
as follows. There is a unique plane passing through x and y which is perpendicular
to the boundary plane, and restricting to this plane there is as before a unique such
circle, and the definition is identical. A similar definition can be given for Hn.

Let B be the open unit ball in Rd with n ≥ 2. As above for the case n = 2, two
distinct points x,y ∈ B determine a unique circle which meets ∂B perpendicularly.
Taking this arc as γ, we define dP (x,y) = c · dγ(x,y). This is a hyperbolic metric
on the Poincaré ball; for B ⊆ R2, this is isometrically taken to H by a Möbius
transformation, defining the Poincaré model for the hyperbolic plane.

Now we move on to describe the Hilbert metric on a convex set. Let X be a vector
space (or more generally an affine space) and let C ⊂ X be a convex subset which
satisfies this property:

(no-line property): C contains no complete copies of the real line. (75)

For instance, if X is Euclidean space, C could be compact convex, or could be an
unbounded set such as {(x, y) : xy ≥ 1;x, y > 0}. Thus given two distinct points
x,y ∈ C, the line which passes through x and y meets C in a line segment l which
is either an interval or a half-line denoted γ (the endpoints may be included or not).
Then if neither x nor y is an endpoint we define dC(x,y) = dγ(x,y) to be the
hyperbolic distance on that segment or half-line; if x = y we set dC(x,y) = 0; if
one is an endpoint and the other not then we define dC(x,y) = ∞. We call dC the
Hilbert metric. Note that reflexivity and symmetry, being properties that depend
only on two points hence only on the segment γ, is automatic since we already know
that dγ is a metric. So to verify that dC is indeed a metric, we need only check:

Proposition 23.15. The triangle inequality holds for dC.

Proof. There is a beautiful proof (mostly geometric) in de la Harpe’s article [DLH93];
our argument is inspired by that diagram and is purely geometrical.

Since the triangle inequality refers to three points x,y, z, all of the proof reduces to
the convex region in the plane containing these points which meets C. Everthing re-
duces further to the convex hexagon determined by where the line segments extending
the triangle meet the boundary of C, see Fig. ??.

The proof can be motivated by a geometrical proof of the triangle inequality is the
Euclidean plane. Consider a triangle with sides a, b, c of length |a|, |b|, |c|. We place
the center of a compass at the endpoints of side c, and mark on that side intervals
a′, b′ also of lengths |a|, |b|. These intervals overlap, hence |a|+ |b| ≥ |c|.

We do the same here except replace our compass with central projection, given by
two different central points.

We shall use (two different) central projections to project sides a, b to the line
containing side c.

To project side a we choose as central point the point where two lines intersect:
those that are determined by the endpoints of the segments sa and sc containing the
two involved sides, a and c.
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Figure 51. Proof of the triangle inequality for the Hilbert metric,
showing how side b is central-projected to a subset b′ of side c.

Thus for instance writing αa, ωa for the endpoints of the segment sa, then projection
Pa sends αa and ωa to αc and ωc.

That is, the endpoints of sa are taken to the endpoints of sc.
We write a′ for the image of a; this is a subinterval of segment sc which has one

endpoint in common with c: where the two sides a and c meet. We call this the fixed
endpoint of side a, as it is fixed by the projection.

We write da, db, dc for the hyperbolic metrics on the open line segments sa, sb, sc.
Now we know from Prop. 23.11 that a central projection induces a Möbius trans-

formation of the two lines (defined up to base points, but change of base points is
also a Möbius transformation). Hence by Prop. 23.5 this preserves cross-ratios. Since
it maps the endpoints of sa to those of sc, it therefore is an isomtery from sa with
metric da to sc with metric dc. In particular, a and a′ have the same length relative
to these hyperbolic metrics.

We do the same for b, producing interval b′ ⊆ c and which includes the other
endpoint of c as fixed point. The non-fixed endpoints of a′, b′ are the images of the
third vertex of the triangle, by the two different projections.

We claim that the two segments overlap, which will prove that |a|+|b| = |a′|+|b′| ≥
|c| as desired. Here |a|, |b| denote the da, db-lengths of a and b, while |a′|, |b′| denotes
the dc-length of a′, b′.

To show they overlap, consider the effect on the projection a′, b′ of moving one
endpoint in the hexagon, corresponding to side c, farther in along the same line.
Moving in αc changes the non-fixed endpoint of a′, shortening that segment, and has
the same effect on b′. The same is true when we move ωc. This shortens the interval
where they overlap.

By moving both, finally a moment is reached where the overlap is a single point.
This is the worst-case senario, as now the two central projection points have coalesced.
The reason is that the hexagon has become a quadrilateral; the points αc, ωc are no
longer extreme points.

And here is where we use the convexity: moving beyond this would destroy that
hypothesis. See Fig. 51. �
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The projective metric on a convex cone. Next we present a more abstract
approach to the same metric.

Let V be a real vector space (infinite dimension is permitted). A subset C is a
cone iff αC ⊆ C for all α ≥ 0. A cone is positive if C ∩ −C = {0}. It is convex if
C+C ⊆ C. An affine line in V is {x+ ty : t ∈ R} for x,y ∈ V with y 6= 0. We will
say a cone C satisfies Furstenberg’s condition if no affine line in V is completely
contained in C.

Proposition 23.16.
(i) A cone is positive iff it contains no complete lines which pass through the origin.
(ii)Furstenberg’s condition implies positivity.
(iii)It is a convex cone iff it is a cone which is a convex set, and equivalently,
(iv) iff it is a cone and for any affine subspace H, then H ∩ C is a convex set.
(v)For a convex cone, Furstenberg’s condition is eqivalent to: for any affine subspace
H, then the convex set H ∩ C satisfies the no-line property (75).

Proof. Part (i) follows directly from the definitions. For (ii), Furstenberg’s condition
implies in particular that C contains no complete lines which pass through the origin,
which is positivity. Part (iii) is clear. For part (iv), if C is convex and v,w ∈ H ∩C,
then for p, q ≥ 0 with p + q = 1, then pv + qw ∈ H while also pv, qw ∈ C whence
pv + qw ∈ C. Conversely, let v,w ∈ C, and define H to be some affine subspace
containing these points; we are assuming that H ∩ C is convex. Then taking p =
q = 1/2, pv + qw ∈ H ∩ C whence v + w = 2 · (pv + qw) ∈ C. For (v), assuming
Furstenberg’s condition, then H ∩ C is a subset of C so can contain no complete
lines. Conversely, if the no-line property holds for each H ∩ C, then we can take for
H in particular any affine line; H ∩C cannot contain a complete line so H cannot be
completely contained in C, proving Furstenberg’s condition. �

Definition 23.4. Given a positive convex cone C ⊆ V , we say a vector x ∈ V is
positive iff x ∈ C. For x,y ∈ V , we define x ≤ y iff (y − x) is positive.

Proposition 23.17. This defines a partial order on V . We have x ≤ y iff y ∈ x+C.

Proof. The second statement is clear. The properties reflexivity x ≤ x, symmetry
x ≤ y and y ≤ x =⇒ y = x, and transitivity (x ≤ y, y ≤ z) =⇒ (x ≤ z) follow
respectively from the cone property, positivity and convexity. �

Definition 23.5. Given vector spaces V,W containing positive convex cones C,D,
a linear transformation f : V → W is positive iff f(C) ⊆ D.

One has immediately:

Proposition 23.18. A linear transformation is positive iff it preserves the partial
order: (x ≤ y) =⇒ (f(x) ≤ f(y)). �

Given C a positive convex cone and x,y ∈ C \ {0}, we define two numbers

α(x,y) = sup{α ∈ R : αy ≤ x}
and

β(x,y) = inf{β ≥ 0 : x ≤ βy}.
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Thus 0 ≤ α(x,y) ≤ β(x,y) ≤ +∞.
We then define the projective metric on C \ {0} by:

dC(x,y) = log(β/α). (76)

We define the equivalence relation ∼ on C \ {0} by x ∼ λx for λ > 0, and write
P (C) = (C \ {0})/ ∼, the projective space of the cone.

Proposition 23.19. dC is a pseudometric on P (C). It is a metric iff the cone
satisfies Furstenberg’s condition.

Proof. Note first that it is well-defined on P (C), as for x,y ∈ C \ {0}, then given
some λ > 0, dC(x,y) = dC(λx,y) since both α(x,y) and β(x,y) are multiplied by
the same constant.

We next check that dC(x,y) = dC(y,x): we have αy ≤ x ≤ βy so (1/β)x ≤ y ≤
(1/α)x; since α−1/β−1 = β/α we are done.

To show we have a pseudometric, it remains to verify the triangle inequality. Given
three vectors x,y, z ∈ C, let us write α1 for α(x,y), α2 for α(y, z) and α3 for α(x, z),
and similarly for β. We have

α1y ≤ x ≤ β1y

and

α2z ≤ y ≤ β2z

and so

α1α2z ≤ α1y ≤ x ≤ β1y ≤ β1β2z

and therefore α3 ≥ α1α2, β3 ≤ β1β2 and so

dC(x, z) = log(β3/α3) ≤ log(β1β2/α1α2) = dC(x,y) + dC(y, z).

Next, with Furstenberg’s condition, we prove it is a metric. Here we will follow
Furstenberg’s wonderful little proof of Lemma 15.1(iii) in [Fur61]. Assume that
dC(x,y) = 0. Then we have α(x,y) and β(x,y), the sup and inf of numbers with
αy ≤ x ≤ βy, and since log(β(x,y)/α(x,y)) = 0 we have α(x,y) = β(x,y). Defining
w = αy, we have for each ε > 0 that (using the cone property)

(1− ε)w ≤ y ≤ (1 + ε)w. (77)

Therefore, y − (1− ε)w ∈ C and so

(y −w) + εw ∈ C.
Thus

1

ε
(y −w) + w ∈ C,

for all ε > 0.
In other words,

t(y −w) + w ∈ C,
for all t > 0. Using the right-hand side of (77), we have that this also holds for all
t ≤ 0.

If y 6= w, this is an affine line. Thus, y = w.
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To prove the converse, we shall show that if Furstenberg’s condition fails, then
there exist two points x 6= y with dC(x,y) = 0.

Let x 6= y be in an affine line l ⊆ C. Consider the two-dimensional subspace S of
V spanned by x,y, so l ⊆ S. There exists a linear map T : S → R2 which sends x to
(1, 1), y to (1, 0) and hence l to the line x = 1. So we assume we are in this situation,
with these points and this line.

Now let ε ∈ (0, 1). We claim that εy ≤ x. We have x − εy = (1, 1) − (ε, 0) =
(1− ε, 1) ∈ (1− ε)l ⊆ C.

Thus α(x,y) = 1, and similarly β(x,y) = 1, whence dC(x,y) = 0, so dC is not a
metric. �

Example 20. Let V = R2 and C = {(x, y) : x > 0}. Then C is a positive convex
cone but does not satisfy Furstenberg’s condition. We have just shown that this cone
will give a pseudometric but not a metric. Note also that as in the proof just given,
we do need here to use sup and inf in the definiton of α, β, essentially since the cone
boundary (the y−axis) is not in C. In the literature to avoid this issue it is often
assumed that C is a closed cone in a Banach space. Furstenberg’s condition instead
isolates exactly what is needed, averting the need for topological considerations.

In the next result, we see (easily) that positive mappings always give a weak con-
traction. The much stronger statement of Birkhoff waits until §24.1.

Proposition 23.20. Let V be a vector space and C ⊆ V a convex cone satisfiying
Furstenberg’s condition. Write dC for the projective metric on C. Let L : V → V be
a linear transformation. Then:
(a) if v ≤ w in the C-partial order then L(v) ≤ L(w) in the L(C)-order.
(b) if L is invertible, it is an isometry from dC to dL(C). In any case it is a weak
contraction, i.e.

dL(C)(L(v), L(w)) ≤ dC(v,w).

(c) Let L be a positive linear transformation. Then it is a weak contraction in the
C-metric.

Proof.
(a) For v,w ∈ V , v ≤ w iff there is a z ∈ C such that w = v + z, iff L(w) =
L(v) + L(z).
(b) By part (a), αv ≤ w ≤ βv in the C-order iff αL(v) ≤ L(w) ≤ βL(v) in the L(C)-
order. Hence distance is preserved. For L not necessarily invertible, the distance may
become 0, but in any case we have a weak contraction from the C- to the L(C)-metric.
(c) Since L(C) ⊆ C, this distance can only decrease further, proving the claim. �

23.4. From the projective to the Hilbert metric. Here we make the connection
with the Hilbert metric, making use of an alternate definition often encountered in
the dynamics literature.

Proposition 23.21.
(i) Let V be a vector space and C ⊆ V a convex cone satisfying Furstenberg’s con-
dition. Let H be an affine subspace of V . Then for dH∩C the Hilbert metric on
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H ∩ C and dC the projective metric on rays in C, we have for w,v ∈ H ∩ C,
dH∩C(v,w) = dC(v,w).
(ii) Conversely, let C ⊆ V be a convex set satisfying the no-line property. Let us

imbed V as an affine hyperspace not containing 0 in a vector space V̂ . Write Ĉ for
the cone generated by C (the smallest cone containing C). Then the metrics dC and
dĈ are equal.
(iii) For the hyperbolic metric on an interval J = [a, b] ⊆ R, the distance between two
points x, y with a ≤ x ≤ y ≤ b is given by

dJ(x, y) = log

(
L+M

L
· M +R

R

)
,

where L,M,R are the lengths or the left, middle and right subintervals.

Proof. Note first that by Proposition 23.16, H ∩C is a convex set which satisfies the
no-line property. Therefore the metric dH∩C is defined.

Consider two vectors v 6= w ∈ H ∩ C. The plane which contains v,w and 0 is
depicted in Fig. 52. This meets C in a two-dimensional cone. The line containing v
and w is not a complete line hence is either a half-line or a segment.

Without loss of generality, in our figure we draw the cone as the positive quadrant
in R2, and can take v to the left of w on the segment. This segment is divided into
three, with lengths equal to L,M,R (for left, middle, right).

We copy this segment isometrically to an interval [x∗, y∗] ⊆ R with points x, y
corresponding to the vectors v,w; that is, such that x∗ ≤ x ≤ y ≤ y∗ with x−x∗ = L,
y − x = M , y∗ − y = R, so y∗ − x∗ = L+M +R.

We shall use, twice, the fact from elementary geometry that three parallel lines cut
two transverse segments proportionally. See Fig. 52.

First we consider three vertical lines: the y−axis and the lines passing through w
and through v. The line through v meets the ray through w at a point αw where
we define α = α(v,w) = sup{α : αw ≤ v}. Since these parallels divide the line
segments of the vectors v, w in proportional segments, we have that α/1 = L/(L+M).
Next, we consider three horizontal lines, the x−axis and the lines through w and v.
This horizontal line through v meets the ray through w at a point βw. We have
β = β(v,w) = inf{β : v ≤ βw}. The three parallels now divide the segment M ∪ R
and the segment of the vector βw proportionally, giving β/1 = (M +R)/R.

Now the distance dH∩C(v,w) is by definition

dH∩C(v,w) = log([x∗, x, y, y∗] = log

(
x∗ − y
x∗ − x ·

x− y∗
y − y∗

)
=

log

(
L+M

L
· M +R

R

)
= log

β

α
= dC(v,w).

This proves parts (i) and (iii).

For (ii), note first that Ĉ is indeed a positive convex cone. From Proposition 23.16,
it satisfies Furstenberg’s condition. Now we are in the situation of part (i), so the
two metrics are equal. �
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Figure 52. The Hilbert metric on an interval

Example 21. Consider V = Rd and C the usual positive cone

Rn+ = {v : vi ≥ 0, 1 ≤ i ≤ n}.
Then:

Proposition 23.22.

d(v,w) =

∣∣∣∣log sup
i,j

viwj
wivj

∣∣∣∣

Proof. α = sup{α̃ : α̃v ≤ w} = inf{vi/wi} and similarly, β = sup{vi/wi}. Therefore,

β/α = sup
i,j

{
vi
wi
/
vj
wj

}
= sup

i,j

viwj
wivj

.

�

From this we see immediately the nice little fact that diagonal matrices act as
isometries; we shall need this in the proof of Lemma 41.6: (to do: mixing conditions)

Corollary 23.23. Let z = (z1, . . . zn) ∈ Rd with zi 6= 0 for all i, and write Z for the
diagonal matrix with entries Zii = zi. Then Z : Rn+ → Rn+ is an isometry in the
projective metric on Rn+.

Remark 23.9. We have included part (iii) here because this terminology is used some-
times in the literature; compare [dMvS93].

Furstenberg’s condition seems to us to provide the most natural and general frame-
work for defining projective metrics; it isolates what is necessary to have a metric while
avoiding all mention of topology on V . Alternatively, one can for instance assume
that V is a Banach space and closure of the cone is positive, or other conditions, all
of which imply Furstenberg’s condition. Compare the references cited below for a
variety of approaches and much interesting additional information. [Bus73], [Sen81],
[Woj86], [KP82], [Bir57], [Bir67]. [DLH93].
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23.5. An example: the ellipse, hemisphere and hyperboloid Klein models
for hyperbolic n-space. Let B be the open unit ball in Rn with n ≥ 2. Above we
defined the Poincaré metric dB(x,y) = c · dγ(x,y) where γ is the unique circular arc
which passes through x,y and encounters the boundary ∂B orthogonally. With the
constant c = 1/2, then this normalizes the curvature to be −1, which is the standard
choice.

We consider the Hilbert metric dH on B. Writing dK = c · dH , then (B, dK) is the
Klein model for n-dimensional hyperbolic space.

This is also isometric to (c times) the Hilbert metric on an ellipsoid E.
With the help of the projective metric, we can describe other Klein-type models for

two-dimensional hyperbolic space. Consider a standard solid cone R3, C = {(x, y, z) :
x2 + y2 ≤ z2, z ≥ 0}; choose a horizontal cross-section, say by the plane z = 1, giving
a disk D. The cone C with the projective metric is isometric to the disk by central
projection.

The same works for any elliptical conic section E. As we remarked earlier, the disk
is the Klein model (times a constant); E straight lines for geodesics.

The isometry between the ellipsoid and ball Klein models is easy to describe: there
exists an affine map from one to the other; this preverves line segments, and on each
line segment gives a Möbius transformation to the image line segment, so preserves
distance.

We note that while in D and E geodesics are segments in R3, in P each boundary
point has exactly one direction where the geodesic emanating from it is a half-line
(the vertical ray), all other angles giving segments, while for the hyperbola model
there is a cone of such half-lines at every boundary point, parallel to the asymptotes.

We mention that the other conic sections (a parabola or a hyperbola) will not work
here, as the projective map from the hyperboloid to those sections is not onto.

Now we know that the Poincaré and Klein models ∆, K for H2 have to be isometric,
and it is a reasonable guess that a geodesic in ∆ (a circle meeting the boundary
orthogonally) will go to a geodesic in K (a Euclidean line) with the same endpoints.
Nevertheless it seems hard to visualize this map. Thurston in [Thu97] gives a way to
do this, which we describe.

Consider stereographic projection ϕ from the south pole S of the unit sphere S2 ⊆
R3 to Ĉ embedded as the xy−plane. Consider a geodesic with endpoints ξ, η in the
equatorial circle, the unit circle in this plane. This meets the circle at right angles,
and the map ϕ is conformal, preserving angles and circles. Hence the image of this
arc is a circular arc in S2 which likewise meets the boundary perpendicularly.

This map, ϕ−1, restricted to the disk gives a map from ∆ to the upper hemisphere,
with an inherited hyperbolic metric. This is called the hemisphere model for hyper-
bolic space. The geodesics are these circles which meet the boundary orthogonally,
and hence are the intersection of the hemisphere with a vertical plane.

Next, we project downward to the disk via this vertical plane, giving a Euclidean
line of the Klein model.

In summary, the map is the inverse of stereographic projection followed by vertical
projection downwards, with the hemisphere model serving as the intermediary space!
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Figure 53. Geodesics in the hemisphere, Klein and Poincaré models
of the hyperbolic plane

Figure 54. Stereographic projection from the hemisphere to the
Poincaré model

See Fig. 2.12 of [Thu97]. This amazing book has much more on these remarkable
spaces.

In particular he also discusses the hyperboloid model. Note that the metric on this
model is that given by the projective metric on the cone, restricted to the hyperboloid,
and same for the Klein model on a disk on any ellipse which is a planar section of
the cone. This gives a direct isometry bteween the Klein and hyperboloid models,
via the projective metric.

We remark that we have used here central projections twice, once to map the
hemisphere model to the Poincaré model, and once to map the Klein model to the
hyperboloid model. However, the metric in the first two cases is not that induced
from the projective metric- otherwise Euclidean straight lines in the Poincaré disk
would be geodesics, which they are not. The utility of the central projection in the
first case is rather that since it is stereographic projection, it is conformal, so we can
directly see what the geodesics are, as explained above.

Remark 23.10. The Hilbert metric is defined for any convex subset C of a vector
space V which satisfies the no-line property. In the special case where V is finite
dimensional and C is a ball (or more generally, as explained above, an ellipsoid), this
is isometric to the Poincaré ball model and so to a Riemannian manifold. As noted
above, this means a smooth manifold with a Riemannian metric, and by definition
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that is an inner product on each tangent space, which varies smoothly. A more general
notion in differential geometry is that of Finsler metric, where one has a smoothly
varying norm. As Wojtkowski shows in [Woj83], in general, the Hilbert metric gives
a Finsler but not a Riemannian metric; that is the case e.g. for the standard positive
cone in Rd.

The Hilbert metric or projective metric provides but one way of generalizing the
notion of hyperbolic space. Another generalization is to assume a Riemannian metric
but with variable negative curvature, and one can try to imagine further generaliza-
tions. Examples come e.g from the deeply insightful work of Gromov, Thurston and
many others.

The Hilbert or projective metrics are especially natural and useful because of the
connection with linear maps, while having a Riemannian metric of constant negative
curvature as for the Poincaré model allows one to bring in all the powerful tools of
Riemannian geometry and of Lie groups. See e.g. [Mas88], [Bea83], [Thu97].

?? elem pf of constant!!

24. A projective metric proof of the Perron-Frobenius theorem

Returning to the projective and Hilbert metrics, we next describe a beautiful ap-
proach to the Perron-Frobenius theorem due (independently, at about the same time)
to Birkhoff and Samelson. We mention that Furstenberg, as a small part of his thesis
and also at the same time, introduced related ideas. Birkhoff’s first publication on this
is dated 1957, [Bir57] while Furstenberg’s thesis was submitted in 1958 (published by
Princeton University Press in 1960). Samelson’s paper is dated 1956 [Sam56]). All
seem to be indpendent. The essential difference is that while Samelson used the
Hilbert metric, Birkhoff used the projective metric, as did Furstenberg. Birkhoff
gives a sharp bound on the contraction, which is especially useful when studying a
sequence of matrices; see [Fis09]. And moreover, Birkhoff gets an upper boud of the
contraction of the complementary subspace, that is, for the modulus of the other
eigenvalues. Furstenberg also gives a boound; see §16.2 of [Fur60]; we have not yet
checked to see how this compares with Birkhoff’s result or presentation. Apparently
all three approaches were developed independently. (Furstenberg’s result represents
a small part of his thesis.)

24.1. Birkhoff’s contraction estimate. In [Bir57] and again, with more details,
in §XVI of [Bir67], Birkhoff gives a sharp bound on the amount of contraction for a
Möbius transformation, measured in the hyperbolic metric. His 1967 proof is a tour-
de-force of elementary algebra and calculus, however a lot of the technical difficulty
is due to the fact that he calculates for the general case. We manage to simplify this
proof considerably by reducing first to the most symmetric possible case.

This result is stated in terms of the hyperbolic metric on half-lines and segments,
from §23.3; to apply it, in Theorem 24.3, we shall then switch to the cone point of
view.

Remark 24.1. Let us recall that

tanh(x) =
ex − e−x
ex + e−x

.
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Figure 55. tanh(x)

This is an increasing odd function with value 0 at 0, −1 ≤ tanh(x) < 1 and with
limits ±1 at ±∞. We note that

e2x − 1

e2x + 1
=
t2 − 1

t2 + 1
=
λ− 1

λ+ 1
,

for λ = e2x. Thus any time we encounter a formula of these latter types, we have
come across a hyperbolic tangent.

Lemma 24.1. (Birkhoff [Bir57]) Let d(0,∞) be the hyperbolic metric on (0,∞) and
suppose f is a real Möbius transformation which maps (0,∞) inside itself. Then

sup
x,y>0

d(0,∞)(f(x), f(y))

d(0,∞)(x, y)
= tanh(∆/4)

where ∆ is the diameter of the image interval in the metric d(0,∞).
For f(x) = (ax+ b)/(cx+ d) this quantity is ∆ = log (ad/bc) . The weakest con-

traction occurs at x = (bd/ac)
1
2 , which is the hyperbolic midpoint of the image inter-

val.

As we see below, since tanh(∆/4) < 1, this will give us the contraction needed to
prove a fixed point theorem!

Proof. We are given

fA(x) =
ax+ b

cx+ d

for the matrix A =

[
a b
c d

]
with a, b, c, d ∈ R such that 0 ≤ f(0) ≤ f(∞) ≤ ∞; here,

f(0) = b/d and f(∞) = a/c so indeed

∆ = log

(
a/c

b/d

)
= log

(
ad

bc

)
.

Setting

λ =

(
ad

bc

)1/2

,

then log(λ) = ∆/2 is the hyperbolic radius of the image interval.
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We claim that there is a dilation of the reals, Dα(x) = αx, such that Dα ◦ fA = fB
has the form

fB(x) =
λx+ 1

x+ λ
;

this corresponds to the matrix B =

[
λ 1
1 λ

]
.

This resulting map is the most symmetric possible case as fB(0) = 1/λ, fB(∞) = λ
and fB(1) = 1; its hyperbolic midpoint is 1 and the intervals on either side of this
point have length log λ.

So to find this dilation, we let p be the hyperbolic midpoint of the image interval
(b/d, a/c) and take α = 1/p.

To find the midpoint p we solve the equation

1

p

b

d
=

(
1

p

a

c

)−1

and so
ab

cd
= p2

and

p =

(
ab

cd

)1/2

.

Since the compostion Dα ◦ fA sends 0, 1 and ∞ to 1/λ, 1 and λ, it must equal fB.
The dilations are exactly the orientation-preserving isometries of (0,∞) (with the

hyperbolic metric), so proving the theorem for this one-parameter family of maps
will be enough. The dilations are, from another point of view, the translations in
the multiplicative group of positive reals, (R>0, ·). We note that the function fB is
an odd function on the multiplicative reals, that is: fB(x−1) = (fB(x))−1. This fact
reflects the symmety of fB.

Next we conjugate from the multiplicative reals to the additive reals, by the ex-
ponential exp : R → (0,∞); this is an isometry from the Euclidean metric to the
hyperbolic metric. We define F : R→ R by F = log ◦fB ◦ exp .

Now note that since the multiplicative group identity 1 was fixed for fB, the point
0 is a fixed point for F . Note that the image interval is F (R) = (− log λ, log λ), and
that F is an odd function, F (−x) = −F (x), since fB is (multiplicatively).

Following Birkhoff, the reason for moving to the reals is that we can do our calcu-
lations in the Euclidean metric.

Since we have conjugated by isometries, our contraction constant for f is the supre-
mum of (F (y) − F (x))/(y − x). By the Mean Value Theorem, there exists c ∈ [x, y]
such that (F (y) − F (x))/(y − x) = F ′(c). So the contraction constant is equal to
supt∈R F

′(t). The equality is what proves Birkhoff’s bound is sharp.
We calculate F ′:

F (x) = (log ◦fB ◦ exp)(x) = log

(
λex + 1

ex + λ

)
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so

F ′(x) =
λex

λex + 1
− ex

ex + λ
=

(λ2 − 1)ex

λe2x + (λ2 + 1)ex + λ
(78)

Our bound is the maximum of this function G(x) = F ′(x), which is an even function
since F is odd. If it has a single maximum, this must, by this symmetry, occur at the
point x = 0.

To verify this fact we take the derivative:

G′(x) = F ′′(x) =
(λ2 − 1)ex(−λe2x + λ)

(λe2x + (λ2 + 1)ex + λ)2

We know that λ2 − 1 > 0 so indeed the top equals zero only for λ = λe2x 1.e. for
x = 0.

Since λ = e∆/2 > 0, the value of G = F ′ at this point is

λ2 − 1

λ2 + 2λ+ 1
=
λ− 1

λ+ 1
(79)

This is of the form in Remark 24.1; so this equals tanh(x) for x = 1
2

log λ and since
log λ = ∆/2, this equals tanh(∆/4) as claimed. (I would love to see a purely geomet-
rical explanation of this beautiful formula -no doubt complex analysts know how to
do this!) �

Corollary 24.2. Let l1 be a subset of R which is a segment or half-line, with its
hyperbolic metric d1. Let l2 be a subsegment with diameter 0 < ∆ <∞. Then

sup
x,y∈l2

d1(x, y)

d2(x, y)
= tanh(∆/4).

Proof. Write a1, b1 for the endpoints of l1 and a2, b2 for the endpoints of l2, with
a1 < a2 < b2 < b1.

Choose a real Möbius transformation g with g(a2) = a1 and g(b2) = b1.
Then g is an isometry from l2, d2 to l1, d1. Write f = g−1. Then for x, y ∈ l2 and

x̃ = g(x), ỹ = g(y), we have

d1(x, y)

d2(x, y)
=
d1(f(x̃), f(ỹ))

d1(x̃, ỹ)

and so by Lemma 24.1,

sup
x,y∈l2

d1(x, y)

d2(x, y)
= sup

x̃,ỹ∈l1

d1(f(x̃), f(ỹ))

d1(x̃, ỹ)
= tanh(∆/4).

�

We saw in Proposition 23.20 above that one always has a weak contraction, by a
very easy proof. For strict contraction, all the hard work has been done in Lemma
24.1, and we now conclude:

Theorem 24.3. (Birkhoff’s cone contraction estimate) Let V,W be vector
spaces and C ⊆ V , D ⊆ W convex cones satisfiying Furstenberg’s condition, with
dC , dD the projective metrics on these cones. Let L : V → W be a positive linear
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transformation. Write ∆ for the D- diameter of the image of C. Then if ∆ <∞, L
is a strict contraction, with coefficient

sup
v,w∈C

dD(L(v), L(w))

dC(v,w)
= tanh(∆/4).

This bound is sharp.

Proof. Let v,w ∈ C be be projectively distinct (i.e. they are linearly independent
vectors), so dC(v,w) > 0. Let l denote the line segment or a half-line in C determined
by these two points. If L(v) and L(w) are not linearly independent, the distance is
zero and the upper bound holds trivially. So assume that they are independent; then
l2 ≡ L(l) is a line segment or half-line in L(C) which is not projectively trivial. We
embed each of these segments into a real line, by choice of an origin, unit length and
positive direction.

Since L is a linear map, it preserves convex combinations of the endpoints v and w
of l, so identifying the above real lines to R with the Euclidean metric d(x, y) = |x−y|,
L induces a map of R: a translation composed with a dilation by the factor |l2|/|l|.
This is a Möbius transformation of R. Now give l its hyperbolic metric, and do the
same for l2; these are not affected by the choice of embeddings into R. These metrics
are defined from the Euclidean metric on the real line, as in (iii) of Proposition
23.21, so the restriction L : l → l2 is an isometry for these hyperbolic metrics. (An
alternative argument is to note that this restriction is a Möbius transformation of the
segments hence an isometry).

Now l2 extends to a segment or half-line l1 in the cone D, and l2 = l1 ∩ L(C).
The hyperbolic length ∆l2 of l2 as a subsegment of l1 is bounded above by ∆, the

diameter of L(C) in D. Applying Corollary 24.2, we have

sup
x,y∈l2

dl1(x, y)

dl2(x, y)
= tanh(∆l2/4).

Since L is an isometry from l to l2, dC(v,w) = dl(v,w) = dl2(L(v), L(w)). And
dD(L(v), L(w)) = dl1(L(v), L(w)). Thus

sup
v,w∈l

dD(L(v), L(w))

dC(v,w)
= tanh(∆l2/4) ≤ tanh(∆/4).

This proves the upper bound.
To show sharpness of the bound, consider a segment or half-line in D where the

ratio of where it meets L(C) is close to the diameter ∆; taking the inverse image, we
apply the above argument and are arbitrarily close to that bound. �

We next recall:

Lemma 24.4. Let (X, d) be a complete metric space and f : X → X a strict con-
traction, i.e. there exists c ∈ [0, 1) such that d(f(x), f(y)) ≤ cd(x, y). Then f has a
unique fixed point.

Proof. Choose x ∈ X; the iterates fn(x) form a Cauchy sequence, since the contrac-
tion gives a geometric series, and this has a limit point which is the unique fixed
point. �
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The next statement is basically Theorem 1 of [Bir57] (we have replaced his condition
“C is a bounded closed convex cone of a real Banach space” by the more general
formulation of having Furstenberg’s condition for the cone, in a real vector space;
and “L is a bounded linear transformation” simply by L linear).

Theorem 24.5. (Birkhoff’s Perron-Frobenius Theorem) Let V be vector space and
C ⊆ V a convex cone satisfiying Furstenberg’s condition, with dC the projective metric
on C. Write ∼ for the projective equivalence relation v ∼ λv for λ 6= 0, defining
the projective space P (V ) = V/ ∼. Assume that the metric space (C/ ∼, dC) is
complete. Let L : V → V be a positive linear transformation, and assume that for
some power m ≥ 1, the dC- diameter of Lm(C), ∆ ≡ diam(Lm(C)), is finite. Define
c = tanh(∆/4) < 1 and ρ = 1− e−∆ < 1.
Then:
(i) there exists (up to multiplication by a positive constant) a unique positive eigen-
vector w, with eigenvalue λ > 0.
(ii) All other nonnegative rays are attracted to this direction, exponentially fast in the
projective metric: for all v ∈ C, d(Lkmv,w) ≤ ck → 0.
(iii)This can be expressed as a contraction in the complementary subspace. Precisely,
there exists a positive linear functional M : V → R such that for every f ∈ C, writing

M = M(f) and L̃ ≡ Lm, we have a constant K = K(f) with

d(L̃k(f),M · L̃k(w)) ≤ K(f)ρk.

Moreover, let Ep denote the one-dimensional space generated by w, and let Ec
denote the kernel of M . Then we have an L− invariant splitting V = Ep ⊕ Ec, such
that for every u ∈ Ec, d(Lnu,0) is nonincreasing, with

d(L̃ku,0) ≤ ρk → 0.

(iv) Let v be an eigenvector for L with eigenvalue µ ∈ C and v not a multiple of w.
Then |µ| < ρ · λ < λ.

Proof. To prove (i), for Lm, from Birkhoff’s estimate we have the (sharp) contraction
coefficient c = tanh(∆/4) < 1. Then by Lemma 24.4, there exists a unique fixed ray
in the positive cone, and this gives the eigenvector w. Since Lw ∈ C, its eigenvalue
λ is positive, proving (i).

To prove (ii), we assume without loss of generality that m = 1, and also that λ = 1,
otherwise replacing L by (1/λ)L. For the proof we largely follow §7 of [Bir57]. See
also Theorem 8 of [Bir67].

Given f ∈ C, for each n ≥ 1, we set fn = Lnf . Let an, bn be the largest, smallest
numbers such that

anw ≤ fn ≤ bnw. (80)

Applying L gives anw ≤ fn+1 ≤ bnw, whence an ≤ an+1 ≤ bn+1 ≤ bn; we claim
that bn − an → 0.

Since, for each n ≥ 1, C ⊇ L(C) ⊇ L2(C) ⊇ · · · ⊇ Ln(C) while (with our
assumption m = 1) the diameter L(C) is less than ∆ < ∞, we have d(fn,w) ≤ ∆.
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<latexit sha1_base64="k+dKO6zODFcpwRaqmIjV4DXaBtM=">AAAB33icbVBNSwMxFHxbv2r9WvXoJVgET2VXBPVWFMFjRdcW2lqyabYNzW6W5K1QSu9eFE+K/8i/4L8xbffS1oHAMDPhvXlhKoVBz/t1Ciura+sbxc3S1vbO7p67f/BkVKYZD5iSSjdCargUCQ9QoOSNVHMah5LXw8HNxK+/cG2ESh5xmPJ2THuJiASjaKWH22fWcctexZuCLBM/J2XIUeu4P62uYlnME2SSGtP0vRTbI6pRMMnHpVZmeErZgPb4aLrgmJxYqUsipe1LkEzVuRyNjRnGoU3GFPtm0ZuI/3nNDKPL9kgkaYY8YbNBUSYJKjJpS7pCc4ZyaAllWtgNCetTTRnam5RsdX+x6DIJzipXFf/+vFy9zm9QhCM4hlPw4QKqcAc1CIBBD97gE76c0Hl13p2PWbTg5H8OYQ7O9x9plokd</latexit><latexit sha1_base64="k+dKO6zODFcpwRaqmIjV4DXaBtM=">AAAB33icbVBNSwMxFHxbv2r9WvXoJVgET2VXBPVWFMFjRdcW2lqyabYNzW6W5K1QSu9eFE+K/8i/4L8xbffS1oHAMDPhvXlhKoVBz/t1Ciura+sbxc3S1vbO7p67f/BkVKYZD5iSSjdCargUCQ9QoOSNVHMah5LXw8HNxK+/cG2ESh5xmPJ2THuJiASjaKWH22fWcctexZuCLBM/J2XIUeu4P62uYlnME2SSGtP0vRTbI6pRMMnHpVZmeErZgPb4aLrgmJxYqUsipe1LkEzVuRyNjRnGoU3GFPtm0ZuI/3nNDKPL9kgkaYY8YbNBUSYJKjJpS7pCc4ZyaAllWtgNCetTTRnam5RsdX+x6DIJzipXFf/+vFy9zm9QhCM4hlPw4QKqcAc1CIBBD97gE76c0Hl13p2PWbTg5H8OYQ7O9x9plokd</latexit><latexit sha1_base64="k+dKO6zODFcpwRaqmIjV4DXaBtM=">AAAB33icbVBNSwMxFHxbv2r9WvXoJVgET2VXBPVWFMFjRdcW2lqyabYNzW6W5K1QSu9eFE+K/8i/4L8xbffS1oHAMDPhvXlhKoVBz/t1Ciura+sbxc3S1vbO7p67f/BkVKYZD5iSSjdCargUCQ9QoOSNVHMah5LXw8HNxK+/cG2ESh5xmPJ2THuJiASjaKWH22fWcctexZuCLBM/J2XIUeu4P62uYlnME2SSGtP0vRTbI6pRMMnHpVZmeErZgPb4aLrgmJxYqUsipe1LkEzVuRyNjRnGoU3GFPtm0ZuI/3nNDKPL9kgkaYY8YbNBUSYJKjJpS7pCc4ZyaAllWtgNCetTTRnam5RsdX+x6DIJzipXFf/+vFy9zm9QhCM4hlPw4QKqcAc1CIBBD97gE76c0Hl13p2PWbTg5H8OYQ7O9x9plokd</latexit><latexit sha1_base64="k+dKO6zODFcpwRaqmIjV4DXaBtM=">AAAB33icbVBNSwMxFHxbv2r9WvXoJVgET2VXBPVWFMFjRdcW2lqyabYNzW6W5K1QSu9eFE+K/8i/4L8xbffS1oHAMDPhvXlhKoVBz/t1Ciura+sbxc3S1vbO7p67f/BkVKYZD5iSSjdCargUCQ9QoOSNVHMah5LXw8HNxK+/cG2ESh5xmPJ2THuJiASjaKWH22fWcctexZuCLBM/J2XIUeu4P62uYlnME2SSGtP0vRTbI6pRMMnHpVZmeErZgPb4aLrgmJxYqUsipe1LkEzVuRyNjRnGoU3GFPtm0ZuI/3nNDKPL9kgkaYY8YbNBUSYJKjJpS7pCc4ZyaAllWtgNCetTTRnam5RsdX+x6DIJzipXFf/+vFy9zm9QhCM4hlPw4QKqcAc1CIBBD97gE76c0Hl13p2PWbTg5H8OYQ7O9x9plokd</latexit>

f1
<latexit sha1_base64="A02ytMkioLSyYJDsynDxaRZx8nc=">AAAB6HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIoMuiG5cV7APaUjJppo3NJENyRyil/+BGxI2CX+Mv+Ddm2tm09UDgcM4J954bJlJY9P1fr7CxubW9U9wt7e0fHB6Vj0+aVqeG8QbTUpt2SC2XQvEGCpS8nRhO41DyVji+z/zWCzdWaPWEk4T3YjpUIhKMopM63ZjiKIxI1A/65Ypf9ecg6yTISQVy1Pvln+5AszTmCpmk1nYCP8HelBoUTPJZqZtanlA2pkM+nS86IxdOGpBIG/cUkrm6lKOxtZM4dMlsMbvqZeJ/XifF6LY3FSpJkSu2GBSlkqAmWWsyEIYzlBNHKDPCbUjYiBrK0N2m5KoHq0XXSfOqGvjV4PG6UrvLj1CEMziHSwjgBmrwAHVoAAMNb/AJX96z9+q9ex+LaMHL/5zCErzvP28hjHc=</latexit><latexit sha1_base64="A02ytMkioLSyYJDsynDxaRZx8nc=">AAAB6HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIoMuiG5cV7APaUjJppo3NJENyRyil/+BGxI2CX+Mv+Ddm2tm09UDgcM4J954bJlJY9P1fr7CxubW9U9wt7e0fHB6Vj0+aVqeG8QbTUpt2SC2XQvEGCpS8nRhO41DyVji+z/zWCzdWaPWEk4T3YjpUIhKMopM63ZjiKIxI1A/65Ypf9ecg6yTISQVy1Pvln+5AszTmCpmk1nYCP8HelBoUTPJZqZtanlA2pkM+nS86IxdOGpBIG/cUkrm6lKOxtZM4dMlsMbvqZeJ/XifF6LY3FSpJkSu2GBSlkqAmWWsyEIYzlBNHKDPCbUjYiBrK0N2m5KoHq0XXSfOqGvjV4PG6UrvLj1CEMziHSwjgBmrwAHVoAAMNb/AJX96z9+q9ex+LaMHL/5zCErzvP28hjHc=</latexit><latexit sha1_base64="A02ytMkioLSyYJDsynDxaRZx8nc=">AAAB6HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIoMuiG5cV7APaUjJppo3NJENyRyil/+BGxI2CX+Mv+Ddm2tm09UDgcM4J954bJlJY9P1fr7CxubW9U9wt7e0fHB6Vj0+aVqeG8QbTUpt2SC2XQvEGCpS8nRhO41DyVji+z/zWCzdWaPWEk4T3YjpUIhKMopM63ZjiKIxI1A/65Ypf9ecg6yTISQVy1Pvln+5AszTmCpmk1nYCP8HelBoUTPJZqZtanlA2pkM+nS86IxdOGpBIG/cUkrm6lKOxtZM4dMlsMbvqZeJ/XifF6LY3FSpJkSu2GBSlkqAmWWsyEIYzlBNHKDPCbUjYiBrK0N2m5KoHq0XXSfOqGvjV4PG6UrvLj1CEMziHSwjgBmrwAHVoAAMNb/AJX96z9+q9ex+LaMHL/5zCErzvP28hjHc=</latexit><latexit sha1_base64="A02ytMkioLSyYJDsynDxaRZx8nc=">AAAB6HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIoMuiG5cV7APaUjJppo3NJENyRyil/+BGxI2CX+Mv+Ddm2tm09UDgcM4J954bJlJY9P1fr7CxubW9U9wt7e0fHB6Vj0+aVqeG8QbTUpt2SC2XQvEGCpS8nRhO41DyVji+z/zWCzdWaPWEk4T3YjpUIhKMopM63ZjiKIxI1A/65Ypf9ecg6yTISQVy1Pvln+5AszTmCpmk1nYCP8HelBoUTPJZqZtanlA2pkM+nS86IxdOGpBIG/cUkrm6lKOxtZM4dMlsMbvqZeJ/XifF6LY3FSpJkSu2GBSlkqAmWWsyEIYzlBNHKDPCbUjYiBrK0N2m5KoHq0XXSfOqGvjV4PG6UrvLj1CEMziHSwjgBmrwAHVoAAMNb/AJX96z9+q9ex+LaMHL/5zCErzvP28hjHc=</latexit>

b2w
<latexit sha1_base64="q/CJIS/Hto2xH0CklTgSBRuxIpI=">AAAB63icbVDLSgMxFL1TX7W+qi7dBIvgqswUQZdFNy4r2Ae0tWTSTBuayQzJHaUM/Qo3Im4U/Bd/wb8x086mrQcCh3NOuPdcP5bCoOv+OoWNza3tneJuaW//4PCofHzSMlGiGW+ySEa641PDpVC8iQIl78Sa09CXvO1P7jK//cy1EZF6xGnM+yEdKREIRtFKT72Q4tgPUn9QIy+zQbniVt05yDrxclKBHI1B+ac3jFgScoVMUmO6nhtjP6UaBZN8VuolhseUTeiIp/NdZ+TCSkMSRNo+hWSuLuVoaMw09G0y282sepn4n9dNMLjpp0LFCXLFFoOCRBKMSFacDIXmDOXUEsq0sBsSNqaaMrTnKdnq3mrRddKqVT236j1cVeq3+RGKcAbncAkeXEMd7qEBTWCg4Q0+4csJnVfn3flYRAtO/ucUluB8/wEGCo4B</latexit><latexit sha1_base64="q/CJIS/Hto2xH0CklTgSBRuxIpI=">AAAB63icbVDLSgMxFL1TX7W+qi7dBIvgqswUQZdFNy4r2Ae0tWTSTBuayQzJHaUM/Qo3Im4U/Bd/wb8x086mrQcCh3NOuPdcP5bCoOv+OoWNza3tneJuaW//4PCofHzSMlGiGW+ySEa641PDpVC8iQIl78Sa09CXvO1P7jK//cy1EZF6xGnM+yEdKREIRtFKT72Q4tgPUn9QIy+zQbniVt05yDrxclKBHI1B+ac3jFgScoVMUmO6nhtjP6UaBZN8VuolhseUTeiIp/NdZ+TCSkMSRNo+hWSuLuVoaMw09G0y282sepn4n9dNMLjpp0LFCXLFFoOCRBKMSFacDIXmDOXUEsq0sBsSNqaaMrTnKdnq3mrRddKqVT236j1cVeq3+RGKcAbncAkeXEMd7qEBTWCg4Q0+4csJnVfn3flYRAtO/ucUluB8/wEGCo4B</latexit><latexit sha1_base64="q/CJIS/Hto2xH0CklTgSBRuxIpI=">AAAB63icbVDLSgMxFL1TX7W+qi7dBIvgqswUQZdFNy4r2Ae0tWTSTBuayQzJHaUM/Qo3Im4U/Bd/wb8x086mrQcCh3NOuPdcP5bCoOv+OoWNza3tneJuaW//4PCofHzSMlGiGW+ySEa641PDpVC8iQIl78Sa09CXvO1P7jK//cy1EZF6xGnM+yEdKREIRtFKT72Q4tgPUn9QIy+zQbniVt05yDrxclKBHI1B+ac3jFgScoVMUmO6nhtjP6UaBZN8VuolhseUTeiIp/NdZ+TCSkMSRNo+hWSuLuVoaMw09G0y282sepn4n9dNMLjpp0LFCXLFFoOCRBKMSFacDIXmDOXUEsq0sBsSNqaaMrTnKdnq3mrRddKqVT236j1cVeq3+RGKcAbncAkeXEMd7qEBTWCg4Q0+4csJnVfn3flYRAtO/ucUluB8/wEGCo4B</latexit><latexit sha1_base64="q/CJIS/Hto2xH0CklTgSBRuxIpI=">AAAB63icbVDLSgMxFL1TX7W+qi7dBIvgqswUQZdFNy4r2Ae0tWTSTBuayQzJHaUM/Qo3Im4U/Bd/wb8x086mrQcCh3NOuPdcP5bCoOv+OoWNza3tneJuaW//4PCofHzSMlGiGW+ySEa641PDpVC8iQIl78Sa09CXvO1P7jK//cy1EZF6xGnM+yEdKREIRtFKT72Q4tgPUn9QIy+zQbniVt05yDrxclKBHI1B+ac3jFgScoVMUmO6nhtjP6UaBZN8VuolhseUTeiIp/NdZ+TCSkMSRNo+hWSuLuVoaMw09G0y282sepn4n9dNMLjpp0LFCXLFFoOCRBKMSFacDIXmDOXUEsq0sBsSNqaaMrTnKdnq3mrRddKqVT236j1cVeq3+RGKcAbncAkeXEMd7qEBTWCg4Q0+4csJnVfn3flYRAtO/ucUluB8/wEGCo4B</latexit>

a2w<latexit sha1_base64="uWtwNTYBAXV66xPyyLo7ZepAshQ=">AAAB63icbVDLSgMxFL1TX7W+qi7dBIvgqswUQZdFNy4r2Ae0tWTSTBuayQzJHaUM/Qo3Im4U/Bd/wb8x086mrQcCh3NOuPdcP5bCoOv+OoWNza3tneJuaW//4PCofHzSMlGiGW+ySEa641PDpVC8iQIl78Sa09CXvO1P7jK//cy1EZF6xGnM+yEdKREIRtFKT72Q4tgPUjqokZfZoFxxq+4cZJ14OalAjsag/NMbRiwJuUImqTFdz42xn1KNgkk+K/USw2PKJnTE0/muM3JhpSEJIm2fQjJXl3I0NGYa+jaZ7WZWvUz8z+smGNz0U6HiBLlii0FBIglGJCtOhkJzhnJqCWVa2A0JG1NNGdrzlGx1b7XoOmnVqp5b9R6uKvXb/AhFOINzuAQPrqEO99CAJjDQ8Aaf8OWEzqvz7nwsogUn/3MKS3C+/wAEi44A</latexit><latexit sha1_base64="uWtwNTYBAXV66xPyyLo7ZepAshQ=">AAAB63icbVDLSgMxFL1TX7W+qi7dBIvgqswUQZdFNy4r2Ae0tWTSTBuayQzJHaUM/Qo3Im4U/Bd/wb8x086mrQcCh3NOuPdcP5bCoOv+OoWNza3tneJuaW//4PCofHzSMlGiGW+ySEa641PDpVC8iQIl78Sa09CXvO1P7jK//cy1EZF6xGnM+yEdKREIRtFKT72Q4tgPUjqokZfZoFxxq+4cZJ14OalAjsag/NMbRiwJuUImqTFdz42xn1KNgkk+K/USw2PKJnTE0/muM3JhpSEJIm2fQjJXl3I0NGYa+jaZ7WZWvUz8z+smGNz0U6HiBLlii0FBIglGJCtOhkJzhnJqCWVa2A0JG1NNGdrzlGx1b7XoOmnVqp5b9R6uKvXb/AhFOINzuAQPrqEO99CAJjDQ8Aaf8OWEzqvz7nwsogUn/3MKS3C+/wAEi44A</latexit><latexit sha1_base64="uWtwNTYBAXV66xPyyLo7ZepAshQ=">AAAB63icbVDLSgMxFL1TX7W+qi7dBIvgqswUQZdFNy4r2Ae0tWTSTBuayQzJHaUM/Qo3Im4U/Bd/wb8x086mrQcCh3NOuPdcP5bCoOv+OoWNza3tneJuaW//4PCofHzSMlGiGW+ySEa641PDpVC8iQIl78Sa09CXvO1P7jK//cy1EZF6xGnM+yEdKREIRtFKT72Q4tgPUjqokZfZoFxxq+4cZJ14OalAjsag/NMbRiwJuUImqTFdz42xn1KNgkk+K/USw2PKJnTE0/muM3JhpSEJIm2fQjJXl3I0NGYa+jaZ7WZWvUz8z+smGNz0U6HiBLlii0FBIglGJCtOhkJzhnJqCWVa2A0JG1NNGdrzlGx1b7XoOmnVqp5b9R6uKvXb/AhFOINzuAQPrqEO99CAJjDQ8Aaf8OWEzqvz7nwsogUn/3MKS3C+/wAEi44A</latexit><latexit sha1_base64="uWtwNTYBAXV66xPyyLo7ZepAshQ=">AAAB63icbVDLSgMxFL1TX7W+qi7dBIvgqswUQZdFNy4r2Ae0tWTSTBuayQzJHaUM/Qo3Im4U/Bd/wb8x086mrQcCh3NOuPdcP5bCoOv+OoWNza3tneJuaW//4PCofHzSMlGiGW+ySEa641PDpVC8iQIl78Sa09CXvO1P7jK//cy1EZF6xGnM+yEdKREIRtFKT72Q4tgPUjqokZfZoFxxq+4cZJ14OalAjsag/NMbRiwJuUImqTFdz42xn1KNgkk+K/USw2PKJnTE0/muM3JhpSEJIm2fQjJXl3I0NGYa+jaZ7WZWvUz8z+smGNz0U6HiBLlii0FBIglGJCtOhkJzhnJqCWVa2A0JG1NNGdrzlGx1b7XoOmnVqp5b9R6uKvXb/AhFOINzuAQPrqEO99CAJjDQ8Aaf8OWEzqvz7nwsogUn/3MKS3C+/wAEi44A</latexit>

a1w<latexit sha1_base64="QtcD+hM01jIFMW9YbgZtXLzkync=">AAAB63icbVDLSgMxFL1TX7W+qi7dBIvgqkxEqMuiG5cV7APaWjJppg3NPEjuKGXoV7gRcaPgv/gL/o2ZdjZtPRA4nHPCved6sZIGXffXKWxsbm3vFHdLe/sHh0fl45OWiRLNRZNHKtIdjxmhZCiaKFGJTqwFCzwl2t7kLvPbz0IbGYWPOI1FP2CjUPqSM7TSUy9gOPb8lA0oeZkNyhW36s5B1gnNSQVyNAbln94w4kkgQuSKGdOlboz9lGmUXIlZqZcYETM+YSORznedkQsrDYkfaftCJHN1KccCY6aBZ5PZbmbVy8T/vG6C/k0/lWGcoAj5YpCfKIIRyYqTodSCo5pawriWdkPCx0wzjvY8JVudrhZdJ62rKnWr9OG6Ur/Nj1CEMziHS6BQgzrcQwOawEHDG3zClxM4r86787GIFpz8zykswfn+AwMOjf8=</latexit><latexit sha1_base64="QtcD+hM01jIFMW9YbgZtXLzkync=">AAAB63icbVDLSgMxFL1TX7W+qi7dBIvgqkxEqMuiG5cV7APaWjJppg3NPEjuKGXoV7gRcaPgv/gL/o2ZdjZtPRA4nHPCved6sZIGXffXKWxsbm3vFHdLe/sHh0fl45OWiRLNRZNHKtIdjxmhZCiaKFGJTqwFCzwl2t7kLvPbz0IbGYWPOI1FP2CjUPqSM7TSUy9gOPb8lA0oeZkNyhW36s5B1gnNSQVyNAbln94w4kkgQuSKGdOlboz9lGmUXIlZqZcYETM+YSORznedkQsrDYkfaftCJHN1KccCY6aBZ5PZbmbVy8T/vG6C/k0/lWGcoAj5YpCfKIIRyYqTodSCo5pawriWdkPCx0wzjvY8JVudrhZdJ62rKnWr9OG6Ur/Nj1CEMziHS6BQgzrcQwOawEHDG3zClxM4r86787GIFpz8zykswfn+AwMOjf8=</latexit><latexit sha1_base64="QtcD+hM01jIFMW9YbgZtXLzkync=">AAAB63icbVDLSgMxFL1TX7W+qi7dBIvgqkxEqMuiG5cV7APaWjJppg3NPEjuKGXoV7gRcaPgv/gL/o2ZdjZtPRA4nHPCved6sZIGXffXKWxsbm3vFHdLe/sHh0fl45OWiRLNRZNHKtIdjxmhZCiaKFGJTqwFCzwl2t7kLvPbz0IbGYWPOI1FP2CjUPqSM7TSUy9gOPb8lA0oeZkNyhW36s5B1gnNSQVyNAbln94w4kkgQuSKGdOlboz9lGmUXIlZqZcYETM+YSORznedkQsrDYkfaftCJHN1KccCY6aBZ5PZbmbVy8T/vG6C/k0/lWGcoAj5YpCfKIIRyYqTodSCo5pawriWdkPCx0wzjvY8JVudrhZdJ62rKnWr9OG6Ur/Nj1CEMziHS6BQgzrcQwOawEHDG3zClxM4r86787GIFpz8zykswfn+AwMOjf8=</latexit><latexit sha1_base64="QtcD+hM01jIFMW9YbgZtXLzkync=">AAAB63icbVDLSgMxFL1TX7W+qi7dBIvgqkxEqMuiG5cV7APaWjJppg3NPEjuKGXoV7gRcaPgv/gL/o2ZdjZtPRA4nHPCved6sZIGXffXKWxsbm3vFHdLe/sHh0fl45OWiRLNRZNHKtIdjxmhZCiaKFGJTqwFCzwl2t7kLvPbz0IbGYWPOI1FP2CjUPqSM7TSUy9gOPb8lA0oeZkNyhW36s5B1gnNSQVyNAbln94w4kkgQuSKGdOlboz9lGmUXIlZqZcYETM+YSORznedkQsrDYkfaftCJHN1KccCY6aBZ5PZbmbVy8T/vG6C/k0/lWGcoAj5YpCfKIIRyYqTodSCo5pawriWdkPCx0wzjvY8JVudrhZdJ62rKnWr9OG6Ur/Nj1CEMziHS6BQgzrcQwOawEHDG3zClxM4r86787GIFpz8zykswfn+AwMOjf8=</latexit>

b1w
<latexit sha1_base64="XRrnJ8LUki85rypmQtOy+oH+WVU=">AAAB63icbVDLSgMxFL1TX7W+qi7dBIvgqkxEqMuiG5cV7APaWjJppg3NPEjuKGXoV7gRcaPgv/gL/o2ZdjZtPRA4nHPCved6sZIGXffXKWxsbm3vFHdLe/sHh0fl45OWiRLNRZNHKtIdjxmhZCiaKFGJTqwFCzwl2t7kLvPbz0IbGYWPOI1FP2CjUPqSM7TSUy9gOPb81BtQ8jIblCtu1Z2DrBOakwrkaAzKP71hxJNAhMgVM6ZL3Rj7KdMouRKzUi8xImZ8wkYine86IxdWGhI/0vaFSObqUo4FxkwDzyaz3cyql4n/ed0E/Zt+KsM4QRHyxSA/UQQjkhUnQ6kFRzW1hHEt7YaEj5lmHO15SrY6XS26TlpXVepW6cN1pX6bH6EIZ3AOl0ChBnW4hwY0gYOGN/iELydwXp1352MRLTj5n1NYgvP9BwSNjgA=</latexit><latexit sha1_base64="XRrnJ8LUki85rypmQtOy+oH+WVU=">AAAB63icbVDLSgMxFL1TX7W+qi7dBIvgqkxEqMuiG5cV7APaWjJppg3NPEjuKGXoV7gRcaPgv/gL/o2ZdjZtPRA4nHPCved6sZIGXffXKWxsbm3vFHdLe/sHh0fl45OWiRLNRZNHKtIdjxmhZCiaKFGJTqwFCzwl2t7kLvPbz0IbGYWPOI1FP2CjUPqSM7TSUy9gOPb81BtQ8jIblCtu1Z2DrBOakwrkaAzKP71hxJNAhMgVM6ZL3Rj7KdMouRKzUi8xImZ8wkYine86IxdWGhI/0vaFSObqUo4FxkwDzyaz3cyql4n/ed0E/Zt+KsM4QRHyxSA/UQQjkhUnQ6kFRzW1hHEt7YaEj5lmHO15SrY6XS26TlpXVepW6cN1pX6bH6EIZ3AOl0ChBnW4hwY0gYOGN/iELydwXp1352MRLTj5n1NYgvP9BwSNjgA=</latexit><latexit sha1_base64="XRrnJ8LUki85rypmQtOy+oH+WVU=">AAAB63icbVDLSgMxFL1TX7W+qi7dBIvgqkxEqMuiG5cV7APaWjJppg3NPEjuKGXoV7gRcaPgv/gL/o2ZdjZtPRA4nHPCved6sZIGXffXKWxsbm3vFHdLe/sHh0fl45OWiRLNRZNHKtIdjxmhZCiaKFGJTqwFCzwl2t7kLvPbz0IbGYWPOI1FP2CjUPqSM7TSUy9gOPb81BtQ8jIblCtu1Z2DrBOakwrkaAzKP71hxJNAhMgVM6ZL3Rj7KdMouRKzUi8xImZ8wkYine86IxdWGhI/0vaFSObqUo4FxkwDzyaz3cyql4n/ed0E/Zt+KsM4QRHyxSA/UQQjkhUnQ6kFRzW1hHEt7YaEj5lmHO15SrY6XS26TlpXVepW6cN1pX6bH6EIZ3AOl0ChBnW4hwY0gYOGN/iELydwXp1352MRLTj5n1NYgvP9BwSNjgA=</latexit><latexit sha1_base64="XRrnJ8LUki85rypmQtOy+oH+WVU=">AAAB63icbVDLSgMxFL1TX7W+qi7dBIvgqkxEqMuiG5cV7APaWjJppg3NPEjuKGXoV7gRcaPgv/gL/o2ZdjZtPRA4nHPCved6sZIGXffXKWxsbm3vFHdLe/sHh0fl45OWiRLNRZNHKtIdjxmhZCiaKFGJTqwFCzwl2t7kLvPbz0IbGYWPOI1FP2CjUPqSM7TSUy9gOPb81BtQ8jIblCtu1Z2DrBOakwrkaAzKP71hxJNAhMgVM6ZL3Rj7KdMouRKzUi8xImZ8wkYine86IxdWGhI/0vaFSObqUo4FxkwDzyaz3cyql4n/ed0E/Zt+KsM4QRHyxSA/UQQjkhUnQ6kFRzW1hHEt7YaEj5lmHO15SrY6XS26TlpXVepW6cN1pX6bH6EIZ3AOl0ChBnW4hwY0gYOGN/iELydwXp1352MRLTj5n1NYgvP9BwSNjgA=</latexit>

M ||w||
<latexit sha1_base64="jJdMWVjJMGCReueUm+cgtPQsmsE=">AAAB73icbVDLSgNBEOz1GeNr1aOXwSB4Crsi6DHoxYsQwTwgCWF2MpsMmX040xsJ2XyHFxEvCv6Jv+DfOJvsJYkFA0VVDd3VXiyFRsf5tdbWNza3tgs7xd29/YND++i4rqNEMV5jkYxU06OaSxHyGgqUvBkrTgNP8oY3vMv8xogrLaLwCccx7wS0HwpfMIpG6tr2A0lT0g4oDjyfvKRp1y45ZWcGskrcnJQgR7Vr/7R7EUsCHiKTVOuW68TYmVCFgkk+LbYTzWPKhrTPJ7N9p+TcSD3iR8q8EMlMXcjRQOtx4Jlktphe9jLxP6+VoH/TmYgwTpCHbD7ITyTBiGTlSU8ozlCODaFMCbMhYQOqKENzoqKp7i4XXSX1y7LrlN3Hq1LlNj9CAU7hDC7AhWuowD1UoQYMRvAGn/BlPVuv1rv1MY+uWfmfE1iA9f0Ho7+O2A==</latexit><latexit sha1_base64="jJdMWVjJMGCReueUm+cgtPQsmsE=">AAAB73icbVDLSgNBEOz1GeNr1aOXwSB4Crsi6DHoxYsQwTwgCWF2MpsMmX040xsJ2XyHFxEvCv6Jv+DfOJvsJYkFA0VVDd3VXiyFRsf5tdbWNza3tgs7xd29/YND++i4rqNEMV5jkYxU06OaSxHyGgqUvBkrTgNP8oY3vMv8xogrLaLwCccx7wS0HwpfMIpG6tr2A0lT0g4oDjyfvKRp1y45ZWcGskrcnJQgR7Vr/7R7EUsCHiKTVOuW68TYmVCFgkk+LbYTzWPKhrTPJ7N9p+TcSD3iR8q8EMlMXcjRQOtx4Jlktphe9jLxP6+VoH/TmYgwTpCHbD7ITyTBiGTlSU8ozlCODaFMCbMhYQOqKENzoqKp7i4XXSX1y7LrlN3Hq1LlNj9CAU7hDC7AhWuowD1UoQYMRvAGn/BlPVuv1rv1MY+uWfmfE1iA9f0Ho7+O2A==</latexit><latexit sha1_base64="jJdMWVjJMGCReueUm+cgtPQsmsE=">AAAB73icbVDLSgNBEOz1GeNr1aOXwSB4Crsi6DHoxYsQwTwgCWF2MpsMmX040xsJ2XyHFxEvCv6Jv+DfOJvsJYkFA0VVDd3VXiyFRsf5tdbWNza3tgs7xd29/YND++i4rqNEMV5jkYxU06OaSxHyGgqUvBkrTgNP8oY3vMv8xogrLaLwCccx7wS0HwpfMIpG6tr2A0lT0g4oDjyfvKRp1y45ZWcGskrcnJQgR7Vr/7R7EUsCHiKTVOuW68TYmVCFgkk+LbYTzWPKhrTPJ7N9p+TcSD3iR8q8EMlMXcjRQOtx4Jlktphe9jLxP6+VoH/TmYgwTpCHbD7ITyTBiGTlSU8ozlCODaFMCbMhYQOqKENzoqKp7i4XXSX1y7LrlN3Hq1LlNj9CAU7hDC7AhWuowD1UoQYMRvAGn/BlPVuv1rv1MY+uWfmfE1iA9f0Ho7+O2A==</latexit><latexit sha1_base64="jJdMWVjJMGCReueUm+cgtPQsmsE=">AAAB73icbVDLSgNBEOz1GeNr1aOXwSB4Crsi6DHoxYsQwTwgCWF2MpsMmX040xsJ2XyHFxEvCv6Jv+DfOJvsJYkFA0VVDd3VXiyFRsf5tdbWNza3tgs7xd29/YND++i4rqNEMV5jkYxU06OaSxHyGgqUvBkrTgNP8oY3vMv8xogrLaLwCccx7wS0HwpfMIpG6tr2A0lT0g4oDjyfvKRp1y45ZWcGskrcnJQgR7Vr/7R7EUsCHiKTVOuW68TYmVCFgkk+LbYTzWPKhrTPJ7N9p+TcSD3iR8q8EMlMXcjRQOtx4Jlktphe9jLxP6+VoH/TmYgwTpCHbD7ITyTBiGTlSU8ozlCODaFMCbMhYQOqKENzoqKp7i4XXSX1y7LrlN3Hq1LlNj9CAU7hDC7AhWuowD1UoQYMRvAGn/BlPVuv1rv1MY+uWfmfE1iA9f0Ho7+O2A==</latexit>

f3
<latexit sha1_base64="ajrA6hoQBeuzwc52YGG3BGk7EQM=">AAAB6XicbVDLSsNAFL2pr1pfVZduBovgqiQq6LLoxmUF+4CmlMl00g6dTMLMjVBCP8KNiBsFf8Zf8G+ctNm09cDA4Zwz3HtukEhh0HV/ndLG5tb2Tnm3srd/cHhUPT5pmzjVjLdYLGPdDajhUijeQoGSdxPNaRRI3gkmD7nfeeHaiFg94zTh/YiOlAgFo2gl348ojoMwCwfXs0G15tbdOcg68QpSgwLNQfXHH8YsjbhCJqkxPc9NsJ9RjYJJPqv4qeEJZRM64tl80xm5sNKQhLG2TyGZq0s5GhkzjQKbzDczq14u/uf1Ugzv+plQSYpcscWgMJUEY5LXJkOhOUM5tYQyLeyGhI2ppgztcSq2urdadJ20r+qeW/eebmqN++IIZTiDc7gED26hAY/QhBYwSOANPuHLmTivzrvzsYiWnOLPKSzB+f4D21SNWw==</latexit><latexit sha1_base64="ajrA6hoQBeuzwc52YGG3BGk7EQM=">AAAB6XicbVDLSsNAFL2pr1pfVZduBovgqiQq6LLoxmUF+4CmlMl00g6dTMLMjVBCP8KNiBsFf8Zf8G+ctNm09cDA4Zwz3HtukEhh0HV/ndLG5tb2Tnm3srd/cHhUPT5pmzjVjLdYLGPdDajhUijeQoGSdxPNaRRI3gkmD7nfeeHaiFg94zTh/YiOlAgFo2gl348ojoMwCwfXs0G15tbdOcg68QpSgwLNQfXHH8YsjbhCJqkxPc9NsJ9RjYJJPqv4qeEJZRM64tl80xm5sNKQhLG2TyGZq0s5GhkzjQKbzDczq14u/uf1Ugzv+plQSYpcscWgMJUEY5LXJkOhOUM5tYQyLeyGhI2ppgztcSq2urdadJ20r+qeW/eebmqN++IIZTiDc7gED26hAY/QhBYwSOANPuHLmTivzrvzsYiWnOLPKSzB+f4D21SNWw==</latexit><latexit sha1_base64="ajrA6hoQBeuzwc52YGG3BGk7EQM=">AAAB6XicbVDLSsNAFL2pr1pfVZduBovgqiQq6LLoxmUF+4CmlMl00g6dTMLMjVBCP8KNiBsFf8Zf8G+ctNm09cDA4Zwz3HtukEhh0HV/ndLG5tb2Tnm3srd/cHhUPT5pmzjVjLdYLGPdDajhUijeQoGSdxPNaRRI3gkmD7nfeeHaiFg94zTh/YiOlAgFo2gl348ojoMwCwfXs0G15tbdOcg68QpSgwLNQfXHH8YsjbhCJqkxPc9NsJ9RjYJJPqv4qeEJZRM64tl80xm5sNKQhLG2TyGZq0s5GhkzjQKbzDczq14u/uf1Ugzv+plQSYpcscWgMJUEY5LXJkOhOUM5tYQyLeyGhI2ppgztcSq2urdadJ20r+qeW/eebmqN++IIZTiDc7gED26hAY/QhBYwSOANPuHLmTivzrvzsYiWnOLPKSzB+f4D21SNWw==</latexit><latexit sha1_base64="ajrA6hoQBeuzwc52YGG3BGk7EQM=">AAAB6XicbVDLSsNAFL2pr1pfVZduBovgqiQq6LLoxmUF+4CmlMl00g6dTMLMjVBCP8KNiBsFf8Zf8G+ctNm09cDA4Zwz3HtukEhh0HV/ndLG5tb2Tnm3srd/cHhUPT5pmzjVjLdYLGPdDajhUijeQoGSdxPNaRRI3gkmD7nfeeHaiFg94zTh/YiOlAgFo2gl348ojoMwCwfXs0G15tbdOcg68QpSgwLNQfXHH8YsjbhCJqkxPc9NsJ9RjYJJPqv4qeEJZRM64tl80xm5sNKQhLG2TyGZq0s5GhkzjQKbzDczq14u/uf1Ugzv+plQSYpcscWgMJUEY5LXJkOhOUM5tYQyLeyGhI2ppgztcSq2urdadJ20r+qeW/eebmqN++IIZTiDc7gED26hAY/QhBYwSOANPuHLmTivzrvzsYiWnOLPKSzB+f4D21SNWw==</latexit>

Figure 56. Convergence to the linear functional M(f) (for the nor-
malized case λ = 1)

From the definition of the projective metric (76),

0 ≤ d(fn,w) = log
bn
an
≤ ∆.

Thus
1 < bn/an ≤ e∆ <∞ (81)

whence
0 < an < bn ≤ e∆an <∞ (82)

Defining for any n ≥ 0 vectors

rn = fn − anw,
sn = bnw − fn

(83)

so rn, sn ∈ C, (these vectors represent the sides of the boxes in Fig. 56 ) then, letting
αn, α

′
n be the greatest, least numbers such that

αnw ≤ Lrn ≤ α′nw,

and following the logic for the estimate (82), from (76) we have

d(Lrn,w) = log
α′n
αn
≤ ∆ <∞

whence
1 < α′n/αn ≤ e∆ (84)

and
0 < αn < e∆α′n ≤ e∆αn <∞ (85)

Similarly, defining 0 < βn, β
′
n to be the greatest, least numbers such that so that

βnw ≤ Lsn ≤ β′nw, we have in conclusion that

αnw ≤ Lrn ≤ e∆αnw

βnw ≤ Lsn ≤ e∆βnw
(86)
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Now from (83), L(rn + sn) = (bn − an)w so

(bn − an) ≤ e∆(αn + βn) (87)

which we shall need in a moment. Also from (83)

anw + rn = fn = bnw − sn (88)

whence (applying L)

anw + Lrn = fn+1 = bnw − Lsn. (89)

From (86) therefore

(an + αn)w ≤ fn+1 ≤ (bn − βn)w (90)

Thus by (80) (with index n+ 1), an + αn ≤ an+1 ≤ bn+1 ≤ bn − βn. So by (87)

bn+1 − an+1 ≤ bn − an − (βn + αn) ≤ (1− e−∆)(bn − an) (91)

This is true for all n ≥ 1. So

bn+1 − an+1 ≤ (1− e−∆)n(b1 − a1)→ 0

as claimed.
Now it follows that for any f ∈ C, there is a positive number M = M(f) with

an ↑M and bn ↓M . See Fig. 56.
We claim that this extends to a linear functional M : V → R. For the proof,

write for f ∈ V , f = f+ − f− where f+, f− ∈ C. That is to say, f+ = max(f,0)
and f− = min(f,0). This depends on the idea of vector lattice. See Def. 24.1 and
e.g. [Wic02].

Definition 24.1. A vector space V with a positive cone C is a vector lattice: there
is an operation v∧w (min) and v∨w (max). And indeed if v∧w = u then u is the
greatest element of V which is ≤ v,w while v ∨ w = u then u is the least element
of V which is ≥ v,w. The positive part of v is v+ = v ∨ 0 and the negative part is
v− = −v ∧ 0. We note that v = v+ − v−.

The rest of parts (iii) and (iv) then follow from this. �

Corollary 24.6. (Perron-Frobenius Theorem, Birkhoff-Samelson proof) Let
M be an (d×d) matrix with nonnegative real entries, such that M is primitive. Then
there exists a unique positive right eigenvector; its eigenvalue λ is positive, and is
greater in modulus than all the other eigenvalues.

Proof. Our vector space is the column vectors of Rd and the cone C is the usual
positive cone, i.e. the set of column vectors with nonnegative entries. This satisfies
Furstenberg’s condition, and is projectively complete. M primitive says that for
some m > 0, Mm has entires all nonzero. The image D = Mm(C) is contained in
the interior of C hence because we are in a finite dimensional space, it has a finite
projective diameter ∆. Now we apply the theorem. The eigenvalue is positive since
the matrix Mm and vector v have positive entries, and is of greatest modulus as
proved in the theorem. �
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Example 22. As in Example 21 we consider the usual positive cone in Euclidean space,
and have an explicit formula for ∆. This is due to Birkhoff for the case of a square
matrix; the same statement and proof holds for the rectangular case, which we shall
need below. We include a proof as §XVI of [Bir67] is not so easy to follow, due to
some misprints and skipped steps.

Definition 24.2. In this situation, a positive linear map L : Rm → Rn with the
standard cones Rm+,Rn+, we call the projective diameter of the image the opening
of the linear map L, written Θ(L).

Remark 24.2. The reason we now switch from Birkhoff’s notation ∆ (for diameter)
to Θ is that in the next section, ∆ will be reserved for denoting the unit simplex. We
choose the name opening of a map as suggestive of the aperture of a photographic
shutter.

Proposition 24.7. Let V,W be Rn,W = Rm with their standard cones C = Rn+,
D = Rm+. Let L be a (m× n) nonnegative matrix. Then the opening of the map L,
the dD− diameter of L(C), is:

Θ(L) = sup
i,j,k,l

∣∣∣∣log
LilLjk
LjlLik

∣∣∣∣ . (92)

Proof. We know from Proposition 23.22 that

dC(v,w) =

∣∣∣∣log sup
i,j

viwj
wivj

∣∣∣∣ .

Similarly, therefore, for v,w ∈ C,

dD(Lv, Lw) =

∣∣∣∣log sup
i,j

∑n
l=1 Lilvl

∑n
k=1 Ljkwk∑n

l=1 Ljlvl
∑n

k=1 Likwk

∣∣∣∣ .

Now
n∑

l=1

Lilvl

n∑

k=1

Ljkwk =
∑

l,k

LilvlLjkwk.

Hence

dD(Lv, Lw) =

∣∣∣∣∣log sup
i,j

∑n
l,k=1 LilvlLjkwk∑n
l,k=1 LjlvlLikwk

∣∣∣∣∣ .

Defining δi ∈ Rn to be the vector with 1 in the ith coordinate, 0 elsewhere, then if
we take in the right hand side of this equation v = δl and w = δk, we get for general
v,w that all but one term of each sum is zero so:

dD(Lv, Lw) ≥
∣∣∣∣log sup

i,j

LilvlLjkwk
LjlvlLikwk

∣∣∣∣ .

We claim the supremum of these is equal to the supremum of the sums. Quoting
Birkhoff [Bir67], p. 383, this “obviously cannot be exceeded since averaging (by
positive weight factors vlwk ) always makes ratios less extreme”. �

Indeed we have:
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Lemma 24.8. Let a, b, c, d > 0. Then
a

b
<
c

d
implies that for α, β > 0,

a

b
<
αa+ βc

αb+ βd
<
c

d
.

Proof. Draw vectors (a, b) and (c, d) in the positive quadrant of the plane. Then
(αa+ βc, αb+ βd) is a positive linear combination of these, and by the parallelogram
law for vector addition, projectively this vector is between the other two.

This proof extends to n vectors; consider the two most extreme ones. �

Remark 24.3. The quantity
LilLjk
LjlLik

can be visualized as the ratio of the product of the opposite corners of a rectangle of
entries in the matrix, where the i, j rows and l, k columns meet.

As a consequence, for the (2× 2) case (as Birkhoff notes), the formula simplifies to

Θ(L) =

∣∣∣∣log
L11L22

L21L12

∣∣∣∣ ,

since inversion of the ratio does not change the absolute value of the log, and since
this is the only nontrival rectangle in the matrix, all others giving ratio 1, and so,
distance 0.

Remark 24.4. We note that if all of the columns of the matrix are roughly propor-
tional, then the opening is small, and conversely. This should be the intuition behind
the formula.

24.2. Contraction for the dual cones. From Remark 24.3 we have this immediate
consequence, which shall be important below:

Corollary 24.9. Let L be a (m×n) nonnegative real matrix, and let V = Rn,W = Rm

and C = Rn+, D = Rm+ as in the proposition. Then the opening of L equals that of
its transpose, i.e. Θ(L) = Θ(Lt); that is:

∆D(L(C)) = ∆C(Lt(D)).

�

However the proof is special to Rn with the standard cones. We shall see in this
section how this useful fact can indeed be extended to a quite general setting.

Remark 24.5. Remark on the complementary subspace. We claim that Birkhoff’s
linear functional can be produced in a different way: as the Perron-Frobenius vector
for the dual operator. Thus, for a (d×d) matrix, this is the row eigenvector vt of our
first proof.

Proof: we have v,w with Mw = λw,vtM = λvt, normalized so that vtw = 1.
wolog, take λ = 1. By Birkhoff, there is a linear functional ϕ on V = Rn such that
for any u ∈ V , Mn(u→ ϕ(u)w. We claim that ϕ(u) = vtu.
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But vtMnu = vtu and also lim vtMnu = vt limMnu = vtϕ(u)w = ϕ(u)vtw =
ϕ(u).

It is interesting to consider this in the nonstationary situation of a matrix sequence
(Mi)i∈Z, where w depends on the future (Mi)i≥0, and v on the past (Mi)i≤0. We claim
that the same holds for the nonstationary version of Birkhoff’s proof.

Remark 24.6. McMullen via de Faria: Y = (0,+∞); X = f(Y ) = (f(0), f(+∞)).

d = dY = d(0,∞)

g = f−1

And

sinh s = (es − e−s)/2, cosh s = (es + e−s)/2, tanh(s) =
sinh

cosh
=
es − e−s
es + e−s

.

for x ∈ X, s(x) = inf d(x, {f(0), f(+∞)}) ≤ diam(X)/2 = ∆/2

Φ(s) = sinh(s) log
1 + e−s

1− e−s

|g′(x)| ≥ (Φ(s(x)))−1

g(x) = y

f ′(y) = 1/g′(x) ≤ (Φ(s(x)) = sinh(s) log
1 + e−s

1− e−s =
es − e−s

2
log

1 + e−s

1− e−s
So ....

25. Geodesic flows and the modular flow

Having just encountered hyperbolic geometry, we will take a break from the pro-
jective and Hilbert metrics (which we return to later) to study a central example for
dynamics: the geodesic flow for a hyperbolic Riemann surface.

25.1. The geometry of Möbius transformations.

Example 23. (Examples of isometries)
We remark on the difference between the maps F : z 7→ 1/z, and K : z 7→ z,

which switch the upper and lower half planes, and G : z 7→ −1/z and L : z 7→ 1/z,
which preserve them. K is an anticonformal map, given as a map of R2 by the

linear action on column vectors by the matrix

[
1 0
0 −1

]
with determinant −1, and so

orientation-reversing; it fixes (1, 0), in other words 1 ∈ C, and sends (0, 1) to (0,−1),
that is i 7→ −i. The map F also fixes 1 and sends i to −i, so one might at first
think it also reverses orientation. Indeed as a Möbius transformation it comes from

the matrix M =

[
0 1
1 0

]
, also with determinant −1. However all complex Möbius

transformations are orientation-preserving, since this is defined infinitesimally, and
the derivative at z is the complex number f ′M(z) = −z−2; the derivative acts on the
tangent plane C at z as multiplication by this complex number, which is a rotation
composed with a dilation, so again, orientation-preserving. The map L : z 7→ 1/z is a
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Figure 57. The maps ϕ−1◦F ◦ϕ and ϕ−1◦G◦ϕ exchange N = ϕ−1(∞)
and S = ϕ−1(0), rotating about the real and imaginary axes of the
Riemann sphere respectively. Note that the rotations go along the two
great circles through the poles, which are the images by ϕ−1 of these
axes.

composition of these two, hence is also anti-conformal. L is important geometrically
as it defines inversion in the unit circle; each ray from 0 is mapped to itself, with
reciprocal norm. It preserves the hyperbolic metric on H, since it preserves cross-
ratios and the collection of circles perpendicular to the real axis. All other circle
inversions can be defined from this via conjugation with Möbius transformations.

The map G : z 7→ −1/z is Möbius, with determinant one matrix M =

[
0 −1
1 0

]
. This

preserves H and maps the unit circle to itself via a reflection in the imaginary axis.
See Fig.??

It is interesting to visualize the maps F : z 7→ 1/z and G : z 7→ −1/z transported to
the Riemann sphere. For this let us label the and the north and south poles N,S and
also the real and imaginary axes by the inverse images of the stereographic projection

ϕ : S2 → Ĉ. Now the points of the equator are fixed since this is the unit circle, so we
also draw the points ±1,±i. Then F : z 7→ 1/z is a rotation of the sphere around the
real axis in C, while G : z 7→ −1/z rotates around the imaginary axis in C. In other
words these are rotations along two great circles through the poles, corresponding to
the imaginary and the real axes respectively. See Fig. 57. Both maps interchange the
poles, and so, H and −H.

A second example of an antiholomorphic map of H which preserves the hyperbolic
metric is x + yi 7→ −x + iy. Further examples are the composition of this with any
map in Möb+(R)).

We have noted that the antiholomorphic map z 7→ 1/z is inversion in the unit
circle; as a map of R2 this sends a vector v to v/||v||2. (The same formula defines
inversion in the unit sphere of any any Euclidean space; this allows one to define
Möbius transformations in Rd, as a composition of an even number of inversions; see
[Bea83]!)

We can define inversion in any circle in the Riemann sphere (so, any line or circle C

in Ĉ) by conjugation with a Möbius transformation which takes C to the unit circle.
We claim that inversion in the real line is the map z 7→ z, that is, reflection in the

real axis. To prove this, note that

g(z) =
z − i
z + i
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maps H to ∆. This follows from the fact that g maps −1, 0, 1,∞ and i to −1′ = i, 0′ =
−1, 1′ = −i,∞′ = 1 and 0. See Fig. ?? We claim that h(z) = g−1 ◦ j ◦ g(z) = z. Now
the inversion j(z) = 1/z fixes all points on the unit circle whence h fixes all points on
the real line. And j interchanges 0 and∞ whence h interchanges i and −i, so indeed
h(z) = z.

In other words, inversion in the real line is just Euclidean reflection in the line.
For this reason, the words inversion and reflection in circles (and lines) are used
interchangeably.

Next we study the geometry and dynamics of Möbius transformations. In fact we

consider the behavior of the map fM acting on Ĉ or (via conjugation) S2 in parallel
to the geometry of the matrix M ∈ SL(2,C), as it acts on C2. There are two closely
related quadratic equations which appear here: for the fixed points of fM and for
the eigenvalues of M . The geometry of M is determined by the eigenvectors and
the eigenvalues, these being preserved by conjugation in SL(2,C), while parallel to
this the geometry of fM is fixed points together with their multipliers, see below;
these are preserved by conjugation in Möb(C). We have seen the beginning of this
in Proposition 23.3, where we showed that fM is determined by where it sends three
distinct points, so if three points are fixed, it must be the identity map. The matrix
point of view developed here allows for a second proof of this, in (ii) of Proposition
25.3, with no calculation.

Lemma 25.1. Given M ∈ SL(2,C), then either:
(i) there are (up to nonzero multiples) two linearly independent eigenvectors v0,v1 or
(ii) there is one eigenvector v.
In case (i), the eigenvalues λ0, λ1 satisfy λ0 · λ1 = 1, and M is similar to a diagonal
matrix D with those entries. Thus D = B−1MB via the change-of-basis matrix
B ∈ SL(2,C) with columns v0,v1. M = ±I iff here λ0 = λ1.
In case (ii), there exists a rotation matrix R such that R−1MR = S with S the shear

transformation S = ±
[
1 b
0 1

]
. Moreover M is conjugate in PSL(2,C) (but perhaps

not in SL(2,C)) to H+ =

[
1 1
0 1

]
and to H− =

[
1 0
1 1

]
.

Proof. The eigenvalues of M are the roots of the characteristic polynomial pM(λ).
This is quadratic, so by the Fundamental Theorem of Algebra there are always two
roots in C, which are either distinct λ0 6= λ1 or the same (a double root), λ0 = λ1. We
recall that the eigenvectors for distinct eigenvalues are linearly independent, giving
case (1). A double root can either give M = ±I (also case (i)) or case (ii).
(i): In the first case, with linearly independent eigenvectors v0,v1, build a matrix B
with these as the columns. Multiplying these by nonzero complex numbers we can
assume that det(B) = 1 so B ∈ SL(2,C). Then setting e0 = (1, 0), e1 = (0, 1)) we
have for D ≡ B−1MB that De0 = B−1M(Be0) = B−1Mv0 = λ0B

−1v0 = λ0e0 and
similarly for e1, whence D is diagonal with entries λi. From the similarity equation
detD = detM = 1, whence λ0λ1 = 1 as claimed. In the special case λ0 = λ1 ≡ λ
then this gives λ = ±1, whence D = ±I and so also M = ±I.
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(ii): In the second case, where M has only one eigenvector v0, then it has only one
(double) eigenvalue, as noted. We again form a change-of-basis matrix B with first
column v0 and now with second column any v1 which is linearly independent of v0.
Then for S = B−1MB we have as above that Se1 = B−1M(Be1) = λe1. This yields

S =

[
a b
0 d

]

which has eigenvalues a, d = ±1, whence

S = ±
[
1 b
0 1

]

for some b ∈ C \ {0}.
Multiplying by constants, we again can take B ∈ SL(2,C). We can do slightly

better than this: choosing v1 such that the basis (v0,v1) is of positive orientation
and normalized, then B = R is a rotation matrix.

One further improvenment is possible. Let C = ±
[
w 0
0 w−1

]
. Then C−1SC =

±
[
1 w−2b
0 1

]
. Hence for w = b1/2 we have that

M̃ = (RB)−1M(CR) = ±
[
1 1
0 1

]
.

For the last statement, write H+ =

[
1 1
0 1

]
, H− =

[
1 0
1 1

]
and define K =

[
0 1
1 0

]
.

Then KH+K = H−. (Indeed, multiplication on the right by K switches columns
while multiplication on the left switches rows.) We remark that this is a conjugacy
in GL(2,C) but not SL(2,C) since K has determinant −1; they are also conjugate
in PSL(2,C), since K ∼ iK which has determinant 1.

�

Lemma 25.2. Given M ∈ SL(2,R), then either:
(i) there are (up to nonzero multiples) two linearly independent eigenvectors v0,v1 or
(ii) there is one eigenvector v.
In case (i), the eigenvalues λ0, λ1 satisfy λ0 · λ1 = 1, and M is similar to a diagonal
matrix D with those entries. Thus D = B−1MB via a change-of-basis matrix B ∈
SL(2,R) with columns v0,v1. M = ±I iff here λ0 = λ1.

There are two subcases:
(ia) (trM)2 − 4 > 0, and the eigenvalues are real, and
(ib)(trM)2 − 4 < 0, and they are imaginary.
In case (ii), (trM)2 − 4 = 0 and there is a double real eigenvalue. Then there exists

a rotation matrix R such that R−1MR = T with T = ±
[
1 b
0 1

]
. Moreover M is

conjugate in GL(2,C) to H+ =

[
1 1
0 1

]
and to H− =

[
1 0
1 1

]
.
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Proof. The characteristic polynomial is

pM(λ) = det(M − λI) = λ2 − (trM)λ+ detM = λ2 − (trM)λ+ 1

with roots

λ± ≡ trM ±
√

(trM)2 − 4

2
.

Defining α =
√

(trM)2 − 4, then since the entries are real, if (trM)2− 4 > 0 we have

λ± = (trM ± α)/2. If (trM)2 − 4 < 0 then writing β =
√

4− (trM)2 > 0 we have
λ± = (trM ± βi)/2. Lastly if (trM)2 − 4 = 0 then λ± = (trM)/2. Note that in all
three cases, λ+ · λ− = 1, verifying what we already know from Lemma 25.1.

We know from Lemma 25.1 that, defining as above B to have a columns the eigen-
vectors, this gives a change-of-basis matrix in GL(2,C). We now show in fact we can
take the eigenvectors to be real and B to be in SL(2,R). Now for an eigenvector

(without loss of generality) v =

[
z
1

]
we have

Mv =

[
a b
c d

] [
z
1

]
=

[
az + b
cz + d

]
=

[
λz
λ

]

so cz + d = λ whence λ ∈ R =⇒ z ∈ R. Thus up to multiplication by a constant
in C∗, the eigenvectors are real, whence B ∈ SL(2,R).

D =

[
λ 0
0 λ

]

�

Remark 25.1. We state the next theorem for M ∈ SL(2,C), as in Lemma 25.1.
We recall from Corollary 23.4 that Möb(C) is isomorphic to PGL(2,C), which is
isomorphic to PSL(2,C) and SL(2,C)/{±I}.

We remark that if M̃ ∈ GL(2,C) is equivalent to M , that is, there exists c ∈
C \ 0 such that M̃ = cM , then M̃ and M have the same eigenvectors, however the

eigenvalues for M̃ are multiplied by c.
In particular for M ∈ SL(2,C), if v is an eigenvector for M with eigenvalue λ,

then v is an eigenvector for (−M) with eigenvalue −λ. In part (v) below, switching
to (−M) gives the same result as this does not affect the value of the multiplier λ2.

We have:

Proposition 25.3.
(i) Eigendirections for M ∈ SL(2,C) correspond bijectively to fixed points of fM via

the map π : C2 \ {0} → Ĉ.
(ii) fM is the identity map iff it has three fixed points (second proof).
(iii) fM has two fixed points iff M has two distinct eigenvalues. In this case we have
an eigenvector v = (z, w) ∈ C2\{0} with eigenvalue λ iff the fixed point z̃ = π(v) has
multiplier λ2. The second multiplier is then λ−2. The diagonalization BMB−1 = D
of Lemma 25.1 induces the conjugacy in Möb(C) of fM to the map fD. Since D is
diagonal, fD has fixed points 0,∞; interchanging the columns of B switches these
fixed points.



FROM ADIC TRANSFORMATIONS TO GIBBS STATES 199

(iv) If M = ±I then fM = ± id. If M 6= ±I has a single eigenvalue λ (hence
λ = ±1) then fM has a single fixed point, with multiplier 1. The conjugacy of M to

±H+ = ±
[
1 1
0 1

]
induces a conjugacy of fM to fH+, which has fixed point ∞. The

conjugacy of M to ±H− gives fH−, with fixed point 0.

Proof. (i): Let M =

[
a b
c d

]
∈ SL(2,C).

Let v = (z, w) ∈ C2 \ {0} with Mv = λv. Note that since M is invertible, λ 6= 0.

Setting z̃ ≡ π(z, w) = z/w ∈ Ĉ, then from the commutative diagram of Fig. 70

C2 \ {0} M−−−→ C2 \ {0}yπ
yπ

Ĉ fM−−−→ Ĉ

(93)

we have that fM(z̃) = π(Mv) = π(λv) = z̃. Conversely, if fM(z′) = z′ then for
v = (z, w) with π(v) = z′, we have π(Mv) = z′ whence Mv = λv for some λ 6= 0.

(ii): Of course we already proved this basic fact in part (i) of Proposition 23.3;
now we have a very different understanding of this. By part (i), fM has three fixed
points iff M has three eigenvectors which are not multiples of one another. We know
that if n vectors in a vector space have distinct eigenvalues for a map T then they are
linearly independent (see Lemma l:linearlyindep.) Since three vectors in R2 cannot
be linearly independent, two of them must have the same eigenvalue. Since those two
vectors form a basis, M must be a constant times the identity matrix. Thus fM = id.

(iii): The characteristic polynomial of M with detM = 1 is quadratic so has two
complex roots (possibly a double root). If it has two distict roots λ1, λ2 then there
are two linearly independent eigenvectors v1,v2. Build a matrix B with these as
the columns. Then BMB−1 = D is diagonal with entries λi. Since detD = 1 also,

λ1λ2 = 1, so let us call these λ, λ−1. For D =

[
λ 0
0 λ

]
then D ∼ D̃ =

[
λ2 0
0 1

]
which

is the map fD = fD̃ with fD : z 7→ λ2 · z, with fixed points 0,∞.
(iv) The multipliers of fM are preserved by conjugation in Möb(C). That is, for

f, g ∈Möb(C), if f̃ = g−1◦f ◦g, then if z is a fixed point for f with multiplier w, then

g−1(z) is a fixed point for f̃ with the same multiplier (by the chain rule). Similarly,
the eigenvectors and values of M are preseved by conjugation by a matrix G.

For f : z 7→ w · z, the derivative at any z ∈ C is w, hence this is the derivative at
the fixed point 0. Given fM as in (ii), we conjugate it to fD. Thus the multiplier of
fD at 0. and hence of fM at z, is λ2.

As noted above in Lemma ??, H+ =

[
1 1
0 1

]
and H− =

[
1 0
1 1

]
are conjugate via

K =

[
0 1
1 0

]
. Note that fK(z) = 1/z which exchanges 0 and ∞.

If we exchange the columns of B to get B̃ = BK, then for the new matrix D̃ we

have fD̃ : z 7→ λ−1. Now since fK exchanges 0 and ∞ ??? B−1KB = B̃−1B. In
conclusion the multiplier of fD at ∞ is the multiplier of fD̃ at 0, that is, λ−2.
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�

............

Remark 25.2. We give a second proof of part (v) which is “elementary” in that it is
a computation, because we find this interesting as well.

Given M =

[
a b
c d

]
∈ GL(2,C), to calculate the fixed points for fM we have

fM(z) = (az + b)/(cz + d) = z so

cz2 + (d− a)z − b = 0

This has roots
(a− d)±

√
(d− a)2 + 4cb

2c
Since (d−a)2 + 4cb = (a+d)2− 4ad+ 4bc then assuming without loss of generality

that M ∈ SL(2,C) so detM = 1, and writing tr = tr(M), the roots are

α± =
(a− d)±

√
(tr)2 − 4

2c
.

We note that

α+α− =
(a− d)2 − (tr)2 + 4

4c2
=
−ad+ 1

c2
= −b/c.

To find the eigenvalues of M and then the eigenvectors. We want the roots of the
characteristic polynomial pM(λ) = det(M − λI) = λ2 − trMλ+ detM .

Assuming M ∈ SL(2,C) so det(M) = 1, these are

λ± ≡ tr±
√

(tr)2 − 4

2
We have

λ+ · λ− = (tr2 − tr2 + 4)/4 = 1

so these are reciprocals.

An eigenvector for λ is v =

[
x
1

]
where x = (λ− d)/c. Note that π(v) = (λ− d)/c.

We then check that in fact this is our fixed point for fM .
We calculate that for fM(z) = (az + b)/(cz + d) the derivative is

f ′M(z) = det(M)/(cz + d)2. (94)

The derivative at the point ∞ is defined via the chart F (z) = 1/z, to be the

derivative at zero of f̃ = F−1 ◦ fM ◦ F ; we have f̃(z) = (dz + c)/(bz + a) whence

f̃ ′(z)) = det(M)/(a+ bz)2. (95)

The derivative at ∞ is independent of choice of chart, by the Chain Rule, giving

f ′M(∞) ≡ f̃ ′(0)) = det(M)/a2. (96)

So if z 6= ∞ is a fixed point then assuming detM = 1 the multiplier at z is
1/(cz + d)2 and if ∞ is a fixed point it is 1/a2.
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For the fixed points we had

α± =
(a− d)±

√
(tr)2 − 4

2c
.

Thus if α 6=∞ the multiplier there is
1/(cz + d)2 and

(cz + d) = c
(a− d)±

√
(tr)2 − 4

2c
=

tr±
√

(tr)2 − 4

2
= λ

whence
the multiplier is λ−2 = (λ1)2.
so in particular if ∞ is a fixed point then this is the multiplier there.

....
1/(1/z + 1) = 1/((1 + z)/z) = z/(1 + z)
0 fixed
deriv= ((1 + z)− z)/(1 + z)2 = (1 + z)−2

at 0= 1 Specifically, with the trace of M being tr(M) = a+ d, then

pM(λ) = det(M − λI) = λ2 − tr(M)λ+ detM = λ2 − tr(M)λ+ 1,

(since M ∈ SL(2,C) so det(M) = 1), and the roots are, writing tr = tr(M),

λ± ≡ tr±
√

tr2 − 4

2
We have

λ+ · λ− = (tr2 − tr2 + 4)/4 = 1

so the two roots are reciprocals.
In particular, for a double root, λ = λ0 = λ1 = ±1.
There are two possibilities: either M has only one eigenvector or has more. If it has

two linearly independent eigenvectors with the same eigenvalue λ, then every vector
is an eigenvector so M = λI. Thus from the above, M = ±I.

If the characteristic polynomial of M has two distict roots λ0, λ1 then there are
If they are distinct, λ± = ρ±1ei±t and either |λ1| < |λ0| or |λ1| = |λ0| = ρ = 1.

An eigenvector for λ is v =

[
x
1

]
where x = (λ− d)/c. Note that π(v) = (λ− d)/c.

....
Hence for w = b1/2 we have that

M̃ = (RB)−1M(KR) = ±
[
1 1
0 1

]
.

Definition 25.1. A Möbius transformation fM ∈ Möb+(C) is called:
(i) loxodromic iff the map has two fixed points, and the multipliers α± has modulus
6= 1 (if one does, the other does by ??); the fixed point with |α1| < 1 is called attracting
(or contracting), and the other with |α+| > 1 repelling (or repulsive or expanding The
loxodromic maps are further divided into those that are
(ia)hyperbolic: the multiplier is real;
(ib)purely loxodromic: the multiplier nonreal;
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(ii) elliptic: the map has two neutral fixed points, meaning the multiplier has modulus
one;
(iii) parabolic: the map has a single fixed point, with multiplier zero.

We note that the multiplier at a fixed point is just the eigenvalue of the derivative

map there (since the tangent space to the complex one-manifold Ĉ at every point is
just C itself).

We next see how the geometry of the map is determined by this number of fixed
points together with knowledge of the multipliers.

Definition 25.2. A Möbius transformation fM ∈ Möb+(C) is called:
(i) loxodromic: the map has two fixed points, one attracting (i.e. contracting, the
multiplier there has modulus < 1) and one repulsive or expanding (the multiplier has
modulus > 1). The loxodromic maps are further divided into those that are
(ia)hyperbolic: the multiplier is real 6= 1, and the map moves anong circles connecting
the fixed points, or
(ib)purely loxodromic: the multiplier is complex nonreal of modulus 6= 1, and points
move along spirals of a chosen slope connecting the fixed points;
(ii) elliptic: the map has two neutral fixed points, meaning the multiplier has modulus
one, thus neither expanding nor contracting; the map moves points along circles about
these points.
(iii) parabolic: the map has a single fixed point, with multiplier zero there; points move
along two families of circles tangent to a tangent vector at this point, one clockwise
and one counterclockwise.

Example 24. (Rotations) We examined above the maps F : z 7→ 1/z and G : z 7→
−1/z. These are elliptic maps, as they are conjugate by stereographic projection ϕ
to rotations of the Riemann sphere around the real and imaginary axes respectively
by angle π, interchanging the north and south poles, while fixing the points ±1, ±i
respectively; the multiplier at each of these points is −1. See Fig. 57. In Ĉ, they
interchange 0 and ∞.

See also Example 44.
To generalize these maps, if we try to think of a Möbius transformation which

is the analogue of a rotation on the plane R2, we might come up with two natural
candidates.

The first is fMt : z 7→ eitz; this rotates the plane Ĉ counterclockwise by angle t.
The second is the real matrix Rt ∈ PSO(2,R) where

Rt =

[
a −b
b a

]

for a = cos(t) and b = sin(t), which rotates the plane R2 conterclockwise by angle t.
So let us consider what each does as a Möbius transformation.

For the first, Mt is the diagonal matrix

Mt =

[
eit 0
0 1

]
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with the eigenvalues the diagonal entries eit, 1 and eigenvectors (1, 0) and (0.1). Nor-
mailzing to a matrix with determinant one, we have

M̃t =

[
eit/2 0

0 e−it/2

]
=

[
a b
c d

]

The Möbius transformation fMt = fM̃t
has two fixed points, 0 and ∞. From (94),

the multiplier at zero is f ′
M̃

(0) = 1/d2 = eit as we would expect, while from (96), the

multiplier at ∞ is f ′
M̃

(∞) = 1/a2 = e−it.

Regarding the second example Rt =

[
a −b
b a

]
, see Remark 44: this has complex

eigenvectors

[
1
−i

]
and

[
1
i

]
with eigenvalues eiθ, e−iθ.

The Möbius transformation fRt preserves H and the real axis, since Rt has real
entries. Since fRt(z) = (ai − b)/(bi + a), it rotates around the two fixed points ±i.
The matrices Mt and Rt are conjugate by the change of basis matrix whose columns
are the eigenvectors. Since Rt is a normal matrix, defining

U =
1√
2

[
1 1
−i i

]

this is a unitary change-of-basis matrix, yielding the diagonalization U∗AU = D

where D =

[
eiθ 0
0 e−iθ

]
with commutative diagrams

C2 Rt−−−→ C2

xU
yU∗

C2 Mt−−−→ C2

Ĉ
fRt−−−→ ĈxfU

yf−1
U

Ĉ
fMt−−−→ Ĉ

(97)

and indeed, since fU(z) = (z + 1)/(−iz + i), we have fU(0) = −i, fU(∞) = i.

By (94), the multiplier of fRt at i is f ′Rt(i) = 1/(bi + a)2 = e−i2t while at −i it is
f ′Rt(−i) = 1/(b(−i) + a)2 = ei2t.

Note that in the parabolic case, if the fixed point is ∞, then these circles tangent
to ∞ are the familes of parallel lines in C with a chosen direction.

We shall in fact have three different (equivalent) ways of classifying these maps:
–geometrically, as just described, in terms of the behavior at fixed points;

–algebraically, in terms of the trace a+ d of the matrix M =

[
a b
c d

]
;

–in terms of a canonical form, that the map is conjugate to one of three types.

Definition 25.3. A one-parameter subgroup of a group G is H = {gt : t ∈ R}
satisfying gs ◦ gt = gt+s. In other words, this defines an action of the additive group
(R,+), see Definition 2.1.

This is closely related to the flow property, since it states that the action of H on G
on the left defines an action of (R,+), i.e. a flow (Definition 35.3) and more generally,
if G acts on a space X, then the action of H on X defines a flow.
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Proposition 25.4. Each non-identity element M of SL(2,C) embeds in a unique
one-parameter subgroup. This is of the form exp(tA) where A is an element of the
Lie algebra slc(2,C) of SL(2,C). Up to conjugation in SL(2,C), we can take A =[
1 0
0 −1

]
, A =

[
0 1
0 0

]
or A =

[
0 0
1 0

]
where these are a basis for the Lie algebra.

Each Möbius transformation not equal to id embeds in a unique one-parameter flow.
Up to conjugation in Möb(C), , this is of three types:

Proof. The exp map is onto, so exists a uiuque A ∈ slc(2,C) with M = exp(A) Then
M t = (exp(A))t = exp(tA) is our one-parameter subgroup. Now express A in terms
of the basis. NO..... �

In addition, we shall describe the classification:
–in terms of the elements A of the Lie algebra such that M = eA. This will naturally
embed each type in a one-parameter subgroup.

Proposition 25.5. For M ∈ PSL(2,R), fM is either:
(i) hyperbolic iff trace(M) = trM = a+ d > 4, iff fM is conjugate to the map
(ii) elliptic iff: iff fM is conjugate to the map
(iii) parabolic iff: iff fM is conjugate to the map...

Proof. As in Proposition 23.2, for A ∈ GL(2,C) ∼= PSL(2,C) with A =

[
a b
c d

]
we

write fA ∈ Möb+(C) for the correponding Möbius transformation
We note that fixed points for fA correspond bijectively to eigenvectors of A.
Indeed, for v ∈ C2 \ 0 with v = (z1, z2) and z = z1/z2 we have Av = λv iff

fA(z) = z.
To find the fixed points, we could simply consider the equation fA(z) = z, which is

a quadratic equation, and use the quadratic formula, but it seems easier to find the
eigenvalues of A and then the eigenvectors. We want the roots of the characteristic
polynomial pA(λ) = det(A− λI) = λ2 − trAλ+ detA.

Assuming A ∈ PSL(2,C) so det(A) = 1, these are

λ± ≡ trA±
√

(trA)2 − 4

2

Writing α = trA, we have

λ+ · λ1 = (α2 − α2 + 4)/4 = 1

so these are reciprocals.
(i) two complex roots, λ± = r±e±iθ when (trA)2 /∈ [0, 4] with 0 < r+, r1 and r+r1 = 1;
(ia) the subcase with two real roots r± when (trA)2 ∈ (4,+∞);
(ia) the subcase with two nonreal complex roots when (trA)2 ∈ (4,+∞);
(ii) two roots of modulus one λ± = e±iθ when (trA)2 ∈ (0, 4);
(iii) a double root λ = tr(A) when (trA)2 = 4.

As we show, these correspond to the previous cases.
�
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Figure 58. A loxodromic spiral in the plane, with fixed points 0,∞,
and its stereographic projection to the Riemann sphere with fixed points
N,S.

Proposition 25.6. Each complex Möbius transformation embeds in a unique (up
to change of time) one-parameter subgroup. For the canonical maps, these are of
the form fGt for Gt = exp(tA) for the following elements A of the Lie algebra
PSL(2,C) =???, as follows:
(i) loxodromic
(ia)hyperbolic
(ib) purely loxodromic iff:
(ii) elliptic iff:
(iii) parabolic iff:

In the general case, Gt = exp(tA) where....
Each real Möbius transformation embeds in a unique (up to change of time) one-

parameter subgroup. For the canonical maps, these are of the form fGt for Gt =
exp(tA) for the following elements A of the Lie algebra PSL(2,C) =???, as follows:
(i) hyperbolic iff
(ii) elliptic iff:
(iii) parabolic iff:

In Fig. 59 we show a loxodromic spiral on the Riemann sphere. This is the orbit

of the point z = 1 in Ĉ by the one-parameter subgroup of Möbius transformations
z 7→ et/6eitz, transferred to the sphere by stereographic projection from the north pole
N . (So S is the repelling fixed point and N the attracting.) In Fig. 63 we see orbits of
the flows Rt, H

+
t in the extended complex plane and Riemann sphere. Note that the

parabolic flow is a geometric limit of a sequence of elliptic flows, as the pair of fixed
points are brought together. It is also the geometric limit of a sequence of hyperbolic
flows, as the pair of fixed points are brought together, in the orthogonal direction.
It is appropriate that the parablic flow is on the boundary between hyperbolic and
elliptic!
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Figure 59. A loxodromic spiral in the sphere, and its stereographic
projection to the plane, both with fixed points ±i.

Figure 60. Three loxodromic spirals in the plane and sphere, fixed
points ±i.

Figure 61. Another view of the three loxodromic spirals in the plane
and sphere.
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Figure 62. Six loxodromic spirals in the sphere.

Figure 63. Orbits of the elliptic flow Rt in the plane, with fixed points
±i, and its sterographic projection to the Riemann sphere S2, as a
rotation flow about the imaginary axis. Orbits of the parabolic flow

H+
t , with fixed point ∞ ∈ Ĉ and north pole N ∈ S2.

We have shown that Möb+(R) can also be characterized as the group of orientation-
preserving isometries of the hyperbolic plane H.

To motivate our next construction, we recall the definition of the torus T = R2/Z2.
The additive group R2 plays two roles, as a surface (the plane), and as a group of
isometries of the plane, acting on itself by translation. The subgroup Z2 defines a
discrete group of isometries of the plane, whence the factor group R2/Z2 is also the
factor surface T.

Here we replace the plane R2 by the hyperbolic plane H, and consider a discrete
group G of orientation-preserving isometries of H. We then form the factor space
G\H; depending on the choice of G, the resulting surface can be, topologically, a
surface of any genus (number of holes). The fact that this surface is built from H,
which is geometrically the same at every point (since there is a map in Möb+(R) taking
any chosen point to any other), G\H shares this property. Such spaces are called
homogeneous spaces as they are geometrically the same essentially everywhere. (This
is with the possible exception of singular points where there is a special symmetry
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and hence a folding (called a cone point, where the total angle around the point is a
fraction of 2π)) or a cusp at infinity (where the angle is 0).

Since PSL(2,R) is the group of all orientation-preserving isometries, G will be a
subgroup of PSL(2,R). Now H itself is not (unlike the Euclidean plane R2) itself a
group. Nevertheless, the factor group G\PSL(2,R) has an important role to play:
as we next explain, this represents the unit tangent bundle of the surface G\H, and
it is there that our geodesic flow will act.

Since the group PSL(2,R) is not commutative, one can act on it by subgroups, on
the left (as we do with G) or on the right. These have a very different character, as
we shall explain.

We consider two actions of PSL(2,R) on itself, on the right and on the left.
Now these are anti-isomorphic, via inversion; precisely, for I : PSL(2,R) →

PSL(2,R) defined by A 7→ A−1, and writing RA : PSL(2,R) → PSL(2,R) for
the right action map M 7→ MA, LA : PSL(2,R) → PSL(2,R) for the left action
map M 7→ LM , we have the anti-commutative diagram (this means that it switches
the order of group multiplication, as the map I : PSL(2,R) → PSL(2,R) is an
anti-isomorphism of PSL(2,R) with itself).

SL(2,R)
RA−−−→ SL(2,R)xI

yI

SL(2,R)
LA−1−−−→ SL(2,R)

SL(2,R)
RAB−−−→ SL(2,R)xI

yI

SL(2,R)
LB−1A−1−−−−−→ SL(2,R)

(98)

Nevertheless, the left and right actions are totally different! To explain this appar-
ently paradoxical statement, we introduce a geometry on PSL(2,R), as follows. One
has the following general notions:

Definition 25.4. Let a group G act on a space X. This action is transitive iff the
G-orbit of every point is all of X. Choosing some point o ∈ X, define the stabilizer
Ho of o to be {h ∈ G : ho = o}, then the space of all left cosets G/Ho is called
a homogeneous space. It corresponds bijectively to X, and can be thought of as X
together with a choice of origin o. Note that the left action of G on itself induces
a left action of G on G/Ho which is the same as the original action of G on X. In
general, Ho is not a normal subgroup. Indeed, choosing a different point o, and find
a go such that g(o) = o. This is a change of origin, and induces a map from G/Ho to
G/Ho given by gH0 →... That is, the map induced by the inner automorphism of G,
...

Note that the inner automorphism (1) does not depend on which such g is selected;
it depends only on g modulo Ho.

Next we carry this out for the left action of PSL(2,R) on T 1(H). A convenient
choice of base point o as above is ii, the vector based at i ∈ H pointing in the direction
i. Then we consider the map M 7→ f ∗M(ii) from PSL(2,R) to T 1(H), so I 7→ ii.

Now PSL(2,R) acts on itself both on the right and on the left. Via the identification
of PSL(2,R) with T 1(H), this means we have left and right actions on T 1(H). These
must be (anti)-isomorphic, as explained above. However, from a more geometric point
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of view, these actions are very different. To explain this, we indroduce a metric on
T 1(H) and hence on PSL(2,R) which is invariant for the left action, but decidedly
not invariant for the right action. There is moreover a more basic obstruction: T 1(H)
is not just an abstract space; it is also a fiber bundle, with a projection map from a
vector vp based at p ∈ H to p. And as we shall see, this projecton is not respected
by the antisomorphsm.

To understand all this, we shall focus on actions, on the left and right, by the
following one-parameter subgroups.

–{Rt : t ∈ R} where for a = cos(t) and b = sin(t), we define Rt ∈ PSO(2,R) by

Rt =

[
a −b
b a

]

. We call this the rotation subgroup.
—{Et : t ∈ R} where we set

Et ≡
[
e
t
2 0

0 e−
t
2

]
.

This is the diagonal subgroup.

– Hu
t ≡

[
1 0
t 1

]
. We call this the lower triangular subgroup.

– Hs
t ≡

[
1 0
t 1

]
We call this the lower triangular subgroup.

Note from Fig. 63 that the flows Rt and Et are conjugate. Unlike Et, Rt preserves
H.

??as does the rotation flow of S2 around an axis which...??
For this, we give the upper half space H the hyperbolic metric. We write T (H)

for its tangent bundle. Now the hyperbolic metric can be realized as a Riemannian
metric, that is, as an inner product on T (H) at each point. We defined the hyperbolic

metric via the formula for an infinitesimal line element ds, with ds2 = dx2+dy2

y2
; as we

explained above, this can be used to define the arc length of a smooth curve. Letting
p = x + i] ∈ H, then the tangent space T (H)|p is identified withC ≡ R2. Writing
〈v,w〉 for the standard inner product on R2, we then define 〈v,w〉p = 〈v,w〉/y2; thus

for v = (x, y) we have 〈v,v〉p = x2+y2

y2
as desired.

Now we write T1(H) for the unit tangent bundle of H. This is a circle bundle;
indeed it is the product space H × S1. We wish to define a Riemannian metric on
this smooth manifold as well.

In fact, given two Riemannian manifolds M,N (smooth manifolds carrying a Rie-
mannian metric) there is a canonical way to take the product M ×N . The tangent
space at (p, q) ∈M ×N is T (M)|p×T (N)|q, and the product inner product is simply
(v1,w1) · (v2,w2) = v1 · v2 + w1 ·w2.

The tangent space of S1 is just R, on which the inner product is just multiplication
of numbers.

The conclusion of all this is that the length along the circle is just arclength. To
integrate a curve....
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We have defined a Riemannian metric on T1(H). Next we identify PSL(2,R) with
T1(H), by the standard device of choosing a base point for the action, in this case the
action on the left on T1(H) by the normalized derivative of a Möbius transformation.

First we consider how these flows act on the unit tangent bundle of the hyperbolic
plane H. Then we study these on the unit tangent bundle of the hyperbolic factor
surface G\H,

We write T1(H) for the unit tangent bundle of H (in the hyperbolic metric), and
f ∗M for the normalized derivative of the map fM , which maps T1(H) to itself. That
is, f ∗M(vp) = c · f ′M(v)fM (p) where c is 1/||f ′M(v)fM (p)||. Via this definition, PSL(2,R)
acts on T1(H).

We consider first the rotation flow. For a = cos(t) and b = sin(t), define Rt ∈
PSO(2,R) by

Rt =

[
a −b
b a

]
.

So fRt(z) = (az − b)/(bz + a). The derivative is

f ′Rt(z) = (bz + a)−2

so

f ′Rt(i) = (a+ bi)−2 = (a− bi)2.

Now how does this act on the tangent space at i, which is C? By multiplication by
this complex number, which is a rotation in the clockwise direction by an angle of 2t!

That the angle is doubled agrees with the fact that we are in PSL(2,R), so fRt =
f−Rt = fRt+π .

25.2. Geodesic and horocycle flows on the hyperbolic plane. Next we identify
PSL(2,R) with T 1(H). For this we choose a base point for the action; this could be
any element of T 1(H), but a convenient choice is ii, the vector based at i ∈ H pointing
in the direction i. Then we consider the map M 7→ f ∗M(ii) from PSL(2,R) to T 1(H),
so I 7→ ii.

We shall now see that via this correspondence, the right action by Rt rotates each
tangent vector, not just the base point.

Indeed, since fRt fixes the point i, while rotating the vector ii to vi, then f ∗Mf
∗
Rt

maps ii to vp = f ∗M(vi). This is a vector based at p = fM(i) and rotated clockwise by
angle 2t.

Thus the map M 7→ fM(i) from PSL(2,R) to H maps all matrices MRt to the
same point p in H.

Remark 25.3. Thus the right action byRt on PSL(2,R), when this has been identified
with T 1(H), fixes each point p while rotating each tangent vector vp, clockwise by
angle 2t. But what does the left action do?

This defines a Möbius transformation on the plane, which is elliptic; it fixes the
points i and −i. It preserves H and R. The imaginary axis is rotated to other circles
passing through ±i and perpendicular to the real axis. Note that this left action is
an isometry of H while the right action is ...
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Definition 25.5. Given a differentiable manifold M of dimension d, then the tangent
space at p ∈ M , written TMp, is isomorphic to Rd. These fit together smoothly via
the charts of M , to make up TM , the tangent bundle of M . This is a fiber bundle
which means that locally it is a product of Rd with Rd, with the projection from TMp

to TM , which simply sends a tangent vector vector vp ∈ TMp to p. This is actually a
vector bundle since, while the manifold M may be curved, the tangent space is linear
at each point. A Riemannian metric on M is a smooth choice of inner product on this
bundle. One says that M together with this metric is a Riemannian manifold. The
inner product allows one to define a smoothly varying norm at each point; if one has
a norm but not necessarily an inner product then this is called a Finsler manifold.
An example of a Finsler manifold encountered in these notes (other than a vector
space with e.g. the Lp norm where p 6= 2) is given by the Hilbert metric on a convex
set with the no-line property, which is not an ellipsoid. A Finsler structure allows one
to define an actual metric in the sense of metric spaces of analysis. First, one defines
the length of a smooth curve γ : [a, b]→M , as above in Definition 23.3, by

l(γ) =

∫

γ

ds ≡
∫ b

a

||γ′(t)||dt.

The distance between two points is then defined to be the infimum if the lengths of
curves between the points. A geodesic is a smooth curve in M which locally minimizes
length.

A basic theorem of differentiable geometry is that given the choice of a tangent
vector vp ∈ TMp, in the Finsler as well as the Riemannian case, there exists a unique
geodesic tangent to this vector. We write T1M for the unit tangent bundle, the tangent
vectors of unit length. The geodesic flow of M is the flow gt (actually on T1M) defined
by flowing at unit speed along this geodesic, and transporting the unit vector along
the curve.

Remark 25.4. The existence of geodesics for the Riemannian case we encounter here
is a consequence of the existence theorem of ordinary differential equations. For
background see ??? Rather than getting into the (beautiful) differentiable geometry
needed to treat this properly, we study concrete examples where the definitions can
be given algebraically.

We recall from §23.1 that Möb(C) denotes the group of Möbius transformations on

the extended complex plane Ĉ; a matrix in M ∈ PGL(2,C) or equivalently PSL(2,C)

(see Corollary 23.4) with M =

[
a b
c d

]
defines such a map by fM(z) = (az+b)/(cz+d).

The real Möbius transformations are the subgroup PGL(2,R) of PGL(2,C) with real
entries. Unlike PGL(2,C) which is connected, PGL(2,R) has two connected com-
ponents. One of these is itself a group, those with determinant > 0; this defines
PGL+(2,R) and Möb+(R). This subgroup of index two are the Möbius transforma-
tions which preserve the upper half plane H, while those with negative determinant
still preserve the real axis but switch the upper and lower half planes.

Now PGL+(2,R) is naturally isomorphic to PSL(2,R), see Proposition 23.9 and
Definition 23.3.
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We recall that H = {z = x + yi : y > 0} is given the hyperbolic metric dH(x, y) =
c · dγ(x, y), where γ is the unique circle which meets the boundary R orthogonally
while passing though x and y. Here, with η, ξ ∈ R denoting the boundary points
of γ, then dH(x, y) = dγ(x, y) = | log[η, x, y, ξ]|. Since elements of Möb+(R) preserve
angles, circles, the real line, and the cross ratio, they act as isometries of H.

The map M 7→ f ∗M(ii) from PSL(2,R) to T 1(H) is a bijection, and so we can
identify H with PSL(2,R)/PSO(2,R) via this choice of base point. It follows that
the flow defined by Et acting on the right on PSL(2,R) is isomorphic to the geodesic
flow on T 1(H).

We have seen have seen above that PSL(2,R) to the unit tangent bundle T1(H).
We next consider three more right actions by the other one-parameter subgroups. by
{Et}t∈R

The unit tangent bundle of H can be identified with PSL(2,R). This correspon-
dence is easily described. Take as base point the unit vector ii which is located at the
point i ∈ H and points in the vertical direction; then, given A ∈ SL(2,R), let f ∗A(ii)
be the image of this vector by the derivative map of fA, that is, it is the vector located
at the point fA(i) which has been been rotated appropriately by the argument of the
complex derivative. This image vector also has hyperbolic length one, as Möbius
transformations are isometries for the hyperbolic metric; so this defines a map from
PSL(2,R) to the unit tangent bundle T1(H). The group Γ acts on PSL(2,R) by
left multiplication and one sees that Γ\PSL(2,R) is the unit tangent bundle of the
surface Γ\H.

The geodesic flow on the surface is by definition the flow on this unit tangent bundle
which moves a vector along its tangent geodesic at unit speed. Algebraically, this is

given by right multiplication by Et ≡
[
e
t
2 0

0 e−
t
2

]
on Γ\PSL(2,R). To understand

this, note that this matrix is equivalent as a Möbius transformation to

[
et 0
0 1

]
which

dilates the plane by the factor et, and hence moves the vector ii up the imaginary
axis at unit speed in the hyperbolic metric. The action on a general unit vector is
then given by the conjugation by f ∗A which is a hyperbolic isometry, so this is indeed
the geodesic flow. The unstable horocycle flow hut is given by the right action of

Hu
t ≡

[
1 0
t 1

]
; the stable flow acts by its transpose. As the names suggest, these

preserve the unstable and stable horocycles (circles tangent to the boundary R of H
which are the base points of the unstable and stable sets of the geodesic flow; for the
point ii, this “circle” being the line y = 1).

For the simplest example of a noncompact, finite area surface, see Fig.??; here
(depicted in the disk model) Γ is a free group on two generators, these being two
hyperbolic Möbius transformations, one which shoves the interior of the disk to the
right and one which moves everything up; the curved quadrilateral in the center is
a fundamental domain for this action. The left side is glued to the right, and the
bottom to the top, so the resulting surface is a torus, just like for the usual gluings
of a square, to get the quotient space R2/Z2, except that now the corner point gives
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Figure 64. Covering space for punctured torus; after opening up the cusp.

a cusp, as it goes out to ∞ in the hyperbolic metric: this is a punctured torus (Fig.
64).

Classical results are:

Theorem 25.7. The geodesic and horocycle flows gt, h
u
t , h

s
t preserve Riemannian

volume of the unit tangent bundle of the surface M . This measure is finite iff the
surface area is finite. For this case, if M is compact (equivalently has no cusps) then:
(i) gt is ergodic, indeed is (finite entropy) Bernoulli (is measure-theoretically isomor-
phic to a Bernoulli flow);
(ii) hut , h

s
t are uniquely ergodic, with entropy zero.

In the finitely generated, finite area case with cusps, all this is true except that
hut , h

s
t are only nearly uniquely ergodic; normalized Riemannian volume is the only

nonatomic invariant probability measure if we disallow measures supported on horo-
cycles tangent to cusps.

More interesting for us will be the infinite area case, where the cusp opens up to
flare out in a hyperbolic trumpet, Fig. 65; we return to this below.

The flows gt and hut do not commute, but do satisfy the following commutation
relation:

hbga = gahe−sb.

In other words, the following diagram commutes:
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Figure 65. Geodesic flow on punctured torus and on infinite area surface

aa

b

ïa
e b

Figure 66. Opened cusp in upper half plane; geometric explanation
of commutation relation.

T 1(M)
he−a·b−−−→ T 1(M)

ga

x
xga

T 1(M) −−−→
hb

T 1(M)

One can prove this algebraically, or see it geometrically in the upper half plane
(Fig. 66).

Remark 25.5. Because of the commutation relation, the pair (geodesic flow, horocycle
flow) gives an action of the (ax + b)-group (the real affine group) on T 1(M). This
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already hints that there might be a relation with fractal geometry, as fractal sets
genarally exhibit symmetries with respect to both dilation and translation.

Observation: The commutation relation tells us that hut is isomorphic to a speeded-
up version of itself. An ergodic theorist immediately will recognise that this is very
special, as the entropy of a sped-up transformation or flow multiplies by that factor,
so in this case:

entropy((hu)t) = e−a · entropy(hut ).

There are, thus, only two possiblities for the entropy of the flow (hu)t: 0, or ∞!

25.3. Coding the modular flow. Next we study the geodesic flow of a specific
Riemann surface, the modular surface PSL(2,Z)\H.

This is a simple example from the algebraic point of view, as we simply consider
the discrete subgroup of PSL(2,R) with integer entries. In that sense it is analogous
to the surface R2/Z2, (the square torus), where R2 is the group of isometeries of the
plane. For a closer analogy

By the modular flow we mean the right action of {Et}t∈R on Γ\SL(2,R), where

Et ≡
[
e
t
2 0

0 e−
t
2

]
.

We quickly describe its other guises, as the geodesic flow on the modular suface, and
as the Teichmüller flow of the torus. Once we have done this, we shall be free to
designate this flow as gt in all cases.

As noted above, SL(2,Z)\SL(2,R) ∼= PSL(2,Z)\PSL(2,R), so the right actions
of {Et}t∈R on these two spaces are isomorphic.

We quickly describe its other guises, as the geodesic flow on the modular suface,
and as the Teichmüller flow of the torus. Once we have done this, we shall be free to
designate this flow as gt in all cases.

Noting that λM and M define the same map, then M 7→ fM defines a homomor-
phism from PGL(2,R) → Möb(R), and from PSL(2,R) → Möb+(R); one shows
easily that these are isomorphisms.

More precisely, we consider one of the most important such surfaces, both his-
torically and because of connections with number theory: the modular surface. We
introduce this from the number theory side, first recalling some basic facts.

Every irrational x ∈ (0, 1) has a unique infinite continued fraction expansion

x = [n0n1 . . . ] =
1

n0 +
1

n1 + · · ·
with integers ni ≥ 1; rational numbers have (two) finite expansions. For example,

2

3
=

1

3/2
=

1

1 + 1/2
= [1 2] = [1 1 1].

Dynamics is brought into the picture by the Gauss map Φ, defined on the [0, 1]
by Φ(0) = 0 and Φ(x) = {1/x} ≡ 1/x− [1/x], the fractional part of 1/x, for x 6= 0.
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Writing Π+ = Π∞0 N∗for N∗ = {1, 2, · · · }, with the left shift σ defined on n+ =
(.n0n1 . . . ) by σ(n+) = (.n1n2 . . . ), then the map π((.n0n1 . . . )) = [n0n1 . . . ] conju-
gates σ on Π+ to Φ on (0, 1) \Q. Given n+ ∈ Π+, we define for each k ≥ 0 a fraction
written in lowest terms pk/qk = [n0n1 · · ·nk], so these rational numbers approximate
x = [n0n1 · · · ].

Here are some natural (and very classical) questions about this expansion:
1/ what is the significance of a periodic point for the Gauss map, i.e. of a periodic
continued fraction expansion?
2/ does a given digit l = nk occur with a definite frequency, Lebesgue-almost surely?
3/ does Lebesgue measure on (0, 1) converge under iteration to some Φ-invariant
measure, absolutely continuous with respect to Lebesgue measure?
4/ If so, is this measure ergodic for the map?

Here, first, are some answers:
1/ As was known long ago, periodic and eventually periodic expansions correspond to
quadratic irrational numbers (roots of quadratic polynomials) in (0, 1); for example

x = [111 · · · ] satisfies { 1
x
} = 1

x
− 1 = x so x2 + x − 1 = 0 and x = −1+

√
5

2
; thus

1 + x = 1.618 · · · is the golden number.
2/ This will be answered by the Birkhoff ergodic theorem, once we know 3/ and 4/!
3/ This was solved by Gauss; he showed that the probability measure with density
(log 2(1+x))−1 on [0, 1] is Φ-invariant (as is easily verified, once one has the formula!)
and that the iterates of Lebesgue measure converge to it.
4/ Ergodicity can be shown in several ways:
– by direct argument with distortion estimates, see Billingsley [Bil65] p. 40 ff.
– By the general Renyi-Bowen-Adler argument which works for expanding, countable
branched maps of the interval with bounded distortion, see e.g. [Mañ87] p. 168.
– Via the connection between continued fractions and geodesics on the modular sur-
face. Here ergodicity for the geodesic flow follows by the very general Hopf argument,
see [Hop39], [Hop71], §39 avoiding all distortion estimates.

That there must be a link between continued fractions and geodesics is easy to
believe (we associate a geodesic in the upper half plane to the continued fraction
expansions of its two endpoints) but making this precise can be done in a variety of
ways, some trickier than others; see the survey [KU07]. Our favorite approach is due
to Arnoux [Arn94], and will be fundamental to other parts of these notes, as will be
seen.

25.4. Continued fractions. First, a remark on notation: writing the continued
fraction of an irrational x ∈ (0, 1) as

x = [n0n1 . . . ] =
1

n0 +
1

n1 + · · ·

,

we begin the expansion of x with n0 rather than with the more traditional choice of
n1; this will agree with the usual shift notation of ergodic theory, where 0 indicates the
coordinate of present time, and will be especially convenient below when we switch
to the bilateral shift space.
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The kth approximant of x = [n0n1 . . . ] is pk/qk ≡ [n0 . . . nk], written in lowest
terms; this satisfies the recurrence relations:

pk+1 = pk−1 + nk+1pk

qk+1 = qk−1 + nk+1qk
(99)

where, to get started, we define (p−2, q−2) = (1, 0) and (p−1, q−1) = (0, 1), so (p0, q0) =
(1, n0), (p1, q1) = (n1, 1 + n0n1) and so on.

As is well known, this can be nicely expressed in matrix form. Defining for m ≥ 1

Rm =

[
0 1
1 m

]
, then we have

Rn0Rn1 · · ·Rnk =

[
0 1
1 n0

] [
0 1
1 n1

]
· · ·
[
0 1
1 nk

]
=

[
pk−1 pk
qk−1 qk

]
. (100)

We shall, in fact, use different matrices; defining

P =

[
1 1
0 1

]
and Q =

[
1 0
1 1

]
,

then one has, for k even,

P n0Qn1P n2 . . . P nk =

[
1 n0

0 1

] [
1 0
n1 1

]
· · ·
[
1 nk
0 1

]
=

[
pk pk−1

qk qk−1

]

and

Qn0P n1Qn2 . . . Qnk =

[
qk qk−1

pk pk−1

]
,

while for k odd

P n0Qn1P n2 . . . Qnk =

[
pk−1 pk
qk−1 qk

]
and Qn0P n1Qn2 . . . P nk =

[
qk−1 qk
pk−1 pk

]
.

Although at first glance this is slightly more complicated, we shall see below how
naturally the matrices P,Q arise in the present context.

Recall that SL(2,R) is the group of (2 × 2) real matrices with determinant one
and GL(2,R) those with determinant 6= 0. Restricting the entries to Z defines the
subgroups SL(2,Z) and GL(2,Z); we note that GL(2,Z) is the set of (2× 2) integer
matrices with determinant ±1. The orthogonal group SO(2,R) ⊆ SL(2,R) consists

of the matrices

[
a −b
b a

]
with determinant one. We also shall encounter the projective

linear group PSL(2,R); here matrices A and λA (both in SL(2,R)) are identified for
λ 6= 0, but since detλA = λ2detA = λ2 = 1, we have PSL(2,R) ∼= SL(2,R)/ ± I,
while PSO(2,R) ∼= SO(2,R)/ ± I. We observe also that SL(2,Z)\SL(2,R) ∼=
PSL(2,Z)\PSL(2,R), since we factor by ±I both above and below (see (??)). The
connection with hyperbolic geometry comes from the fact that there is an identifi-
cation of PSL(2,R)/PSO(2,R) with the upper half plane H; this is explained in
§25.5.

We write Γ = SL(2,Z); this is the modular group (sometimes that name is used
for PSL(2,Z) = SL(2,Z)/± I).
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Figure 67. A fundamental domain for the action of the modular group Γ

25.5. The modular flow, the geodesic flow and the Teichmüller flow. The
modular space is PSL(2,Z)\H; that is, it is the quotient space of the hyperbolic
plane defined by the action on the left of the group PSL(2,Z) (or equivalently Γ =
SL(2,Z)) by Möbius transformations.

We claim that Γ is generated by by the matrices

[
1 1
0 1

]
and

[
0 −1
1 0

]
. Since Γ/±I is

a subgroup of PSL(2,R), which is isomorphic to the group of Möbius transformations
Möb+(R) on H, this subgroup Möb+(Z) of Möb+(R) is generated by the two maps
z 7→ z + 1 and z 7→ −1/z. A fundamental domain for this action is illustrated in
Fig. 67.

To verify the claim and see exactly what group Γ is algebraically, recall from Lemma

19.1 that SL(2,N) is the free semigroup on the two generators P =

[
1 1
0 1

]
and

Q =

[
1 0
1 1

]
. We have:

Proposition 25.8. SL(2,Z) is generated (not freely) by P,Q; SL(2,Z) is freely

generated by the two matrices Ĵ =

[
0 −1
1 0

]
and K =

[
0 −1
1 1

]
which have orders 4

and 6 respectively, and so SL(2,Z) ∼= Z4∗Z6; we note that P = ĴK−2 and Q = Ĵ−1K2

Here ∗ indicates the free product of the two groups; one does not assume commu-
tativity as with a usual product of groups! And “freely generated by” means there
are no other relations. For a proof see [Mag74].

Below we also consider the space Γ(2)\H; this is a six-fold cover of the modular
surface, with a fundamental domain for that action shown in Fig. 68.
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Figure 68. A fundamental domain for the action of the principal mod-
ular subgroup Γ(2), of index 6 in Γ.

Next we decribe the connection with the Teichmüller flow. Given a matrix B ∈
SL(2,R) with rows tv1,

tv2, we send it by a map β to the parallelogram with vertex
at the origin and with sides given by these vectors. This has area 1; it inherits an
orientation from R2, which is positive since det(B) > 0.

The collection of all such parallelograms defined up to translation is T1(Teich), the
unit tangent bundle of the Teichmüller space of the torus; for the Teichmüller space
itself we consider the parallelograms up to rotations. The map β gives a one-to-one
correspondence from SL(2,R) to the positively oriented parallelograms with area 1
with a vertex at the origin. The matrix −B gives the same parallelogram rotated by
angle π, which is a translate of the original. Therefore we have:

Proposition 25.9. The map β : PSL(2,R)→ T1(Teich) is a bijection. �

The modular space of the torus is a factor space of the Teichmüller space; its unit
tangent bundle T 1(Mod) is described by allowing all possible basis changes for the
lattice. These are given by left actions of PSL(2,Z). So we conclude that T 1(Mod)
corresponds to PSL(2,Z)\PSL(2,R).

It remains to see what the right action of Et does to the lattices. And as one
immediately sees, acting by Et applies a hyperbolic flow to the plane, so it expands
the lattice exponentially in the direction of the x−axis, while contracting it in the
y−direction.

This gives what is called the Teichmüller flow of the torus.
So in conclusion, these are isomorphic: the modular flow, i.e. right action of {Et}t∈R

on Γ(m)\SL(2,R) or PSL(2,Z)\PSL(2,R); the geodesic flow on the modular surface;
the Teichmüller flow of the torus.
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25.6. Arnoux’ cross-section for the modular flow. Now we come to the work
of [Arn94] which plays a basic role below. An insight here is that rather than using
the fundamental domain for the surface to find a cross-section for the geodesic flow,
one should work directly in the unit tangent bundle, first finding a nice fundamental
domain there from which the flow cross-section will be apparent.

The key idea of how to do this was inspired by Veech’s analysis of the Teichmüller
flow of surfaces of genus ≥ 2, see e.g. [Via06]; interpreting the modular flow as the
Teichmüller flow leads to an especially transparent construction of a cross-section,
with very nice combinatorial properties as we shall see.

One technical difference to Veech’s work is that rather than employing Rauzy in-
duction, Arnoux cuts down the interval alternately from the left and the right. This
is a more symmetrical approach in the present setting.

We define a subset of SL(2,R): B is the collection of matrices B =

[
a c
−b d

]

satisfying:

(1) a, b, c, d ≥ 0
(2) detB = 1
(3) B is a union of disjoint sets B = B0 ∪ B1, where for B ∈ B0, 0 < a < 1 ≤ b

and d < c, and for B ∈ B1, 0 < b < 1 ≤ a and c < d.

We say B ∈ B has parity ε = 0 or ε = 1 when it is in B0 or B1 respectively.
We have:

Proposition 25.10. B is a fundamental domain for the left action of SL(2,Z) on
SL(2,R). Also, B is a fundamental domain for the left action of PSL(2,Z) on
PSL(2,R).

Proof. Let C ∈ SL(2,R), and let Λ ⊆ C be the lattice generated by the rows of
C. We claim that there exists a unique matrix B ∈ B whose rows span the same
lattice. But left multiplication of C by an element of SL(2,Z) just changes basis in
this lattice, so this will prove the proposition.

Our proof is geometrical. We construct a “Markov partition” by the following
algorithm, depicted in Figure 69. (In fact these are actual Markov partitions, but for
a nonstationary dynamical system; see [AF05]).
(i)Draw a closed horizontal line segment of length 2, centered at each point of the
lattice Λ.
(ii)Extend a vertical line from each lattice point until it meets the horizontal segment.
(iii) There are three cases: the location where it meets is to the left of the lattice
point, is at the point or is to the right. We consider the case where it lies to the
left. Remove the rest of the segment, to the left of this hitting point. The length of
this horizontal piece, to the left of the lattice point, defines the number a. Note that
a < 1.
(iv) Extend the horizontal line to the right, until it hits the vertical segment. This
length defines b. Note that b ≥ 1.
(v) Finally, extend the vertical segment further upwards until it hits the horizontal
segment. There are two cases: it hits in the interior of the segment or at an endpoint.
(Geometrically, in the lattice, the two endpoints are identical.) We assume it is in
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Figure 69. Construction of the Markov partition, given a lattice in
the plane; here a < b so B ∈ B0.

the interior. We call c the length of the vertical segment and d the distance along
the vertical segment from the lattice point to where this segment was hit by the
horizontal. Therefore d ≤ c.

The case where the vertical segment hits a lattice point corresponds to a = b = 1,
while the horizontal segment hitting a lattice point corresponds to c = d; both happen
only for the square lattice Z + Z. All of these are ruled out by hypothesis.

Now since det(C) = 1, the area of the parallelogram spanned by its rows is 1. This
is a fundamental domain for the action of Λ on C, so the torus (which is the quotient
space) has area 1.

In this construction, we have drawn two boxes. Their union tiles the plane under
translation by Λ (see Fig. 70), hence is also a fundamental domain for Λ. So their
total area is 1.

We see from Figure 69 that d, c are the vertical sides of the boxes with bases a, b
respectively. This completes the proof of the claim and the Proposition. �

As in [AF05] we define B0
0 and B1

0 to be the subsets of B with b = 1 and a =
1 respectively, and set B0 = B0

0 ∪ B1
0 . Now under the projection of SL(2,R) to

SL(2,Z)\SL(2,R), B maps in a one-to-one way since it is a fundamental domain.
Hence its subset B0 also maps injectively, thus we can naturally identify B0 with
SL(2,Z) · B0 ⊆ SL(2,Z)\SL(2,R). We let T denote the return map of the geodesic
flow on SL(2,Z)\SL(2,R) to B0 (with this identification).

As above, Π̂ with map π̂ denotes the two-point extension of the bilateral continued
fraction shift map.

We now show how (Π̂, σ̂) factors onto (B0, T ).

Proposition 25.11. B0 is a cross-section for the modular flow. The transformation

(Π̂, σ̂) is semiconjugate to the return map T of the flow to B0 off of an invariant
nowhere dense set, which has measure zero for the natural extension of Gauss measure
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Figure 70. Two fundamental domains for the lattice Λ: the parallel-
ogram and the two-box partition. In the above picture, the horizontal
axis gives the expanding direction of the Teichmüller flow.

and corresponds to rational points. The successive returns of B0 ∈ B0 to this cross-

section are B1, . . . , Bi with Bi+1 = AiBiDi where Bi =

[
ai ci
−bi di

]
, Di =

[
λi 0
0 λ−1

i

]

and
for parity 0:

ai = [nini+1 . . . ], bi = 1, di/ci = [ni−1ni−2 . . . ], and λi = 1/ai, and Ai =

[
1 0
ni 1

]
,

for parity 1:

bi = [nini+1 . . . ], ai = 1, ci/di = [ni−1ni−2 . . . ], and λi = 1/bi and Ai =

[
1 ni
0 1

]
.

The matrix B0 is a is a unit tangent vector to the modular space, and the geodesic
tangent to it goes to ξ = −a0/b0 at +∞ and η = c0/d0 at −∞. For parity 0,
ξ ∈ (−1, 0) and η ∈ (1,+∞), and for parity 1, ξ ∈ (−∞,−1) and η ∈ (0, 1).

Proof. First we show it is a cross-section. By Proposition 25.10, B is a fundamental
domain for the left action of SL(2,Z) on SL(2,R), hence the modular flow corresponds
to the flow on this fundamental domain, so it suffices to check the statement there.
Now if for example B0 ∈ B0

0 , then 0 < a < 1 ≤ b and we apply the matrix Et
on the right, considering how this acts on the parallelograms defined by the row
vectors: geometrically the direction of the x−axis is dilated until the smaller of the
two boxes has length 1. That is, taking t0 = log a−1

0 , then B0Et0 ∈ B1
0 . Hence B0 is a

cross-section for the modular flow.
Next, let B0 ∈ B0

0 . We define a sequence of positive integers n = (. . . n0n1 . . . )
from the continued fraction expansions [n0n1 . . . ] = a0 and [n−1n−2 . . . ] = d0/c0.

From the sequence n, we define matrices Ak, Bk, Dk for k ∈ Z as above, taking the
sequence (Ak) to have parity 0.
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Now consider the orbit of B0 under the geodesic flow on the covering space H,
{B0Et : t ∈ R}. At time t0 = log(1/a0), the boxes determined by B0 have been
rescaled by D0 ≡ Dt0 so the new left-hand base length is equal to one. We see that
the matrix B1 = A0(B0D0) is equivalent to B0D0 modulo the left action of SL(2,Z),
and is in the set B0,1. This represents the first return to our cross-section. Therefore
the return sequence is: . . . B0 7→ B1 7→ B2 7→ . . . , which determines the sequence n.

The image of Π̂ is all B ∈ B0 with nonterminating continued fraction expansions,
i.e. with irrational ratios of a to b, c to d; this set is a dense Gδ with full Gauss
measure, and is invariant for the return map.

Finally, the asymptotics in H of the geodesic tangent to B0 is seen via the map
M 7→ FM(Ii), applying the matrix Et on the right; this finishes the proof. �

26. Nonlinearity: Shub’s theorem

Before we study the smooth conjugacy of nonlinear hyperbolic maps of the in-
terval, where a projective metric proof of Ruelle’s version of the Perron Frobenius
Theorem will play a key role, we consider the question of topological congugacy and
the wonderful theorem on expanding maps of the circle due to Shub.

The proof given here of Shub’s theorem [Shu85] is based on [Nit71], with some
changes in the organization and proofs of the lemmas.

As before we write T1 for the circle R/Z, and π : R → T1 for the projection map
π : x 7→ x(mod 1). A fundamental domain for the action of Z on R is [0, 1), so we
embed T1 in R as [0, 1) ⊆ R. So it will make sense to speak of the derivative of a
map f : T1 → T1 via that embedding.

Definition 26.1. Let f : T1 → T1 be differentiable. We say f is expanding iff ∃λ
such that the derivative Df satisfies |Df(x)| > λ > 1 for all x.

Definition 26.2. Given f : T1 → T1 continuous, a function f̄ : R→ R is a lift of f
iff f̄ is continuous and π ◦ f̄ = f̄ ◦ π, i.e. the following diagram commutes:

R f̄−−−→ Ryπ
yπ

T1 f−−−→ T1

We need the following basic result from topology, see e.g. [Arm83] p. 97:

Lemma 26.1. Given a continuous map f : T1 → T1 and writing p = f(0), then for
any choice of p̃ ∈ π−1(p), there exists a unique lift f̄ such that f̄(0) = p̃.

(Here we write 0 both for the point in T1 and in R, by the imbedding of [0, 1) in
R.)

Definition 26.3. Let f : T1 → T1 be continuous and let f̄ be a lift of f . The degree
of f is f̄(x+ 1)− f̄(x).

For this to make sense we need:

Lemma 26.2. For f : T1 → T1 continuous,
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(i) For any fixed x, f̄(x+ 1)− f̄(x) ∈ Z.
(ii) This number does not depend on the point x.
(iii) Furthermore, it is independent of the choice of lift.
(iv) For any n ∈ Z, f̄(x+ n)− f̄(x) = n · deg f .

Proof. (i): Now π ◦ f̄ = f ◦ π and π(x) = π(x + 1). So f ◦ π(x) = f ◦ π(x + 1) but
the left side is π ◦ f̄(x) and the right side is π ◦ f̄(x+ 1). Thus f̄(x) and f̄(x+ 1) are
in the same preimage of a point by π so they differ by an integer k.
(ii): The function g(x) = f̄(x + 1) − f̄(x) is continuous and integer-valued hence is
constant.
(iii): If f̃ is another lift, then π◦f̄(x) = f◦π(x) = π◦f̃(x), so f̄(x) = f̃(x)+k for some

k ∈ Z; again this is constant by continuity, and so f̄(x+ 1)− f̄(x) = f̃(x+ 1)− f̃(x).
(iv): From the definition this holds for n = 1; by induction it is true for n ∈ Z. �

We shall also need:

Lemma 26.3.
(i) If f̄ is continuous and f̄(x + 1)− f̄(x) = n, then f̄ is a lift of some f : T1 → T1

of degree n.
(ii) If deg f = k and f̄ is invertible, then f̄−1(x+ k) = f̄−1(x) + 1.

Proof. (i) Defining for x ∈ [0, 1] f(x) = π(f̄(x)), then f(0) = f(1), so f is a well-
defined continuous map of T1 and π ◦ f̄ = f ◦ π.
(ii) We have f̄(x+ 1) = f̄(x) + k. Applying f̄−1 on both sides, and writing f̄(x) = x̃,
then f̄−1(x̃) + 1 = x + 1 = f̄−1(f̄(x) + k) = f̄−1(x̃ + k). On the other hand, x =
f̄−1 ◦ f̄(x) = f̄−1(x̃) so x+ 1 = f̄−1(x̃) + 1. �

Let

E = {lifts ᾱ of maps α : T1 → T1 of degree 1}
and

E0 = {h : R→ R continuous and periodic with period 1}.
For f, g ∈ E, we define d(f, g) = supx∈R{|f(x)− g(x)|}. We write id for the identity
map x 7→ x on R.

Lemma 26.4. (E, d) is a complete metric space.

Proof. In fact, E = E0 + id, so E is an affine space which is isometric to the Banach
space E0 (with sup norm). �

Remark 26.1. The point is that, although the sup norm is infinite on E itself, this set
is a perfectly nice metric space via this identification. A similar phenomenon happens
in proofs of the stable manifold theorem, see [Shu87] where the relevant space of maps
is a Banach manifold.

Now assume we are given f expanding on T1 and g with degree the same as f .
We define an operator T : E → E by T (ᾱ) = f̄−1 ◦ ᾱ ◦ ḡ. This is illustrated in the

diagram:
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R ḡ−−−→ RyT (ᾱ)

yᾱ

R f̄−−−→ R
To make sure this makes sense we need:

Lemma 26.5. If f is expansive then f̄ is 1 − 1 and onto R. If ᾱ ∈ E then so is
T (ᾱ).

Proof. The map π is locally an isometry, so the derivatives are equal of f and f̄ ; that
is, Df̄(x) = Df(π(x) for any x ∈ R, and so |Df(x)| > λ > 1 which immediately
implies this is a bijection on R (much less would give this; it is enough that the
derivative be nonzero).

Since f̄ is invertible, T is well-defined. We claim that if ᾱ is in E then T (ᾱ) is also in
E. Writing α̃ = T (ᾱ), by Lemma 26.3(i), it is enough to show that α̃(x+1) = α̃(x)+1.
Now α̃(x + 1) = T (ᾱ)(x + 1) = f̄−1 ◦ ᾱ ◦ ḡ(x + 1) = f̄−1 ◦ ᾱ(ḡ(x) + deg g) =
f̄−1(ᾱ(ḡ(x)) + deg g) = f̄−1(ᾱ(ḡ(x))) + 1 = α̃(x) + 1. �

Lemma 26.6. The map T is a contraction on the complete metric space E.

Proof. Given ᾱ, β̄ ∈ E, supx∈R |f̄−1(ᾱ(ḡ(x))) − f̄−1(β̄(ḡ(x)))| = supw∈R |f̄−1(ᾱ(w) −
f̄−1(β̄(w))| ≤ λ−1 supw∈R |ᾱ(w)− β̄(w)| = λ−1d(ᾱ, β̄). �

And now of course we will apply:

Lemma 26.7. Let T be a contraction on a complete metric space. Then T has a
unique fixed point. �

Theorem 26.8. (Shub [Shu85]) Let f be an expanding map of the circle (so with
degree deg f ≥ 2 or ≤ −2), and let g be a continuous map of the circle with the same
degree as f . Then there exists a unique continuous map h of degree 1 for which the
following diagram commutes:

T1 g−−−→ T1

yh
yh

T1 f−−−→ T1

Proof. We know there is a unique fixed point h̄ in E; from the equation T (h̄) = h̄,
this diagram commutes:

R ḡ−−−→ Ryh̄
yh̄

R f̄−−−→ R
Since h̄ ∈ E, it is the lift of a degree one map h of the circle, and the other diagram

commutes as well. �
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Corollary 26.9. Let f, g both be expanding maps of the same degree. Then there
exists a unique conjugacy h as in the diagram.

Proof. Switching the roles between g and f , we stick the two diagrams together:

R f̄−−−→ Ryh̃
yh̃

R ḡ−−−→ Ryh̄
yh̄

R f̄−−−→ R
Looking at the composition, we have

R f̄−−−→ Ryh̄◦h̃
yh̄◦h̃

R f̄−−−→ R
but there is a unique fixed point for this operator T (with g = f itself) and since the

identity map on R works, we must have h̄ ◦ h̃ = idR. Hence h̄ is invertible. Since it
is in E, it is the lift of a map h of degree one which is also invertible. �

26.1. Some consequences. We now harvest some immediate consequences, each of
which gives an early taste of much more general theorems from hyperbolic dynamics.
See for example [Nit71], [Shu87], [KH95] as well as [Shu85].

There exists a particularly nice choice for a representative of an expanding map in
the equivalence class of topological conjugacy:

Corollary 26.10. (Classification of expanding maps of the circle) An expanding map
f of the circle with degree d is topologically conjugate to the linear map x 7→ dx(mod 1).

�

Since a map g close to f will also be expanding, and since their lifts will stay close
hence the degree will also be preserved, we have:

Corollary 26.11. (Structural stability of expanding maps of the circle) Given an
expanding map f of the circle, there exists a neighborhood U of f in the C1− topology
such that every g ∈ U is topologically conjugate to f . �

Remark 26.2. Ed = {lifts of maps of degree d} is a Banach manifold, isometric to E0.
Proof: f̄(x+ 1) = f̄(x) + d, so f̄ − ḡ ∈ E0.

A weaker (but important) statement is:

Corollary 26.12. (Openness for expanding maps of the circle) In the Banach man-
ifold of all smooth maps of the circle of degree d, the expanding maps are an open
subset. �

A further immediate corollary of the proof is:
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Corollary 26.13. Taking f = g expanding, the operator T on the Banach manifold
E is hyperbolic, with a unique contractive fixed point (the identity map on R). �

27. The Thermodynamic Formalism

We have above discussed Parry measures for subshifts of finite type, as well as
related invariant measures for adic transformations. These can be understood intu-
itively with the help of geometric models, where the measures are Lebesgue measure
(length) on intervals, for a one-sided shift space, or two-dimensional Lebesgue measure
(area) on boxes, for the two-sided (bilateral) case.

Let us recall the formula: Given a (d× d) nonnegative 0− 1 primitive matrix M ,
with right Perron-Frobenius (column) eigenvector w and left row eigenvector vector
vt, with eigenvalue λ > 1, normalized so w ∈ ∆ i.e. ||w|| = ∑ |wi| = 1 and v ·w = 1,
then

µ([x−n−1 . . . x1.x0 . . . xn] = λ−2n−2vawb

where a = x−n−1, b = xn.
This is the area of the box labelled by this cylinder set, and is the product of the

lengths of the two sides,

µ+([.x0 . . . xn] = λ−n−1wb

and

µ−([.x−n−1 . . . x1] = λ−n−1va,

corresponding to cylinder sets in Σ+
M and Σ−M respectively; these measures are invari-

ant not for the shift map but for respective adic transformations on these one-sided
shift spaces.

In the nicest situation, an Anosov map on the 2−torus, these boxes are actual
geometrical rectangles in a surface. See Figure 69 for the torus case. Nearly as well-
behaved is the special Markov partition for a pseudoAnosov map on a Riemann surface
given by the Veech rectangles; here the adic transformation is simply the return map
of the vertical (horizontal) flow, and is an interval exchange transformation (for the
torus, it is an exchange of two intervals and hence a circle rotation); this map tells
us how to glue the boxes to recover the surface.

Now a Markov measure has the property of depending only on the past digit. A
general continuous (i.e. non-atomic) measure depends on more, perhaps all, past
digits, in a measurable way.

The geometric models for the Markov maps of an interval are linear expansions, as
in Fig. 17 or 48; a pseudoAnosov map can be thought of as the product of two such
maps.

We want to extend this study to general hyperbolic C1+α diffeomeorphisms of a
compact manifold, and it is precisely for this reason that the Thermodynamic For-
malism was developed by Ruelle, Sinai and Bowen.

Realizing that the Parry measure is defined as the product of two eigenvectors,
which are dual to each other (being a row and an column vector), it is natural to
start with the collection of all signed measures as the dual space of the space of
continuous functions on our compact metric space X, for instance X = Σ+

M . Then
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considering the duality between C(Σ+
M) andMX , perhaps we can find an appropriate

linear operator L, on C(Σ+
M), defined from our dynamics, with dual operator L∗, with

eigenvectors g (a continuous function) and ν (a measure) such that their product,
µ = gν, will be the invariant probability measure we seek.

That is the idea, and what is remarkable is that this all works out, and so nicely
at that!

The first step is to prove an appropriate analogue of the Perron-Frobenius theorm.
Here there is a restriction to Hölder functions; in terms of the measurable dependence
on the past referred to above, this is a strong enough condition to give uniqueness
of the eigenvectors, and corresponds to the C1+α condition for maps: given a map f
of an interval, the corresponding potential function encountered below will be ϕ =
− log |Df |, which is indeed α-Hölder.

To greatly simplify the technical value of the Hölder condition, essentially “hyper-
bolicity plus Hölder gives a geometric series”. Having this convergent series is crucial
in the theory. As one might guess, sometimes these conditions can be weakened to
some other convergent series; this is a challenging and active field of research!

27.1. The Ruelle Perron-Frobenius theorem. In this section we present a pro-
jective metric proof, due to Ferrero and Schmidt, of the Ruelle Perron-Frobenius
theorem. As just indicated, this is a key part of the thermodynamical formalism of
Ruelle, Sinai and Bowen; why this is both natural and useful will become clearer in
sections to follow, when we discuss nonlinear maps.

The Ruelle operator. We begin by considering a general real-valued continuous
potential function ϕ. Then, letting ϕ ∈ C(Σ+

A), the Ruelle operator Lϕ : C(Σ+
A) →

C(Σ+
A) is defined by:

(Lϕf)(x) =
∑

w∈σ−1(x)

eϕ(w)f(w).

Thus, for the nth iterate of the operator, Lnϕ, the value at x is collected from level
n of the tree of preimages of x, with weights eϕ along each branch.

The dual operator L∗ϕ acts on the collection M of Borel measures on Σ+
A by the

adjoint equation: writing 〈m, f〉 =
∫
fdm for the pairing betwen measures and con-

tinuous functions, then for f ∈ C(Σ+
A) and m ∈ M, 〈L∗ϕm, f〉 ≡ 〈m,Lϕf〉. That

is,

(L∗ϕm)(f) ≡ m(Lϕf) ≡
∫

Σ+
A

(Lϕf)dm.

A special case is the normalized situation where we have a potential function
ψ such that p = eψ gives a probability weighting, i.e. so that

∑
{σ(w)=x} p(w) =∑

{σ(w)=x} e
ψ(w) = 1. Then we have

(Lψf)(x) = (Llog pf)(x) =
∑

σ(w)=x

p(w)f(w).

Equivalently, Llog p(1) = 1 for the constant function 1. In this normalized case, if µ is
a probability measure such that L∗log p(µ) = µ, we say that µ is a p-balanced measure.
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(The original term is g-measure, where the function is denoted by g rather than p;
the concept is due to M. Keane; see [Kea72], [PP90]). Then the Ruelle operator and
its dual give the analogue of a stochastic matrix, acting on column and row vectors
respectively; see ??? below.

In the next proposition we give some ways of understanding the meaning of this
mysterious formalism. Later we explain the connection to Markov shifts and the
Shannon-Parry measure, which will clarify things further.

References for these results are [Kea72], [Led74], see also [PP90]).

Proposition 27.1.
(a)The dual operator L∗ϕ is, equivalently, defined by its action on point masses: for

x ∈ Σ+
A with preimages y, w,

L∗ϕ(δx) = eϕ(y)δy + eϕ(w)δw.

(b) Parts (i) and (ii) are equivalent:
(i) ν is an eigenmeasure with eigenvalue λ, i.e. L∗ϕ(ν) = λν
(ii)

dν ◦ σ
dν

= λe−ϕ.

(c) Any invariant measure µ on Σ+
A is an eigenmeasure for a unique normalized

measurable potential ϕ = log p, with

1

p
≡ e−ϕ =

dµ ◦ σ
dµ

.

Proof. The equation in (a) follows directly from the definition; the converse holds
since linear combinations of point masses are weak-∗ dense in the space of measures.

�

??Proof???

27.2. Matrix examples. We examine the connection with Markov shifts, §15.

27.3. Hölder functions and the Ruelle operator. Of special interest will be the
case where our potential function ϕ is such that, as in (b), (c) above, there exists
an eigenmeasure ν with eigenvalue λ, with ν ◦ σ locally absolutely continuous with
respect to νϕ. This will be guaranteed by a Hölder condition, as we now explain.

Given a (d×d) matrix A with enties 0 and 1, as before Σ+
A ⊆ Σ+ = Π∞0 {0, . . . , d−1}

is the subshift of finite type with transitions those allowed by A, and with left shift
map σ. Recall that the collection of all thin k−cylinder sets [x0 . . . xn] is denoted by
Ck

0. We also define the whole space, Σ+
A, to be the only “(−1)-cylinder set”; thus

C−1
0 = {Σ+

A}. The space Σ+
A has been given the product topology; this is metrizable,

and we shall use the metric

d(x, y) =

{
1 if x0 6= y0 ,

2−n if x0 = y0 and n = inf{n > 0 : xn 6= yn}.
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The Borel σ−algebra of Σ+
A is denoted by B. We write C(Σ+

A) for the set of continuous
real-valued functions on Σ+

A.
For k ≥ 0 (recalling that we have set C−1

0 = Σ+
A), we define the kth variation of

f ∈ C(Σ+
A),

vark(f) = sup{|f(x)− f(y)| : x, y ∈ C ∈ Ck−1
0 }.

For α ∈ (0, 1), we define the class of functions whose variation is exponentially small
as a function of k, for base α:

Hα ≡ {f : ∃ c > 0 with varkf ≤ cαk} for all k ≥ 0}.
These are the Hölder functions with exponent − logα/ log 2 with respect to the metric
d. We write || · ||∞ for the sup norm on C(Σ+

A), and define a norm on Hα ⊆ C(Σ+
A) by

||f ||α ≡ ||f ||∞ + c

where c is the inf of the possible Hölder constants for that exponent (or equivalently,
for that base α); thus,

c = sup
k
{varkf · α−k}.

We define Hb
α to be the subset of Hα with Hölder constant c ≤ b.

For a potential ϕ ∈ C(Σ+
A) we define the pressure

P (ϕ) = sup

{∫
ϕ dm+H(m)

}

where the sup is taken over the collection of invariant probability measures and H(m)
denotes the entropy of the map T when the shift space is given that measure. (We
remark that, for instance, a normalized potential ϕ always has pressure P (ϕ) = 0). If
an invariant measure m is ergodic and is such that this sup is attained there, one says
that m is an equilibrium state for that potential. A main theorem of the subject
is that for Hölder potentials, there exists a unique equilibrium state (Theorem 1.22
in [Bow75]). We recall how this measure, µ, is produced.

For the case of a Hölder potential ϕ, it is known that one can always change
to an equivalent normalized potential ψ. The equivalence relation here is that of
cohomology:

Definition 27.1. One says ψ, ϕ are cohomologous iff there exists u such that

ψ = ϕ+ u ◦ T − u.
We call u a transfer function; if u belongs to some special class, e.g. it is Hölder,
or in L2, or continuous we shall then say that ψ, ϕ are Hölder (L2, continuously)
cohomologous respectively. In this case, one can find such an u Hölder (with the
same exponent), and so the resulting ψ is Hölder as well [Bow75].

In the special case where ψ is cohomologous to the constant function zero, that is
there exists a function u such that

ψ(x) = u ◦ T (x)− u(x), (101)
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one says that the function ψ is a coboundary. Thus ψ and ϕ are cohomologous iff
ψ − ϕ is a coboundary.

For the above example of producing a normalized potential, the transfer function u
is produced in an interesting way; it is u = log h where h is the unique eigenfunction
for the Ruelle operator Lϕ.

27.4. Cohomology, potential functions and change of basis. We examine this
mysterious cohomology equation more closely. First, in the matrix formulation of the
Ruelle operator, we see that the cohomology equation for potentials log p and g,

log p = g + log h− log h ◦ σ
is turned into similarity of matrices:

P̃ = HLH−1.

Thus the cohomology can be thought of simply as expressing the matrix in terms of
a different basis. We point out now that this works in general; see also [AF02].

Proposition 27.2. Let ϕ, v be continuous functions: Σ+
A → R. Define the Ruelle

operator by

(Lϕf)(x) =
∑

w∈σ−1(x)

eϕ(w)f(w);

define V to be the multiplication operator

V : f(x)→ v(x)f(x).

Then, with Lψ denoting the Ruelle operator for the potential ψ = ϕ+ log v− log v ◦σ,
we have

Lψ = V −1 ◦ Lϕ ◦ V.
Proof.

Lψ : f(x) 7→
∑

eϕ(w)+log v(w)−log v◦σ(w)f(w) =
1

v(x)

∑

σw=x

eϕ(w)
(
f(w)v(w)

)

which proves the claim. �

27.5. A projective metric proof of the Ruelle-Perron-Frobenius theorem.
For other proofs see [Bow75], [Wal75], [Led74], [PP90]; here we present the projective
metric proof of Ferrero and Schmidt [FB79], [FB88], see also [Via97], [Liv96], [BG95].

Theorem 27.3. Assume A is a primitive 0 − 1 matrix. Let ϕ ∈ Hb
α, with Lϕ the

Ruelle operator acting on C(Σ+
A). Then there exists a unique maximum eigenvalue

λ > 0 for Lϕ; this is λ = eP where P = P (ϕ) is the pressure. There exists a positive
eigenfunction h, unique up to multiplication by a constant. For this eigenvalue, there
also exists for the dual operator L∗ϕ an eigenmeasure ν, unique when normalized so

that ν(Σ+
A) = 1 and ν(h) = 1.

The potential ψ = ϕ + log h ◦ T − log h − P is normalized: it has pressure is 0;
the operator Lψ has eigenvalue 1 = e0 = eP with unique positive eigenfunction 1,



232 ALBERT M. FISHER

while the dual operator L∗ψ has a unique eigenmeasure of eigen value one µ, with µ

invariant and µ = h · ν. For all f ∈ C(Σ+
A),

||Ltψ(f)− µ(f)||∞ → 0

as t → ∞. For all f = IP , where P ∈ Ck
0 is a k-cylinder set for some k, this

convergence is exponentially fast: there exists c > 0, β ∈ (0, 1) such that for all k, for
all t,

||Ltψ(f)− µ(f)||∞ < c · βt.

We need first a series of lemmas. We fix α ∈ (0, 1) and b ≥ 1. Write

Bn = exp

(
2b

∞∑

n+1

αk
)
, (102)

and define Λ1 to be the set of all functions f : Σ+
A → [0,∞) such that for each n ≥ 0,

f(x) ≤ Bnf(y) if x, y ∈ C ∈ Cn−1
0 (103)

That is, for n ≥ 1 x, y are in the same thin cylinder [.x0 . . . xn−1], while for n = 0

means x, y ∈ {Σ+
A}.

Next we define for p ≥ 1

Λp = {f ≥ 0 : f(x) ≤ Bnf(y) if x = y on [0 . . . (n− 1)], for each n ≥ p}. (104)

Remark 27.1. To motivate these definitions, we note that for the case where f ∈ Λ1

is never zero, equivalently f = eF where F is α−Hölder with constant 2bα/(1− α).
Similarly, nonzero f ∈ Λp means that restricted to any thin cylinder C ∈ Cp−1

0 , F is
α−Hölder with constant 2bα/(1− α). This is because

f(x)

f(y)
≤ Bn

so

log f(x)− log f(y) = F (x)− F (y) ≤ logBn = 2b
∞∑

n+1

αk =
2b

1− αα
n+1 =

2bα

1− αα
n.

Next we set

Λ = ∪∞p=1Λp.

Lemma 27.4. Λ1 ⊆ Λ2 ⊆ · · · ⊆ Λn · · · ⊆ Λ, and
(1) Λp and Λ are convex cones which satisfiy Furstenberg’s condition.
(2) The difference set Λ− Λ is dense in the continuous functions C;

Proof. We prove (1). We check, writing K for Λp or Λ:
K +K ⊆ K since

(f + g)(x) ≤ Bnf(x) +Bng(x) = Bn(f + g)(x)
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aK ⊆ K for a ≥ 0:

af(x) ≤ aBf(y) = B(af)(y)

Now we check Furstenberg’s condition. Indeed, the cone of nonnegative continuous
functions C+ ⊇ Λ has this property: take f, g ∈ C+ such that f 6= g. We claim
that f + t(g − f) is not in C+ for all t ∈ R. But since f 6= g, there is an x with
f(x) = a 6= b = g(x). And for positive a 6= b, a + t(b − a) will be negative for some
t ∈ R, confirming the claim.

Next, by Lemma ??, the defining condition for Λp makes no restrictions for the
difference of values F (x)− F (y) for x, y in a cylinder set in Cn

0 for n < p. So clearly
these sets are nested increasing. To prove (2), in particular, all nonnegative step
functions which are constant on cylinders in Cp−1

0 are included- with arbitrarily large
differences between the steps. Now from the cone property, Λp−Λp is a vector space,
hence contains all the step functions; these are dense in C, proving (1). �

We now fix ϕ ∈ Hb
α as in the statement of the theorem. Given an allowed string

x = (.x0x1 . . . ), we write jx for (.jx0x1 . . . ) where Ajx0 = 1.

Lemma 27.5. LϕΛp ⊆ Λp−1 for all p > 1, and LϕΛ1 ⊆ Λ1.

Proof. We are given f ∈ Λp, ϕ ∈ Hb
α so for all n ≥ 0, when x = y on some C ∈ Cn−1

0 ,

recalling here that C−1
0 = {Σ+

A}, then |ϕ(x)− ϕ(y)| ≤ bαn whence

exp(ϕ(x)) ≤ exp(bαn) exp(ϕ(y)) for all n ≥ 0, and (105)

f(x) ≤ Bnf(y) for all n ≥ p. (106)

We shall show that for all n ≥ p− 1, for all x, y with xi = yi for 0 ≤ i < n− 1,

(Lϕf)(x) < BnLϕf(y).

When x = y on [0 . . . n− 1], then if Ajx0 = 1, jx = jy on [0 . . . n], so exp(ϕ(jx)) ≤
exp(bαn+1) exp(ϕ(jy)) for all n ≥ 0 while f(jx) ≤ Bn+1f(jy) for all n + 1 ≥ p. We
note that

exp(bαn+1)Bn+1 = exp(−bαn+1) exp(2bαn+1)Bn+1 = exp(−bαn+1)Bn < Bn.

Therefore for all n ≥ p− 1,

(Lϕf)(x) ≡
∑

j:Ajx0=1

eϕ(jx)f(jx) ≤ exp(bαn+1)Bn+1

∑

j:Ajx0=1

eϕ(jy)f(jy) (107)

= exp(−bαn+1)BnLϕf(y) < BnLϕf(y). (108)

Thus in particular, LϕΛ2 ⊆ Λ1, but since Λ1 ⊆ Λ2, also LϕΛ1 ⊆ Λ1. �

Lemma 27.6. Writing dp(·, ·) for the projective metric on Λp, then for f, g ∈ Λp,
dp(f, g) = log(β/α) where

β = sup
n≥p

sup
xi=yi
0≤i<n

Bnf(y)− f(x)

Bng(y)− g(x)
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and
1

α
= sup

n≥p
sup
xi=yi
0≤i<n

Bng(y)− g(x)

Bnf(y)− f(x)
.

Proof. dp(f, g) = log β/α where α, β are the largest, respectively smallest numbers
such that αg ≤ f ≤ βg, i.e. such that f − αg, βg − f ∈ Λp. Thus

(f − αg)(x) ≤ Bn(f − αg)(y)

whence

α(Bng(y)− g(x)) ≤ (Bnf(y)− f(x))

so

α = inf
n≥p

inf
xi=yi
0≤i<n

Bnf(y)− f(x)

Bng(y)− g(x)
.

Similarly

β = sup
n≥p

sup
xi=yi
0≤i<n

Bnf(y)− f(x)

Bng(y)− g(x)
.

Lemma 27.7. The projective diameter ∆ of LϕΛ1 in Λ1 is finite.

Proof. �

Write d = d1 and L = Lϕ. By the triangle inequality, d(f, g) ≤ d(f, 1) + d(1, g)
where 1 is the constant function.

From the Lemma, for f ∈ Λ1, d(Lf, 1) ≤ log(β/α) where

β = sup
n≥1

sup
xi=yi
0≤i<n

BnLf(y)− Lf(x)

Bn − 1

and
1

α
= sup

n≥1
sup
xi=yi
0≤i<n

Bn − 1

BnLf(y)− Lf(x)
.

Since (Lϕf)(y) < BnLϕf(x), we have for all x, y with xi = yi on 0 ≤ i ≤ n− 1,

BnLf(y)− Lf(x)

Bn − 1
≤ (B2

n − 1)Lf(x)

Bn − 1
≤ (Bn + 1) sup |Lf |

and since by (108) 0 ≤ Lϕf(x) ≤ exp(−bαn+1)BnLϕf(y), for each n ≥ 0,

Bn − 1

BnLf(y)− Lf(x)
≤ Bn − 1

Bn(1− exp(−bαn+1))Lf(y)
≤ Bn − 1

Bn(1− exp(−bαn+1))

1

inf |Lf |
Thus

log(β/α) ≤ sup
n≥0

(Bn + 1) sup
n≥0

(Bn − 1)

Bn(1− exp(−bαn+1))

sup |Lf |
inf |Lf |

Since ≤ B0 = exp(2bα/(1 − α)), and Bn decreases to 1, setting K = B0 this is ≤
??? �
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28. Nonlinearity: Smooth structures

In the previous section, we have seen how expanding maps of the circle are classified
up to topological congugacy (by Shub’s theorem).

Here we begin to study smooth conjugacies, with degrees C1 or higher of differen-
tiability. This will further divide each topological equivalence class into uncountably
many smooth classes.

The first tool we shall need is bounded distortion. This has many variants, in
different parts of dynamics. Our present setting of hyperbolic circle maps provides a
good place to begin an understanding of such phenomena.

This will simultaneously help us study smooth conjugacy, and give us a key to
understanding the small scale structure of our maps.

28.1. Bounded distortion property. First we need some definitions.

Definition 28.1. Given two metric spaces (X, d) and (X̂, d̂), a function f : X → X̂
is Hölder with exponent α > 0 and constant c > 0 iff for each x, y ∈ X then

d̂(f(x), f(y)) ≤ c(d(x, y))α.

We denote by Hα(X, X̂) the collection of all α- Hölder functions.

Note that H1 = Lip, the Lipschitz functions. A first interesting fact is:

Lemma 28.1. For X = I = [0, 1] with the Euclidean metric, then if α > 1, Hα ≡
Hα(I, I) is the set of all constant functions. The same is true if we repace I by a
path-connected differentiable manifold with a metric which changes smoothly along
differentiable curves.

Proof. If f : I → I is Hölder for α > 1, then

|f(x)− f(x0)| ≤ c|x− x0|α,
so ∣∣∣∣

f(x)− f(x0)

x− x0

∣∣∣∣ <
|x− x0

α|
|x− x0|

→ 0

as x → x0, so by the Mean Value Theorem f is constant. (The same proof works
along paths.) �

Remark 28.1. For X = C the Cantor set, which is totally disconnected, Hα is much
larger. The derivative (one- or two-sided) still exists and is zero at every point, by the
above argument, but the Mean Value Theorem can no longer be applied, and indeed,
f need not be constant.

??? the same since 2006:
two contraction mappings ϕ0, ϕ1 : I −→ I. We consider first the case where these

maps are orientation-preserving, and are strict contractions in the sense that the
derivatives satisfy 0 < α < Dϕi < β < 1. We also require that

0 = ϕ0(0) < ϕ0(1) < ϕ1(0) < ϕ1(1) = 1.

This implies that the intervals I0 ≡ ϕ0(I), I1 ≡ ϕ1(I) are disjoint. We assume that
ϕ0, ϕ1 are C1+γ maps for some γ ∈ (0, 1].
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Remark 28.2. Here Ck+γ means the kth derivative Dkϕi is Hölder continuous with ex-
ponent γ; note that C1+1 means Dϕi is Lipschitz, so C2 implies C1+1 (by compactness)
but not conversely. (Exponent γ > 1 is excluded because in that case, since the do-
main I is connected, ϕi is identically constant hence immediately of order C∞ - while
the whole purpose of Hölder conditions is to have intermediate grades of smoothness).

We define f : I0 ∪ I1 → I to be the map with inverse branches ϕ0, ϕ1. Note that
since Dϕi are bounded away from 0 and∞, it follows that f is C1+γ with same Hölder
exponent, but with different Hölder constant.

Inductively, form

Ix0...xn = ϕx0(ϕx1 . . . (ϕxn(I)))

where xk ∈ {0, 1};
⋃
Ix0...xn (union over all choices, with n fixed) is the nth level

approximation to the Cantor set, C, defined as

C =
∞⋂

n=0

⋃
Ix0...xn .

The restriction of the map f to C maps C to itself and is (just as for the middle-third
set) conjugate to the Bernoulli shift (Σ+, σ), via the map π : (x0x1 . . . ) 7→ x, where
x is the unique element of ∩∞n=0Ix0...xn .

A set C together with map f : I0 ∪ I1 → I, defined in this way from strict contrac-
tions ϕ0, ϕ1, will be called a strictly hyperbolic C1+γ Cantor set (with map).

We learned this version of bounded distortion from M. Urbanski. See also e.g. [SS85];
pp. 169-170 of [Mañ87] has some interesting historical remarks; Bowen and Sullivan
are among the many authors who have used related tools masterfully; for some so-
phisticated variants see e.g. [KH95] and [dMvS93], §7 of [MU03].

Lemma 28.2. With f as above, ∃K > 0 such that for all n, for any δ > 0, if J is
an interval such that fm|J is 1-1 and the image fm(J) has diameter less that δ, then
for all x, y ∈ J ,

e−Kδ
γ

< |Df
mx

Dfmy
| < eKδ

γ

.

We mention that one sees from the proof that if c is the Hölder constant for log |Df |,
then the constant K is given by K = cβγ/(1− βγ).

28.2. Scaling functions and g-measures.

Definition 28.2. R is called the scaling function of C.

Proof. We will first show that for each y, Rn(y) n = 1, 2, . . . is a Cauchy sequence.
Since

Sm(Iy−(n+m)...y−1) = Iy−n...y−1

and similarly for the subintervals, applying the Mean Value Theorem and Bounded
Distortion Property (Corollary 2.2) we have for all m ≥ 0

Rn(y) = Rn+m(y)e±Kβ
nγ
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r(x)

(x,r(x))

(T x,0)

r(x)+ r(T x)

r(T−1x)

α

Figure 71. Fundamental domains for the special flow

Therefore Rn(y) is Cauchy sequence (i.e. each of its three coordinates is) hence it

converges; call the limit R(y). Next, if y, w ∈→
−∞

−1→∏{0, 1} agree on the coordinates

−n, . . . ,−1 then since Rn(y) = R(y)e±Kβ
nγ

and Rn(y) = Rn(w), we have

R(y) = R(w)e±2Kβnγ .

Writing ‖ · ‖ for sup norm in R3, this implies that, with the log taken by components,

‖ logR(y)− logR(w) ‖≤ 2K(dβ(y, w))γ,

i.e. logR is Hölder continuous with exponent γ; therefore so is R. � �

29. Examples of cohomology in dynamics

We have encountered above the rather mysterious cohomology equation; here we
shall give several examples which help explain its meaning.

Next:
–change of special flow cross-section and flow isomorphism
–circle skew product and change of origin
–smooth conjugacy of doubling maps and chain rule
–Sinai’s Lemma

29.1. Special flows: nonpositive “return times” and change of cross-section.
(Invertible case) Let (X,T, µ) be an invertible measure-preserving transformation,
and r : X → R a measurable function. In §10.6, for the case where r is positive, we
defined the special flow with return time r and cross-section map T in the standard
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way; here we give a more general definition using equivalence relations, which makes
sense of “return times” which are not necessarily positive.

We begin with the vertical flow on X×R, by simply moving upward at unit speed,
τt(x, s) = (x, s + t). We define an equivalence relation on X × R, whose equivalence
classes are the orbits of a map α : X × R→ X × R, with

α(x, s) = (Tx, s− r(x))

We write ∼r for this equivalence relation. We write Ωr = X × R/ ∼r.
Note that (x, r(x)) ∼r (Tx, 0) (as in the usual definition of special flow) and also

for example (x, 0) ∼r (T−1x, r(T−1x)).

Proposition 29.1. The vertical flow τt on X × R induces a flow on Ωr.

Proof. We need only check that α(τt(x, s)) = τt(α(x, s)), which is immediate. �

Example 25. If r(x) > 0 for all x, then this is isomorphic to the usual special flow
with return-time function r. In this case,

{(x, s) : 0 ≤ s ≤ r(x)}
is a fundamental domain for the Z- action: there is exactly one point from each
equivalence class, except for the upper and lower boundary, where we have the identifi-
cation of (x, r(x)) with (Tx, 0). Other copies of the fundamental domain are indicated
in Figure 72. (This shows a semiflow, i.e. not a flow but an action of the semigroup
R+, since the base map is the doubling map on the circle T (x) = 2x(mod1) which is
not invertible). For this particular example, r(x) = sin(4πx) + 2 so the curves are all
periodic and are trigonometric polynomials, r(x) + r(2x) + r(4x) and so on.

Definition 29.1. We say r and r̂ are cohomologous iff there exists a real-valued
function u such that

r̂(x) = r(x)− u(x) + u(Tx). (109)

This defines another flow τ̂ on Ω̂ = X × R/∼̂.

Proposition 29.2. The map Φ : Ω→ Ω̂ defined by

Φ : (x, s) 7→ (x, s− u(x))

is a flow isomorphism.

Proof. It is enough to show that the following diagram commutes, as is easily checked:

X × R Φ−−−→ X × Ryα
yα̂

X × R Φ−−−→ X × R
�

Example 26. Again in the special case of 0 < r(x), suppose now that 0 ≤ u(x) ≤ r(x).
Then r̂ is just the return time to the new cross-section {(x, u(x))} of the flow, see
Fig. ??
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x T (x)

r(x)−u(x)

x

r̂(·)r(·)

u(·)

u(T x)

Figure 72. On left, fundamental domains for the map α, partitioning
X × R+, giving a special semiflow over the doubling map of the circle.
For the flow case, this extends to a partition of X×R. On right, return
to a new cross-section, the graph of u(x).

In the special case where r is the constant function r = 1 > 0, thus there exists a
function u such that

r(x) = 1 + u ◦ T (x)− u(x), (110)

then the special flow with return time 1 is called the suspension flow over the map
T . If r is cohomologous to the constant 1, then the special flow with return time r is
isomorphic to this suspension flow.
Special semiflows: the noninvertible case)

Definition 29.2. By a semiflow on a space X we mean an action of (R+,+) on
X. This is often called a semigroup as we sometimes do in these notes but is more
properly called a monoid as it has an identity element. (A semigroup is a set S with
an associative binary operation on it; a group is a moonid with inverses). See [Aki13].
For a development of the ergodic theory of semiflows see [LR04].

We let (X,T, µ) be a not-necessarily invertible measure-preserving transformation,
and r : X → R a measurable function. We make all the same definitions as for
the invertible case, except now we have the vertical semiflow on X × R+, by simply
moving upward at unit speed, τt(x, s) = (x, s+ t), now for t ≥ 0. See Fig. 72.

29.2. Smooth changes of coordinates.

Example 27. Let X be a one-dimensional space, S1 or R or I, and let T, S, h : X → X
be C1+α maps for some α ∈ (0, 1] with derivative > 0 everywhere. We assume that h
is a diffeomorphism conjugating the two smooth maps T and S, so h−1 ◦ S ◦ h = T .
Then the two functions ϕ(x) = logDT (x) and ψ(x) = logDS(h(x)) are Hölder
cohomologous, by the fuction u(x) = − logDh(x).
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Proof. By the Chain Rule, DT (x) = Dh−1(S(h(x))) · DS(h(x))S · Dh(x). Now
Dh−1(S(h(x))) = 1/Dh(h−1(S(h(x)))) = 1/Dh(T (x)). Taking logs, −(logDh)(Tx)+
(logDS) ◦ h)(x) + (logDh)(x) = (logDT )(x), so for ϕ, ψ and u as defined above, we
have ϕ(x) = ψ(x)− u(Tx) + u(x) as claimed. �

29.3. Smooth change of metric. Let (X,T ) be as in the last example, for X =
S1,R or I, equipped with order and origin 0 and with the standard Euclidean metric
d(·, ·). Now let ρ(·, ·) be a second metric which is differentiably equivalent, in the sense
that the function f(x) = ρ(0, x) for x > 0, f(x) = −ρ(x, 0) for x < 0 is differentiable
and > 0. Then logDT |d and logDT |ρ are cohomologous

Proof. In fact this is equivalent to the previous example: define a map from X to X
by x 7→ h(x) ≡ f(x)/b where b is the total ρ-length in the case of I or S1 and is just 1
for X = R. Then define S : X → X by S = h ◦T ◦H−1. We are now in the situation
of the previous example. �

Remark 29.1. In fact in much more generality, e.g. for a smooth map f of a manifold
M “changing the (Riemannian) metric” is equivalent to conjugation of the map. And
in the special case of one-dimensional manifolds, where the derivative is real-valued,
cohomology again corresponds to a change in the reference coordinates of some type,
in this case, the metric.

To extend the cohomology ideas to the higher dimensional case, we would need to
move beyond real or circle-valued cocycles to those with values in e.g. matrix groups.
See [Liv71], [Liv72], [PP97] for some beginnings in the vast related literature.

29.4. Time-shifts and time averages. We begin with a small observation: if we
are given ϕ and ϕ̃ and are looking for a function u such that

ϕ̃(x) = ϕ(x) + u ◦ T (x)− u(x)

then if we choose a value for u(x) for some x, this choice determines u on the rest of
the orbit of x, from the cohomology equation, for:

u ◦ T (x) = ϕ̃(x)− ϕ(x) + u(x).

Now of course a nonmeasurable solution u always exists (just choose one point in each
orbit by the Axiom of Choice, define, say, u = 0 there and use the above remark!) but
if u is measurable, this observation indicates that there won’t be so much freedom in
defining u. We see this in a much stronger form in Prop. 30.3.

??Comments: leads to positive function

Proposition 29.3. Let (X,T ) be a dynamical system and let ϕ : X → R. Then the
functions ϕ ◦ T n for n ∈ Z and 1

n
Sn(ϕ) = (ϕ + ϕ ◦ T + . . . ϕ ◦ T n)/n for n fixed are

cohomologous to ϕ.

Proof. For ψ = ϕ ◦ T we take u = ϕ, and we have:

ϕ ◦ T = ϕ+ ϕ ◦ T − ϕ.
Note: we can see this in the special flow example, Fig. 71; if we take as our new
cross-section (x, r(x) then the new return-time is indeed r ◦ T .
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Using that same picture, we can already guess the function u for ϕ ◦ T 2: it is
u = ϕ+ ϕ ◦ T , for then,

ϕ ◦ T 2 = ϕ+ (ϕ+ ϕ ◦ T ) ◦ T − (ϕ+ ϕ ◦ T ) = ϕ+ ϕ ◦ T + ϕ ◦ T 2 − ϕ− ϕ ◦ T.
Next we note that if ϕ1 is cohomologous to ϕ by u1 and ϕ2 is cohomologous to ϕ by
u2, then (ϕ1 + ϕ2)/2 is cohomologous to ϕ by (u1 + u2)/2. This gives the proof for
Snϕ/n. And in fact, the function u will be

u =
∑

k=0

npn(Skϕ).

�

??check above. Note: any two fns are nonmeas cohom!

29.5. Skew products. Let (X,T ) be a (possibly noninvertible) transformation (this
could be in the differentiable, topological, or measure category) and let Y be a second
measure space, with T (Y ) some collection of maps of Y . Now given some function
ϕ : X → T , we then define a transformation Tϕ : X × Y → X × Y by

Tϕ(x, y) = (Tx, ϕx(y).

Here we have written ϕx ≡ ϕ(x). We call Tϕ the skew product transformation
over the base X with skewing function ϕ.

Example 28. For a first example, let f : M → M be a smooth map (not necessarily
invertible) on a d- dimensional differentiable manifold M , with tangent bundle TM .
We assume that there is a single chart Φ : M → U ⊆ Rd. This gives us a way of
uniquely representing the derivative Df(x) as a d×d matrix Df (x) Now the derivative
map

Df(x,v) 7→ (f(x), Df(x)v)

is a skew product transformation on M × Rd.

Example 29. A second example is the famous T/T−1 transformation studied by Ka-
likow.

Here the base is the Bernoulli shift space Σ = Π+∞
−∞{0, 1} with left shift σ and with

independent product measure (p, q) for p, q > 0 and p+ q = 1, and

ϕ(x) = T if x0 = 0, T−1 if x0 = 1.

We write σϕ for the skew product.

Now defining S0 = 0, Sn =
∑n−1

i=0 (2xi − 1) for n ∈ Z we have a random walk on
the integers; and σnϕ(x, y) = (σnx, T Sn(x)y), so one can think of this for fixed x as a
random sequence of transformations.

Remark 29.2. Indeed, in some sense every skew product is a random dynamical system;
see [Wal89] for a nice introduction.

Kalikow in a famous paper [Kal82], see Example 29, answered a conjecture of
Ornstein, the second part of this theorem; the first part being not hard and the
second a major achievement:

Theorem 29.4.
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◦

◦

•

ϕ(x)

x T (x)

O(·)

• •

◦ ◦

•

ϕ̂(x) =

x T (x)
• •

ϕ(x)−O(x)+O(T x)

Figure 73. Change of origin in circle fibers (warning: diagram needs
to be changed: signs are switched, as ϕ̂(x) = ϕ(x) +O(x)−O(Tx)!)

(i)If p 6= q, so the random walk drifts to ∞, then σϕ is Bernoulli, i.e. is measure-
theoretically isomorphic to a Bernoulli shift;
(ii) If p = q then this map is K (Kolmogorov, i.e. every factor has positive entropy)
but not Bernoulli.

29.6. Circle-valued skew products; change of origin in circle fibers. Another
important class of examples are circle-valued skew products, where Y is the circle,
T = R/Z, and the maps ϕ(x) are circle rotations Rθ(x) = x+ θ on T, also written as
Rθ(x) = x+ θ(mod1)

For a circle-valued skew product given by a (perhaps noninvertible) map (X,T )
and skewing function ϕ : X → T, so

Tϕ(x, s) = (Tx, s+ ϕ(x)), (111)

we consider the effect of changing coordinates on X ×T by choosing a new origin for
each fiber.

The new origin is given by a function O : X → T, so the new coordinates of a
point (x, s) are (x, s − O(x)), see Fig. 73. The point above x of height s = O(x) is
mapped by Tϕ to the point above Tx of height O(x) + ϕ(x). This is distance ϕ̂(x)
above O(Tx), for the new skewing function ϕ̂. That is,

O(x) + ϕ(x) = O(Tx) + ϕ̂(x)

so

ϕ̂(x) = ϕ(x) +O(x)−O(Tx).

If we replaceO by u = −O, this gives the cohomology equation, with transfer function
u, and we have:

Proposition 29.5. Given a function u, defining

ϕ̂(x) = ϕ(x) + u(Tx)− u(x),

then the map

Φ : (x, s) 7→ (x, s+ u(x)) = (x, s−O(x))
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defines an isomorphism from Tϕ to Tϕ̂, corresponding to choice of a new origin O(x) =
−u(x) on each fiber.

Proof. We have: Φ ◦ Tϕ ◦Φ−1(x, r) = Φ(Tϕ(x, r− u(x))) = Φ(Tx, r− u(x) + ϕ(x)) =
(Tx, r − u(x) + ϕ(x) + u(Tx)) = (Tx, r + ϕ̂(x)), so the diagram commutes, verifying
the claim.

X × T Tϕ−−−→ X × TyΦ

yΦ

X × T
Tϕ̂−−−→ X × T

�

Corollary 29.6. Given two circle-valued skew products, then if the skewing functions
are cohomologous (mod 1), the maps are isomorphic, via an isomorphism preserving
the base maps.

Modifying to this context Definition 27.1, one says that ϕ is cohomologous to
zero (mod 1), or that the function ϕ is a coboundary (mod 1), if there exists a
function u such that

ϕ(x) = u ◦ T (x)− u(x) (mod 1). (112)

Thus again, two functions ϕ, ϕ̂ are cohomologous iff they differ by a coboundary (mod
1). If ϕ itself is a coboundary, we have these geometric and dynamical consequences:

Proposition 29.7. These are equivalent for the skew product Tϕ(x, s) = (Tx, s +
ϕ(x)):
(i) ϕ is a coboundary (mod 1), that is, there exists u : X → T such that

ϕ = u ◦ T − u (mod 1);

(ii) there exists a function O : X → T such that the graph of O is an invariant subset
for Tϕ;
(iii) there exists a fiber-preserving isomorphism from Tϕ to T × Id.

Proof. As we have seen in Prop. 29.5, O = −u represents a new choice of origin, and
ϕ is cohomologous to 0 iff for the new skewing function ϕ̂ = 0 we have (mod 1)

ϕ̂(x) = 0 = ϕ(x) + u(Tx)− u(x), (113)

that is,

0 = ϕ(x)−O(Tx) +O(x).

The graph of O is invariant iff

Tϕ(x,O(x)) = (Tx,O(x) + ϕ(x)) = (Tx,O(Tx))

iff O(x) +ϕ(x) = O(Tx) equivalently (113). The cohomology corresponds to isomor-
phism to a new skew product Tϕ̂ by Corollary 29.6, and this is T ×Id iff ϕ̂ = 0. Given
a fiber-preserving isomorphism Φ, we define O by defining its graph to be the inverse
image by Φ of X × {0}. That is, O is such that Φ−1(x, 0) = (x,O(x)). �
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29.7. Nonergodicity and coboundaries modulo 1. All the previous discussion is
valid for the topological, measure or smooth categories. Now we move to the context
of measurable dynamics.

Remark 29.3. Furstenberg in [Fur61] investigated the question of which skewing func-
tions give uniquely ergodic skew product transformations, assuming the base map is
uniquely ergodic. His motivation was to generalize Weyl’s Theorem, the simplest
form of which states that (see Exercise 4.1) a circle rotation Rθ is minimal iff it is
uniquely ergodic, iff θ is an irrational number. The unique ergodicity can be proved in
a variety of ways; see [Pet89] pp.156-158 regarding this and related results. The circle
rotation is an example of a Kroneker system, [Fur81]. Weyl proved further that for
any real polynomial p(x) with at least one of the nonconstant coefficients irrational,
then the sequence p(n) : n ≥ 0 is uniformly distributed (mod1). On p. 68 of [Fur81]
Furstenberg gives a beautiful dynamical proof of this fact. (It is at first surprising
that this has anything to do with dynamics: what is the map for degree of p greater
than one?)

We next examine when circle-valued skew products are relatively uniquely ergodic,
defined as follows:

Definition 29.3. We let (X,A, µ) be a measure space with T a (not necessarily
invertible) ergodic m.p.t.. We let λ denote Lebesgue measure on the circle T and

ϕ : X → T a measurable function. Defining X̂ = X × T and µ̂ = µ× λ, Tϕ defines a

measure-preserving map of (X̂, µ̂).
Let (X,A, µ) be a measure space with T : X → X measurable and µ an ergodic

invariant probability measure. Assume we have ϕ : X → T measurable, with Tϕ :
X×T→ X×T denoting the skew product. This is a measurable map for the product
σ-algebra. We write π : X × T → X with π(x, t) = x for the projection and define
the fiber above x to be π−1(x). We let Mµ denote the collection of all Tϕ-invariant
probability measures with marginal µ, i.e. which project to µ, and make the following
definition. We say Tϕ is uniquely ergodic relative to µ (or simply µ-uniquely
ergodic) iff Mµ is the singleton µ̂ = µ× λ.

Now if ϕ is cohomologous to zero (mod 1), then as we have seen in Proposition 29.7
the skewing function ϕ is a coboundary if and only if the graph of O is a Tϕ-invariant
subset of X × T. This is valid in general, but now we are in the measurable context,
and this implies the map is not ergodic: to find an invariant measure which is not µ̂,
just lift µ to a measure supported on that graph. Or, more generally, add parallel
bands of mass along the graph of O.

An even more transparent view of this nonergodicity is that, also from Proposition
29.7, the skew product is then isomorphic to T × Id and so is certainly not ergodic.

This is the simplest way the skew product can be nonergodic: if it can be “straight-
ened out” by a change of origin to T × Id. More generally, it could be noner-
godic if it straightens out to T × Rθ for θ rational, i.e. if there is an integer k
so that kθ = 0(mod 1). For this to happen, the equation (112) is replaced by:
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ϕ(x) = j/k + u ◦ T (x)− u(x) for some 1 ≤ j ≤ k − 1, or equivalently:

kϕ(x) = u ◦ T (x)− u(x) (mod 1) (114)

for some nonzero k ∈ Z. In this case the straightened map, instead of fixing the circle,
permutes k equal intervals. In fact conversely, as we will now see, this is all that can
happen.

The next theorem represents a generalization of Lemma 2.1 from [Fur70], regarding
unique ergodicity. Of course if the base transformation itself is uniquely ergodic, then
relative unique ergodicity implies unique ergodicity of the skew product.

Proposition 29.8. Let (X,A, µ) be a probability space with T a measurable, measure-
preserving map. Let ϕ : X → T = R/Z be measurable. The following are equivalent
for the circle-valued skew product Tϕ:
(a) µ× λ is not ergodic;
(b) Tϕ is not µ-uniquely ergodic;
(c) there exist k ∈ Z such that kϕ is a coboundary (mod 1), i.e. there exists u : Ω→ S1

measurable such that

kϕ = u ◦ T − u(mod 1). (115)

Proof. Two proofs of (c) =⇒ (a) have been described above; for the first, by (i) =⇒
(iii) in Prop. 29.7, the graph of O ≡ −u is invariant; we lift the measure µ to the
graph, giving a different invariant measure which hence projects to µ on the base.
For the second, as in (i) =⇒ (iii) of Prop. 29.7 plus (114), Tϕ is fiber-preserving
isomorphic to T ×Rj/k for some 0 ≤ j ≤ k − 1.

(b) =⇒ (a): We will show that if µ̂ ≡ µ× λ is ergodic, then Mµ = {µ̂}. We learned
this argument from Eli Glasner; another nice argument can be given using generic
points, following [Fur61].

WriteMµ for the collection of Tϕ-invariant measures on the σ-algebra Â = A×B
where B is the Borel σ-algebra on T, with marginal µ. The T̂ -invariant measures form
a convex set, with the ergodic measures as the extreme points, see (ii) of Prop.7.1.
Let µ̃ ∈ Mµ. Rotating this measure by the same angle simultaneously in each fiber
produces another invariant measure, Rθ µ̃. But if we average these rotated measures
along each circle fiber, integrating by Lebesgue measure λ on T, we get the measure µ̂.
Therefore, µ̂ is a convex combination of the rotated measures. Hence if µ̂ is ergodic,
then µ̃ = µ̂.

(a) =⇒ (b). Supposing µ̂ is not ergodic, then (by Prop.7.1) it can be written as a
convex combination of two invariant measures, µ̂1 and µ̂2. The only thing to check
(to contradict µ-unique ergodicity) is that they project to µ. But whatever measure
they project to must be absolutely continuous with respect to the projection of µ̂, i.e.
µ; hence by ergodicity of µ this equals µ.

(a) =⇒ (c). We cannot improve on Furstenberg’s beautiful little argument. For
convenience we switch to the multiplicative notation used by Furstenberg, writing the
circle now as S1, the set of complex numbers with modulus one.

Assume that µ̂ is not ergodic for Tϕ. Then (by [Bil65] p. 13) there exists an
invariant non-constant measurable (real or complex)-valued function F in L2(X ×
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T, µ̂). By Fubini’s theorem, for µ-a.e. circle fiber, F is in L2 of that fiber. So there

are Fourier coefficients an(w) for the fiber over w, with F (x, θ) =
∞∑

−∞

an(x) einθ.

Now calculating F ◦ Tϕ, uniqueness of the Fourier coefficients implies that an(w) =
an(Tw) einϕ(w) for each n. By ergodicity of T , the modulus of each an(w) is µ-a.s.
constant. Since F is assumed non-constant, for some k 6= 0, |ak| 6= 0 (µ-almost
surely). So for that k, we can normalize ak in the equation above. Then, changing
back to additive notation, we define u(w) by e−iu(w) = ak(w)/|ak|. The equation then
becomes kϕ = u ◦ T − u, proving (c). �

Remark 29.4. The set of k such that (c) holds is an ideal in Z. If, say, ` generates

this principal ideal, we can describe the collection of all T̂ -invariant functions: they
can be expressed as some combination of the Gk just defined, for all multiples k of `.

Remark 29.5. The key argument of Furstenberg can be viewed as follows. The equa-
tion for cohomology (mod 1), ϕ = u ◦ T − u, can if u has modulus one be written
multiplicatively as z(w) = a(w)/a(Tw) (this is multiplicative cohomology, and is the
notation Furstenberg uses), giving equivalently a(w) = a(Tw)z(w) = a(Tw)eiϕ(w).
To produce an invariant graph we only need this to happen for one Fourier coefficient
a = ak, and for that it is enough for one to be nonzero and then normalize.

Corollary 29.9. Let (X,A, µ) be a probability space with T an ergodic measure pre-
serving map from X to X and let ϕ : X → R measurable. Write Snϕ for the partial
sums. Suppose there does not exist k ∈ Z such that kϕ is a coboundary (mod 1). Then
for a.e. x, Snf(x) is uniformly distributed (mod 1).

Proof. We build the circle-valued skew product Tϕ on X̂ = X ×T and apply (c) =⇒
(a) of Proposition 29.8. Thus we know that if there does not exist u measurable such
that kϕ = u ◦ T − u(mod 1), then the map Tϕ is µ- uniquely ergodic hence ergodic.

Now let F ∈ C(T). We extend this to F̂ : X̂ → T by F̂ (x, t) = F (t). This is a
measurable function which is continuous on the fiber over x, for each x. Note that

F̂ ∈ L1(X̂).

The Birkhoff ergodic theorem implies that for every such F̂ , hence for each con-
tinuous function F ∈ C(T), there is a full measure set EF such that for every

(x, t) ∈ EF ⊆ X̂,

lim
N→∞

1

N

N−1∑

n=0

F ◦ Tϕn(x, t) =

∫

X̂

F̂ dµ̂ =

∫

T
Fdλ (116)

Since T is compact, C(T) is separable. Let {Fi}i∈N be a dense subset of C(T). Then
(116) holds for every (x, t) in ∩i∈NEFi . This passes over to every F ∈ C(T): we
approximate F ε-uniformly by functions Fi, and both sides of (116) are within ε
hence equal.

In conclusion, µ̂-almost every (x, t) is a fiber generic point, that is, (116) holds for
every F ∈ C(T).
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Suppose (x, t) is a fiber generic point, then (x, {t+ s}) is also a fiber generic point

for any s ∈ T. This is because, for every F ∈ C(T) defining F̂s(x, t) = F̂ (x, {t+ s}),

lim
N→∞

1

N

N−1∑

n=0

F̂ ◦ T nf (x, t+ s) = lim
N→∞

1

N

N−1∑

n=0

F̂s ◦ T nf (x, t) =

∫

X̂

F̂sdµ̂

=

∫∫

X̂

F̂sdλdµ =

∫∫

X̂

F̂ dλdµ =

∫

X̂

F̂ dµ̂ =

∫

T
Fdλ.

So the set of all fiber generic points is E × T for some E ⊂ X. Since this set has full
λ-measure, also µ(E) = 1. Now for every x ∈ E (x, 0) is a fiber generic point. This
means that for every F ∈ C(T),

lim
N→∞

1

N

N−1∑

n=0

F̂ (T nx, {Snf(x)}) =

∫

T
Fdt.

Using continuous functions F to approximate 1[a,b) for 0 ≤ a < b < 1, one then gets
that

lim
N→∞

1

N

N−1∑

n=0

1[a,b)({Snf(x)}) = b− a,

where {t} denotes the fractonal part of t ∈ R, so we conclude that Snf(x) is u.d.
mod 1 for every x ∈ E.

Equivalently, there exists a set of measure 0, N ⊆ X, such that for every w ∈ X\N ,
then for every p ∈ T, the point (w, p) is a generic point for Tϕ. Thus choosing any
interval J ⊆ T, the frequency of times spent in X × J is λ(J), so the frequency of
Snϕ(p) in J is λ(J) as claimed.

�

The proof of Cor.29.9 was worked out together with Xuan Zhang.

29.8. Julia set scenery flow. In the above case we took our skewing function to
be ϕ : X → T. This can also be written multiplicatively, using S1 ⊆ C the complex
numbers of modulus one.

In fact The material in the previous section comes from pp. 485-487 of [BFU02]
where that is the case, as we explain.

The model scenery flow constructed there combines (28) and (??). There we con-
sider as base map a rational function f on the complex plane, acting on its Julia set
J ⊆ C. Now C is a one-dimensional complex manifold, with one chart (the iden-
tity), and with tangent space C itself, so Df(z, w) = (f(z), (f ′(z))w) defines a skew
product on C× C. Next, for z 6= 0, setting arg(z) = z/|z|) ∈ S1, then for w ∈ S1,

(z, w) 7→ (f(z), arg(f ′(z) · w)

defines an S1− valued skew product.

29.9. Change of velocity in flows.
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29.10. Orbit equivalence. Consider an invertible map T : X → X. The T -orbit
of a point x ∈ X is OT (x) = {T n(x) : n ∈ Z}; suppose there is another map S on
the same space, with the same orbits. That means there exists ϕ : X → Z such that
T (x) = Sϕ(x)(x); more generally, there is a Φ : X × Z→ Z such that

T n(x) = SΦ(x,n)(x)

.
We conclude:

Proposition 29.10. Invertible transformations (X,T ) and (X,S) are orbit equiva-
lent iff there exists ϕ : X → Z such that T (x) = Sϕ(x)(x), iff there exists a cocycle
Φ : X × Z→ Z generated by ϕ, satisfying T n(x) = SΦ(x,n)(x).

Proof. We must have:

SΦ(x,n+m)(x) = Tm+n(x) = Tm(T n(x)) = SΦ(Tn(x),m)(x)

whence Φ is a cocycle and is the cocycle generated by ϕ.
Now suppose the maps are orbit equivalent; that is, there exists some bijection

Ψ : X → X such that for every x, Ψ(OT (x)) = OT (x). Then we can define a
transformation S and a cocycle as follows.....

Conversely, given a bijection
�

measurability....
Kechris example??? Nonmeas cocycle? Nonmeas OE?

30. Cocycles in the thermodynamical formalism

We have already encountered the Ruelle Perron-Frobenius Theorem, one of the key
tools in the thermodynamical formalism developed by Ruelle, Sinai and Bowen. In
the next sections, we study this further, in particular the role of cocycles.

30.1. Dependence on the future: Bowen’s proof of Sinai’s lemma.

Proposition 30.1. Let ϕ : ΣA → R be Hölder continuous. Then there exists ϕ̃ which
depends only on the future coordinates Σ+

A which is Hölder cohomologous to ϕ.

First we give an idea of where the proof could have come from, and then enter the
details (this is Lemma 1.6 of [Bow75]).

By the stable segment of a point x ∈ ΣA we shall mean the set of all w such that
wi = xi for all i ≥ 0. Pictorially this is represented in Fig. 74. We wish to find a
function u such that for

ϕ̃ = ϕ+ u ◦ σ − u, (117)

we have ϕ̃(w) = ϕ̃(x) for each such stable segment. Now from this equality plus
(117),

ϕ̃(x) = ϕ(x) + u ◦ σ(x)− u(x) = ϕ̃(w) = ϕ(w) + u ◦ σ(w)− u(w)

so subtracting,

ϕ(w)− ϕ(x) = u ◦ σ(x)− u ◦ σ(w) + u(w)− u(x). (118)
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Figure 74. The stable segment of a point for the coding by a Markov
partition for a toral automorphism

Adding up along an orbit of length k, we have a telescoping sum and get

Skϕ(w)− Skϕ(x) = u ◦ σk(x)− u ◦ σk(w) + u(w)− u(x). (119)

We shall define u in such a way as to be continuous. Then u◦σk(x)−u◦σk(w)→ 0 as
k →∞ since x,w are in the same stable segment (and hence are forward asymptotic),
and hence (119) gives us

u(w)− u(x) = lim
k→∞

Skϕ(w)− Skϕ(x). (120)

Now suppose we choose u(w) to be equal to 0, for one particular string in each
stable segment. A convenient way to do that is to choose this w to only depend on
x0, the 0th coordinate of x. Call this choice w = γ(x). Then equation (120) yields
the following definition of u:

u(x) = lim
k→∞

Skϕ(x)− Skϕ(γ(x)). (121)

So all we have to do is start with this definition, prove that u so defined is indeed
continuous, and then, running the logic backwards, we will be done.

Here are the details.

Proof. For each symbol j in the alphabet A, we choose an infinite past string a−(j) =
(. . . a−2a−1a0 = j). We then define γ : ΣA → ΣA by γ(. . . x−1x0x1x2 . . . )) =
(a−(x0)x1x2 . . . ). Next we define u as in (121), so

u(x) =
∞∑

j=0

ϕ(σjx)− ϕ(σjγ(x)).

Note that indeed u(γ(x)) = 0, since γ is a projection i.e. γ(γ(x)) = γ(x). Next, since
σjx and σjγ(x) are equal on coordinates in [−j,+∞),

|ϕ(σjx)− ϕ(σjγ(x))| ≤ varjϕ ≤ bαj.

Hence the limit exists, and u is a continuous function.
We then define ϕ from this by the cohomology equation (117). And by the argument

before the proof, ϕ̃ is, indeed, constant on each stable segment, as desired. It remains
to show u is in fact α-Hölder, which will imply that ϕ̃ is α-Hölder as well.

We could now conclude the proof by calling on Prop. ??.
Or one can argue directly; we copy the argument from [Bow75]:
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Now, for any y such that xi = yi for −n ≤ i ≤ n, then

|u(x)− u(y)| ≤

[
n
2

]
∑

j=0

|ϕ(σjx)− ϕ(σjy) + ϕ(σjγ(y))− ϕ(σjγ(x))|+ 2
∑

j>
[
n
2

] bα
j (122)

≤ 2b

(
[
n
2

]
∑

j=0

αn−j +
∑

j>
[
n
2

]α
j

)
≤ 2b

[
n
2

]

1− α. (123)

Therefore u is in fact α-Hölder. Hence ϕ̃ is α-Hölder as well. �

30.2. Sinai’s lemma; the proof of Sinai-Ratner.

30.3. Conditions which guarantee coboundaries: Livsic theory. Suppose there
exists a measurable function u : Ω→ S1 such that

(∗) ϕ(x) = u ◦ T (x)− u(x) (for µ-a.e. x).

And suppose now we know moreover that ϕ : Ω→ S1 is not just measurable but is
continuous. We will say ϕ is cohomologous to zero in the class of e.g. measurable,
or continuous, functions if there exists u in that class with ϕ(x) = u ◦ T (x)− u(x).

Livsic proved in [Liv71], [Liv72] the equivalence in various situations of the follow-
ing:
(1) ϕ is cohomologous to zero in the class of continuous functions
(2) ϕ is cohomologous to zero in the class of measurable functions
(3) Snϕ(x) = 0 for each periodic point (where n is the period of x).

Roughly speaking, the proofs depend on these hypotheses:
– T is hyperbolic (e.g. an Anosov diffeomorphism, or a shift map)
– ϕ is Hölder
(and then (1) states that there exists u Hölder).

In [Liv71] a proof in the order (1) =⇒ (2) =⇒ (3) =⇒ (1) is given. Of course
(1) =⇒ (2) is trivial. See Theorem 1 in [Liv71] (and below) for (3) =⇒ (1). In
the proof of (2) =⇒ (3) (Remark 2 of [Liv71]) it is assumed that u is essentially
bounded and that the invariant measure µ (with respect to which the coboundary
equation holds µ-a.s.) is positive on open sets. In [Liv72] a completely different,
direct proof of (2) =⇒ (1) is given. Livsic proves this for real-valued cocycles over
an Anosov diffeomorphism with µ smooth measure. This proof has the advantage that
one no longer needs to assume that u is bounded (measurable is enough). However
now more is required of the measure: the essential property that gets used is what
is known in hyperbolic dynamics as absolute continuity. This is the equivalence of
the conditional measures on e.g. two different stable leaves, mapped by the holonomy
homeomorphisms given by sliding along the unstable leaves.

This method was extended (again for real-valued cocycles) in [PUZ89] to our situa-
tion, a mixing conformal repellor. There, the absolute continuity condition is replaced
by a weaker condition (see below).
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For the case we are interested in at present, circle-valued cocycles, of course bound-
edness is not an issue. However now Livsic’ proof of (2) =⇒ (3) fails (a simple
counterexample is given in [?]) ???. Fortunately the second method still works - so
our proof of equivalence will be (2) =⇒ (1), (3) =⇒ (1) (and of course the easy
reverse implications). Our proof of (2) =⇒ (1) is based on [PUZ89]. We give full
details here for completeness and clarity.

From now on Ω is the natural extension of a mixing conformal repellor T : J → J ,
with shift map σ on Ω ⊆ Π∞−∞J . Let µ be an ergodic invariant measure on Ω. We will
state the conditions needed on µ for the proof; this will be satisfied for the case we
are actually interested in (the Gibbs state of d log |DT |). To describe this hypothesis,
we need to define conditional measures of µ with respect to the “past”.

We write Π≥k0 for the subset of Π∞k J consisting of allowed strings. We define

πk : Ω = Π0 → Π≥k0 to be the natural projection, i.e. πk(z) = (zk, zk+1, . . . ), and will
also write π for π0. Since Π≥0

0 is naturally identified with J , we will also think of π
as a map from Ω to J .

Lemma 30.2. Let µ be an ergodic and invariant probability measure on Ω. Let ϕ :
Ω → S1 be a measurable function such that µ− almost surely ϕ only depends on J ;
that is, there exists an invariant set G of full measure such that for w, z in G with
π0(w) = π0(z), then ϕ(w) = ϕ(z). Assume that there exists u : Ω → S1 measurable
with ϕ = u ◦ σ − u. Then u also depends only on J (µ-a.s.).

Proof. We will show that there exists an invariant set G̃ ⊆ Ω such that for x, y ∈ G̃
with π(x) = π(y), then u(x) = u(y). We recall Lusin’s Theorem, which states that
a measurable function is almost uniformly continuous. Thus, given ε > 0 (we will
fix some ε < 1

2
) there exists C ⊆ Ω with measure ≥ 1 − ε such that u is uniformly

continuous on C. By the Birkhoff ergodic theorem, there is a set B ⊆ Ω of full
measure such that C is sampled well by every x ∈ B, i.e. the density of time x spends

in C is equal to µ(C), so in particular is greater than 1
2
. Now let G̃ = B∩G; this is an

invariant set of measure one and we can assume also that the coboundary equation

holds on all of G̃. Let x, y in G̃ be in the same π- fiber. We have:

u(x)− u(y) = Snϕ(x)− Snϕ(y) + u ◦ σn(x)− u ◦ σn(y)

which equals u ◦ σn(x) − u ◦ σn(y) since ϕ depends on J . Since two subsets of the

integers with density greater than 1
2

meet infinitely often, there is a subsequence of
times such that unj of x and y are simultaneously in C. Now x and y are in the same
stable set, i.e. σn(x) − σn(y) → 0 (in the circle) as n → ∞. By uniform continuity
therefore, the right-hand side goes to 0 as j →∞, hence u(x) = u(y). � �

Proposition 30.3. Let ϕ : Ω → S1 be Hölder continuous and such that ϕ only
depends on J . Assume there exists u : Ω → S1 measurable such that ϕ = u ◦ σ − u
(µ-almost surely). Then u is also Hölder continuous (after redefinition on a µ-null
set).

Proof. By the Lemma, there is an invariant set G of full measure such that the
coboundary equation is satisfied and such that for x, y ∈ G with π(x) = π(y), we
know that u(x) = u(y).
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Again, let C be a set of continuity for u from Lusin’s theorem and B a good set
from the Birkhoff theorem, but this time for time averages going toward −∞.

Now let x, y ∈ B ∩ G with dist(x, y) < δ. We will show that there exists
c > 0, γ ∈ (0, 1) such that |u(x) − u(y)| ≤ c · dist(x, y)γ. This will finish the
proof, since if u is uniformly Hölder on a dense set, it extends to a Hölder continuous
function on Ω. By continuity therefore, the equation ϕ = u ◦ σ − u will be valid on
all of Ω. And finally, since B ∩G has full measure, u will have been changed on a set
of measure zero, as claimed.

We will show |u(x) − u(y)| ≤ c|x0 − y0|γ, which implies the previous inequality.

Here x0, y0 ∈ J are the projections of x, y i.e. the 0th coordinate in Ω ⊆ Π∞−∞J , and

| · | denotes distance in S1 and in C on the left and right sides respectively.
Let U be an open set in J containing x0 and y0, with diameter less than δ. Since

B ∩G has full measure in Ω, by the Lemma ??, there exists some past fiber F over U
such that F ∩ (B ∩G) has full measure with respect to µF . Let x̃, ỹ in F project to
x0, y0 in J . Since F is an unstable set, for some c > 0 and some λ ∈ (0, 1), we have
|π(σ−n(x̃)) − π(σ−n(ỹ))| ≤ cλn for all n ≥ 0. Since ϕ depends on J and is Hölder
continuous, with some exponent γ, we can take

|S−nϕ(x̃)− S−nϕ(ỹ)| ≤
n∑
|ϕ(σ−kx̃)− ϕ(σ−kỹ)| ≤???

Now since x, y and x̃, ỹ are in G, we have

u(x)− u(y) = u(x̃)− u(ỹ) = S−nϕ(ỹ)− S−nϕ(x̃) + u ◦ σ−n(x̃)− u ◦ σ−n(ỹ).

By the same argument as in Lemma ???? above, since x̃, ỹ are in B,

|u ◦ σ−n(x̃)− u ◦ σ−n(ỹ)| → 0

along a subsequence. Therefore for all x, y in B ∩G,

u(x)− u(y) ≤ lim
n→∞

|S−nϕ(ỹ)− S−nϕ(x̃)| ≤ c|x0 − y0|γ,

as claimed. � �

ϕ(x) = u ◦ T (x)− u(x) for µ-a.e. x

ϕ : Ω→ S1 measurable: (a) there exists u measurable with ϕ(x) = u◦T (x)−u(x)
???
u(x)− u(y) = Snϕ(x)− Snϕ(y) + u ◦∑n(x)− u ◦∑n(y)
with π(x) = π(y), then u(x) = u(y).

30.4. Some consequences of the Ruelle Perron-Frobenius Theorem. From
the Ruelle-Perron-Frobenius theorem one then harvests a number of important results.
First, using the uniform convergence, it follows quite easily (Lemma 1.14 in [Bow75])
that:

Lemma 30.4. There exists c > 0 such that for P,Q ∈ Ck
0,

|µ(P ∩ σ−tQ)− µPµQ| ≤ c · µPµQβt.
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We recall that the transformation σ is mixing if for all cylinder sets P,Q ∈ Ck
0, for

each k,

µ(P ∩ σ−tQ)→ µPµQ

as t → ∞. The transformation is weak Bernoulli (with respect to the standard
partition {[0], [1]}) if this much stronger fact holds: ∀k,

∑

P,Q

|µ(P ∩ σ−tQ)− µPµQ| → 0

as t → ∞, where the sum is taken over all P,Q ∈ Ck
0. By a theorem of Ornstein

[Orn73], [Shi73], an invertible transformation which has a weak Bernoulli generating
partition is Bernoulli, i.e. is measurably isomorphic to a Bernoulli shift.

Hence as an immediate corollary of Lemma 30.4 one has (Theorems 1.14 and 1.25
in [Bow75]):

Theorem 30.5. The shift map σ with measure µ is mixing.

and

Theorem 30.6. The transformation (σ, µ) is weak Bernoulli, hence (by Ornstein’s
theorem) its natural extension is Bernoulli.

With slightly more work it follows (1.26 in [Bow75]) that:

Theorem 30.7. For α ∈ (0, 1) there exists D > 0 and η ∈ (0, 1) such that for all
f, g ∈ Hα, ∣∣∣∣

∫
f · g ◦ σt dµ−

∫
f dµ

∫
g dµ

∣∣∣∣ ≤ D||f ||α||g||αηt.

This is called the Exponential Cluster Property by Bowen; it is also known as
having an exponential decay of correlations.

Hölder functions appear in two ways in the theory: as potential functions land
as an observable, making a measurement on the system and for which one wants to
study time averages, correlations and so on. Now we encounter this second situation.

This is the next theorem in [Bow75], the Central Limit Theorem, for Hölder ob-
servables; no proof is given there, rather Ratner’s paper [Rat73] is cited; here we write
Snf for the function Snf(x) ≡∑n−1

j=0 f(σj(x)) :

Theorem 30.8. (Central Limit Theorem) For f Hölder and with
∫
f dµ = 0 there

exists σ ∈ [0,∞) such that for all real r,

µ{Snf/n
1
2 > r} → 1√

2π

∫ r

−∞
e−x

2/2σ2

dx.

We give a proof in §30.5 below.

Note: If the variance σ2 = 0, it is understood that the Gaussian distribution is
replaced here by the limiting distribution as σ2 → 0, that is, by point mass at 0.

30.5. Gordin’s proof of the CLT.
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31. More on Cocycles

31.1. Cohomology and nonsingular transformations. There are two main ways
to generalize the standard ergodic theory situation of a measure-preserving transfor-
mation on a probability space: to infinite invariant measures, and to measure-class
preserving transformations, i.e. maps which preserve the collection of null sets but
not the measure itself. In this last case the measure is called quasi-invariant, and
such a map (X,A, T, µ) is called a nonsingular transformation.

To introduce the subject, we begin with the simplest example, derived from a
measure-preserving transformation (X,A, T, ν). Now let f(x) ∈ L1(X, ν) and assume
also that f(x) > 0 almost surely. We define a measure µ by dµ = f(x)dν, by which
we mean

µ(A) =

∫

A

dµ =

∫

A

dµ

dν
dν =

∫

A

f(x)dν

for any A ∈ A, so in other words, f = dµ/dν is the Radon-Nikodym derivative of µ
with respect to ν.

Then µ is invariant if and only if the function f is. So for non-invariant f , the
map (X,T, µ) is a nonsingular transformation. One case where this could be useful
is when ν is infinite, for then f ∈ L1 produces an equivalent finite quasi-invariant
measure µ. But in general, any questions about the nonsingular transformation can
be answered by considering the invariant measure ν, with which it is much easier to
work.

The situation is quite different if there exists no equivalent (finite or infinite) invari-
ant measure. There the nonsingularity is intrinsic, so we have to develop a truly new
theory. (These three types of transformations-finite or infinite measure-preserving, or
truly nonsingular- were termed Types I, II, and III by von Neumann; they play a
basic role in C∗-algebra theory and in the study of the equivalence relation generated
by orbits of the map).

Of course the first problem will be to identify in some way which nonsingular
transformations are truly nonsingular in this sense. For that a basic tool is the
Radon-Nikodym cocycle.

For simplicity, we assume that T is invertible, so µ ◦ T makes sense, and we define
a measurable function Rµ(x) : X → (0,+∞) by

Rµ(x) =
dµ ◦ T
dµ

.

This defines a multiplicative cocycle i.e. taking values in the multiplicative group
(R>0, ·). It will also be useful for us to consider the additive version of this:

ϕµ ≡ logRµ.

As before, these functions are called cocycles because they extend to a function on
X × Z by multiplying, or summing, along an orbit.

Proposition 31.1. Given a quasi-invariant measure µ for (X,A, T ), then there ex-
ists an equivalent invariant measure iff φµ is a coboundary, Rµ is a multiplicative
coboundary.
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Proof. The condition is that there exist a measurable function u such that ϕµ(x) =
u ◦ T (x) − u(x), i.e. that ϕ be cohomologous to 0, and equivalently that Rµ be
multiplicatively cohomologous to 1. But

µ ◦ T (A) =

∫

A

d(µ ◦ T ) =

∫

A

dµ ◦ T
dµ

while

µ(A) =

∫

A

dµ.

Now Rµ is cohomologous to 1 means there exists w(x) such that
so these are equal for all A iff ... �

Example 30. Here is an interesting (and illustrative) example of a nonsingular trans-
formation. Let ΣA be a subshift of finite type with A a primitive 0−1 matrix, and let
O be an order on the corresponding Bratteli diagram, with T = TO the adic trans-
formation on Σ+

A defined fron this. Now since A is primitive, we know by Theorem
?? that (Σ+

A, T ) has a unique invariant probability measure. To produce a quasi-
invariant measure, let ϕ : ΣA → R be continuous, and supppose the Ruelle operator
Lϕ has eigenvalue λ > 0. We know (again by the primitivity of A that there exists
a unique normalized eigenmeasure ν with eigenvalue λ, for the dual operator L∗ϕ. By
Prop. 27.1, equivalently we have

dν ◦ σ
dν

= λe−ϕ.

This ............

31.2. Maharam’s skew product and the flow of weights. As an aid to under-
standing a nonsingular transformation (X,A, T, µ), Maharam introduced an associ-
ated measure-preserving transformation, a skew product with real fibers.

To describe this we first build a skew product taking values in the group of multi-
plicative reals (R>0, ·), this being given Lebesgue measure λ. Since λ is not invariant
by dilation, the idea is that a dilation in the fiber can compensate for the nonsingu-
larity of µ, as follows. Defining as before Rµ = dµ ◦ T/dµ, we take as our skewing
function R−1

µ , and so our multiplicative skew product is:

TΦ(x, a) = (Tx,R−1
µ (x) · a).

This has Radon-Nikodym derivative

d(µ× λ) ◦ TΦ

d(µ× λ)
=
dµ ◦ T
dµ

· d(R−1
µ (x) · λ)

dλ
= Rµ(x) ·R−1

µ (x) = 1

so the measure is preserved.
It will be convenient to write this is additve form, with fibers (R,+), so the skewing

function is ϕ ≡ log Φ = logR−1
µ (x) = − logRµ(x), and the measure λ then becomes m

with dm = exdx on R. This last fact can be seen as follows: m([0, s]) = λ([e0, es]) =
es − 1 =

∫ s
0
exdx.
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32. Ergodic theory and the boundary at infinity of a group

Furstenberg’s idea of the boundary of a group can best be motivated by two ap-
parently quite different examples: Brownian motion on the disk and the free group
(and semigroup) on two generators.

If we start a Brownian path B(t) at the center of the unit disk D, it will a.s. at
some time t0 encounter the boundary circle. At that point we stop the path. Now it
is a fact that Brownian motion is invariant under conformal coordinate changes, so if
we move this picture to the hyperbolic disk ∆ (the interior of the unit disk with the
Poincaré metric), then this same path is also a Brownian path in the new metric, up
to a time change. By this time change t0 has become +∞, so we have proved that
Brownian motion in the Poincaré disk a.s. converges to a point on the boundary,
defined to be simply the boundary circle in this case.

As usual, one would like to study random walk approximations to this Brownian
motion. Now the group G = PSL(2,R), the real Möbius transformations, are the
orientation-preserving isometries of the Poincaré disk (see §??). So, just as we con-
sider random walks in the integer lattice Z⊕Z as approximations to Brownian motion
in the plane, we could study random walks in a discrete subgroup Γ ⊂ G. A classical
example is the modular group, the subgroup with integer entries. This is one of
Furstenberg’s starting points, and also will be of the main interest in this paper. But
first we consider a simpler discrete model, the free group.

It is in fact best to take first not a group but a semigroup, the free semigroup on two
generators a, b, written FS2. We consider the simplest one-sided infinite paths, those
with increments x0, x1, · · · in the set of generators {a, b}. We picture the semigroup
as the nodes of an infinite binary tree; the base node is the identity e ∈ FS2. The
collection of all infinite paths corresponds to Σ+ = Π∞0 {a, b}, the Bernoulli shift space;
we think of the boundary points as the “ends” of such a path, which can be identified
with the path itself since there is a unique way to get there. Thus ∂FS2 = Σ+; we
give {a, b} the discrete topology and Σ+ the corresponding product topology, which
makes Σ+ homeomorphic to the Cantor set. We then topologise FS2 ∪ ∂FS2 so as
to give the following notion of convergence: for gn ∈ FS2 and x ∈ ∂FS2, gn → x as
n→∞ iff for some kn increasing to infinity, gn = x0 . . . xkn .

In this example, there is no cancellation, so you can only proceed directly out to
the boundary. Note that FS2 acts on FS2∪∂FS2 continuously, by left multiplication.

There is a natural measure on ∂FS2, the Bernoulli (1
2
, 1

2
) measure ×∞i=0(1

2
δa + 1

2
δb).

Here is another way to define convergence, which is clearly equivalent: gn → x
iff gn(µ) → δx (where gn(µ) denotes the push-forward of the measure by the left
multiplication). This is the definition taken by Furstenberg, as it will work well in
the case of a general group. We note that µ is the hitting measure of the independent
(1

2
, 1

2
) random walk on FS2.

The next case to consider is the free group, F2. Here steps along a path can
cancel, so following the semigroup case, we define the boundary to be the collection
of one-sided infinite cancelled sequences in the symbols {a, b, a−1, b−1}. This space is
a subshift of finite type Σ+

A, with a (4× 4) 0− 1 matrix A expressing the simple rule
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that a−1 cannot follow a and so on. Again there is a natural measure, which we now
describe.

The one-sided random walk paths correspond to Π+ = Π+∞
0 , which gives the se-

quence of increments xi. We write ν for the (1
4
, 1

4
, 1

4
, 1

4
) Bernoulli measure on this shift

space.
Given a sequence x = (x0, x1, . . . ) ∈ Π+, we define ln(x) to be the length k of

the collapsed word w0w1 · · ·wk = x0x1 · · ·xn, so e.g. for x = (.aa−1baa−1ba−1) then
w0w1w2 = bba−1 and l5(x) = 2. We have:

Lemma 32.1. The collapsed length ln(x)→ +∞ as n→∞ for ν-a.e. x ∈ Π+.

Proof. Note that the length of a word increases with probability 3/4 unless l0 = 0 (in
which case the length surely increases). Thus ln is the path of a reflected random walk
on the integers with drift, and so by the law of the iterated logarithm, ln(x) → +∞
a.s. �

Proposition 32.2. The map π : Π+ → Σ+ given by cancellation is well- defined
for ν-a.s. x = (x0, x1, . . . ) ∈ Π+. The image µ of the measure ν is the measure of
maximal entropy on Σ+

A, the Parry-Shannon measure; for a.e. one-sided random walk
path (gn), gn → w for the point w ∈ ∂F2 = Σ+

A which is just the infinite cancelled
string equal to π(x). Define a left action of the group F2 on the topological space
F2 ∪ Σ+

A; on F2 this is defined by left multiplication and on Σ+
A is left multiplication

followed by cancellation. This action is continuous. The measure µ is equal to the
hitting measure of the independent (1

4
, 1

4
, 1

4
, 1

4
) random walk on F2.

Proof. The map is well-defined by the lemma. The action is clearly continuous. The
Parry-Shannon measure (which is the measure of maximal entropy) is the Markov
measure defined by the invariant row vector π = (1

4
, 1

4
, 1

4
, 1

4
) and the matrix 1

3
·A, and

this is the push-forward of ν by the map π since all three choices which do not cancel
with the last letter are equally likely. This implies that µ is the hitting measure. �

Let us write Π+ = Π∞0 F2 for the one-sided paths (gn)n≥0 in F2. Then the cancel-
lation map π extends to Π+; those paths in Π+ which have increments in the set of
generators are determined by the full shift space Σ+ of those increments. We note
that for g ∈ Π+ the map π gives a gathering of g; one has trimmed off all the excess
branches without changing the limit point x ∈ ∂F2 = Σ+.

Remark 32.1. Let us consider a left action of a group G on a set S, with x 7→ g(x)
for x ∈ S. In the definition of paths in a group, a key point is that one does
not get from gn(x) to gn+1(x) by application of the single element xn+1. Rather,
gn+1(x) = gn+1g

−1
n gn(x). This is exactly like what happens for Kleinian groups,

whose limit set is the boundary at infinity (see ??, or hyperbolic Cantor sets (see
e.g. ??). The Cantor set is naturally identified with the boundary at ∞ of the free
semigroup on two generators, so there, the descent to one more generation requires
us to “go all the way back up the tree” literally, since its Cayley graph is the binary
tree and the boundary corresponds to the limiting ends.

We remark that many familiar objects can be modelled as group or semigroup
boundaries, or as a quotient (identification space) of those. Examples already give
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are the Cantor set (corresponding to ∂FS2), and the limit set of a Kleinian group;
others are any limit set of an iterated function system (IFS), and any Julia sets
(consider the tree of inverse images of a point as it converges to the Julia set). For
the general theory regarding the boundary at infinity of a group or homogeneous
space, see [Fur71], [Fur80], [Kai97].

33. Extension of measures

33.1. Extension of measures; from finite to countable additivity. Here we
present fundamental results on the extension of finitely and countably additive mea-
sures, due to Caratheodory, Alexandroff, Kolmogorov, and Doob- Kakutani-Nelson-
Dudley.

References for this section are [Bar66], [Hal76], [DS57], [Roy68], [Loè77]).
We now go more deeply into ideas introduced in §3:

Definition 33.1. Given a set X, a set function is a function defined on a collection
of subsets, taking values in some linear space (i.e. vector space): the real numbers R,
the complex numbers C, or a Banach space B; in the case of the reals we also allow
the the extended reals R = [−∞,+∞]. If values are taken in R+ = [0,+∞] we say
this is a positive set function.

Given a set X, an algebra A is a collection of subsets of A such that:

• X ∈ A;
• A ∈ A =⇒ Ac ∈ A;
• A,B ∈ A =⇒ A ∪B ∈ A.

It is a σ−algebra if in addition
• Ai ∈ A for i = 1, 2, · · · =⇒ ∪∞i=1Ai ∈ A.

Given an algebra A, a finitely additive measure on A is a positive set function
µ : A → [0,+∞] such that µ(∅) = 0 and for A,B disjoint, µ(A ∪B) = µ(A) + µ(B).
For a countably additive measure, also called a σ− additive measure, or simply
a measure we require that A be a σ−algebra, satisfying that for {Ai}∞i=1 disjoint,
then µ(∪∞i=1Ai) = Σ∞i=1µ(Ai). Thus if we have only finite additivity this will always
be stated explicitly as countable additivity is the usual situation.

In the case where the set function µ takes values in R we call this a signed measure
or a charge. If the values are in C or B we call this a complex- or B−valued
measure.

There is a concept in between finite and countable additivity: µ is a countably
additive measure on an algebra A iff countable additivity holds whenever it
makes sense; that is, if {Ai}∞i=1 are disjoint sets in A, and if their union happens to
also be in A, then µ(∪∞i=1Ai) = Σ∞i=1µ(Ai).

Countable additivity is equivalent to finite additivity plus a certain continuity prop-
erty. To make this explicit (see also e.g. p.85 of [Loè77]), a set function on a σ− algebra
is said to be continuous from below or σ−continuous iff given an increasing se-
quence of sets Ai ∈ A with A = ∪∞i=1Ai ∈ A then limµ(Ai) = µ(A). It is continuous
from above or δ−continuous iff given a decreasing sequence of sets Ai ∈ A such
that some An has finite measure, if A = ∩∞i=1 and µ(A1) <∞, then limµ(Ai) = µ(A).
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To pass from countable additivity to σ−continuity we disjointify the sequence of
sets, a useful technique illustrated in the proof to follow.

Lemma 33.1. If a set function µ on an algebra A is countably additive, then it is
σ−continuous.

Conversely, if it is σ−continuous and is finitely additive, then it is countably addi-
tive.

Proof. Given (Ai)
∞
i=1 increasing, we define Â1 = A1, Â2 = A2 \ A1, Â3 = A3 \ (A1 ∪

A2) and so on, so (Âi)
∞
i=1 are disjoint and An = ∪ni=1Âi. Then the σ−additivity

immediately gives σ−continuity.

Conversely, given Ai disjoint then Ân = ∪ni=1Ai increase to A = ∪∞i=1Ai whence
σ−continuity implies σ− additivity. �

Lemma 33.2. If µ(A) <∞, then finite additivity of the measure implies µ(A \B) =
µ(A)− µ(B).

(If µ(A) = µ(B) =∞, then we can draw no conclusion, since∞−∞ is not defined,
and indeed from easy examples any real value for µ(A \B) is possible).

Lemma 33.3. Assume a set function µ is finitely additive. Then σ− continuity
implies δ−continuity. If µ(X) <∞, then δ−continuity implies σ− continuity.

Proof. We assume σ−continuity. Given (Ai)
∞
i=1 decreasing, then for A = ∩∞i=1Ai we

have that (A1 \Ak) increases to A1 \A, so by σ−continuity µ(A1 \Ak)→ µ(A1 \A).
Say without loss of generality that µ(A1) <∞. Then by Lemma 33.2, µ(A1 \ Ak) =
µ(A1)− µ(Ak) and µ(A1 \A) = µ(A1)− µ(A). Thus µ(A1)− µ(Ak)→ µ(A1)− µ(A)
whence µ(Ak)→ µ(A) since all of these numbers are finite.

Conversely, we assume δ−continuity. Given Ak increasing to A, then A \ Ak de-
creases to the empty set so µ(A \ Ak) → 0. Now suppose that µ(A) < ∞. Then
by Lemma 33.2, µ(A \ Ak) = µ(A) − µ(Ak) → 0 whence µ(Ak) → µ(A). Hence in
particular if µ(X) <∞ we are done.

�

Lemma 33.4. If a set function µ on an algebra A is countably additive, then it is
δ− continuous.

If it is δ−continuous and is finitely additive, and if µ(X) <∞, then it is countably
additive.

Proof. We showed in Lemma 33.1 that it is σ−continuous. By Lemma 33.3 this
implies δ− continuity.

Conversely, we showed in Lemma 33.3 that if it is it is δ−continuous and µ(X) <∞
it is σ−continuous. By Lemma 33.1, this implies countable additivity. �

In summary, we have proved (see Theorem 3.A of [Loè77]):

Proposition 33.5.
(i) A set function µ on an algebra A is countably additive iff it is finitely additive and
σ−continuous.
(ii) If a set function µ on an algebra A is countably additive then it is finitely additive
and δ−continuous, with the converse holding if µ(X) <∞. .
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Definition 33.2. Recall (see Definition 33.10) that power set P(X) of a set X is the
collection of all its subsets.

A function λ : P(X)→ [0,+∞] is an outer measure on X iff:
(i) λ(∅) = 0;
(ii) A ⊆ B =⇒ λ(A) ≤ λ(B);
(iii) for any sequence of sets {Ai}∞i=1, then λ(∪∞i=1Ai) ≤ Σ∞i=1λ(Ai).

The second property is called monotonicity while the third is countable sub-
additivity.

The main examples of outer measures arise as follows.
See [DS57], Lemma 5. p 134.
-Halmos and Royden.

Proposition 33.6. Let µ be a countably additive measure on an algebra A of subsets
of the space X, as in Definition 33.1. Then µ∗ defined on P(X) by

µ∗(A) = inf Σ∞i=1µ(Ai)

where the inf is taken over all countable covers {Ai}∞i=1 of A by elements of A, is an
outer measure. Moreover, µ∗ = µ on A.

Proof. Parts (i) and (ii) of the definition of outer measure are immediate. To prove
(iii) we cover each Ai by sets (Aji )

∞
j=1 each in A to within ε/2−n, thus

Σ∞j=1µ(Aji )− µ∗(Ai) < ε/2−n

Then A ⊆ ∪∞i,j=1A
j
i and so µ∗(A) ≤∑∞i,j=1 µ(Aji ) ≤

∑∞
i=1 µ

∗(Ai) + ε.

Now let A ∈ A. We are to show that µ∗(A) = µ(A). We cover A by itself, so
µ∗(A) ≤ µ(A). We claim it is equal.

Suppose not. Then there exist Ai ∈ A with A ⊆ ∪Ai such that
∑
µ(Ai) < µ(A).

We “disjointify” them, by replacing them with the sequence of sets Ã1 = A1, Ã2 =

A2 \A1, Ã3 = A3 \ (A1 ∪A2), . . . and then define Âi = A∩ Ãi. Thus Âi ∈ A, they are

disjoint and A = ∪Âi. But by the definition of countable additivity on an algebra,

µ(A) =
∑

µ(Âi) ≤
∑

µ(Ai) < µ(A),

a contradiction. �

Note. It will be convenient to use (for this section only!) the algebra notation AB for
A ∩B.

Definition 33.3. (Caratheodory) Given an outer measure λ on X, a set A ⊆ X is
λ−measurable iff for each E ⊆ X, λ(E) = λ(EA) + λ(EAc). We denote by A∗ the
collection of λ−measurable sets.

Given an outer measure λ and some E ⊆ X with 0 < λ(E) < ∞, we define the
outer measure relative to E by the same formula as for measures, see §3.1:

λE(A) = λ(AE)/λ(E).

We note that with this notation, Caratheodory’s definition can be restated as fol-
lows: A is λ−measurable iff λE(E) = λE(A) + λE(Ac).
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We denote byAE the restricted σ−algebra, AE = {A∩E : A ∈ A}. Note that λE is
an outer measure, on the space (E,AE). Its own measurable sets are denoted (AE)∗.
As we show below, in Theorem 33.12, this equals the restriction of the λ−measurable
sets, i.e. (AE)∗ = (A∗)E.

We next begin to explore the implications of this remarkable definition of Caratheodory.
We first show that A∗ is an algebra, then a σ−algebra, finally that the outer measure
is is σ−additive hence a measure, when restricted to the Caratheodory measurable
sets A∗ (Proposition 33.11). Then we show there is a relative version of all this, for
any (perhaps nonmeasurable) subset E.

Our first step is to note that Caratheodory definition has a partition version.

Definition 33.4. Let us say a partition P = {Pi}ni=1 of X is λ−measurable iff for
each E ⊆ X, λ(E) =

∑n
i=1 λ(EPi).

Lemma 33.7.
(i)Let P be a finite partition each of whose elements is λ−measurable. Then P is
λ−measurable.
(ii)For {Ai}ni=1 disjoint and λ− measurable, setting A = ∪ni=1Ai, then for any E ⊆ X,

λ(EA) =
n∑

i=1

λ(EAi).

(iii) In particular, the restriction of the outer measure λ to A∗ is finitely additive.

(Note that in (iii) we cannot yet say “is a finitely additive measure” as we have
yet to prove that A∗ is an algebra! We do that in Proposition 33.9.)

Proof. The proof of (i) is by induction on the number of elements n. For n = 2 this
is true by the definition of λ−measurable set. Now suppose we know it for n, for any
subset E.

Then given a partition P = {Pi}n+1
i=1 , let A = ∪ni=1Pi, so Ac = Pn+1. But we have

by the induction hypothesis, applied to the set Ẽ= AE,

λ(EA) = λ(Ẽ) =
n∑

i=1

λ(ẼPi).

Now since Ac = Pn+1 is λ−measurable,

λ(E) = λ(EA) + λ(EAc) =
n∑

i=1

λ(ẼPi) + λ(EPn+1) =
n+1∑

i=1

λ(EPi).

For (ii), we consider the partition {A,Ai}ni=1 and apply the proposition to the

subset Ẽ = EA. For (iii), we take E = X.
�

We have:

Lemma 33.8. Let A,B ∈ A∗.
Then the partition generated by A,B, that is, {AB,ABc, AcB, (A∪B)c} is λ−measurable.
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Proof. For E ⊆ X, since A ∈ A∗,
λ(E) = λ(EA) + λ(EAc).

Since B ∈ A∗,
λ(EA) = λ(EAB) + λ(EABc).

and
λ(EAc) = λ(EAcB) + λ(EAcBc).

Therefore, since AcBc = (A ∪B)c,

λ(E) = λ(EAB) + λ(EABc) + λ(EAcB) + λ(E(A ∪B)c). (124)

�

This brings us to the main result we need. We follow the proof in §11 of [Hal76].

Proposition 33.9. Given an outer measure λ on X, the collection A∗ of λ−measurable
sets is an algebra.

Proof. It is enough to show that given A,B ∈ A∗, then A ∪B ∈ A∗.
Now if in equation (124) we replace E by Ẽ = E(A ∪B), we have

λ(E(A ∪B)) =

λ(E(A ∪B)AB) + λ(E(A ∪B)ABc) + λ(E(A ∪B)AcB) + λ(E(A ∪B)(A ∪B)c).

We note that the last set is empty, while the first three are unchanged with Ẽ replaced
by E. Thus,

λ(E(A ∪B)) = λ(EAB) + λ(EABc) + λ(EAcB). (125)

Now from (124) we had:

λ(E) = λ(EAB) + λ(EABc) + λ(EAcB) + λ(E(A ∪B)c),

so substituting from (125) for the first three terms on the right yields

λ(E) = λ(E(A ∪B)) + λ(E(A ∪B)c),

and we are done. �

Here is a second proof, following §III.5.1 of [DS57].

Proof. This time to prove A∗ is an algebra, we show that given A,B ∈ A∗, then
AB ∈ A∗.

That is, we wish to show that for any E ⊆ X, λ(E) = λ(E(AB)) + λ(E(AB)c).
Now since B ∈ A∗,

λ(E(AB)c) = λ(E(AB)cB) + λ(E(AB)cBc).

But since (AB)cB = BAc, we have that E(AB)cB = EBAc. Also, since (AB)cBc =
Bc, we have that E(AB)cBc = EBc. Thus

λ(E(AB)c) = λ(EBAc) + λ(EBc). (126)

Again since B ∈ A∗,
λ(E) = λ(EB) + λ(EBc)

and since A ∈ A∗,
λ(EB) = λ(EBA) + λ(EBAc).
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It follows that

λ(E) = λ(EBA) + λ(EBAc) + λ(EBc).

The last two sets occur on the right-hand side of (126). Therefore, putting these
together yields
λ(E) = λ(E(AB)) + λ(E(AB)c) as desired.

�

Next we show:

Proposition 33.10. A∗ is a σ−algebra.

Proof. Since we know A∗ is an algebra, it will be enough to show that given {Ai}∞i=1

disjoint and λ− measurable, then A ≡ ∪∞i=1Ai is λ− measurable, i.e. that:

λ(E) = λ(EA) + λ(EAc).

We write A(m) = ∪mi=0Ai. Then {A1, . . . , Am, (A
(m))c} is a partition, so by part (i)

of Lemma 33.7, for any m we have:

λ(E) = λ(∪mi=0EAi)) + λ(E(A(m))c).

Then:

λ(E) = λ(EA(m)) + λ(E(A(m))c) ≥
m∑

i=1

λ(EAi) + λ(EAc), as Ac ⊆ (A(m))c.

Since this holds for every m,

λ(E) ≥
∞∑

i=1

λ(EAi) + λ(EAc) ≥ λ(EA) + λ(EAc) ≥ λ(E),

using subadditivity in the last two inequalities, and we are done. �

We now extend Definition 33.4 to countably infinite partitions.

Definition 33.5. A partition P = {Pi}∞i=1 of X is λ−measurable iff for each E ⊆ X,
λ(E) =

∑∞
i=1 λ(EPi).

Proposition 33.11. Lemma 33.7 also holds for countably infinite partitions. That
is:
(i)Let P = {Pi}∞i=1 be a partition each of whose elements is λ−measurable. Then P
is λ−measurable.
(ii)For {Ai}∞i=1 disjoint and λ− measurable, setting A = ∪∞i=1Ai, then for any E ⊆ X,

λ(EA) =
∞∑

i=1

λ(EAi).

(iii) In particular, the restriction of the outer measure λ to A∗ is countably additive.

Proof. Defining P∞n = ∪∞i=nPi, then {P∞n , Pi}n−1
i=1 is a finite partition. By Lemma

33.10, P∞n is λ−measurable.
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Hence by the above,

λ(E) = λ(E(∪∞i=1Pi)) =
n−1∑

i=1

λ(EPi) + λ(EP∞n )

whence λ(E) ≥∑n−1
i=1 λ(EPi) for all n, hence λ(E) ≥∑∞i=1 λ(EPi). But from subad-

ditivity, λ(E) ≤∑∞i=1 λ(EPi), completing the proof.
To show (ii), we consider the partition {(Ai)∞i=1, (A

∞)c}, and apply (i) to the subset

Ẽ = E ∩ A∞. For (iii), apply (ii) with E = X. �

We summarize:

Theorem 33.12.
(i)(Caratheodory extension theorem) If λ is an outer measure on X then the collec-
tion A∗ of λ−measurable sets form a σ−algebra on which λ is a countably additive
measure.
(ii) We have, moreover, a relative version of this, for any (perhaps nonmeasurable)
subspace E:

Let E ⊆ X with outer measure 0 < λ(E) <∞. Then (AE)∗ = (A∗)E. That is, the
Caratheodory measurable sets for the relative outer measure λE of Definition 33.3 are
the restrictions of the λ− measurable sets.

Furthermore, λE is a countably additive measure on the relative σ−algebra (A∗)E.

Proof. Part (i) was proved in Proposition 33.10 and (iii) of Proposition 33.11.
For part (ii), the first statement follows from the definitions, and for the second,

we divide the equality in (ii) of Proposition 33.11 by λ(E). �

Example 31. The relative version in part (ii) has practical consequences.
For an example, consider the space of all functions RR with the product topology,

and the subset of continuous functions C(R) with the topology of uniform convergence
on compact subsets of R. Now to define the measure ν for Brownian motion one
can proceed as follows. The measure is initially defined on the algebra on on RR

generated by finite cylinder sets (from the basic properties we want for Brownian
motion: the Gaussian distribution at each time, the scaling property, and independent
increments) and this is extended via Alexandroff’s theorem below (Theorem 33.15) to
the σ−algebra generated by that. We then restrict to the continuous functions, C(R)
which is a nonmeasurable subset of RR with this σ−algebra, of full outer measure.
The result is (C(R),B, ν), which is a Polish space (Def. 5.2) hence a Lebesgue space.

Definition 33.6. A finitely additive measure µ on an algebra A of subsets of X is
σ−finite iff there exist Ai ∈ A such that µ(Ai) <∞ and X = ∪∞i=1Ai.

Theorem 33.13. (Hahn extension, [DS57]) A countably additive measure µ on an
algebra A of subsets of X has a countably additive extension µ∗ to the σ− algebra

Â generated by A, the Caratheodory extension defined on the (a priori larger) σ−
algebra A∗ of µ-measurable sets. This is the largest extension to Â. If µ is σ−finite

then this extension to Â is unique.
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Proof. Let µ∗ denote the outer measure on P(X) of Definition 33.3, and let A∗ de-
note the σ−algebra of Caratheodory µ∗-measurable sets of Definition 33.3. Then by
Caratheodory’s extension theorem Theorem 33.12, this is countably additive on A∗,
which contains Â.

Suppose that µ̃ is another extension to Â. By the definition of µ∗ in Proposition
33.6, µ∗(E) = inf

∑
µ(Ai) where the infimum is taken over all countable covers of E

by sets in A. By monotonicity, µ̃(∪Ai) ≤
∑
µ(Ai). Therefore µ̃(E) ≤ µ∗(E) and µ∗

is the largest.
Next we assume µ is σ−finite: thus X = ∪∞i=1Ai with Ai ∈ A and µ(Ai) <∞. Let

Ãn = ∪ni=1Ai. Thus Ãn increase to X and each has finite measure.

Let E ∈ A∗. Since E ∩ Ãn increase to E, by σ−continuity (Proposition33.5)

µ̃(E ∩ Ãn) increases to µ̃(E), and similarly for µ∗.

Hence if we can show that µ∗ = µ̃ for µ(E ∩ Ãn) we will be done.
Thus supposing that E ∈ A∗ is a subset of some set F ∈ A of finite measure, we

are to show that µ̃(E) = µ∗(E).

We have seen that µ̃(E) ≤ µ∗(E). We set Ẽ = A\E, and for the same reason have

µ̃(Ẽ) ≤ µ∗(Ẽ).

Now µ̃(Ẽ) = µ̃(A\E) = µ̃(A)−µ̃(E) since all sets here have finite measure (Lemma

33.2), and similarly for µ∗. Thus µ̃(A) − µ̃(E) = µ̃(Ẽ) ≤ µ∗(Ẽ) = µ∗(A) − µ∗(E)
whence µ∗(E) ≤ µ̃(E) so we are done.

�

Remark 33.1. In practice one often tries to avoid addressing non-σ−finite spaces as
they can exhibit exceptional behavior; for example this nonuniqueness can occur.
Non-σ−finite spaces can be constructed by simply taking uncountably many disjoint
copies of a finte measure space, such as a continuum of point masses (i.e. counting
measure on the unit interval), or a continuum of line segments (such as a measure on
I×I where the first interval has Lebesgue measure and the second counting measure,
and we take the σ− algebra of rectangles). For this last example, the Hahn extension
is not unique, since for the Caratheodory extension the measure of the diagonal is∞,
but for another extension this is zero. Indeed, a rectangle R has the form [a, b] × F
where F is a finite subset of J , andm× µ(R) = (b− a) ·#F . We cover the diagonal
D by a cover ∪i∈SRi. Note that the index set S must be uncountable since each
F is discrete. But any uncountable sum

∑
i∈S ri ≡ supfinite subsets G of S

∑
i∈G ri of

positive numbers is infinite since if there are only finitely many ri > 1/n for each n,
then there are only countably many points in S. Thus µ∗(D) = ∞. For a second
extension, (Wikipedia, Caratheodory Extension Theorem), we define the measureµ̃(A)
of a subset to be the sum of the measures of its horizontal sections. Then µ̃(D) = 0.
???

For our next steps we need:

Definition 33.7. A finitely additive measure µ on a topological space X with topol-
ogy T and an algebra of sets A0 is regular on the algebra iff for A ∈ A0, for every
ε > 0 there exists a closed subset F and an open subset U such that F ⊆ A ⊆ U
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with µ(U \ F ) < ε. We make the similar definition for µ countably additive, defined
on a σ−algebra A.

The next statement is easy to verify using Venn diagrams, but as we have not found
it in the literature, here is a rigorous proof:

Lemma 33.14.

(A \B) ∪ (C \D) ⊃ (A ∪ C) \ (B ∪D).

Proof.
(A \B) ∪ (C \D) = (A ∩Bc) ∪ (C ∩Dc) =

((A ∩Bc) ∪ C) ∩ ((A ∩Bc) ∪Dc) =

((A ∪ C) ∩ (Bc ∪ C)) ∩ ((A ∪Dc) ∩ (Bc ∪Dc)) =

(A ∪ C) ∩ (Bc ∪ C) ∩ (A ∪Dc) ∩ (Bc ∪Dc)

On the other hand,

(A ∪ C) \ (B ∪D) = (A ∪ C) ∩ (B ∪D)c =

(A ∪ C) ∩ (Bc ∩Dc) =

(A ∩ (Bc ∩Dc)) ∪ (C ∩ (Bc ∩Dc)) =

((A ∩Bc ∩Dc) ∪ C) ∩ ((A ∩Bc ∩Dc) ∪Bc) ∩ ((A ∩Bc ∩Dc) ∪Dc) =

(A ∪ C) ∩ (Bc ∪ C) ∩ (Dc ∪ C)∩
(A ∪Bc) ∩ (Bc ∪Bc) ∩ (Dc ∪Bc)∩
(A ∪Dc) ∩ (Bc ∪Dc) ∩ (Dc ∪Dc) =

(A ∪ C) ∩ (Bc ∪ C) ∩ (A ∪Dc) ∩ (Bc ∪Dc)∩
(Dc ∪ C) ∩ (A ∪Bc) ∩Bc ∩ (Dc ∪Bc) ∩Dc =

((A \B) ∪ (C \D))∩
((Dc ∪ C) ∩ (A ∪Bc) ∩Bc ∩ (Dc ∪Bc) ∩Dc)

hence the first set is larger.
�

The next theorem helps explain the essential difference between finite and count-
able additivity is whether or not the space is compact (for regular measures, which
condition serves to link the measure to the topology).

Theorem 33.15. (Alexandroff; Theorem III.5.13, .14 of [DS57]) If (X, T ) is a com-
pact topological space and µ is a regular finitely additive measure on an algebra A0,
then µ is countably additive on the algebra, and it has a unique countably additive
extension to A, the σ−algebra generated by A0, where it is still regular.

Proof. Let (Ai)i≥1 be disjoint elements of A0, and write A = ∪∞i=1Ai. We suppose
A ∈ A0 as well. We shall show that µ(A) ≥ ∑∞i=1 µ(Ai) (this is superadditivity)
and the reverse. The first is easy and is true just from additivity and the assumption
that A ∈ A0 so µ(A) is defined: µ(A) = µ(∪∞i=0Ai) ≥ µ(∪mi=0Ai) =

∑m
i=0 µ(Ai), hence

µ(A) ≥∑∞i=1 µ(Ai).
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The second inequality (subadditivity) is not automatic, as it uses compactness plus
regularity. By regularity (using the fact that A ∈ A0) there exists a closed subset F
of A with µ(A \ F ) < ε; since X is compact so is F . Also by regularity, there exists
for each i an open set Ui ⊇ Ai with µ(Ui \ Ai) < ε/2i.

Now since µ(Ai) ≥ µ(Ui)− ε/2i, we have

∞∑

i=1

µ(Ai) ≥
∞∑

i=1

µ(Ui)− ε.

Since F is compact, there exits N ≥ 1 such that ∪Ni=0Ui ⊇ F . Therefore by finite
subadditivity,

∞∑

i=1

µ(Ui)− ε ≥
N∑

i=0

µ(Ui)− ε ≥ µ(∪Ni=0Ui)− ε ≥ µ(F )− ε ≥ µ(A)− 2ε.

Combining these two, we are done with the proof of countable additivity on A0.
This proof of countable additivity on the algebra (which was divined from the key

topological hypotheses of compactness plus regularity) is all that is needed to prove
Alexandroff’s theorem, as that allows us to apply Caratheodory’s ideas, via the Hahn
extension (Theorem 33.13). To recall the argument, writing µ∗ for the outer measure
defined from µ as in Proposition 33.6, then by Proposition 33.10 the collection A∗0 of
of µ∗−Caratheodory measurable sets is a σ−algebra, hence contains A, and by (i)
of Theorem 33.12 the outer measure µ∗ is countably additive when restricted to A∗0.
We write µ for the restriction to A.

Lastly we show that µ is still regular on A. Let us consider the collection Â of
sets in A satisfying the regularity condition; this contains A0, so if we show this is
a σ−algebra, then it equals A. Given (Ai)i≥1 a sequence in A, it will be enough to
show the regularity condition for A = ∪∞i=1Ai. We have Fi, Ui compact and open with
Fi ⊆ Ai ⊆ Ui and µ(Ui \ Fi) < ε/2i. Then by the Lemma (which remains valid for
arbitrary unions)

U \ F ≡ ∪(Ui) \ ∪(Fi) ⊃ ∪(Ui \ Fi)
whence

λ(U \ F ) ≤
∑

ε/2i = ε.

Now a countable union of closed sets may not be closed, but a finite union is, so we
can replace F by ∪ni=1Fi to finish the proof.

�

Remark 33.2. For an important example RR, this is not yet the extension to the Borel
σ−algebra for the product topology, which is larger. For that we need a theorem of
Nelson. See [Nel59] and see Theorem 33.28 below.

Example 32. (Density, part (i)) We mention an interesting case where for a number
of reasons the main ideas in this section cannot work. So it will be good to check
each step against this “counterexample” to see what goes wrong. We return to this
several times below.

Recall that the density of a Lebesgue measurable subset A ⊆ R is:
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λ(A) = lim
T→∞

1

T
m(A ∩ [0, T ])

when the limit exists. Writing A for the collection of sets where this is defined, this
is an algebra, and λ is a finitely additive, translation-invariant probability measure
on A.

For every compact set A, λ(A) = 0. Take A = [0, 1) and An = n + A.Then Thus
R = ∪n∈ZAn whence

∑
n∈Z λ((An) = 0 < 1 = λ(R)and λ is not countably additive.

We might nevertheless try to define an outer measure, by λ(A) = lim supT→∞
1
T

∫ T
0
χA(x)dx.

Since sup(f + g) ≤ sup f + sup g, this is subadditive. However, again λ cannot be
countably subadditive, for the above reason.

Next, we can try to extend the notion of density further via Caratheodory’s defi-
nition of outer measure.

However, the hypothesis of Proposition 33.6 is not satisfied, since as noted above,
although a finitely-additive measure on the algebra A, λ is not countably additive on
A. Indeed, we can see directly that the definition there fails, as for any n, n+ [0, 1) ∈
A, and then for any set A ⊆ R, λ∗(A) = infcovers Σ∞i=1λ(Ai) = Σ∞i=1λ(i + [0, 1)) = 0
is an outer measure (trivially), yet λ(R) = 1 6= λ∗(R) = 0, and the last line of the
statement in the Proposition does not hold.

Example 33. (Density, part (iii)) We look once more at Example 32. The key hy-
pothesis in Alexandroff’s extension theorem is compactness, which allows us to prove
countable additivity on the algebra and hence apply Caratheodory’s extension the-
orem. An interesting counterexample is given by the construction of a translation-
invariant mean on R: there all of these fail: the space is noncompact, countable
additivity on the algebra fails, and the finitely additive measure on the algebra does
not produce an outer measure.

Thus, via our definition of density, we have a finitely additive measure λ on an
algebra of sets. So the hypothesis of Alexandroff’s theorem would guarantee a count-
ably additive extension, if not for one crucial problem: the noncompactness of the
space R.

Of course, this lack of compactness is not a problem for the definition of Lebesgue
measure, as we define it first on the compact interval [0, 1] and then extend via
translation.

In summary, we essentially have a choice for a translation-invariant measure on R:
either we allow an infinite measure (Lebesgue measure, or some constant multiple of
it) or, if we insist on having a probability measure, then the best we can do is finite
additivity.

33.2. Measures as linear functionals: the Riesz representation theorem.
This central result is due to different authors in a variety of settings, starting with
Riesz and moving through Markov, Kolmogorov, and Kakutani. See [DS57] pp. 373,
380 ff. for some history.

Definition 33.8. ([Kel75]; [DS57] §I.5.1) Consider the following possible properties
of a topological space (X, T ):
(a) Singletons are closed;
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(b) Any two distinct points are separated by disjoint neighborhoods;
(c) Every closed set is separated from any point not in the set by separated by disjoint
neighborhoods;
(d) Any two disjoint closed sets are separated by disjoint neighborhoods.

The space is called T1 iff it satisfies (a). It is Hausdorff iff it satisfies (a), (b). It
is regular iff it satisfies (a), (c), and is normal iff it satisfies (a), (d).

We note that

Proposition 33.16. (see [DS57] §I.5.9) A compact Hausdorff space is normal; a
metric space is normal.

Definition 33.9. An additive set function defined on a collection S of subsets
of a space X, containing ∅, is a function µ : S → Y where Y is generally either R,
R = R ∪ {±∞}, C but could also be a Banach space, satisfying:
(i) µ(∅) = 0
(ii) For A,B disjoint with union in S, µ(A ∪ B) = µ(A) + µ(B). It is positive iff it
assumes values in R+ = [0,+∞].

If S is an algebra of sets then a positive additive set function µ is called a finitely
additive measure. If Y is R or a Banach space it is a finitely additive signed or
vector-valued measure, respectively.

It is a measure if in addition, A is a σ−algebra and µ is countably additive,
i.e. for {Ai}∞i=1 disjoint, then µ(∪∞i=1Ai) = Σ∞i=1µ(Ai).

We write rba = rba(X) for the vector space of regular bounded finitely additive
signed measures on X. We write rca(X) for the regular bounded countably additive
signed measures on X.

We take the sup norm on C, and define a norm on rba(X), rca(X) to be

Theorem 33.17. (Riesz Representation Theorem: finitely additive case [DS57], The-
orem IV.6.2; countably additive case Theorem IV.6.3).
(i) Let (X, T ) be a normal topological space and C the space of bounded (real or
complex-valued) functions on X. Then the dual space C∗ is isometrically isomorphic
to rba(X).
(ii) If X is a compact Hausdorff space, then C∗ is isometrically isomorphic to rca(X).

Proof. �

33.3. The Stone-Weierstrass Theorem.

33.4. The existence of invariant measures.

33.5. Generic points and the Krylov-Bougliobov-Fomin theorem.

33.6. Building the Borel σ−algebra. We recall:

Definition 33.10. Given a set X, we denote by P(X) the collection of all subsets
of X. This is the power set of X (so called– see [Hal74]– because it can be iden-
tified with 2X , the set of all functions from X to 2 ≡ {0, 1} via the map A 7→ χA;
furthermore if the cardinality of X is α, then the cardinality of P(X) is 2α.)
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This is clearly a σ−algebra, so each space X has a largest and smallest σ−algebra,
the power set and the trivial σ−algebra {∅, X}.

We note that:

Lemma 33.18. Given a set X, an (arbitrary) intersection of σ−algebras in X is a
σ−algebra. �

Definition 33.11. Given a set X and a collection of subsets S ⊆ P(X), we write
σ(S) for the smallest σ−algebra containing S.

Lemma 33.19. This makes sense. That is, there exists such a σ−algebra, smallest
in the sense of containment.

Proof. We write C for the collection of all σ−algebras which contain S, and define
σ(S) ≡ ∩C. If A is such a σ−algebra, then A ∈ C, whence σ(S) ⊆ A, so it is the
smallest.

�

Remark 33.3. It is important here to note that C has at least one element: P(X).
This is because by definition, see [Hal50]),

∩C = {A : ∀A ∈ C,A ∈ A}
. But if C is empty, this becomes

∩C = {A : (A ∈ C) =⇒ (A ∈ A)}
that is,

{A : it is true that (A ∈ C) =⇒ A ∈ A)}.
But the statement “if A ∈ C, then A ∈ A” has a false premise, hence the implication
is always true. That is, every set A satisfies A ∈ ∩∅, so this is the set of all sets (the
Universe), which is not a set; this is related to Russell’s paradox. See [Hal74] p. 18.

Definition 33.12. Given a set X and a collection A of subsets of X, we denote by Aσ
the collection of all countable unions of sets in A and by Aδ denote the collection of
countable intersections. If we interate this procedure, we indicate it by Aδσ ≡ (Aδ)σ
and so on.

In particular, given a topological space (X, T ), we write G for T the collection of
open sets, and F for the closed sets. So then Gδ denotes the collection of sets which
are countable intersections of closed sets, and Fσ the collection countable unions of
closed sets, and so on.

See [Doo12] p. 16, [Nel59], and Theorem 33.28.

By definition B, the collection of Borel sets, is the σ−algebra generated by T .
By the above, this exists.
We recall that transfinite induction generalizes the usual induction procedure

to the first uncountable ordinal. See [Hal74] regarding ordinal numbers. A good
example of how this works is given in the next proof.

Proposition 33.20. If X is a separable metric space with topology T , then the Borel
σ−algebra can be built constructively using transfinite induction up to the first un-
countable ordinal.
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Proof. We explain the statement fully in this proof. Define G0 = G = T , G1 =
Gδ, G2 = Gδσ, G3 = Gδσδ and so on for n ∈ ω = N = {0, 1, 2, 3 . . . }. Recall that
n ∈ ω ⇐⇒ n < ω, the first infinite ordinal. Define Gω = ∪n<ωGn, next set
Gω+1 = (Gω)δ and so on. At each limit ordinal we take the union of those before it,
just as we did at the first limit ordinal ω. We continue in this manner up to the first
uncountable ordinal ω1. We claim that Gω1 is a σ−algebra.

First, note that since X is a separable metric space, each open set is a countable
union of closed balls, and each closed set is therefore a Gδ. Thus, Gω1 already includes
all of Fδσδ and so on, so by DeMorgan’s laws includes all complements.

Next, we claim a countable union of sets in Gω1 is in Gω1 . Write this as ∪IAi
for some index set of ordinal numbers, each countable. But then the union of these
ordinal numbers α ≡ ∪I = sup I is itself an ordinal number α < ω1 hence countable.
Thus ∪IAi ∈ Gα ⊆ Gω1 .

Clearly any σ−algebra containing the topology must contain Gω1 . Therefore this
is the smallest such σ−algebra, so by definition, it is the Borel σ−algebra B. �

33.7. The Baire σ−algebra. Ba, the collection of Baire sets, is the σ−algebra
generated by the collection of all dense Gδ sets.

33.8. Joint distributions and continuous-time stochastic processes. A major
application of all the above will be to a study of continuous-time stochastic processes.
For this we first define the joint distributions of random variables.

In §3.1 we have discussed independent random variables, and their relationship to
product measure. This generalizes as follows.

Definition 33.13. Given a probability space (Ω,A, P ), and random variables X, Y :
Ω→ R, consider the map Φ : Ω→ R2 defined by Φ(ω) = (X(ω), Y (ω)). We call the
measure Φ∗(P ) on R2 the joint distribution of the ordered pair (X, Y ).

Lemma 33.21. The joint distribution is determined by the values

{P [(X ∈ A) ∧ (Y ∈ B)]}A,B∈B(R).

Proof. P [(X ∈ A) ∧ (Y ∈ B)] = (Φ∗(P ))(A × B), and this collection of rectangles
generates the product σ−algebra of R × R = R2, and so those values determine the
measure. �

Definition 33.14. Now we consider random variables X1, . . . Xn. We give Rn the
product topology Tn. A base for Tn is the collection of open cylinder sets, that
is, sets of the form U1 × · · · × Un with Ui open. We define Fn to be the algebra of
Borel subsets. This is generated also generated by the open cylinder sets, and just
as above for n = 2, any measure on Rn is determined by its values on these sets, as
they generate the algebra.

So given random variables X1, . . . Xn on (Ω,A, P ), we define a map Φ : Ω → Rn

by Φ(ω) = (X1(ω), . . . Xn(ω)). Extending the previous definition, the joint distri-
bution of (X1, . . . Xn) is the measure Φ∗(P ) on Rn.

Lemma 33.22. Given measurable spaces (Ωi,Ai) for i = 1, . . . n, their joint distri-
bution is determined by the values on the cylinder sets, i.e. by Φ∗(P )(U1×· · ·×Un) =
P (Xi ∈ U1, . . . Xn ∈ Un), for each choice of Ui open in R.



272 ALBERT M. FISHER

Definition 33.15. Now suppose we are given any index set T , possibly infinite, and
an indexed collection of random variables (Xt)t∈T with (Xt : Ω→ R).

We recall first the definitions of product topology and product σ−algebra. The
product topology Tp of RT = Πt∈TR is generated by the open cylinder sets: sets of
the form (⊗Ut)t∈F , for some finite F ⊆ T .

We note that the space RF is a factor of RT via the projection map πF (x) =
(x(t))t∈F . Thus the product topology TF on RF is the quotient topology.

The Borel algebra FF for RF is generated by the topology TF and hence again by
the collection of open cylinder sets. A cylinder set for this algebra is more general,
by definition a set of the form (⊗At)t∈F where A ∈ B(R).

We next consider the whole space RT . We define a finite cylinder set to be a
subset of the form (⊗At)t∈F for some finite F ⊆ R. The algebra generated by all the
finite cylinder sets defines the finite cylinder algebra F of RT . Note the relationship
with the projection maps: for each F we have the projection πF : RT → RF ; this

takes FF to an isomorphic algebra F̂F of RT , via A 7→ π−1(A). That is, it is generated

by the collection ∪F F̂F .
The finite cylinder σ−algebra F0 of RT is the σ−algebra generated by F .
Returning to the random variables, we define the map ΦF : Ω→ RF where ΦF (ω) =

(X(t))t∈F . The probability measure µF = (ΦF )∗(P ) on RF with the algebra just
defined is the F− joint distribution of the random variables (Xt)t∈T .

The importance of this σ−algebra comes from the Kolmogorov extension theorem,
see Theorem 33.24. Supposing that we are given joint distributions for each finite
subset F ⊆ R, a priori defined on different probability spaces ΩF , this tells us that if
they satisfy the natural consistency conditions, then they fit together in such a way
that they can be defined simultaneously on a single space Ω, giving a measure on the
finite cylinder σ−algebra F0 of ṘR, where Ṙ is the one-point compactification.

Now naturally we should like to make use of the product topology on ṘR, which by
Tychonoff’s product theorem is a nice space (a compact Hausdorff space) and hence
of its Borel σ− algebra B.

However technical difficulties arise here because the Borel σ−algebra is much larger
than the finite cylinder σ−algebra F0. This is in marked contrast to the case of
countable time, where for T = Z these two σ−algebras are equal. Now it is true that
the product σ− algebra for the infinite product space RT and the product topology
are both generated by the finite open cylinder sets. However to form open sets we
can take arbitrary unions of these open cylinders, whereas only countable unions
are allowed in forming F0. In the case of RZ the space is metrizable, so open sets
are a countable union of open cylinders; for RT this is not true, as the space is not
metrizable.

We mention that often in practice one can recover a nicer space by restricting to a
subspace, for example the continuous paths C ⊆ RR, , as we do for Brownian motion.

Corollary 33.23. Each set in F0 depends on a countable subset of the index set R.

33.9. The Kolmogorov and Kakutani-Nelson embeddings.
Note that the joint distribution µF defines a measure on the algebra FF . The

collection of such measures satisfies two obvious consistency properties:
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(i) µF only depends on the subset F , not on an ordering of F .
(ii) If F ′ ⊆ F , then µF projects onto µF ′ .
So to have an extension we certainly need that the joint distributions satisfy these

two simple consistency conditions. Kolmogorov’s famous result shows this is enough:

Theorem 33.24. (Kolmogorov embedding theorem) Let T be any index set. For
each t ∈ T let (Ωt,At, Pt) be a probability space and Xt : Ωt → R measurable. As-
sume that in addition to the random variables Xt we have specified all the finite joint
distributions. That is, given (t1, t2, . . . tn) and measurable sets Ei ⊆ R, we are given
the probability that Xti ∈ Ei for i = 1, . . . , n. Asumme that these joint distributions
satisfy the two consistency conditions:
(i) the joint probabilties only depend on the collection {t1, t2 . . . , tn} and not on their
order;
(ii) they are consistent in that if one more index tn+1 is added, the probabilities add.
That is, the probability that

(
(Xti ∈ Ei for i = 1, . . . , n) and (Xtn+1 ∈ R)

)
equals the

probability that (Xti ∈ Ei for i = 1, . . . , n).
Then there exists a probability space (Ω,A, P ) which simultaneously represents all

(Xt)t∈T . That is, there exist random variables X̂t : Ω → R such that all the finite
joint distributions equal those for Xt.

In fact we can take Ω to be the path space RR with the σ−algebra F0, generated by
the algebra F of finite cylinder sets.

Proof. The consistency conditions are just a complicated way to say that (i) the joint
distribution for F = {t1, t2 . . . , tn} define a measure on RF . Condition (ii) merely
states that that this extends to a finitely additive measure on the finite cylinder
algebra, that is, the algebra F of subsets of RT generated by all the RF for F ⊆ T
finite.

Now by Alexandroff’s theorem, because of the key fact of compactness, this finitely
additive measure is in fact countably additive on F , hence as explained in the proof of
that theorem, extends via the Caratheodory outer measure construction to a unique
countably additive measure on the σ−algebra F0 it generates, finishing the proof.

�

The finite cylinder σ−algebra F0 is not the only important σ−algebra on RT . If
we give RT the product topology Tp, then by the Tychonoff product theorem, this is
a compact Hausdorff space. We then define Fp to be the σ−algebra of Borel subsets,
the σ−algebra generated by the topology. Note that a base for the Tp is the collection
of open sets of the form (⊗Ut)t∈F such that Ut is open in R. This is therefore also a
base for the σ−algebra Fp.

Sometimes this gives nothing new; indeed:

Proposition 33.25. For a finite or countable index set T , the product and finite
cylinder σ−algebras Fp and F0 are equal. If T is uncountable, then Fp is strictly
larger.

This rather surprising fact will be immediate from:
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Lemma 33.26. If T is uncountable,then for any f ∈ RT , the singleton {f} is in Fp
but is not in F0.

Proof. We show that {f} is a closed set for the product topology. Indeed let g 6= f .
Thus there exists t ∈ R such that g(t) 6= f(t). Let U ⊆ R be an open neighborhood
of g(t) which misses f(t). Then {h : h(t) ∈ U} is such a neighborhood.

�

To understand this interesting (and consequential) result we have to dive deeper
into the nature of the Borel sets.

For uncountable index set T , there are disadvantages to this statement. The reason
is because we would like to use the product topology Tp on ṘT , where Ṙ is the one-
point compactification, as by the Tychonoff product theorem, this is a fairly nice
topological space (a compact Hausdorff space), together with the corresponding Borel
σ− algebra Bp. However:

Proposition 33.27. For T finite or countable, ṘT with the product topology Tp is
metrizable, and the Borel σ− algebra Bp equals the finite cylinder σ− algebra F0.
Moreover, the Baire and Borel σ− algebras of Tp are equal. When T is uncountable,

ṘT with the product topology Tp is a nonmetrizable compact Hausdorff space, and
the Borel σ− algebra Bp is (much) larger than the finite cylinder σ− algebra F0.
Moreover, the Baire σ− algebra of Tp is strictly smaller than the Borel σ− algebra.

The reason this causes difficulties is subtle, and has to do with what we mean by
a stochastic process for continuous time:

Definition 33.16. A stochastic process X(t) with values in R and time index set T
is a measure µ on the finite cylinder σ− algebra F0. A version of a stochastic process
is a probability space (Ω,A,P) with a map Φ : Ω → RR where X(ω, t) = Φ(ω)(t),
such that the measure Φ∗(P ) = µ. Two versions are equivalent iff they map to the
same measure µ on F0.

Remark 33.4. Equivalently, making use of a beautiful theorem of Caratheodory, the
image set Φ(Ω) has µ− outer measure one. However, this may perfectly well be a

nonmeasurable subset of ṘT . See Example 31.

The problem is that when T is uncountable, a process can have many equivalent
versions which are not equal. Indeed, it can happen that the ranges of two such
version maps Φ1,Φ2 are disjoint.

For example, one can find a version (the usual one) of Brownian motion with all
paths continuous, and another with all paths discontinuous. See [Fis87], pp. 228-230.

A strengthening of the Kolmogrov theorem, due to (in reverse chronological order)
Dudley-Nelson-Kakutani-Doob, helps resolve this.

Replacing R by its one-point compactification Ṙ, then by Tychonoff’s product
theorem ṘT is a compact Hausdorff space. Write B for the Borel σ−algebra of ṘT .

Theorem 33.28. (Nelson) Assume the hypotheses of Kolmogorov’s theorem. Then

there exists a unique regular Borel measure (for the product topology) µ on ṘT which
extends the measure on the finite cylinder σ−algebra F0 given in that theorem to the
Borel σ−algebra B for the product topology Tp.
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We call this the regular extension. In other words, by Nelson’s theorem. there
exists a unique regular Borel version of the process.

Remark 33.5. In probability theory we often think of this collection of values {P [(X1 ∈
A1) ∧ (X2 ∈ A2)]}Ai∈B(R). itself to be the joint distribution, rather than the mea-
sure. The question then becomes, when do they define a measure? More precisely,
given random variables X1, X2 defined on perhaps different probability spaces, thus
(Ωi,Ai, Pi) for i = 1, 2, and a collection of such numbers called {P [(X1 ∈ A1)∧ (X2 ∈
A2)]}Ai∈B(R)., then when can we find a single space (Ω,A, P ), and random variables

X̂1, X̂2 : Ω → R, so that now we have a map Φ : Ω → R2 defined by Φ(ω) =
(X1(ω), X2(ω)) and the pushed-forward measure Φ∗(P )) such that (i) the distribution

of XI and X̂I are the same; and (ii).... (INCOMPLETE)

33.10. Construction of Brownian motion; continuity of paths.

34. Choosing a point randomly from an amenable. or nonamenable
(!), group.

Remark 34.1. Invariant means on noncompact amenable groups (for example, Zn or
Rn, or more generally any noncompact abelian group) provide natural examples of
finitely additive measures with no countably additive extension. See §48.

An examination of this for other noncompact groups brings us to the idea of
amenability, and to the beginning of a long and fascinating story.

For any locally compact group there is a natural countably additive measure called
Haar measure; if the group is infinite this is infinite, and is then only unique up
to normalization (i.e. up to multiplication by a positive constant). the Haar measure
for Zd is counting measure, while the Haar measure on Rd is Lebesgue measure.

Definition 34.1. An invariant mean on a group G with Haar measure m is a
continuous positive normalized translation invariant linear functional on L∞(G,m).

A group G is termed amenable (a pun; it should be “ameanable!”) iff there exists
an invariant mean on it (on l∞(G) if the group is discrete; on L∞(G,m) where m is
Haar measure if G is a continuous group which is locally compact, so Haar measure
exists). [Gre69]

There are several equivalent notions; here for simplicity we restrict to discrete
groups:

–There exists a finitely additive probability measure on G;
Furst defn of amenable.
Harmonic projection.
Save rest for after boundary- in examples section!

34.1. Choosing a point randomly from a nonamenable group, or from hy-
perbolic space. Boundary at infinity.

Equivalent notions of non-amenable.
Basic example: F2.
Appendix: Aside: Cayley graph of a semigroup or group. F2 to Z2. Generators

and relations.
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Simplest case: finitely generated discrete.
µ on generators. Top invariant mean: Harmonic function. Harm projection. Equiv-

alent defs. Boundary at ∞. Boundary values. Mokobodski mean.
Test functions: group actions. Random/ Markov ergodic theorem.
Fractal sets, again (top invt measures; IFS)

34.2. Invariant means, Mokobodski and Fubini and Ergodic Thm.
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35. Appendix: Linear Algebra, Vector Calculus, Lie Groups and
Differential Equations

We begin by developing basic material on Linear Algebra needed throughout these
Notes. We are guided here in particular by what we need for the following sections
(further “minicourses”) on Vector Calculus and on Ordinary Differential Equations:
some basics on the determinant and trace; on canonical forms of matrices, on the
exponential of matrices, and on linear flows. This fits nicely into an introduction to
Lie Groups and Algebras.

Our overall approach in these Notes has been to take a “modern” approach to
dynamics, where connections with ergodic theory, probability and fractal geometry
are emphasized, rather than the more “traditional” approach of stressing ODEs, the
local theory of vector fields, iteration of maps of the interval and so on. In our
treatment below of ODEs we emphasize certain links with dynamics, more to develop
certain themes than to engage in a study of either particular examples or of the
qualitative theory. These deep matters are extensively developed in many texts, and
as a relative outsider we ourselves have learned only bits of this material. Another
interesting direction would make serious links of this initial study of ODEs with
the dynamics and ergodic theory. But this would necessitate background (for us)
twice as deep and broad, and a book at least twice this length (stable manifolds and
structural stability; much more on the Thermodynamic Formalism; Pesin Theory...)
See e.g. [KH95] for some further places to start on that wide and deep adventure.

In the Differential Equations minicourse we present an introduction to the classical
theory of differential equations encountered in undergraduate math courses, in one
and higher dimensions. However our perspective is more at the level of a graduate
student or a reseacher in related areas, in particular who already has some background
in analysis and algebra. An undergraduate should skip along and learn what is
accessible to them now, without demanding of themselves yet an understanding of
every step. A more advanced reader should also skip along, trying to not be too
irritated by too much explanaton of things already known. Hopefully there will still
be parts that are new or interesting.

The first minicourse is on Linear Algebra, but before moving on to that we highlight
some disparate questions which can serve as motivation for the overall minicourses in
Vector Calculus and in ODE. Our primary overall aim is to introduce the connections
with dynamics, in particular in the Vector Calculus section to look at some examples
of vector fields, and the tools used: line integrals, curl and divergence, Stokes’ Theo-
rem; in the ODE section to describe the passage from flows to vector fields and back
again, in both the stationary and nonstationary settings.

In the course of this, we try to look at each concept from different or complementary
points of view: both algebraically and analytically, and geometrically. Here are some
motivating questions we shall encounter along the way:

–What is the meaning of the determinant beyond its having a complicated formula?
–What is the geometrical significance of the trace?
–How can we understand orientation? Why are there only two orientations for Rn,

for each n ≥ 1?
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–How many inner products are there? How are they related?
–How far does the definition of the exponential map extend? To the complex

numbers? To matrices? To manifolds?
–What is the analogue of the rotation flow for an indefinite bilinear form?
–What is the tangent space of a continuous group?
–What is the meaning of the Lie bracket?
–What is the geometric meaning of the vector product, its connection with the

determinant, and its relation to 2-forms and surface area?
–What is the link between the vector product in R3 and the Lie algebra of the

group of space rotations?
–What is the derivative of a flow?
–What is the geometrical meaning of an ordinary differential equation?
–How can one classify linear flows in R2 up to (linear) conjugacy?
–How can one prove that indeed, a flow preserves volume iff its vector field has

divergence zero? (Hint: this has to do with the relationship between trace and
determinant!)

–What is a nonstationary flow, and what does this have to do with nonautonomous
vector fields?

–What is Picard iteration in a concrete setting? What is the link to Taylor’s series?
–How does a differential 2-form in two dimensions naturally define a pair of differ-

ential equations in one dimension, and what does exactness of the form have to do
with so-called exact differential equations, and harmonic conjugates? What are some
examples in Electrostatics?

35.1. Minicourse on Linear Algebra, Lie groups and Lie algebras.

35.2. Two definitions of the determinant.
Algebraic definition: Let A be an (n× n) real or complex matrix. We begin with
the usual algebraic definition, which is inductive on n. For n = 1, A = [a] = [A11]

and detA is just the number a. For n = 2, A =

[
a b
c d

]
, and we set det(A) = ad− bc.

This is extended as follows: we define a matrix with entries Sij ∈ {1,−1} as
follows: Sij = (−1)i+j. To visualize this, we write simply the corresponding signs, in
a checkerboard pattern:

S =




+ − + −
− + − +
+ − + −
− + − +




The ij minor A(ij) of A is defined to be the (n − 1) × (n − 1) matrix formed by
removing the ith row and jth column of A.

Then we expand along the top row by forming the sum of (±1)detA(1j), where the
signs are given by the top row of S, i.e.

det(A) =
n∑

j=1

(−1)1+jdetA(1j).
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Similarly we define the expansion along any row
∑n

j=1(−1)i+jdetA(ij) or indeed
any column.

It turns out these are equal, giving the same number whatever row or column
chosen.

Note that this algorithm also works for the (2× 2) case!
Geometric definition:

Definition 35.1. Let M be an (n× n) real matrix. Then

detM = (±1)(factor of change of volume

where we take +1 if M preserves orientation, −1 if that is reversed.

Theorem 35.1. We have the following consequences:
(i) det(AB) = (detA)(detB);
(ii) A is invertible iff detA 6= 0.

Theorem 35.2. The algebraic and geometric definitions are equivalent.

Proof. For A (2×2), note that the factor of change of volume is the area of the image
of the unit square, that generated by the standard basis vectors (1, 0) and (0, 1),
which equals the area of the parallelogram with sides the matrix columns, (a, c) and
(b, d).
Case 1: c = 0. Then the matrix is upper triangular and its determinant agebraically
is ad. But the parallelogram area is (base)(height)= ad as well.

Note that instead of using the formula for the area of a parallelogram, we can
transform this to the diagonal (rectangle) case, by an operation of sliding the top of
parallelogram in the direction of its base, the vector (a, 0).
General Case: We reduce to Case 1 as follows, not by rotating (also possible!) but
by sliding the far side of the parallelogram along the direction (b, d). A simple con-
putation shows the area is indeed ad− bc.
Higher dimensions: We note that the above “sliding” operations can be done alge-
braically by an operation of column reduction, equivalently, multiplying on the right
by an elementary matrix of determinant one. This reduces to the upper diagonal
case, and beyond to the diagonal case if desired.

The same procedure works in R3 and beyond.
�

35.3. Orientation. We may be accustomed to thinking of a certain basis as having
positive orientation and another negative, but this has no intrinsic meaning: what
does make sense is to say that two given bases have the same or different orientation.
As we shall explain, there are only two choices,

Thus, given Rn, we let B̂ denote the collection of all bases. The change from one
basis B1 to another B2 is given by an invertible matrix A. By definition the collection
of such matrices is GL(n,R). Now the group GL has a (non-normal) subgroup of
index 2, GL+. These are characterized by detA > 0. We say these are the orientation-

preserving matrices. Letting GL act on the bases B̂, we define two bases B1,B2 to
have the same orientation iff one is taken to the other by an element of GL+. Since
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this subgroup has index 2, there are only these two choices, so the second case is
expressed by saying they have opposite orientation.

Then, choose one basis B1 we declare (arbitrarily) that this has positive orienta-

tion. The GL+-orbit of this defines B̂+, the bases with positive orientation, and the

complement defines B̂−, the bases with negative orientation. Note that B̂− is the

GL+-orbit of any B2 not in B̂+.

35.4. Eigenvectors and eigenvalues.

Lemma 35.3. Let T : V → V linear and assume that (v1, . . .vn) are eigenvectors
with eigenvalues (λ1, . . . , λn). If all the eigenvalues are distinct, then the vectors are
linearly independent.

Proof. (we learned this nice proof from Theorem 5.6 of Axler [Axl97]). Since they are
eigenvectors, by definition each is nonzero. If we consider the sequence (v1, . . .vn)
then if these are not linearly independent, there must be a least index k such that vk
can be written as a linear combination of the previous vectors, so vk =

∑k−1
j=1 ajvj.

Multiply this by the eigenvalue for vk, giving λkvk =
∑k−1

j=1 λkajvj. Now apply T

to the equation vk =
∑k−1

j=1 ajvj, giving λkvk =
∑k−1

j=1 λjajvj. Subtracting the two

equations we have 0 =
∑k−1

j=1(λk−λj)ajvj. Since the vectors (v1, . . .vk−1) are linearly

independent, k having been the least such index, each coefficient (λk − λj)aj = 0.
However the eigenvalues are distinct so λk − λj 6= 0 for all j. Therefore aj = 0 for all
j. But then vk = 0, a contradiction.

�

Corollary 35.4. (Axler Cor. 5.9) A linear operator on a vector space of dimension
n has at most n distinct eigenvalues.

�

Theorem 35.5. (Fundamental Theorem of Algebra, complex case) Every polynomial
of degree n, p(z) = a0 + a1z+ · · ·+ anz

n has a factorization, unique up to order, into
a constant times n linear factors p(z) = c0(z − λ1)(z − λ2) · · · (z − λn).

(Fundamental Theorem of Algebra, real case) If the entries aj are real, then p(x) =
a0 + a1x + · · · + anx

n has a factorization, unique up to order, into a constant times
n factors wihich are either linear or irreducible quadratic: p(x) = c0(x − λ1)(x −
λ2) · · · (x−λm)(x2 +β1x+γ1) · · · (x2 +βlx+γl), with βj, γj ∈ R and the discriminant
β2 − 4γ < 0 (so roots are complex).

For proofs see e.g. [Axl97], [Ahl66], [MH87], [GP74].

Lemma 35.6. The complex roots of the quadratic factors of a real polynomial occur
in conjugate pairs, λ and λ.

Proof. The roots of x2 + βx + γ are, from the quadratic formula (or directly from

completing the square), 1
2
(−β ±

√
β2 − 4γ). If C = (β2 − 4γ) < 0 then this has two

imaginary roots, ±iA where A =
√
|C|, whence the roots are 1

2
· (−β ± iA). �
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Theorem 35.7. Any linear operator on a vector space of dimension n ≥ 1 has at
least one eigenvalue.

Proof. (Axler Theorem 5.10)
Let v 6= 0 in V and consider the (n + 1) vectors (v, T (v), . . . , T n(v)). By the

Corollary these are linearly dependent, hence there exist ai ∈ C not all 0, such that

0 = a0v + a1T (v) + · · ·+ anT
n(v).

Let m be the largest index k of ak such that ak 6= 0. Define a polynomial of degree
m from this:

p(z) = a0 + a1z + a2z + · · ·+ amz
m

so the above equation is
0 = p(T )v.

Now factor the complex polynomial by the Fundamental Theorem of Algebra:

p(z) = a0 + a1z + a2z + · · ·+ amz
m = c(z − λ1) · · · (z − λm)

where c 6= 0, λk ∈ C.
Thus

0 = p(T )(v) = c(T −λ1I) · · · (T −λmI)(v) = c(T −λ1I)◦ (T −λ2I) · · · ◦ (T −λmI)(v)

Hence either (T−λmI)(v) = 0, or (T−λmI)((T−λmI)(v)) = 0, and so on, whence one
of the operators (T − λkI) has a nontrivial kernel. This shows there is an eigenvalue.

�

The usual proof is of course the following; Axler’s argument is not only more
beautiful but simpler, as it avoids the use of determinants altogether:

Standard proof: The characteristic polynomial of T is p(z) = det(T −xI). This has
a root λ by the Fundamental Theorem of Algebra, whence 0 = p(λ) = det(T −λI) so
the operator (T −λI) is noninvertible, equivalently there exists a nonzero vector v in
its kernel. Then (T −λI)(v) = 0 whence v 6= 0 is an eigenvector and λ its eigenvalue.

Upper triangular form.
The diagonal of an (n × n) complex matrix A is (A11, A22, . . . Ann). It is in upper

triangular form iff all elements below the diagonal (those for which i > j)are 0, e.g.:



1 −1 0 2
0 2 1 7
0 0 4 1
0 0 0 4




It is easy to check that:

Lemma 35.8.
(i)The eigenvalues of upper triangular A are the diagonal elements.
(ii) A is upper triangular iff for all k, Avk is in the span of (v1,v2, . . . ,vk).
(iii)Equivalently to (ii), the span of (v1,v2, . . . ,vk) is invariant for each k.
(iv) If T : V → V is a linear operator, then if we can find a basis satisfying
(ii),equivalently (iii), then in this basis T will be an upper triangular matrix. �
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If A is an (n × n) matrix perhaps not upper triangular, then the transformation
defined by multiplying column vectors on their left by A, we say A has an upper
triangular form iff we can find an invertible matrix B such that B−1AB = U is upper
triangular: the columns of the basis-change matrix B are just the new basis vectors.
The next theorem says we can always do this, over C:

Theorem 35.9. In a complex vector space V of dimension n, given a linear operator
T , there exists a basis which puts T into upper triangular form.

Proof. (Adler p. 84) The proof is by induction on the dimension n. For n = 1 this
is clear. By Theorem 35.7 since this is over C, there exists at least one eigenvalue λ.
We consider the map T − λI. Since this is noninvertible, the image U is a subspace
of V of strictly smaller dimension.

We claim that U is T -invariant. Let u ∈ U , then Tu = Tu − λu + λu = (T −
λI)u + λu. Now the first term is in U since u ∈ V , by the definition of U as the
range; the second is also, whence Tu is. So U is invariant for the map T .

Since U has smaller dimension, we can apply the induction hypothesis to T : U → U
and find a basis (u1, . . . ,um) of U such that for each k, T (uk) is in the span of
(u1, . . . ,uk.) We complete this to a basis of V , (u1, . . . ,um,v1, . . . ,vl). We claim this
will put T : V → V in upper triangular form. We calculate T (vk).

Now T (vk) = T (vk)−λvk+λvk = (T−λI)(vk)+λvk. but from the definition of U ,
(T − λI)(vk)) is in U = span(u1, . . . ,um), while vk ∈ span((u1, . . . ,um,v1, . . . ,vk).
This shows that T (vk) ∈ span((u1, . . . ,um,v1, . . . ,vk), so we are done.

One surprising point here is that we don’t need to use the v′js of lesser index. But
that is precisely because (T − λI)(vk) is in U , so is in the span of the u′js. �

Lemma 35.10. If a matrix A has eigenvector v with eigenvalue λ, then C = B−1AB
has eigenvalue λ for the eigenvector w = B−1v.

Proof. Cw = B−1ABw = B−1ABB−1v = B−1Av = B−1λv = λw. �

Lemma 35.11.
(i)det(AB) = det(A)det(B).
(ii)det(B−1AB) = detA.

(iii) The characteristic polynomials of A and Â = B−1AB are equal.

Proof. We proved (i) geometrically in ???. Part (ii) follows.
For (iii), B−1AB − zI = B−1(A− zI)B so

pÂ(z) = det(B−1AB − zI) = det(B−1(A− zI)B) = det(A− zI) = pA(z).

�

We note that:

Proposition 35.12. If U is upper triangular, then:
(i) det(U)is the product of its diagonal elements.
(ii) U is invertible iff it has no 0’s on the diagonal.
(iii) The eigenvalues of U are its diagonal elements.
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(iv) det(U)is the product of its eigenvalues.
For A any (n× n) matrix, then

(v) det(A) is the product of its eigenvalues.
(vi) for A any matrix and U = B−1AB upper triangular, then A and U have the
same eigenvalues and the same characteristic polynomials.

Proof. To calculate the determinant we expand along the first column of U . At
the first step we have U11. The determinant is U11 times det(U1) where (U1) is the
smaller matrix with the first column and row removed. By induction we are done, so
det(U) = Πn

j=1Ujj. Part (ii) follows, since U is invertible iff det(U) 6= 0.
For (iii), the eigenvalues are the roots of pU(z) = det(U − zI). Now U is upper

triangular so Uz ≡ (U − zI) is upper triangular. From part (i), the determinant of
Uz is the product of its diagonal elements. The diagonal element (Uz)ii is 0 iff z = λi.
This proves the claim.

Part (iv) follows from (i) and (iii).
To prove (v), by Theorem 35.9, there exists B such that U = B−1AB is upper tri-

angular. From Lemma 35.10, U and A have the same eigenvalues. From Lemma 35.4
they have the same determinant. By part (iv) detU is the product of its eigenvalues,
so this passes over to A.

Part (vi) follows from the previous lemmas.
�

Proposition 35.13. If A and B are (n× n) upper triangular, then so is AB.

Proof. Now (AB)ij =
∑d

k=1 AikBkj and this is zero if the ith row of A has zeros where
the jth column of B is nonzero. This means for k such that k < i and k < j which
always holds if j < i.

For a transparent geometric proof, draw a graph (a two-step Bratteli diagram) with
alphabets {1, 2, . . . n} at times 0, 1, 2 and a path from i to k at time 0 iff Aik 6= 0, a
path from k to j at time 1 iff Bik 6= 0. That the matrices are upper triangular means
these graphs flow upwards or across. This then holds for the composed paths, which
corresponds to the composed matrices.

�

Remark 35.1. Once we have defined the exponential of a matrix, a corollary of Propo-
sition 35.12 will be that etrA = det(eA). This has an interesting physical and geomet-
rical interpretation! See Theorem 35.35.

35.5. Exponentiation of matrices. The general context for this is the relationship
between Lie groups and Lie algebras, which we have encountered above. Recalling
Remark 23.5, a Lie group is a manifold with a smooth group structure. Lie groups can
be finite or infinite dimensional, in which case they are based on Banach manifolds,
see §37.13 below. The prototype of a finite dimensional Lie group is a matrix group;
this encompasses a large part of the theory, as general Lie groups are studied by
means of their representations, which are simply matrix groups which are factors.

The Lie algebra g of a Lie group G is the tangent space at the identity element e;
by translation, the tangent space at any other point is isomorphic to this. There is a
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map which takes lines through 0 in g to geodesics in G; this is called the exponential
map, and sends g to G; the image may not be all of G, as one has:

Theorem 35.14. There is a map, the exponential map exp : g :→ Ge which is onto
the largest connected subgroup containing e.

There is an abstract definition of Lie algebra: it is is a vector space with an ad-
ditional operation, the Lie bracket. One can construct a group for which this is the
tangent space at e, and then the Lie bracket operation captures the infinitesimal
noncommutativity of the group. See Definition 35.14 below.

Restricted to a one-dimensional subspace of the Lie algebra, the image of the ex-
ponential map is a curve in the group, the geodesic referred to above:

Definition 35.2. Given a ∈ g, then {exp(ta) : t ∈ R} is the one-parameter subgroup
generated by a. The element a (or any positive multiple r ·a) is called an infinitesimal
generator for this one-parameter subgroup of G.

For matrix groups, the exponential map is in fact just the exponentiation of ma-
trices, defined by the power series for exp. We define, for A ∈ Mn(K), K = R or
C:

eA =
∞∑

k=0

Ak/k! = I + A+ A2/2 + A3/3! + . . .

As we shall see, this always converges.

Definition 35.3. Given a set X and a function τ : X × R → X, note that fixing
t ∈ R then τt(x) = τ(x, t) defines a map τt : X → X. Thus {τt}t∈R is a collection of
maps on X.

We say τ defines a flow on X iff
(i) τ0 is the identity map and
(ii) τt satisfies the flow property

τt+s = τs ◦ τt.
In algebraic terms, this is a special case of the much more general notion of group

action, see Definition 2.1, as it is an action of the additive group (R,+). This is also
known as a one-parameter group of transformations.

We think of the variable t as time; then τt is called the time-t map of the flow.
(There is a wider concept called a nonstationary or nonautonomous flow, which

does not satisfy the flow property; see Defintition 37.16 below.)
The orbit of a point x ∈ X is {τt(x) : t ∈ R}.
If X is a vector space V , then τt is a linear flow iff each map τt is linear. Note that

by the flow property plus the fact that τ0 is the identity, τt is bijective as its inverse
is τ−t. Thus each τt is a linear isomorphism of V .

Example 34. (Rotation Flow 1)
Consider the group of rotations of the plane, setting a = cos(2πt), b = sin(2πt) and

Rt =

[
a −b
b a

]
and defining G = {Rt : t ∈ R} ∼= T1 = R/Z.
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Noting that Rt+s = Rs ◦Rt = Rt ◦Rs, this is a flow.
The next result will show that these maps are of the form etA, for a certain matrix

A, making the connection with Lie algebras. As we shall see, in fact all linear flows
arise in this way.

Proposition 35.15. (Rotation flow) For A =

[
0 −1
1 0

]
, then

etA = Rt =

[
cos t − sin t
sin t cos t

]
.

Proof. (First proof) For A =

[
0 −1
1 0

]
we note that the powers of A have period 4,

with (A0, A1, A2, A3, . . . ) = (I, A,−I,−A, . . . ). We separate the Taylor series into
even and odd terms. Writing c = cos t and s = sin t, this gives:

exp(tA) =
∞∑

k=0

(tA)k/k! =

I + tA+ (tA)2/2 + (tA)3/3! + (tA)4/4! + · · · =
(I + (tA)2/2 + (tA)4/4! + . . . ) + (tA+ (tA)3/3! + (tA)5/5! + . . . ) =

I(1− t2/2 + t4/4!− t6/6! + . . . ) + A(t− t3/3! + t5/5!− . . . ) =
[
c 0
0 c

]
+ A

[
s 0
0 s

]
=

[
c 0
0 c

]
+

[
0 −s
s 0

]
=

[
c −s
s c

]

(127)

as claimed.
(Second proof)

For z ∈ C with z = a + bi, we define a map Ψ : C → M2(R) by z 7→ Z ≡[
a −b
b a

]
. Note that for z = c + di and W = ψ(w), w · z = (ac− bd) + (ad + bc)i, so

Ψ(wz) = Ψ(w)Ψ(z) = WZ. In other words, Ψ is a field isomorphism from (C,+, ·)
to (M2(R),+, ·). �

Remark 35.2. It will follow (see below for the precise definitions) that the one-

dimensional vector space of matrices g =

{[
0 −t
t 0

]}

t∈R
. is the Lie algebra of the

rotation group.

To study the general case, first we need to prove convergence:

Lemma 35.16.
(i)For any square matrix M with entries in C or R the series exp(M) ≡∑∞k=0M

k/k!
converges.
(ii)Let V be a Banach space (a complete normed vector space). Then the same holds
for any continuous linear transformation T : V → V.

To prove the Lemma, recall the proof for the real Taylor series of ex, exp(x) =∑∞
k=0 x

k/k! = 1 + x+ x2/2 + x3/3! + . . . .
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Figure 75. Some discrete and continuous-time orbits of the rotation
flow, Example 35.15.

Fixing x ∈ R, let m be so large that |x|/m < 1/2. Then for any k ≥ 0,
|x|n+k/(m + k)! < (1/2)k whence the series

∑∞
k=0 |x|k/k! converges, by comparison

with the geometric series
∑

(1/2)k. Therefore the series for x < 0 also converges, by
splitting it into odd and even terms; alternatively, we note that it is an alternating
series with the terms decreasing in magnitude, whence it converges.

We are using here the completeness of the reals. We recall:

Definition 35.4. Given a metric space (X, d), (xn)n≥0 is a Cauchy sequence iff given
ε > 0, there exists N such that ∀n > N , d(xn, xn+k) < ε for all k > 0.

The metric space is complete iff every Cauchy sequence has a limit point.

The completeness of the reals. can be stated in several equivalent ways:
-any bounded increasing sequence has a limit;
-any Cauchy sequence converges;
-any bounded sequence has a least upper bound.

The axioms for the real numbers can be summarized as follows:
The reals R are a complete (totally) ordered field.

In fact this characterizes them uniquely (i.e. up to field isomorphism).
We note that completeness of R immediately implies that of Rn, since a Cauchy

sequence will be Cauchy in its components. In particular, C is complete, as the
complex plane is homeomorphic to the real plane R2, and the space CalMm×n(R) of
(m×n) matrices is complete as it is homeomorphic to Rmn, and similarly for complex
entries.

Any normed finite-dimensional vector space is complete as all norms are equivalent
in this case (see Lemma 35.41) , and convergence of coordinates is clearly equivalent
to convergence in the sup (L∞) norm.

Thus in particular Mm×n(R) = Mm×n(R) is complete for the operator norm.
Recall this is defined as follows.



FROM ADIC TRANSFORMATIONS TO GIBBS STATES 287

Let V,W be vector spaces (perhaps infinite dimensional) with norms

|| · ||V , || · ||W

. Then for T : V → W linear, we define

||T ||op = sup
{v: ||v||V =1}

||T (v)||W = sup
V
||T (v)||W/||v||V .

This norm has the following very useful property:

Lemma 35.17. The operator norm is submultiplicative, i.e. ||T ◦ S|| ≤ ||S|| · ||T ||.

Proof. This is immediate, but it is also instructive to draw a picture. �

Note that, applied to the complex numbers, this corresponds to the basic fact
|zw| ≤ |z| · |w|.

Now to show exp(z) =
∑∞

k=0 z
k/k! = 1+z+z2/2+z3/3!+. . . , we show the sequence

of partial sums is Cauchy by noting that the tail of this series, |∑∞k=N z
k/k!| ≤∑∞

k=N |z|k/k!→ 0 as N →∞.
Similarly, for any square matrix M , or more generally for any continuous linear

operator T on a Banach space V ,
∑∞

k=0 T
k/k! converges in exactky the same way,

now using the operator norm to estimate the tail.
In our particular case, we consider the isomorphism for multiplication by w and A:

C w·−−−→ C

Ψ

y
yΨ

M2 −−−→
A·

M2

Then for the exponential map we have, where C∗ denotes the multiplicative group
of nonero complex numbers,

C w·−−−→ C∗

Ψ

y
yΨ

M2(R) −−−→
A·

GL2(R)

Now Ψ(i) =

[
0 −1
1 0

]
. We recall

Lemma 35.18. (Euler’s formula) For all t ∈ R, eit = cos t+ i sin t.

Proof. The proof is much llike that for A above: since we know exp(z) =
∑∞

k=0(z)k/k!
converges, substituting z = it and noting that (i0, i1, i2, i3, . . . ) = (1, i,−1,−i, . . . ),
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we separate the Taylor series into even and odd terms, and have:

exp(it) =
∞∑

k=0

(it)k/k! =

1 + it+ (it)2/2 + (it)3/3! + (it)4/4! + · · · =
(1 + (it)2/2 + (it)4/4! + . . . ) + (it+ (it)3/3! + (it)5/5! + . . . ) =

(1− t2/2 + t4/4!− t6/6! + . . . ) + i(t− t3/3! + t5/5!− . . . ) = cos t+ i sin t

(128)

as claimed. �

Now given the isomorphism Ψ : C →M2(R), this is equivalent to convergence of

the matrix series: exp(A) =
∑∞

k=0(tA)k/k! =

[
cos t − sin t
sin t cos t

]
shown above.

This same method works for any A ∈ M2(R) which corresponds to complex mul-
tiplication. These are the linear transformations which are conformal: they preserve
angle and orientation.

Here are some key properties of the exponential map:

Theorem 35.19. For the map exp :Mn(C)→Mn(C):

(a) For B invertible, eBAB
−1

= BeAB−1.
(b) If AB = BA, then eA+B = eAeB.
(c) e−A = (eA)−1.
(d)If v is an eigenvector of A with eigenvalue λ, then v is an eigenvector of eA with
eigenvalue eλ.

Before giving the proof we note that:

Corollary 35.20. (Linear flows) For any (n× n) matrix A, then τt = etA defines a
linear flow on Rn.

Proof. From part (b), since tA and sA commute, e(t+s)A = esAetA. Furthermore for
τt ≡ etA. note that τ0 = e0I = I. �

Here are some illustrative examples:

Example 35. (Exponential Repellor)

Proposition 35.21. For A =

[
1 0
0 1

]
, then etA =

[
et 0
0 et

]
= et · I. The orbits flow

out from the origin at exponential speed along straight lines.

Example 36. (Hyperbolic Flow)

Proposition 35.22. For A =

[
1 0
0 −1

]
, then etA =

[
et 0
0 e−t

]
The orbits are hyper-

bolas, level curves of the function F (x, y) = 2xy.

The graph of F : R2 → R is a saddle: a hyperboloid surface.

Example 37. (Hyperbolic Rotation Flow)
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Figure 76. Some discrete and continuous orbits of the Exponential
Repellor flow, Example 35. Points move away from origin exponentially
fast.

Figure 77. Some discrete and continuous orbits of the hyperbolic flow
of Example 36.

Proposition 35.23. For A =

[
0 1
1 0

]
, we have etA =

[
cosh t sinh t
sinh t cosh t

]
The orbits are

level curves of the hyperboloid F (x, y) = x2 − y2 = (x+ y)(x− y).

Note that these matrices are reminiscent of the usual rotation matrices

[
cos t − sin t
sin t cos t

]
.

But this is not the real reason for calling this by the strange name of “hyperbolic rota-
tion flow”. Strange, because the words hyperbolic and rotation are usually contradic-
tory, but the reason for this name is there are two distinct interpretations: one with
respect to the Eucidean metric where we have a hyperbolic flow, in fact isometrically
conjugated to the previous flow by a rotation of π/4;the second with respect to an
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Figure 78. Some discrete and continuous-time orbits of the hyperbolic
rotation flow of Example 37.

indefinite (Lorenz) metric. This metric is preserved by the flow, so can be interpreted
as a rotation flow for that metric. See Example 52 below, where we give the proof.

As mentioned above, the orbits in both cases are level curves for a hyperboloid
surface, the graph respectively of F (x, y) = 2xy and F (x, y) = x2−y2; these are qua-
dratic forms for indefinite metrics; see Example 52. The matrices in the last example
are called hyperbolic rotations, and in this case the quadratic form is indefinite. The
Lorenz metric gives a two-dimensional (one space plus one time) model of Special
Relativity, see Example 37 and §23.5.

Example 38. (Exponential Spiral)

Proposition 35.24. For A =

[
1 −1
1 1

]
, then etA = etRt. and the solution curves are

exponential spirals.

Proof. (Proof via matrices) For B =

[
0 −1
1 0

]
, C =

[
1 0
0 1

]
, then BC = CB hence

eA = eBeC , and also etA = etBetC , but etB = etI while etC = Rt.

and for B =

[
0 −1
1 0

]
and C =

[
1 0
0 1

]
, we note that BC = CB. Thus by (b) of

Theorem 35.19, etA = et(B+C) = etBetC .

This is

[
cos t − sin t
sin t cos t

] [
et 0
0 et

]
= etRt, and the solution curves are exponential

spirals.
(Proof via complex numbers)

Repellor(TO DO...) �

Example 39. (Node: exponential repellor with parabola orbits)

Proposition 35.25. For A =

[
1 0
0 2

]
, then the flow is etA =

[
et 0
0 e2t

]
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Figure 79. Exponential spirals for etA, of Example 38.

Figure 80. NodeRepellor: orbits for etA, of Example 39.

So the orbit of e.g. (a, b) is (x(t), y(t)) = (eta, e2tb) whence (x/a)2·b = x2·(b/a2) = y,
giving a family of parabolas which fill the plane. (0, 0) is a fixed point for the flow, and
all other points move away from the origin at exponential speed along these curves.

Example 40. (Linear Shear Flow)

Definition 35.5. A square matrix is nilpotent iff Nk = 0 · I for some k ≥ 0.

For example, taking N =

[
0 0
1 0

]
then N2 =

[
0 0
0 0

]
.

Now N =

[
0 0
1 0

]
is nilpotent. etA = I + tA =

[
1 0
t 1

]
, which defines a (vertical)

Shear Flow on the plane.
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Figure 81. Vertical shear vector field of Example 40.

Example 41. (Improper Node Repellor)
The next example is a composition of two linear flows: the exponential repellor

flow of Example 35 and the vertical shear flow of Example 40.

Proposition 35.26. For A =

[
1 0
1 1

]
= I +N , the flow is given by etA =

[
et 0
tet et

]
.

Proof. We have A =

[
1 0
1 1

]
= I + N . Now N =

[
0 0
1 0

]
is nilpotent; I and N

commute. By (b) of Theorem 35.19, in this case the addition of matrices is taken
to composition of the flows. Thus etA = etIetN . As above, eN = I + N , and etN =

I + tN =

[
1 0
t 1

]
so

etA =

[
et 0
0 et

] [
1 0
t 1

]
= et ·

[
1 0
t 1

]
=

[
et 0
tet et

]
.

�

So the orbit of e.g. (a, b) is (x(t), y(t)) = (eta, e2tb) whence (x/a)2·b = x2·(b/a2) = y,
giving a family of parabolas which fill the plane. ??? (0, 0) is a fixed point for the
flow, and all other points move away from the origin at exponential speed along these
curves.

This type of example is called an improper node e.g. in [HS74], and a degenerate
node in [HK03].

Example 42. (Skew Hyperbola)
The next example similar to the previous one as it is is a composition of two linear

flows: now replacing the exponential repellor by the hyperbolic flow of Example 36,
again with the vertical shear flow of Example 40.
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Figure 82. Improper Node Repellor: orbits for etA of Example 41.

Proposition 35.27. For A =

[
1 0
1 −1

]
= I+N , the flow is given by etA =

[
et 0
te−t e−t

]
.

Proof. We have A =

[
1 0
1 −1

]
= K +N for K =

[
1 0
0 −1

]
.

. Now N =

[
0 0
1 0

]
is nilpotent; again K and N commute. By (b) of Theorem

35.19, in this case the addition of matrices is taken to composition of the flows. Thus

etA = etKetN . As above, eN = K +N , and etN = K + tN =

[
1 0
t −1

]
so

etA =

[
et 0
0 e−t

] [
1 0
t −1

]
= et ·

[
1 0
t −1

]
=

[
et 0
te−t e−t

]
.

�

So the orbit of e.g. (a, b) is (x(t), y(t)) = (eta, e−t(ta+b) whence ??? giving a family
of hyperbolas which fill the plane. (0, 0) is a fixed point for the flow, and all other
points move either toward or away from the origin at exponential speed along these
curves.

This example is because the curl of the vector field is +1, which is interesting to un-
derstand (think of it projectively, i.e. the action on lines through the origin; sometimes
they move counterclockwise and sometimes clockwise, but on average the motion is
counterclockwise.) This contrasts with the square hyperbolic flows of Examples 36
and 37 which have curl 0, as the two projective rotations cancel out.

Since the matrices K and N commute, and the curl is the difference of the off-
diagonal entries, the positive curl comes from the shear flow generated by N .

Classification of linear flows in the plane. The behavior of these flows can be
classified, up to linear conjugacy, in terms of conjugacy classes of the matrix A. First
we need the next lemma.
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Figure 83. Skew Hyperbola: orbits for etA of Example 42.

The case of SL(2,C) was considered in Lemma 25.1 and of SL(2,R) in Lemma
35.28. The statements and proofs are similar; we include this for completeness.

Lemma 35.28. Given A ∈ GL(2,R), then either:
(i) there are (up to nonzero multiples) two linearly independent eigenvectors v0,v1 or
(ii) there is one eigenvector v, the eigenspace of which has dimension 1 or 2.
In case (i), the eigenvalues λ0, λ1 satisfy λ0 · λ1 = det(A), and A is similar to a
diagonal matrix D with those entries. Thus D = B−1AB via a change-of-basis matrix
B ∈ GL(2,R) with columns v0,v1. A = ±λI iff λ ≡ λ0 = λ1.

There are two subcases:
(ia) (trA)2 − 4 > 0, and the eigenvalues are real, and
(ib)(trA)2 − 4 < 0, and they are imaginary.
In case (ii), (trA)2 − 4 = 0 and there is a double real eigenvalue. Then there exists

a rotation matrix R such that R−1AR = T with T = ±det(A)

[
1 b
0 1

]
. Moreover A is

conjugate in GL(2,C) to H+ =

[
1 1
0 1

]
and to H− =

[
1 0
1 1

]
.

Proof. The characteristic polynomial of A =

[
a b
c d

]
is: pA(z) = det(A − zI) =

z2 − trA · z + detA. The characteristic polynomial is

pA(λ) = det(A− λI) = λ2 − (trA)λ+ detA = λ2 − (trA)λ+ 1

with roots

λ± ≡ trA±
√

(trA)2 − 4

2
.

Defining α =
√

(trA)2 − 4, then since the entries are real, if (trA)2 − 4 > 0 we have

λ± = (trA ± α)/2. If (trA)2 − 4 < 0 then writing β =
√

4− (trA)2 > 0 we have



FROM ADIC TRANSFORMATIONS TO GIBBS STATES 295

λ± = (trA±βi)/2. Lastly if (trA)2−4 = 0 then λ± = (trA)/2. Note that in all three
cases, λ+ · λ− = 1, verifying what we already know from Lemma 25.1.

We know from Lemma 25.1 that, defining as above B to have a columns the eigen-
vectors, this gives a change-of-basis matrix in GL(2,C). We now show in fact we can
take the eigenvectors to be real and B to be in SL(2,R). Now for an eigenvector

(without loss of generality) v =

[
z
1

]
we have

Av =

[
a b
c d

] [
z
1

]
=

[
az + b
cz + d

]
=

[
λz
λ

]

so cz + d = λ whence λ ∈ R =⇒ z ∈ R. Thus up to multiplication by a constant
in C∗, the eigenvectors are real, whence B ∈ SL(2,R).

D =

[
λ 0
0 λ

]

�

Lemma 35.28
TO DO: trace and determinant ...

Some lemmas.
To prove part (b) of Theorem 35.19, we need:

Lemma 35.29. (Binomial coefficient)

(x+ y)n =
n∑

k=0

(
n

k

)
xkyn−k

where the binomial coefficient, read “n choose k (without order)”, is
(
n

k

)
=

n!

k!(n− k)!
.

Proof. Let us consider the number of ways we can choose k objects from a set of n
objects. There are two ways to do this, with order or without order. For example, if
k = n, we want to choose n objects from a set with n objects. There are n! ways to
do this with order, and this equals the number of n-element sequences one can form
from the set. That is also the number of permutations of the set. There is one way to
choose without order, to take all of them, and this equals n! divided by the number
of permutations, or n!/n! = 1.

Choosing now k from n, first with order, labelling the choices by 0, 1, . . . (k − 1),
then there are n − 0 = n ways to choose the first, (n − 1) to choose the second,
(n − (k − 1)) = n − k + 1 to choose the last, giving n · (n − 1) · · · (n − k + 1) ways
total. This equals n!/(n− k)!.

To choose without order, we divide this by the number of permutations of the k
objects, giving n!/(n− k)!k!.

Another way to state this is that the difference between choosing without order or
with order is to count subsets, or sequences, with distinct elements.
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The notation for the first of these is(
n

k

)
=
n · (n− 1) · · · (n− k + 1)

k!
=

n!

k!(n− k)!
.

Next we see why this is indeed the binomial coefficient. Considering (x + y)n =
(x + y)(x + y) · · · (x + y) then note that the coefficient for xkyj where k + j = n or
equivalently j = n − k is the number of ways we can choose k letter x′s from the n
pairs, given that we choose one letter x or y from each pair. Order is not important
here so this is indeed equal to

(
n
k

)
.

For n fixed these are the numbers on the nth row of Pascal’s triangle. Note that(
n
k

)
=
(

n
n−k

)
and that

∑n
k=0

(
n
k

)
= 2n, since that is the total number of paths to make

n choices of either letter. �

Lemma 35.30. For real numbers, ex+y = exey.

Proof. We have on the left-hand side ex+y =
∑∞

n=0(x+ y)n/n! and on the right-hand
side exey =

(∑∞
j=0 x

j/j!
)(∑∞

k=0 y
k/k!

)
.

On the left-hand side the term with xjyk appears with coefficient
(
n

k

)
=

n!

k!j!
=

(j + k)!

k!(j)!
,

all divided by n! = (j + k)! in the Taylor’s series. This gives

(j + k)!

k!j!(j + k)!
=

1

k!j!
.

On the right-hand side the coefficient for xjyk is also 1
k!j!

.

Thus the (infinite) collections of terms are identical and since the series converge,
the limits agree. �

Proof of Theorem. For (b),(BAB−1)n = (BAnB−1) soB(
∑n

k=0A
k/k!)B−1 =

∑n
k=0(BAB−1)k/k!

and since the sums converge, this holds in the limit.
Part (c) is proved in exactly the same way as for real numbers, given that AB = BA.
For (d), eAe−A = eA−A = e0·I = I so this holds.
For (e), if for v 6= 0) we have Av = λv for some λ ∈ C, then
(
∑n

k=0 A
k/k!)v = (

∑n
k=0(Akv)/k!) = (

∑n
k=0(λkv)/k!) = (

∑n
k=0 λ

k/k!)v→ eλv.
�

In the next series of results we apply the existence of upper triangular form for
complex matrices proved in Theorem 35.9.

Proposition 35.31.
(i) If A is upper triangular, then so is An for any n ≥ 1.
(ii) If A is upper triangular, then: eA is upper triangular.
(iii) If A is upper triangular, then: etrA = det(eA).

Proof. From Proposition 35.13, if A is upper triangular, then so is A2, whence by
induction An is upper triangular for any n ≥ 1, proving (i). Hence from the Taylor
series, so is eA. For (iii), for A upper triangular, note that from the Taylor series,



FROM ADIC TRANSFORMATIONS TO GIBBS STATES 297

the entries on the diagonal of eA are exp(Ajj). Now we know from Proposition 35.13
that for A upper triangular, then det(A) = Πn

j=1Ajj. Thus

etrA = exp(
n∑

j=1

Ajj) = Πn
j=1 exp(Ajj) = det(eA)

�

Lemma 35.32.
(i) det(AB) = det(A)det(B).
(ii) det(B−1AB) = det(A).

Proof. Part (i) can be proved from the geometric definition of determinant: det(A) =
(±1) · (factor of change of volume) where we have 1 if A preserves orientation, −1 if
not.

Then (ii) follows from this. �

Lemma 35.33. The characteristic polynomial is invariant for conjugacy,

Proof. The characteristic polynomial is invariant for conjugacy, since

det(B−1AB − λI) = det(B−1(A− λI)B) = det(A− λI)

where we have used Lemma 35.32.
�

Proposition 35.34. Given the characteristic polynomial

pA(z) = det(A− λI) = c0(z − λ1)(z − λ2) · · · (z − λn) = a0 + a1z + · · ·+ anz
n,

then
(i) c0 = 1, a0 = Πλi and an−1 =

∑
λi.

(ii) a0 = det(A) and an−1 = tr(A).

Proof. pA(λ) = det(A− λI) = c0(z − λ1)(z − λ2) · · · (z − λn) = a0 + a1z + · · ·+ anz
n

so c0 = 1, and the coefficient a1 is given by choosing from each factor the constant,
λi, so equals Πλi. The coefficient an−1 of z is given by choosing z from all but one of
the factors, then adding these, whence an−1 =

∑
λi. This proves (i).

For part (ii), by Theorem 35.9 we can find a matrix B for which B−1AB = U is
upper triangular.

From Proposition 35.12, det(U) is the product of its diagonal elements. From
Lemma 35.33, these are the eigenvalues of U , and from Lemma 35.8 these are also
the eigenvalues of A.

We know that det(U) = det(B−1AB) = det(A)
�

Theorem 35.35. If A is upper triangular, then:
(a) so is eA, with diagonal entries eAii.
(b) Trace and determinant are related for upper triangular A by: etrA = det(eA).

Proof. Part (a) is straigtforward. If A is upper triangular, then the determinant is
the product of the diagonal entries. From Theorem 35.9, we know that over the
complexes, A can be put in upper triangular form. So this follows from (a). �
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Corollary 35.36.
(ii) Both trace and determinant are invariants for conjugacy. Combining this with
Proposition 35.34 proves (ii).

Corollary 35.37. The trace is preserved by conjugation.

Corollary 35.38.
(c) For any (n×n) real matrix A, eA is invertible and orientation-preserving, i.e. exp :
Mn(R)→ GL+(n,R)

Proof. We have: det(eA) = etrA > 0.
�

35.6. Inner product spaces and symmetric linear maps. In this section we
examine the existence of eigenvectors in a specific case of linear transformations of
aspect (real) inner product space: symmetric and orthogonal maps. Both depend
on the choice of inner product. See Definition 6.2. Here we take a more general
approach.

Let V be a vector space over R. A bilinear form is a function 〈·, ·〉 : V × V → R
which is linear in each coordinate. It is positive iff for every v one has that 〈v,v〉 ≥ 0,
it is positive definite iff this equals zero only when v is the zero vector 0, and is
positive semidefinite otherwise. It is a symmetric bilinear form iff 〈v,w〉 = 〈w,v〉
for all v,w.

An inner product on a (real) vector space V is a positive definite symmetric
bilinear form. A norm is a real-valed function || · || on V satisfying:
(i) ||av|| = |a| ||v|| (homogeneity);
(ii) ||v + w|| ≤ ||v||+ ||w|| (triangle inequality);
(iii)||v|| ≥ 0, and ||v|| = 0 iff v = 0 (positive definiteness).

Given an inner product 〈·, ·〉 there is a standard way to define an associated norm,

setting ||v|| = 〈v,v〉 12 .
The standard inner product on Rn is 〈v,v〉 =

∑n
i=1 viwi. The Euclidean

norm is the associated norm; thus ||v|| = (
∑n

i=1 v
2
i )

1
2 . (This is the l2−norm; see

§6.2.) There are many other possible norms, which are characterized geometrically
by the shape of the unit ball about the origin. In what follows, we shall need both
the Euclidean and the l1−norm ||v||1 =

∑n
i=1 |vi|.

Lemma 35.39. Given the standard inner product on Rn, 〈v,w〉 = ||v||||w|| cos θ
where θ is the angle between v and w.

Proof. We first consider R2.
Let v = (a, b) and w = (c, d), so v ·w = ac + bd. Taking first the case v = (1, 0),

the equality holds. Next consider the general case, but with ||v|| = ||w|| = 1. By
applying a rotation matrix R, we can return to the first case. Since R is orthogonal,
it preserves the inner product. This remains true for general vectors by linearity,
proving the claim.

Note that since cos(θ) = cos(−θ), the sign of the angle between v and w does not
matter.
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Next we consider Rn. We take the plane generated by v,w, but this is isometric
to R2, so we simply apply the first case. (Here it is important that the sign of the
angle doesn’t matter in the formula, since there is no natural way to define the sign
of an angle if n > 2!)

�

Definition 35.6. On a general inner product space V , we define length and the
modulus of the angle from the inner product by the above equation.

Remark 35.3. One of the most important things the inner product tells us is which
vectors are orthogonal. Indeed, if we choose a basis and then decide those are or-
thonormal, this defines an inner product; see....below.

Lemma 35.40. (Schwarz inequality)
|〈v,w〉| ≤ ||v|| ||w||.

Proof. By the above definition, |〈v,w〉| = ||v||||w|| cos θ ≤ ||v|| ||w||. Since ||v|| ||w||
does not depend on the definition of angle, neither does the validity of the proof. �

Definition 35.7. Two norms || · ||a and || · ||b are equivalent iff there exist constants
0 < c1 < c2 such that for every v, c1||v||b ≤ ||v||a ≤ c2||v||b (iff they generate the
same topology).

A basic fact (which we learned from Proposition 2.1 of [HS74]) is:

Lemma 35.41. On a finite-dimensional vector space, all norms are equivalent.

Proof. If V is a vector space of dimension one, and || · || is a norm, let us choose a
basis vector e of norm one. Then for a > 0, ||ae|| = a||e||. For another norm || · ||′,
setting c = ||e||′, then for all vectors, ||v||′ = c||v||. Thus the norm is unique up to
constant multiples. Note that the map ae 7→ a defines an isometry from V to R with
the usual metric, and with the norm |x| on R just the modulus (absolute value) of a
number.

Now let V be a vector space of dimension n, with norm || · ||. Define f(v) = ||v||.
We claim that f : V → [0,∞) is a continuous function.

We fix a basis (e1, . . . en) for V . We write || · ||2 for the Euclidean norm in this

basis; that is, given v =
∑n

k=1 vkek, then ||v||2 = (
∑
v2
k)

1
2 .

We define ak = ||ek||. By the triangle inequality for the norm || · ||, ||v|| ≤∑ ||vkek|| =
∑ |vk|ak. For a sequence of vectors, v(i) → 0 iff for all 1 ≤ k ≤ n,

v
(i)
k → 0. In this case, ||v(i)|| → 0, whence f is continuous.
Now since V is topologically isomorphic to Rn, the unit sphere S1(0) is compact.

The continuous image of a compact set is compact, whence the image f(S1) is [c1, c2]
for some c1 ≥ 0. By compactness, these values are assumed; thus, there exists v1 ∈ S1

such that ||v1|| = c1. By the norm property of positive definiteness, one cannot have
c1 = 0 since v1 6= 0.

Thus for all v, we have, as desired:

c1||v||2 ≤ ||v|| ≤ c2||v||2.
�
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It is useful to have the following two identities for a real vector space V with inner
product 〈v,w〉:
Proposition 35.42. (Polarization Identity)

〈v,w〉 = 1/4(||v + w||2 − ||v −w||2)

Proposition 35.43. (Parallelogram Law)

||v + w||2 + ||v −w||2 = 2||v||2 + 2||w||2

Proof. Both proofs are simple calculations; the ony difference is in one we add and in
one subtract the quantities:
(Polarization Identity): ||v + w||2 − ||v−w||2 = 〈v + w,v + w〉 − 〈v−w,v−w〉 =
||v||2 + ||w||2 + 2〈v,w〉 −

(
||v||2 + ||w||2 − 2〈v,w〉

)
= 4〈v,w〉.

(Parallelogram Law)

||v + w||2 + ||v −w||2 = 〈v + w,v + w〉+ 〈v −w,v −w〉
= ||v||2 + ||w||2 + 2〈v,w〉+ ||v||2 + ||w||2 − 2〈v,w〉 = 2||v||2 + 2||w||2.

�

Note that geometrically, the two quantities being squared are the lengths of the
diagonals of a parallelogram with sides v, w. Note also that if v,w are perpendicular,
in the first the lengths are equal so we do get 0; in the second, we get Pythagoras’
Theorem (which is therefore a special case).

The main interest of these laws seems to be the following converse:

Theorem 35.44. Let V be a real vector space with norm || · ||. Then this norm comes
from an inner product if and only if the Parallelogram Law holds.

Proof. (Beginning!) The idea of the proof is simple: we define 〈v,w〉 by the Polar-
ization Identity and then use the hypothesis to show this satisfies the axioms for an
inner product.

thus we define
〈v,w〉 ≡ 1/4

(
||v + w||2 − ||v −w||2

)

whence
4〈u + v,w〉 ≡ ||u + v + w||2 − ||u + v −w||2

It is clearly commutative. We must show bilinearity.
It turns out this argument is not so easy! It is known as the Jordan-von Neumann

Theorem. See [Tes09], Theorem 0.19; also see StackExchange: norms-induced-by-
inner-products-and-the-parallelogram-law.

�

Given finite-dimensional spaces V,W , we recall the passage between linear trans-
formations and matrices. WritingM(m×n) for the vector space of all (m×n) matrices,
then a matrix M ∈ M(m×n) defines a linear map on the space of column vectors by
left multiplication. That is, v 7→ Mv sends the column vectors M(n×1)

∼= Rn to
M(m×1)

∼= Rm. (The proof that this is linear uses the distributive law for matrix
multiplication!)

The converse depends on a choice of basis in each space.
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Lemma 35.45. Given a basis B = (vi)
n
i=1 of V , we define a map ΦB : V → Rn by

sending the basis B to the standard basis (ei)
n
i=1 of Rn. This extends to an isomor-

phism.

Proof. By definition a basis satisfies two properties: it spans the space, and is linearly
independent. Since it spans, a vector v ∈ V can be expressed as v =

∑n
i=1 vivi; by

linear independence this expression is unique. We extend the map Φ from B by
linearity; by the uniqueness this is well-defined. Equivalently, ΦB is defined to send a
vector to its B-coordinates, thus ΦB : v 7→ (v1, . . . , vn) where v =

∑n
i=1 vivi. �

Corollary 35.46. These are equivalent, given a finite-dimensional vector space V :
(i) Choice of a basis with n elements;
(ii) Choice of an isomorphism Φ : V → Rn. �

Proposition 35.47. Given two vector spaces V,W of dimensions n,m, then a choice
bases B, C defines by the above correspondence a linear isomorphism from  L(V,W ),
the vector space of all linear transformations, to M(m×n).

Proof. Given a linear transformation A : V → W , with bases B = (vi)
n
i=1, C =

(wi)
m
i=1 of V , W , and letting (ei)

n
i=1, (fi)

m
i=1 denote the standard bases of Rn,Rm with

ΦB,ΦB the above maps, then we define M ∈M(m×n) such that the following diagram
commutes:

V
A−−−→ WyΦB

yΦC

M(n×1)
M−−−→ M(m×1)

That is, M is the linear transformation on the spaces of column vectors such that

vi
� A //

_

ΦB

��

A(vi)_

ΦC
��

ei
� M // Mei

.

Now we define a matrix M ∈M(m×n) such that the C-coordinates of Mei is its ith

column. This defines a linear transformation as noted above, and is the only such
map since B, C are bases. �

Next we consider a vector space with an inner product, but no choice of basis.

Lemma 35.48. Let V be a finite-dimensional vector space with inner product 〈·, ·〉.
Suppose that 〈u,w〉 = 〈u′,w〉 for all w ∈ V . Then u = u′.

Proof. Subtracting, 0 = 〈u,w〉−〈u′,w〉 = 〈u−u′,w〉 for all w so taking w = u−u′,
by positive definiteness of the inner product, u− u′ = 0. �

Lemma 35.49.
(a)Let V be a finite-dimensional inner product space, then these are equivalent:
(i) B = (vi)

n
i=1 is an orthonormal basis.

(ii) For a basis B = (vi)
n
i=1, then for v =

∑n
i=1 vivi, we have vi = 〈v,vi〉.
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(iii) The inner product 〈·, ·〉 is the pullback from Rn of the standard inner product by
the map ΦB.
(b) Given vector spaces V,W with inner products 〈·, ·〉V , 〈·, ·〉W , orthonormal bases
B = (vi)

n
i=1, C = (wi)

m
i=1, and A : V → W linear, then the matrix entries of M

in Proposition 35.47 are Mij = 〈wj, A(vi)〉W = f tjMei, where (ei)
n
i=1, (fi)

m
i=1 are the

standard bases of Rn,Rm.

Definition 35.8. Given finite-dimensional spaces V,W , with inner products 〈·, ·〉V , 〈·, ·〉W ,
and given a linear transformation A : V → W , we define a map At : W → V by
At(v) = u where u satisfies 〈At(v),u〉V = 〈v, A(u)〉W . We call At the transpose of
A.

The definition makes sense, as:

Lemma 35.50. This is a uniquely defined linear map.

Proof. We apply Lemma 35.48, taking u = At(v).
�

In the case V = W , a linear transformation is termed an operator. This operator
is symmetric iff A = At. An operator Q is orthogonal iff QtQ = I.

An isometry of two vector spaces with inner products is a linear isomorphism
which takes one inner product to the other.

Via the map from linear transformations  L(V,W ) to matrices M(m×n), the trans-
pose map from  L(V,W ) to  L(W,V ) is taken to the usual transpose of a matrix, from
M(m×n) to M(n×m), where M t

ji = Mij.
In particular, a symmetric operator A on V corresponds to a symmetric (m×m)

matrix: such that Mij = Mji for all i, j.
Note that given an orthonormal basis B = (vi)

n
i=1, then the map v 7→ (v1, . . . , vn)

where vi = 〈v,vi〉 defines an isometry from V to Rn with the standard inner product.
The self-isometries of an inner product space are just the orthogonal transformations,
and correspond to the orthogonal matrices, those satisfying M tM = MM t = I.

Now we examine these matters more closely.

Lemma 35.51.
(i) Given finite-dimensional spaces V,W , with inner products 〈·, ·〉V , 〈·, ·〉W and given
a linear transformation A : V → W , then (At)t = A. We have (AB)t = BtAt.
(ii) Given a bilinear form 〈·, ·〉 on V , we define 〈·, ·〉A by 〈v,w〉A = 〈v, Aw〉. This is
a bilinear form. If 〈·, ·〉 is a symmetric bilinear form and A is symmetric then 〈·, ·〉A
is also a symmetric bilinear form. If 〈·, ·〉 is an inner product and if B = AtA then
〈·, ·〉B is symmetric and positive semidefinite; it is positive definite (hence an inner
product) iff A is invertible. A linear transformation preserves the inner product iff it
is orthogonal.
(iii)Given the standard inner product vtw = v ·w = 〈v,w〉 on Rn, then a symmetric
invertible matrix A defines a second inner product 〈v,w〉A = vtAw. Conversely,
given some inner product (v,w), there exists a symmetric invertible A such that
(v,w) = 〈v,w〉A.
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Proof. For any linear transformationA : V → W , 〈v, Atw〉V = 〈Atw,v〉V = 〈w, Av〉W =
〈Av,w〉W so indeed (At)t = A.
〈(AB)tv,w〉 = 〈v, ABw〉 = 〈Atv, Bw〉 = 〈BtAtv,w〉 whence (AB)t = BtAt.
If 〈·, ·〉 is a symmetric bilinear form and A = At then 〈v,w〉A ≡ 〈v, Aw〉 =
〈Av,w〉 = 〈w, Av〉 ≡ 〈w,v〉A.

We have (AtA)t = AtA so B = AtA is symmetric. Now 〈v,v〉AtA = 〈v, AtAv〉 =
〈Av, Av〉 ≥ 0, and this is zero iff Av = 0, so it is positive definite iff A is invertible.
A preserves the inner product iff for all v,w, 〈v,w〉 = 〈Av, Aw〉 ≡ 〈v,w〉AtA.

Letting v,w be the elements of a basis, this determines AtA uniquely, so it is the
identity transformation.

The first part of (iii) is just (i) restated for matrices. For the converse, we claim
that the equation (v,w) = vtAw determines A uniquely. For this, take v = ei,
w = ej where these are the standard basis vectors; then Aij ≡ etiAej defines an
(n× n) matrix A; by linearity, the equation (v,w) = vtAw holds for all v,w. Since
(v,w) = (w,v) we have that Aij = Aji. If A is not invertible there exists v 6= 0 such
that Av = 0 but then (v,v) = 0, a contradiction.

�

Definition 35.9. Given a vector space V over a field K and a linear map T : V → V ,
then an eigenvector for T is a nonzero v ∈ V such that there exists λ ∈ K (possibly
zero) such that Tv = λv.

If V = Rn, and the linear transformation is defined by an (n× n) matrix M , then
since Rn naturally embeds in Cn, M can be considered to act on Cn as well. In this
case, as in Definition 16.1, we allow both eigenvectors and eigenvalues of M to be
complex.

One way to find an eigenvector can be to find a maximal vector, as we now see.

Definition 35.10. We define a norm on the linear space L(V,W ) of all linear op-
erators from one normed space V to another W by ||A|| = supv∈V ||Av||/||v|| =
sup||v||=1 ||Av||. This is called the operator norm. One of its main useful properties
is that it (clearly) behaves nicely under composition: ||AB|| ≤ ||A|| ||B||. This is
called submultiplicativity.

Given a linear transformation A, we say a vector v is maximal iff ||v|| = 1 and
||Av|| = ||A||.

In a finite-dimensional space, maximal vectors exist: the unit ball is norm compact;
since the function v 7→ 〈v,v〉 is continuous there exists some v in the unit sphere
where ||Av|| attains its maximum value.

Lemma 35.52. Let V,W be inner product spaces with A : V → W linear. Then:
(i) ||A|| = ||At||.
(ii) We consider the map AtA : V → V , and let v be a maximal vector. Then
AtAv = cv with c = ||A||2. In particular, if A is not the zero transformation, then a
maximal vector v is an eigenvector for AtA, with nonnegative eigenvalue ||A||2.

Proof. Let v be a maximal vector of norm one. Then ||Av||2 = (Av)t(Av) =
vt(AtAv). By the Schwarz inequality, ||A||2 ≤ ||v|| ||AtAv|| = ||AtAv|| ≤ ||AtA|| ≤
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||At|| ||A||, using the submultiplicativity of the operator norm. Thus ||A|| ≤ ||At||.
Symmetrically we have the reverse, completing the proof of (i).

For (ii), as in the previous proof, ||A||2 = 〈AtAv,v〉 ≤ ||AtA|| ≤ ||At||||A|| = ||A||2,
using (i).

Now the Schwarz inequality is an equality iff the two vectors are multiples. Thus
AtAv = cv.

Next, c = c〈v,v〉 = 〈cv,v〉 = 〈AtAv,v〉 = 〈Av, Av〉 = ||Av||2 = ||A||2.
Thus if A is nonzero, so is v and so is c, and v is an eigenvector for AtA, with

eigenvalue ||A||2.
�

Lemma 35.53. Let A be a symmetric nonzero linear transformation on finite-dimensional
V . Then:
(i) A maximal vector v is an eigenvector for A2, with eigenvalue ||A||2.
(ii) Either ||A|| or -||A|| is an eigenvalue for the operator A. Indeed, either v from
(i) is an eigenvector for A, with eigenvalue ||A||, or w = (A−λI)v is an eigenvector
for A, with eigenvalue -||A||.
Proof. From the previous lemma, A2v = cv, where c = ||A||2. This proves (i).

To prove (ii), writing I for the identity map on V , we know from (i) that (A2 −
λ2I)v = 0 where v is our (nonzero) maximal vector and λ = ||A||. But (A2− λ2I) =
(A + λI) ◦ (A − λI) so either (A − λI)v = 0 (in which case v is an eigenvector for
A, with eigenvalue ||A||) or, taking w = (A − λI)v, we have (A + λI)w = 0 and w
is an eigenvector for A, with eigenvalue -||A||.

�

Lemma 35.54. For symmetric A, suppose Av = λv. Then A preserves the orthog-
onal complement v⊥.

Proof. If 〈v,w〉 = 0 then 〈v, Aw〉 = 〈Av,w〉 = 〈λv,w〉 = 0. �

Definition 35.11. The rank of a linear transformation A : V → W is the dimension
of the image. We write Im(A) for the image, and Ker(A) for the kernel of this map.

Lemma 35.55. For A : V → W , we have
(i) dim(V ) = dim Ker(A) + dim Im(A).
(ii) rank(A) = rank(At).

Proof. By definition, the dimension of a vector space is the number of elements in
a basis, which is well- defined (for a nice proof, see Theorem 2.14 of [Axl97]). Take
a basis for the subspace Im(A); that pulls back to a linearly independent set in V ,
which generates a subspace V0. The rest of the basis of V is a basis for Ker(A). This
proves (i).

For (ii), we can prove this by a matrix calculation: the image is the column space,
whose dimension is preserved by row reduction to echelon form. The image of the
transpose is the row space. The rows containing pivots generate the row space for
the matrix, while the columns containing pivots generate the column space for the
echelon form. So in both cases this is the same number. �
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35.7. Diagonal form for real symmetric matrices: the real spectral theorem.

Theorem 35.56. (Real Spectral Theorem) Let V be a real finite-dimensional vector
space with inner product. Then:
(i)For a symmetric operator A of rank m ≤ n we can find a set of m orthonormal
eigenvectors.
(ii) Given a symmetric matrix A of rank m < n, we can find a orthogonal matrix
Q such that Q−1AQ = QtAQ = D with D diagonal, with kth entry the eigenvalue
λk = ±||A||Vk and 0 for m + 1 ≤ k ≤ n, for subspaces V1 ⊆ . . . Vk · · · ⊆ Vm with Vk
spanned by the first k vectors.

Proof. Suppose A is nonzero. Lemma 35.53 gives us an eigenvector v1, which we
normalize. By Lemma 35.54 we can consider the restriction of A to v⊥1 with the
restricted inner product; a fortiori it is still symmetric. If it is the zero operator
we stop; if not we get a second eigenvector v2, which is in v⊥1 hence orthogonal
to v1; by induction we continue until we have m normalized vectors v1, . . .vm in
nested subspaces V = V1, V2 = v⊥1 , V3 = v⊥1 ∩ v⊥2 , . . . . Reordering these so the
eigenvalues λ1, . . . , λm have nondecreasing modulus, then each is a maximal vector
on the subspace so by (ii) of Lemma 35.53, λk = ±||A||Vk .

For (ii), express the matrix A and v1, . . .vm in the standard basis e1, . . . en. Form
the matrix Q with orthonormal columns, where the first m columns are the coor-
dinates of v1, . . .vm and the last n − m are further vectors completing these to an
orthonormal basis. Then Q is orthogonal, and Q−1AQ = D diagonal, with entries
λ1, . . . , λm, 0 . . . , 0. �

We now sketch what is to come. A symmetric matrix is a natural object to consider,
as it generalizes the simplest matrices of all: the diagonal matrices. The depth of
this analogy only becomes apparent when we consider inner products. To introduce
the ideas, note that if L is an invertible linear transformation from a vector space V
to a vector space W , then L transports an inner product on W to one on V via the
equation 〈v,w〉(V ) ≡ 〈L(v), L(w)〉(W ). Let us take for example the case of R2, where
the standard inner product of v = (a, b) with w = (c, d) can be written as a matrix

multiplication: vtw =
[
a b

] [c
d

]
, where we are identifying the (1 × 1) matrix [vtw]

with the number vtw. The linear map L is given by an invertible (2 × 2) matrix A
and we have 〈L(v), L(w)〉 = vtAtAw. So the inner product so defined is equal to
the usual one if AtA = I, the identity matrix, otherwise it is a new inner product,
providing a new notion of angle and of norm. And the converse is also true, as we
shall show: any inner product comes about in this way.

Orthonormal bases will play a natural role here, since an inner product defines
what it is to be orthonormal, while conversely declaring a basis to be orthonormal and
extending by bilinearity defines an inner product. The collection of all orthonormal
bases for a given inner product is preserved by the orthogonal transformations (also
called isometries).

Proposition 35.57. Let A be a linear operator on finite-dimensional V . Then:
(i)there exists a symmetric nonnegative map B such that B2 = AtA.
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(ii)Assume that A is invertible. Then B above is positive definite. Defining Q̃ =

AB−1, then Q̃ is orthogonal, and A = Q̃B.

(iii)There exists Q̂ orthogonal and E diagonal such that A = Q̂E.
(iv) The image of the unit sphere in Rn by A is an ellipsoid.

Proof. From Lemma 35.51, AtA is symmetric, hence by Theorem 35.56 there exists
Q orthogonal such that AtA = QtDQ where D is diagonal. Moreover for this special
case of AtA we know the entries of D are nonnegative, using Lemma 35.52, since
each eigenvector vk is a maximal vector on its respective subspace Vk. Thus D has a
square root E, diagonal with nonnegative entries. Then setting B = QtEQ we have
B2 = AtA. Since E is symmetric, B is as well. If A is positive definite, then the
diagonal entries are positive, whence B is positive definite.

Thus (B−1)t = (Bt)−1 = B−1. Setting Q̃ = AB−1, we have Q̃tQ̃ = (AB−1)tAB−1 =

(B−1)t(AtA)B−1 = B−1B2B−1 = I, so Q̃ is orthogonal.

For part (ii), from the factorization A = Q̃B = Q̃QE, setting Q̂ = Q̃Q.
Part (iii) now follows since the image by the diagonal matrix E with entries a1 ≥
· · · ≥ an > 0 of the unit sphere is the ellipsoid (x1/a1)2 + · · ·+ (xn/an)2 = 1, and the

image by Q̂ is a rotation of this. �

35.8. Quadratic forms. Given an inner product 〈·, ·〉 on a (real) vector space V we

defined above the associated Euclidean (or l2) norm ||v|| = 〈v,v〉 12 . Since norms are
so important, it is natural to consider beginning, more generally, with any bilinear
form, or equivalently, as we see in the next section, with any two-tensor (see Definition
6.2, §45). For a variety of reasons, one takes the square in the above formula, leading
to the following:

Definition 35.12. We give four equivalent definitions of a quadratic form Q(v)
on a vector space V of dimension n:
(i) Q is a polynomial in x1, . . . , xn with all terms of degree two;
(ii) Beginning with a symmetric bilinear form (·, ·) on V , we define Q(v) = (v,v) to
be the quadratic form associated to the bilinear form.
(iii) There is a symmetric (n×n) matrix A such that for the bilinear form 〈v,w〉A =
vtAw then

Q(v) = 〈v,v〉A = vtAv.

(iv) (n = 2):
Q(x, y) = ax2 + by2 + cxy;

(n = 3):

Q(x, y, z) = ax2 + by2 + cz2 + d(xy) + e(xz) + f(yz)

and so on.

Lemma 35.58. These are indeed equivalent.

Proof. (i) ⇐⇒ (iv) ⇐⇒ (iii):
A polynomial with all terms of degree two can be written as Q(x1, . . . , xn) =∑n
i=1 aix

2
i +

∑n
j=1

∑
i<j cijxixj; we define a symmetric matrix from this by Aij = cij
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and Aji = cij for i < j, with diagonal elements Aii = ai. From the matrix we define
〈v,w〉A ≡ vtAw, which is a symmetric bilinear form. This gives the same quadratic
form, Q(v) = vtAv. Conversely, a symmetric matrix defines the polynomial.

(iii) ⇐⇒ (ii) : Choosing a basis for V and a symmetric matrix A and denoting
by v̂, ŵ the coordinates in Rn of v,w with respect to this basis, then 〈v,w〉 ≡ v̂tAŵ
defines a symmetric bilinear form on V , and hence a quadratic form. Given a bilinear
form on V ,

�

Remark 35.4. Here we are considering quadratic forms over a field, so Q : Kn → K;
more generally, this could be a ring, as in number theory, e.g. in the statement of
Fermat’s Last Theorem. For deep work in ergodic theory related to this see e.g. Ein-
siedlerWard2010 and references given there.

For p + q = n, the form Q is said to be of signature (p, q) iff the diagonal has p
elements > 0 and q < 0. We are for simplicity assuming there are no 0 elements; this
is termed a nondegenerate (bilinear, and quadratic) form.

Example 43. (Hyperbolic Rotation 1) Now we look more closely at the matrix of
Example 78, in particular we describe the associated quadratic form.

Let A =

[
0 1
1 0

]
.

We wish to understand the quadratic form vtAv; here we recall

For A =

[
a c/2
c/2 b

]
this is Q(x, y) = ax2 + by2 + cxy, so for our case

Q(x, y) =
[
x y

] [0 1
1 0

] [
x
y

]
= 2xy.

Since A is symmetric, by the Spectral Theorem we can diagonalize it. The charac-

teristic polynomial is

∣∣∣∣
−λ 1
1 −λ

∣∣∣∣ = λ2 − 1 = (λ + 1)(λ − 1), which has eigenvectors
[
1
1

]
,

[
−1
1

]
for the eigenvalues 1,−1 respectively. Defining the change-of-basis ma-

trix B to have these columns, so B =

[
1 −1
1 1

]
, then B takes the eigenbasis for

the diagonal matrix D (just the standard basis) to that for A, so we indeed have

B−1AB = D =

[
1 0
0 −1

]
where B−1 = 1

2

[
1 1
−1 1

]
. We recognize B to be

√
2 ·Rπ/4 so

we could normalize B to the orthogonal matrix U = Rπ/4 guaranteed by the Spectral
Theorem, giving U−1AU = D.

The quadratic form for D is Q̂(x, y) =
[
x y

] [1 0
0 −1

] [
x
y

]
= x2−y2. The idea of in-

definite symmetric bilinear forms is that they are associated to a more general notion
of metric or distance where negative values are possible. The level curves of the qua-
dratic form still correspond to “circles” as they are in this sense “equidistant” from the
origin. Thus the level curves of Q are xy = c, which are hyperbolas including the x, y



308 ALBERT M. FISHER

axes, while the level curves of Q̂ are rotated by π/4. Writing

[
u
v

]
=

[√
2

2
−
√

2
2√

2
2

√
2

2

][
x
y

]

then the change-of-variables due to U is u =
√

2
2

(x−y), v =
√

2
2

(x+y); the asymptotes

of the Q̂-hyperbolas are the lines y = ±x.
We return to this example after we have considered the conjugate linear hyperbolic

flows etD and etA: the hyperbolas are flow orbits and the time parameter gives the hy-
perbolic distance. Although these are hyperbolic flows for the Euclidean metric, they
preserve the indefinite (Lorenz) metric and along each orbit preserve the hyperbolic
length. See Example 52.

35.9. Complex (Hermitian) inner product. To define a complex vector space,
the initial axioms are identical to those for real spaces. The definition for norm is the
same as well. The first real difference is noted when introducing inner products, as
one needs to introduce the new notion of an Hermitian inner product. All axioms are
as above except now commutativity (or symmetry) (1) is exchanged for:
(1) v ·w = w · v (conjugate-symmetry). This implies that (2a, b) are replaced by:
(2a) (av) ·w = a(v ·w) (just like (2a)) but now
(2b) v · (aw) = a(v ·w).

We note that the Hermitian definition reduces to the real one when the field is R.
We see from (1) that v ·v ∈ R; from (4a, b) we have as before that we have a norm,

with ||v||2 = v · v.
Motivation for conjugate-symmetry comes from Cn, where the standard Hermitian

inner product is this: given v = (v1, · · · , vn) and w = (w1, · · · , wn) one sets

v ·w =
∑

viwi. (129)

Note for example that for n = 1, then with v = z ∈ C we have ||v|| = (zz)
1
2 = |z|,

agreeing with our usual notion of size of a complex number being the modulus.
For general n, the norm is

||v|| =
(∑

vivi

) 1
2

=

(∑
|vi|2

) 1
2

.

Remark 35.5. A key reason an inner product is a useful idea is that it allows us to
define the geometrical notions not just of size, but of orthogonality and hence angle.
Indeed, in a real vector space one can define the angle θ between two vectors v and
w via the equation

v ·w = ||v||||w|| cos θ.

Note that since cos(θ) = cos(−θ) = cos(2π−θ) this does not depend on the orientation
of the plane containing v,w. In words, the magnitude of the angle from v to w equals
that from w to v.

We treat Hermitian inner products in the same way: we say complex vectors v,w
are orthogonal iff v · w = 0. Trying to imitate the real case, we say the Hermitian
angle between two vectors is defined by the equation

|v ·w| = ||v||||w|| cos θ
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so −π/2 ≤ θ ≤ π/2.
It is important to note that this is different from their angle as real vectors in

R2. For example, the Hermitian angle between z, w ∈ C1 is 0 (as it should be
for multiples) from the above equation. Indeed, |〈v, w〉| = |vw| while ||v||2||w||2 =
|vv| · |ww| = |vw · wv| = |vw|2 so the angle is 0.

35.10. Complex eigenvalues.

Example 44. (Rotation flow 2) We recall that although a rotation matrix has no real
eigenvalues or eigenvectors, this changes over the complex field: indeed the real matrix

A =

[
a −b
b a

]
where a2 + b2 = 1 has characteristic polynomial p(λ) = λ2 − (trA)λ +

detA = λ2−2aλ+1 and so has eigenvalues a±
√
−b2 = a±bi = e±iθ with eigenvectors[

1
−i

]
and

[
1
i

]
respectively. Now since as explained above the standard Hermitian

inner product of v = (v1, · · · , vn) and w = (w1, · · · , wn) in Cn is v · w =
∑
viwi,

these vectors are perpendicular in C2, so normalizing them gives an orthonormal basis
of eigenvectors.

We recall that an (n × n) real matrix Q is orthogonal iff QQt = QtQ = I, iff
its columns are an orthonormal basis. An orthogonal matrix preserves the standard
inner product of Rn; equivalently Q is a rotation, reflection or a composition of a
rotation and a reflection.

The adjoint of a square matrix with complex entries is the conjugate transform
M∗ = (M)t; a unitary matrix satisfies U∗U = UU∗ = I; that is equivalent to the
columns (and rows) of U forming an orthonormal basis, as in the above example,
which gives the unitary change-of-basis matrix

U =
1√
2

[
1 1
−i i

]

A matrix is self-adjoint iff A = A∗ (this reduces to being symmetric if it has real
entries) and is normal iff AA∗ = A∗A. See §35.6, §35.11 below.

The Spectral Theorem (Theorems 35.56 and 35.61) states that an orthonormal
basis of eigenvectors exists for any normal matrix.

Now the rotation matrix A above is orthogonal hence a normal matrix, so this
applies; we have just found such a basis explicitly. The unitary matrix U defined above

then yields the diagonalization U∗AU = D where D =

[
eiθ 0
0 e−iθ

]
with commutative

diagram

C2 A−−−→ C2

xU
yU∗

C2 D−−−→ C2

(130)

See also Example 24.

Now we move beyond orthonormal bases.
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Proposition 35.59. Let A be a real (2× 2) matrix with complex nonreal eigenvalue
µ = a + bi. Let z = (z1, z2) ∈ C2 be an eigenvector for µ, with real and imaginary
parts u,v ∈ R2; that is, z = u + iv.

(i) Then in the basis (v,u) for R2, A acts as the matrix

[
a −b
b a

]
.

(ii) For A acting on C2, the vector z = u − iv is an eigenvector with eigenvalue
µ. The vectors z, z are a basis for C2, and in this basis the matrix A equals D =[
µ 0
0 µ

]
= |µ|

[
eiθ 0
0 e−iθ

]
with |µ| = (a2 + b2)1/2.

Proof. We start with (ii). Since A has real entries,

Az̄ = Az̄ = Az = µz = µ̄z̄.

Since µ 6= µ̄, by Lemma 35.3 the eigenvectors z, z̄ in C2 are linearly independent over
C. We claim that the real vectors u,v in R2 are linearly independent over R. Indeed,
note that u = 1

2
(z+z̄) while v = −i

2
(z−z̄). Now if u,v are dependent, one is a multiple

of the other, say v = aw for some a ∈ R. Then u = 1
2
(z + z̄) = av = a−i

2
(z − z̄) so

(z̄ + z) = ai(z̄− z), (1 + ai)z + (1− ia)z̄ = 0, but since z, z̄ are independent over C,
ai = −1 and also ai = 1, a contradiction.

Now since µ = a + ib, A(u + iv) = (a + ib)(u + iv) = (au − bv) + i(bu + av), so
since A has real entries, A(u) = au− bv and A(v) = bu + av. Hence A restricted to

R2 has with respect to the basis (v,u) the matrix

[
a −b
b a

]
.

To finish the proof of (ii), we note that in the basis of eigenvectors (z, z) the
matrix A is diagonal with entries the eigenvalues µ, µ, and that |µ| = (µµ)1/2 =
(a2 + b2)1/2. �

This example is also a special case of the following; see Theorem 3 p. 68 of [HS74]
(the first edition) which is where we learned about this. The proof is the same.

Proposition 35.60. Let A be a real (d× d) matrix with complex nonreal eigenvalue
µ. Thus there is a column vector z ∈ Cd with Az = µz. Then:
(i)the vector z̄ has eigenvalue µ̄;
(ii) Let ZC be the space spanned by z, z̄. Then ZR ≡ ZC ∩ Rd is a 2−dimensional
subspace over the reals of Rd ⊆ Cd, and defining u,v, a, b to be the real and imaginary
parts of the vector z and number µ, thus with z = u + iv and µ = a+ ib, then (v,u)

is a basis for ZR, and in this basis, A acts as the matrix

[
a −b
b a

]
. With respect to

the basis (u,v), it acts as

[
a b
−b a

]
. �

Example 45. Consider the permutation matrix A =




0 1 0
0 0 1
1 0 0


 .

This rotates the unit simplex by angle θ = 2π/3, and that is part of the affine
plane x + y + z = 1, so it rotates the parallel linear subspace x + y + z = 0 by
θ. But what is the eigenvalue and eigenvector? Computing, we see detA − λI =
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∣∣∣∣∣∣

−λ 1 0
0 −λ 1
1 0 −λ

∣∣∣∣∣∣
= 1−λ3 = (1−λ)(λ2 +λ+1), which has three solutions, 1, µ = e2πi/3

and µ̄ = e−2πi/3. Solving for an eigenvector v, we have




0 1 0
0 0 1
1 0 0






1
x
y


 =



x
y
1


 =



λ
λx
λy


, giving z =




1
λ
λ2


, which does satisfy Av = λv. Writing z = v for λ = µ, z̄

for λ = µ̄ and 1 for λ = 1, we have three eigenvectors z, z̄ and 1 =




1
1
1


. This last

is the midpoint of the simplex, fixed by the rotation, and is the only nonnegative

eigenvector for A. And using the formula in the Lemma, u = Re(z) =




1
−1/2
−1/2


 =




1
a
a


, v = Im(z) =




0√
3/2

−
√

3/2


 =




0
b
−b


, which do form an orthogonal basis for the

plane x+ y + z = 0, with A acting in this basis as the matrix

[
a −b
b a

]
, which is the

rotation Rθ =

[
cos θ − sin θ
sin θ cos θ

]
.

We remark that the basis vectors u,v being orthogonal is special: it means that
A acts as a rotation in the imbedded plane with the usual metric. But that is not
what the Lemma guarantees in general: if u,v are not orthogonal then the rotation is
seen only after the basis change, so the rotation is around ellipses rather than circles,
followed by an expansion or contraction if a2 + b2 6= 1.

That is, a complex eigenvalue of modulus one does not guarantee a rotation on
a real plane, but merely an elliptical rotation. In retrospect this is obvious: if A
is a rotation, then it has a complex eigenvalue, and any conjugate B−1AB has the
same eigenvalues; yet unless the columns of B are orthogonal, the invariant circles
have been changed into ellipses. See Theorem 35.56 below (the Spectral Theorem)
for related matters.

Exercise 35.1. (1) Verify that this is the case for A =

[
0 −2
1 2

]
: find a (non-

orthogonal) basis change matrix B such that B−1AB =

[
1 −1
1 1

]
. (See p. 56 of

[HS74]).
(2) Work out the above for a (4× 4) permutation matrix.
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35.11. The Spectral Theorem. In Theorem 35.56 we gave a first version of the
Spectral Theorem, for real symmetric matrices. Here we prove the full statement.

First we repeat Definition 35.8, but now for complex vector spaces:

Definition 35.13. Given a Hermitian inner product 〈·, ·〉 on a complex finite-dimensional
V and a linear operator A : V → V , the adjoint of A is the linear transformation
A∗ on V defined by the equation 〈v, Aw〉 = 〈A∗v,w〉. (As before, this is a uniquely
defined linear map).

(Equivalently, 〈v, A∗w〉 = 〈Av,w〉.)
The operator is self-adjoint or Hermitian iff A = A∗. An operator Q is unitary

(the complex analogue of orthogonal) iff Q∗Q = I, iff Q preserves the Hermitian inner
product: for all v,w, 〈Qv, Qw〉 = 〈v,w〉. It is normal iff A∗A = AA∗.

35.12. The Complex Spectral Theorem.

Theorem 35.61. (Complex Spectral Theorem)
(i)An operator A is normal iff the space has an orthonormal basis of eigenvectors.
(ii) Given a self-adjoint matrix A of rank m < n, we can find a unitary matrix
Q such that Q−1AQ = Q∗AQ = D with D diagonal, with kth entry the eigenvalue
λk = ±||A||Vk and 0 for m+ 1 ≤ k ≤ n.

35.13. Singular Value Decomposition.

35.14. Canonical forms.

35.15. Lie algebras and Lie groups: some examples. Now the basic property
of exp : R → (0,∞) = R>0 is that it takes addition to multiplication, that is, it
maps the group of additive reals (R,+) to the multiplicative reals (R \ {0}, ·); it is
onto the positive reals R>0 = (0,∞), which is the largest connected component of the
multiplicative reals containing 1 = e. This unusual characterization of the positive
reals is what generalizes to other situations.

A Lie group G is a group which is also a differentiable manifold, such that the
differentiable structure is preserved by the group operations. (In other words, such
that the group operations are diffeomorphisms.) The tangent space at the identity
element e ∈ G is called the Lie algebra g of G. (The convention is to use a a small
Gothic letter for the Lie algebra). The Lie algebra g is an additve (i.e. commutative)
group. in fact a vector space, as it is equal to the tangent space at the identity. The
exponential map is defined to send the Lie algebra to the group. This is not surjective;
it maps onto the connected component of the identity. Thus for G the multiplicative
reals, its Lie algebra is the additive reals, and as noted, exp maps onto the positive
subgroup (0,∞),

For the complexes, the exponential map is onto all of the multiplicative group
C \ {0}. For matrix groups, the image will be the orientation-preserving matrices:
those with determinant > 0. This corresponds to ex being positive for x ∈ R.

Now as for R or C, for any abelian group the exponential map takes addition to
multiplication. However this is not true in general, because of the possible noncom-
mutativity of the group.
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The exponential map of a manifold.
Just to set the overall stage, given a Riemannian manifold M , then for each point

p ∈ M , there is a map exp : Tp(M) → M , which sends straight lines though 0 in Tp
to geodesics in M . In the particular case of Lie groups, each Tp can be identified with
the tangent space at the origin, Te. This is a Lie algebra, with a bracket operation;
in the general setting the bracket may depend on the point, as the curvature may
change. See [?].

The bracket operation and infinitesimal noncommutativity.
This noncommutativity needs to be reflected somehow in the Lie algebra. This is

the role of the Lie Bracket operation, which represents the infinitesimal noncommu-
tativity in the following sense.

Definition 35.14. An element a of the Lie algebra g of G is tangent to a geodesic
curve starting at the identity element e; this curve is exp(tA) where the exponential
map exp : g → G is explained shortly. Note that indeed d/dtt=0 exp(tA) = A if the
usual formulas apply (which they do!) Now setting A = exp(a) and B = exp(b), then
the noncommutativity of g, h ∈ G is measured by ghg−1h−1. This is the commutator
of g and h. However the more natural place to define this operation is not on G but
rather on the Lie algebra g, where for g = EA and h = eB, the infinitesimal version
of this– also called the commutator of A and B, now denoted [A,B]– is

[a, b] = lim
t→∞

1

t2
(etAetBe−tAe−tB). (131)

See Proposition 35.64. This will define the bracket operation on g. For the simplest
case, if all a, b ∈ g commute, that is, if [a, b] = 0, then exp(ta) and exp(sb) commute
in G for all s, t; in other words, G is a commutative group.

We have already seen a small introduction to this subject, through our study of
SL(2,C) and SL(2,R). For much more background see e.g. [Sam12], [War71], [SR73],
[Hal15].

Each element g ∈ G has a derivative map which takes this to the tangent space at
g. One wonders how, and to what degree, the group multiplication might be reflected
in the Lie algebra, and the remarkable answer is that this is given by an operation
called the Lie bracket, which determines the group completely in the sense of its local
geometry, near e. Precisely:

Here are the definitions:

Definition 35.15. A Lie bracket [x, y] on a vector space V is an operation on V (a
function from V × V to V ) which satisfies the axioms:
– bilinearity;
–anticommutativity: [y, x] = −[x, y];
–the Jacobi identity

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0

The intuition behind the bracket operation is that it should capture the noncom-
mutativity of the group, on the tangent space. We explain this below.
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Here are some basic examples of Lie algebras:

Example 46. (Vector product.)

Proposition 35.62. The vector product v ∧w on R3 is a Lie bracket.

To explain this, we present four equivalent definitions of v∧w (here i, j,k denote the
standard basis vectors). The fourth, in Proposition 35.65, shows the vector product
to be the commutator of a certain matrix algebra.
(1) (Via the “determinant” formula): This is the usual definition: that

v ∧w =

∣∣∣∣∣∣

i j k
v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣
= i

∣∣∣∣
v2 v3

w2 w3

∣∣∣∣− j

∣∣∣∣
v1 v3

w1 w3

∣∣∣∣+ k

∣∣∣∣
v1 v2

w1 w2

∣∣∣∣

(2) (The geometric definition):
v ∧w satisfies the following properties:

(i) z = v ∧w is perpendicular to v and to w;
(ii) The norm of z is equal to the area of the parallelogram spanned by v,w; thus

||v ∧w|| = ||v||||w|| · | sin(θ)|.
We remark that θ is the angle from v to w, where in the plane this would mean mea-
sured in the counterclockwise sense from v to w; in R3, together with an orientation,
“counterclockwise” is defined by looking down along the thumb for the right-hand
rule. Note that since the modulus is taken, this is the same for the angle −θ from w
to v and in any case is positive as a norm should be.
(iii) If z 6= 0, then (v,w, z) forms a positively oriented basis for R3.
(3) (The algebraic definition): The vector product is a bilinear operation such that
i ∧ j = k, j ∧ k = i, k ∧ i = j. (This formula is easy to remember as it follows a
circular permutation.)

To prove that (1) =⇒ (2) we note that for any vector u,

u · (v ∧w) =

∣∣∣∣∣∣

u1 u2 u3

v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣
(132)

Taking u = v in (132) it follows that v · z = 0, similarly for w, proving (i).

Recall that

∣∣∣∣∣∣

u1 u2 u3

v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣
= ± (volume of the paralellopiped spanned by u,v,w),

using the fact that detM = detM t, where the sign is + iff the map preserves orien-
tation, since the parallelogram is the image of the unit cube, and since we know the
determinant gives ± (factor of change of volume).

Now taking u = z = v∧w, since this is perpendicular to the parallelogram spanned
by v,w, this volume is (base area)(height)= (area of parallelogram)· ||z||. Then (132)
gives ||z||2 = ||z||·(area) whence the area is indeed ||z||. Lastly, ...

It is clear that both (1), (2) imply (3), but knowing (3) for the basis determines
v ∧w for all v,w, by bilinearity.
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Proof of Proposition 35.62: Now from (3) we have an exceptionally easy proof of the
Jacobi identity, since by bilinearity it is enough to check this on the basis vectors,
and for example

[i, [j,k]] + [j, [k, i]] + [k, [i, j]] = 0

since each term is 0, and similarly for the other cases. �

Example 47. (Commutator of matrices.) The (d× d) matrices over a field K are
a Lie algebra with the bracket of A,B defined to be the commutator

[A,B] = AB −BA.
As is easily checked, this satisfies the Jacobi identity. Note that the matrices A and
B commute iff [A,B] = 0.

Definition 35.16. For K = R,C these define gl(d,R), gl(d,C).

As we shall see, these are the Lie algebras of the general linear groupsGL(d,R), GL(d,C).
More generally, gl(V ) denotes the Lie algebra of the group GL(V ) of all isomorphisms
of V .

Example 48. (Space rotation group and the vector product.) SO(3,R) is
defined to be the orthogonal matrices of determinant one, that is, the rotations of
3−space. This example will show that the two Lie algebras of Examples 46, 47 above
are in fact isomorphic.

This is not so hard to see, if we are given a hint: that a vector corresponds to an
infinitesimal rotation about that axis.

Now it is easy to figure this out for the standard axes, given what we already know
about plane rotations.

Rotation about the z axis by angle 2πt is thus given by Rk
t =



a −b 0
b a 0
0 0 1


 =

exp(tK) where Kt =




0 −t 0
t 0 0
0 0 0


 .

The definitions for rotations about the y, x axes are similar.
Then we define a map Φ from R3 to SO(3,R) the vector space of all orthogonal

(3 × 3) real matrices M3(R) by sending the standard basis elements i, j,k to these
matrices i 7→ I1, j 7→ J1, k 7→ K1 and extending linearly.

Thus

Φ :



a
b
c


 7→




0 −c b
c 0 −a
−b a 0


 .

Let AR→Mn(R). Thus A(t) is a curve in Mn which can be identified with Rn2
.

Therefore we write A′(t) for the tamgent vector to this path, which is a matrix. This
leads to:

Lemma 35.63. (product rule for vector and matrix-valued curves)
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(i) Let V be a finite-dimensional inner product space, and let γ, η : R→ V be differ-
entiable curves in V . Then

(γ · η)′ = γ′ · η + γ · η′

that is, for all t,

(γ · η)′(t) = γ′(t) · η(t) + γ(t) · η′(t).
(ii) Let A(t), B(t) be differentiable curves in Mn.

Then (AB)′ = A′B + AB′. The same holds for rectangular matrices, A ∈ Mn×k,
B ∈Mk×m.

Proof. We prove (i) for V = Rn by writing the curve in coordinates, and applying
the usual product rule in one dimension multiple times.

We prove (ii) from this: the ijth entry of the matrix (AB)′ is the inner product of
the ith row of A with the jth column of B. Applying (i) to each entry (AB)′ij gives
the result. �

Proposition 35.64. Here [A,B] = AB −BA.
(i)(etABe−tA)′(0) = [A,B]
(ii)

d

dt
|t=0(

d

ds
|s=0(etAesBe−tA) = [A,B]

(iii)

lim
t→∞

1

t2
(etAetBe−tAe−tB) = [A,B]

Proof. (i) From the product rule, this holds, since

d

dt
|t=0(etABe−tA) = Ae0AB − Ae−0A = AB −BA.

(ii) Taking the limit s → 0 gives us (i). (iii) follows from this. See [Sal] Lemma
1.4. �

Remark 35.6. Note that part (iii) can be pictured as a quadrilateral of geodesic
curves which don’t quite meet, because of the noncommutativity; the bracket is the
infinitesimal version of this.

Many fascinating examples and results are surveyed in the lecture notes of John
Baez and of Dietmar Salamon. [Sal]. See p.56 ff. of Hall [Hal15].

One calculates that:

Proposition 35.65. Φ takes the vector product to the commutator of matrices,
[A,B] = AB −BA. This is, moreover, the bracket as defined in (131).

Proof. We noted above that i∧ j = k, j∧k = i,k∧ i = j, and we calculate that indeed
I1, J1, K1 satisfy these same identities: for

I1 =




0 0 0
0 0 −1
0 1 0


 , J1 =




0 0 1
0 0 0
−1 0 0


 , K1 =




0 −1 0
1 0 0
0 0 0


 ,
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then
[I1, J1] = K1, [J1, K1] = I1, [K1, I1] = J1

For the last statement see Proposition 35.64. �

Remark 35.7. In summary, the Lie algebra of the rotation group is identified with the
Lie algebra of linear vector fields on Rn with bracket operation defined by Definition
35.14; for n = 3 this is isomorphic to R3 with the vector product.

This makes some intuitive sense, since applying a force orthogonal to a spinning
object resuts in the axis moving in a direction which is orthogonal to both the spin
axis and the force vector, via the right-hand rule!

Also, this explains a connection to electromagnetism, where the vector product also
appears, as the magnetic field can be thought of as arising from the spin of a charged
object.

We mention that a rotating body in R3 intuitively always rotates about an axis. In
fact this is true in any odd dimension ≥ 3. An explanation is that the characteristic
polynomial of an orthogonal, orientation-preserving matrix in odd dimensions always
has a real root, giving a real eigendirection; this is the axis. (A fuller explanation
should involve the conservation of angular momentum...)

Now given a Lie algebra, with a chosen basis (v1, . . . ,vn), we can collect the coeffi-
cients of the possible brackets [vi,vj] in terms of this basis. These define the structure
constants of the Lie algebra (in terms of the basis). Note that by bilinearity, these
determine the all brackets [v,w], and so the Lie algebra, up to isomorphism. The
proof just given is a simple example of showing two Lie algebras are isomorphic in
this way!

Note that since the Lie algebra determines the the component containing e of the
Lie group, this means it determines the group locally.

This is because that component is either the full Lie group, or is a subgroup of
index 2 of the full group:

(TO DO...)

Theorem 35.66. The Lie algebra of the orthogonal and special orthogonal groups
O(n) = {M ∈ Mn(R) : MM t = M tM = I} and SO(n) = {M ∈ O(n) : det(M > 0}
is the vector space of skew-symmetric matrices, {A : A+At = 0I}. SO is a subrgoup of
index two of O; O has two connected components and SO is the connected component
containing the identity I.

Remark 35.8. Flanders [Fla63] pp. 36,37 has a nice elementary approach (without
the exponential map) to explaining why skew-symmetric matrices are “infinitesimal
rotations”.
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36. Minicourse on Vector Calculus

36.1. Review of vector calculus: derivatives and the Chain Rule. Note to
students: We will deal a lot with vector fields; see the online text
https://activecalculus.org/vector/
for some nice computer graphics. See also later in these notes for pictures of some
interesting vector fields.

Definition 36.1. Let V,W be Banach spaces (a vector space, possibly infinite-
dimensional, on which we have a norm defined; not much is lost by restricting to
Rn with the usual norm derived from the standard inner product). A function (or
map) F : V → W is differentiable at the point p ∈ V iff there exists a linear
transformation L : V → W such that

lim
h→0
||F (x + h)− F (x + h)− L(h)||/||h|| = 0.

We then write DFp = L and call this the derivative of F at p.

Let us relate this to the usual definition for f : R→ R. Then

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= c

We would like to write the same formula for vectors, but the problem is that
we cannot divide vectors. Or nearly: consider the following: given a linear map
L : V → V , so Lv = w, then in some sense

w

v
= L :

the ratio “should be” a linear transformation!!
However L is not well-defined by this: many linear maps will solve the equation

Lv = w. (The equation only defines L on the one-dimensional subspace generated by
v). It is only well-defined if we have this information for a generating set of vectors
v. Nevertheless, this explains the intuition behind this definition.

We can rewrite the above equation as: for each ε > 0, there exists δ > 0 such that
for |h| < δ, ∣∣∣∣

f(x+ h)− f(x)

h
− c
∣∣∣∣ < ε

or∣∣f(x+ h)− f(x)− ch
∣∣

|h| < ε

which is a special case of the general formula.
So the idea is that the derivative DF gives the “best linear approximation” at

each point.
What this means is the best first-order approximation. The best 0th-order approx-

imation at x ∈ Rn is simply the value of the map, x 7→ p = F (x). If L = DF |x,
then the best first-order approximation will be this shifted, thus the affine map
(x + v) 7→ p + Lv.
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Writing L(V,W ) for the collection of linear transformations from V to W , then
this is a Banach space with the operator norm. Since DF : V → L(V,W ), then
we see that the second derivative is a linear map D2Fx : V → L(V,W ) and thus
D2F : V → L(V, L(V,W )), and so on.

If we choose a basis for V = Rm and W = Rn, then L is represented by an
(n ×m) matrix. Then L(Rm,Rn) can be identified with the matrices Mnm ∼ Rmn,
so DF : Rm → L(Rm,Rn) can be represented as an (m ×mn) matrix. In the same
way the second, third derivatives are defined, with matrices of increasing size. (The
only exception is when m = 1 or n = 1, the gradient or the tangent vector).

Writing F (x) = (F1(x), . . . , Fm(x)) for x = (x1, . . . , xn) then the ijth-matrix entry
is the partial derivative

(DF )ij =
∂Fi
∂xj

so

DF |x =




∂F1

∂x1
. . . ∂F1

∂xn
...

...
∂Fm
∂x1

. . . ∂Fm
∂xn


 .

The simplest maps to study are f : R1 → W and V → R1. We call the first a curve
in V , usually written γ : R → V . A map F : V → R1 we call simply a function.
For the case of F : R2 → R, we visualize it is two ways, by drawing the graph (the
subset {(x, y, z) : z = F (x, y)}) or by drawing the level curves of the function. The
level curve of level c ∈ R is the following subset of the plane R2:

{(x, y) : F (x, y) = c}.
The derivative of a curve γ at time t is a (m× 1) matrix .

Dγ|t =



x′1(t)

...
x′n(t))




For the function F : Rm → R the derivative is a (1× n) matrix:

DF |x =
[
∂F
∂x1

. . . ∂F
∂xn

]
.

We call this matrix notation.
For a curve, we can define

γ′(t) = lim
h→0

γ(t+ h)− γ(t)

h
.

This is the tangent vector to γ at time t. The relationship to the derivative Dγ|t
is that Dγ|t is a column vector with exactly the same entries. We call the tangent
vector the vector notation where for n = 1, γ : R→ Rm and γ′(t) = (x′1(t), . . . , x′m(t))
and for m = 1, F : Rn → R, then ∇F = ( ∂F

∂x1
, . . . , ∂F

∂xm
) which is called the gradient

of F .
These have the same entries but in vector notation they are vectors, elements of Rn

and Rm, while for matrix notation they are (m×1) and (1×n) matrices respectively.
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We call these latter column vectors and row vectors to distinguish them from each
other and from elements of Rd.

One can think of the matrix of partials as consisting of lined-up column vectors
(tangent vectors) or row vectors (gradients) respectively.

We have described how the derivative at a point defines a matrix of partial deriva-
tives. The converse is:

Lemma 36.1. A differentiable map F : V → W is continuous. For the case F : Rn →
Rm, the map is differentiable with a continuous derivative iff the partial derivatives
exist and are continuous.

Proof. See any good vector calculus text. �

The map F is called C0 iff it is continuous, and Ck iff the kth derivative exists and
is continuous.

Proposition 36.2. (Chain Rule) A composition of differentiable maps is differen-
tiable, and the derivative is the composition of the corresponding linear maps.

That is, for F : V → W and G : W → Z then for G ◦ F : V → Z we have:

D(G ◦ F )|p = DG|f(p) ◦DFp.

Thus for the finite-dimensional case the chain rule is stated using the product of
matrices.

V

F
##

G◦F

77W

G
##
Z

V

DF |x
##

D(G◦F )|x

66W

DG|F (x)

##
Z

The first example is γ : R → R3 and F : R3 → R, where we have in matrix
notation:

D(F ◦ γ(t)) =
[
Fx Fy Fz

]
|γ(t)



x′1(t)
x′2(t)
x′3(t))




and in vector notation:

(F ◦ γ)′(t) = ∇Fγ(t) · γ′(t).
At this point we recall:

Proposition 36.3. (Leibnitz’ Rule for curves) Given two differentiable curves γ, η :
[a, b]→ Rm, then (γ · η)′ = γ′ · η + γ · η′.
Proof. We just write the curves in coordinates, and apply Leibnitz’ Rule (the Product
Rule) for functions from R to R. �
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Proposition 36.4. Let γ be a differentiable curve in Rm such that ||γ|| = c for some
constant c. Then γ ⊥ γ′.

Proof. (Proof 1) First we use Leibnitz’ Rule. We have c = ||γ||2 = γ · γ so for all t,

0 = (γ · γ)′ = γ′ · γ + γ · γ′ = 2γ · γ′

using commutativity of the inner product.
(Proof 2) We define a function F : Rm → R by F (x) = ||x||2. Then since ||γ|| is
constant, c = ||F ◦ γ|| whence by the Chain Rule,

0 = (F ◦ γ)′(t) = (∇F (γ(t)) · γ′(t)
but F (x) = F (x1, . . . , xm) = x2

1 + · · · + x2
m whence ∇F (x) = 2(x1, . . . , xm) = 2x.

Thus 0 = 2γ(t) · γ′(t) as claimed.
�

Note that given a differentiable curve γ : [a, b] → Rm then γ′ is a second curve,
whence we can define the higher derivatives γ′′ = (γ′)′ and so on, if they exist. The
most common interpretation comes from physics (which is of course why we have
chosen t for the variable in the case of a curve!)

Corollary 36.5. If γ : [a, b]→ Rm is twice differentiable then if ||γ′|| is constant, we
have γ′ ⊥ γ′′.

Proof. We just apply the Proposition to the curve γ′. �

Definition 36.2. If γ(t) represents the position of a particle at time t, then the
velocity of the particle is v(t) = γ′(t), and the acceleration is a(t) = v′(t) = γ′′(t).
The speed is the scalar quantity ||v|| (we do not have a special notation for this!).

Corollary 36.6. If γ : [a, b] → Rm is twice differentiable and represents the posi-
tion of a particle at time t, then if the speed ||γ′|| is constant, the acceleration is
perpendicular to the curve (i.e. a ⊥ v).

In other words if you are driving a car at a constant speed around a track, the only
acceleration you will feel is side-to-side.

If we reparametrize a curve to have speed 1, then the magnitude of the acceleration
vector can be used to measure how much it curves: See Definition 36.4 below.

A vector field on V is a map F : V → V . We visualize F by drawing the vector
F (x) = vx at location x.

A domain is an open subset of Rn. A vector field on a domain U is simply a such
a map defined only on the subset U . The vector field is termed Ck, for k ≥ 0, iff the
map has those properties (again, C0 means continuous, and Ck that DkF exists and
is continuous, so D : Ck+1 → Ck).

The simplest maps to study are f : R1 → W , V → R1, which we have already
encountered, and F : V → V . This last is a vector field on V . We visualize this
last by drawing the vector F (x) = vx at location x.

This is useful because to draw the graph of the function F we would need four
dimensions! Note that we can use this idea for visualizing a complex function f :
C→ C, as a real vector field on the plane R2.
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We say F is a linear vector field exactly when F : V → V is a linear map. Thus for
Rn, fixing the standard basis, the vector field is given by a matrix. See the examples
and figures in §35.5.

More generally by definition given a topological space X, a curve is a map γ : R→
X. For values in a manifold M , then given a curve γ : R→M , then the tangent vector
to the curve at time t is its derivative γ′(t) is in TMγ(t), so γ′ : R → TM . For the
case of M = Rn, then this can be taken in coordinates, as γ′(t) = (x′1(t), . . . , x′n(t)).

We make the distinction between the tangent vector γ′(t) ∈ Rn and the derivative
of γ, which takes as values a column vector with those same entries:

Dγ =



x′1(t)

...
x′n(t))




Thus Dγ : R→Mn×1. As an example of this notation we consider the Chain Rule
for a curve and a function. Given γ : R→ Rn and F : Rn → R then the Chain Rule
states in matrix form:

D(F ◦ γ(t)) = DF (γ(t))Dγ(t)

or in coordinates for example for n = 3:

D(F ◦ γ(t)) =
[
Fx Fy Fz

]
|γ(t)



x′1(t)
x′2(t)
x′3(t))




In vector form this is the dot product of the gradient vector field at the point γ(t)
and the tangent vector to the curve:

d/dt(F ◦ γ(t)) = ∇F (γ(t)) · γ′(t) = (Fxx
′ + Fyy

′ + Fzz
′)(t),

so this number is the same as the entry of the (1× 1) matrix above.

36.2. Flows, velocity vector fields, and differential equations. At this point,
before continuing with Vector Calculus per se, we want to see some illustrative ex-
amples of vector fields, and to make the connection with ODEs and with flows. The
examples here are principally linear vector fields, with two nonlinear examples at the
end.

A flow on a space X (for example, on Rm) is a collection of maps {τt : t ∈ R}
satisfying the flow property τt+s = τt ◦ τs. A flow is also called a continuous-time
dynamical system. The space X on which the flow acts is termed phase space. The
flow describes the time evolution of the system.

A flow defines a collection of curves on X: choosing an initial point p, then γp(t) =
τt(p) is called the orbit of the point p.

We define a vector field tangent to the flow:

F (p) = γ′p(t).

This is a vector ordinary differential equation (a vector ODE). This equation links
the flow to the vector field.

Say X = Rm, then this is equivalently a system of m one-dimensional ODEs.
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This Fundamental Theorem of ODEs states that one can go in the opposite direc-
tion: given a vector field (which is sufficiently smooth: e.g. it is C2) then given the
starting point p (called the initial condition) there exists a unique curve γp which is
tangent to F .

Finding this curve is called integrating the vector field, or solving the DE, and the
curve is a solution with that initial condition.

The Fundamental Theorem is also called the theorem of Existence and Uniqueness
for ODEs.

The actual theorem goes beyond this and says that there exists a unique differen-
tiable flow τt whose orbits give these solution curves.

Summarizing, we can differentiate a flow to get a vector field, and conversely can
integrate the vector field to get the flow.

A linear flow is a flow τt on a vector space such that each map τt is a linear
transformation. In Rm with the standard basis this means it is given by an (m×m)
matrix.
Rotation flow.

For a basic example, the rotation flow on the plane is defined by

Rt =

[
cos t − sin t
sin t cos t

]
.

The matrix Rt acting on column vectors gives rotation of the plane by angle t, so
Rt+s = Rt ◦Rs proving that this defines a flow. See Fig. 85.

There is a beautiful relationship between a linear vector field F given by a matix
A and this flow. The flow has the formula

τt = etA.

Here the exponential map is defined for a matrix M by the power series, extending
that from numbers to matrices:

exp(M) = I +M +M2/2 + · · ·+Mk/k! + . . .

It is not hard to show that this always converges.
The exponential map has the property that if A and B commute, AB = BA, then

eA+B = eAeB. As a consequence, e(t+s)A = etAetB so this does indeed have the flow
property.

For an example, taking A =

[
0 −1
1 0

]
we can calculate the power series:

etA =

[
cos t − sin t
sin t cos t

]
= Rt

gives the rotation flow.
Conversely, A is the infinitesimal version of this flow, since d

dt
etA = AetA exactly as

for real functions, hence at t = 0 this equals A.
This helps explain why the curl of a vector field measures the infinitesimal rotation,

since for the linear vector field given by A =

[
0 −1
1 0

]
the curl = 2.
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Figure 84. Exponential Repellor flow.

The general correspondence from matrices to their exponentials M 7→ eM takes us
from a Lie algebra to a Lie group. But that is the beginning of a much longer story!

Here we see some interesting examples of linear flow orbits defined by a matrix A, so
the vector fields are tangent to these orbits. Note that in this flow interpretation the
vector field is a velocity vector field for the flow. A completely different interpretation
takes this to be a force field. That defines the acceleration of a particle given an
inital value of the pair (position, velocity) hence defines a second-order vector DE on
(position, velocity) or equivalently (position, momentum) phase space. We see two
examples below, of the harmonic oscillator and the pendulum.
(1) Exponential Repellor, Fig. 84

Linear vector field defined by A =

[
1 0
0 1

]
. Curves are orbits of the Exponential

Repellor flow. Points move away from origin exponentially fast.
(2) Rotation flow, Fig. 85

Orbits of the rotation flow, tangent to the linear vector field defined by A =[
0 −1
1 0

]
.

(3) Hyperbolic Flow, Fig. 86
Orbits of the Hyperbolic Flow, tangent to the linear vector field defined by A =[

1 0
0 −1

]
.

(4) Exponential spiral flow, Fig. 87
Orbits of the Exponential spiral flow, tangent to the linear vector field defined by

A =

[
1 −1
1 1

]
.

(5) Node Repellor flow, Fig. 88
Orbits of the Node Repellor flow, tangent to the linear vector field defined by

A =

[
1 0
0 2

]
.
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Figure 85. Orbits of the rotation flow.

Figure 86. vector field for the hyperbolic flow.

(6) Vertical shear flow, Fig. 89

Orbits of the rotation flow, tangent to the linear vector field defined by A =

[
0 0
1 0

]
.

(7) Improper Node Repellor flow, Fig. 90
Orbits of the Improper Node Repellor flow, tangent to the linear vector field defined

by A =

[
1 0
1 1

]
.

(8) Nonlinear Rotation flow, Fig. 91
Orbits of a Nonlinear Rotation flow, tangent to a vector field in phase space which

models the pendulum.
(9) Exponential growth, Fig. 92

Orbits for a flow describing exponential growth, tangent to the linear vector field
defined fronm the equation y′ = ay.
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Figure 87. Exponential spirals.

Figure 88. NodeRepellor.

36.3. Review of vector calculus: the line integral. Given a vector field F on
Rn, the line integral of F along γ is

∫

γ

F · dγ ≡
∫ b

a

F (γ(t)) · γ′(t)dt.

A line integral gives a weight at each point of the curve which depends not only
on the location γ(t) but also on the direction, γ′(t) with respect to F (γ(t)): if these
two vectors are aligned it gets a positive weight, if opposed it is negative, and if
perpendicular it is zero. If for example F gives a force field, then the dot product
measures the amount of work needed to move in that direction. Thus an ice skater
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Figure 89. Vertical shear vector field.

Figure 90. Improper Node Repellor.

glides on the ice doing no work, because the plane of the frozen lake is perpendicular
to the direction of gravity.

The line integral can also be interpreted as is the integral of the curve with respect
to a one-form, the one-form dual to the vector field, just as the dual space F ∗ is dual
to F . We return to this below.

Given a curve γ1 : [a, b] → Rn, by a reparametrization γ2 of the curve we mean
the following: we have an invertible differentiable function h : [a, b]→ [c, d] such that
γ2 = γ1 ◦ h. Note that γ1 and γ2 have the same image, and that the tangent vectors
are multiples: γ′2(t) = γ1 ◦h′(t) = γ′1(h(t))h′(t). We call this a positive or orientation-
preserving parameter change if h′(t) > 0, negative or orientation- reversing if < 0.
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Figure 91. The rotation flow represents the time evolution (the dy-
namics) in phase space for a harmonic oscillator (a weight on a spring);
the above flow is tangent to a nonlinear vector field F and models the
pendulum. Here phase space has coordinates (x, y) which give the angu-
lar position and angular momentum of the pendulum. The linearization
at 0 of this nonlinear vector field is the derivative DF |0 which is the
matrix A of the linear vector field for the rotation flow. In the nonlinear
flow, the circles flow clockwise, just as for the rotation flow. The upper
curves flow to the right , the lower curves to the left; these correspond
to the pendulum no longer oscillating but instead going around and
around in one direction when it has high enough angular momentum.

Proposition 36.7.
(i) The line integral is unchanged for an orientation- preserving parametrization.
That is, ∫

γ1

F · dγ1 =

∫

γ2

F · dγ2.

(ii) For an orientation- reversing parametrization, we change the sign.

Proof. (i) Writing u = h(t), we have γ2(t) = γ1(h(t)) = γ1(u). Since du = h′(t)dt
then using the Chain Rule:
∫

γ2

F · dγ2 ≡
∫ t=b

t=a

F (γ2(t)) · γ′2(t)dt =

∫ t=b

t=a

F (γ1(h(t))) · (γ1 ◦ h)′(t)dt =

∫ t=b

t=a

F (γ1(h(t))) · γ′1(h(t))h′(t)dt =

∫ u=d

u=c

F (γ1(u)) · γ′1(u)du =

∫

γ1

F · dγ1.

(133)

(ii) For h′ < 0, then h(a) = d, h(b) = c. The calculation is the same, with that
change of the limits of integration:

∫

γ2

F · dγ2 ≡
∫ t=b

t=a

F (γ2(t)) · γ′2(t)dt =

∫ u=c

u=d

F (γ1(u)) · γ′1(u)du = −
∫ u=d

u=c

F (γ1(u)) · γ′1(u)du = −
∫

γ1

F · dγ1.

(134)

�



FROM ADIC TRANSFORMATIONS TO GIBBS STATES 329

Figure 92. Curves tangent to nonlinear vector field F (x, y) = (1, y)
(shown here is not the vector field but the slope field, all segments
of equal length and centered at the points of that slope). These are
solution curves to the linear differential equation in one dimension for
exponential growth or decay, y′ = ay, in this case with a = 1. The
solutions are y(t) = Keat for K ∈ R. If a < 0 it is exponential decay,
and if a = 0 is constant. The graph of a solution y(t) is the image of a
solution curve for a DE in R2, for the curves γ(t) tangent to the vector
field. These solution curves are γ(t) = (t, y(t)) so γ′(t) = (1, y′(t)) =
V (γ(t)) = (1, y(t)).

Corollary 36.8. If γ : [a, b] → Rn is a path, then writing γ̃ for the orientation-
reversed path, we have

∫
γ̃
F · dγ̃ = −

∫
γ
F · dγ.

Proof. Define h : [a, b]→ [a, b] by h(b() = a, h(a) = b, interpolated linearly. Thus,

h(t) = −t+ (a+ b).

Then γ̃(t) ≡ γ ◦ h(t). The claim follows from the Proposition.
�

There is a second notion of intergal along a curve, but where we integrate a function
rather than a vector field, so there is no dot product:

Definition 36.3. Given f : Rn → R, the line integral of second type of f along γ is
∫

γ

f(v)ds ≡
∫ b

a

f(γ(t))||γ′(t)||dt.

Taking the special case of f ≡ 1, we define the arc length of γ to be:
∫

γ

ds =

∫ b

a

||γ′(t)||dt.
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For an example we already know from first semester Calculus, consider a function
g : [a, b]→ R, we consider its graph {(x, g(x)) : a ≤ x ≤ b}. We know from Calculus
the arc length of this graph is

∫ b

a

√
1 + (g′(t))2dx.

We claim that the new formula includes this one: parametrizing the graph as a curve
in the plane γ(t) = (t, g(t)). Then γ′(t) = (1, g′(t)) so ||γ′(t)|| =

√
1 + (g′(t))2,

whence indeed
∫
γ

ds =
∫ b
a

√
1 + (g′(t))2dx as claimed.

Proposition 36.9.
(i) The line integral of second type of a function along a curve is unchanged for any
change of parametrization, independent of orientation. That is,

∫

γ1

f(v)ds =

∫

γ2

f(v)ds.

Proof. (i) Writing u = h(t), we have γ2(u) = γ2(h(t)) = γ1(t). Then since du =
h′(t)dt, and using the Chain Rule, we have:
∫

γ2

f(v) ds ≡
∫ u=d

u=c

f(γ2(u)) ||γ′2(u)|| du =

∫ u=d

u=c

f(γ2(h(t))) ||(γ′2(h(t)|| du =

∫ t=b

t=a

f(γ2(h(t))) ||γ′2(h(t))||h′(t) dt

Assuming first that h′ > 0, this equals
∫ t=b

t=a

f(γ1(t)) ||γ′2(h(t))h′(t)|| dt =

∫ t=b

t=a

f(γ1(t)) ||(γ2 ◦ h)′(t)|| dt

=

∫ t=b

t=a

f(γ1(t)) ||γ′1(t)|| dt =

∫

γ1

f(v) ds.

(135)

If instead h′ < 0, then we have as before

∫

γ2

f(v) ds ≡
∫ u=d

u=c

f(γ2(u)) ||γ′2(u)|| du =

∫ u=d

u=c

f(γ2(h(t))) ||(γ′2(h(t)|| du =

∫ t=a

t=b

f(γ2(h(t))) ||γ′2(h(t))||h′(t) dt

because, since h′ < 0, h(b) = c, h(a) = d.

Also we now have ||γ′2(h(t))||h′(t) = −||γ′2(h(t))h′(t)|| so this is

−
∫ t=a

t=b

f(γ1(t)) ||γ′2(h(t))h′(t)|| dt =

∫ t=b

t=a

f(γ1(t)) ||(γ2 ◦ h)′(t)|| dt

=

∫ t=b

t=a

f(γ1(t)) ||γ′1(t)|| dt =

∫

γ1

f(v) ds.

(136)

�
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We next see how this can be used to give a unit speed parametrization of a curve
γ : [a, b] → Rn. Set l(t) =

∫ t
a
||γ′(r)|| dr, so l(t) is the arclength of γ from time a to

time t. Note that l′(t) = ||γ′(t)||. Therefore, if ||γ′(t)|| > 0 for all t, this is invertible.
Our parameter change will be given by h(t) = l−1(t), the inverse function.

Proposition 36.10. Assume that ||γ′(t)|| > 0 for all t. Then the reparametrized
curve γ̂ = γ ◦ h has speed one.

Proof. Now 1 = (l◦h)′(t) = l′(h(t))h′(t) so ||γ̂′(t)|| = ||(γ◦h)′(t)|| = ||(γ′(h(t))h′(t)|| =
1. �

The function l maps [a, b] to [0, l(γ)]] whence the parameter-change function h maps
[0, l(γ)] to [a, b]. We keep t for the variable in [a, b] and define s = l(t), the arc length
up to time t, so now s is the variable in [0, l(γ)] and h(s) = t.

The change of parameter gives γ̂(s) = (γ ◦ h)(s) = γ(h(s) = γ(t). This indeed
parametrizes the curve γ̂ is by arc length s.

Note further that
∫

γ

f(v)ds ≡
∫ b

a

f(γ(t))||γ′(t)|| dt =

∫ l(b)

0

f(γ̂(s))||γ̂′(s)||ds ≡
∫

γ̂

f(v)ds

From s = l(t) we have ds = l′(t)dt = ||γ′(t)||dt. Now we understand rigorously what
is ds: it represents the infinitesimal arc length; this helps explain the notation for
this type of integral.

Level curves and parametrized curves.
There are two very distinct types of curves we encounter in Vector Calculus: the

curves of this section, and the level curves of a function. Next we describe a link
between the two:

Proposition 36.11. Let G : R2 → R be differentiable and suppose γ : [a, b]→ R2 is
a curve which stays in a level curve of G of level c. Then γ′(t) is perpendicular to the
gradient of G.

Proof. We have that G(γ(t)) = c for alll t. Then by the chain rule, D(G ◦ γ)(t) =
DG(γ(t)Dγ(t). The derivatives here are matrices, with DG a (1 × 2) matrix (a
row vector) and Dγ a column vector; in vector notation, these are the gradient and
tangent vector, so this reads 0 = d

dt
c = (G ◦ γ)′(t) = (∇G)(γ(t)) · γ′(t). �

Corollary 36.12. If γ is a curve with ||γ(t)|| = c, then γ′ ⊥ γ′′.

Here is a second, direct proof; see also Corollary 36.6 above:

Proposition 36.13. For a unit-speed curve γ, then always γ′ ⊥ γ′′.

Proof. 1 = γ′ · γ′ whence by Leibnitz’ Rule,

(γ′ · γ′)′ = 2(γ′ · γ′′) = 0.

�

This fact allows us to make the following
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Definition 36.4. The curvature of a twice differentiable curve γ in Rn at time t is
the following. For its unit-speed parametrization γ̂(s) we define the curvature at time
s to be κ̂(s) = ||â(s)||; for γ the curvature at time t is κ(t) = (κ̂ ◦ l)(t) = κ(t)

For example, the curve γr(t) = r(cos t/r. sin t/r) has velocity γ′r(t) = (− sin t/r, cos t/r)
which has norm one; the acceleration is γ′′r (t) = 1

r
(cos(t/r). sin(t/r)) = − 1

r2
γr(t), with

norm 1
r
. The curvature is therefore 1

r
. So if the radius of the next curve on the race

track is half as much, you will feel twice the force, since by Newton’s law, F = ma!
This is the physical (and geometric) meaning of the curvature. In differential geome-
try see p. 59 of [O’N06], For how curvature can be defined for surfaces and manifolds,
see e.g. [DC16].

We have seen how a level curve F = c can (sometimes) be filled in by a parametrized
curve γ(t).

This is for f : R2 → R. For functions on R3 the notion of level curve is replaced
by level surfaces. When these can also be parametrized; the exact conditions which
permit this are given by the Implicit Function Theorem, see §36.12 and vector calculus
texts.

36.4. Conservative vector fields.

Definition 36.5. By a region we mean a connected open set. A vector field F on
a region Ω ⊆ Rn is conservative iff there exists ϕ : Ω → R such that the gradient
∇ϕ = F . Such a function is called a potential for F .

Lemma 36.14. If Ω is connected and ϕ, ψ are two potentials for F then they differ
by a constant.

Proof.

∂ϕ

∂x
=
∂ψ

∂x
=⇒ ϕ(x, y) = ψ(x, y) + c(y);

∂ϕ

∂y
=
∂ψ

∂y
=⇒ ϕ(x, y) = ψ(x, y) + d(x).

Subtracting, c(y) = d(x) so this is locally a constant, hence by connectedness is
constant. �

Proposition 36.15. If F is conservative and γ : [a, b]→ Ω with A = γ(a), B = γ(b)
then ∫

γ

F · dγ = ϕ(A)− ϕ(B).

Proof. ∫

γ

F · dγ ≡
∫ b

a

F (γ(t)) · γ′(t)dt.

And F (γ(t)) = ∇ϕ(γ(t)) so

F (γ(t)) · γ′(t) = ∇ϕ(γ(t)) · γ′(t) = (ϕ ◦ γ)′(t)

thus∫

γ

F · dγ =

∫ b

a

(ϕ ◦ γ)′(t)dt = ϕ ◦ γ(t)|ba = (ϕ(γ(b)− ϕ(γ(a)) = ϕ(A)− ϕ(B).

�
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Remark 36.1. This says that for conservative vector fields, we can find a potential
and then evaluate a line integral in a very simple way, just as in one dimension with
the Fundamental Theorem of Calculus. Both of these are special cases of Stokes’
Theorem; see below in §???.

Next we review some equivalent conditions for F to be conservative.

Proposition 36.16. The following are equivalent, for a vector field on a pathwise
connected domain Ω ⊆ Rn:
(i) F is conservative, i.e. there exists a potential function for F , that is, ϕ : Ω→ R
such that ∇ϕ = F .
(ii) The line integral is path-independent.
(iii)For γ a piecewise C1 path which is closed i.e. γ(a) = γ(b), the line integral is 0.

Proof. (i) =⇒ (ii): From Proposition 36.15,∫

γ

F · dγ = ϕ(A)− ϕ(B);

thus this value only depends on ϕ(A) and ϕ(B), not on the path taken to get there.
Hence if there are two paths γ1, γ2 with the same initial and final points A,B, then∫
γ1
F · dγ1 =

∫
γ2
F · dγ2.

(ii) =⇒ (iii): If γ is a closed path, then γ(a) = A = γ(b) = B. Define a second
path η with the same initial and final points A = B but with η(t) = A for all t. Then
η′(t) = 0 so

∫
η
F · dη = 0, whence by (ii) also

∫
γ
F · dγ = 0.

Another proof is the following: Given a closed path γ, we choose some c ∈ [a, b]
and define C = γ(c). Write γ1 for the path γ restricted to [a, c] and γ2 for γ restricted
to [c, b]. Then by (ii) γ1 and the time-reversed path γ̃2 have the same initial and final
points, so ∫

γ1

F · dγ1 =

∫

γ̃2

F · dγ̃2.

Therefore

∫

γ

F · dγ =

∫ b

a

F (γ(t)) · γ′(t)dt =

∫ c

a

F (γ(t)) · γ′(t)dt+

∫ b

c

F (γ(t)) · γ′(t)dt =

∫

γ1

F · dγ1 +

∫

γ2

F · dγ2 =

∫

γ1

F · dγ1 −
∫

γ̃2

F · dγ̃2 = 0.

(iii) =⇒ (ii): We essentially reverse this last argument. We are given that the
integral over a closed path is 0. If there are two paths γ1, γ2 with the same initial and
final points A,B we are to show that

∫
γ1
F · dγ1 =

∫
γ2
F · dγ2.

As above, we write γ̃2 for the time-reversed path. Then γ = γ1 + γ̃2 is a closed
loop, so

0 =

∫

γ

F · dγ =

∫

γ1

F · dγ1 +

∫

γ̃2

F · dγ̃2 =

∫

γ1

F · dγ1 −
∫

γ2

F · dγ2 = 0.



334 ALBERT M. FISHER

(ii) =⇒ (i): We define a function ϕ by fixing some point A and choosing ϕ(A)
arbitrarily. Then we define the other values as follows. Letting B ∈ Ω, since the
region is path connected there exists a piecewise C1 path γ : [a, b] → Ω with A =
γ(a), B = γ(b). We set

ϕ(B) =

∫

γ

F · dγ.

By (ii), this is well-defined as it does not depend on the path.
We claim that ∇ϕ = F , showing the calculation for the case of F : R2 → R. We

compute ∂ϕ
∂x

at the point B = (B0, B1). Defining a path η by η(t) = B + te1, then:

∂ϕ

∂x
|B =

d

dt
|t=0ϕ(η(t)) = lim

h→0

1

h
(ϕ(η(h))− ϕ(B)) = lim

h→0

1

h
(ϕ(η(h))− ϕ(B) =

lim
h→0

1

h

∫

η

F · dη = lim
h→0

1

h

∫ h

0

F (η(t)) · η′(t)dt = lim
h→0

1

h

∫ h

0

F (η(t)) · (1, 0)dt =

lim
h→0

1

h

∫ h

0

F (B0, B1) + (t, 0)) · (1, 0)dt = lim
h→0

1

h

∫ h

0

P (B0 + t, 0)dt =

lim
1

h

∫ h

0

P (B0 + t, 0)dt = P (B0, B1)

This shows that ∂ϕ
∂x
|B = P (B). So ∇ϕ = F .

�

Next we explain where the term “conservative” comes from: from the conservation
of energy in mechanics!

Suppose we have an object (a point mass) and a vector field F of forces acting
on this object. This will move according to Newton’s law F = ma; here F and also
the acceleration a are vector quantities, while the mass m is a positive scalar. If the
position of the object in time is given by the curve γ(t), then we write v(t) = γ(t)
for the velocity and a(t) = v′(t) = γ′′(t) for the acceleration. So Newton’s law states

F (γ(t)) = ma(t) = mγ′′(t).

Definition 36.6. Work is defined in mechanics to be (force) · (distance). This means
that the work done by moving a particle against a force is given by that expression.
The continuous-time version of this is given by a line integral.

Precisely, we define the work done by moving a particle along a path (a curve) γ
in a force field F to be

∫
γ
F · dγ.

The kinetic energy of the particle is 1
2
m||v||2.

Proposition 36.17. The work done by moving along the path γ in a force field F
from time a to time b is the difference in kinetic energies, Ekin(b)− Ekin(a).

Proof. The work done by moving along the path γ from time a to time b is
∫

γ

F · dγ =

∫ b

a

F (γ(t)) · γ′(t)dt = m

∫ b

a

γ′′(t)) · γ′(t)dt
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Now by Leibnitz’ Rule,

γ′′(t)) · γ′(t) =
1

2
(γ′(t) · γ′(t))′ = 1

2

d

dt
||v||2(t)

so our integral is

1

2
m

∫ b

a

d

dt
||v(t)||2dt =

1

2
m||v(t)||2|ba =

1

2
m||v(b)||2− 1

2
m||v(a))||2 = Ekin(b)−Ekin(a).

�

This is valid for any force field, conservative or not.

Definition 36.7. Given a conservative vector field F , so with potential function ϕ,
we define the potential energy of F to be Epot = −ϕ.

Note that the potential energy function of physics has the opposite sign from the
potential function used in mathematics, whose gradient gives the field.

The total energy of a particle moving in a force field is the sum of the potential and
kinetic energies, Etot = Epot +Ekin. Note that the potential energy at time a depends
only on the position A = γ(a), so we write this as Epot(A), while the kinetic energy
depends on time and the path, so we write this as Ekin(a), as for the total energy
Etot(a).

Proposition 36.18. In a conservative force field F , the work done by moving along
the path γ from time a to time b is ϕ(B)− ϕ(A) = Epot(A)− Epot(B).

Proof. This is just Proposition 36.15 restated in the context of mechanics. �

Theorem 36.19. If a particle moves according to Newton’s law F = ma in a con-
servative force field, then the total energy is preserved: Etot(a) = Etot(b).

Proof. We have shown in Proposition 36.17 that the work done (in any field) is
∫

γ

F · dγ = Ekin(b)− Ekin(a).

But in a conservative field, we also have a second expression for this: the work done
is ∫

γ

F · dγ = ϕ(B)− ϕ(A) = Epot(A)− Epot(B).

Thus
Ekin(b)− Ekin(a). = Epot(A)− Epot(B)

so
Etot(a) = Ekin(a) + Epot(A) = Ekin(b) + Epot(B) = Etot(b).

�

Remark 36.2. Note that we calculated the line integral
∫ b
a
F (γ(t)) · γ′(t)dt in two

different ways, in Proposition 36.15 and Proposition 36.17. For the first we used the
existence of a potential to rewrite F (γ(t)) as ∇ϕ(γ(t)) and use the Chain Rule; for
the second we used Newton’s Law to rewrite F as ma = mγ′′ and apply Leibnitz’
Rule.
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It is interesting that this are the same two very different techniques applied to give
two different proofs of Corollary 36.12 above.

Equality of mixed partials. The next result can be proved using just derivatives,
but we like the following “Fubini’s Theorem argument”, partly because it leads in to
Green’s Theorem later on:

Lemma 36.20. If f : Rn → R is continuously differentable, then we can change the
order in taking two partial derivatives: e.g. for n = 2, then

∂

∂x

(
∂ϕ

∂y
f

)
=
∂ϕ

∂y

(
∂ϕ

∂x
f

)
.

Proof. Given two continuous functions ϕ, ϕ̃ : ⊗ → R on an open set Ω, then if for
every rectangle B ⊆ Ω we have∫ ∫

B

ϕ dx dy =

∫ ∫

B

ϕ̃ dx dy,

then we certainly can conclude that ϕ = ϕ̃ on Ω.
We define ϕ(x, y) = ∂ϕ

∂x
(∂ϕ
∂y
f(x, y)) and ϕ̃ = ∂ϕ

∂y
(∂ϕ
∂x
f(x, y)). Our strategy of proof

will be to show that for any B = [a, b]× [c, d] we have the above equality of integrals,
and the result will then follow.

Fubini’s Theorem tells us that∫ ∫

B

ϕ(x, y) dx dy =

∫ d

c

(∫ b

a

ϕ(x, y) dx

)
dy =

∫ d

c

(∫ b

a

∂

∂x

(
∂

∂y
f(x, y)

)
dx

)
dy

Now ∫ b

a

∂

∂x

(
∂f

∂y

)
(x, y)dx =

∂f

∂y
(b, y)− ∂f

∂y
(a, y)

so the iterated integral equals
∫ d

c

∂

∂y
f(b, y)dy −

∫ d

c

∂

∂y
f(a, y)dy =

(
f(b, d)− f(b, c)

)
−
(
f(a, d)− f(a, c)

)
.

Next, by Fubini’s Theorem:
∫ ∫

B

ϕ̃(x, y) dx dy =

∫ b

a

∫ d

c

ϕ̃(x, y) dy dx =

∫ b

a

(∫ d

c

∂

∂y

(
∂ϕ

∂x
f(x, y)

)
dy

)
dx

This time, ∫ d

c

∂

∂y

(
∂

∂x
f(x, y)

)
dy =

∂f

∂x
(x, d)− ∂f

∂x
(x, c)

so the iterated integral equals
∫ b

a

∂

∂x
f(x, d)dx−

∫ b

a

∂

∂x
f(x, c)dx =

(
f(b, d)− f(a, d)

)
−
(
f(b, c)− f(a, c)

)
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Which equals the previous expression, finishing the proof.
�

Definition 36.8. The curl of a vector field F = (P,Q) on R2 is curl(F ) = ( ∂
∂x
Q −

∂
∂y
P )k. The curl of a vector field F = (P,Q,R) on R3 is
∣∣∣∣∣∣

i j k
∂
∂x

∂
∂y

∂
∂z

P Q R

∣∣∣∣∣∣
=

∣∣∣∣
∂
∂y

∂
∂z

Q R

∣∣∣∣ i−
∣∣∣∣
∂
∂x

∂
∂z

P R

∣∣∣∣ j +

∣∣∣∣
∂
∂x

∂
∂y

P Q

∣∣∣∣k =
(
Ry −Qz, Pz −Rx, Qx − Py

)
.

This can also be written as a vector product, since

v ∧w = v ×w =

∣∣∣∣∣∣

i j k
v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣
,

see Example 46. So one writes

curl(F ) =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
∧ (P,Q,R),

which is often abbreviated as

curl(F ) = ∇∧ F = ∇× F.
Note that to define the curl of a vector field in R2, we have to understand that R2

is identified with the x − y plane embedded in R3, with the the curl a vector in R3

which is perpendicular to this embedded plane.

Remark 36.3. Note that these formulas represent the determinant of a matrix of sym-
bols rather than numbers, so only make sense as formulas. Nevertheless some of the
properties carry over from the usual situation of a matrix of numbers. For exam-
ple, multilinearity of the determinant or linearity of the vector product is reflected
in linearity of the curl: given two vector fields on R3, F,G then curl(αF + βG) =
α curl(F ) + β curl(G).

The formulas for R2 and R3 are connected. To understand this, take the fields

F = (P,Q) and F̂ = (P̂ , Q̂, R̂) with R̂ ≡ 0 and with P̂ (x, y, z) = P (x, y) Q̂(x, y, z) =

Q(x, y) whence Q̂z = P̂z = 0 so then curl(F̂ ) =
(
R̂y − Q̂z, P̂z − R̂x, Q̂x − P̂y

)
=(

−Q̂z, P̂z, Q̂x − P̂y
)

=
(
0, 0, Q̂x − P̂y

)
= (Q̂x − P̂y)k.

In other words, curl(F̂ ) = curl(F ) in this case.

Proposition 36.21. If a field F on R2 is conservative, then the curl is 0.

Proof. This follows immediately from the equality of mixed partials, Lemma 36.20.
�

In fact, the curl in R3 can be understood with the help of that in R2: if F̂ is
constant in some other direction v, then the curl Theis a vector in that direction,
giving the curl on the plane perpendicular to v.

This will always be the case for a linear vector field. If F̂ is not linear, then if we

take its derivative F̂ ∗ at a point p, then curl(F̂ )|p = curl(F̂ ∗)|p:
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Theorem 36.22. Let F = (P,Q,R) be a differentiable vector field on R3, with deriv-
ative DFp at the point p. Let F ∗ denote the linear vector field defined by the matrix
DFp.

Then curl(F )|p = curl(F ∗)|0.
The same holds for R2.

Proof. For the case of R2, the derivative matrix is DF =

[
Px Py
Qx Qy

]
. The curl is

calculated from the off-diagonal entries. So curl(F ) and curl(F ∗) are the same, as
they are determined by these entries.

Now the derivative of a linear map is constant, so DF ∗(x) = DF ∗(0) = DFp = F ∗

for all x.

DFp =



Px Py Pz
Qx Qy Qz

Rx Ry Rz


 |p = F ∗

�

The curl is a type of derivative, so this makes sense. A sphere in R3 rotates about
an axis; the curl measures the infinitesimal rotation of the vector field, and its vector
points along that axis, using the right-hand rule to indicate the direction of the vector.

See the online text https://activecalculus.org/vector/ for some nice illustrations.

36.5. Angle as a potential. First we consider the linear vector field V on R2 defined

by A =

[
0 −1
1 0

]
; this is tangent to the rotation flow

Rt =

[
cos t − sin t
sin t cos t

]
,

see Fig. 85.
The derivative of the linear map V : R2 → R2 at a point p is DVp = A for all p,

since the derivative of a linear map is constant, with value equal to the matrix itself.

Now writing V = (P,Q), DV =

[
Px Py
Qx Qy

]
=

[
0 −1
1 0

]
, so the curl is Qx − Py =

1 + 1 = 2. Thus by Proposition 36.21 the field V is not conservative.
For a second proof, we calculate the line integral

∫
γ
V · dγ for the curve γ(t) =

(cos t, sin t), t ∈ [0, 2π]. This is
∫ 2π

0

V (γ(t)) · γ′(t)dt =

∫ 2π

0

(− sin t, cos t) · (− sin t, cos t)dt = 2π.

But this is a closed loop, hence by (iii) of Proposition 36.16 is not conservative.
Next we modify V to a nonlinear vector field F , defined everywhere on the plane

except at 0.
Thus on U the open set R2 \ (0, 0) we define

F = (P,Q) =

( −y
x2 + y2

,
x

x2 + y2

)
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Exercise 36.1. What is ||F (v)|| for v = (x, y) in terms of r = ||v||? Calculate the
derivative, DF , and use that to verify that curl(F ) = 0.

Lemma 36.23. Verify:
(i) For θ ∈ [0,+∞) and for γ : [0, θ]→ U with γ(t) = (cos t, sin t) then

∫
γ
F · dγ = θ.

(ii) For θ ∈ (−∞, 0] then also then
∫
γ
F · dγ = θ.

We can use line integrals to measure (more precisely, to define!) the number of
times a curve in the plane “winds about” a certian point. Here is the definition for
the point 0:

Definition 36.9. Given a closed curve γ in R \ 0, the winding number or index of γ
about 0 of I(γ; 0) ≡ 1/2π

∫
γ
F · dγ.

Corollary 36.24. For γ(t) = (cos(2πnt), sin(2πnt)) with t ∈ [0, 1], n ∈ Z then the
winding number of γ about 0 is n.

Exercise 36.2. Let A = (1, 0) and B = (1, 1) and suppose γ : [a, b] → R \ 0 with
γ(a) = A, γ(b) = B. What are the possible values of

∫
γ
F · dγ? Why, precisely?

To define this for a different point x ∈ R2, we would translate F to Fx = F − x
and set I(γ; x) ≡ 1/2π

∫
γ
Fx · dγ.

Remark 36.4. This provides one way of defining the inside and outside of a curve: x
is on the outside iff I(γ; x) = 0, otherwise on the inside. (For x ∈ Im(γ) it is not
defined).

Remark 36.5. Recalling Definition 23.1, if f : C→ C is a complex analytic function,
with f = u + iv, then this defines a vector field F = (u, v) on R2. We note that in
this case the field F has a special form:

DF =

[
ux uy
vx vy

]
=

[
a −b
b a

]

since f is analytic iff it is complex differentiable, meaning that f ′(z) is a complex
number w = a + ib = reiθ, giving a dilation times a rotation. This proves the
Cauchy-Riemann equations ux = vy, uy = −vx.

Now the line integral
∫
γ
Fdγ is closely related to the contour integral of f over γ,

written
∫
γ
f . The beginnings of the theory are developed in parallel; see e.g. [MH87]

p.95 ff. In particular, the winding mumber can be defined using a contour integral.
Of course this is only a starting point for the deep and beautiful subject of Complex
Analysis.

Conclusion: Despite the fact that we have curl(F ) = 0, this field F cannot be
conservative because the integral around the closed loop γ with θ = 2π is

∫
γ
F · dγ =

2π.
We set Ω = R2 \ {(x, y) : y = 0, x ≥ 0}, the plane with the positive part of the

x-axis removed. We define the angle function Θ : Ω→ (0, 2π) to be the angle of the
point (x, y) measured in the counterclockwise direction from this halfline.

Since tan(θ) = sin(θ)/ cos(θ),
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Note that Θ can be defined as follows [Spi65], p. 73:

Θ(x, y) =





arctan(y/x) for x > 0, y > 0

π + arctan(y/x) for x < 0

2π + arctan(y/x) for x > 0, y < 0

π/2 for x = 0, y > 0

3π/2 for x = 0, y < 0

Definition 36.10. Two curves γ, η : [a, b] → Rm are homotopic iff there is a con-
tinuous function Φ : [0, t] × [a, b] → Rm such that Φ(0, t) = γ(t) and Φ(1, t) = η(t).
If you draw a picture of this you will see that it says that the first curve can be
continuously deformed into the second. A curve γ is said to be homotopic to a point
iff it is homotopic to a constant curve η(t) = p for all t. For an example, the curve
γ(t) = (cos t, sin t) in R2 is homotopic to a point; however in the domain U = R2 \{0}
it is not.

A region Ω ⊆ R2 is simply connected iff it is pathwise connected and has no “holes”,
meaning every closed curve is homotopic to a point. In the above example, U =
R2 \ {0} has a “hole” at 0.

The basic result is:

Theorem 36.25. If a region Ω is simply connected, and if curl(F ) = 0 on Ω, then
there exists a primitive ϕ for F defined on Ω.

Lemma 36.26. ???

Example 49. We analyze the important specific example of the angle function Θ. This
is a potential function for the field F , but only on the restricted, simply connected
domain R2 minus the positive real axis.

What happens at the limit as the angle goes to 2π is quite interesting, explained
geometrically by the graph of Θ.

For the angle function Θ example we carry this out directly. We choose the initial
point A = (−1, 0) and connect it to B ∈ Ω by a path γ in Ω, defining ϕ by ϕ(A) = 0,
and

ϕ(B) =

∫

γ

F · dγ.

This is well-defined since Ω is pathwise connected, so by (ii) of Proposition 36.16 it
is path-independent.

We claim that there exists c such that ϕ(x, y) + c = Θ(x, y) for all (x, y) ∈ Ω. (We
will find the value of c).

We use the following path to connect A and B = (x, y). We define γ1(t) = (−1, t)
for t ∈ [0, y] and γ2(t) = (t, y) for t ∈ [−1, x]. Note that γ′1 = (0, 1), γ′2 = (1, 0).
We define γ = γ1 + γ2. This goes vertically up from A to the point (−1, y) and then
horizontally over to B.

We have

ϕ(x, y) =

∫

γ1

F · dγ1 +

∫

γ2

F · dγ2.
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To evaluate this we need to recall some facts about inverse trigonometric functions.
We have tan(θ) = sin(θ)/ cos(θ) = y/x so arctan(y/x) = θ;

cot(θ) = cos(θ)/ sin(θ) = x/y so arccot(x/y) = θ.
The domain of definition of tan is (−π/2, π/2) and of cot is (0, π).
So

Θ(x, y) = arccot(x/y) for y > 0

takes values θ ∈ (0, π)
and

Θ(x, y) = arccot(x/y) + π for y < 0

takes values θ ∈ (π, 2π).
We shall show that

ϕ(x, y) =





arccot(x/y) for y > 0

π for y = 0, x < 0

arccot(x/y) + π for y < 0.

This will prove that ϕ = Θ.
??
Now

∫

γ1

F · dγ1 =

∫ y

0

F (−1, t) · (0, 1)dt =

∫ y

0

x

x2 + y2
◦ (−1, t)dt =

∫ y

0

−1

1 + t2
dt = arccot(y)− arccot(0) = arccot(y)− π/2.

And: ∫

γ2

F · dγ2 =

∫ x

−1

−y
x2 + y2

◦ (t, y)dt =

∫ x

−1

−y
t2 + y2

dt =

∫ u=x/y

u=−1/y

−1

u2 + 1
du = arccot(x/y)− arccot(−1/y).

Here we have used the substitution u = t/y, so du = 1/ydt, t = uy, and

−y
t2 + y2

=
−y

(uy)2 + y2
=
−1

u2 + 1
.

So

ϕ(x, y) = arccoty − arccot(−1/y) + arccot(x/y)− π/2.
We claim that

arccoty − arccot(−1/y) =

{
−π/2 for y > 0

π/2 for y < 0
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To prove this, we calculate that the following derivative is 0 so we get a constant:

d

dy

(
arccoty − arccot(−1/y)

)
=
−1

1 + y2
−− −1

1 + (−1
y

)2
· y−2 =

−1

1 + y2
+

1

y2 + 1
= 0

Now cot(π/4) = 1, arccot(1) = π/4; cot(−π/4) = −1, arccot(−1) = 3π/4
So

arccoty − arccot(−1/y) =

{
−π/4− 3π/4 = −π/2, y = 1

3π/4− π/4 = π/2, y = −1

We know that

ϕ(x, y) = arccot(x/y) +

{
−π for y > 0

0 for y < 0

ϕ(x, y) + π = arccot(x/y) +

{
0 for y > 0

π for y < 0

Θ(x, y) = arccot(x/y) +

{
0 for y > 0

π for y < 0

Hence in fact
Θ = ϕ+ π.

But this makes sense since ϕ(−1, 0) = 0 while Θ((−1, 0) = π.
To better understand the potential function Θ, draw its level curves; they are rays

from the origin, climbing up like a spiral staircase.
Note that for γ(t) = (cos t, sin t) then

∫ 2π

0

F (γ(t)) · γ′(t)dt =

∫ 2π

0

(cos t, sin t) · (− sin t, cos t)dt = 2π

and also
lim
t→2π

Θ(γ(t))−Θ(1) = lim
B→0

Θ(B)−Θ(0) = 2π − 0 = 2π

so the formula
∫
γ
F · dγ = ϕ(B)− ϕ(A) is still valid in the limit; it is also valid if we

can somehow allow for a “multi-valued function” as a potential!
See §36.11 below for a different view of this potential.

Remark 36.6. The above proof may remind the reader of the statement of Green’s
Theorem, which we get to below. Indeed, If we define a vector field F by F = ∇f ,
then F = (P,Q) where P (x, y) = ∂

∂x
f(x, y) and Q(x, y) = ∂

∂y
f(x, y). For B denote the

corners by A = (a, c), B = (b, c), C = (b, d), D = (a, d). Let γ = γA,B+γB,C+γC,DγD,A
be unit-speed affine paths around the boundary of . Thus γA,B(t) = (0, c) + t(1, 0) =

(t, c) for t ∈ [a, b] and so on. So γ′A,B = (1, 0). We have
∫
γ
F ·dγA,B =

∫ b
a
(P,Q)(γA,B) ·

(1, 0)dt =
∫ b
a
P (t, c)dt =

∫ b
a

∂
∂x
f(t, c)dt = f(t, c)|ba = f(b, c)− f(a, c).
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So∫

γ

F ·dγ =
(
f(b, c)−f(a, c)

)
+
(
f(b, d)−f(b, c)

)
+
(
f(b, d)−f(a, d)

)
+
(
f(a, c)−f(a, d)

)

which explains geometrically the above calculations: that∫

γ

F · dγ =

∫

γA,B+γB,C+γC,DγD,A

= 0

is equivalent to that ∫

γA,B+γC,D

= −
∫

γB,C+γD,A

, as we traverse the sides of B in a different order.
Thus Green’s Theorem (which is overkill!) can be used to prove the above theorem,

since curl(F ) = ∂Q
∂x
− ∂P

∂y
and hence the mixed partials are equal iff curl(F ) = 0 while

by Green’s Theorem, ∫ ∫

B

curl(F ) dxdy =

∫

γ

F · dγ

where γ is the curve of the boundary ∂B consisting of four line segments.

Remark 36.7. (On the interpretation of vectors and of vector fields)
There are various possible interpretations of vectors. The two most important are

as movement (a translation of position of a particle) and force (applied to a particle;
it is important to not confuse them as these are completely different! For a simple
example, consider the six vectors a,b, c,d, e, f in the plane defining the vertices of a
regular hexagon, so d = −a and so on. We prove that a + b + c + d + e + f = 0
in two different ways, using these interpretations. First, movement: we consider the
path 0, a, a + b, . . . , a + b + c + d + e + f ; this walks along a translated hexagon and
returns us to 0, so that is the total motion. Second, each vector represents a force
applied to a particle located at 0. Now they cancel pairwise, giving 0 as the resultant
force.

The same two interpretations arise for a vector field F . Now the movement inter-
pretation is that the field is tangent to the flow of a fluid, and a particle (perhaps an
ant on a leaf!) is being carried along the flow lines. The second interpretation is that
a particle is moving according to Newton’s law F = Ma in this force field.

Further possible interpretations are for example that F represents a magnetic field,
or an area element of a surface as the covector for a two-form. But the first two are
certainly the most common and important for our intuition.

36.6. Line integral with respect to a differential form. The expression

η = Pdx+Qdy

is called a differential one-form on R2.
Essentially it is a field of dual vectors, elements of the dual vector space V ∗ to

V = R2. Thus the one-form η is dual to the vector field F = (P,Q), and conversely,
F is dual to η. (The term duality in math refers to any situation where you can
switch back and forth like that; formally there is a action of the two element group
Z2, i.e. there is a permutation, V 7→ V ∗ 7→ V....)
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Here we recall that given a vector space V , its dual space V ∗ is defined to be the set
of all linear functionals on V , that is all λ : V → R linear. We call λ a dual vector or
a co-vector. Now given choice of an inner product on V , we can think of a co-vector
as simply a vector, as follows: defining a function λv on V by λv(w) = 〈v,w〉, we see
that indeed λv ∈ V ∗.

This becomes more subtle in higher dimensions, where V ∗ is replaced by the set of
alternating k-tensors on Rk, as we explain shortly.

But the first thing to note is that given a one-form η, we define line integral of a
curve γ over η, written as follows:

∫
γ
η =

∫
γ
Pdx + Qdy and defined to be simply

equal to the line integral with respect to F ,

∫

γ

F · dγ =

∫ b

a

F (γ(t)) · γ′(t)dt.

Thus to calculate a line integral over a one-form, the first step is to write it out as a
standard line integral with respect to the dual field F = (P,Q).

A key fact about line integrals is that the orientation of γ is important, since for
γ : [a, b] 7→ R2 with opposite curve γ̃ = −γ, then as we know,

∫
γ̃
F · dγ̃ = −

∫
γ
F · dγ.

Thus γ is an oriented curve, and not just the point set Im(γ), the image of the
curve.

This is the same as the difference between the Riemann integral
∫

[a,b]
f(x)dx and the

integral
∫ b
a
f(x)dx = F (b)−F (a) defined from a primitive F , since in the second case

A = [a, b] is treated as an oriented interval and we have
∫ a
b
f(x)dx = −

∫ b
a
f(x)dx.

The version for the double integral of a 2-form is to replace in the Riemann integral
the symbol dxdy by dx ∧ dy. Again here, for forms, the order of integration makes
a difference! For the Riemann integral this is not the case, as by Fubini’s Theo-
rem we have

∫ ∫
A
f(x, y)dxdy =

∫ ∫
A
f(x, y)dxdy, while for forms the sign changes:∫ ∫

A
f(x, y)dx ∧ dy = −

∫ ∫
A
f(x, y)dy ∧ dx.

In this respect integration in Vector Calculus (which is really a part of Differential
Geometry) is very different from Analysis. In Analysis, the integral only depends
on location, not orientation. A basic example is the Riemann integral

∫
[a,b]

f(x)dx or∫ ∫
A
f(x, y)dxdy and so on, defined for a region A ⊆ R2 with content 0 boundary. But

this also holds for the much more general and powerful Lebesgue integral, defined over
perhaps very complicated sets, or more generally with respect to a measure, which
essentially keeps track of mass, but not of orientation.

For forms the set comes with an orientation, so it must be a nice enough set that
this makes sense. Examples include an open set having a smooth boundary, such as a
rectanglular solid or a curved version of such an object. The form itself keeps track of
orientation as follows: dx∧dy = −dy∧dx, dx∧dy∧dz = dy∧dz∧dx = −dy∧dx∧dz,
and so on. That is, these expressions are alternating multilinear forms just like the
determinant function. And such a form is a field of alternating k-tensors.

A 1-tensor is the same as an element of the dual space. So as we said, a 1-form is
just a co-vector field, i.e. a field of co- or dual vectors, elements of the dual space V ∗

rather than of our vector space V .



FROM ADIC TRANSFORMATIONS TO GIBBS STATES 345

In particular, on Rn the one-form dxk is dual to the constant vector field F (x) = ek
where ek is the standard basis vector. Any one-form can be written as a linear
combination of these multiplied by functions. Thus for example on R3 we can express
a one-form η as

η = Pdx+Qdy +Rdz.

Again, we then define the line integral with respect to a one-form as equal to its line
integral over the associated vector field.

Summarizing,

Definition 36.11. Given a vector space V , a one-tensor is an element of the dual
space V ∗. A differential one-form η on a vector space V is a function taking values in
the one-tensors, so equivalently, η : V → V ∗. Choice on an inner product associates
V to V ∗, by sending v 7→ λv ∈ V ∗ with λv(w) = 〈v,w〉. This is an isomorphism,
which depends on the coice of inner product. For k-tensors and forms with k > 1 see
Definition 45.1 and Definition 45.3.

Remark 36.8. It is not quite true that oriented integration is limited to nice sets;
there is an extension to fractal-like sets or measures, called currents, in the field of
Geometric Integration Theory. See Whitney’s [Whi15], still worth looking at for some
wonderful inspiration; there is a more recent treatment in [KP08].

36.7. Green’s Theorem: Stokes’ Theorem in the Plane. For our approach we
follow the outlines of the elementary proof in Guidorizzi’s Calculus 3 text: [Gui02]. In
my opinion this is (for those who know Portuguese) a good text to teach from, as it
is well organized, with correct proofs and good worked-out examples and exercises of
a consistent level, but it’s not so easy to study from as it is too dry and also because
it lacks the beauty of a more advanced and abstract approach. The latter is given in
spades in Spivak’s beautiful [Spi65] and Guillemin and Pollack’s transcendent [GP74];
the approach in these notes is to bridge the way to this very beautiful and powerful
more abstract approach while keeping our feet firmly on the ground of simplicity,
inspired also by the perspective of the dynamics of flows.

Definition 36.12. Given a simple closed C1 curve γ in R2, so γ : [a, b] → R2 with
γ(a) = γ(b), we define a curve on the circle by
whγ(t) = γ(t)/||γ(t)||. This is just the normalized tangent vector, so to see how the
tangent vector turns, we look at how γ̂ moves along the unit circle. One can prove
(and it makes sense intuitively) that:

Lemma 36.27. γ̂ either goes around once in the clockwose direction or once in the
counterclockwise direction.

We say γ is oriented positively if it is a counterclockwise motion, otherwise we say
it is oriented negatively.

One has the famous Jordan Curve Theorem:

Theorem 36.28. (Jordan) A continuous simple closed curve γ in R2 partitions the
plane into three connected sets:
–the interior of the curve, an open set we call K;
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–the image of γ, a closed set, which is the topological boundary of K, so we call it
∂K = Im(γ), the boundary of K;
–the exterior of γ, the open set which is the complement of K ∪ ∂K.

Proposition 36.29. If γ is oriented positvely, then the interior region K is to the
left of the tangent vector γ′(t) for all t where γ′(t) exists and is nonzero.

Unfortunately, we will not prove any of these beautiful results here, as good proofs
require a more advanced perspective, bringing in ideas from algebraic or differential
topology; see [GP74], and as they are clear intuitively by sketching a few pictures.
These ideas also are needed in Complex Analysis. There is a nice treatment relating
this to line integrals in the third edition of Marsden-Hoffman: [MH98].

Theorem 36.30. (Green’s Theorem) Let γ be a simple closed positively oriented
curve in R2 with non-empty interior. Write K for the closure of the interior of γ.
Let F = (P,Q) be a C1 vector field defined on some open set U ⊇ K.

Then ∫

γ

F · dγ =

∫ ∫

K

curl(F ) · kdxdy.

equivalently, ∫

γ

Pdx+Qdy =

∫ ∫

K

(Qx − Py)dxdy.

The proof will be given in stages:

Proof. Proof for rectangle: Let K = [a, b]× [c, d]. Write A = (a, c), B = (b, c), C =
[b, d), D = (a, d). Let γ = γ1 + · · · + γ4 be unit-speed boundary curves traversing
the segments in a counterclockwise direction, γ1 from A to B and so on. Thus
γ1(t) = A+ t(1, 0) = (t, c) for t ∈ [a, b], so γ′1 = (1, 0). We have

∫

γ1

Pdx+Qdy =

∫ b

a

P (t, c)dt

and similarly for the other cases, so
∫

γ

Pdx+Qdy =

∫ b

a

P (t, c)dt+−
∫ b

a

P (t, d)dt+

∫ d

c

Q(b, t)dt−
∫ d

c

Q(a, t)dt =

∫ b

a

P (t, c)− P (t, d)dt+

∫ d

c

Q(b, t)−Q(a, t)dt.

On the other hand,
∫

K

(Qx − Py)dxdy =

∫ d

c

(∫ b

a

∂Q

∂x
dx

)
dy −

∫ b

a

(∫ d

c

∂P

∂y
dy

)
dx =

∫ d

c

Q(b, y)−Q(a, y)dy −
∫ b

a

P (x, d)− P (x, c)dx =

∫ d

c

Q(b, t)−Q(a, t)dt−
∫ b

a

P (t, d)− P (t, c)dt

which is exactly what we had before!
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Proof for right triangle: We take for K the triangle with corners A = 0,
B = (1, 0), C = (1, 0) and with boundary curve γ1 + γ2 − γ3 with γ1(t) = (t, 0),
γ2(t) = (1, t) and γ3(t) = (t, t), all for t ∈ [0, 1].. (Here −γ3 means the opposite,
i.e. orientation-reversed, curve.) Thus γ′1 = (1, 0), γ′2 = (0, 1) and −γ′3 = (1, 1).

We have for F = (P,Q),
∫

γ

F · dγ =

∫

γ

Pdx+Qdy =

∫ 1

0

P (t, 0) +Q(1, t)dt−
∫ 1

0

P (t, t) +Q(t, t)dt.

On the other hand,
∫ ∫

K

Qx − Pydxdy =

∫ y=1

y=0

(∫ x=1

x=y

∂Q

∂x
dx

)
dy −

∫ x=1

x=0

(∫ y=x

y=0

∂P

∂y
dy

)
dx =

∫ y=1

y=0

Q(x, y)|x=1
x=ydy −

∫ x=1

x=0

P (x, y)|y=x
y=0dx =

∫ y=1

y=0

Q(1, y)−Q(y, y)dy −
∫ x=1

x=0

P (x, x)− P (x, 0)dx

which equals the line integral! �
Proof for right triangle with one curvy side:
Next we consider a topological triangle with vertices at A = (a, c), B = (b, c),

C = (c, d) and with boundary curve γ1 + γ2 − γ3 with γ1(t) = (t, c) for t ∈ [a, b];
γ2(t) = (b, t) for t ∈ [c, d], and −γ3 where γ3(t) = (t, f(t)) for t ∈ [a, b].

We assume that f is invertible, with inverse g.
We have for F = (P,Q) :

∫

γ

F ·dγ =

∫

γ

Pdx+Qdy =

∫ b

a

P (t, c)dt+

∫ d

c

Q(b, t)dt−
∫ b

a

(P,Q)(γ3(t)) ·(1, f ′(t))dt

Here ∫ b

a

(P,Q)(γ3(t)) · (1, f ′(t))dt =

∫ b

a

P (t, f(t)) +Q(t, f(t))f ′(t)dt

so the total is∫ b

a

P (t, c)dt+

∫ d

c

Q(b, t)dt−
∫ b

a

P (t, f(t))−
∫ b

a

Q(t, f(t))f ′(t)dt.

On the other hand,
∫ ∫

K

Qx − Py dxdy =

∫ y=d

y=c

(∫ x=b

x=g(y)

∂Q

∂x
dx

)
dy −

∫ x=b

x=a

(∫ y=f(x)

y=c

∂P

∂y
dy

)
dx =

∫ y=d

y=c

Q(b, y)−Q(g(y), y)dy −
∫ x=b

x=a

P (x, f(x))− P (x, c)dx =

∫ x=b

x=a

P (x, c)dx+

∫ y=d

y=c

Q(b, y)dy −
∫ x=b

x=a

P (x, f(x))dx−
∫ y=d

y=c

Q(g(y), y)dy

We are almost done. Note that each expression has four terms, and the first three
of them agree, just changing the variable of integration from time t to the spatial
coordinates x and y. It remains to check the last term. This is a substitution,
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making use of the inverse function: writing s = f(t), so t = g(s), then ds = f ′(t)dt
whence indeed∫ b

a

Q(t, f(t))f ′(t)dt =

∫ s=d

s=c

Q(g(s), s)ds =

∫ y=d

y=c

Q(g(y), y)dy

completing the proof.
�

Proof for more complicated regions.
Once we have these special cases we can build up to the general statement of

Green’s Theorem as follows. First we consider other cases of an open region K with
a simple closed piecewise-C1 boundary curve γ. Using straigt lines, we cut K into
pieces of the above forms and add up the results. The key point is that the pieces
have nonintersecting interiors, and meet on their boundaries in curves with opposite
orientation. The double integrals add as this boundary has content zero so those
add; on the line integral side of the equation, the question is why do the boundary
intersections always meet in curves with opposite orientation? But this is easy to
justify: we prove this by induction on the number of pieces, reducing to two regions.
Their boundaries meet in curves with opposite orientations because each is counter-
clockwise as seen from its own interior, hence opposite as seen from the other region.

The next step is to consider two disjoint simple closed piecewise-C1 boundary curves
γ1, γ2 with regions K1, K2. If these regions are disjoint, we simply define the boundary
of the union k1 ∪K2 to be γ1 together with γ2, which we write as γ1 + γ2. The result
clearly hols for this case also. Next consider the case where γ2 is inside of K1. Then
we consider the region K = K1 \ (K2 ∪ Im(γ2). For example, if the curves are
concentric circles, then K is called an annulus: a disk with a hole removed from it.
We defined the boundary curve to be γ = γ1 − γ2. That is, the outer curve γ1 is
oriented positively, while the inner curve is oriented negatively.

Note that the resulting boundary curve γ has the property that as we traverse the
curve, the region K always occurs on the left-hand side.

It is then easy to show by subtracting the two results for γ1, γ2 that Green’s The-
orem still holds.

Note that such a region is now not simply connected.
We do similarly for a disk with k holes removed.
A more formal proof uses the notion of chains as developed in [Spi65] or [GP74].

Exercise 36.3. Consider the field

F = (P,Q) =

( −y
x2 + y2

,
x

x2 + y2

)

of Exercise 36.1, for the region with two boundary circles of radius 1 and 2. What
does Green’s Theorem say in this case?

36.8. The Divergence Theorem in the plane.

Definition 36.13. Let F = (P,Q) be a C1 vector field in R2. The divergence of F
is defined to be:

div(F ) = Px +Qy.
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We shall use the notation: given a vector v = (a, b) ∈ R2, then v∗ = (b,−a) and
ṽ∗ = (−b, a).

For the particular case of F = (P,Q) we write G for F̃ ∗ = (−Q,P ).

Theorem 36.31. Let F = (P,Q) be a C1 vector field in the plane, and let γ be
a piecewise C1, positively oriented simple closed curve, with interior region K. We
define n = γ′∗/||γ′||; this is the outward normal vector of γ.

Then ∫

γ

F · nds =

∫ ∫

K

div(F )dxdy.

The same holds more generally for a finite collection of disjoint such regions K1, . . . Kn

with boundaries γ1, . . . , γn and then writing K = ∪Kn and γ = γ1 + · · ·+ γn.

Proof. We place the two statements side-by-side, for γ the boundary curve of K, one

for the field F and the other for G = F̃ ∗:
Green’s Theorem: ∫

γ

G · dγ =

∫ ∫

K

curl(G) · k dxdy

Divergence Theorem:

∫

γ

F · n ds =

∫ ∫

K

div(F ) dA.

Note here that curl(G) · k = div(F ), so once the prove the two different types of
line integrals are equal, the theorem is proved!

For γ(t) = (x(t), y(t)), then γ′(t) = (x′(t), y′(t)), and n = γ′∗/||γ′|| = (y′,−x′)/||γ′|| =
(y′,−x′)/||(y′,−x′)||.

Recall that the line integral of second type of a function f : R2 → R over γ :
[a, b]→ R2 is defined to be

∫

γ

f(v)ds ≡
∫ b

a

f(γ(t)) ||γ′(t)||dt

where ds is the element of arclength, ds = ||γ′(t)||dt. Now for this to make sense, it
is enough for the function f to be defined on the image of γ, not necessarily on all of
R2. So when we write the formula ∫

γ

F · n ds

what we mean by this is the line integral of second type of the function f over γ,
where f is defined on the image of γ by

f(γ(t)) = F (γ(t)) · n(t).

Thus ∫

γ

F · n ds ≡
∫

γ

f(v)ds ≡
∫ b

a

f(γ(t))||γ′(t)||dt.

Now writing in components F = (P,Q), we have
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∫

γ

F · n ds =

∫ b

a

F (γ(t)) · n(t) ||γ′(t)||dt =

∫ b

a

F (γ(t))) · (y′,−x′)/||γ′(t)|| ||γ′(t)||dt =

∫ b

a

(P,Q)(γ(t)) · (y′,−x′) dt =

∫ b

a

(−Q,P )(γ(t)) · (x′, y′) dt =

∫ b

a

G(γ(t)) · γ′(t) dt =

∫

γ

G · dγ =

∫ ∫

K

curl(G) · k dxdy =

∫ ∫

K

div(F ) dxdy.

�

Remark 36.9. An explanation is that F is lined up with n, thus producing positive

divergence, iff F̃ ∗ is lined up with γ′, thus producing positive curl. The reason for

using F̃ ∗ rather than F ∗ is so the sign matches; the key point is that for v = (a, b) and
w = (c, d), then v∗ = (b,−a) and w̃∗ = (−c, d), and v·w∗ = w·ṽ∗. So α(v,w) ≡ v·w∗
defines an alternating form; indeed, it equals det(v,w)! See Proposition 45.2 ff.
regarding two-tensors.

Using this notation, the last part of the proof can be summarized as:
∫

γ

F · n ds =

∫ b

a

F (γ(t)) · γ′∗(t)dt =

∫ b

a

F̃ ∗(γ(t)) · γ′(t)dt =

∫ ∫

K

curl(F̃ ∗) · k dxdy =

∫ ∫

K

div(F ) dxdy.

See p. 79 of [War71] regarding the star operator.

Poincaré’s Lemma: Existence of the vector potential.
A key idea of Vector Calculus is to extend the Fundamental Theorem of Calculus

in a variety of ways. The first is that if for a vector field F on Rn, we have a function
φ : Rn → R such that ∇ϕ = F , then for a C1 path γ : [a, b] → Rn with endpoints
A = γ(a), B = γ(b) then

∫

γ

F · dγ =

∫ b

a

F (γ(t)) · γ′(t)dt = ϕ(B)− ϕ(A).

This is just like the case in one dimension where given f : [a, b]→ R and a function
F satisfying F ′ = f then ∫

f(x)dx = F (b)− F (a).

There is however one important difference: for f Riemann integrable there always
exists such a primitive or antiderivative F , while for higher dimensions this only works
if the field F is conservative, is which case ϕ is called a potential function.

Equivalently, in differental form notation, say for F = (P,Q) then the form η =
Pdx+Qdy has a primitive ϕ such that dϕ = η. This leads to the nice formula

∫

γ

η =

∫

γ

Pdx+Qdy =

∫

∂γ

dη =

∫

B=A

ϕ = ϕ(B)− ϕ(A).

The terminology thus that F has a potential ϕ iff η has a primitive ϕ.
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In one dimension the potential is simply called the primitive, and can be defined
from the integral by: F (x) =

∫ x
x0
f(r)dr. This is defined up to a constant, choice

of which corresponds to changing the initial point x0; thus we have made the choice
F (x0) = 0.

Exactly the same thing works for the line integrals, where we can attempt to define
a potential function in the same way. Again this is defined up to an initial poin A,

setting ϕ(A) = 0 and ϕ(B) =
∫ b
a
F (γ(t)) · γ′(t)dt. This will be defined if there exists

a path γ connecting A and B (by definition, iff the region is pathwise-connected) and
will be well-defined iff this definition is independent of the path chosen. That is one
of the equivalent characterizations of conservative field. (To prove that this definition
indeed gives a potential, we calculate the partials and show one indeed recovers the
field; this is the “hardest” step in proving the equivalence of the conditions).

This result, which extends the Fundamental Theorem of Vector Calculus, itself
extends much further, to Green’s Theorem, the Divergence Theorem, and Stokes’
Theorem in R2 and R3. All of this becomes simultaneously much more complicated
and much simpler in its most natuarl setting, to the generalized Stokes Theorem on
manifolds with boundary.

Why we say “much simpler” is shown by the statement:
∫

∂B

η =

∫

B

dη

or equivalently
〈∂B, η〉 = 〈B, dη〉.

The second notation exhibits the integral as a bilinear form, like an inner product.
However here the elements on the right-hand side are differential forms, which form
a vector space, while on the lef-hand side these are chains, parametrized manifolds
which can be added, subtracted or multiplied by integers, thus belonging to a module
(over the ring z) rather than a vector space.

This second equation says that the boundary operator ∂ on chains is dual to the
exterior derivative operator d on forms. This relationship can be summarized by
saying that these operators are adjoints. (Note that this is indeed analogous to the
definition of the transpose, or adjoint, of a linear operator!)

The first difficulty hidden by this simple notation is all in the definitions, which are
equally abstract and deep. The secondary difficult comes in bridging the abstraction
to the concrete versions of Vector Calculus in R2 and R3.

We mention two auxilliary points which come up in all these settings. The ba-
sic theorem is Stokes, which can be thought of as (and indeed can be called) the
Fundamental Theorem of Vector Calculus.

We shall need:

Definition 36.14. A differential k- form η is closed iff dη = 0.
It is exact iff there exists a (k − 1)-form α such that dα = η.

The two other results are these:

Theorem 36.32. (Poincaré Lemma) On a simply connected domain, a closed form
is exact.
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Thus the Poincaré Lemma says that for topologically nice doman (simply con-
nected), a primitive always exists; specifically, for one-forms in Rn, we know this,
since the dual vector field has a potential ϕ, and ∇ϕ = F iff dϕ = η =

∑
Pidxi.

The second related result is:

Theorem 36.33. (Hodge Decomposition) On a simply connected domain, every dif-
ferential form can be uniquely written as the sum of a closed form and an exact form.

For vector fields in Rn, we say:

Definition 36.15. A vector field F is divergence-free or incompressible iff div(F ) = 0.
It is curl-free or conservative or irrotational iff curl(F ) = 0.

The Hodge decomposition then gives:

Theorem 36.34. (Helmholtz Decomposition) On a simply connected domain, every
vector field can be uniquely written as the sum of a two vector fields, one divergence-
free and one curl-free.

Corollary 36.35. A vector field on a simply connected domain is determined by its
divergence and its curl.

Proof. By the Helmholtz Decomposition, our fieldF = Fd + Fc where Fd is curl-
free and Fc is divergence-free. Then curl(F ) = curl(Fc) + curl(Fd) = curl(Fc) and
div(F ) = div(Fc) + div(Fd) = div(Fd). Hence F = curl(F ) + div(F ).??? �

For vector fields on a simply connected domain in Rn, there are two versions of
Poincaré’s Lemma. The first says that a curl-free vector field has a potential, hence
is conservative: if curlF = 0 then there exists ϕ such that ∇ϕ = F .

The second statement is:

Theorem 36.36. If div(F ) = 0, then there exists a field A such that curl(A) = F .

For the proof we need:

Lemma 36.37. (Derivative under the Integral) Suppose for U ⊆ R2 open that f :
U → R is continuous, and that ∂f/∂y exists and is continuous. Define ϕ(y) =∫ b
a
f(x, y)dx. Then

ϕ′(y) =
d

dy

∫ b

a

f(x, y)dx =

∫ b

a

∂f

∂y
(x, y)dx.

Example 50. Before the proof, we consider some examples.

Remark 36.10. For these examples, recall that the Gaussian function e−x
2

is a well-
known example for which the antiderivative cannot be found “in closed form”. Roughly
this means as a finite formula involving other elementary functions (polynomials,
trigonometric functions, log and exp); for a precise statement, which makes use of
the notion of a differential field, see [Ros68]. (Note that one can however easily give
an infinite formula, using Taylor’s series.)
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Problem: Find ∂ϕ/∂x and ∂ϕ/∂y for

ϕ(x, y) =

∫ x

0

e−yt
2

dt.

The first is easy, as by the Fundamental Theorem of Calculus we have: ∂ϕ
∂x

= e−yx
2
.

For the second, we apply the Lemma, giving:

∂ϕ

∂y

∫ x

0

e−yt
2

dt =

∫ x

0

∂

∂y
e−yt

2

dt =

∫ x

0

−t2e−yt2dt.

Problem: For

h(t) =

∫ t2

0

e−tu
2

du,

calculate h′(t).
Well, this is indeed pretty confusing, as the variable t occurs in two different spots!

The trick is to first define a function of two variables

ϕ(x, y) =

∫ x

0

e−yu
2

du

and then compose it with a curve. Now as above ∂ϕ
∂x

= e−yx
2
, while

∂ϕ

∂y
=

∫ x

0

−u2e−yu
2

du.

Defining the curve γ(t) = (t2, t) then h(t) = ϕ(γ(t)). We then apply the Chain
Rule:

h′(t) = ∇ϕ|γ(t) · γ′(t) =
∂ϕ

∂x
|γ(t)x

′(t) +
∂ϕ

∂y
|γ(t)y

′(t) =

e−tt
4

2t+

∫ t2

0

−u2e−tu
2

du = 2te−t
5 −

∫ t2

0

u2e−tu
2

du.

Proof. (of Lemma) Our proof follows Apostol p. 448 [?].

We are given that ϕ(y) =
∫ b
a
f(x, y)dx and want to find ϕ′(y). We have:

ϕ(y + h)− ϕ(y)

h
=

1

h

(∫ b

a

f(x, y+h)dx−
∫ b

a

f(x, y)dx

)
=

1

h

(∫ b

a

f(x, y+h)−f(x, y)dx

)

Now by the Mean Value Theorem, for each fixed y there exists cy ∈ [a, b] such that

f(x, y + h)− f(x, y) =
∂f

∂y
(cy, y) · h.

So
ϕ(y + h)− ϕ(y)

h
=

1

h

(∫ b

a

∂f

∂y
(cy, y) · h dx

)
=

∫ b

a

∂f

∂y
(cy, y) dx

But by continuity of the partial derivative, ∂f
∂y

(cy, y)→ ∂f
∂y

(x, y) as h→ 0. This gives

ϕ(y + h)− ϕ(y)

h
→
∫ b

a

∂f

∂y
(x, y) dx

as claimed.
�
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Proof. (of Theorem)
We give the proof for the easier case of a star-shaped domain.
Let F = (P,Q,R), with 0 = divF = Pxx +Qyy +Rzz.
We want to find a field A = (L,M,N) such that curl(A) = F . Now

curlA = (Ny −Mz, Lz −Nx,Mx − Ly).
We consider the simpler case where L = 0. Then we have

Lz −Nx = −Nx = Q,Mx − Ly = Mx = R

Now ∂N(x, y, z)/∂x = d/dt|t=x(Q(t, y, z) so for any inital point x0, y, z) we have

N(x, y, z) =

∫ x

t=x0

Q(t, y, z)dt+ c(y, z)

where c(y, z) is constant in x. Similarly

M(x, y, z) =

∫ x

t=x0

R(t, y, z)dt+ d(y, z)

where c(y, z) is constant in x.
We look for a solution with c(y, z) = 0. We know that P = Ny−Mz so subtracting

the previous two equations gives

P = Ny −Mz = ∂/∂y

∫ x

t=x0

Q(t, y, z)dt− ∂/∂z
∫ x

t=x0

R(t, y, z)dt+ ∂/∂zd(y, z)

Now from the Lemma, taking the derivative inside the integral, this gives
∫ x

t=x0

∂/∂yQ(t, y, z)dt−
∫ x

t=x0

∂/∂zR(t, y, z)dt+ ∂/∂zd(y, z) =

∫ x

t=x0

−∂/∂yQ(t, y, z)− ∂/∂zR(t, y, z)dt+ ∂/∂zd(y, z)

Using the fact that divF = 0, we know that −Qy −Rz = Px so this is
∫ x

t=x0

−∂/∂xP (t, y, z)dt+ ∂/∂zd(y, z) = P (x, y, z)− P (x0, y, z) + ∂/∂zd(y, z)

We now have the equation

P (x, y, z) = P (x, y, z)− P (x0, y, z) + ∂/∂zd(y, z)

So we will be done if we can find a function d(y, z) satisfying

∂/∂zd(y, z) = −P (x0, y, z)

(check all signs!)
So we simply define

d(y, z) =

∫ z

t=z0

P (x0, y, r)dr

giving the first part of the solution, defined up to a constant.
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So far we have shown that for F = (P,Q,R) then the field A = (L,M,N) with
L = 0.

N(x, y, z) =

∫ x

t=x0

Q(t, y, z)dt

M(x, y, z) =

∫ x

t=x0

R(t, y, z)dt+ d(y, z)

where

d(y, z) =

∫ z

t=z0

P (x0, y, r)dr

Putting these together we have shown that given F = (P,Q,R), then for A =
(L,M,N) defined by

L = 0

N(x, y, z) =

∫ x

t=x0

Q(t, y, z)dt

M(x, y, z) =

∫ x

t=x0

R(t, y, z)dt+

∫ z

t=z0

P (x0, y, r)dr.

then we have
curl(A) = F

.
�

Remark 36.11. There is a strangeness in the above proof as we arbitrarily chose L = 0
and yet somehow found a solution.

This is explained by noting that any solution A above is defined up to addition of
a field B with curl(B) = 0. Call the particular solution above AL. Then if we carry
out the above construction assuming instead that M = 0 we get solution AM and if
we assume instead N = 0 we get solution AN . But then indeed curl(AL − AM) =
F − F = 0 and similarly curl(AL − AN) = 0, curl(AM − AN) = 0.

36.9. Stokes’ Theorem. Green’s Theorem and the Divergence Theorem both turn
out to be a special case of the fundamental result of vector calculus: Stokes’ Theorem,
where the points A,B,C,D are the boundary of the curve γ and get replaced by the
boundary of any domain.

∫

∂Ω

ω =

∫

Ω

dω

or, in a different notation,
〈∂Ω, ω〉 = 〈Ω, dω〉.

In this notation, which can be called functional notation, 〈·, ·〉 is a pairing . A pairing
is a bilinear operator, but on the right we have a vector space (of d-forms) and on the
left an additive group (of d-chains, generated by d dimensional submanifolds). Here
d = k − 1 on the left and d = k on the right. The analogous assumption to the field
being conservative is hidden here, in that we begin with a k− 1-form on the left, like
the potential, and take its derivative on the right, like its gradient.



356 ALBERT M. FISHER

Figure 93. Dual families of hyperbolas: Level curves (equipotential
curves) for the real and imaginary parts of f(z) = z2 = (x+iy)(x−iy) =
(x2 − y2) + 2(xy)i

36.10. Analytic functions and harmonic conjugates.

Definition 36.16. A function f : U ⊆ C → C is (complex) differentiable at z ∈ U ,
with derivative f ′(z), iff f ′(z) = limh→0(f(z + h) − f(z))/h exists. It is complex
analytic iff it is differentiable for every z ∈ U . See also Definition 23.1 and Remark
36.5 for equivalent conditions.

A function u : U → R is harmonic iff u is C2 and uxx + uyy = 0.
We define a linear operator ∆, also written as ∇2 and called the Laplacian, on the

vector space C2(U ,R) by ∆(u) = uxx + uyy. So u is harmonic iff ∆(u) = 0, iff u is in
the kernel of the operator.

The reason for the notation ∇2 isbeacuse it is notationally suggestive, as we can
think of it as the dot product: ∇2ϕ = (∇·∇)(ϕ) = ∇·(∇(ϕ) = (δ/δx+δ/δy)·(ϕx+ϕy).

Theorem 36.38. For a complex analytic function f : U → C, where U ⊆ C is open,
with real and imaginary parts u = <(f), v = Im(f) so f = u+ iv, then thought of as
real functions on U ⊂ R2,
(i) these satisfy the Cauchy-Riemann equations ux = vy, uy = −vx;
(ii) u, v are both harmonic functions;
(iii) their gradient vector fields are orthogonal;
(iv) their families of level curves are orthogonal.

Proof. If f : C→ C is a complex analytic function, then by definition the derivative
f ′(z) = limh→0(f(z + h) − f(z))/h is a complex number w = (a + ib) = reiθ. Now
multiplication by a complex number defines a linear transformation of C hence of R2;
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Figure 94. Level curves for the real and imaginary parts of f(z) =
z2(z − 1)2.

Figure 95. Level curves for the real and imaginary parts of f(z) = z3.

since this is a rotation followed by a dilation, this matrix has a special form. Writing
f = u+ iv, then thought of as a map F of R2, this is the vector field F = (u, v), the
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derivative of which is the matrix

DF =

[
ux uy
vx vy

]
.

Because we know this is a rotation by θ followed by a dilation by r ≥ 0, this equals
[
a −b
b a

]
= r

[
cos θ − sin θ
sin θ cos θ

]
.

This proves the Cauchy-Riemann equations ux = vy, uy = −vx.
Now ux = vy whence uxx = vxy and
uy = −vx whence uyy = −vyx, giving that

uxx + uyy = vxy − vyx = 0

by the equality of mixed partials, Lemma 36.20.
Similarly, from ux = vy we have that uyx = vyy and from uy = −vx that uxy = −vxx

whence

vxx + vyy = uxy − uyx = 0.

So both u and v are harmonic.
Recalling the notation that for F = (P,Q) then F ∗ = (Q,−P ), we have

∇u = (ux, uy) = (vy,−vx)
so

∇v = F ∗

gives an orthogonal field.
Lastly the level curves are perpendicular to the gradient fields, F and F ∗, so since

these are orthogonal so are those families of curves.
�

In fact the converse also holds:

Proposition 36.39. If u, v are C2 functions which are harmonic, such that the pair
(u, v) satisfies the Cauchy-Riemann equations, then f = u+ iv is analytic.

Proof. As above, the derivative of F : R2 → R2 with F = (u, v) is the matrix

DF =

[
ux uy
vx vy

]
.

The Cauchy-Riemann equations imply that this equals
[
a −b
b a

]

and so the map is given by multiplication by the complex number w = reiθ as above.
That the limit exists for DF implies that the limit exists for f ′(z) and equals w.

�

Definition 36.17. If if f = u+iv is analytic then u, v are called harmonic conjugates.

Proposition 36.40.



FROM ADIC TRANSFORMATIONS TO GIBBS STATES 359

(i) If U is a simply connected domain and u : U → R is harmonic, then there exists
a unique v : U → R such that (u, v) are harmonic conjugates.
(ii) The ordered pair (u, v) are harmonic conjugates iff the pair (v,−u) are (so order
matters here!)

Proof. (i): By the previous proposition it is enough to find v harmonic such that
(u, v) satisfies the Cauchy-Riemann equations, so such that vy = ux and vx = −uy.
But this is just like the problem of finding a potential for a curl zero vector field!

Thus, we consider the vector field F = (P,Q) = (−uy, ux).
Then curl(F ) · k = Qx − Py = −uxx − uyy = 0.
By Theorem 36.25, there is a potential for F ; we call this v. Thus∇(v) = (vx, vy) =

(P,Q) = (−uy, ux) so vxx + vyy = −uxy + uyx = 0 by the equality of mixed partials,
whence v is a harmonic function such that the pair (u, v) are indeed harmonic conju-
gates.

In this proof of (i) we have followed Churchill [CB14]. �

Remark 36.12. Lang [Lan99] and Marsden-Hoffman [MH87] have nice treatments of
this. Following Marsden and Hoffman, note that since if = v− iu is analytic, then v
and −u are harmonic conjugates (but that the order is important!) A second, purely
complex analytic, proof of (i) is given by Marsden [MH87]. See also Ahlfors [Ahl66].

Fig. 93 shows the harmonic conjugates for the function f(z) = z2.

Corollary 36.41. Given a harmonic function u : U → R, where U is a simply
connected domain in R2, then there exists a unique v : U → R, which is harmonic
such that (u, v) satisfy the Cauchy-Riemann equations. Also there exists a unique
analytic f on U thought of as a subset of C such that u = <(f). Moreover f = u+ iv.

Writing f̃ for the second analytic function defined from the harmonic function v, then

f̃ = v − iu has harmonic conjugate pair (v,−u). Furthermore f̃(z) = −if(z).

Harmonic functions are characterized by the important mean value property: for a
proof see e.g. [MH87].

Theorem 36.42. A C2 function u is harmonic iff the value at a point p is equal to
the average of the values on any circle about p.

Definition 36.18. A flow τt on Rn is a gradient flow iff there is a function ϕ : Rn → R
such that for the field F = ∇ϕ, then the flow orbits are tangent to the gradient vector
field. That is, the orbits γ(t) = τt(x) for some initial point x satisfy the differential
equation

γ′(t) = F (γ(t))

.

We conclude:

Theorem 36.43. Let u be a harmonic function on U ⊆ R2. Let v be its harmonic

conjugate. Write F = (u, v) and F̃ = (−v, u), so F = ∇u and F̃ = ∇v. Then the

gradient flow of u is the flow of F , and the gradient flow of v is the flow of F̃ . The

flow lines of F are the level curves of v and the flow lines of F̃ are the level curves

of u. The orbits of F and F̃ are mutually orthogonal.
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Figure 96. Equipotential curves and lines of force for the electrostatic
field of a single charge in the plane. The equipotentials are level curves
for the potential function ϕ and change color as the angle increases from
0 to π and again from π to 2π. This depends on the formula chosen for
ϕ and the “color map” chosen for the graphics. In complex terms, the
complex log function is f(z) = log(z) and for z = reiθ with θ ∈ [0, 2π)
then f(z) = log(reiθ) = log(r) + log(eiθ) = log(r) + iθ = u + iv with
harmonic conjugates u(x, y) = log(r) and v(x, y) = θ. We see the level
curves in the Figure; they form a spiral staircase.

Example 51. Consider f(z) = z2 = u+ iv. The gradient fields are F (v) = Av for

A =

[
1 0
0 −1

]

and

A =

[
0 1
1 0

]

for the potentials u and v respectively.

36.11. Electrostatic and gravitational fields in the plane and in R3. The same
geometry (with dual, orthogonal families of level curves) happens for electrostatic
fields: one family is the equipotentials (curves or surfaces, depending on the dimension)
while the other depicts the lines of force: flow lines tangent to the force vector field.
See the Figures.
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Figure 97. Equipotential curves and lines of force for the electrostatic
field of two opposite charges in the plane. Colors indicate different
levels of the potential and dual potential, where these are the harmonic
conjugates coming from the associated complex function g(z) = f(z)−
f(z − 1) = log(z)− log(z − 1). These harmonic functions are u(x, y)−
u(x− 1, y) and v(x, y)− v(x− 1, y).

When the opposite charges of Fig. 97 get closer and closer, the behavior approx-
imates that of an Electrostatic Dipole; see Figs. 98, 102. The charges would cancel
out, if we place one on top of the other, but if we take a limit of the fields as the
distance d goes to 0 as charges c are balanced with this so that the product dc remains
constant, then the limit of the fields (and potentials) exists. Note there is a limiting
vector from plus to minus, along the x-axis. The picture is for the case of charges in
the plane.

We note here that the pictures are unchanged by this sort of normalization, since:

Lemma 36.44.
(i) If F is a conservative field on Rn with potential function ϕ, then the collection of
equipotential curves (or dimension (n− 1) submanifolds) is the same as for the field
aF , a 6= 0.
(ii) If γ is a line of force for F , then γ is orthogonal to each equipotential submanifold.

Proof. (i) We have: ∇ϕ = F iff ∇aϕ = aF , and the level curve of level c corresponds
to that of level ac.
(ii) line of force for F is a curve γ with the property that F(γ(t) = γ′(t), i.e. γ is
tangent to the field everywhere (is an orbit of the flow for the ODE). Then ϕ(γ(t) = c
so ϕ(γ(t))′ = 0 but by the Chain Rule this is ϕ(γ(t))′ = ∇ϕ(γ(t)) · γ′(t) = F (γ(t)) ·
γ′(t).

�
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Figure 98. Equipotential curves and lines of force for the electrostatic
field of two unlike charges, now closer together.

That the pictures converge (of both the equipotentials and field lines) looks clear
from the figures, but to have the fields and potentials converge we need this normal-
ization.

The potential function shown is

u(u, y) =
1

d
log

(x+ d)2 + y2

(x− d)2 + y2

for d = 1, .5, .05.
Dipoles (both electric and magnetic) are useful in applications to electrical engi-

neering and are itnriguing mathematically.
We mention that the geometry of fields in two-dimensional space has practical rel-

evance: for example, the magnetic field generated by electric current passing throung
a wire (in the form of a line) decreases like 1/r, as we can think of the field as be-
ing in the plane perpendicular to the wire. For fascinating related material see the
Wikipedia article on Ampere’s circuital law.

Experiments show that the force between two charged particles with charges q1, q2 ∈
R with position difference given by a vector v ∈ R3 is

q1q2

r2
· v

||v|| , r = ||v||

(so it is positive hence repulsive if the charges have the same sign).
An intuitive explanation for the factor of 1/r2 is this: suppose we have a light bulb

at the origin and we want to calculate the light density at distance r; the light consists
of photons, and the number emitted per second is the same as the number that pass
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Figure 99. Equipotential curves for the electrostatic field of a planar
dipole: two unlike charges close together.

through a sphere of radius r, which is proportional to the area 4πr2. Another way
to say this that we are counting the number of field lines per unit area. Both the
electrostatic field of a single charge and gravity (which is more simple as the is no
negative gravity) are mediated by radiating particles and so should decrease in the
same way.

We claim that the attractive potential ϕ of a single charge in R3 is

ϕ = 1/r = (x2 + y2 + z2)−1/2

Since the force field is then F = ∇ϕ we have F = (P,Q,R) where

P =
−x

(x2 + y2 + z2)3/2

and similarly for Q,R. The field strength at (x, y, z) is then

F (x, y, z) = ||(x, y, z)||/||(x, y, z)||3 = 1/r2

as we wanted.
We are thinking of a single large charge being tested by a small charge; we are not

yet calculating the resulting field of two equal charges (or the gravitational field of
two equal mass objects).

In two dimensions, the math is very different, as the field strength now should be
proportional to 1/r as it is inversely proportional to the circumference of a circle,
2πr.
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Figure 100. Equipotential curves and lines of force for the electro-
static field of a planar dipole: two unlike charges very close together.
The potential is 1/d log(((x− d)2 + (x+ d)2) for d = 0.5.

Thus in R2, for a single unit charge particle at the origin, we claim that the potential
is

ϕ(x, y) =
1

2
log(x2 + y2)

for then the force field is

F = (P,Q) = ∇ϕ =

(
x

x2 + y2
,

y

x2 + y2

)

which has norm

||F || = ||(x, y)||/||(x, y)||2 = 1/r,

as we wished.
The dual field is

F ∗ = (−Q,P ) =

( −y
x2 + y2

,
x

x2 + y2

)

which as we have seen in §36.5 has potential Θ, given by ψ(x, y) = arctan(y/x) or
ψ(x, y) = arccot(x/y) depending on the location (since R2\0 is not simply connected).

The corresponding analytic function is

f(z) = log(z)
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Figure 101. Equipotential curves and lines of force for the electro-
static field of an approximate planar dipole: two unlike charges close
together.

and for z = reiθ with θ ∈ [0, 2π) then f(z) = log(reiθ) = log(r) + log(eiθ) = log(r) +
iθ = u + iv giving the harmonic conjugates u(x, y) = log(r) and v(x, y) = θ, whose
level curves we see in Fig. 96.

This is the case of a single charge. In fact, when combining objects all we have to
do is add the two potentials, ϕ = ϕ1 + ϕ2, and then the gradient will give the field.
See Figs. 97, 103 for the cases of two oppositely, and equally, charged particles.

That we sum the potentials means in two dimensions that we sum the associated
complex functions as well; for opposite charges we change one of the signs.

In this figure, we have depicted two sets of curves: the level curves of the field ϕ
(the equipotentials), and the flow lines of the gradient field F = ∇ϕ (the lines of
force).

We can formulate this as a theorem; compare to Theorem 36.38 regarding analytic
functions:

Theorem 36.45. For an electrostatic field F = (P,Q) on the plane, then P and Q
are harmonic conjugates, whence
(i)their gradient vector fields are orthogonal;
(ii) their families of level curves are orthogonal.

Further, the potential P and dual potential Q are (perhaps integral) linear combi-
nations of the log and argument (angle) functions on R2. The corresponding analytic
functions are (integral) linear combinations of the complex log function.
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Figure 102. Equipotential curves and lines of force for the electro-
static field of an approximate planar dipole: two unlike charges close
together.

Figure 103. Equipotential curves and lines of force for the electro-
static field of two like charges in the plane. Since for one charge at 0
the associated complex function is f(z) = log(z) = u + iv, here it is
g(z) = f(z) + f(z − 1) = log(z) + log(z − 1). The equipotentials and
field lines are respectively the level curves for the harmonic conjugates
u(x, y) + u(x− 1, y) and v(x, y) + v(x− 1, y).
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Figure 104. Equipotential curves and lines of force for the electro-
static (force) field of two like charges in the plane. Close to the center,
(1/2, 0), the potential and its dual start to approximate the dual hy-
perbolas of Fig. 93.

Proof. For a finite combination of point charges at points pi ∈ R2 with charges qi ∈ R,
the associated analytic function on C is f(z) =

∑
qi log(z − zi) where p = (x, y)

corresponds to z = x+ iy.
For a charge density given by a Riemann integrable real-valued function q, the

associated analytic function is the vector-valued integral version of this (see §37.11):

f(z) =

∫

R2

q(w) log(z − w)dxdy.

(The more general measure version of this also holds).
�

At first we may think that a potential such as the hyperbola shown in Fig. 93,
cannot come from an electrostatic field. However as Feynman Vol II §7.3 [FLS64]
points out, it can (in the limit): the field in the exact middle of two opposite charges
of Fig. 97 looks just like this. See Figs. 104, 105.

Theorem 36.46. For gravitational fields in R2, we have the same statement as The-
orem 36.45 except that now only positive values of the density function q can occur.

In fact, according to Feynman, any harmonic function and hence any complex
analytic function can occur for a physical electrostatic field in R2. One can prove this
as follows.
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Figure 105. Equipotential curves and lines of force for the electro-
static field of two like charges in the plane. Close to the center, (1/2, 0),
the potential and its dual start to approximate the dual hyperbolas of
Fig. 93.

From the mathematical point of view, there are two equivalent ways to characterize
an electrostatic field (in R2 or in R3). The first is that the potential of the field is a
solution of Poisson’s equation,

∇2(ϕ) = ρ

where ρ is a signed measure describing the distribution of charge. From this point
of view one can then go about solving this linear partial differential equation. The
second is to describe the fundamental solution , which is the single point charge, with
its associated (gradient) field, and then define an electric field to be a (vector-valued
integral) linear combination of such fundamental solutions, integrated with respect
to the charge density.

From the first point of view what is fundamental is the PDE, from the second what
is most basic is the fundamental solution (this is Coulomb’s law!). What bridges the
two is the superposition principle, which simply says the space of solutions is a vector
space: we can take linear combinations.

In other words, for this linear equation knowing the fundamental solution charac-
terizes the infinite-dimensional vector space of all solutions. And conversely, one of
the methods for solving the PDE is to find its fundamental solution.

(For gravity the solution space is not all of the vector space but rather the positive
cone inside of it).
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Now ∇(ϕ) = F is the field, so Poisson’s equation states that

∇2(ϕ) = div(F ) = ρ.

Thus from the field or the potential we can determine the charge distribution. Ap-
plying the operator ∇ is a type of derivative; the opposite procedure is a type of
integration. Thus given the charge density ρ we find the field by solving the (partial)
differential equation divF = ρ, and given the field we find the potential by solving
the PDE

∇ϕ = F.

Combining these, given ρ we can find ϕ by solving the PDE

∇2ϕ = ρ,

which is now a second order PDE as it involves second order partials.
The general operation of solving a DE is referred to as integration. As always,

differention is automatic, while integration can be hard! Mathematically speaking,
the first task is to prove that under certain circumstances a solution exists, and
conversely trying to identify any obstructions to having a solution. Such obstructions
are often especially interesting because they are topological; e.g. the equation ∇ϕ =
only has a solution on a simply connected U ⊆ R2 \ {0}.

If there is no charge in a region U , then from Poisson’s equation

∇2(ϕ) = ρ = 0

and the potential function ϕ is harmonic. Thus for Figs. 97, 97, the potential is
0 everywhere except exacly at those two points. At those points themselves the
potential is infinite and the field is not only infinite but points in all directions, so
neither is defined. When we have a continuous charge density, however, these are
defined everywhere. In that case, by Poisson’s equation the potential is not harmonic
as ∇2(ϕ) = ρ 6= 0. When the charge density is continuous but nonzero, the field
and potential make perfect sense mathematically being continuous functions, but the
potential is no longer a harmonic function, so it certainly cannot (in
R2) have a harmonic conjugate and does not extend to a complex analytic function.
Hence the tools of Complex Analysis are not as applicable. Nevertheless, there is still
a dual potential, whose level sets are orthogonal to those of ϕ, similar to the harmonic
case.

To prove this, (I believe and would like to work this out!) we can again refer to
the fundamental solution; since it hold there it must extend to all densities ρ.

But what “is” a point charge? From the mathematical point of view it is a point
mass, simply a measure concentrated at a point. In physics this is called a Dirac
delta function, which is the viewpoint of Riemann-Stieltjes integration. From the
standpoint of Lebesgue integration, it is a measure and not a function at all.

Then we know how to rigorously treat two cases: point masses and continuous
densities. Similarly, one can include densities given by any other Borel measures.

I say “density” rather than “distribution” here because that word will immediately
get used in a very different way! That is the yet more sophisticated viewpoint of
Laurent Schwartz’ theory of distributions, see e.g. [Rud73]. Roughly speaking a
Schwartz distribution is a continuous linear functional defined on a carefully chosen



370 ALBERT M. FISHER

space of test functions which are smooth and rapidly decreasing. This enables one to
define derivatives, by duality. Thus the advantage of Schwartz distributions is that
they can be differentiated and also can be convolved. Thus if one finds a fundamental
solution to be a Schwartz distribution, the general solution is found by convolving
this over the density. This is exactly what we have described above.

For the simplest case of the fields described above we can get away with point
masses, but for more sophisticated examples we really do need Schwartz distributions.
This is the case when we consider dipoles, but that is beyond the present scope.

For a clear overview of the physics, see the beginning of Jackson’s text [Jac99];
this however goes quickly into much (much) deeper material, including boundary
values, dipoles, Green’s functions, and magnetism, dynamics and the connections
with Special Relativity.

For a remarkable mathematical treatment see Arnold’s book on PDEs: [Arn04].
Now to sketch a proof of Feynman’s claim, given a harmonic function, we define a

field to be the gradient of this potential. Given a field, we find such a potential. ...

36.12. Parametrized surfaces.

Definition 36.19. A parametrized surface in Rm is a C1 map σ : U → Rm where
U ⊆ R2. We write S = Im(σ) for the image. This is the associated unparametrized
surface, and is just a set of points.

Writing the coordinates as σ(u, v) = (x, y, z) then we have the three coordinate
functons x, y, z : U → Rm. A key to understanding the surface is via its derivative;
Recall that for F : Rn → Rm the (m×n) matrix of partial derivatives can be thought
of, alternatively, as m gradients (the rows) or n tangent vectors (the columns). Ex-
plicitly, for F = (F1, . . . , Fm) then the first row is ∇F1, while for p = (x, x2, x3, . . . xn)
then defining a curve by Fp(x) = F (x, x2, x3, . . . xn) the first column is the tangent
vector

F ′p(x) =
[
∂F
∂x

]
p

and so on.
So at a point p = (u0, v0) the derivative Dσ is




∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∂z
∂u

∂z
∂v




p

=
[
∂σ
∂u

∂σ
∂v

]
p

=




∇x
∇y
∇z




p

.

These columns ∂σ
∂u
, ∂σ
∂v

will be important in three ways:
–they allow us to write the equation of the tangent plane as a paramterized plane;
–they allow us to write the equation of the tangent plane in general form;
–they allow us to calculate the surface area.

We define manifolds of dimension d in two main ways: implicitly i.e. as the set
of solutions of some vector equation or parametrically, as described explicitly by the
image of a function, from the space of parameters to the ambient space (i.e. the larger
space in which our manifold is embedded).

In fact this dichotomy is motivated (as always!) by linear algebra. Recall that:
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Proposition 36.47. Let V,W be vector spaces and let L : V → W be a linear
transformation. Then ker(L) = {v : L(v) = 0} and Im(L) = {l(v) : v ∈ V } are
subspaces. If L has maximal rank, then

implicitly as the set of points where a function assumes a certain value. Examples
are the circle {x2 + y2 = 1} ⊆ R2 or sphere {x2 + y2 + z2 = 1} ⊆ R3; the first
is a level curve of the function F (x, y) = x2 + y2 and the second a level surface of
G(x, y, z) = x2 + y2 + z2. In general, for F : Rd+11 → R, then the inverse image of a
point has dimension d. When this will indeed give a smooth manifold is guaranteed
by the Implicit Function Theorem, which is more general, allowing for the inverse
image of submanifolds. See e.g. [HH15] §2.10 or [War71] for good treatments of this
key result.
as a graph of a function;
as a parametrized manifold. For this
Finding a primitive.

36.13. Least action. Epot = −ϕ.
work done (in any field) is∫

γ

F · dγ = Ekin(b)− Ekin(a).

in a conservative field, we also have a second expression for this: the work done is∫

γ

F · dγ = ϕ(B)− ϕ(A) = Epot(A)− Epot(B).

Grad Div curl. (1)Div 0: flow preserves volume; Pf in linear case (trace
A) and flow (det 1); flux 0 for closed loop (Stokes Thm -Div Thm) d of
what??).

(2) curl 0 iff locally Conservative iff circulation 0 iff flow is gradient flow;
d of potential
Conservative implies circulation and curl zero; converse holds locally

exs of curl 0 rotations
potential for rotation
TO DO: curl, div independent; both equal for DF; pure gradient flow vs rotation

flow; most are mixture; sum in LA= composition of flows; curl corresponds to what
in LA for higher dim??? div= trace always...

harmonic conjgs;dual grad-rot flow.
The Div Curl of F on R2 comme from DF |p matrix; hence same as for linearisation

at that point.
Linear flow pres vol iff Div= trace=0.
Linear flow: F is conserv iff curl =0 iff gradient flow iff perp to level curve flow of

exact ODE ; linear + exists potential....can we find it? gradient flow means what???
Finding a potential

Next we see (by working out some examples) how to find the potential of a conser-
vative vector field.
Divergence zero implies zero implies flux volume-preserving flow; linear
case, refernce to general; converse holds locally
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We know that given F : Rn → R, the gradient vector field is orthogonal to the
level hypersurfaces (submanifolds of dimension n − 1) of F , so level surfaces in R3

and level curves in R2.
We know that a vector field is conservative iff it is the gradient of a function. There

are two ways that this can fail to be the case: locally or globally.
We want to first examine the local problem: when is a vector field locally conser-

vative?
Switching equivalently to the language of differential forms, the vector field V is

conservative iff the associated 1−form η is exact. We know that a necessary condition
for this to occur is that the form be closed, i.e. that d(η) = 0. In R2 or R3 this is the
same as curl = 0.

Poincaré’s Lemma tells us that locally, the converse holds: any closed form is
exact. A basic counterexample for the global exactness is the angle function on the
plane: there is a local potential (the infinite spiral staircase) but this is a multivalued
function, so not a potential in the usual sense.

Here is a method to try to find a potential for any vector field in the plane. Given a
nowhere-0 vector field V , we want to find a potential ϕ, that is a function ϕ : R2 → R
such that ∇ϕ = V . In this case, its level curves are orthogonal to V . So, let us
consider the orthogonal vector field W to V , say at angle +π/2. Then, using the
Fundamental Theorem of ODEs, draw the integral curves. These are unique hence
do not intersect. Globally, they might say be spirals, we can define a function ϕ with
different values on each. Thus, ϕ is a candidate for a potential.

We can see an example in theillustrations of the electrostatic potentials Fig. 103,
97.

There are two families of curves: the equipotentials and the lines of force.
The lines of force are tangent to the gradient vector field. For opposite charges,

we can picture the gradient flow as flowing from the positive to the negative charge.
In fact, we can interpret this as a gravitational field, with a mountain at the positive
and a valley at the negative charge. For like charges, we can picture two mountains.

It is important to remember that there are two quite different interpretations, as
force fields or as velocity fields. The gradient flow refers to the velocity field, and a
particle moves along the curve with that tangent vector. For the force field interpre-
tation, the particle accelerates and may go off the curve because of the acceleration
due to the curvature.

In any case, we can try to imagine switching roles, so the equipotential curves
become the orbits of a gradient flow and vice-versa.

If this works, we will have succeeded in constructing a potential for our vector field.
But what can go wrong with this intuitive idea?
–integrating factor (always exists in plane)
—examples
–doesn’t always exist in Rn: Frobenius theorem

37. Minicourse on Ordinary Differential Equations: From flows to
vector fields and back again.

TO DO: [Tay96] Taylor PDE Vol I
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In this section we present an introduction to the classical theory of differential
equations encountered in undergraduate math courses, in one and higher dimensions,
based on the linear algebra just covered, especially the look at the exponential map
and linear flows.

Though we focus here on Rn, all this holds for differential equations on a smooth
manifold M , where the vector field V defining the equation is a function from M
to the tangent bundle TM . Equivalently, V is a section of the tangent bundle; the
passage to manifolds is made in the usual way, via charts.

Given a smooth flow τt on a manifold M , our intuition is that the time derivative
at t = 0 is a vector field V . The converse operation (given a vector field, can we find
such a flow?) is called “solving an ODE”. The flow orbit τt(v) of a point v is exactly
the solution curve of the differential equation. But is this naive intuition correct?

In essence, yes! as we shall explain.
Now the orbit of a flow defines a curve by

τt(v) = γ(t).

Taking the time derivative gives the tangent vector γ′(t). Evaluating at time 0 defines
a vector field, by

V (p) = γ′(0).

Conversely, from the vector field we derive the vector differential equation

γ(t) = V (γ(t)); γ(0) = v.

We say this is a (vector) differential equation with initial condition γ(0) = v. A
solution of the DE is such a curve γv(t). The Fundamental Theorem of ODEs states
that such a solution exists and is unique.

Vectors can have a variety of interpretations. The two most important are that v
represents displacement i.e. movement, and that it represents force. A third important
interpretation comes from magnetism, where the vector product is involved. All three
of these are very different and must not be confused!

These interpretations pass over to vector fields. In the first case, V is interpreted
as a velocity vector field, in the second as a force field like for gravity or electric charge
(electrostatics). The third could be a magnetic field.

The point we wish to make is that in all cases, perhaps by augmenting the dimen-
sion, we can take the interpretation of a velocity field.

This is what the above equation

γ(t) = V (γ(t))

says: the vector field specifies what the velocity: the tangent vector v(t) = γ′(t), must
be at a point γ(t).

For a force field we mean the following. The DE is now a second-order ODE as
it involves the second derivative: F (γ(t)) = mγ′′(t. This expresses Newton’s Law
F = ma, where γ(t) is the position, γ′(t) = v(t) the velocity and a(t) = γ′′(t) the
acceleration, and m ≥ 0 is the mass of the object. of the object. Here we need two
initial conditions, γ(0) and γ′(0) = v(0), and out Fundamental Theorem guarantees
that we will again have a unique solution.
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The first key point to mention is that a vector differential equation on Rd is equiv-
alent to a system of d one-dimensional equations. This is just like a system of linear
equations in Linear Algebra being equivalent to a single matrix equation. In partic-
ular, for a linear vector field, that is, one given by a matrix, this is what is called a
system of linear first-order homogenous equations. A second point is that a higher-
order differential equation can be rewritten as a system of first-order equations. A
third point is how we can treat in a similar way a nonstationary vector field. This
is a parametrized family (V t)R of vector fields on Rd which is continuously varying
in time. This leads to the notion of a nonstationary flow, see below, and in terms of
differential equations, a nonstationary. nonautonomous or time-varying ODE. In fact,
the nonstationary case can be treated as stationary in one more dimension, adding
the variable t, thus giving a vector field (and actual flow) on R× E. See below.

Thus all ODEs can be treated as stationary first-order DEs and so as velocity vector
fields.

Now as described above, we can move seamlessly from a flow to a vector field and
back again. The “back again” is known as solving’ or integrating the differential
equation; the solutions are put together to get the flow.

These are therefore another case of the complementary operations from Calculus
of differentiation and integration. Indeed γv is known as an integral curve of the
differential equation, and the flow is given by integration of the vector field.

Thus, the main theoretical theorem one needs is the existence and uniqueness
of solutions for a vector DE of first order. A solution is the curve given an initial
condition, and from a wider viewpoint, the flow which has those orbits. The method of
proof involves iterating a linear operator on the space of paths (the Picard operator);
choosing an initial value, this gives an eventual contraction, and the solution is the
unique fixed point. Using this operator one can prove part of the above statement:
these are the orbits of a continuous flow.

To nail down our original intuition, it remains to verify that the flow is not only
continuous and differentiable, but that it is smooth in the space as well as time
directions, and that the derivative natrix is the space derivative of the vector field.

There are three derivatives here: first, the time derivative along an orbit (the
tangent vector) should be the vector field; this is just the above statement of the
differential equation. Next, the time derivative of the flow should be a matrix; the
spatial derivative of the vector field should be a matrix, called the linearization of the
vector field. An intriguing question then is what is the relationship between these
last two. A careful examination of this takes one into quite different areas: dynamical
systems, differential geometry as well as classical ODE.

37.1. Differential equations in one dimension. See also Definition 37.2 below:

Definition 37.1. For n ≥ 0, given a continuous function of (n + 1) variables, F :
Rn+1 → R, so F = F (x0, . . . , xn) ∈ R, then an autonomous or stationary differential
equation in one dimension is an equation of the form

(∗) F (y, y′, · · · , y(n)) = 0
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where F is applied to a function y : R→ R that we are trying to find together with
its derivatives y(n). (Since n+ 1 ≥ 1, at least one derivative is involved.)

To introduce the time-varying case, we begin with a parameterized family (Ft)t∈R
of such functions, as that will correspond exactly to a parameterized family (V t)R of
vector fields.

Now given a continuous family (Ft)t∈R, setting F̃ : Rn+2 → R where F̃ (t, x0, . . . , xn) =
Ft(x0, . . . , xn) then these are equivalent:

Ft(x0, . . . , xn) = 0

for all t and

F̃ (t, x0, . . . , xn) = 0.

Taking this second as the definition, then by a nonautonomous, nonstationary or
time-varying DE we mean:

(∗) F (t, y, y′, · · · , y(n)) = 0,

where F is now a continuous function of (n+ 2) variables.

The above DEs (*) are said to be order n.
Often a DE is in explicit form or in normal form of order n when the highest-

order derivative occurs separately, i.e. if it is in the form

(∗) y(n)(t) = F (t, y, y′, · · · , y(n−1))

where now F is a given continuous function of (n + 1) variables. Otherwise it is an
implicit DE.

The Implicit Function Theorem gives conditions when given an equation

F (x1, . . . , xn) = 0

we can solve for one of the variables, so for instance x2 + y2 = 1 becomes y =
±
√

1− x2. Given an implicit DE one tries to turn it into an explicit equation by
solving for the highest order derivative y(n−1), though sometimes one can solve it
in the implicit form (see the discussion below of exact equations. In that case the
solution itself may be given in implicit form and we can try to solve for the function
y(t).

In any case in courses DEs are often encountered already in explicit form.

Here are some examples:
(1)For a : R → R continuous, y′ = a(t) is an explicit equation, nonautonomous

unless a(t) = a is constant. The solution is just the antiderivative of a(t).
(2)F (r, s) = s, so y′ = F (t, y) = y: y′ = y. This is autonomous. It is one of

the most useful DEs. In theoretical terms it can be used to define the exponential
function (this definition relies on knowing the theorem on existence and uniqueness
of solutions of DEs), and since a second definition of et or ez goes by way of power
series, we can turn that around and study complex and matrix generalizations of
that equation. Of course its importance in applications is that this equation models
exponential growth, leading to many modifications aimed at producing more accurate
models.
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(3)For a, b ∈ R, F (r, s) = a · s + b, so y′ = ay + b. This is called an autonomous
linear DE.

(4) For a, b : R→ R continuous, F (r, s) = a(t) ·s+b(t), so y′ = a(t)y+b(t). This is
termed a linear first-order DE as it is given by an affine operator on function space,
nonautonomous unless a, b are constant functions.

Systems of equations: geometric definition.
In a few words, a system of real DEs is, geometrically, the same thing as a vector

field V on Rd, with the solutions describing the integral curves. We begin here as the
analytic definition via a formula can at first be hard to digest.

Given a vector field V on Rd (first in the stationary case) we describe the passage
to a system of DEs in the analytic sense. After that we give the precise definition of
the latter.

Writing E ≡ Rd, we express V : E → E in coordinates: V = (V1, . . . , Vd) and for
each k, Vk = Vk(x1, . . . xd).

A curve γ is rewritten γ = (y1, . . . , yd), so γ′ = (y′1, . . . , y
′
d) and γ′(t) = (y′1(t), . . . , y′d(t)).

Then our stationary equation γ′(t) = V (γ(t))
becomes the d simultaneous equations





y′1 = V1(x1, . . . , xd)
...

y′d = Vd(x1, . . . , xd)

or more fully:




y′1(t) = V1(x1(t), . . . , xd(t))
...

y′d(t) = Vd(x1(t), . . . , xd(t))

(137)

This is an example of an autonomous system of first-order DEs.

Systems of equations: analytic definition.
We have essentially arrived at the correct definition above. Thus, suppose we have

unknown functions y1, y2 of t. If we have two equations
{
y′1 = F1(y1, y2)

y′2 = F2(y1, y2)

this is a system of differential equations, in this case a system of two first-order
autonomous equations. Similarly,

{
y′′1 = F1(y1, y2, y

′
1, y
′
2, t)

y2
′′ = F2(y1, y2, y

′
1, y
′
2, t))

is a system of two nonautonomous second-order equations.
Note that the functions Fi involve both y1 and y2. Hence we should really think of

these as given by a single vector function.
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Defining in the above case F = (F1, F2) then F is a continuous function of five
variables, F : R5 → R2.

Note that in the first-order case this takes us exactly to the system we defined from
a vector field.

To complete the circle of these ideas it remains to see how any higher -order system
can in fact be replaced by an equivalent system of first-order equations, which in turn
can be represented as a vector field.

The idea is simple: (y, y′, y′′, . . . , y(n)) in an nth-order equation is replaced by
(w1, w2, . . . , wn), thus w1 = y, w2 = y′′, . . . , wn = y(n).

Basically to define higher-order systems we just include more variables; thus for
order 2 we have d equations in the 2d variables wk, w

′
k and so on.

Exercise 37.1. (Harmonic oscillator)
For a simple but important example, which we return to in Exercise ??, we have

the harmonic oscillator equation

y′′ = −y
The idea is that a spring is attached to a wall and the other end to an object; when
this is pulled out to a distance y the force felt is approximately −cy, where c > 0 is
a constant called the spring constant. The reason for the − sign is that it is being
pulled back toward its rest position 0: in the negative direction if if y > 0, in the
positive direction if y < 0, changing as it oscillates.

Ir is clear that (taking for simplicity c = 1) y(t) = sin t and cos t are solutions.
We show how this second-order equation in one dimension can be recoded as a

system of two one-dimensional first-order equations, and equivalently as a vector DE
in R2, given by a linear vector field.

For this, we set w1 = −y, w2 = y′. We thus have the pair of equations w′2 = y′′ =
−y = w1,, w

′
1 = −y′ = −w2 giving the system

{
w′1 = −w2

w′2 = w1

This can be written in matrix form, where w = (w1, w2), as w′ = Aw where

A =

[
0 −1
1 0

]
.

Note that A defines a linear vector field on R2. It important to note that the
variable for time does not occur here, as this is an autonomous second-order equation
and hence an autonomous system of two first-order equations; the variables (w1, w2) =
(y, y′) represent, for the oscillator, position and velocity (or momentum). Thus e.g. the
vector solution w(t) = (cos t, sin, t) gives the one-dimensional solution y(t) = cos t for
the original equation; the graph of the curve w(t) is the spiral (t, cos t, sin t) which
projects to the position y(t) = cos t and velocity y′(t) = sin t.

The matrix for the general nth-order linear case

y(n) = a1y + a2y
′ + · · ·+ any

(n−1)

then has the nice form
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A =




0 1 0 . . . 0
0 0 1 . . .
...
0 0 0 . . . 1
a1 a2 a3 . . . an



.

37.2. Ordinary differential equations: The classical one-dimensional case.
The review in the previous section of linear algebra and in particular of upper tri-
angular and diagonal forms prepares us for the study of vector ordinary differential
equations, equivalently sistems of one-dimensional ODEs, equivalenly flows in Rn.

Here we review some basics regarding this one-dimensional situation i.e. differential
equations on the real line, which will then be combined with the linear algebra in the
following sections.

For this classical one-dimensional case there are many references, in books and
online, which go into a wealth of examples and detail, as the study of such examples
plays an important part in applications to physics, biology economics, and engineer-
ing. Our aim here is to get a first taste of this extensive body of knowledge, before
moving on to our main interest, the higher-dimensional case.

Our notes for this section are based on course notes by Marina Talet, Université
Aix-Marseille, 2021.
1. Introduction:

Consider an integration exercise from Calculus such as: given f(x) = 1/x, defined
on R \ {0}, find

F (x) =

∫
f(x)dx

with the solution
F (x) = log |x|+ c

The function F has several names: the antiderivative, integral, or primitive or indefi-
nite integral of f , and the operation of finding F is termed integration of the function
f .

We can rewrite this as: find y = y(x) where

y′ = f

which can be considered as the simplest type of differential equation. If we specify
that y(1) = 0, this initial condition fixes the solution on the interval (0,+∞), as then
c = 0.

The explanation for the integral being indefinite in that it is defined up to a constant
c is that the derivative map D : Ck+1 → Ck is a linear transformation with one-
dimensional kernel the constant functions.

The general concept of integrating or finding a primitive goes far beyond this.
We find further examples in what follows.

Exponential growth.

Let us recall the two main rules for exponents:
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(i)ab+c = abac

and

(ii)abc = (ab)c.
An exponential function is of the form f(x) = ax for a > 0 and x ∈ R. The number

a is termed the base and x the exponent. By the above rules, 1/a = a−1 and (a
1
2 )2 = a

whence
√
a = a

1
2 . This makes it easy to define ax for exponent rational.

Thus exponentiation turns adddition into multiplication, multiplication into taking
powers. Mathematically speaking, the fact that ax+y = axay and a0 = 1 tells us that
writing Φa(x) = ax, the map Φ is an isomorphism from the additive group of real
numbers (R,+) to the multiplicative group of positive real numbers (R> ·) where
R> ≡ (0,+∞).

We write lna(x) for the inverse function of base a, that is, for f(x) = ax and
g = lna(x) then f ◦ g(x) = x and g ◦ f(x) = x wherever these are defined: the first
for x > 0 and the second for all x ∈ R.

This function does the opposite of the exponential: it maps R> ≡ (0,+∞) to
(R,+) and converts multiplication to addition and powers to products, thus

lna(xy) = lna(x) + lna(y)

and

lna(x
y) = y lna(x).

The most practical base in many applications is 10 or 2, but in pure mathematics
by far the most important base is the irrational number e = 2.1714... The reason is
that the formula for the derivative is much simpler for base e, as we shall see shortly.

But first, to define ex for real, non-rational exponents, we note that there are several
approaches one can take.

(1)First, we can use continuity: it can be proved that there is a unique continuous
way to extend this function to the reals. That is, we can approximate x by rational
numbers and take the limit.

We can also give more explicit definitions.

(2) As we see below, there exists a unique solution to the differential equation (or
DE) y′ = y satisfying y(0) = 1 (this is called an initial condition for the DE ). We
define this function to be exp(t) = y(t), and then and define the number e to be
exp(1). This is also the slope of ex at x = 0.

(3) We define ex to be the function with the following series expansion:

exp(x) = 1 + x+
x2

2
+
x3

6
+ · · ·+ xn

n!
+ . . .
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where the factorial is defined by 0! = 1, k! = 1 · 2 · · · · · k.
This expresses ex as a limit of rational numbers. In particular, the number e = e1

can be approximated as a decimal using this series.
One proves in Calculus:

Theorem 37.1. This series converges for all x ∈ R.

Note that the derivative of the series, taken term-by-term, does satisfy the DE
y′ = y, y(0) = 1, so (3) yields (2). Conversely, knowing the derivative from (2)
gives (3) as the Taylor series: recall that for an infinitely differentiable function f the
Taylor series about 0 is

∞∑

k=0

f (k)(0)xk

k!
.

We let ln(x) denote the natural logarithm, the inverse function g(x) of f(x) = ex =
exp(x), so ln = lne.

Another way to define ln is via integration: for x > 0,

ln(x) =

∫ x

1

1

x
dx

Another possible definition for ln is via its Taylor series, calculated around the
value x = 1, in other words, find the series for ln(x+ 1) around 0.)

This leads to a third definition of exp:
(4) First we define ln, in one of these ways; then exp is defined to be its inverse

function.

Next we define, for any base a > 0:

ax = e(ln a)x.

Hence the derivative is (ax)′ = ln(a)ax. Note that indeed (ex)′ = ex, and the
number e is the only base such that ax is its own derivative.

We then denote by lna its inverse function.

Exponential growth and doubling times; exponential decay and half-life

Suppose a quantity f(n) doubles every day, starting at 1 at time n = 0. Then
we have f(n) = 2n. (You should draw the graph, for say n = −3, . . . 3). Here the
doubling time is 1.

When we first see this equation, we naturally wonder why not to use base 2 (or
perhaps 10!) instead of the irrational number e = 2.1714 . . . . The reason is because
base e has the simplest expressions for the derivative, hence also for the series. In
fact, for both calculations and theory, for exponential and also for logs, it is generally
easier to first change to base e.

Nevertheless the concept of doubling time is intuitively very useful.
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When at for a < 1 we call this exponential decay, for example the decay of radioac-
tivity of a substance.

When we know the doubling time of for instance a pandemic or a bank account,
we can easily make rough estimates in our heads, and similarly for exponential decay
of a radioactive substance.

These can vary considerably, ranging from 4.4 billion years for Uranium-238 to
10−24 seconds for Hydrogen-7. Plutonium-239 has a half-life 24, 110 years, indicat-
ing its danger when in radioactive waste, while Carbon-14 which is so useful in the
radiocarbon dating process used by archeologists has a half-life of 5, 730 years.

Exercises:
(1) Show that lna(x) = ln(x)/ ln(a).
(2) Find the Taylor’s series for ln(x+ 1) about x = 0.
(3) Prove that the series for ex converges for all x ∈ R.
(4) Find a formula for the doubling time td for f(t) = eat, for a > 0.
(5) Find the half-life th half-life for f(t) = eat, for a < 0.

Convergence of exponential function.

(3) Prove that the series for ex converges for all x ∈ R.
Solution:

Proof. For x fixed, let m > 2x so x/m < 1/2. Then for any n > 0,

xn+m

(n+m)!
≤ xm

m!
·
(

1

2

)n

which gives a geometric series hence converges. Thus the sequence of partial sums is
an increasing bounded sequence hence converges by the completeness property of the
real numbers. �

Exercise 37.2. The series

exp(z) = 1 + z +
z2

2
+
z3

6
+ · · ·+ zn

n!
+ . . .

comverges for all z ∈ C.

Exercise 37.3. The series

exp(A) = 1 + A+
A2

2
+
A3

6
+ · · ·+ An

n!
+ . . .

comverges for all A ∈ M(d×d), the collection of square matrices (with entries in R or
C.)

Solving the equation y′ = ay, a ∈ R.
Exponential growth y(t) = At for A > 1 grows at a rate proportional to the

quantity at time t. Thus for example for A = 2, 2n+1− 2n = 2n(2− 1) = 2n, while for
a bank account growing at 10% per year, a = 1.10 and y(t+ 1)− y(t) = An+1−An =
An(A− 1) = c · y(n) for the constant c = A− 1.
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As noted, this includes both exponential growth or decay, and also the constant
case y′ = 0.

Method 1:
We simplify to the special case a = 1 and recall that y(t) = et solves this. Then

we see that y(t) = Ket for K ∈ R also works. Lastly we note that y(t) = Keat will
provide a solution of the DE y′ = ay, for any a ∈ R.

This is valid for any a,K ∈ R.

But are these all possible solutions? To answer this let v(t) = eat and suppose
that u is another solution, so u′ = au. Now since v(t) = eat, v−1 = e−at whence
(v−1)′ = −av−1.

We guess that u = Kv is the only possibility, thus that u/v will be a constant.
Equivalently, its derivative is 0. We compute:

(u/v)′ = (u · v−1)′ = u′(v−1) + u · (v−1)′ = auv−1 − auv−1 = 0

as we guessed, so u/v = K and

u = Kv = Keat.

Method 2:
From the equation y′ = ay,
we have that

y′

y
= a.

We recognize this as a logarithmic derivative: that is, for a function f with positive
values,

ln(f)′ =
f ′

f
.

More generally, recall that ln |t|′ = 1/t is valid for all t 6= 0. (Check this in two
ways: from the formulas, and by drawing the graphs!)

Thus in fact for any f with no zero values, (ln |f |)′ = f ′

f
is true.

So for y = y(t) never zero we have

(ln |y|)′ = y′

y
= a

.
We know our solution y(t) is differentiable hence continuous. Therefore there are

two cases, since y(t) 6= 0: either y(t) > 0 for all t, so |y| = y, or y(t) < 0 for all t, so
|y| = −y,

Integrating in the first case,

ln y + c1 =

∫
ln(y(t))′dt =

∫
adt = at+ c2

so in summary

ln y = at+ c
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and equivalently

y = eat+c = Keat

where we define K ≡ ec > 0.
In the second case,

(ln |y|)′ = y′

y
= a

and |y| = −y so

ln(−y) + c1 =

∫
ln(|y(t)|)′dt =

∫
adt = at+ c2

so

ln(−y) = at+ c

and equivalently

−y = eat+c

y = −eat+c = −Keat
where again K ≡ ec > 0 so −K < 0.
Combining these we have for any y never 0,

y = eat+c = Keat

This is valid for any a ∈ R and K 6= 0.
Finally we note that K = 0 also is a solution, and we again conclude that

y = eat+c = Keat

for any a ∈ R and K ∈ R.

This method is a bit more complicated only because of having to be careful with the
absolute values, but it has the advantage of generalizing to other differential equations
in an important way seen below when discussing separable equations.

Here is the Sagemath code for the figure. You can try to modify it for other DEs!

x=var(’x’)

y=var(’y’)

K=var(’K’)

ysol=(K*e^(x))

show(ysol)

p1=plot_slope_field(y,(x,-3,3.2),(y,-5,5))

for i in range(-16,16):

    p1=p1+plot(ysol(K=i/8),x,-3,3.2,ymin=-5,ymax=5,axes=True,aspect_ratio=1/2)

p1
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Figure 106. Slope field and solution curves for exponential growth
y′ = cy. The equation is in one dimension, and its flow is along the
real line; these curves are the graphs of those solutions, so Including
the time variable. This can also be viewed as solutions to a vector
ODE in the plane, where the curves are tangent to the vector field
V (x, y) = (1, y). These solution curves are γ(t) = (t, y(t)) so γ′(t) =
(1, y′(t)) = V (γ(t)) = (1, y(t)). The difference between a slope field and
a vector field is this: segments in the slope field are parallel to the
vector field but meet the curves in their midpoint. The picture of the
slope field is often easier to understand, as it is much less cluttered
since all the segments are all of the same maneagable length.

Figure 107. Curves tangent to vector field (F (x, y) = (1, y). These
are solution curves to the differential equation in one dimension for
exponential growth or decay, y′ = ay, in this case with a = 1. The
solutions are y(t) = Keat for K ∈ R. If a < 0 it is exponential decay,
and if a = 0 is constant. The graph of a solution y(t) is the image of a
solution curve for a DE in R2, for the curves γ(t) tangent to the vector
field. These solution curves are γ(t) = (t, y(t)) so γ′(t) = (1, y′(t)) =
V (γ(t)) = (1, y(t)).

(Please share any nice figures you produce!)

1.a. Application to biology: more sophisticated models of growth.

Simple exponential growth gives a good model for population growth (of a species,
whether plant, animal or bacteria or virus!) only in the beginning stages, before the
population starts to run out of space or food. Here are some more realistic models.

Malthus model: the evolution of a yeast population over time.
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We are led to solve the DE

y′(t) = by(t)− dy(t) = (b− d)y(t),

where b and d are real numbers (b is the birth rate and d the death rate) and y(t)
denotes the number of cells at time t.

This model is not very realistic (for example if b > d above, there is a “population
explosion” (!). To overcome this, one has the

Verhulst model:
Here we are led to solve the (more complicated) DE

y′(t) = (b− d)y(t)(M − y(t))

where M is the maximum possible number of cells.

We will learn to solve both of these. We shall see that the first equation above is
linear homogeneous of first order and the second, the logistic equation, is a separable
equation, see below.

1.b. Analytic definition of a differential equation:

A differential equation (denoted DE) is a relation between an unknown function y
(to be determined) and a certain number of its derivatives. More precisely,

Definition 37.2. A differential equation in one dimension is an equation of the form

(∗) F (t, y(t), y′(t), · · · , y(n)(t)) = 0,

where F is a given continuous function of n+ 2 variables (so at least one derivative is
involved!) and t 7→ y(t) is a unknown function, that we are trying to find. We denote
by y(n) its derivative of order n, a strictly positive integer.

The above DE (*) is then said to be order n.
The DE is said to be explicit of order n, or in normal form, if it can be solved

for the highest-order derivative, in other words if can be written in the form

(∗) y(n)(t) = F (t, y(t), y′(t), · · · , y(n−1)(t))

where now F is a given continuous function of n + 1 variables. Otherwise it is an
implicit DE.

To motivate this terminology, recall that in Calculus the equation x2 + y2 = 1
is equivalent to the four equations y = ±

√
1− x2, x = ±

√
1− y2 and we can say

that the first equation is an implicit equation in that it “implies” the other “explicit”
equations where we have solved for one variable as a function of the other. For Rn,
the Implicit Function Theorem can help us determine when this can be done. In
much the same way, we can have an implicit DE, for example (y′)2 + y2 = 1 which
implies the explicit equations y′ = ±(1− y2).

Examples:
y′(t) + y(t) = 1: is an DE of first order
sin(y′(t)) + y3(t) = t: an implicit DE of first order
y(7)(t) + y9(t) = t+ sin(5t): an DE of order 7
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y(t) + y2(t) = t is not an DE (as there is no derivative involved!).

A solution of (*) over an interval I of R is a function t 7→ y(t) which is n times
derivable on I and which satisfies (*).

The interval I on which we solve a DE is very important, as changing the interval
may allow for different solutions.

To solve (*) means to find all the solutions of (*).
There can be zero, one, several or an infinite number of solutions.

Examples:
- The DE y′(t) = 0 admits an infinite number of solutions. Indeed, y(t) = c for any

c ∈ R is a solution.
- The implicit DE y′2(t) + 1 = 0 does not admit any real solution.

First-order equations
In this chapter, we shall restrict ourselves to 1st order differential equa-

tions. We shall study, in particular, these two types of differential equation:
- linear DEs;
- separable DEs.

Definition: As above, a DE of first order is explicit or in normal form if it is of the
form

y′(t) = f(t, y(t)),

where f is a given continuous (two-variable) function.

Note: it is, in general, easier to solve the DE in normal form.

Examples: The following are all first order DEs.
y′(t) = cos(y(t)) is a DE in normal form.
sin(y′(t)) = y(t) is not in normal form.
y′(t) = y(t) + 2tet is in normal form.

2. First- order linear DE:

Definition: An DE is said to be 1st order linear if it is of the form

y′(t) = a(t)y(t) + b(t) (E)

where t 7→ a(t) and t 7→ b(t) are two given continuous functions on I, and t 7→ y(t) is
the unknown function to be determined.

• a(t) is called the coefficient of (E) and b(t) the second coefficient or second term.
• If b ≡ 0 then we say that the DE is homogeneous or without second term.
If a(t) = a and b(t) = b we say the equation is autonomous or stationary.

Otherwise it is non-autonomous, nonstationary, time-dependent or constant
coefficient.
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Examples:
• y′(t) + y(t) = 2: linear constant coefficient DE of first order.
Indeed, we write y′(t) = −y(t) + 2. Here a(t) = − 1 and b(t) = 2.

• (1 + t2)y′(t) = ty(t): linear non-autonomous DE of first order.
Indeed, as 1 + t2 never vanishes on R then we can rewrite this DE as

y′(t) = t
1+t2

y(t).

Here a(t) = t/(1 + t2) and b(t) = 0. Thus, it is a homogeneous linear 1st order
non-autonomous DE.

• y′(t) = y2(t) + 1: non-linear DE

Remark 37.1. The explanation for the term “linear equation” is as follows. Given
two vector spaces V,W , recall that a transformation T : V → W is linear iff for any
u,v ∈ V we have T (au + bv) = aT (u) + bT (v). A transformation A is affine iff there
is a linear transformation T and w ∈ W such that A(v) = T (v) + w. Note that in
this case, w = A(0).

Exercise: We denote by C = C0 the vector space of continuous functions and by Ck
the k−times differentiable functions with f (k) ∈ C0. Define the map D : C1 → C by
D(f) = f ′. Show that this is a linear transformation.

Now given continuous functions a(t), b(t) define T : C1 → C by T (f) = a(t)D(f) +
b(t). Show that T is affine, and is linear iff b ≡ 0. (Often in Calculus or applied math
an affine function is (incorrectly) called linear.)

2.a. Solution of a homogeneous linear DE of first order:

We are trying to solve

(H) y′(t) = a(t)y(t) (138)

where a is a continuous function.

Remark: we note that y(t) = 0 (for all real t) is solution of (H). This is the null
solution. But what are the other solutions?

Theorem: The general solution of (H) is

yH(t) = CeA(t),

where C is a real constant and A(t) =
∫
a(t)dt a primitive of a.

Notes:
- There are an infinite number of solutions of (H) (C is arbitrary in R).
- For C = 0, we have the null solution.

Proof: We verify that yH does verify (H). Indeed, by the Chain Rule,

y′H(t) = CA′(t)eA(t) = Ca(t)eA(t) = a(t)yH(t)

as A′ = a.
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How can we show that we have all the solutions? Here is the idea: we write the
DE as

y′(t)− a(t)y(t) = 0.

Then we multiply the two members of the DE by e−A(t)

e−A(t)(y′(t)− a(t)y(t)) = 0 ⇐⇒ y′(t)e−A(t) − a(t)e−A(t)y(t) = 0.

We recognize the right-hand side as the derivative of y(t)e−A(t). So (y(t)e−A(t))′ = 0
hence y(t)e−A(t) = C for some constant C, as claimed.

Alternatively, we proceed exactly as for the constant coefficient case: for v = eA(t)

note that v−1 = e−A(t) so (v−1)′ = −a(t)(v−1). (This is defined since eA(t) > 0.) We
assume u ia also a solution so u′ = a(t)u. We then show that (u/v)′ = 0 by the same
calculation as before.

Examples:

• Solve, on R, the homogeneous DE

y′(t) =
t

1 + t2
y(t) (H)

Here a(t) = t/(1 + t2), so

A(t) =

∫
t

1 + t2
dt =

1

2

∫
2t

1 + t2
dt =

1

2

∫
u′(t)

u(t)
dt

where u(t) = 1 + t2. Therefore

A(t) =
1

2
ln |u(t)| = 1

2
ln(u(t)) =

1

2
ln(1 + t2) = ln(

√
1 + t2).

The solutions of (H) are written as

y(t) = C exp(ln(
√

1 + t2)) = C
√

1 + t2, t ∈ R.

• Solve, on R, the homogeneous DE

y′(t) = 2y(t) (H)

Here a(t) = 2 so A(t) = 2t. The solutions of (H) are written as

yH(t) = Ce2t, t ∈ R.

We have an infinite number of solutions, C b́eing arbitrary. See Fig. 107, and note
that we have only one solution passing through the point with coordinates (0, 1).

Indeed, taking t = 0, yH(0) = Ce0 = C which must be equal to 1. So C = 1 and
the solution we seek is

ỹH(t) = e2t, t ∈ R.

2.b. Solution of a nonhomogeneous linear DE of first order:

We recall the following from Linear Algebra:
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Proposition 37.2. Let V,W be vector spaces and T : V → W a linear transforma-
tion. Given some w ∈ W , we wish to solve the nonhomogeneous equation

T (v) = w.

We claim that all such solutions are a sum of one particular solution vp such that
T (vp) = w and any solution v0 of the corresponding homogeneous equation T (v0) =
0.

Proof. We have T (v0 + vp) = T (v0) + T (vp) = 0 + w = w. Conversely, if T (v) = w
then T (v − vp) = 0 so v − vp is a solution of the homogeneous equation. �

Remark 37.2. Geometrically, note that the solutions of the homogeneous equation
are the kernel (nullity) of T , which is a subspace of V ; adding on vp translates this to
an affine subspace which is the space of solutions of the nonhomogeneous equation.

We are trying to solve

(E) y′(t) = a(t)y(t) + b(t)

where a and b are two continuous functions (over an interval I).

We have seen above that T (y) = y′(t)− a(t)y(t) is a linear transformation from C1

to C, so we can apply the Proposition: we wish to solve the nonhomogeneous equation
T (y(t)) = b(t).

(I) Thus, we begin by solving the associated homogeneous DE:

(H) y′(t) = a(t)y(t).

The solutions of (H) have been given in 2.a. They are of the form

yH(t) = CeA(t),

where C is a real constant and A a primitive of the function a.

(II) We are looking for one particular solution yP of (E), i.e. a function yP which
satisfies:

y′P (t) = a(t)yP (t) + b(t).

From the Proposition we then have:
Theorem: The solutions of (E) are of the form

y(t) = yH(t) + yP (t).

Example: Solve on R the linear DE

(E) y′(t) = −2y(t) + 1.

- We begin by solving the associated homogeneous DE

(H) y′(t) = −2y(t).

Here a(t) = −2, so A(t) = −2t.
The solutions of (H) are of the form

yH(t) = Ce−2t, t ∈ R.



390 ALBERT M. FISHER

- We try to guess a particular solution yP of (E). We notice that yP (t) = 1/2 is one
because in this case y′P (t) = 0 and then 0 = −2× 1

2
+ 1.

2.c. Particular solution

How to determine a particular solution yP of (E)?

It is sometimes easy to “guess” yP . For example, if the DE is linear with coefficients
a and b constants then we look for yP (t) = constant to be determined.

Examples:
• y′(t) + 2y(t) = 5
As this is a DE with constant coefficients, and taking into account the above remark,

we find yP (t) = 5/2.

• y′(t) + 2y(t) = et

Since a is a constant and the second term b is tet, we guess yP (t) = cet and then
try to determine c.

If yP (t) = cet then y′P (t) = cet. We write that y′P (t) + 2yP (t) = et and then find
that c = 1/3.

Therefore yP (t) = et/3.

• y′(t) + ty(t) = t
Note that yP (t) = 1 is a special solution, because y′P (t) = 0 and 0 + t · 1 = t.

If we did not succeed to find a particular solution, we can then resort to the method
of the variation of the constant (also known as Lagrange’s method).

Method of varying the constant:

To introduce this idea, which we shall use to find a particular solution yP , consider
the following. We have seen that the solutions of the homogeneous equation (H)

y′(t) = a(t)y(t)

are

y(t) = CeA(t)

where
A′ = a

.
But suppose we allow the constant factor C to be replaced by a differentiable

function C(t)? What wider class of equations can we now solve?
We define

y(t) = C(t)eA(t),

and calculate the derivative. As A′ = a we have

y′(t) = C ′(t)eA(t) + C(t)eA(t)A′(t)

= C ′(t)eA(t) + a(t)y(t)

= a(t)y(t) + b(t)
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where we are defining

b(t) = C ′(t)eA(t).

Equivalently,

C ′(t) = b(t)e−A(t).

or

C(t) =

∫
b(t)e−A(t)dt.

Working backwards, given continuous function b(t), we can define C(t) as above,
and conclude that we now have found a particular solution yP for the equation we
started with,

y′(t) = a(t)y(t) + b(t).

We denote this particular solution by yP (t) = C(t)eA(t) where
C(t) =

∫
b(t)e−A(t)dt.

The general solution:
We wish now to find all solutions of the nonhomogeneous equation

y′(t) = a(t)y(t) + b(t)

We have already found all solutions yH of the homogeneous equation, and one partic-
ular solution yP of the nonhomogeneous equation. From Proposition 37.2, we know
that adding these, y = yH + yP gives the general solution.

Here we give a direct proof for this case.
We know that

y′H(t)− a(t)yH(t) = 0

y′P (t)− a(t)yP (t) = b(t).

Adding, y = yH +yP solves y′(t)−a(t)y(t) = b(t) i.e. y′(t) = a(t)y(t)+b(t). We claim
that we now have all solutions.

Thus, as A′ = a we have

y′P (t) = C ′(t)eA(t) + C(t)eA(t)A′(t)

= C ′(t)eA(t) + a(t)yP (t)

= a(t)yP (t) + b(t).

So

C ′(t)eA(t) = b(t)⇐⇒ C ′(t) = b(t)e−A(t).

from which

C(t) =

∫
b(t)e−A(t)dt.

The particular solution given by the variation method of the constant is then

yP (t) =

(∫
b(t)e−A(t)dt

)
eA(t).
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Therefore, the general solution of (E) is written as

y(t) = yH(t) + yP (t) = CeA(t) +

(∫
b(t)e−A(t)dt

)
eA(t).

Example:
Solve for t > −1, and using the variation method of the constant, the DE

(E) y′(t) =
1

t+ 1
y(t) +

1

2
.

It is a 1st order linear DE where u a(t) = 1
t+1

and b(t) = 1
2
.

We have A(t) =
∫
a(t)dt =

∫
1
t+1

= ln |t + 1| = ln(t + 1) because t > −1 and
therefore t+ 1 > 0.

- The solutions of the associated homogeneous DE

(H) y′(t) =
1

t+ 1
y(t)

are
yH(t) = CeA(t) = Celn(t+1) = C(t+ 1),

where C is an arbitrary real constant.

- We are looking for a particular solution (via the method of variation of the
constant) in the form

yP (t) = C(t)eA(t) = C(t)(t+ 1),

with

C(t) =

∫
b(t)e−A(t) dt.

We calculate

C(t) =

∫
1

2
e− ln(t+1) dt =

1

2

∫
1

t+ 1
dt =

1

2
ln(t+ 1).

So

yP (t) =
1

2
(t+ 1) ln(t+ 1).

Thus, the solutions of (E) for t > −1 are

y(t) = yH(t) + yP (t) = C(1 + t) +
1

2
(t+ 1) ln(t+ 1).

There are therefore an infinite number of solutions of (E), but we will see that there
is only one only solution with the initial condition y(0) = 1.

Indeed, we set t = 0 in the formula for y(t) above and then we write that y(0) = 1.
This gives

y(0) = C(1 + 0) +
1

2
(0 + 1) ln(0 + 1) = C = 1.

The solution is then

y(t) = (1 + t) +
1

2
(t+ 1) ln(t+ 1).

3. Separable Differential equations:
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3.a. Definition: An DE is said to be separable if it is of the 1st order and of the
form

(E) g(y(t))y′(t) = f(t)

where f : I → R and g : J → R are two given continuous functions.

The left-hand side of (E) depends only on the function y(t) and the right-hand side
only on t.

Examples:

- A linear and homogeneous DE (1st order) is separable. Indeed, we already know
that the null function is a solution. If we are looking for the non-zero solutions of

(H) y′(t) = a(t)y(t),

(modulo a theoretical justification that we will not detail here) we are reduced to
solving

y′(t)

y(t)
= a(t).

This last DE is separable, with g(x) = 1/x and f(t) = a(t).

- The 1st order linear DE

y′(t) = y(t) + t

is NOT a separable DE. We cannot write it in the form of (E) above.

3.b. Method of solving (E):

Since f and g are two continuous functions over two intervals then they admit
primitives F and G, respectively.

Note that the derivative of the composite function G ◦ y is

(G ◦ y)′(t) = (G(y(t)))′ = G′(y(t))y′(t) = g(y(t))y′(t).

We can therefore write

g(y(t))y′(t) = f(t)⇐⇒
∫
g(y(t))y′(t)dt =

∫
f(t)dt+ c

where c is an arbitrary constant.

So

G(y(t)) = F (t) + c,

where y(t) is given implicitly. It remains to express y(t) as a function of t.

Let’s look next at a concrete example how solve a separable DE.

Examples:
• (E) (1 + t2)y′(t) = 2ty(t).

This is a linear DE and we already have one method of resolution.
It is also a separable DE. Let’s try to solve this DE using the strategy described

above.
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We know that y(t) = 0 is a particular solution of (E). If we look for non-zero
solutions (y(t) 6= 0), we rewrite the DE as:

y′(t)

y(t)
=

2t

t2 + 1
⇐⇒

∫
y′(t)

y(t)
dt =

∫
2t

t2 + 1
dt+ c

So

ln |y(t)| = ln(t2 + 1) + c

because 1 + t2 > 0, and therefore

|y(t)| = eln(t2+1)+c = ec(t2 + 1)⇐⇒ y(t) = ±ec(t2 + 1).

So (counting the zero solution) the general solution of the DE is

y(t) = d(t2 + 1), d ∈ R.

• y′(t) = y(t)− 1.
Note that the constant function y(t) = 1 is a solution. Let’s find the other solutions.

Since y(t) 6= 1, then

y′(t)

y(t)− 1
= 1⇐⇒

∫
y′(t)

y(t)− 1
dt =

∫
1 dt+ c.

This gives

ln |y(t)− 1| = t+ c⇐⇒ |y(t)− 1| = et+c = ec et

or

y(t)− 1 = ±ec et ⇐⇒ y(t) = 1 + det

where d = ±ec which is a non-zero constant.

The solutions of the DE (counting the solution y(t) = 1) are therefore of the form

y(t) = 1 + λet, λ ∈ R.

Exercise: Look at the solution graphs (for λ < 0, λ = 0) and λ > 0

Exercise: Solve on R the linear DE

(1 + t2)2y′(t) + 2ty(t) = 2t.

Hints:
yH(t) = Ce

1
1+t2

yP (t) = 1.
Some solutions:
Here is how we can calculate that for any exponential function eat for a > 0 then

1 = ea·0 and for 2 = ea·td we have a · t = ln 2, td = ln 2/a > 0.
Calculating the half-life for exponential decrease, eat for a < 0 we have th =

ln 1
2
/a = − ln 2/a > 0.
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37.3. Exact differential equations.
Implicit equations.
Exact differential equations.
Integrating factors.
Some solutions.

For example, the exterior derivative d operator sends k+ 1-forms on a manifold M
to k-forms, and an equation dη = ρ is a differential equation in this general sense.
Again, a solution η can be termed a primitive and the procedure of solving this can
be called integration. And again, the question of what is the kernel of the operator is
important, though here the answer may be much more interesting, due to homology.

The simplest example here is where ϕ is a function on R2 and dϕ is (dual to) its
gradient vector field.

(TO DO...)

37.4. Integrating factors.
(TO DO...)

(TO DO...)

37.5. Flows, vector fields and systems of equations. Consider a differentible
manifold M with a C1 flow, τt : M → M. We let F(M) denote the collection of all
such flows. T (M) denotes the tangent bundle of M . A (continuous) vector field on M
is a continuous map V : M → T (M). We write V(M) for the collection of all vector
fields on M . We describe a map from flows to vector fields, that is, from F(M) to
V(M). Given a flow τ on M and a point p ∈ M , we consider the curve γ(t) = τt(p)
and define d/dt(τt(p)) to be the tangent vector at time t, so at location x = γ(t),
γ′(t) ∈ T (M)x.

We define a vector field V by

V (p) = d/dt(τt|t=0(p)).

Lemma 37.3. This satisfies:

V (τt(p)) = d/dt(τt(p)) (139)

for all p, t.

Proof. From the flow property τt+s = τs ◦ τt, defining q = τt(p), then d/dt(τt(p)) =
limh→0(τh+t(p) − τt(p))/h = limh→0(τh(q) − τ0(q))/h = d/dtt|t=0(τt(q)) = V (q) =
V (τt(p)). Here we have done the calculation for a flow in Rn; this is pushed to mani-
folds via charts, in the usual way. �

Equation (139) can be written as:

d/dt(τt) = V (τt)

or
d/dt(τ) = V.

Thus the time derivative of a flow is a vector field.
The most general notion of differential equation is this: given some notion of deriv-

ative (usually but not always a time derivative), can we find an inverse operation, that
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is, “integrate” it to find the antiderivative or primitive? This is called the solution of
the differential equation.

In the present example, the question becomes: given a vector field, can we find a
flow with that as its derivative? In other words, can we “integrate” the vector field
to get a flow?

Remark 37.3. We have earlier encountered an ergodic theory example of a linear flow
and its eigenvectors in Definition 14.5.

37.6. Vector fields and flows in Rn. We consider the special case of M = Rn,
where the tangent bundle is the product T (Rn) = Rn × Rn, and identifying the base
space, the first Rn, with the fiber, the second, then a vector field is just a continuous
map V : Rn → Rn. This is visualized by drawing the vector vp = V (p) at the location
p.

Some good references are: [HS74] (we mostly prefer this original edition), [Arn12],
[HK03], [Lan02], [Lan01]. When completing these notes we came across the new text
of Viana and Espinar [VE21] developed in a masters level course at IMPA (publication
date Feb 28, 2022). This contains a wealth of material for further learning, including
interestig historical notes.

Remark 37.4. An interesting consequence of Theorem 35.35 is the following:

Corollary 37.4. Given a linear flow τt = etA on Rn, this flow is volume-preserving
(i.e. the determinant of each map τt is one) iff the vector field V (x) = Ax has
divergence 0.

Proof. A calculation immediately shows that the divergence of V is the trace of A. �

This makes rigorous, for the linear case, the often-heard intuition of divergence 0:
that material is not created, i.e. the flow of the vector field preserves volume.

This proof extends immediately to the nonlinear case once we have understood
that the derivative of the flow is a vector field.

See [KH95], Proposition 5.1.9 regarding divergence and and volume preservation.
and [HK03]. 6.1.5. The connection between trace, determinant and divergence is not
however made there.

See Arnold p. 251 [Arn12] where this connection is made, Remark and Problem 3.

One-parameter subgroups and vector fields: examples.

We describe further (2 × 2) examples, via exploring the connection with ODEs:
systems of DEs and vector-valued DEs.

Example 52. (Hyperbolic Rotation flow 2) We continue our study of Example

43; see also Example ??. We have A =

[
0 1
1 0

]
, and are studying the quadratic form

Q(x, y) = vtAv for v = (x, y). This gives Q(x, y) = 2xy. We diagonalized the sym-
metric matrix A to D = U−1AU where U = Rπ/4 is orthogonal. The corresponding

quadratic form for D, which has diagonal elements 1,−1 is Q̂(x, y) = x2 − y2.
Considering first the linear vector field given by D, the solutions of the vector DE

x′ = Dx are the right hyperbolas, and are invariant for the hyperbolic linear flow with
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fixed point 0, Tt = etD =

[
et 0
0 e−t

]
. The Q̂-hyperbolas are invariant for a different

hyperbolic flow. Recalling that

cosh(t) =
et + e−t

2
, sinh(t) =

et − e−t
2

and that, from part (a) of Theorem 35.19, UetDU−1 = etUDU
−1

= etA, this is

etA = UTtU
−1 =

1

2

[
1 −1
1 1

] [
et 0
0 e−t

] [
1 1
−1 1

]

=
1

2

[
et + e−t et − e−t
et − e−t et + e−t

]
=

[
cosh(t) sinh(t)
sinh(t) cosh(t)

] (140)

We note that since

cos(t) =
eit + e−it

2
, sin(t) =

eit − e−it
2i

one has from the definitions, cosh, sinh are:

cosh(t) = cos(it), sinh(t) = −i sin(it),

and we have the interesting Taylor series:

cosh(t) = 1 + t2/2 + t4/4! + . . . and sinh(t) = t+ t3/3! + t5/5! + . . .

We give a different, matrix proof of this below.
Each map etA is known as a hyperbolic rotation, and not just by analogy from the

formulas!
Indeed, the usual rotations {Rt}t∈R = SO(2), the special orthogonal group, pre-

serves the Euclidean metric, the standard inner product, and the quadratic form
x2 + y2, and hence it preserves the concentric circles. Each quadratic form is pre-
served by a Lie group. In the case of our form, the tilted hyperbolas are distance one
from the origin with respect to the indefinite bilinear form, and are preserved by the
group of orientation-preserving isometries which are the hyperbolic rotations.

The upper quadrant of the hyperbola provides a model for the Lorenz metric of
Special Relativity, in one spatial and one time dimension. This metric is preserved by
the special orthogonal group of signature (+1,−1), in this case written SO+(+1,−1).
(The physics convention is to switch x and y, giving signature (−1,+1); the reason
is because in the higher-dimensional case we have n spatial and one time dimension
and write time first, giving signature (−1,+1, . . . ,+1)).

Each branch of the hyperbola is a model for one-dimensional hyperbolic space.
The hyperbola is preserved by the flow; we shall check that hyperbolic distance is
indeed equal to time t. We know the hyperbolic metric in the upper cone for the lines
y = ±x is the projective metric there, with (d(a, b), (c, d)) = | log(a/b) − log(c/d)|.
See §23.5. We calculate this for the isometric flow Tt. Then Tt(a, b) = (eta, e−tb) so
eta/e−tb = e2ta/b and so for α = e2t, v = (a, b),w = (c, d) then (d(Tt(v)), Tt((w)) =
| log(α(a/b)) − log(α(c/d))| = | log(a/b) − log(c/d)| = d(v,w). This can be seen
geometrically using where straight lines from the origin (points in projective space)
meet the hyperbola.
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Exercises. Rewrite the following systems of equations in vector form x′ = Ax,
for x = (x, y), x : R → R2. Sketch the vector field and slope field by hand. Solve
explicitly for initial condition x0 = (a, b) and sketch the solutions.

(a)
{
x′ = −y
y′ = x

(b)
{
x′ = x

y′ = y

(c)
{
x′ = x

y′ = −y
(d)

{
x′ = y

y′ = x

(e)
{
x′ = x− y
y′ = x+ y

(f)
{
x′ = x

y′ = 2y

(g)
{
x′ = x

y′ = x+ y

Solutions: In each case the solutions are of the form

x(t) = etAx0

for the following matrices A. These vector fields and flows are already studied in

Examples (a) − (g) where the matrix A is: (a): Ex. 34: A =

[
0 −1
1 0

]
, (b): Ex. 35:

A =

[
1 0
0 1

]
(c): Ex. 36: A =

[
1 0
0 −1

]
, (d): Ex. ??: A =

[
0 1
1 0

]
, (e): Ex. 38:

A =

[
1 −1
1 1

]
, (f): Ex. 39: A =

[
1 0
0 2

]
, (g): Ex. 41: A =

[
1 0
1 1

]
.
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Solving a second-order DE via a system of first-order DEs. We return to
Exercise ??:

Exercise 37.4. (Harmonic oscillator; hyperbolic rotation)
(i) Solve the second order linear equation y′′ = −y by the following strategy: we
define y′ = x and x′ = −y, giving a system of two equations of first order. Then we
rewrite the system in vector form x′ = Ax, for x = (x, y) as above.

Now solve this vector DE explicitly for initial condition x0 = (a, b) and sketch the
solutions. Lastly, returning to the original equation y′′ = −y, what are the solutions
y(t)?
(ii) Do the same for the second order equation y′′ = y.

Solution.

The matrices for (i), (ii) are A =

[
0 −1
1 0

]
, A =

[
0 1
1 0

]
, so we fall into Examples

(a) and (d) above. For the first we have the solution
(i)

etAx0 = Rtx0 =

[
cos t − sin t
sin t cos t

] [
a
b

]
=

[
a cos t− b sin t
a sin t+ b cos t

]
=

[
x(t)
y(t)

]

for the vector DE with initial condition x0 = (a, b). The general solution for the
one-dimensional second order equation y′′ = −y is therefore

y(t) = a sin t+ b cos t. (141)

Note that x(0) = a = y′(0), so the initial condition is y(0) = b, y′(0) = a. Physi-
cally, this corresponds to a harmonic oscillator with mass and spring constant 1, and
with initial position y(0) = b, initial velocity y′(0) = a.

Fixing y(0) = b, we see all the circles which meet the line y = b in the plane, each
corresponding to a different initial velocity.
(ii) For y′′ = y we have

etAx0 = Rtx0 =

[
cosh(t) sinh(t)
sinh(t) cosh(t)

] [
a
b

]
=

[
a cosh t+ b sinh t
a sinh t+ b cosh t

]
=

[
x(t)
y(t)

]

whence the solution for the one-dimensional second order equation y′′ = y is:

y(t) = a sinh t+ b cosh t (142)

Here the (position, velocity) initial condition is y(0) = b, y′(0) = x(0) = a.
See Fig. 108 for the graphs of sinh t = (et − e−t)/2, cosh t = (et + e−t)/2. (Because

of cancellation, the graphs of a sinh t + b cosh t are not particularly interesting, but
that also holds for a sin t + b cos t, which is just a translated sin function: note that
this is physically clear as it is harmonic motion of the same period and amplitude but
a different initial value).

37.7. Systems of equations and vector fields. We have so far seen some examples
of a system of equations defining a vector field, but have not yet given the proper
definitions nor considered wider context.

We saw above for example the “system”
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Figure 108. Graphs of sinh, cosh.

{
x′ = −y
y′ = x

37.8. Existence and uniqueness theorems. Here we show that given a Lipschitz
condition on the vector field, solutions for our differential equation always exist lo-
cally, and moreover exist globally and are unique. This holds both in the stationary
and nonstationary cases. Moreover, one has information on the smoothness of the
solutions: a smooth vector field guarantees smooth solutions. All of this can be
phrased in terms of flows. First we prove the standard fixed point theorem for con-
traction mappings of complete metric spaces, with an extension showing continuous
dependence of the fixed point for a parametrized family of maps.

Existence and continuity of fixed points for parametrized contractions.

Definition 37.3. Given two metric spaces (X, d) and (X̂, d̂), a map f : X → X̂ is
K-Lipschitz for some K > 0 iff for each pair of points x, y ∈ X we have

d(f(x), f(y)) ≤ Kd(x, y).

This is called a contraction mapping iff 0 ≤ K < 1.

Lemma 37.5. A K-Lipschitz function is continuous.

Proof. If xn → x then d(f(xn, f(x)) < Kd(xn, x)→ 0. �

We write Ck = Ck(R,R) for the functions whose kth derivative exists and is contin-
uous. Thus C0 denotes the contiuous functions, C1 the functions f whose derivative
f ′ ∈ C0 and inductively Ck+1 those functions whose derivative is in Ck.

A function is called Ck+1 if its kth derivative is not only continuous but Lipschitz
for some K > 0. Thus

C0 ⊆ C0+1 ⊆ C1 ⊆ C1+1 ⊆ . . . Ck ⊆ Ck+1 ⊆ . . .

Note that C0+1 denotes the space of functions which are K-Lipschitz for some K ≥ 0.
The basic tool is:
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Lemma 37.6. Let (X, d) be a complete metric space and f : X → X a strict con-
traction, i.e. there exists c ∈ [0, 1) such that d(f(x), f(y)) ≤ cd(x, y). Then f has a
unique fixed point.

Proof. Note that since f is a contraction it is continuous: if xn → x then d(f(xn), f(x)) ≤
cd(xn, x)→ 0.

We show that if there is a fixed point x, it must be unique. Suppose there is
another fixed point y 6= x. But then d(x, y) = d(f(x), f(y)) ≤ cd(x, y) < d(x, y), a
contradiction.

Now let x ∈ X. If f(x) = x we are done. So suppose x 6= f(x). Define xn = fn(x);
we shall prove this is a Cauchy sequence. We know x0 6= x1. Applying the map f ,
d(xn+1, xn) ≤ cnd(x1, x0). Let n so large that d(xn+1, xn) < δ. Then for any k ≥ 1,

d(xn+k+1, xn+k) < δck. Thus by the triangle inequality, d(xn, xn+k) < δ
∑k

1 c
j <

δ
∑∞

1 cj = δM . Thus for δ small this is δM < ε.
This proves (xn)n≥0 is Cauchy. Since X is a complete metric space, there exists a

limit point x∞, such that xn → x∞.
We claim this is a fixed point. But xn → x∞ and also f(xn) = xn+1 → x∞ yet

since f is continuous, x∞ = limxn+1 = lim f(xn) = f(limxn) = f(x∞).
�

Lemma 37.7. Let (X, d) be a complete metric space and let (W,d) be a metric space.
Let f(x,w) be a continuous map from X × W to X. Write fw(x) = f(x,w). Let
fw : X → X be a contraction for each w ∈ W with the constant, c ∈ [0, 1); that is,
d(fw(x), fw(y)) ≤ cd(x, y). Then the unique fixed point xw of fw varies continuously
in w.

Proof. We follow Proposition 2.6.14 on p. 68 of [HK03].
Applying fw to x we set xwn = fnw(x) → xw; let N be so large that for n > N ,

d(xwn , xw) ≤ ε.
Note that: d(x, xw) ≤ d(x, xwn ) + d(xwn , xw) ≤ d(x, xwn ) + ε ≤∑∞k=0 d(xwk , x

w
k+1) + ε

for all ε > 0, whence:

d(x, xw) ≤
∞∑

k=0

d(xwk , x
w
k+1) =

∞∑

k=0

d(fkwx, f
k+1
w x) ≤ d(x, fw(x))

∞∑

k=0

ck =
1

1− cd(x, fw(x)).

Applying this to x = xy = fy(xy) we have

d(xy, xw) ≤ 1

1− cd(xy, fw(xy)) =
1

1− cd(fy(xy), fw(xy))→ 0

as y → w by continuity in terms of the second parameter of f(x,w) = fw(x).
In words, the distance between two fixed points xy, xw is bounded by a universal

constant times the distance between one, xy and the map fy applied to the other,
xw. This means that one application of the map moves xw very close to xy. This
equals the distance between the two different maps applied to the same point, which
is uniformly controlled by continuity of the family of maps.

�
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Definition 37.4. For an interval J = [a, b], we write CJ = C(J,Rn). The sup norm
on this space is defined for f ∈ CJ , by

||f ||∞J ≡ sup
t∈J
||f(t)||

where ||f(t)|| is the Euclidean norm of that vector in R3.

Proposition 37.8. Let CI = C(I,R) denote the vector space of continuous functions
from I = [0, 1] to R. Give CI the metric coming from the sup norm. This makes CI
a complete metric space.

Proof. Let fn be a Cauchy sequence. Then for each fixed x, fn(x) is a Cauchy
sequence in R, hence converges to a point y as R is complete. We do this for each
x and define the function f(x) = y. Thus fn → f pointwise. But this is uniform
convergence, hence the limiting function f is uniformly continuous, by a triangle
inequality argument. �

Definition 37.5. Let C = C(R,Rn) denote the vector space of continuous functions
from R to Rn. By the topology of uniform convergence on compact subsets, we mean
that fn → f iff for each compact subinterval J , ||fn = f ||∞J → 0.

Proposition 37.9. Let C = C(R,Rn), with the topology of uniform convergence on
compact subsets. Suppose that fn is Cauchy on each compact interval. Then there
exists a unique f ∈ C such that fn → f .

Proof. We apply the previous Proposition to the coordinates, whence fn is a Cauchy
sequence on each interval J = [a, b]. The result follows. �

Higher derivatives for maps of Euclidean space. We recall some basics from
vector calculus. Now given a map f : Rm → Rn, the derivative at a point is the
best linear approximation at that point, given by an n × m matrix, the matrix of
partial derivatives. For the next section, we need to recall the notion of higher
derivatives for vector functions. See p. 5 of [Lan02]. Writing E for Euclidean space
Rm and F for Rn, and L(E,F ) for the collection of linear maps from E to F , then
Df : E → L(E,F ) ∼= Mn×m(R). Thus D2(f) ≡ D(Df) : E → L(E,L(E,F )),
D3f : E → L(E,L(E,L(E,F ))) and so on.

To understand the meaning of these formulas, given p ∈ E and v a vector in E
then vp is the vector v based at p, and Dfp is an (n × m) matrix, equivalently a
linear transformation from E to F , with Dfp(vp) = w ∈ F .

Now what does D2(f)p tell us? It says how this matrix-valued function varies,
infinitesimally in a given direction, specified by a tangent vector vp.

This gives the best linear approximation to Df at p, in the direction vp.
In other words, (Df ◦γ)(t) is a curve in the space of matrices, and we want to know

the tangent vector to this curve in the direction vp = γ′(0). This tangent vector is
itself a matrix since the curve is matrix-valued.

This matrix (i.e. linear transformation) depends on p and vp. Thus D2(f)p is an
element of L(E,L(E,F )).

Then for L̂ = D2f |p ∈ L(E,L(E,F )), choosing vp in the first E, L̂(vp) ∈ L(E,F )
is the matrix giving this change. To specify which matrix, we choose u ∈ E, and
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then (L̂(vp))(u) ∈ F . Now the first L in L(E,L(E,F )) indicates the collection
of linear maps, so if we have two vectors v1,v2 at p, these matrices add, that is,

L̂(v1 + v2) = L̂(v1) + L̂(v2). Furthermore each matrix is a linear transformation, so

given u1,u2 in the second E we have (L̂(v1))(u1 + u2) = (L̂(v1))(u1) + (L̂(v1))(u2).

The result is summarized by saying that L̂ is linear in both u and v, in other words it

is a bilinear map with values in F . Thus L̂ ∈ B2(E,F ), the collection of such bilinear
maps.

In the same way, then D3f : E → L(E,L(E,L(E,F ))) ∼= B3(E,F ) and similarly,
Dkf : E → Bk(E,F ), the k-multilinear maps from E ∼= Rm to F ∼= Rn.

It is easy as can be to write this formula, but not so easy to understand what it
means.

More generally, the derivative of a map from a manifold M to a manifold N ,
of dimensions m,n, is a linear transformation of the tangent bundles. That is, for
f : M → N , Df |p : TMp → TNq where q = f(p). Choosing charts, this is an
(n ×m) matrix, and we transport the above conclusions to the manifolds via these
charts.

Thus we picture Df as a matrix-valued function, where the charts determine the
basis in domain and range. Now, just as the function f can be thought of as a section
of a fiber bundle over M with fibers N , now Df is a section of the vector bundle over
M with fibers the vector space of matrices L(E,F ).

As before, we have Df : E → L(E,F ) so for L̂ = D(Df) then L̂ ∈ L(E,L(E,F )).

Thus, L̂(vp)(u) ∈ F . For each up ∈ TMp, there is a value of L̂(vp) on the vector

up. Again, this value is linear in both up and vp, so L̂ is bilinear with F -values. For

L̂(vp,up), the first coordinate v determines the direction of change, while the second
up specifies this matrix by telling us how that matrix acts on up.

We state the Chain Rule in this context.

Theorem 37.10. Let γ : R→ E and f : E → F . Then for f ◦ γ : R→ F we have:

D(f ◦ γ)(t) = Df(γ(t)(γ′(t)).

Picard operator. As above, let C = C(R,Rn) Now let V : Rn → Rn be K-Lipschitz.
We define a linear transformation of C, the Picard operator, and use this to prove

a number of results. First we show fixed points are solutions; then we demonstrate
the spatial continuity of these solutions, assuming a fixed point exists for each initial
condition. Next we use an iteration argument to prove existence, by showing the op-
erator is a contraction mapping in an appropriate metric space. We show smoothness
in the time parameter along orbits. After extending to the nonstationary situation,
and following Arnold’s proof, we show smoothness in the spatial parameter. This also
makes an interesting link with the corresponding linear flows.

Given the vector field V we define P : C → C by

(P(γ))(t) = γ(0) +

∫ t

0

V (γ(s))ds.

This is linear on P . Thus by restriction for each fixed v ∈ Rn we have an affine
operator on the affine subspace Cv ≡ {γ ∈ C : γ(0) = v}:
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Figure 109. Picard operator: the fixed points form an attractor, a
submanifold of C of dimension one.

(Pv(γ))(t) = v +

∫ t

0

V (γ(s))ds.

Remark 37.5. As we shall prove, for each chosen v ∈ Rn, the operator maps C to Cv,
and is an eventual contraction.

Now each Pv is an affine operator, the restriction of the linear Picard operator P on
C to Cv. On the full space C itself, P is a contracton to an n-dimensonal submanifold
of the infinite-dimensional space C, the image of the map v 7→ γv. See Fig. 109.

37.9. Picard iteration: examples.

Example 53. An already interesting example, presented in a number of texts, is Picard
iteration for the most basic ODE: that describing exponential growth, the equation
y′ = y. Defining the vector field V on R by V (y) = y, then for y = γ(t), this can be
rewritten as

y′ = γ′(t) = V (γ(t)) = γ(t) = y.

We iterate the Picard operator beginning with the constant path γ0 ≡ 1. The initial
condition will be y(0) = 1, so v = 1. We have:

(Pv(γ0))(t) = v +

∫ t

0

V (γ(s)) ds = γ1(t) = 1 +

∫ t

0

V (1) ds = 1 +

∫ t

0

1 ds = 1 + t.

The next iterate is

γ2(t) = 1 +

∫ t

0

V (1 + s) ds = 1 +

∫ t

0

1 + s ds = 1 + t+ t2/2,

then

γ3(t) = 1 +

∫ t

0

1 + s+ s2/2 ds = 1 + t+ t2/2 + t3/3!

and so on, with Pnv (γ0) = p(n)(t), the nth Taylor polynomial for what we know from
above is the unique solution, y(t) = et.

Picard iteration for autonomous linear (homogeneous) vector DE.
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Next let A be an (n × n) matrix, and V the linear vector field on Rn defined
by V (x) = Ax. Then the DE x′ = Ax can be rewritten as x′ = γ′(t) and so
γ′(t) = V (γ(t)).

We iterate the Picard operator beginning with the constant path γ0 ≡ 1. The
initial condition is v = x0. We have:

γ1(t) = (Pv(γ0))(t) = v+

∫ t

0

V (γ0(s)) ds = v+

∫ t

0

V (v) ds = v+

∫ t

0

Av ds = v+tAv.

Next we have

γ2(t) = v+

∫ t

0

V (v+tAv) ds = v+

∫ t

0

Av+tA2v ds = v+tAv+t2/2·A2v = (I+tA+t2/2·A2)v

and then

γk(t) = (I + tA+
t2

2
A2 +

t3

3!
A3 + · · ·+ tk

k!
Ak)v

so

γk(t)→ etAv.

This holds for all vectors v.

Example 54. (Rotation flow via Picard iteration) In Proposition 35.15 we have

seen that forA =

[
0 −1
1 0

]
then its powers are (A0, A1, A2, A3, . . . ) = (I, A,−I,−A, . . . ),

whence

etA =

[
c −s
s c

]

where c = cos t, s = sin t. We next see this in a different way, using Picard iteration.
Thus, as just calculated, for initial condition v we have:

γ3(t) = (I + tA+ t2/2A2 + t3/3!A3)v =

= (1− t2/2)Iv + (t− t3/3!)Av =

=

[
1− t2/2 −t+ t3/3!
t− t3/3! 1− t2/2

]
v

which as calculated in Example 55 converges as k →∞ to

etAv =

[
cos(t) − sin(t)
sin(t) cos(t)

]
v = Rtv.

Example 55. (Hyperbolic rotation flow via Picard iteration) We return to our

study in Examples 43 and 52. Here A =

[
0 1
1 0

]
. Now Ak = I for k even, Ak = A for
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k odd. So applying Picard iteration, then as just calculated we have:

γ3(t) = (I + tA+ t2/2A2 + t3/3!A3)v =

= (1 + t2/2)Iv + +(t+ t3/3!)Av =

=

[
1 + t2/2 t+ t3/3!
t+ t3/3! 1 + t2/2

]
v

which as calculated in Example 55 converges as k →∞ to

etAv =

[
cosh(t) sinh(t)
sinh(t) cosh(t)

]
v

providing an alternative way of understanding the Taylor’s series for these hyperbolic
functions.

37.10. Picard operator: Smoothness in time of solution curves; spatial con-
tinuity; contraction property. Next we turn to the theory of the Picard operator,
beginning with properties of a fixed point if one exists. Following that we show the
existence (and uniqueness), as a consequence of the contraction property.

Lemma 37.11.
(i) γ is a fixed point for Pv for all δ > 0, iff γ is a solution for the vector differential
equation: γ′(t) = V (γ(t)) for all t, with initial condition γ(0) = v.
(ii) If V is a Ck vector field, then a fixed point γ has one more degree of smoothness:
the curve t 7→ γ(t) is Ck+1, for k ≥ 0.

Proof. (i) If γ is a solution, thus γ(0) = v and γ′(t) = V (γ(t)), then

(Pv(γ))(t) = v +

∫ t

0

V (γ(s)) ds = v +

∫ t

0

γ′(s) ds = v + γ(t)− γ(0) = γ(t).

Conversely, if Pv(γ) = γ then v +
∫ t

0
V (γ(s)) ds = γ(t) for all t, so differentiating,

γ′(t) = V (γ(t)) and furthermore, γ(0) = v +
∫ 0

0
V (γ(s)) ds = v.

(ii) We consider k = 0, so V is continuous. Then since Pv(γ) = γ, γ′(t) = d/dt(v +∫ t
0
V (γ(s)) ds) = V (γ(t)) whence γ is differentiable hence continuous. Moreover

γ′ = V ◦ γ which we now know to be continuous, so γ is in fact C1.
Now if V is C1, thus DV : Rn → Mn(R) is continuous, then since as before

γ′(t) = V (γ(t)) then by the Chain Rule, Theorem 37.10, γ′′(t) = DV |γ(t)γ
′(t) is

continuous hence γ is C2.
We recall the statement of the Product Rule for matrix-values curves A(t), B(t),

part (ii) of Lemma 35.63: this states that (AB)′ = A′B + AB′.

If V is C2, then γ′′(t) = DV |γ(t)γ
′(t) so γ′′′(t) =

(
DV |γ(t)γ

′)′(t). Now A(t) =
DV ◦ γ(t) = DV |γ(t) is a continuous curve in Mn, as is γ′(t) (these are (n × n)
and the column vector (n× 1) matrices respectively) so (AB)′(t) = A′B + AB′(t) =
(DV |γ(t))

′(γ′)(t) +DV |γ(t)(γ
′′)(t). This exists and is continous. Thus γ is C3.

Now γ′′′(t) = (AB)′(t) = A′B + AB′(t) = (DV |γ(t))
′(γ′)(t) +DV |γ(t)(γ

′′)(t) so

γ(4)(t) = (AB)′′ = (A′B + AB′)′ = A′′B + 2A′B′ + AB′′

= (DV ′′|γ(t))γ
′(t) + 2(DV ′|γ(t))γ

′′(t) + (DV ′|γ(t))γ
′′′(t),
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whence γ ∈ C5.
Next we have γ(5)(t) = A′′′B+ 3A′′B′+ 3A′B′′+AB′′′ and so on, with the binomial

coefficients of Pascal’s triangle. By induction, the general statement is true.
�

Remark 37.6. See p. 61 of Lang’s book, [Lan02]. (Lang leavs out the added degree of
smoothness for γ, but note that this also makes sense conceptually because it is an
“integral curve” of the vector field.) See e.g. p. 270 of [HK03].

Proposition 37.12. (local fixed point theorem; continuous dependence on initial con-
dition)
(i) Let Cv ⊆ C = C(R,Rn) be the subset of all continuous paths γ such that γ(0) = v,
and let Cv,δ denote the paths in Cv restricted to t in the interval Jδ = [−δ, δ]. Then
for δ sufficiently small (< 1/K, where as above, V : Rn → Rn is K-Lipschitz) Pv is
a contraction mapping on Cv,δ, with constant c < 1.
(ii) There exists a unique fixed point γ ∈ Cv,δ for each chosen v.
(iii) The local solution curves are spatially continuous, that is, γv : Jδ → Rn depends
continuously on the initial value v. In fact, this dependence is Lipschitz.

Proof. (i): Let γ, γ̃ ∈ Cv. Then

Pv(γ)(t)−Pv(γ̃)(t) = v+

∫ t

0

V (γ(s)) ds−v−
∫ t

0

V (γ(s)) ds =

∫ t

0

V (γ(s))−V (γ̃(s)) ds.

We write ||v|| for the norm of a vector in Rn and ||f ||∞J for the sup norm of an
Rn-valued function f over the interval J ≡ [−δ, δ].

Then since V is K- Lipschitz, we have for all t ∈ R,

||Pv(γ)(t)− Pv(γ̃)(t)|| =
∣∣∣∣
∣∣∣∣
∫ t

0

V (γ(s))− V (γ̃(s)) ds

∣∣∣∣
∣∣∣∣ ≤

∣∣∣∣
∫ t

0

||V (γ)− V (γ̃)||(s) ds

∣∣∣∣ ≤
∣∣∣∣
∫ t

0

K||γ − γ̃||(s) ds

∣∣∣∣.
(143)

For any interval J ⊆ R and all t ∈ J this is

≤ K||γ − γ̃||∞J
∣∣∣∣
∫ t

0

ds

∣∣∣∣ ≤ K|t| · ||γ − γ̃||∞J .

And K|t| · ||γ− γ̃||∞J ≤ Kδ · ||γ− γ̃||∞J so choosing δ < 1/K then c = δK < 1 and the
bound is c||γ − γ̃||∞J so the map is a contraction.

(ii): Thus by the Contraction Mapping Principle, Lemma 37.7, Pv restricted to the
space Cv,δ has a unique fixed point γ : J → Rn.

(iii): Our proof follows the argument in Lang, p. 63 and makes use of the Picard
operator. (A general proof for a parametrized family of contraction mapppings is also
possible, see p. 68 of [HK03] but this is a bit simpler, plus we need these estimates
below in ???.) We consider the space of curves C = C(R,Rn). We define, for each

v ∈ Rn, the operator Pv on C by (Pv(γ))(t) = v +
∫ t

0
V (γ(s)) ds for γ ∈ C. Now
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Pv(γ)(0) = v. Let γv denote the fixed point for the map Pv guaranteed by part (ii).
Let also w ∈ Rn. Then for J an interval in R,

||γv − Pw(γv)||∞J = ||Pv(γv)− Pw(γv)||∞J = ||v −w||
as the parts under the integral are identical so cancel. (This also holds for J = R).
Now we take J to be the interval [−δ, δ] above which gives a contraction with constant
c ∈ [0, 1). Iterating and applying the triangle inequality,

||γv − Pnwγv||∞J = ||γv − Pwγv + Pwγv − P2
wγv + · · ·+ Pn−1

w γv − Pnwγv||∞J
≤ |γv − Pwγv||∞J + ||Pwγv − P2

wγv||∞J + · · ·+ ||Pn−1
w γv − Pnwγv||∞J

= ||γv − Pwγv||∞J + · · ·+ ||Pn−1
w (γv − Pwγv)||∞J

≤ (1 + c+ · · ·+ cn−1)||γv − Pw(γv)||∞J ≤
∞∑

0

cn||v −w|| = 1

1− c ||v −w||

since 0 ≤ c < 1.
So ||γv − γw||∞J = limn→∞ ||γv − Pnwγv||∞J ≤ 1

1−c ||v − w||, proving continuity of
the map v 7→ γv. Moreover, this last line shows the map v 7→ γv on CJ , from initial
condition to the unique local fixed point, is Lipschitz with constant 1/(1 − c). This
constant is ≥ 1 but can be chosen as close to 1 as we wish by using a higher iterate
and hence a lesser c. �

Definition 37.6. We define a topology on the space of curves C(R,Rn) by declaring
that γn → γ iff for every compact interval I ⊆ R, ||γn−γ||∞I → 0. (It is easy to define
a subbase for a topology which gives this notion of sequential convergence). This is
called the topology of uniform convergence on compact subsets of R.

We recall the following little result: Lemma 16.4.

Lemma 37.13. Let f : X → X be a function on a set such that for some m > 1, fm

has a unique fixed point. Then the same is true for f .

Proof. Let x be the unique fixed point for fm. Then x is a periodic point for f , of
(least) period k which divides m. We want to show that k = 1. But this is true, since
the orbit of x provides k distinct fixed points for fm. Lastly, uniqueness for f follows
from uniqueness for fm. �

Theorem 37.14. (Global solutions: existence and uniqueness; fixed point theorem;
continuous dependence on initial condition in topology of uniform convergence on
compacts)
(i)For each chosen v, there exists a unique fixed point γ(t), for all t ∈ R.
(ii) Given any compact interval J ⊆ R, the operator Pv is eventually a contraction
on C(J,Rn). That is, there exists c ∈ [0, 1) and N ≥ 0, depending on J , such that for
any n ≥ N , d(Pnv (γ),Pnv (γ̃)) < cn. (By Lemma 37.13, this will give a second proof of
(i).)
(iii) The global solution curves γv : R→ Rn depend continuously on the initial value
v, in the topology of uniform convergence on compact subsets of R, and moreover are
Lipschitz for any fixed interval length, with Lipschitz constant arbitarily close to 1.



FROM ADIC TRANSFORMATIONS TO GIBBS STATES 409

Proof. (i) The proof is by compatibility of the definition on neighboring intervals.
Given v0 = v, and δ < 1/(2K), we have proved there is a unique solution γ on
[−δ, δ]. Define v1 = γ(δ). Applying the theorem to the initial condition v1, there
exists a unique curve γ1 with γ1(0) = v1 satisfying the equation and defined on [0, 2δ].
Now define γ on [−δ, 2δ] to be γ(t) = γ1(t) on [−δ, δ], and γ(t) = γ2(t− δ) on [0, 2δ].
There are two definitions on the interval [0, δ] but these agree by uniqueness, as both
give a solution on that interval with initial value v0. Continuing in this way for
negative and positive multiples of δ completes the proof.

(ii) To prove Pv is an eventual contraction, we replace the curve γ by the curve
Pv(γ) in Equation (149) we have for any t ∈ R,

||P2
v(γ)(t)− P2

v(γ̃)(t)|| =
∣∣∣∣
∣∣∣∣
∫ t

0

V (Pv(γ)(s))− V (Pv(γ̃)(s)) ds

∣∣∣∣
∣∣∣∣ ≤

∣∣∣∣
∫ t

0

||V (Pv(γ))− V (Pv(γ̃))||(s) ds

∣∣∣∣ ≤
∣∣∣∣
∫ t

0

K||Pv(γ)− Pv(γ̃)||(s) ds

∣∣∣∣ ≤

K

∣∣∣∣
∫ t

0

∣∣∣∣
∫ s

0

K||γ − γ̃||(x) dx

∣∣∣∣ ds

∣∣∣∣ ≤ K2||γ − γ̃||∞J
∣∣∣∣
∫ t

0

∣∣∣∣
∫ s

0

dx

∣∣∣∣ ds

∣∣∣∣

(144)

Now ∣∣∣∣
∫ t

0

∣∣∣∣
∫ s

0

dx

∣∣∣∣ ds

∣∣∣∣ ≤
∣∣∣∣
∫ t

0

s ds

∣∣∣∣ ≤ t2/2

Thus our bound is
≤ K2||γ − γ̃||∞J t2/2.

This doesn’t look like much progress, but iterating one more time we have for any
t ∈ R,

(149)

||P3
v(γ)(t)− P3

v(γ̃)(t)|| =
∣∣∣∣
∣∣∣∣
∫ t

0

V (P2
v(γ)(s))− V (P2

v(γ̃)(s)) ds

∣∣∣∣
∣∣∣∣ ≤

K3||γ − γ̃||∞J
∣∣∣∣
∫ t

0

s2/2 ds

∣∣∣∣ = K3||γ − γ̃||∞J t3/3!

(145)

We claim that for n iterates we get the bound of Kn||γ − γ̃||∞J tn/n!.
To prove this by induction, we assume that we have this for n and prove for (n+1).

Thus, assuming that

||Pnv (γ)(t)− Pnv (γ̃)(t)|| ≤ Kn · tn/n!

then

||Pn+1
v (γ)(t)− Pn+1

v (γ̃)(t)|| =
∣∣∣∣
∣∣∣∣
∫ t

0

V (Pv(Pnvγ)(s))− V (Pv(Pnvγ)(s)) ds

∣∣∣∣
∣∣∣∣ ≤

K

∣∣∣∣
∫ t

0

||Pnv (γ)− Pnv (γ̃)||(s) ds

∣∣∣∣ ≤

Kn+1

∣∣∣∣
∫ t

0

sn/n! ds

∣∣∣∣ ≤ Kn+1 · tn+1/(n+ 1)!

(146)

proving our claim. For t ∈ J = [−R,R] then the bound is
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≤ ||γ − γ̃||∞J ·KnRn/n!

which is exponentially decreasing as soon as n > KR, showing the eventual contrac-
tion on J = [−R,R].

From the Lemma, the eventual contraction proves that not only does Pnv therefore
have a unique fixed point, but so does Pv.

We learned the above strengthened estimate from ??? of (Fischman-Salam). See
also p. 14 of [Sot79].

To prove (iii), we start with the estimate from (iii) of Proposition 37.10. There we
concluded for a contractionPw with constant c < 1 on C(J,Rd) that ||γv − γw||∞J =
limn→∞ ||γv−Pnwγv||∞J ≤ 1

1−c ||v−w||, thereby proving continuity of the map v 7→ γv,
and further, that the map v 7→ γv is Lipschitz with constant 1/(1− c). Here we have
shown that some power Pm

w is a contraction with constant c, so we simply apply the
above to P nm

w to reach the same conclusion for any given interval J . As before, the
Lipschitz constant is ≥ 1 and can be taken as close to 1 as we wish. �

Definition 37.7. We define for each s ∈ R the shift map σs on path space C(R,Rd)
by σs(γ)(t) = γ(t+ s). (This is a flow). Given a vector field V on Rn, we define S ⊆
C(R,Rd) to be the collection of all solution curves: those γ such that γ′(t) = V (γ(t)).

Proposition 37.15. (Time-independence of paths; existence of flow.)
(i) The solutions γv(t) with initial condition v satisfy the following: we have v =
γv(0); defining w = γv(t) and u = γv(t+ s) then u = γw(s). That is,

γv(t+ s) = γw(s).

(ii) Equivalently, for a solution γv, σs(γv) = γw where w = γv(s). Thus the subset S
of solution curves is invariant for the shift flow (σs)s∈R.
(iii) Defining a collection (τt)t∈R of maps of Rn by the equation τt(v) = γv(t) where
γv is the unique solution with initial condition v, then τ is a flow. Moreover, it is
a continuous flow on Rn, and for each v, the time derivative along an orbit curve,
d/dt(τt(v)) exists.
(iv) There exists a unique continuous flow τt on Rn such that for any v, the path γv
defined by γv(t) = τt(v) is the unique solution with initial value v. If V is Ck, then
the orbits are Ck+1, and the flow is Ck.
(v) The map v 7→ γv is a continuous isomorphism from the flow (Rn, τt) to the shift
flow (S, σt).

Proof. (i) This is just the property of additivity with respect to time of the integral.

That is, w = γv(t) = v +
∫ t

0
V (γv(r))dr, so:

γv(t+ s) ≡ u = v +

∫ t+s

0

V (γv(r))dr = v +

∫ t

0

V (γv(r))dr +

∫ t+s

t

V (γv(r))dr =

w +

∫ t+s

t

V (γv(r))dr = w +

∫ s

0

V (γw(r))dr = γw(s).

(ii) follows from this.
(iii): Since we know that for any given v ∈ Rn, there exists a unique solution γv

with that initial value, the equation τt(v) = γv(t) gives us a well-defined function
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τt : Rn → Rn, using both properties: existence to get a value, uniqueness to know
it is a single value. Defining w ≡ γv(t), then from (i), we get the flow property:
τs+t(v) = γv(t + s) = γw(s) = τs(w) = τs ◦ τt(v). Note also that τ0(v) = v, by
existence. These two properties tell us it is a flow; note that each map τt is indeed a
bijection, with inverse τ−t.

(iv) We have just shown that for V a Lipschitz vector field, by the existence and
uniqueness theorem, the equation defines a flow τt. Conversely, if there is a unique
flow τt such that for each v ∈ Rn, γv defined by γv(t) = τt(v) is a solution of the
equation γ′(t) = V (γ(t)) with initial condition v, i.e. γv(0) = v, then

Defining γ̃w(t) = γv(t + s) = γw(s)....??? We know that given v ∈ Rn, there is a
unique path γv(t) solving γ′(t) = V (γ(t)). We define τt : Rn → Rn as follows:

τt(v) = γv(t).

We claim this satisfies the flow property: τt+s = τs ◦ τt, that is, for w = γv(t). we
have γw(s) = γv(t+ s).

(v) ???
�

37.11. Vector fields on Banach spaces; Nonstationary systems of ordinary
differential equations. We write E = Rd, with the standard basis B = (e1, . . . , ed),
inner product and norm. Generalizing from this setting, and following Lang [Lan02],
[Lan01], we now allow E to be a Banach space: a complete normed vector space. We
recall some essential differences between finite and infinite dimensional topological
vector spaces: in finite dimensions all norms are equivalent, and so convergence of
a sequence of vectors vn → v in any choice of norm, ||vn − v|| → 0, is equivalent
to convergence of coordinates, thus writing v = (v1, . . . vd) then (vn)k → vk for all
1 ≤ k ≤ d. This holds since one of the possible norms is the sup norm (or L∞ norm)
||v|| = supdi=1 |vi|.

These coordinates can be with respect to any choice of basis B̃ = (u1, . . . ,ud),
and all such choices give an equivalent notion of convergence, again by equivalence of
norms. The map λi : v 7→ vi where v =

∑d
i=1 viui is an element of V ∗, and any linear

functional is a linear combination of these λi. Hence for finite dimensions, any linear
function is continuous. This fails for infinite dimensions, where the dual space V ∗ of
V is defined to be the space of all continuous lnear functionals, as those are nicely
related to convergence. Indeed, we replace the notion of coordinates with respect to
a basis with the coordinates given by these linear functionals. Thus, for λ ∈ V ∗, λ(v)
is the “λth-coordinate” of v, and we say vn → v iff for all λ ∈ V ∗, λ(vn) → λ(v).
This defines what is called the weak topology of V , see [Rud73] p.65; the fact that
there are different, natural topologies in infinite dimensions is much of what makes
Functional Analysis (yes, the application of analysis ideas via linear functionals!) so
fascinating and powerful.
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Weak convergence works particularly well if V ∗ separates points on V , i.e. given
v 6= w then there exists λ ∈ V ∗ such that λ(v) 6= λ(w). A locally convex Banach
space always has this property, as a consequence of the Hahn-Banach Theorem, see
[Rud73] p.60.

These coordinates given by V ∗ directly generailze coordinates with respect to a
basis. The idea of linear combination then is extended to infinite series, with conver-
gence in the norm or weak topologies. However for infinite dimensions there does not
always exist a countable basis, which is why we use all of V ∗ to define coordinates,
rather than a subset.

We also use functionals to define vector-valued integration. Thus e.g. for F : R→ V
and measure µ on R,

∫
R F (t)dµ(t) = w iff for each λ ∈ V ∗,

∫
R λ(F (t))dµ(t) = λ(w).

See p.74 of [Rud73]. This notion will allow us for example to define the Picard
operator for a vector field V on a Banach space E, by the same formula:

(Pv(γ))(t) = v +

∫ t

0

V (γ(s)) ds.

In the next section we introduce nonstationary vector fields. For this purpose it is
important to review some background, making the definitions precise.

Definition 37.8. We recall some definitions from Set Theory [Hal74]. Given sets X
and Y , a relation R from X to Y is any subset R ⊆ X × Y . We write xRy, read “x
is related to y” when (x, y) ∈ R.

A function f from X to Y is a special type of relation, one such that each x ∈ X
is related to some y ∈ Y , but only one. That is, for each x ∈ X∃y : xRy, and
(xRy) ∧ (xRw) =⇒ (y = w). We then write f(x) = y if y is this unique element
of Y . Given a function f let Rf ⊆ X × Y denote its relation. The graph of the
function is the set of points Rf = {(x, f(x)) : x ∈ X}. In other words, from the set
theory viewpoint, a function is its graph. The image of a function f : X → Y is
Im(f) = {y = f(x) : x ∈ X}.

By a curve γ in a Banach space E we mean a continuous function γ : R→ E. The
graph of the map γ is {(t, γ(t)) : t ∈ R}. Thus γ ∈ C(R, E) and also equals its graph,
so γ ⊆ R× E.

Remark 37.7. This gives us two quite different interpretations, one static and one
dynamical. The graph of f is is a set of points in the product space R× E, a static
view. The dynamical interpretation is that the function f is a map-sending one point
to another- which parametrizes its image.

This change of perspective involves viewing time as a spatial parameter, and is
familiar from Calculus where a derivative of f : R→ R is, from the dynamical point
of view, a rate of change, while from the static perspective is the slope of the tangent
line. Much of the power of the Calculus comes from the interplay of these very
different points of view.

For example, consider the curve γ : R → R2 with γ(t) = (cos t, sin t). This map
parametrizes the unit circle; note that including the parameter serves to distinguish
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the points γ(t) = γ(s) if s 6= t. On the other hand, the graph is a set of points (a
helix) in R× R2.

Definition 37.9. To make this distinction clearer we define: the graph curve of γ
is the curve γ̂ where γ̂ : t 7→ (t, γ(t)). Thus the image of γ̂ is the graph of γ; γ̂
parametrizes the graph. It projects to the curve, via the identity map on the second
coordinate, as π : R× E → E; thus π ◦ γ̂ = γ and (t, γ(t) 7→ γ(t). In the case of the
above example, γ̂(t) = (t, γ(t)) = (t, cos t, sin t) ∈ R × E. Thus γ̂ ∈ C(R, C(R, E))
where we topologize the space of paths C(R, E)) by uniform convergence on compact
subsets.

We define Ê = R × E and Et = {t} × E ⊆ Ê. This can be viewed as a vector
fiber bundle over R, with fiber Et over the point t. It is a trivial bundle, indeed is a
(global) product. This projects to E, sending Et to E via the identity on the second
coordinate, just as for the graph curve. Indeed, the graph curve γ̂ is a section of this
fiber bundle: by definition, a choice of one point in the fiber for each base point t.

Now let L(E) = L(E,E) denotes the linear transformations on E. For Rd via the
choice of basis these are identified withMd×d, the square matrices; for a Banach space,
linear will mean here continuous linear (which is automatic for finite dimensions, as
noted above).

A vector field V on E is an element of V ≡ C(E) = C(E,E). A linear vector field
is V ∈ L(E). A nonstationary vector field on E is a continuous curve in V . Thus, it
is a parametrized collection of vector fields, (V t)R = {V t : t ∈ R}, with each vector
field V t defined on the same space E. It is Lipschitz if there is a uniform Lipschitz
constant for each t.

The graph of this curve is

{(t, V t) : t ∈ R} ⊆ R× V .

For each t, V t is a vector field on Et = {t} × E. Its graph curve is V̂ . This is

a curve of vector fields on the fibers Et of the fiber bundle Ê. The value at t is
V̂ (t) = (t, V t) ∈ C(R,V(Et)).

This projects to the nonstationary vector field via the map π to the second coor-
dinate, sending Et to E.

An essential difference between the graph curve and the curve is that the spaces
Et, although projected to E via an isomorphism, are distinct spaces because the
parameters are different. Thus we cannot add v ∈ Et to u ∈ Es unless t = s.

On the other hand, in E these vectors can be added, which allows us also to
integrate and thereby define the Picard operator.

The nonstationary vector field is a a parametrized collection of vector fields (V t)R
on the same space E whereas in V̂ we have V̂ t defined on the distinct vector spaces
Et.

The way we picture (V t)R and its graph V̂ are quite different: the first we visualize
as a fixed space E with a single changing vector field, the second as distinct vector
fields on distinct spaces, all stacked up as fibers of a fiber bundle along the base space
R.
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Definition 37.10. We define the lift of a nonstationary vector field (V t)R: setting

Ê = R×E, this is V̂ : Ê → Ê where V̂ (t,v) = (1, V t(v)). This is a stationary vector
field in one higher dimension, where time is treated like one more spatial dimension.

The time derivative γ′ of a C1 curve γ is γ′, the continuous map t 7→ γ′(t) ∈ E
where the tangent vector to the curve at time t is defined to be

γ′(t) = lim
h→0

γ(t+ h)− γ(t)

||h||
Equivalently, it is the unique vector such that, given ε > 0 there exists δ > 0 such
that

||γ(t+ h)− γ(t)− γ′(t)||
||h|| < ε

for ||h|| < δ.
Thus γ′ is a continuous curve in E.

We take the time derivative of the graph curve, its tangent vector. γ̂(t) = (t, γ(t)) so
γ̂′(t) = (t, γ(t))′ = (1, γ′(t)).

Example 56. For our example of γ(t) = (cos t, sin t) so γ̂(t) = (t, γ(t)) = (t, cos t, sin t)
then the derivative of the first is the curve of tangent vectors (− sin t, cos t), while of
the second is (1,− sin t, cos t), the tangent vector to the helix curve (the graph curve).

Definition 37.11. Summarizing the above, given a Banach space E, a nonau-
tonomous, nonstationary (n.s.) or time-dependent vector field (V t)R is a parametrized
family of continuously varying vector fields V t on E, each of which is K-Lipschitz for
some fixed K.

A curve is a continuous map γ : R → E. Its graph curve is γ̂(t) = (t, γ(t)) with
values in R×E; this has as its image the graph of γ, and so parametrizes that graph.

The nonstationary (vector) ordinary differential equation defined from our nonsta-
tionary vector field is

γ′(t) = V t(γ(t)). (147)

An initial condition for the differential equation is a choice of (s,v) ∈ Ê. A solution

of the equation with this initial condition is γ ∈ Ĉ satisfying (147) with γ(s) = v.
This defintion works for Banach spaces. If E = Rd, this vector differential equation

is equivalent to a nonstationary system of differential equations in one dimension by
writing, as for the stationary case in (148), but now simply adding the variable t at
the beginning of each line:





y′1(t) = V1(t, x1(t), . . . , xd(t))
...

y′d(t) = Vd(t, x1(t), . . . , xd(t))

(148)

with initial conditions yk(s) = vk for all 1 ≤ k ≤ d.
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Proposition 37.16. The curve γ is a solution for (147) iff its graph curve γ̂ is a
solution for the stationary differential equation

γ̂′(t) = V̂ (γ̂(t))

where V̂ is the lift of the nonstationary vector field (V t)R to Ê = R× E.

Proof. We have

γ̂′(t) = (t, γ(t))′ = (1, γ′(t)) = V̂ (γ̂(t))

since by definition, this is the stationary vector field V̂ : Ê → Ê defined by V̂ (t,v) =
(1, V t(v)), where v ∈ E.

Note that the lift of γ′ equals γ̂′.
�

Definition 37.12. Given a nonstationary vector field (V t)R on E, we also say a curve
γ in E is tangent to the nonstationary vector field iff it is a solution, that is:

γ′(t) = V t(γ(t)) = V t
γ(t).

From the Proposition, this holds iff the graph curve is tangent to the lift V̂ .

A path is γ ∈ Ĉ ≡ C(R, Ê) ⊆ ΠRE, so γ is continuous with value γ(t) ∈ Et for each

t. We give Ĉ the topology of uniform convergence on compact subsets of R.
We shall prove the existence, uniqueness and continuity theorems for nonstationary

vector fields in two ways. The simplest is to simply apply our previous results to the

lift V̂ as this is both stationary and Lipschitz; it is Lipschitz since that holds in the
spatial parameter v ∈ E and since the time parameter is the constant 1. We give
first however a direct proof using the nonstationary version of the Picard operator,
as it is important to see how everything goes through.

For this, given our nonstationary vector field (V t)R on E, we define the nonstation-

ary version of the Picard operator Ps,v : Ĉ → Ĉ simply to be:

(Ps,v(γ))(t) = v +

∫ t

s

V r(γ(r))dr.

We take first s = 0.

Lemma 37.17. γ is a fixed point for P0,v iff γ is a solution for the vector differential
equation γ′(t) = V t(γ(t)) with initial condition γ(0) = v.

Proof. If γ is a solution, then

(P0,v(γ))(t) = v +

∫ t

0

V r(γ(r))dr = v +

∫ t

0

γ′(r)dr = v + γ(t)− γ(0) = γ(t).

Conversely, if P0,v(γ) = γ then v +
∫ t

0
V r(γ(r))dr = γ(t) for all t so differentiating,

γ′(t) = V t(γ(t)) and furthermore, γ(0) = v +
∫ t

0
V r(γ(r))dr = v. �

Next we connect the Picard operators Ps,v for different initial times s:

Lemma 37.18. Given a nonstationary vector field (V t)R on E, γ is a fixed point for
P0,v iff it is a fixed point for Ps,w for s ∈ R, where w = γ(s).
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Proof. Let P0,v(γ) = γ. Equivalently, γ(t) = γ(0) +
∫ t

0
V r(γ(r))dr for all t.

Now for w = γ(s),

(Ps,w(γ))(t) = w +

∫ t

s

V r(γ(r))dr = γ(s) +

∫ t

s

V r(γ(r))dr =

γ(0) +

∫ s

0

V r(γ(r))dr +

∫ t

s

V r(γ(r))dr = γ(0) +

∫ t

0

V r(γ(r))dr = γ(t).

�

Corollary 37.19. Given a nonstationary vector field (V t)R on E, γ is a fixed point
for Ps,v iff γ is a solution for the vector differential equation: γ′(t) = V s(γ(t)) with
initial condition γ(s) = v. �

Proposition 37.20. (local fixed point theorem) Given a nonstationary vector field
(V t)R on E,

(i) Let Ĉs,v ⊆ Ĉ = C(R, E) be the subset of all continuous paths γ such that γ(s) = v,

and let Ĉs,v,δ denote the paths in Ĉs,v restricted to t in the interval [s− δ, s+ δ]. Then

for δ < 1/(2K), Ps,v is a contraction mapping on Ĉs,v,δ, with constant c < 1.

(ii) There exists a unique fixed point γ ∈ Ĉs,v,δ for each chosen s,v.

Proof. For the stationary case this reduces to our previous proof, by taking V t = V
on E and starting at t = 0. We include this nearly identical proof to highlight these
notational differences.

Let γ, γ̃ ∈ Ĉs,v. Then

Ps,v(γ)(t)− Ps,v(γ̃)(t) =

= v +

∫ t

s

V r(γ(r))dr − v −
∫ t

s

V r(γ(r))dr =

∫ t

s

V r(γ(r))− V r(γ̃(r))dr.

As above, we write ||f ||∞J for the sup norm of a function f over the interval J ≡
[−δ, δ].

Then for t ∈ J = [s− δ, s+ δ],

|Ps,v(γ)(t)− Ps,v(γ̃)(t)| = |
∫ t

s

V r(γ(r))− V r(γ̃(r))dr|

≤
∫ t

s

||V r(γ(r))− V r(γ̃(r))||∞J dr = 2δ||V r(γ)− V r(γ̃)||∞J
≤ 2δK||γ − γ̃||∞J ≡ c||γ − γ̃||∞J

(149)

since each V s is K- Lipschitz.
Now choose δ so small that c = 2δK < 1. That is, δ < 1/(2K).

We have shown Ps,v restricted to the space Ĉs,v,δ is a contraction, hence it has a
unique fixed point γ : J → E.

�

Then we have:
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Theorem 37.21. Given a Lipschitz nonstationary vector field (V t)R on E, there
exists a unique solution to the nonstationary the vector differential equation: γ′(t) =
V s(γ(t)) with initial condition γ(s) = v. The solution curve is in Ck in the time
direction, and is continuous in (s,v), in the topopogy of uniform convergence on
compact subsets of R.

Proof. We have given two proofs: for the first we apply Theorem 37.14 to the lifted

(stationary) vector field V̂ on a space Ê = R × E of one higher dimension. For the
second, using the nonstationary Picard operator, we have seen that the formulas and
proofs are nearly the same. �

Remark 37.8. Thus the stationary case can be used to prove the nonstationary; con-
versely, of course, the case of a stationary vector field V is a special case of

37.12. Smoothness in space. Given a nonstationary Lipschitz vector field (V t)R
on E, and associated nonstationary differential equation

γ′(t) = V t(γ(t))

with initial condition v̂ = (s,v) ∈ Ê, we know the following so far:
–Existence and uniqueness: a global solution γ(t) exists and is unique;

–Continuity in space: This solution γv̂ ∈ Ĉ varies continuously with respect to this
initial condition, in the topology of uniform convergence on compact subsets of R.

–Smoothness in time: The time derivative γ′(t) of a solution exists and is continuous.

Further, if the vector fields V t are in Ĉk(E) then γ is in Ĉk+1(R, E) for all k ≥ 0.

–Existence of a continuous flow: we know this so far for the stationary case, where
we have shown the differential equation defines a continuous flow τt, with orbits
differentiable in the time direction. We address nonstationary flows below.

Our next job is to prove differentiability in the space parameter.
For this we mostly follow Arnold [Arn12], p.280 ff. as we like this treatment espe-

cially: it is a beautiful and clear proof, once some details are filled in and motivated.
Filling in these parts leads us to develop important related concepts: the system of
equations of variations; the linearization of vector fields and of flows; extensions of
flows and vector fields to fiber bundles; parametrized vector fields. A fascinating con-
clusion is that extensions of vector fields to fiber bundles give an infinitesimal vesion
(for continuous time) of skew product transformations in ergodic theory, and equiv-
alently, of random dynamical systems. This result is a connection between random
flows and random vector fields, with the system of equations of variations being an
especially important special case.

Linearization.
Given a vector field V : E → E, we write V ∗ = DV for its derivative. Its value

V ∗(p) is a matrix V ∗(p) which best approximates the function V at the point p, which
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we call the linearization of the vector field at the point. Writing E∗ = L(E,E), then
this defines a map V ∗ : E → E∗.

Now E∗ is a vector bundle over E. Using the standard charts, this is just the
product vector space E∗ = E×L(E,E), but it useful to think of it as a fiber bundle.

Let γ(t) be a solution for the differential equation of V on E:

γ′(t) = V (γ(t)).

We lift this to the fiber bundle E∗, defining

γ∗(t) = V ∗(γ(t))

and

γ̂∗(t) = (γ(t), γ∗(t))

This is now a curve γ̂ in the fiber bundle which projects to γ in the base space E.
For each p, the matrix A = V ∗(p) defines a linear flow w 7→ etAw on the tangent

space Tp, which is a vector space isomorphic to E. The intuitive idea is that this
linear flow on the fiber Tp should in some sense approximate the actual flow of the
vector field near that point.

However this is not quite right as the matrix A changes along the path γ(t). That
is, rather than just this flow on Tp we should consider a flow on the tangent bundle
T (E).

Thus, if we think of the path γ(t) as giving the time coordinate, then our stationary
vector field V on E gives us a nonstationary vector field, on E, along the time as
given by the path.

That is, V t
p = V ∗(γp(t)) is a nonstationary differential equation, so by Theorem

37.21 we have a unique solution. In fact this is a nonstationary linear differential
equation, see Example 59.

Moreover Theorem 37.21 tells us our solutions are continuous in space. However,
this is continuity in the tangent space, not in the base space! We still have no
information about that form of continuity. What we need is a more global approach,
to consider the whole tangent bundle rather than just along an orbit.

To make this precise, we first note that for each p fixed, V ∗p is a linear map on
the tangent space Tp. Equivalently, it is a linear vector field on that space, denoted
V ∗p ; the value of this vector field at the point w = wp ∈ Tp is given by the matrix
multiplication: V ∗p (w) = V ∗pw.

Thus V ∗ is a field of (linear) vector fields, one on each tangent space.
Now, given a curve γ : R → E, we define an associated matrix-valued curve

γ∗ : R → E∗ whose value is the spatial derivative of the vector field at that point;
that is,

γ∗(t) = V ∗(γ(t)) = V ∗γ(t).

We can write this as γ∗ = V ∗ ◦ γ = V ∗γ .

Now consider a C2 nonstationary vector field (V t)R on E = Rd, the derivative is

(V t∗)R, where for each t, V t∗ = (V t)∗. Writing Ê = E × R, and Et = E × {t} ⊆ Ê,
then V t is a vector field on Et.
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We take as an inital condition the pair (p,w) with p ∈ Et0 and w ∈ Et0 . The
point p will move in time t to τt(p) = p̃, while the tangent space Tp is transformed
to Tp̃ by a nonstationary linear flow.

Given now a vector-valued curve η : R → E, then applying to this the matrix-
valued curve γ∗ gives an equation:

η′(t) = V ∗γ(t)(η(t))

or equivalently
η′(t) = γ∗(t)η(t).

We claim that this defines a differential equation, but to make this precise we need
to go back to the tangent bundle.

When we apply the matrices γ∗(t) to the curve η(t) with values in E, we have
the formal equation written above which makes sense as for t fixed γ∗(t) ∈ L(E,E).
However, as noted it is mathematically more correct to think of η as a curve with
values not in E but rather in TE = T (E). That is, for fixed t, η(t) ∈ Tp where
p = γ(t). But since E is identified with Tp, we can do calculations in E.

The initial value of this curve is η(0) = w ∈ E, but actually, η(0) = (p,w) = wp

where p = γ(0). This is important because there can be two points p, p̃ with the same
w ∈ E but which have different solution curves, apparently violating the uniqueness
of solutions. To resolve this, we should not lose track of the base point γ(t).

Thus, consider the part of the tangent bundle which projects to the curve γ(t).
We denote this as Tγ(t). We identify each Tγ(t) with E and the path γ(t) with a
topological factor of R via the map γ(t) 7→ t, and denoted R/ ∼ where ∼ is the
equivalence relation on R: t ∼ s ⇐⇒ γ(t) = γ(s). Then R/ ∼ is topologically either
R, a circle or a point, depending on whether γ is injective, periodic or constant. Tγ(t)

is thus identified with (R/ ∼) × E = Ê. We have a linear vector field V ∗γ(t) on each

Tγ(t). This corresponds to a nonstationary vector field V t on Et ⊆ Ê.

Remark 37.9. This passage from the tangent space Tp to E is possible because TE is
a trival bundle, i.e. just the product E×E. Thus we can identify Tp with E and think
of η as a curve with values in E. In a general manifold, this identification depends on
a connection, which gives a way of connecting the tangent spaces along our curve γ.

Definition 37.13. Given a vector bundle F over a manifold M , by a vector field
on the vector bundle we mean we have a vector field on each fiber Fp which varies
continuously in the base point p.

For example, the spatial derivative V ∗ our vector field V defines a linear vector
field on the tangent bundle TE. For curve denoted η : R→ E, the equations

η′(t) = V ∗γ(t)(η(t))

or
η′(t) = γ∗(t)η(t)

define from our from our stationary vector field V on E, a nonstationary linear dif-
ferential equation on the part of the bundle above each chosen curve γ, that is, on
Tγ(t).
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We emphasize that this is not a differential equation on E itself, nor on TE ∼= E×E.
Rather we need the definition just given.

Now Tγ(t) is identified with (R/ ∼)× E. For example, if R/ ∼= R this is a linear
space; however, the only part of the vector space structure used in considering the
vector field, and below when defining the Picard operator, is in the fiber.

We summarize this as follows:

Definition 37.14. Given vector field W on a vector bundle F over a manifold M ,
and given a curve γ in M , with Wγ denoting the vector field over the curve, then

η′(t) = Wγ(t)(η(t))

is the W -differential equation over γ. Here η : R → F , with η(t) ∈ Fγ(t). Thus the
values of η are in the fiber over that point.

In the particular case where V is a vector field on M , and γ is an integral curve
for V , then we call the pair of equations

{
γ′(t) = V (γ(t))

η′(t) = Wγ(t)(η(t))

the (V,W ) joint differential equation.
A special case is when W = V ∗, and then we have

{
γ′(t) = V (γ(t))

η′(t) = V ∗γ(t)(η(t))

or equivalently:
{
γ′(t) = V (γ(t))

η′(t) = γ∗(t)η(t)

Choosing a joint initial condition (v,w) ∈ E×E, but more properly in E×Tγ(0)(E),
we call this the system of equations of variations for the vector field V .

We can apply the existence and uniqueness theorem proved above (Theorem 37.21)
and conclude that fixing γ(t), and choosing an initial condition w ∈ Tγ(0), there exists
a unique solution curve η(t) satisfying the equation. This is continuous in the spatial
variable w in the fiber.

That is, there is a unique solution (γ, η) with this initial condition to the pair of
equations.

There is no reason not to have started with a nonstationary vector field V t, since
we ended up with one in any case!

In our notation, the nonstationary equations are
{
γ′(t) = V t(γ(t))

η′(t) = V ∗γ(t)(η(t))

or equivalently:
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{
γ′(t) = V t(γ(t))

η′(t) = γ∗(t)η(t)

The (joint) inital condition is now given as (t0.v,w) with w ∈ Tv(E) for v = γ(t0).
So far we have shown:

Theorem 37.22.
(i) Given a K-Lipschitz vector field W on a vector bundle F over a manifold M ,
and given a curve γ in M , with Wγ denoting the vector field over the curve, then
W -differential equation over γ

η′(t) = Wγ(t)(η(t))

with initial condition (t0,v,w) has a unique solution η(t). If W is Ck then η is Ck+1.
The solution is continuous in w, i.e. in the fiber.
(ii) Given a C2 nonstationary vector field (V t)R on E = Rd, and given a joint initial
condition (v,w) ∈ E × Tγ(t0)(E), there exists a unique joint solution (γ, η)(t) to the
syatem of variations

{
γ′(t) = V t(γ(t))

η′(t) = γ∗(t)η(t)

which is differentiable in t. If the vector field is Ck for k ≥ 2 then the solution is
Ck+1. The solution is continuous in (v,w) in the topology of uniform convergence on
compact subsets of R.

See Arnold’s book [Arn12], (2) on p. 279.
In Arnold’s notation the (nonstationary) system is written as:

{
ẋ = v(x, t), x ∈ E
ẏ = v∗(t,x)y, y ∈ Tx(E).

Whether the joint solution is continuous in the joint initial conditions is glossed
over by Arnold; it does not follow directly from Theorem 37.21.

V ∗γ(t)(η(t))γ∗(t)η(t)

We consider the Picard operator for η:

(Ps,w(η))(t) = w +

∫ t

s

V ∗γ(r)(η(r))dr = η(s) +

∫ t

s

γ∗(r)η(r)dr =

To describe Arnold’s next step let us first consider replacing the vector-valued path

η : R→ E by a matrix-valued path A : R→ L(E, Ẽ) where E = Rd and Ẽ = Rm.
This gives the equation

A′(t) = γ∗(t)A(t)

Fixing a (d × d) matrix M - in this case M = γ∗(t)- multiplication on the left by
M defines (via the distributive law for matrix multiplicaion) a linear transformation
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of the vector space W of (d×m) matrices, Md,m. and hence a vector field V on W ,
by simply V (w) = Aw.

The (d×d) matrix γ∗(t) depends on the point: it equals V ∗(p) where γ(t) = p. So
again we have a field of vector fields; we denote this as V ∗m. Thus for each p ∈ E,
V ∗mp is a vector field on the fiber E∗mp

∼= Md,m. This is a fiber in the Md,m matrix
bundle, denoted E∗m ∼= E ×Md,m, since as before the bundle is trivial.

This setup includes the first case above of the tangent bundle, where Md,1
∼= Et is

the space of column vectors, so Md,1 : Et → Et.

Given a path γ ∈ C(R, R̂) with each γ(t) ∈ Et, and the associated square matrix-
valued path γ∗ = Dγ, then we consider the vector field V ∗m on L(Ed, Em); its value
at the point p = γ(t) in Ed is γ∗(t) = V ∗m(p).

Thus for A ∈ L(Ed, Em), V ∗m(A(t)) = γ∗(t)A(t), since the value of the vector field
is given by matrix multiplication.

For each fixed initial condition (t0,v), this curve of matrices A(t) = γ∗(t) , defines
a second nonstationary linear differential equation over the curve γ.

η′(t) = A(t)η(t) = γ∗(t)η(t).

The initial condition at time t0 is (t0,w) = (t0, η(t0)). The equation is linear in w,
hence the solution is linear in w, and also is a linear operator on the space of curves
η : R→ E.

Next we let the initial condition w be a function w = w(p), in other words,
a vector field w : E → E. An interesting choice will be the initial condition of
the curve γ, i.e. w(v) = v. Then the nonlinear equation γ′(t) = V t(γ(t) and the
linear equation η′(t) = A(t)η(t) have the same initial value: starting at time t0, then
γ(t0) = v = η(t0) ∈ E.

As a check, if for example V t is nonstationary but constant in space, then γ∗ = γ
and indeed the solutions are identical: γ(t) = η(t); γ(t0) = v = η(t0).

Given paths γ : R → E and η : R → E, we extend our curves and vector fields to
the product space of values, setting γ̂ = (γ, η) : R→ E ×E; the two vector fields V t

and A(t) define a vector field V̂ = (V,A) on E × E = R2d.
We can unify these into a single differential equation:

γ̂′(t) = V̂ (γ̂(t))

with initial condition (t0,v,w); thus at time t0 we have γ(t0) = v; η(v, t0) = w.
In the particular case A = γ∗, this is

γ̂′(t) = (γ′(t), η(t))) = (V t(γ̂(t), γ∗(t)η(t)).

.
Arnold writes this as a system:

{
γ′(t) = V t(γ(t))

η′(t) = γ∗(t)η

with initial condition at time t0: γ(t0) = v; η(v, t0) = w
in other words
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{
γ′(t) = V t(γ(t))

η′(t) = A(t, γ(t))w

Arnold calls this a system of equations of variations.
Now Arnold takes one more crucial step: he generalizes the vector w to a (d× d)

matrix Z, that is
{
γ′(t) = V t(γ(t))

Z ′(t) = A(t, γ(t)) · Z(t)

With initial condition γ̂(t0) = (t0,v, Z).
But why is this a DE? What is the space, and the vector field? The observation

we need here is that multiplication on the left Z 7→ A · Z is linear on Md
∼= L(E,E)

and so defines a vector field V̂ ∗ on E2 ∼= R2d.
This means that defining the vector field along the path, At(Z(γ(t))) = v. we could

rewrite the above system as:
{
γ′(t) = V t(γ(t))

Z ′(t) = At(Z(γ(t)))

Paths are matrix-valued, and we define the Picard operator for this vector field
exactly as before:

Let Ĉ∗ = C(R, E∗). We can define a on Ĉ∗ as follows.

(P∗s,v(γ∗))(t) = M +

∫ t

s

(V̂ r)∗(γ∗(r))dr = M +

∫ t

s

(V r)∗(γ∗(r))dr,

since application of the vector field is given by multiplication by the matrix. This
is Arnold’s equation.

Examples of linearization.
For a classical example of this we consider the equation for the pendulum, a second-

order nonlinear equation in one dimension. Its linearization at position 0 is the
harmonic oscillator, with equation

x′′ = −x,
where x = x(t) is position, x′ is velocity or momentum, and x′′ is acceleration or
force.

The derivation of the harmonic oscillator equation comes from Hooke’s Law in
physics, which states that the restorative force of a spring is proportional to the
distance displaced from the rest position x = 0. Since by Newton’s law F = ma, then
taking m = 1 yields the above equation

x′′ = −x,
with the negative sign due to the force being “restorative” i.e. pushing the mass back
torards the rest point.
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Introducing a second variable y by setting y = x′ then y′ = x′′ and we have the
pair of equations in (x, y). Since momentum is mv where v = x′ is velocity, then x
is position (say horizontal) while y is velocity=momentum. Thus the coordinates are
(x, y) = (x(t), y(t)) in position-momentum phase space.

{
x′ = y

y′ = −x

hence for w = (x, y), this has matrix form w′ = Aw where

A =

[
0 1
−1 0

]
. (See Exercise 37.4 where we switched x and y, as we are thinking

of it as a second-order equation y′′(t) + y(t) = 0. In that case, we get the transposed
matrix, which yields a counterclockwise rotation flow, since for B = tA, and Bt the
transpose, then e(Bt) = (eB)

t
. Thus the vector solutions are circular curves which

project onto sin, cos in one dimension, solutions for the position and its derivative,
the velocity=momentum.

The pendulum has the equation

x′′ = − sinx

where now x is angular position and y = x′ is angular momentum. This equation
comes from the fact that the force of gravity is constant vertically, but its component
in the angular direction is (radius times sin(angle)).

So we have
{
x′ = y

y′ = − sinx

This is the system for the vector field V on R2 with

V1(x, y) = y, V2(x, y) = − sinx

then DV = V ∗ =

[
(V1)x (V1)y
V2)x (V2)y

]
=

[
0 1

− cosx 0

]
so the linearization of V at (0, 0) is

V ∗(0, 0) =

[
0 1
−1 0

]
, which generates via τt = etA the clockwise linear rotation flow.

See Fig. 110. The solution is again a point (x, y) = (x(t), y(t)) in phase space, but
now it is for angular position-momentum. To calculate the Euclidean position from
the angle we would take sin(θ) so for instance if θ(t) = x(t) = sin(t) then this would
be sin(sin(t)). No wonder in textbooks this is always just expressed in the angular
form!
The time-dependent case as stationary in one more dimension.

??? REDO.
Now in let γ(s, t) = γs(t), Thus γs(0) ∈ Es and γs(t) ∈ Es+t; this is a path in the

time-parameter t, starting at time s. We write and define Ĉ = C(R×R, E). So given

γ ∈ Ĉ, we define conversely γs(t) = γ(s, t).
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Figure 110. A nonlinear rotation: the pendulum, in phase space with
angular (position, momentum) coordinates (x, y); the circles flow clock-
wise, just as for the linearization at 0 which is the rotation flow. The
upper curves flow to the right , the lower curves to the left; these corre-
spond to the pendulum no longer oscillating but instead going around
and around in one direction when it has high enough angular momen-
tum.

Remark 37.10. The lift of the nonstationary field (V s)R is a vector field V on Ê,

i.e. V : Ê → Ê, with
V (s,v) = (1, V s(v)).

Thus the t-coordinate of the vector field V is the constant 1. Note that V is a
continuous vector field and moreover is K-Lipschitz on Ê. The lift projects to (V s)R
by V s(v) = V (s,v).

This allows one to treat a nonstationary vector field as a vector field in the usual
sense (i.e. a stationary vector field) in one higher dimension, of a very special type
(constantly 1 in the time coordinate).

Hence, to prove the existence and uniqueness theorem we can simply apply the
stationary result to this case. However conceptually the two are quite different.
Therefore will be useful to note that the Picard iteration does go through in any case.
In what follows we take both approaches.

In the special case where (V s)R is constant, the family defines a single vector field
on E by the identification of Rn

s with E. In this case we call (V s)R a stationary
nonstationary vector field. It is not the same as a single stationary vector field
on E, both formally and practically, as one can consider other mathematical objects
(functions, measures, other vector fields) together with the family which however do
vary with time; this can occur naturally.

37.13. Flow extensions and extensions of vector fields; parametrized vector
fields and vector fields on fiber bundles.

Definition 37.15. (Curves and vector fields on manifolds)
When M is a Banach manifold (Defn???) with tangent space TM , and projection

map π : TM → M with π(vp) = p for vp ∈ TMp, where each TMp is a linear spave
isomorphic to E, then this tangent bundle is locally trivial, i.e. there is some smooth
chart Φ for TM such that TM is locally a product U ×E for some U an open subset
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of E; that is, Φ : U × E → TM with Φ : p × E → TMp linear. Then given a curve
γ : R→ E, the tangent vector γ′(t) is an element of TMγ(t).

Thus we have a commutative diagram:

R γ′−−−→ TMyid

yπ

R γ−−−→ M
A vector field on M is a function V : M → TM , with V (p) ∈ TMp.

Example 57. We consider M = E; then defining as above Ê ≡ R × E, denoting the

two natural projections by π̂ : (t,v) 7→ v with π̂ : Ê → E, and πR : Ê → R with
πR : (t,v) 7→ t. We set Et = π−1

R (t), an indexed copy of E. Thus Et = {t} × E ⊆
R × E = Ê. Now TM = E × E = Ê. For γ : R → E, γ′(t) = (t, γ′(t)) = γ̂′(t) ∈ Ê,
as in the second definition above! Thus the definition for manifolds extends this.

We have seen that the infinitesimal version of a flow is a vector field, in both the
stationary and nonstationary settings. The time derivative takes you from the flow to
the vector field, and solving the ODE defined by the vector field takes us back again.
Now we consider extensions to fiber bundles.

Examples:
(1) Time-varyng vector field:

-base space is real line; fiber is Et; bundle is Ê = R×E. Time-varying vector field

V t on Et = {t} × E ⊆ Ê. Field on R is constant 1: W (t) = 1. Curve in base is

η(t) = t. W lifts to Ŵ on Ê, Ŵ (t,v) = (1, V t(v)). Solution curve: γ̂(t) = (η(t), γ(t)),
γ(0) = v.

γ is solution to γ′(t) = V t(γ(t)). γ̂ is solution to lifted equation: γ̂′(t) = Ŵ (γ̂(t)).
(2)”Stack of records”:

-base space is real line; fiber is Et; bundle is Ê = R×E. Time-varying vector field

V t on Et = {t} × E ⊆ Ê. Field on R is constant 0: W (t) = 0. Curve in base is

ηt(t) = t , fixed point, for each t. W lifts to Ŵ on Ê, Ŵ (t,v) = (t, V t(v)). Only
movement is is each fiber independently. Solution curve: γ̂(t) = (t, γt(t)), γ(0) = v.

γ is solution to γ′(t) = V t(γ(t)). γ̂ is solution to lifted equation: γ̂′(t) = Ŵ (γ̂(t)).
Fiber = E,

???

37.14. Nonstationary flows.

Definition 37.16. Let (τt}t∈R be a family of continuously varying homeomorphisms
of a topological space X. We call this a pre-flow. It is a flow iff it satisfies
(i) τ0 is the identity map;
(ii) the flow condition:

τt+s = τs ◦ τt.
Taken together, these imply that each map τt is a bijection, as it has inverse τ−t.
Given a pre-flow (τt)t∈R on a spaceX we setXt = X×{t} and write xt = (x, t) ∈ Xt.

We define τ̃t : Xs → Xs+t by τ̃t(x, s) = (τt(x), s+ t). We call τ̃t a nonstationary flow



FROM ADIC TRANSFORMATIONS TO GIBBS STATES 427

or a flow family. For example the time-one map is τ̃1, and this maps Xs to Xs+1 to
Xs+2 . . . , iterating the map (but not flow) τ1.

We set X̂ = X×R by τ̂t(x, s) = (τt(x), t+s) τ̂t : X̂ → X̂ by τ̂t(x, s) = (τt(x), t+s).

We call (X̂, τ̂t) a total flow.

Lemma 37.23. The following are equivalent: a pre-flow, a nonstationary flow. The

total flow is a flow on the space X̂ with the special property that it preserves fibers.
The following diagram is commutative:

37.15. Nonstationary dynamical systems.

Remark 37.11. This conceptual difference between nonstationary and stationary dy-
namics becomes more striking in the situation where E is replaced by a compact

manifold M , as now the covering space Ê is non-compact.
From the dynamical systems viewpoint, a nonstationary discrete-time system, i.e. a

sequence of maps along a sequence of spaces, can always be lifted to a single map
on a larger space, the coproduct i.e. the disjoint or indexed union. See [AF05]; we
call this the total map in that setting. Now this defines an intrinsically wandering
dynamical system, where one might expect none of the standard notions of dynam-
ics (stable manifolds, hyperbolicity, Markov partitions, transverse dynamics...) to
make sense. Nonetheless, certain ideas go through, while on the other hand some
striking new phenomena can occur as well. See [AF01], [Fis09], [dJMA17].[Ace18b],
[Ace18a],[MR20], [Sil17].

A good source of examples is the study of random dynamical systems; choice of a
single ω in the relevant probability space then determines a nonstationary system,
either for discrete or continuous time.

Our point of view is that we need also to study nonstationary systems in their own
right, not just for those associated to some random system. For differential equations
this certainly has been the case historically, where many of the DEs important in
applications, also in one dimension, are nonautonomous equations.

Consider for an example the curve γ : R → E, with γ(t) = (cos t, sin t). Then
the image of the curve is the unit circle, while the graph of the curve is by definition
{(t, γ(t)) : t ∈ R} ⊆ R × R2. We can identify this with a subset of R3, that is,
{(t, cos t, sin t) : t ∈ R}, which is a helix (a circular spiral). This is in turn a new
curve, now in R3: γ̂(t) = (t, γ(t)) = (t, cos t, sin t). Thus the graph of γ becomes the
image of the related curve γ̂. Note that the tangent vector is now γ̂′(t) = (1, γ′(t)).

Now γ is a solution of the autonomous, linear DE x′ = Ax with initial condition

x0 = (1, 0), since as we saw in Proposition 35.15, for A =

[
0 −1
1 0

]
, then

etA = Rt =

[
cos t − sin t
sin t cos t

]
,

whence x(t) = etAx0. The curve γ̂ is a solution of the nonstationary DE with
parametrized but constant vector field V s = A for all s ∈ R.
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Thus we are distinguishing between n.s but constant and truly nonstationary vector
fields.

This perspective unifies the stationary and nonstationary cases. A further unifica-
tion comes by adding a dimension; this will gives us a flow even in the nonstationary
case.

Given a time-dependent vector field V s = V (s, ·), i.e. a one- parameter family of
K-Lipschitz vector fields, continuous in t, thus V : R × E → E be continuous, and

K-Lipschitz in the E-coordinate. We define a stationary vector field V̂ on Rn+1 by

V̂ (v, s) = V̂s(v) where ̂(x1, x2, . . . , xn) = (x1, x2, . . . , xn, 1).
V : R × E → E be continuous, and K-Lipschitz in the E-coordinate. We define

Es = {s} × E ⊆ R × E. We write V s = V (s, ·); this is a one- parameter family of
K-Lipschitz vector fields (with fixed K), changing continuously in time. Thus V s is
a vector field on Es. We call V s = V (s, ·) a nonautonomous, nonstationary (n.s.) or
time-dependent vector field.

Now consider the flow on R×E, defined by τ̂t : (x, s) 7→ (τt(x, s+ t). Thus for the
above linear example,

τ̂t(x, s) = (etAx, s+ t)

which in matrix form is

x
y
z


 7→




cos t − sin t 0
sin t cos t 0

0 0 0





x
y
z


+




0
0
t




This has derivative at t = 0: Â+ (0, 0, 1) where Â is the (3× 3) matrix

Â =




0 −1 0
1 0 0
0 0 0


 .

Let (Xi, di)i∈I be metric spaces for I = N or Z. Let Ti : Xi → Xi+1 be continuous
maps. This is a nonstationary dynamical system or mapping family, as introduced

in [AF05]. The total map of the mapping family is defined as follows: we set X̂ =∐
I Xi = ∪i∈I(Xi, i) (this coproduct is the same thing as the disjoint union or indexed

union) and define T̂ : X̂ → X̂ by (xi, i) 7→ (Ti(xi), i + 1). This is the total map
associated to the mapping family.

We think of the mapping family as a sequence of maps along a sequence of spaces,
while the total map is an actual map (that is, a map of a space to itself) which
contains all the same information.

It is a two-sided or biinfinite mapping family iff I = Z, otherwise a one-sided family.
If the family is bilateral and each map is a homeomorphism, it is an invertible family,
and this is true iff the total map is a homeomorphism.

We note that in the definition of mapping family, the metric is allowed to change
with time. This becomes important in examples. See §42.3. Also note that if the
individual spaces Xi are compact, the total space nevertheless will be noncompact.
The dynamics of the total map is wandering; nevertheless, one can make sense of
hyperbolicity, stable manifolds, and transverse dynamics.
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The continuous-time version of mapping family is a nonstationary flow, which we
next define. For ODEs it is closely linked to the classical idea of a time-varying (or
nonstationary, or nonautonomous) vector field, as we shall explain.

....
A student asked me if this might be true for all differential equations. This is a

great question!
So far we can verify it for:

–all one-dimensional linear equations (including the nonautonomous case)
–homogeneous linear autonomous vector DEs.

Equations and flows in one higher dimension
Convergence to flows:
–Picard iteration and nonstationary flows

Picard iteration for flows and vector fields: Flow contraction

Defining a nonstationary flow τt : E → E by τt(v) = γv(t)

τ
(1)
t (v) = (γ1)v(t) = (Pv(γ))(t) = v +

∫ t

0

V (γ(s)) ds = v +

∫ t

0

V (τs(v)) ds =

........

Example 58. Consider the ....

37.16. Picard iteration: further examples.
Example: Picard iteration for the nonstationary one-dimensional case

In (138) above we considered the homogeneous linear (nonautonomous) one-dimensional
equation x′(t) = a(t)x(t). We found the solution to be x(t) = eâ(t)x0 where â(t) =∫ t

0
a(s) d s, thus â′(t) = a(t), â(0) = 0 and x0 = x(0) is the initial condition.
.
We next see if we can derive this by Picard iteration. We have x0(t) ≡ x0, x1(t) =

(Px0(x0))(t) = x0 +
∫ t

0
V (x0(s)) ds = x0 +

∫ t
0
a(s)x0 ds = x0 + (

∫ t
0
a(s) ds)x0....

Example 59. Solution for nonstationary linear vector fields; Picard iteration.

Before we consider the general nonstationary vector case, we take the instructive
special case of a parameterized family V t of linear vector fields, that is, given by a
matrix family A(t), t ∈ R.

This is exactly analogous to the homogeneous linear (nonautonomous) case on R
just treated: the one-dimensional homogeneous linear equation x′ = a(x)x.

In E, this corresponds to the nonstationary equation

x′ = A(t)x(t)

with initial condition x(0) = x0, where for each t, A(t) is an (n × n) matrix. We
immediately check that the same formula gives solution curves:

x(t) = eÂ(t)x0
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where Â′(t) = A(t). (Since Â(t) is a curve in Rn2
, the tangent vector makes sense; it

is just the derivative of the matrix coordinates).

We note that adding a constant matrix does not change the derivative Â′(t). There-

fore we require here without loss of generality that Â(0) = 0 · I; if not we can achieve

this by subtracting the constant matrix Â(0). Then the initial condition is x(0) = x0.

Equivalently, Â(t) =
∫ t

0
A(s) ds and Â(0) = 0 · I.

For example, fixing A ∈ Mn(R), and given a continuous function f : R → R, we

consider the nonstationary vector field A(t) = f(t)A. Then Â(t) =
∫ t

0
A(s) ds =∫ t

0
f(s)A ds =

∫ t
0
f(s) ds · A = F (t)A where F ′ = f , F (0) = 0, and the solution of

the nonstationary DE x′ = f(t)Ax(t) with initial condition x(0) = x0, is

x(t) = eÂ(t)x0

where Â(t) = F (t)A.

We next see if we can derive this by Picard iteration.

Example 60. We consider a specific example: a periodically varying harmonic oscil-
lator:

f(t) = sin(t) and y′′ = −f(t)y.

Then F (t) = − cos(t) and the vector DE is

x′ = A(t)x = sin(t)

[
0 −1
1 0

]
x

with nonstationary flow solution therefore: eÂ(t) = − cos(t)Rt and solution curves

−(cos t)Rtx0 = −(cos t)

[
cos t − sin t
sin t cos t

] [
a
b

]

leading to the one-dimensional solutions

y(t) = (− cos t)(a sin t+ b cos t)

with initial condition y(0) = b, y′(0) = a. Physically, this could model, in music, a
periodically varying volume oscillation.

37.17. Volume change: determinant, divergence and trace.

Theorem 37.24. Given a C2 nonstationary vector field (V t)R on E = Rd, the de-
rivative is (V t∗)R, where for each t, V t∗ = (V t)∗. Let (τt}t∈R be the corresponding
nonstationary flow.

Then detτt(x) = exp(tr(V t∗(x))) = exp(divV (x)).
In particular, detτt(x) = 1 iff tr(V t∗(x)) = 0, so τt preserves volume iff (V t)R has

divergence 0.

?? volume form and defn of divergence...
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37.18. Nongeodesic curves in group and nonstationary flows. ex: random
walk in group with trace 0 Lie algebra= det 1: SL(n,C)

–nonhomogeneous “group”: stationary= geodesic in M, nonst= curve in M. Acting
on....

–time-varying M....geodesic or curve....
............
The flow generated by a Hamiltonian vector field Hf preserves the symplectic form

... p.79 ff “TaylorMichaelGREATnotes”

38. Appendix: A simple proof of the Birkhoff ergodic theorem

We present a simple proof of the almost-sure (Birkhoff) Ergodic Theorem. Our
treatment is original only in some aspects of the presentation; we borrow from Keane
[Kea91] Keller [Kel98] and Kaznelson-Weiss [KW82]. There have been a number
of “simple” proofs recently, the starting points being a proof of Ornstein-Weiss for
amenable groups [OW83], which inspired Shields’ treatments [Shi87] [Shi96] as well
as Kamae’s nonstandard analysis proof [Kam82]. The insights there led in turn to
the (standard analysis) proofs of Keane and of Kalznelson-Weiss. Keane’s approach
most recently sparked an article with Petersen [KP06]; see also [KK97].

We find most readable Keane’s proof [Kea91]; this was written for an introductory
survey course for graduate students, and is incomplete as it only deals with the case
of bounded functions. The remaining (nontrivial) details have been nicely completed
by Keller, but for the more general case of Zd actions; this adds further complications,
so we have felt it worthwhile to present here the proof for the simplest case, that of
a single map.

Theorem 38.1. Let T be a measure-preserving transformation of a probability mea-
sure space (X,A, µ). Then for any f ∈ L1, the limit

lim
n→∞

1

n

n−1∑

i=0

f(T i(x)) = f ∗(x)

exists almost surely; the function f ∗ is invariant and integrable, and for any measur-
able E ⊆ X which is invariant i.e. T−1(E) = E,

∫
E
fdµ =

∫
E
f ∗dµ.

Proof. Writing f = f+− f−, it will be sufficient to prove the theorem for f ≥ 0. The
hard part is proving the limit exists. We write the partial sums of f along an orbit
as Sn = Sn(f) with S0 = 0 and Sn(x) =

∑n−1
i=0 f(T i(x)) for n ≥ 1. We define the

averaged sums An(x) = Sn(x)/n and write

A = lim sup
n→+∞

An

and

A = lim inf
n→+∞

An.

These are invariant extended-real valued functions; we claim it will be enough to
show:
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∫
A dµ ≥

∫
f dµ ≥

∫
A dµ. (150)

For then since A ≥ A, (150) implies that

0 ≥
∫
A− A dµ ≥ 0.

Hence A = A µ−a.s, and so the limit f ∗ exisits. Note that since A and A are invariant,
so is f ∗.

We further claim that in fact it will be enough to show half of this: for any f ≥ 0
in L1, ∫

f dµ ≥
∫
A dµ. (151)

For this argument, borrowed from [Kel98], we shall indicate the dependence of A on
a function g as A(g).

First assume that 0 ≤ f(x) ≤ M for all x. Considering the function -f , we have
A(−f) = −A(f). We now apply (151) with a different function, (M − f), which is
by the assumption ≥ 0 and in L1; this gives

∫
(M − f) dµ ≥

∫
A(M − f) dµ. (152)

On the left-hand side we have
∫

(M − f) dµ = M −
∫
f dµ and on the right-hand

side,
∫
A(M − f) dµ = M +

∫
A(−f) dµ = M +

∫
−A(f) dµ = M + −

∫
A(f) dµ so

therefore

−
∫
f dµ ≥ −

∫
A(f) dµ

and hence ∫
A(f) dµ ≥

∫
f dµ.

This takes care of the bounded case. Next, not assuming f ≤M , and writing

f ∧M(x) = min{f(x),M}
we have for f ≥ 0,

∫
A(f) dµ ≥

∫
A(f ∧M) dµ ≥

∫
(f ∧M) dµ

the last of which, by the Monotone Convergence Theorem, converges to
∫
f dµ. Thus

we have shown that knowing the second inequality of (150), for all functions ≥ 0 and
integrable, leads to the first inequality as well.

Thus it remains
To show: for f ≥ 0 in L1, then

∫
f dµ ≥

∫
A dµ.

As in [Kea91], we precede by cases of increasing difficulty, for pedagogical purposes.
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CASE 1: f ∈ L∞. Fix ε > 0 and define:

τ(x) = inf{n ≥ 1 : An(x) ≥ (1− ε)A}.
This is a stopping time in the language of probability theory. Note: τ is finite a.s.
since A(x) ≤ ||f ||∞ <∞.
CASE 1a: τ(x) ≤ τ0 for some constant τ0.
CLAIM: for all n ≥ 1, for a.e. x, we have:

Sn(x) ≥ (1− ε)(n− τ0)A(x). (153)

The idea will be to divide the orbit of x into segments of length given by the
stopping time, and where we therefore have a good estimate. Thus we define x0 = x,
and inductively

xk+1 = T τ(xk)(xk).

First we note that for l = τ(x),

Sl(x) ≥ (1− ε)(l)A(x) (154)

by the definition of the stopping time τ , and that the same is true for any time l of
the form l = τ(x0) + τ(x1) + · · ·+ τ(xk). For a general time n ≥ 0, let xk be the last
point in the orbit such that l as just defined is ≤ n, and hence l + τ(xk+1) > n. We
have the good estimate (154) up to time l; after this we only know the values are ≥ 0,
but fortunately by hypothesis, τ(xk+1) < τ0. Hence simply neglecting the last n − l
terms gives us the estimate (153), since l > n− τ0.

Next we use this to prove (151) for this case. From (153), we have

Sn(x)

n
≥ (1− ε)(n− τ0)

n
A(x) (155)

and so, using for the first equality the invariance of the measure,
∫
f dµ =

∫
Sn
n

dµ ≥ (1− ε)(n− τ0)

n

∫
A dµ

and since this is true for all n,
∫
f dµ ≥ (1− ε)

∫
A dµ,

finishing the proof for Case (1a).
CASE 1b: τ(x) is now unbounded (but is a.s. finite as observed above).

We choose τ0 > 0 and define G (the good set) to be the set of all x where τ(x) < τ0

and the bad set B to be its complement. Note that µ(B) → 0 as τ0 → +∞. Then
we set

f̃(x) =

{
f(x) for x ∈ G
sup f for x ∈ B

We define S̃n(x) = Snf̃(x) and
CLAIM: for all n ≥ 1, for a.e. x:

S̃n(x) ≥ (1− ε)(n− τ0)A(x). (156)
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Proof of Claim: We have always

S̃τ(x)(x) ≥ Sτ(x)(x) ≥ (1− ε)(τ(x))A(x).

So if xk (defined as before) is in G, the same estimate works as for part (1a), and we
have:

S̃n ≥ Sn ≥ (1− ε)(n− τ0)A.

If xk /∈ G, the value of f̃ on the point xk has been boosted to sup f ≡ c. If T (xk) /∈ G,

the value of f̃ here has been boosted as well. However it is possible that some first
point after xk in the orbit, say w, is again inG (and so the value has not been boosted).
But then we simply use the previous estimate along this next piece of orbit, since w
is in G. Now along the orbit segment immediately after xk until w, of length l̃, the
partial sum is c · (l̃) ≥ A · (l̃) ≥ (1 − ε)A · (l̃), and the part following w is estimated
as before. After τ(w) we may again enter B and boost the values, continuing in this
way until we reach n. In summary, we have now the estimate (1 − ε)A × (length)
along the whole orbit segment until time n, and so

S̃n ≥ (1− ε)A · n.
Integrating as before, ∫

X

f̃ dµ ≥ (1− ε)
∫

X

A dµ.

Now, ∫

X

f̃ dµ =

∫

G

f̃ dµ+

∫

B

f̃ dµ =

∫

G

f̃ dµ+ cµ(B)

and ∫

X

f dµ =

∫

G

f dµ+

∫

B

f dµ ≥
∫

G

f dµ =

∫

G

f̃ dµ

=

∫

X

f̃ dµ− cµ(B) ≥ (1− ε)
∫

X

A dµ− cµ(B).

Letting τ0 →∞, µ(B)→ 0 and we have∫

X

f dµ ≥ (1− ε)
∫
A dµ.

This holds for any ε > 0, finishing the proof of the Claim.
CASE 2: This is the general case: f ≥ 0, f ∈ L1.

Choosing M > 0, we define

AM(x) = min{A(x),M}
and define now:

τ(x) = inf{n ≥ 1 : An(x) ≥ (1− ε)AM(x)}.
Note: Again we see that τ is finite a.s., since even though A(x) may be infinite,
by definition AM(x) <∞. Choosing τ0 > 0, we define the sets B and G to be where
τ is > or < τ0, as before.

Next we set

f̃M(x) =

{
f(x) for x ∈ G
f(x) + (1− ε)AM(x) for x ∈ B.
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We now
CLAIM: for all n ≥ 1, for a.e. x, we have:

Snf̃M(x) ≥ (1− ε)(n− τ0)AM(x). (157)

The proof is like that of part (1b); with xk the initial point of the last segment

as before, if xk ∈ G the argument is exactly the same, as Snf̃M(x) ≥ Sn(x) and we
neglect the last piece just as before, with the values of the function boosted in defining
f̃M , and so we again get a good bound, completing the estimate for the whole length
of orbit to time n.

Next, integrating, we have for each n ≥ 1,
∫

X

f̃M dµ ≥ (1− ε)(n− τ0)

n

∫

X

AM dµ.

Also,
∫

X

f dµ =

∫

X

f̃M dµ− (1− ε)
∫

B

AM dµ ≥ (1− ε)(n− τ0)

n

∫

X

AM dµ−M(1− ε)µ(B)

for each n. Therefore, for each τ0 fixed, and ε > 0 fixed,
∫

X

f dµ ≥ (1− ε)
∫

X

AM dµ−M(1− ε)µ(B).

As τ0, µ(B)→ 0 so
∫
X
f dµ ≥ (1−ε)

∫
X
AM dµ. This is true for each ε > 0, so we have

shown that for any choice of M > 0,
∫
X
f dµ ≥

∫
X
AM dµ. Finally, by the Monotone

Convergence Theorem, the right hand side increases to
∫
X
A dµ as M increases to

+∞, completing the proof of the Claim and hence of the Theorem. �

Remark 38.1. We have borrowed from Keane in the pedagogical presentation (break-
ing the proof into palatable cases of increasing complexity) and from Keller in two

important technical points: the proof that (2) implies (1), and in the definitions of f̃M
and AM . Note how the using the Monotone Convergence Theorem comes in nicely
in both these arguments. (Our definition of τ for Case (2) is slightly simpler than
Keller’s.)

39. Appendix: The Hopf argument for ergodicity

Theorem 39.1. (Birkhoff Ergodic Theorem, flow version) Let τt be a measure-
preserving flow of a probability measure space (X,A, µ). Then for any f ∈ L1, for
almost any x ∈ X, this limit exists:

lim
T→∞

1

T

∫ T

0

f(τt(x))dt = f+(x).

This function is measurable and invariant, and satisfies for any invariant measurable
set E,

∫
E
fdµ =

∫
E
f+dµ. In particular,

∫
X
f+dµ =

∫
X
f+dµ.

Of course, the same holds for the limits at -∞, since τ̃t = τ−t is a measure-preserving
flow; we call this limit f−.

The proof is as a corollary of the theorem for transformations.
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Lemma 39.2. In the above situation, there is a set G of full measure such that for
all x ∈ G, f+(x) = f−(x).

Proof. From the Birkhoff theorem, f+ and f− are defined on an invariant set of full
measure. Now if the statement fails, then there is an invariant set E with µ(E) > 0
such that f+ < f− on E. But then

∫
E
fdµ =

∫
E
f+dµ <

∫
E
f−dµ =

∫
E
fdµ, a

contradiction. �

Remark 39.1. For transformations, the fact that f+ is defined on an invariant set of
full measure follows once we know the limit exists a.s., because if the limit exists for
some x it exists for any y ∈ O(x). For flows this is not so obvious. It is true if f is
integrable along any compact subset of the orbit of x. This can be proved with some
work, e.g. by using the Ambrose-Kakutani flow-under-a-function representation any
applying Fubini’s theorem, but it is easier here to simply make use of the Birkhoff
theorem, which tells us that f+ is invariant.

We shall need:

Theorem 39.3. (Lusin’s Theorem)Let X be a locally compact Hausdorff space with
µ a Borel probability measure on X and let f : X → R measurable. Let ε > 0. Then
there exists a continuous function g with compact support such that g = f on a set of
measure at least 1− ε, and moreover ||g||∞ ≤ ||f ||∞.

Note that since g has compact support, it is in fact uniformly continuous. In words,
any measurable function is nearly continuous. The proof uses Urysohn’s Lemma. See
e.g. [Rud70] p. 53.

Proposition 39.4. Assume the situation of Theorem 39.1, with X a locally compact
Hausdorff space and µ a Borel measure. Then for any x ∈ G, the function f+ is
constant on W s(x) and the function f− is constant on W u(x).

Proof. We show that for x ∈ G, for all y ∈ W s(x), the limit defining f+(y) exists and
f+(x) = f+(y).

Assume first that f is uniformly continuous. Then ...
�

The rough idea behind Hopf’s argument for proving ergodicity is the following. We
wish to show that an invariant integrable function f is constant. From the Birkhoff
theorem we know that there is a set G of full measure such that f+ = f− ≡ f
exists. Given two points x, y ∈ G, we would like to show f agrees on x, y. Assuming
hyperbolicity, we can connect (one hopes) x and y by finitely many paths along stable
and unstable manifolds. Since f is constant there, the values are equal.

How hyperbolicity allows one to connect two points in this way is illustrated for
two quite different examples: a hyperbolic toral automorphism and a geodesic flow
on the upper half space H, see Figs. ??

The actual details can be tricky, involving the idea of the absolute continuity
of the natural maps between nearby stable/unstable leaves, the so-called holonomy
maps.
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This is true even in the most basic case of product measure. But it is worth being
precise here, because the somewhat hand-waving arguments sometimes encountered
only add to the possible confusion.

Theorem 39.5. (Fubini’s Theorem)

Proposition 39.6. (The concluding Hopf argument for product measure) Given prob-
ability spaces (X,µX) and (Y, µY ), let G ⊆ X × Y be of full measure, and let

...... removed Feb 2020 for students

Remark 39.2. Interesting but not so useful:

I1 =




1 0 0
0 0 −1
0 1 0


 J1 =




0 0 1
0 1 0
−1 0 0


K1 =




0 −1 0
1 0 0
0 0 1




I1∗J1 =




0 0 1
1 0 0
0 1 0


 J1∗I1 =




0 1 0
0 0 −1
−1 0 0


 J1∗K1 =




0 0 1
1 0 0
0 1 0


K1∗I1 =




0 0 1
1 0 0
0 1 0




inverse of K1 ∗ I1 =




0 1 0
0 0 1
1 0 0




39.1. Cayley graphs: choosing a point randomly from an infinite group. We
have seen above that a key idea of dynamics- the Birkhoff ergodic theorem- depends
for its intuitive statement, “time average equals space average”, on having a good
notion of time average, that is to say, of average value for a function defined on
the semigroup N (for a noninvertible transformation), or the groups Z or R (for an
invertible transformation or a flow). And the Birkhoff theorem says exactly that, for
measure-preserving dynamics on a probability space, the Cesáro average provides an
appropriate notion of time average.

In these notes- even though our main focus will be on maps and flows- we will also
find it both interesting and natural to treat more general actions. But then, with
what should we replace the notion of time average?

One pictures the orbit of a point as a copy of this semigroup or group, wrapped in
some perhaps complicated manner through the dynamical space. So the idea will be
to first define an appropriate averaging method over the group, and then transport
this to the orbits.

To carry this out, we need first a way to visualize the group itself.
Before describing this, we mention the variety of ways group and semigroup actions

will be of interest in these notes:
– Group actions will often be used to define our dynamical spaces, on which our

transformations or flows will act. Thus for example the factor space E/Zn defines
the torus, see below, while other manifolds can be realized e.g. by hyperbolic space
Hn acted on by a discrete group of isometries. Examples of the dynamical systems
we study on these spaces include toral rotations and automorphisms, geodesic and
horocycle flows.
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– The boundary at infinity of a nonamenable group is an interesting space geo-
metrically; examples are the beautiful fractal objects, such as Kleinian limit sets;
one studies several related types of dynamics: the group action on the boundary, the
geodesic and horocycle flows. In addition there may be an interesting map on the
boundary space with the same space of orbits as the group;

–Many other fractal sets can be thought of as analogous to this, as they are the
limit sets of a semigroup action. Indeed, beginning with a noninvertible map, say two-
to-one, then the collection of inverse images of a point forms an orbit for the action
of a free semigroup on two generators. An example is given by the Julia set for the
map z 7→ z2 + c; choosing any point z0 ∈ C, the “boundary at infinity” of its tree of
preimages will be the Julia set, which is itself acted on by the free semigroup. Further
examples include hyperbolic Cantor sets and Iterated Function Systems (IFSs).

To describe the geometry of a discrete group, we begin with a finitely generated
group G or semigroup S, and a list of generators, G = (g1, . . . gn). The Cayley graph
of G or S consists of one vertex for each element, connected by edges labelled by the
generators. For a semigroup draw an edge labelled by gi ∈ G from vertex g to h iff
gig = h. For the case of a group, we do the same for the augmented list of generators

together with their inverses, G̃ = (g1, g
−1
1 , . . . gn, g

−1
n ).

A word is a finite string of generators. We consider a finite collection R or words,

with R̂ denote the subgroup generated by R. A relation is an element of R̂.

We denote by Fn the free group on n generators, and form the factor group Fn/R̂.
For semigroups we proceed similarly: we write FSm for the free semigroup on m

generators (also called letters); we can get from this construction the free group as
follows: beginnign with m = 2n generators, labelled (g1, g

−1
1 , . . . gn, g

−1
n ), we factor by

the collection of relations R̂ generated by R = {gig−1
i :, 1 ≤ i ≤ n}e. That is, we

mod out by the relations gg−1 = e.
Conversely, any finitely generated group G can be represented in this way, as a

factor group of Fn, and so as a facto semigroup of FS2n. The relations R̂ are,
geometrically, the words which form closed loops starting at e in the Cayley graph.

For the case of an abelain group, the law ab = ba is achieved by including the
relation f−1g−1fg.

The Cayley graph in the case of a group is homogeneous in that its geometry
everywhere is the same, and is just like that n the identity e.

A homomorphism from a group G to a group H can be visualized by a continuous
map of the Cayley graphs; a good example to keep in mind is the homomorphism from
the free group F2 on two generators (a, b) to the free abelian group on two generators,
Z2, and from Z2 to Z6 = Z2 ⊕ Z3. See Fig. ??.

In what follows, a key notion will be that of a random walk on G.
factor groups, free semigroup, free group, free abelian group, finite abelian group
fundamental domain; lattice subgroup
random walk
boundary at infinity
hitting measure
example: Parry measure
normal subgroup
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left/right actions; free semigroup boundary and IFS/ Cantor set
Free semigroup and group automorphisms
Kleinian limit set, Patterson measure

In this section we briefly touch on a number of matters which call out for a much
deeper look, and so are returned to later in these notes. However, we must at least
mention these now so the reader should keep this broader picture in mind as she or
he progresses through the rest.

Let G be a discrete group, by which we mean a finitely generated group; examples
to keep in mind are the finite groups ...Zd, semidirect prod, perm, and infinite groups
.... free, infinite abelian; fund group of surface, matrix groups

We can turn these into geometric objects by way of the picture of the group known
as a Cayley graph. ...

role of independence: prob measure on G; random walk; convolution we have
already encountered convol on reals (of functions/measures)

random walk on Z: limit laws;
random walk on free: limit laws Proof!
random walk on graph: Markov
random walk on Z: convergence to Brownian; asip
harmonic function; average of function via random walk; harmonic projection
local CLT; Cesaro average
Benford
not every process is iid (next section)

Example 61. Choosing a point randomly from an amenable group. Infinite groups
split into two types, depending on exactly this question we have been considering.
An amenable group is by definition one for which there exists an invariant mean for
the action of the group on itself by left translation. That is, it is exactly for amenable
groups that the idea of an average value for a bounded function makes sense.

To get ahold of this idea, we need to consider some basic examples of groups which
are amenable, and some which are not.

...
free group boundary at infinity
The importance of this notion is indicated by these several equivalent properties:

Theorem 39.7.
(i) G is amenable;
(ii) there exists a Følner sequence for G
(iii) given an ergodic measure-preserving action of G on a probability space, ???

convex affine action fixed point
In the case where G is finitely generated, we have additionally:

(iv) there exists a probability measure µ on the generators so that there are no bounded
µ−harmonic functions;
(v) the µ−boundary at infinity of the group is trivial (a single point);

random walks
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Example 62. Choosing a point randomly from a nonamenable group or semigroup. By
what we have said above, nonamenable groups are exactly those for which the idea
of an average value does not makes sense. Nevertheless, let us propose two possible
approaches and see what happens !

For simplicity we again restrict to the case where G is finitely generated, and we
are given a probability measure µ on the generators.

The most basic example of a nonamenable group is the free group on two generators
F2 = 〈a, b〉. This is pictured in Fig. ??, which shows its Cayley graph; for this
graph, the vertices are the group elements, while the edges are taken from the set of
generators and their inverses, E = {a, b, a−1, b−1}, translated to each vertex; that is,
there is an edge e from g to h iff ge = h for e ∈ E.

Actually it is easier to begin one step back, with the free semigroup on two
generators, FS2, since this consists of all finite words in the alphabet A = {a, b},
a0 . . . an with ai ∈ A, together with the empty word denoted e which is the identity.
Multiplication in FS2 is given by concatenation of two words; that is, for g = a0 . . . an
and h = b0 . . . bm then gh = a0 . . . anb0 . . . bm. Now the Cayley graph is a binary tree,
Fig. ??.

We define F2 by starting with the free semigroup on four generators A = {a, b, ã, b̃}
and then factoring out by the group generated by the relation set R = {aã, ãa, b̃b, b̃b}
(this is the best formal way to give the definition, although all this means is that we
are defining aã = e, in other words taking ã to be equal to a−1.) The elements in F2

are then the reduced words a0 . . . an together such that aiai+1 cannot belong to the
set R. Multiplication in F2 is now given by concatenation followed by cancellation of
all aiai+1 ∈ R.

Note now that the number of words of length n in this group grows exponentially,
compared to Zd where the growth is polynomial (like dn).

removed removed Aug 2016 for students .....

39.2. Choosing a point randomly from an amenable group, or from Eu-
clidean space. An examination of this for other noncompact groups brings us to
the idea of amenability, and to the beginning of a long and fascinating story.

A group G is termed amenable (a pun; it should be “ameanable!”) iff there exists
an invariant mean on it (on l∞(G) if the group is discrete; on L∞(G,m) where m is
Haar measure if G is a continuous group which is locally compact, so Haar measure
exists). [Gre69]

There are several equivalent notions:
Furst defn of amenable.
Harmonic projection.
Save rest for after boundary- in examples section!

39.3. Choosing a point randomly from a nonamenable group, or from hy-
perbolic space. Equivalent notions of non-amenable.

Basic example: F2.
Appendix: Aside: Cayley graph of a semigroup or group. F2 to Z2. Generators

and relations.
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Simplest case: finitely generated discrete.
µ on generators. Top invariant mean: Harmonic function. Harm projection. Equiv-

alent defs. Boundary at ∞. Boundary values. Mokobodski mean.
Test functions: group actions. Random/ Markov ergodic theorem.
Fractal sets, again (top invt measures; IFS)
end of removed for students ..................

T

�

(a) The space-filling curve γ gives a
measure-preserving semiconjugacy from
the Markov map on the cloverleaf to the
doubling map on the torus.

(b) A fundamental domain for
the the Ito-Misutani Tetradragon,
showing the four elements of a
Markov partition for the doubling
map of the torus.

40. Transitive points and Baire category Take 2

The usual understanding of a property holding for “almost all” points of a space
is measure theoretical, that the complement of the subset where this is valid have
measure zero. A complementary, purely topological notion is provided by sets of
second Baire category. The fascinating relationship between these two very different
but in many ways parallel ideas is explored in Oxtoby’s wonderful little book [Oxt80]
(which cannot be recommended too highly, e.g. for graduate students refining their
knowledge for analysis qualfying exams, for professors preparing for a lecture course,
or for anyone with the time to pursue beautifully presented ideas for their own sake).
Here we bring in some basic definitions and one result, specifically related to dynamics.
The methods involved may remind one of Poincaré recurrence, specifically of Walters’
proof of the previous section.

Definition 40.1. Let (X, T ) be a topological space. A subset A is meagre or of
first (Baire) category iff it is a subset of a countable union of nowhere dense sets.
It is residual or of second category iff it contains a countable intersection of dense
open sets.
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We recall that a countable union of closed sets is called an Fσ−set, while its com-
plement, a countable intersection of open sets, is a Gδ. Thus a meagre set is contained
in an Fσ of a special type, while a residual set contains a Gδ. Also, the complement
of a meagre set is residual and vice-versa. Much of the utility of this notion comes
from the Baire Category Theorem, which guarantees a dense Gδ subset:

Theorem 40.1. Let X be a Polish space. Then a residual set is dense.

Proof. Let Gi be open and dense, for i = 1, 2, . . . . We shall show that

E = ∩∞i=1Gi

is dense. Let U be an open subset of X, and assume that d(·, ·) is a metric compatible
with the topology of X, for which X is complete. Since G1 is dense, there exists x1 ∈
U ∩G1, and there exists δ1 > 0 such that for the ball of that radius, Bδ1(x1) ⊆ U ∩G1.
Now there exists x2 ∈ Bδ1(x1) ∩ G2 and δ2 > 0 such that Bδ2(x2) ⊆ Bδ1(x1) ∩ G2.
Continuing in this manner, the sequence (xi)i≥1 is Cauchy; by completeness this
sequence has a limit point x, and by construction x ∈ U ∩Gk for all k. �

Definition 40.2. Let T be a homeomorphism of X. A point x ∈ X is transitive iff
it has a dense orbit. The map T is transitive iff there exists a transitive point.

If T is continuous but not necessarily invertible, we say a point is forward tran-
sitive iff it has a dense forward orbit, and the map is forward transitive iff there
exists a forward transitive point.

Proposition 40.2. Let (X, T ) be a Polish space with no isolated points.
(i)Let T be a homeomorphism. Then if T is transitive, the set E of forward transitive
points is residual.
(ii)Let T be a continuous map. Then if T is forward transitive, the set E of forward
transitive points is residual.

We note that in (i), by having biinfinite orbits in the hypothesis and forward orbits
in the conclusion, the statement is stronger in both respects. That is, the existence
of a single biinfinitely transitive point implies existence of (many) forward transitive
points: a residual set hence (by the Baire Category Theorem) a dense Gδ of them.
Without the assumption of no isolated points this can fail, as shown by a simple
example on p. 129 of [Wal82], of a homeomorphism with a dense biinfinite orbit but
no dense forward orbit (imagine the left shift map on the two-point compactification
Z ∪ {−∞,+∞}of Z).

Proof. With metric d as above, since X is a separable metric space there exists a
countable base {Ui}i≥1 for the topology. Then E is the set of points x such that
for each j ≥ 1, the forward orbit of x meets Uj. That is, for each j, E ⊆ Gj ≡
∪n≥0T

−n(Uj), so we can write:

E = inf Gj = lim
j≥1

sup
n≥0

T−n(Uj) = ∩j≥1 ∪n≥0 T
−n(Uj).

We claim that each of the open sets Gj is dense. We wish to show that for each i ≥ 1,
Ui meets Gj. Now there exists a transitive point w; that is, for (i), the biinfinite
orbit (T n(w))n∈Z is dense; for (ii) we know this for the forward orbit. Furthermore,
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since X has no isolated points this collection of points must be infinite. Now any
dense infinite sequence of distinct points must meet an open set U infinitely often:
singletons are closed sets in a metric space, so U \ {x} is again nonempty open and
we can find the next such element. Given i, j ≥ 0, therefore, in either case, the orbit
of w enters both Ui and Uj infinitely often, one of them first. If we know w is forward
transitive, then from this we know there is a pair of times such that Ui occurs first.
That is, there exists a point x and an k > 0 such that x ∈ Ui and T k(x) ∈ Uj,
equivalently, x ∈ Ui ∩ T−k(Uj) ⊆ Ui ∩ Gj. Thus Ui ∩ Gj is nonempty and hence Gj

is dense as claimed, so E is a countable intersection of open dense sets and hence is
residual.

If we only know w is biinfinitely transitive, we have to be slightly more careful. Now
if Ui occurs first, the rest of the argument is the same. But for a general argument, we
know there exists n ≥ 0 such that either Ui∩T n(Uj) or Uj ∩T n(Ui) is nonempty. Call
this set U in either case. We claim that there exists k > 0 such that Ui ∩ T k(Uj) is
nonempty, and then will proceed as before. But the transitive point enters U infinitely
many times, so there exists m > 0 and x such that x ∈ U and Tm(x) ∈ U , and we
take simply k = m in the first case, or k = m− n in the second and then proceed as
before.

�

Something similar can be proved for semiflows and flows, with the “no isolated
points” property replaced by an appropriate condition (that compact pieces of flow
orbits cannot fill up an open subset). Also, there is a general result which holds for
continuous group actions.

Now we move on to flows and semiflows. First we have these definitions:

Definition 40.3. Given a topological space (X, T ), a continuous flow τt on X is a
jointly continuous map τ : X × R → X which satisfies the flow property: writing
τt(x) = τ(x, t), this is τt+s = τt ◦ τs. To define a continuous semiflow we replace R
above by R+ = [0,+∞).

Given a flow on X, a point x ∈ X is transitive iff it has a dense biinfinite orbit,
{τt(x) : t ∈ R}; the flow is transitive iff there exists a transitive point. A point x
is forward transitive for a flow or semiflow if the forward orbit {τt(x) : t ≥ 0} is
dense, and a (semi)flow is forward transitive iff there exists such a point.

For our statement we need a replacement for the notion of no isolated points.

Definition 40.4. Given a topological (semi)flow τt on X, we say the flow has no
isolated orbit segments iff given any nonempty open set U , x ∈ X and J ⊆ R a
compact interval, then U \ {τt(x) : x ∈ J} is a nonempty open set (it is open since
the continuous image of a compact set is compact).

Here is a topological property of X which guarantees this. A curve in X is a
continuous bijective map γ : J → X where J is some subinterval of R. We say the
space X has no isolated compact curves iff given any nonempty open set U , and
any curve γ defined on J a compact interval, then U \ γ(J) is a nonempty open set.
Since orbits of τt are curves, this implies the no isolated orbit segment property.

Note that if X is a metric space, it is equivalent to require that this be nonempty
for all balls U = Bδ(x).
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Proposition 40.3. Let (X, T ) be a Polish space, and let τt be a (semi)flow on X,
with no isolated orbit segments.
(i) Then if τt is a transitive flow, the set E of forward transitive points is residual.
(ii)If τt is a forward transitive semiflow, the set E of forward transitive points is
residual.

The same holds if instead of asumming no isolated orbit segments, we assume that
there exists t0 such that the time-t0 map T ≡ τt0 has a (forward) transitive point.

Proof. As before, let {Ui}i≥1 be a countable base for the topology T of the separable
metric space (X, d). Now we have

E = inf Gj = ∩j≥1 ∪t≥0 τ−t(Uj)).
We wish to show each of the open sets Gj is dense. Thus we claim that for each i ≥ 1,
Ui meets Gj.

For part (i), we are given that there exists a transitive point w with {τt(x) : t ∈ R}
dense; for (ii) we know this for R+. Since the flow space X has no isolated orbit
segments, this orbit cannot be periodic.

Since there are no isolated orbit segments, there are no isolated points. Thus X
contains at least two disjoint open balls.

Let U be an open set. Since τt is jointly continuous, given w ∈ X, the curve τt(w)
is a continuous map from R to X, so the inverse image in R of U is open hence a
countable union of disjoint intervals. Since there are no isolated orbit segments, this
inverse image is unbounded at +∞ for a semiflow, and also at -∞ for a flow.

Now we argue as for the case of a map. Given i, j ≥ 0, the orbit of w enters both
Ui and Uj in an unbounded, infinite number of time intervals. So it enters one of
them first. If it is Ui, we are done, exactly as before, as Ui meets Gj. Now if the
flow or semiflow is forward transitive, this is always the case for some point, as the
intervals corresponding to Ui and Uj each occur infinitely often towards +∞. Lastly,
in the flow case, given a biinfinitely transitive point and that Uj occurs first, then
there is an interval of times J = [a, b] such that U ≡ Uj ∩ {τ−t(Ui) : t ∈ J} is
nonempty. By the property of no isolated orbit segments, there is some s > b such
that U ∩ τ−s(U) is nonempty. Therefore, reasoning as for discrete time, Ui meets Gj

and we are done. �

Remark 40.1. One can extend the notion of transitive point to an action of a group
G action on a topological space X by continuous maps (hence by homeomorphisms,
since we have inverses). Note that the group itself is not required to have a topology.
We shall say the action is dynamically transitive iff there exists a transitive point.
The reason we have added the modifier “dynamically” is because of this much stronger
property: the action is called transitive iff for each x, y ∈ X there exists g ∈ G with
g(x) = y. Thus a transitive transformation or flow is generally not transitive as a Z−
or R−action!

41. Nonstationary transitions

Defining coordinate functions on Σ by Xi(x) = xi for x = (. . . x−1x0x1 . . . ) ∈ Σ,
then the sequence of measurable functions Xi on the measure space (Σ,B, µ) give in
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the language of probability theory a stochastic process, also called a sequence of
random variables. This is a stationary process if and only if the measure µ is
shift-invariant. The Shannon-Parry measure µ is invariant and so defines a stationary
Markov process. However, as we mentioned above, a general Markov measure on Σ+

or Σ need not be invariant; an example is given by the Shannon-Parry eigenmeasure
ν, which is defined from the same transition matrix P but beginning with the non-
invariant initial distribution wt.

Nevertheless, for this example the transition probabilities are stationary, while for
a general Markov process this also need not be the case, with the single matrix P
replaced by a sequence of row-stochastic matrices. In the case we shall study, these
may be rectangular, as the alphabets may change as well.

Given a sequence M = (Mi)i∈Z of (li × li+1) nonnegative matrices, each matrix
Mi acts on the left on column vectors and on the right on row vectors. Therefore,
writing Ci for the space of column vectors, and Ri for the space of row vectors, both
isomorphic to Rli , we have these diagrams:

· · ·R−1
M−1−−−→ R0

M0−−−→ R1
M1−−−→ R2

M2−−−→ R3 · · ·
and

· · ·C−1
M−1←−−− C0

M0←−−− C1
M1←−−− C2

M2←−−− C3 · · ·
We write C+

i for the cone of nonnegative vectors in Ci, i.e. column nonzero vectors
with each entry ≥ 0, and similarly for row vectors, R+

i ⊆ Ri.
Let Proj : (C+

i − 0) → ∆i be the projection v 7→ v/||v|| where ||v|| ≡ ∑ |vk| as
before, and also write Proj : (Ri − 0) → ∆t

i for the projection vt 7→ vt/||vt||. We
consider the induced projective action of the matrices Mi on the positive simplices
∆i ⊆ C+

i , ∆t
i ⊆ R+

i , and define for k ∈ Z and n ≥ 0 the sets ∆k(+n) ⊆ ∆k by

∆k(+n) = Proj(MkMk+1 · · ·Mk+n∆k+n+1),

and we define the set ∆t
k(−n) ⊆ ∆t

k by

∆t
k(−n) = Proj(∆t

k−nMk−n · · ·Mk−2Mk−1).

Note that these are nested:

∆k = ∆k(+0) ⊇ ∆k(+1) ⊇ . . .

and

∆t
k = ∆t

k(−0) ⊇ ∆t
k(−1) ⊇ · · · .

We write ∆t
k(−∞),∆k(+∞) for the intersections.

41.1. Nonstationary Shannon-Parry measures. We shall next describe such a
generalization of the Shannon-Parry measure. In the nicest case, when we have the
future and past Perron-Frobenius properties (see below), we will construct Shannon-
Parry measures much as before, and these will be unique. However for what follows
it will be important to consider the more general situation.

For this, we specialize to transition matrices. We begin with a sequence of finite
alphabets, Ai for i ∈ Z, with #Ai = li, and with Ai = {0, 1, . . . , li − 1}. Given a
sequence L = (Li)i∈Z of (li× li+1) 0− 1 matrices, we let ΣL ⊆ ΠiAi denote the set of
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allowed strings, x = (. . . x0x1 . . . ) such that the (xixi+1) entry of Li equals 1 for all
i ∈ Z.

We next define

ΩL = {ŵ = (. . . ŵ−1ŵ0ŵ1 . . . ) such that ŵi = Liŵi+1 and ŵi ∈ (C+
i − 0)}

and

Ω̂t
L = {v̂t = (. . . v̂t−1v̂

t
0v̂1 . . . ) such that v̂iLi = v̂i+1 and v̂i ∈ (R+

i − 0)}.

Lemma 41.1. Ω̂L is a nonempty convex compact set, and the number of its extreme

points is at most lim infi≥0(li). The same is true for Ω̂t
L, with extreme points ≤

lim infi≤0(li).

Proof. We can build a sequence ŵ constructively: first choose ŵk ∈ ∆k(+∞) for some
k ∈ Z, and then define ŵi for i < k by ŵ−1 = L−1ŵ0, ŵ−2 = L−2ŵ−1, . . . . For times
> k, we note that the Li may not be invertible, so we have to make choices in the
inverse images by matrix multiplication, possibly at each level: we choose first ŵk+1

such that L0ŵk+1 = ŵk. The preimage exists since ŵk ∈ ∆k(+∞). Next we choose
ŵk+2 such that L1ŵk+2 = ŵk+1, and so on. Note that this constructive procedure

yields the entire collection Ω̂L.

For Ω̂t
L a sequence v̂t ∈ Ω̂t

L, the procedure is similar: choose v̂tk ∈ ∆t
k,−∞ for some k

and then define v̂ti for i > k by v̂tk+1 = v̂tkLk and so on, and for v̂tk−m making choices
in the successive preimages.

The extreme point count is like the proof of Lemma 16.3, taking into account the
inverse images. �

Given ŵ ∈ Ω̂L, we define a second sequence w = (wi) by wi = ŵi/||ŵi|| =
Proj(ŵi); these have been normalized so as to be in the simplex ∆i. We write ΩL for
the collection of these normalized sequences.

Next, we define a sequence of real numbers λi by λi = ||ŵi||/||ŵi+1||. Therefore,
for each i ∈ Z,

Liwi+1 = λiwi.

We say the normalized positive column vectors wi+1 form an eigenvector sequence
with eigenvalues λi for the matrix sequence L; the ŵi form an eigenvector sequence
with constant eigenvalue sequence 1.

Given a sequence v̂t ∈ Ω̂t
L define the sequence vt = (vti) for i ∈ Z by vti = v̂ti/(v̂

t
iwi).

Thus, the vectors vi are normalized so their inner product with wi is 1.

Lemma 41.2. vti is an eigenvector sequence with the same eigenvalues as wi.

Proof. If we define λ̃i by vtiLi = λ̃iv
t
i+1, then we have λ̃i = λi, because:

λ̃i = λ̃i(v
t
i+1wi+1) = (vtiLi)wi+1 = vti(Liwi+1) = vti(λiwi) = λi.

�

We define a sequence of positive row vectors πt = (πti)i∈Z by (πi)k = (vi)k(wi)k
for i ∈ Z and where k is the index for the i th alphabet. By the chosen normalization
vtiwi = 1, πti is an element of ∆t

i.
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Next we define a matrix sequence P = (Pi)i∈Z by Pi = 1
λi
W−1
i LiWi+1, where Wi is

the (li× li) diagonal matrix with the entries of the vector wi on the diagonal. Writing
1i for the column vector with li entries all equal to 1, we have as before for the case
of a single matrix,

Pi1i+1 = 1i, (158)

and

πtiPi = πti+1. (159)

These are right and left eigenvector sequences with constant eigenvalue 1.
Given our 0 − 1 matrix sequence (Li)i∈Z and a choice of w ∈ ΩL, vt ∈ Ωt

L we
define the measures µ and ν exactly as before, but now using the nonstationary
row-stochastic transition matrices Pi.

Thus, for k,m ∈ Z with k < m, we define λ(k,m) = Πm−1
i=k λi. The measure of a

cylinder set is now:

µ([xk . . . xm]) = (πtk)xk(Pk)xkxk+1
· · · (Pm−1)xm−1xm = (1/λ(k,m))(vk)xk(wm)xm . (160)

The eigenmeasure ν is defined, on ΣL+, as before:

ν([x0 . . . xm]) = µ([x0 . . . xm])/(v0)x0 = (1/λ(0,m))(wm)xm . (161)

We now have an even nicer formula for ν, in terms of the non-normalized eigenvector
sequence ŵi:

ν([x0 . . . xm]) = 1/(ŵm)xm . (162)

We indicate the dependence on our choices ŵ ∈ Ω̂L, v̂t ∈ Ω̂t
L or, equivalently, of

the normalized sequences w ∈ ΩL and vt ∈ Ωt
L by: πtw,v, Pw,v, and similarly for the

measures defined from these: µw,v and νw,v. We call these collections respectively
the Shannon-Parry invariant measures and Shannon-Parry eigenmeasures
for L.

41.2. The one-sided case. Next we consider the situation where the sequence (Li)
is only defined for i ≥ 0.

We choose a strictly positive vector v in ∆t, and normalize it to the vector v0

which satisfies vt
0w0 = 1. Beginning with this vector, we then define the rest of the

sequence vti as before, for i ≥ 0. This again gives a positive eigenvector sequence with
eigenvalues λi.

From this we define the row probability vectors πti and transition matrices Pi, and
the measures µ and ν on the one-sided space Σ+

L , exactly as before.
To indicate the dependence on these choices, we write µ = µw,v0 . Noting that by

(162) the definition of ν does not depend on the choice of v = v0 (while µ does), we
write it as ν = νw.

Here is an equivalent procedure: extend (Li) to a two-sided sequence, choosing Li
for i < 0 to be the identity l0× l0 matrix and apply the two-sided construction. Now
∆t

(0,−∞) is equal to ∆t
0, so this procedure will give the same freedom for the choice of

v.
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41.3. Mixing for nonstationary one-sided sequences. The key to the proof of
the Bowen-Marcus lemma in the nonstationary context will be to extend the mixing
condition in the appropriate way.

We first give a definition for the case of a general Markov measure on a one- or
two-sided nonstationary space.

Definition 41.1. Let Pi for i ≥ 0 be a sequence of (li× li+1) row-stochastic matrices.
Let Σ+ denote Π∞i=0Ai, where Ai are alphabets with cardinality li. For 0 ≤ k ≤ n
integers, write P (k,n) = PkPk+1 · · ·Pn. Let πt0 be an element of ∆t

0, and define a
measure µ on Σ+ by the first half of formula (160). Thus P (k,n) is (lk× ln+1). We call
(Σ+, µ) a nonstationary Markov chain.

Define the sequence of row vectors πt0,π
t
1 = πt0P0, . . . ,π

t
m = πt0P

(0,m). Since Pi is
row-stochastic, πti ∈ ∆t

i, and this is a eigenvector sequence with eigenvalue 1.

We write Q
(k,m)
πtm

for the (lk × lm+1) matrix all of whose rows are πtm.

Recall that, for k ≤ m, Bmk is the σ−algebra generated by the collection of thin
cylinder sets Cm

k (the sets such that the symbols xk, xk+1, . . . , xm are fixed).
We say: the nonstationary Markov chain (Σ+, µ) is (future) mixing iff for any

fixed k ≥ 0, given ε > 0, for m > k sufficiently large we have that, for every A ∈ Bk0
and B ∈ B∞m , then µ(A ∩B) = (1± ε)µ(A)µ(B).

We define a metric on the nonnegative (m× n) matrices:

d(A,B) = sup
i
d(Ai∗, Bi∗) (163)

where Ai∗ indicates the ith row of A, and d is the projective metric on the standard
cone Rn+, and have, exactly as in Proposition ??:

Lemma 41.3. The Markov nonstationary chain is future mixing iff: for k fixed, given

ε > 0, then for m > k sufficiently large we have d(P (k,m), Q
(k,m)
πtm

) ≤ ε.

Definition 41.2. The sequence M i of (li × li+1) nonnegative matrices is (future)
Perron-Frobenius iff for all k ∈ Z, ∆k(+∞) is a singleton. We say M i is (future)
focussing iff k ≥ 0, given ε > 0 for m > k sufficiently large then the projective
diameter of ∆t

kMk · · ·Mm is < ε.

If the matrix sequence is two-sided (indexed by i ∈ Z rather then i ≥ 0), we define
the properties (past) mixing, Perron-Frobenius, focussing in the obvious the
symmetric way; all results hold here for the past conditions, so we only state the
future versions.

Now we see the power of Birkhoff’s contraction formula (92) and Corollary 24.9:

Lemma 41.4. The sequence M i is (future) Perron-Frobenius iff it is focussing.

Proof. By Corollary 24.9, the opening of Mk · · ·Mm is equal to that of (Mk · · ·Mm)t

and these are the projective diameters of Mk · · ·Mm∆m and ∆t
kMk · · ·Mm respec-

tively. The images Mk · · ·Mm∆m are nested decreasing sets, and the limiting projec-
tive diameter is zero iff the intersection is a singleton. �

Remark 41.1. The two conditions, Perron-Frobenius and focussing, are apparently
quite different as the order of applying the matrices is reversed. And since for
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∆t
kMk · · ·Mm more matrices are added in post-composition of the maps, rather than

pre-composition, this changes everything: the sets are certainly not nested, indeed,
they do not even belong to the same space (for instance the dimension= lm+1 may
change!)

We shall also need:

Lemma 41.5. Let X be an affine space and let C ⊆ X be a convex set which satisfies
the no-line property, and write dC for the Hilbert metric on C. Let D ⊆ C be a
compact convex set with a finite number of extreme points, {e1 . . . , ek}.

Assume that dC(x, y) ≤ ε for all pairs of extreme points. Then the diameter of D
is bounded above by 2(k − 1)ε.

Proof. We will be done if we show that for p ∈ D, then dC(p, ei) ≤ (k − 1)ε for each
extreme point. The proof is by induction on k. Consider k = 2; then since p is on
the segment bewteen e1 and e2, dC(p, ei) ≤ ε. Now for three points e1, e2, e3, consider
dC(e1, p); let p̃ be the point on the (e2, e3)−segment where the line through e1 and p
meets it; then dC(e1, p) ≤ dC(e1, p̃) and by the previous step, dC(p̃, e2) ≤ ε, and since
also dC(e1, e2) ≤ ε we have that dC(e1, p) ≤ 2ε.

For k = 4, we project p to p̃ in the simplex generated by e2, e3, e4 and apply the
previous induction step. Continuing in this manner we get the claimed bound. �

Now we consider mixing for Shannon-Parry type measures. Let L be a sequence of
(li × li+1) 0− 1 matrices, with either index i ≥ 0 or i ∈ Z.

Lemma 41.6. The following properties are equivalent:
(a) For some choice of w ∈ ΩL and vt ∈ Ωt

L the nonstationary Markov chain

(Σ+
L , µw,v) is mixing. For P = Pw,v:

(b) The sequence (Pi) is future Perron-Frobenius.
(c) The sequence (Pi) is future focussing.
(d) The sequence (Li) is future Perron-Frobenius.
(e) The sequence (Li) is future focussing.
(f) The chain (Σ+

L , µw,v) is future mixing for any choice w, v.

Proof. We have (b⇐⇒ c) and (d⇐⇒ e) from Lemma 41.4.
(b⇐⇒ d):We fix a choice of w, v and write P = Pw,v. We have

P (k,m) = (1/λk,m)W−1
k L(k,m)Wm+1.

Now we compare P (k,m)∆m+1 and L(k,m)∆m+1; since Wm+1 is diagonal, it is a bijection
on the simplex, so Wm+1∆m+1 = ∆m+1, and this does not affect the image; on the
other hand, W−1

k is an isometry of ∆k by Corollary 23.23. Therefore the projective
diameters of P (k,m)∆m+1 and L(k,m)∆m+1 are equal. (A similar reasoning gives a
direct proof of (c⇐⇒ e).)
(c =⇒ f): Here we use for (f) the equivalent condition of Lemma 41.3. Assuming
(c), we know the projective diameter of ∆t

kP
(k,m) is ≤ ε for m large. Now let eti denote

the row vector with 1 in the ith coordinate, 0 elsewhere; then etiP
(k,m) is the ith row of

P (k,m). Hence all the rows of this matrix are within distance ε. And ∆t
0P

(0,k−1) ⊆ ∆t
k.
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Hence the vector πtm (the unique row of Q
(k,m)
πtm

) is in this set also, and so

d(P (k,m), Q
(k,m)
πtm

) < ε,

as claimed.
(a =⇒ c): Assume each row of P (k,m) is ε−close to the unique row of Q

(k,m)
πtm

; then

by Lemma 41.5 the diameter of the image ∆t
kP

(k,m) is less than 2(lk + 1)ε, since by
Lemma 16.3 the number of extreme points in the image simplex is bounded by the
number in ∆t

k; this proves (c). Finally, note that (f =⇒ a) a fortiori. (a ⇐⇒ f):
Since statements (d) and (e) do not refer to the choice of w and v,....... �

Remark 41.2. For two-sided sequences, the corresponding past statements are all
equivalent.

41.4. A nonstationary Bowen-Marcus lemma. We now extend Lemma 18.1 to
the nonstationary situation.

Lemma 41.7. Given a sequence li ≥ 1, if Li for i ≥ 0 is a sequence of (li × li+1)
0−1 matrices which are future Perron-Frobenius, then for a measure m on Σ+

L which
has the Bowen-Marcus property, m is a constant multiple of ν.

Proof. We follow nearly line-for-line the proof for the stationary case, Lemma 18.1.
The first main change is this: we choose and fix w ∈ ΩL and vt ∈ Ωt

L; this defines
the measures µw,v and νw,v. Then we define γt,s by

m([∗ ∗ · · · ∗ s]) = γt,sν([∗ ∗ · · · ∗ s])
as before.

From Lemma 41.6, the future Perron-Frobenius condition implies that the sequence
is future focussing which implies the measure µw,v is future mixing, so from equation
(161), we have for t sufficiently large, for every a ∈ A0, s ∈ At

ν([a ∗ · · · ∗ s]) = µ([a ∗ · · · ∗ s])/va = (1± ε)ν[a] · µ[∗ ∗ · · · ∗ s];
and so

m[a] =
∑

s∈At

m([a∗· · ·∗s]) =
∑

s∈At

γt,s ·ν([a∗· · ·∗s]) = (1±ε)
∑

s∈At

γt,s ·ν([a])µ([∗∗· · ·∗s])

hence for a different ε′,

(1± ε′)m[a]/ν[a] =
∑

s∈At

γt,s · µ([∗ ∗ · · · ∗ s]).

This holds for each t ≥ 0 sufficiently large.
Therefore the limit

lim
t→∞

∑

s∈At

γt,s · µ([∗ ∗ · · · ∗ s])

exists, and this is our constant γ. �
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41.5. Nonstationary minimality and unique ergodicity.

Definition 41.3. We recall the a continuous map on a topological space is minimal
iff every orbit is dense. See e.g. [Wal75], [Fur81].

We shall say a sequenceM of nonnegative (li×li+1) matrices is past primitive if for
any k ∈ Z, there exists m > 0 (depending on k) such that Mk+m

k ≡MkMk+1 . . .Mk+m

has entries all nonzero. It is future primitive if M for any k ∈ Z, there exists m > 0
such that Mk

k−m > 0.

In the nonstationary situation, an interesting new phenomenon arises, that primi-
tive does not necessarily imply Perron-Frobenius. See §§42.2, 42.4 below.

Here is the main result towards which we have been heading:

Theorem 41.8. (Minimality and unique ergodicity for nonstationary adic transfor-
mations) Let Li for i ≥ 0 be a sequence of (li × li+1) 0− 1 matrices, and let O be a
one-dependent symbol order. Then:
(i) If the sequence (Li) is future-primitive, then the adic transformation (Σ+

L , TO) is
minimal.
(ii) The adic transformation is uniquely ergodic if and only if this sequence is future
Perron-Frobenius, and then and m = ν/ν(Σ+

L) is the unique TO−invariant non-atomic

measure on Σ+
A.

Proof.
(ii): Assume future Perron-Frobenius; then unique ergodicity follows from Lemma
41.7 just as for the stationary case, see the proof of Theorem 18.3.

For the converse, if the future Perron-Frobenius property does not hold, then there
are at least two right eigenvector sequences w ∈ ΩL, and we have at least two measures
ν = νw; see §41.2.
(i): We are to show that every orbit is dense, so, given a point x = (x0x1 . . . ) ∈ ΣL,
and a thin cylinder set B = [b0b1 . . . bk] ∈ Ck

0 for some k, we are to show that
there exists n ∈ Z with T nO(x) ∈ B. Since L is future primitive, there exists m
such that all the entries of Lk · · ·Lm are > 0. Thus there exists an allowed string
(b0b1 . . . bkwk+1 . . . wm) such that wm = xm.

Therefore the infinite string w = (b0b1 . . . bkwk+1 . . . wm−1xmxm+1 . . . ) is allowed,
and hence the two points x and w are comparable with respect to the order, so either
x ≤ w or w ≤ x. In the first case, there exists n ≥ 0 with T nO(x) = w, in the second
case n is ≤ 0. �

More generally we have:

Proposition 41.9. Given the sequence L and a one-dependent symbol order, the set
of measures {ν(w0)} is a convex compact set and its extreme points are the ergodic
measures for the adic transformation, with cardinality at most infi≥0(li).

Proof. From Lemma 41.1, the set of invariant measures is indexed by the simplex ∆∞.
That the extreme points of the collection of invariant measures for a transformation
are the ergodic measures is a well-known fact; see e.g. p. 38 of [Bil65]. �

As for the stationary case we have:
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a
1st,2nd,4th//

��

a
1st,2nd,4th//

��

a
1st,2nd,4th//

""

a · · ·

b

3rd
??

b

3rd
??

b

3rd
<<

b · · ·

Figure 111. The edge-labelled Bratteli diagram for the Chacon adic
transformation; the 4 edges entering into the symbol a are ordered
a, a, b, a.

Proposition 41.10. Let Li for i ≥ 0 be a sequence of (li × li+1) 0 − 1 matrices
satisfying the future Perron-Frobenius property, then the action of the group of finite
coordinate changes on Σ+

L is uniquely ergodic; future primitive implies the action is
minimal. �

42. PLANNED: Nonstationary substitutions and adic transformations

42.1. The Chacon example (with Thierry Monteill and Julien Cassaigne)
(warning: this section is a rough version!) First we consider a stationary ex-
ample, coming from the well-known Chacon substitution dynamical system. This is
defined from the substitution

a 7→ aaba,

b 7→ b.

To this we associate in the natural way a one-sided stationary ordered Bratteli di-
agram, Figure 111. The order is given by the substitution. Note that the diagram
contains exactly the same information as the substitution. The matrix of the sub-

stitution or abelianization is in this case L =

[
3 1
0 1

]
; the top row indicates that

there are 3 arrows coming from a to a, 1 from b to a, and the bottom row that there
is one arrow going from b to b. One can show (as is well known):

Proposition 42.1. The substitution dynamical system is infinitely decodable.

As a consequence:

Proposition 42.2. The natural homomorphism from the adic transformation to the
substitution dynamical system is one-to-one, if we remove the countable set of points in
the adic which do not have complete orbits, and also a countable set in the substitution
dynamical system.

As a consequence, minimality and unique ergodicity are true for one if and only
if they are true for the other. Now the matrix L is certainly not primitive. Yet
the Chacon transformation is minimal, as is well known. There is however a unique
positive eigendirection; this is the Perron-Frobenius condition, which by Theorem
41.8 implies unique ergodicity, for the adic and hence for the substitution (this latter
statement was previously known).
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42.2. A determinant one (3×3) counterexample (with S. Ferenczi). Here we
give an example of a class of adic transformations which are primitive hence minimal
but not uniquely ergodic, and whose matrices have determinant one. By definition
and by Theorem 41.8 respectively, primitivity and unique ergodicity only depend on
the matrix sequence and not on the order on the Bratteli diagram.

We define

Lj =




mj − 1 mj 0
nj nj nj − 1
1 1 1


 .

Note that detLj = 1.

Let L̃jx be
Lj(x)

|Lj(x)| where |y| = ∑3
i=1 yi. We define B̃k to be the product L̃1 . . . L̃k.

Lemma 42.3. For any x ∈ ∆, the unit simplex in R3, (L̃jx)3 ≤ 1
nj

.

Proof. We have (Ljx)3 = 1 while |Lj(x)| = nj + (mj + 1)x1 +mjx3 ≥ nj. �

Lemma 42.4. Suppose nk+1 ≥ 2mk for all k, and let e1 = (1, 0, 0); then for k ≥ 1,

(B̃ke1)2 ≥ 1− 2
n1

.

Proof. Let xk = L̃ke1, xk−1 = L̃k−1x
k, . . . , x1 = L̃1x

2; then, in view of Lemma 42.3,
we just have to prove that x1

1 ≤ 1
n1

, and we shall prove by induction that for each j

we have xj1 ≤ 1
nj

; this is true for xk+1 = e1, and

xj1 =
mjx

j+1
1 + (mj − 1)xj+1

3

nj + (mj + 1)xj+1
1 +mjx

j+1
3

;

this last quantity will certainly be smaller than 1
nj

as soon as mjx
j+1
1 +(mj−1)xj+1

3 ≤
1, and this is true because of Lemma 42.3, the condition nj+1 ≥ 2mj and the induction

hypothesis xj+1
1 ≤ 1

nj+1
. �

Lemma 42.5. Suppose mk ≥ 3nk+1
2

for all k, and let e2 = (0, 1, 0); then for k ≥ 1,

(B̃ke2)1 ≥ 1
3
.

Proof. We define a sequence xi in the same way as in the previous lemma; under the
induction hypothesis xj+1

1 ≥ 1
3
, the expression of xj1 being as in the previous lemma,

we have just to prove that (2mj−1)xj+1
1 ≥ nj+(3−2mj)x

j+1
3 , which is a consequence

of mj ≥ 3nj+1

2
. �

Consequences: Since the product LiLi+1 has entries all > 0, the sequence Li is
primitive hence any adic transformation defined from it by choosing an order on the
Bratteli diagram is minimal, by Theorem 41.8. Writing now ∆k for ∆, the unit

simplex in R3, where k serves only to indicate the time, then the image B̃k(∆k) ⊆ ∆0

contains the points B̃k(e2), with first coordinate ≥ 1/3, and B̃k(e1) whose second
coordinate is > 1− 1/n1 ≥ 2/3. so these points are in disjoint regions of the simplex
for all k, and hence the image simplices cannot possibly nest down to a singleton. See
Fig. ??. We have shown:
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Corollary 42.6. Any adic transformation defined by taking the sequence Li as edge
matrices, i ≥ 0, and then fixing a one-dependent symbol order, is minimal but is not
uniquely ergodic. �

42.3. Anosov families and the (2×2) case. The next theorem shows that a (2×2)
determinant one counterexample cannot exist.

Theorem 42.7. Let (Li)
∞
i=0 for i ≥ 0 be a sequence of (2×2) determinant one integer

matrices. Then any adic transformation defined by taking the Li as edge matrices,
i ≥ 0, and then fixing a one-dependent symbol order, and which is minimal, is then
necessarily also uniquely ergodic.

Proof. The collection of such matrices is SL(2,N), and as is well known (see Lemma

3.11 of [AF05]) this semigroup is generated freely by the matrices M =

[
1 0
1 1

]
and

N =

[
1 1
0 1

]
. Given a sequence (Li)

∞
i=0 in SL(2,N), let us factor each successively

to produce the new sequence (Aj)
∞
j=0 with each Aj = M or N ; this is what is called

an additive sequence in [AF05], [?]. Now this is clearly future-minimal iff Aj
is not eventually always equal to M or N . And in this case, we can then take

partial products to produce a multiplicative sequence of the form Âi =

[
1 0
ni 1

]
or

Âi =

[
1 ni
0 1

]
, for ni positive integers. with the choice of upper or lower triangular

alternating for i even or odd. Proposition 4.1 of [AF05] then shows that the sequence

(Âi) is future Perron-Frobenius; indeed, the unique positive right eigenvector is w =
(c, d) where c/d or d/c is equal to the continued fraction [n0n1n2 . . . ] depending on

the parity of Â0. �

42.4. Keane’s counterexample. Keane’s construction uses a sequence of (4 × 4)
matrices which have a combinatorics similar to that just discussed; indeed our ma-
trices are simply sumatrices of Keane’s. However, since they are larger, the combi-
natorics is somewhat more complicated. Our idea in the last section was twofold: to
imitate his combinatorial argument in this simpler situation, thus perhaps facilitating
an understanding of Keane’s example; secondly, to answer the natural question (once
things have been put into an adic framework) as to whether such a (3) “Keane-type
counterexample” exists – one knows already that no exchange on 3 intervals will
work!!!

Here are Keane’s matrices:

Lj =




0 0 1 1
mj − 1 mj 0 0
nj nj nj − 1 nj
1 1 1 1


 .

Again, these satisfy detLj = 1.
(to be continued........)

42.5. Veech and Masur’s theorem.
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43. Appendix: invariant means; the harmonic projection

44. Appendix:Measure theory, functional analysis background

δ−continuity property: Countable additivity is equivalent to: for (An)n≥0 nested
decreasing sets of finite measure and An = limAn = inf An = ∩An, then limµ(An) =
µ(A).

Lebesgue Dominated Convergence Theorem:
On a finite measure space, If fn → f a.s and |fn| ≤ g a.e. for g ∈ L1 then

∫
fn →

∫
f.

45. Tensor products

In this section we build on [Spi65], [Spi79], [GP74], [War71].

Definition 45.1. Given a vector space V of dimension k, with dual space denoted V ∗,
a p−tensor T is a function on the product of p copies of V , T : V × · · · × V → R,
which is p−multilinear, i.e. is separately linear in each coordinate. Thus a one-
tensor is just a linear functional. The space of all p−tensors is denoted T p(V ∗), so
T 1(V ∗) = V ∗.

Given ϕ ∈ T p(V ∗) and ψ ∈ T q(V ∗), then the tensor product is ϕ⊗ψ ∈ T p+q(V ∗)
defined by

ϕ⊗ ψ(v,w) = ϕ(v)ψ(w)

(which is indeed multilinear). This map is not onto, but the image, denoted T p(V ∗)⊗
T q(V ∗), spans the vector space T p+q(V ∗), a point we return to below. The tensor
product clearly satisfies the distributive laws (T1 + T2) ⊗ S = T1 ⊗ S + T2 ⊗ S, and
T ⊗ (S1 + S2) = T ⊗ S1 + T ⊗ S2, as well as the associativity of scalar multiplication,
(aT ) ⊗ S = aT ⊗ S, T ⊗ (aS) = aT ⊗ S. Note that the tensor product is not
commutative (even if p = q) but it is associative, so T1⊗T2⊗· · ·⊗Tn is well-defined.

From these laws, Φ(T, S) = T ⊗ S itself defines a bilinear function Φ : T p(V ∗) ×
T q(V ∗) → T p(V ∗) ⊗ T q(V ∗) ⊆ T p+q(V ∗), and more generally, Φ(T1, T2, . . . , Tn) =
T1⊗T2⊗· · ·⊗Tn defines a multilinear function, though these do not fit our definition
of tensor products, as the spaces are not the same.

A p−multi-index or p−index sequence I is a function I : {1, 2, . . . , p} →
{1, 2, . . . , k}. We write I1I2 . . . Ip for I, and define Ip to be the collection of all
p−index sequences. Note that #Ip = kp.

Definition 45.2. We recall that the symmetric group Sp is the the group of per-
mutations of p symbols, and is generated by the transpositions, those permutations
which interchange two elements. The symmetric group has p! elements. The function
sgn : Sp → ({±1}, ·) ∼= (Z2,+) is a homomorphism which takes the value +1 on
the even and value -1 on the odd permutations; these are, respectively, the product
of an even or odd number of transpositions. The alternating group Ap is the
subgroup of all even permutations; it is a normal subgroup of index 2, with the odd
permutations being its other coset.
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A p−tensor is symmetric iff the value is unchanged whenever any permutation is
applied to the vectors, equivalently iff this holds for any transposition. It is antisym-
metric, also called skew-symmetric, iff the sign changes whenever an odd permuta-
tion is applied, again equivalently iff true for any transposition; thus, iff for every
such pair v, z, we have T (w1, . . . ,v, . . . , z, . . . ,wp) = −T (w1, . . . , z, . . . ,v, . . . ,wp).
A p−tensor is alternating iff whenever two vectors of vI for I ∈ Ip happen to be
the same, then the value is zero. It is clear that this is equivalent to being antisym-
metric, in our setting of vector spaces over the field R (see below regarding the one
exceptional case, the field Z2!)

The alternating p−tensors will be of particular interest; the collection of these is a
vector subspace, denoted Λp(V ∗) ⊆ T p(V ∗).

Choose now a basis v1 . . . ,vk for V , and define ϕ1 . . . , ϕk to be the dual basis: the
linear functionals satisfying ϕi(vj) = δij = 0 or 1 iff i 6= j, i = j respectively. Given a
p−index sequence I, we write vI ≡ (vI1 , . . . ,vIp) and ϕI = ϕI1I2...Ip ≡ ϕI1 ⊗· · ·⊗ϕIp .
Proposition 45.1. dim(T p(V ∗)) = kp, with basis {ϕI}I∈Ip .

Before giving the proof, we consider the most basic examples: an inner product,
and the determinant.

Using the standard basis for Rn, with 〈v,w〉 the standard inner product, then for
T (v,w) ≡ 〈v,w〉, T is a 2−tensor. We note that T = ϕ11 +ϕ22 + · · ·+ϕnn; this is a
symmetric d−tensor.

Next, let v1 . . . ,vn be the columns of an (n× n) matrix. Then the determinant is
an alternating d−tensor, since it is multilinear and switching any two vectors changes
the sign. For k = 2, with v = (a, b) and w = (c, d), then for

S(v,w) = det

[
a c
b d

]
= ad− bc

we have S = ϕ1 ⊗ ϕ2 − ϕ2 ⊗ ϕ1 = ϕ12 − ϕ21.
For k = 3, expanding along the top row, the determinant is S = ϕ1⊗ (ϕ23−ϕ32)−

ϕ2 ⊗ (ϕ13 − ϕ31) + ϕ3 ⊗ (ϕ12 − ϕ21) = ϕ123 − ϕ132 − ϕ213 + ϕ231 + ϕ312 − ϕ321.
Noting that these basis elements are indexed by the six permutations of three

letters, this hints at the formula for the determinant for arbitrary k. Indeed, starting
with the single basis element ϕ123, we have applied all the elements of the permutation
group S3, with coefficient equal to the sign of the permutation. And this furthermore
suggests a way to bulid an alternating tensor, perhaps with p 6= n, beginning with a
single tensor. We encounter exactly this general procedure below: the Alt operator.

Unifying these two examples we get the following.

Proposition 45.2. Each 2−tensor T can be represented as a (k × k) matrix A via

T (v,w) = vtAw

where
T =

∑
Aijϕij.

T is respectively symmetric or antisymmetric iff that holds for its representing matrix
A, i.e. iff A = At, respectively A = −At. T is an inner product iff A is symmetric
and invertible.
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Proof. The first statement uses Proposition 45.1 and the second is immediate. The
third comes from Lemma 35.51.

�

Note that the dimension of the collection of (k×k) matrices agrees with Proposition
45.1: it is k2.

Remark 45.1. All these definitions make sense with the field R replaced by any field,
and more generally in the setting of modules over a ring. There is one small difference:
an alternating tensor is always antisymmetric, but if we have a vector space over a
field of characteristic 2, then the converse may not hold. Such fields are unusual:
every element has the property that a = −a. Thus for example, with the standard
inner product (1, 1) · (1, 1) = 1 + 1 = 0. The inner product is a tensor product T
with matrix representation given by I. Taking v = (1, 0), then T (v,v) = 1 6= 0 (so
it cannot be alternating) yet T (v,v) = −T (v,v) and indeed that hols for any vector
w = (a, b), w ·w = a2 + b2 = −(a2 + b2) so T is antisymmetric.

Another way to see this is that the tensor is alternating iff A = −At and the
diagonal entries are 0. But for this field

gives the inner product tensor T , and for

Now that we have this matrix representation for 2−tensors, we can see by example
why the tensor product is not onto. Let V = R2. Since T 1(V ∗) = V ∗ = R2, consider
T = (a, b) = aϕ1 + bϕ2 and S = (c, d) = cϕ1 + dϕ2, so T ⊗ S = acϕ11 + adϕ12 +
bcϕ21 + bdϕ22 which corresponds to the matrix

[
ac ad
bc bd

]

But not all (2×2) matrices are of this form: if say bc = 0 then one of b, c is zero, say b;
but then the whole second row is zero. So in fact neither the standard inner product
nor the determinant is of this form; they correspond respectively to the matrices

[
1 0
0 1

]
and

[
0 −1
1 0

]

If, however we take linear combinations of products we get everything, as the Propo-
sition shows.

We remark that this same example shows that not all measures on a product space
are product measures; here the space is a two-point space with point masses of weights
a, b and c, d.

But that is not surprising, as we have this infinite dimensional example of tensor
product:

Example 63. Let V = C(I,R) (the space of continuous functions on the unit interval);
so the dual space V ∗ is the space M(I) of finite signed countably additive measures
on I. Then for µ, ν ∈M, µ⊗ ν is the product measure µ× ν.

Exercise: show that the while the product measures are not all of M(I × I), their
linear combinations form a dense subset.

Now we return to prove Proposition 45.1.
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Proof. First we show {ϕI}I∈Ip is a basis for T p(V ∗). To show it spans, we claim that
for

S =
∑

I∈I

T (vI)ϕI

then S = T . Note first that ϕI(vJ) = δIJ . Hence S(vJ) = T (vJ) for all vJ ∈ I.
But by multilinearity, knowing T on all the {vJ}J∈I determines it on V × · · · × V (p
times), since we have a basis for each factor individually, so S = T .

Next we show {ϕI}I∈Ip is linearly independent. Suppose

S =
∑

I∈I

aIϕI = 0.

Applying this to vJ gives S(vJ) = aJ = 0. Thus it is a basis.
The dimension statement is now clear since as noted above, #Ip = kp.

�

Exercise 45.1. Show that any 2−tensor T is the sum of a symmetric and an anti-
symmetric tensor.

Hint: given an (n× n) matrix A, consider A+ At and A− At.
Question: is this true for p−tensors?

As a hint for the last exercise, consider the following question: starting from T ∈
T p(V ∗), how can we produce a symmetric or an antisymmetric tensor?

Note that Sp acts on T p(V ∗) as follows: (σT )(w1, . . . ,wp) = T (wσ(1), . . . ,wσ(p)).

So simply averaging over the group action, T ≡ 1
p!

∑
σ∈Sp σ(T ) ∈ T p(V ∗) will be

symmetric. Dividing by #Sp = p! assures that for T already symmetric then T = T .
For an antisymmetric version of this construction, we define Alt(T ) ∈ T p(V ∗) by

Alt(T ) ≡ 1

p!

∑

σ∈Sp

sgn(σ)(σT ).

It is clear that this is an alternating tensor. In fact we encountered this formula above
for the determinant, except now we are normalizing by #Sp; for T already alternating
then Alt(T ) = T . We note that for T symmetric, then Alt(T ) = 0.

The main reason for considering this operator is to then define the wedge product.
Given tensors T, S this is: T ∧ S ≡ Alt(T ⊗ S).

In particular, for T, S alternating, T ∧ S defines a map from Λp(V ∗) × Λq(V ∗) to
Λp+q(V ∗).

More generally, we define T1 ∧ · · · ∧ Tn ≡ Alt(T1 ⊗ · · · ⊗ Tn). The most basic
properties of the wedge product, the distributive law and linearity, are easy to verify.
But the problem with this definition is that we don’t know if it agrees with what has
been done before. That is, we have (T ∧ S) ∧ R = Alt(Alt(T ∧ S) ⊗ R) but is this
really equal to T ∧ S ∧R ≡ Alt(T ⊗ S ⊗R)?

What is needed is:

Proposition 45.3. The wedge product is associative: (T ∧ S) ∧R = T ∧ (S ∧R).

Our proof follows [Spi65] [Spi79] or [GP74]. First we need:

Lemma 45.4. If T is symmetric, then T ∧ S = 0 and similarly for S ∧ T .
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Proof. ... �

Proof. (of Proposition)......
We know the tensor product is associative, but the difficulty when the Alt operator

is applied is that several subgroups of G = Sp+q+r are involved: those permutation
which only affect the first p, middle q and final r coordinates. These are subgroups
Gp, Gq, and Gr of G which are isomorphic to Sp, Sq, and Sr respectively. Also involved
are Gp+q and Gq+r, defined similarly.

We know (T⊗S)⊗R = T⊗(S⊗R) so if we can show (T ∧S)∧R = Alt((T⊗S)⊗R)
and T ∧ (S ∧R) = Alt(T ⊗ (S ⊗R)) and we’ll be done.

Now (T ∧ S) ∧R ≡ Alt((T ∧ S)⊗R). .......
�

Note that this is exactly how we produced the determinant, since e.g. for n = 3,
we started with ϕ123 = ϕ1 ⊗ ϕ2 ⊗ ϕ3 (and one-tensors are trivially alternating).

In particular, if ϕ, ψ ∈ V ∗, then ϕ∧ψ = 1
2
(ϕ⊗ψ−ψ⊗ϕ). Therfore, ϕ∧ψ = −ψ∧ϕ

and ϕ ∧ ϕ = 0. This property of the wedge product is called skew-symmetry
(or anticommutativity or antisymmetry). More generally, if ϕ ∈ Λp(V ∗), ψ ∈
Λq(V ∗), then ϕ ∧ ψ = (−1)p+qψ ∧ ϕ. But on what space is this product defined? On
the exterior algebra Λ(V ∗) = Λ(V ∗) ≡ Λ0(V ∗)⊕ . . .Λp(V ∗)⊕ . . . ; here one defines
Λ0(V ∗) = R. Now the next statement shows this is finite dimensional, as indeed:

Proposition 45.5.
(i)For V with dimension d, dim(Λp(V ∗)) =

(
k
p

)
, with basis {ϕI}I=i1...ip: i1≤···≤ip .

(ii) Λ(V ∗) = Λ0(V ∗)⊕ · · · ⊕ Λn(V ∗); dim(Λ(V ∗)) = 2n.

Proof. Recalling that
(
n

p

)
≡ n!

p!(n− p)! =
n(n− 1) · · · (n− p+ 1)

p!
,

“d choose p”, is the number of ways of choosing p objects from n without order, the
dimension statements follows once we show this is a basis. Now {ϕI}I∈Ip span since
this is a subspace of the tensor product. And by anticommutativity, any change of
order is redundant, and any repetition gives the zero vector.

�

It is important to note how linear maps act: let A : V → W be linear; then the
transpose map A∗ : W ∗ → V ∗ is defined on ϕ ∈ W ∗ by (A∗ϕ)(v) = ϕ(Av). This
extends coordinatewise to A∗ : Λp(W ∗)→ Λp(V ∗):

(A∗T )(v1 . . .vp) = T (A(v1) . . . A(vp)).

It therefore extends to Λ, where we have:

A∗(T ∧ S) = A∗T ∧ A∗S.
We have the important special case where p = n and since dimΛn(V ∗) =

(
n
n

)
= 1,

the linear map A∗ must be multiplication by a constant. Expressing A as an (n× n)
matrix, then indeed, A∗ is the number detA.
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45.1. Tensor product of vector spaces: linearity and the Universal Mapping
Property. Two points are raised by the above treatment of multilinear algebra.
First, although it is a natural path to take didactically, given our familiarity with
inner products, with the determinant, and also with differential forms, it may seem
curious in retrospect to have defined tensor products for the dual space rather than
for the vector space itself. Secondly, now that we understand multilinear maps on
V , isn’t it possible that they can somehow be viewed as linear maps, on a different
space? In particular, this might clarify our understanding of the action of a linear
map, just given.

The answer to both queries turns out to be the same. Indeed, one can begin by
defining the tensor product of vectors, and can then see that a multilinear map is
exactly a linear map on this new (and much larger) vector space.

To define the tensor product on V , the easiest approach given what we have al-
ready done (the definition for the dual space V ∗) is to note that since V is naturally
isomorphic to (V ∗)∗, we can just apply the previous definition.

But the cleanest method from an abstract point of view is to build the multilin-
earity, and later (for wedge products) the anticommutativity, directly into the vector
space structure, in just the same way one defines a group via generators and relations.

Thus, let F (V,W ) denote the vector space with basis all of the nonzero elements
of V ×W , and define R(V,W ) to be the subspace generated by elements of the form:

(v1 + v2,w)− (v1,w)− (v2,w)

(av,w)− a(v,w)

for all a ∈ R, v1,v2,v ∈ V,w ∈ W and similarly for the second coordinate. Then
we define V ⊗W to be the quotient vector space F (V,W )/R(V,W ), with an element
v ⊗w being the corresponding coset [War71] p. 54. This yields:

(v1 + v2)⊗w = v1 ⊗w + v2 ⊗w

(av)⊗w = a(v ⊗w)

and similarly in the second coordinate.
We have:

Proposition 45.6. The dual space of V ⊗W is isomorphic to T 1(V ∗) ⊗ T 1(W ∗).
The two definitions of V ⊗W agree. The similar statement holds for p−tensors.

Proof. With Φ : V ×W → V ⊗W denoting the map v×w→ v⊗w, which is bilinear,
then given a vector space Z, and a bilinear map ϕ : V ×W → Z, there is a unique
linear map ϕ̂ such that the map ϕ lifts to it: ϕ̂ ◦Φ = ϕ. See 2.2(a) of [War71] p. 55.
This is the Universal Mapping Property of tensor products. �

Tensor algebra of V .....
The operator Alt and hence the wedge product also makes sense for vectors: we

write ⊗vI = v1 ⊗ · · · ⊗ vp and then note that Sp acts on V ⊗ · · · ⊗ V (p times) by:
σ(⊗vI) = σ(v1 ⊗ · · · ⊗ vp) = vσ(1) ⊗ · · · ⊗ vσ(p) and then we define

Alt(T ) ≡ 1

p!

∑

σ∈Sp

sgn(σ)(σvI).
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So then v1 ∧ · · · ∧ vp ≡ Alt(v1 ⊗ · · · ⊗ vn). We define Λp(V ) = V ∧ · · · ∧ V to be the
vector space generated by all of these elements. ???first via ideal; also V times W

The exterior algebra of V is now Λ(V ) = Λ0(V )⊕ . . .Λp(V )⊕ . . . .
As before for V ∗ we have:

Proposition 45.7.
(i)For V with dimension n, dim(Λp(V )) =

(
k
p

)
, with basis {⊗vI}I=i1...ip: i1≤···≤ip .

(ii) Λ(V ) = Λ0(V )⊕ · · · ⊕ Λn(V ); dim(Λ(V )) = 2n.

Next we check how linear maps act on V ⊗ V . Let A : V → W be linear, then we
define A(v1⊗v2) = (Av1)⊗(Av2). This restricts to Λ(V ), where we have: A(v1∧v2) =
(Av1) ∧ (Av2).

Proposition 45.8. Let A : V → V be a linear map, and suppose that we are given
vectors v1, . . . ,vk with Av1 = λ1v1, . . . , Avk = λkvk. Then v1 ⊗ · · · ⊗ vk is an
eigenvector for A : V ⊗ · · · ⊗ V , with eigenvalue λ = λ1 · · ·λk.

, , with generalized eigenvalues λ1 . . . λn. Then

Proof. For every pair v1,v2,
???
?? generalized eigenvectors?? �

(A∗(ϕ1⊗ϕ2))(v1,v2) = (ϕ1⊗ϕ2)(Av1, Av2) = ϕ1(Av1)ϕ2(Av2) = λ1λ2ϕ1⊗ϕ2(v1,v2),

(A∗(ϕ1⊗ϕ2))(v1,v2) = (ϕ1⊗ϕ2)(Av1, Av2) = ϕ1(Av1)ϕ2(Av2) = λ1λ2ϕ1⊗ϕ2(v1,v2),

so
(A∗(ϕ1 ⊗ ϕ2)) = λ1λ2ϕ1 ⊗ ϕ2.

Now this passes to the action of A on V ⊗ · · · ⊗ V , by duality.

45.2. Homology and cohomology. Our references here are [War71], [Mas91], [GP74],
[Spi65], [Spi79], [Hat02], [BT82]. For V a vector space of dimension n, as above
Λk(V ∗) denotes the alternating k− tensors and Λ(V ∗) the exterior algebra, Λ(V ∗) =
Λ0(V ∗) ⊕ · · · ⊕ Λn(V ∗). Now we consider M a compact differentiable manifold of
dimension n. We write Λk(M) for the bundle of alternating tensors, so Λk(M) =
∪p∈MΛk((TMp)

∗) and similarly for Λ(M).
We consider the smooth sections of these bundles, denoting these by Ωk(M) and

Ω(M).

Definition 45.3. A (differential) k− form on M is an element of Λk(M).
Consider a C∞ function f : M → R; taking M = Rn, then e.g. dx1 ∈ Λ1(M) =

(Rn)∗, f(x)dx1 gives an example of a differential form. A general differential form
can be written in coordinates as ΣIfIdxI where the sum is over multi-indices.

The derivative map in this context is given by the operator

d : Λk(M)→ Λk+1(M)

defined by:
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Bott Tu p 13
The pth de Rahm cohomology group Hp

deR(M) is the closed p−forms modulo the
exact ones. Writing H∗deR(M) = H0(M) ⊕ . . . Hn(M), the wedge product passses to
this graded algebra. (A graded algebra simply means an algebra which is a direct
sum of levels like this, with a product as here, such that an element of level p times
one of level q belongs to level p+ q).

We need:
–de Rahm’s theorem: Hp

deR(M) is isomorphic to Hp(M,R), the singular cubical
cohomology group with real coefficients; moreover, this respects the d operators, so
it is an isomorphism of the “cohomology theories”, i.e. there is an isomorphism of
the commutative diagrams. This correspondence is via integration of forms against
singular chains;

–this isomorphism is an isomorphism of the R−modules, and moreover it takes the
wedge product to the cup product, giving an algebra isomorphism.

–Künneth Formula: [BT82] p. 47: H∗(M × N) = H∗(M) ⊗ H∗(N), that is, for
each 0 ≤ m ≤ n, Hm(M ×N) = ⊕p+q=mHp(M)⊗Hq(N);

–Poincaré Duality: see Massey [Mas91], p. 365: for any abelian groupG, Hp(M,G) ∼=
Hn−p(M,G).

Now let M be the n−torus, Rn/Zn.

Theorem 45.9. For 1 ≤ p ≤ n, Hp(M,R) is isomorphic to Λp(R∗), a real vector
space of dimension dim(Λp(V ∗)) =

(
k
p

)
, with basis {ϕI}I=i1...ip: i1≤···≤ip .

(ii) Λ(V ∗) = Λ0(V ∗)⊕ · · · ⊕ Λn(V ∗); dim(Λ(V ∗)) = 2n.

Proof. By Proposition 45.7, �

M r is conjugate to the transpose of (Mk)−1 for k = n − r. Functoriality of inter-
section form; wedge product and duality.

46. Semidirect products and skew products

Definition 46.1. Let G be a group. The identity element of a group is denoted by
e, and the identity subgroup {e} is denoted I. That H is a subgroup of G is written
H < G. Given H,K < G then HK = {hk : h ∈ H,K ∈ K}. Similarly, one defines
gH = {gh : h ∈ H}; this is the collection of left cosets of H, denoted G/H, while
H\G are the right cosets {Hg}.

We say G is a product of H and K iff
(i) G = HK and
(ii) H ∩K = {1}.

This is equivalent to:
(i’) for every g ∈ G there exist h ∈ H, k ∈ K such that g = hk;
(ii’) this expression is unique.

By taking inverses, the order is not important: G is a product of H and K iff it is
a product of K and H.

Recall that an inner automorphism of G is a map ϕg : G → G for some g ∈ G
defined by h 7→ ghg−1.

A subgroup K < G is normal, written K C G, iff
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(a) for all g ∈ G, gKg−1 = K, equivalently gK = Kg;
iff:
(b) for all g ∈ G, for all k ∈ K, there exists k̃ ∈ K such that gk = k̃g, equivalently

gkg−1 = k̃.

That is, K is normal iff the inner automorphism ϕg of G defines an automorphism
of K (which will be an inner automorphism of K itself iff g ∈ K).

(This gives lots of examples of automorphisms which are not inner!)
A third definition is:

(c) The left cosets G/H form a group, with the multiplication (g1H)(g2H) just the
multiplication of these sets.

Exercise 46.1. Check the equivalence of (a), (b) and (c).

Definition 46.2. We say G is a (internal) direct product of H,K iff G is a
product and H and K commute, i.e. iff:
(i) for every 1h ∈ H, k ∈ K, we have hk = kh. It is easily checked that this holds iff
(i’) both H and K are normal in G.

The (external) direct product of groups H,K is the Cartesian product H ×
K = {(h, k) : h ∈ H, k ∈ K} with the group operation given by coordinatewise
multiplication: (h1, k1) · (h2, k2) = (h1h2, k1k2).

It is easily checked that if G is an internal direct product of subgroups H and K
then G is isomorphic to H × K, and that conversely, H × K is the internal direct

product of its subgroups H̃ = H × {1} and K̃ = {1} ×K.
If only one of the subgroups, say K, is normal, that is, if G is a product of H and

K, and K C G, then G is said to be an (internal) semidirect product of K and
H with normal subgroup K. The semidirect product has an external version as
well: given groups H,K and for all h ∈ H an automorphism ϕh : K → K, then we
define a group K oϕ H, the outer or external semidirect product, by taking the
following operation on the product set H ×K:

(k1, h1) · (k2, h2) = (k1ϕh1(k2), h1h2).

One checks that this is a group. Moreover, the external and internal versions are
again equivalent: indeed, given G an internal semidirect product of N and H with N
the normal subgroup, then (n1h1)(n2h2) = (n1ñ2)(h1h2) where ñ2h1 = h1n2 whence
ñ2 = h1n2h

−1
1 , which is in N since that is normal, and which moreover defines an

automorphism of N , as we have seen above.
Conversely, given an external semidirect product K oϕ H, then one checks that

K × {1} is indeed a normal subgroup.
A semidirect product is also called a split extension. The reason for this is as

follows.
Consider the exact sequence depicted here, recalling what (exact means: the image

of a map is the kernel of the following map). Thus since the image of the first map
is 1 ≡ {e}, that means the map α is injective, while the last map is surjective, so its
kernel is all of K, implying that the image of β is K, whence β is surjective. So this
diagram being exact simply says that α is 1− 1 while β is onto. In this case one says
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that G is an extension of the subgroup H by K. See p. 413 of [?]. The fact that
??? implies that α(H) is normal in G.

1 // H
α // G

β // K // 1

Now one says that this exact sequence splits back iff there exists a map ϕ : K → G
such that β ◦ ϕ = id.

1 // H // G
β // K //

ϕ
ii

1

We summarize this by:

Proposition 46.1. These are equivalent:
(i) G is an internal semidirect product of H by K;
(ii) G is isomorphic to an external semidirect product of H by K;
(iii) The short exact sequence splits back.

Given a group G suppose we have subgroups {e} = 1 = G0 C G1 C · · · C Gn−1 C
Gn = G. This is called a subnormal series. If each factor group Gk/Gk−1 is simple
(has no nontrivial normal subgroups) then one says this is a composition series for
G. Equivalently, it is a maximal subnormal series. If each Gi C G, it is a normal
series. If it is abelian this is called a solvable series. If there exists a solvable series,
G is termed a solvable group.

The easiest for us to understand are solvable groups, for (Given K C G, there may
not exist such an H− otherwise all groups would be solvable).

From semidirect products to skew products. There is an intriguing intuitive
parallel between the algebraic notion of external semidirect product and the dynami-
cal construction of skew product transformation. But can this analogy be made real?
Here is one way.

Proposition 46.2. Consider an external semidirect product G = K oϕ H, with

(k, h) · (k̃, h̃) = (kϕh(k̃), hh̃).

Fix g̃ = (h̃, ñ) ∈ G. Define T̂ : G → G by right multiplication by g̃: T̂ (g) = gg̃. Let

T denote the restriction of T̂ to H, i.e. right multiplication by h̃. Then T̂ is a skew
product transformation over the base map T : H → H, that is, on the fiber bundle G
with base H and fiber K, acting on the fibers by translation.

Proof. For any pair (k, h) ∈ K × H we have gg̃ = (k, h) · (k̃, h̃) = (kϕh(k̃), hh̃),

so defining Φg(k) = kϕh(k̃) then for Ψh : K → K defined by Ψh = Φg, the map

T̂ : G→ G acts on K ×H by

T̂ (k, h) = (Ψh(k), T (h))

which is the claimed skew product transformation.
�
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Thus we can think of the skew product as a generalization to dynamics of a semidi-
rect product of groups. In the same way, one can imagine generalizing the notion of
a solvable group, by having a sort of central series of extensions. In fact, Furstenberg
carried this out, both in the setting of topological dynamics and measure dynamics,
the latter together with Zimmer. One can imagine replacing abelian groups by the
dynamics of rotations of compact groups, which are isometries. The first step, a single
isometric extension, we have examned above in Proposition ??. See ???

Remark 46.1. (Nov 6 2015)Questions:
(1) Does the flow in the paper with Tom give a related example? The scenery

paper with Pierre?
(2) Maybe the defn of skew product generalizes immediately to a group action

on the base, and then the semidirect product is such an example??? Let’s check it
tomorrow!

Remark 46.2. Aug 10 2020 Questions:
(1)groups of matrices , upper trianglular
(2) central series of groups
)3= pos cone, Brat diags, extensions of actions. ex Heisenberg diagram!!!

47. Appendix: What is Functional Analysis?

Fuctional analysis is, in essence, the study of linear algebra in infinite dimensions,
when a topology has been added. For finite dimensions, as we have seen in Lemma
35.41, all norms are equivalent, and indeed all reasonable topologies are, but that is
far from the case in infinite dimensions, which is what makes the subject so rich and
fascinating.

The word “analysis” in the title can be explained in this way: the best examples
of these vector spaces are spaces of sequences or functions, and there all the tools of
analysis will come into play: convergent series, derivatives, integrals and so on.

A key part of the subject is indicated by its name: linear functionals. Intuitively,
the space V ∗ of continuous linear functionals on a topological vector space V serves
to define coordinates on the space. We then work with V through analysis of these
coordinates, so in summary Functional Analysis can be considered to be “analysis on
function spaces making use of linear functionals”.

First, beginning with finite dimensions:

48. Invariant means and time averages on the reals

In Example 2 we asked the question of how to choose a point randomly from a
compact group. But it is when we move on to the noncompact setting that things
get really interesting. And, as we shall see, the answer has everything to do with the
notion of time average so familiar from the Birkhoff Ergodic Theorem.

Example 64. Invariant means: choosing a point randomly from a noncompact group.
An invariant mean on a discrete group G is a finitely additive invariant measure

µ which is invariant for the action of the group on itself by left multiplication. Such
a µ will provide an answer to our question, but several new issues are raised:
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–Can we strengthen finite to countable additivity? (No!)
–Do invariant means always exist? (No: G is termed amenable if so).
–If G is amenable, is the invariant mean unique? (No).
–Can we reduce this “nonuniqueness” in some meaningful way? (Yes).
–Can we still do something meaningful in the nonamenable case? (Yes, sort of!)

We shall return to each of these points below.
But what should the definition be for non-discrete groups? First, let us note that

amenability is equivalent to the existence of a left-invariant mean λ on the group,
i.e. λ is a normalized positive translation-invariant functional on the space of bounded
functions, L∞(G) where this is with respect to the Haar measure on G (for a discrete
group, the Haar measure is counting measure and so this is just l∞(G)).

This second definition generalizes to a locally compact Hausdorff group G; by a left-
invariant mean λ on the group, we mean a normalized positive translation-invariant
functional on L∞(G,m) where m is Haar measure on G. Of course m itself is infinite
when G is noncompact. This does agree with the definition for discrete groups, as
then m is just counting measure.

At this point we need some examples. Abelian groups, such as Zn, Rn, are always
amenable; more generally any solvable group is (for example the ax + b or affine
group). On the other hand, the free group on two generators, F2, provides a basic ex-
ample of nonamenability. Another is PSL(2,R), the group of isometries of hyperbolic
space; see §??.

But first let us examine more closely the simplest example, (R,+), the additive
group of the real numbers.

................

Example 65. For this, it is convenient to begin instead with the motivating idea of
integration.

By definition a mean λ on a locally compact group G is a normalized linear,
positive, bounded functional on L∞(G, µ) where L∞ is defined with respect to Haar
measure µ; given a bounded function f , then λ(f) is thought of as the integral of
f with respect to our (now only finitely additive) measure µ. We recall that Haar
measure is the unique (up to normalization) translation-invariant measure on the
group; since the group may not be commutative, we have to fix here either the right-
or left- action of the group on itself, and choose right- or -left Haar measure. When G
is noncompact, Haar measure is infinite; on Rn it is Lebesgue measure of dimension
n. One says λ is a (left) invariant mean if it is translation-invariant for the action
on the left.

To produce an invariant mean λ on R, note that for f ∈ L∞, f(x) − f(x − t) has
mean zero. Letting E denote the closed vector subspace generated by functions of
this form, λ is defined uniquely on E by linearity and continuity. Now we extend λ
to L∞ by the Hahn-Banach extension theorem, and we have produced an invariant
mean, and moreover all invariant means result from some such extension.

This is hardly particularly satisfying or useful, as it gives an ambiguous notion
of average value even on some obvious examples. Indeed, take f(x) = sin(x), then
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translation-invariance alone will tell us that λ(f) = 0, but this is no longer true for
the function f(x) = sin(

√
x). And yet, applying a simple time average encountered

above, we arrive at 0 as the mean value here as well. Now ideally, in our search for
“the” appropriate notion of random choice of a point, we might hope to arrive at
something like Lebesgue measure on the circle, with its uniqueness. So perhaps what
we need to look for is invariance with respect to other natural operations.

Consider now a nonnegative function ϕ : R→ R of integral one. The convolution
of ϕ with f is defined as

ϕ ∗ f(t) =

∫

R
ϕ(t− x)f(x)dx.

This is commutative: taking u= t-x so x= t-u; du= -dx then

ϕ ∗ f(t) =

∫ ∞

−∞
ϕ(t− x)f(x)dx = −

∫ x=∞

x=−∞
ϕ(u)f(t− u)du =

∫ u=∞

u=−∞
ϕ(u)f(t− u)du

= f ∗ ϕ(t)

Hence writing the translate of the function f(t) by u as fu(t) ≡ f(t− u), then this is∫ u=∞
u=−∞ fu(t)ϕ(u)du leading to two quite different interpretations for the convolution:

from the first equation, f remains still while ϕ is flipped and then translated, so
ϕ ∗ f represents a local smoothing of f (and indeed, if ϕ has a certain degree of
smoothness, that will be passed over to the convolution); from the second, f ∗ ϕ is a
weighted average, by the (signed) normalized measure ϕ(u)du, of the translates of f .

Now via either interpretation, it is reasonable to require of our invariant mean that
it is invariant for this operation: that λ(f) = λ(ϕ ∗ f). But note that the average
of translates is given by an integral rather than a sum, and so this convolution
invariance (also known as topological invariance [Gre69]) does not follow from
translation invariance, rather it will need to be an additional assumption.

To prove there exists a convolution-invariant mean, we can we can enlarge the
subspace E to include functions of the form f − ϕ ∗ f for all such ϕ, and proceed as
before by Hahn-Banach extension.

Here is a further reasonable requirement. For m Lebesgue measure on R, let us
define the mean value of f to be:

λ(f) = lim
T→∞

1

2T

∫ T

−T
fdm,

whenever this limit exists. We define the measurable sets to be the algebra of sets A
where this exists for f = χA.

Thinking of f as a function of time, then half of this is

λ+(f) = lim
T→∞

1

T

∫ T

0

fdm,

the Cesàro average of f , giving our usual notion of the “time average” of the
function.
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A set A ⊆ R+ has (Cesàro) density c ∈ [0, 1] iff the Cesàro average of χA exists
and equals c, i.e.

lim
T→∞

1

T
m(A ∩ [0, T ])→ c as T →∞.

The integer version of this, for A ⊆ N, is

lim
N→∞

1

N
#(A ∩ [0, N − 1])→ c as N →∞.

Although the above limit only exists for certain functions, we can again one can
extend λ+ to all of L∞(R,m) abstractly (by the Hahn-Banach Theorem).

But again this Hahn-Banach extension is nonunique. The Hardy-Riesz log average
of f ,

lim
T→∞

1

log T

∫ T

1

f(x)
1

x
dm,

might help; and next we can move on to their the log log average, defined by

lim
T→∞

1

log log T

∫ T

e

f(x)
1

x log x
dm,

and so on.
....
example: sin(log x)
....
But are these all compatible- that is, if the Hardy-Riesz log(n)−average exists does

the log(n+1)−average does as well, and with the same value?
To see the answer, it helps to change somewhat our point of view, returning again

to convolutions. Now considering the specific choice ϕ(x) = χ[0,∞)e
−x, it follows that

the Cesáro averaging operator is the conjugate via an exponential change of variables
of the operator f 7→ ϕ∗f on L∞, and that moreover the log(n+1)−averaging operator
is the exponential conjugate of the log(n)−operator.

So we can proceed as follows:
1) the Cesàro operator is consistent with any convolution operator; and hence the
order –(n+1) operator is consistent with the order – n operator, so all are consistent;
moreover, taking this one step further,
2) there exists an invariant mean which is invariant both for convolution and for
an exponential change of variables. Since convolution-invariance implies translation-
invariance, this mean is invariant with respect to dilation, composition with xr for
r > 0, and so on.

Even after this, the Hahn-Banach extension is nonunique. For an attempt to see
how far one can proceed, see [Fis87]- there are still some basic open questions here!

Theorem 48.1. [Fis87]There exists an invariant mean λ on R which is invariant
with respect to compostion with exp and is invariant for all the log averages of each
order, and which is measure-linear in the sense of Mokobodski.

The point of this discussion is that two different notions of mean value (the expected
value of a function defined on a probability space, and the time average of a function
defined on the reals) have quite different natures: for the first we have an actual
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(countably additive) measure, while for the second it is only finitely additive. Now
one of the nicest ideas in ergodic theory is when these two notions of average value
are related: if we are given a flow on a measure space, and a function defined on the
space, and a flow-invariant probability measure, then this measure gives an idea of
randomness (from the invariance with respect to the action of the group (R,+).) So
on the one hand we have the expected value of this function. On the other hand, we
could choose a point randomly with respect to this measure, then observe the values
of the function over th orbit of this point- which is a copy of the real line. Then we
can ask if the time average of this exists. The positive answer is given by Birkhoff’s
Ergodic Theorem.

Now for the Birkhoff result, we don’t need such a fancy invariant mean; in fact all
we need is the Cesàro average.

The proof of this theorem is subtle, but it can be viewed as a sort of Fubini theorem
on the interchange of the order of integration, for two measures, one countably and
the other finitely additive (the time average). From this point of view, the need
for a special proof is due to Fubini’s theorem failing when we don’t have countable
additivity, and the content of the theorem is that the Cesáro averaging method is
strong enough to get our result.

Test functions: Almost periodic functions. Ergodic theorem.
From this point of view, for our test functions, we have not made use of the stronger

averaging methods (log, log log and so on), it is fair to ask whether these might not
also prove useful in some dynamical context. In fact this is so, but only if we move
beyond the standard setting, to the dynamics of infinite measures. See §???.

Here is one example: first digit problem Another: PCLT.

49. Infinite measure ergodic theory

50. More on towers; noninvertible towers

50.1. Return times and induced maps: the noninvertible case. Here we con-
sider what can still be done when the original map is not invertible.

Beginning with a map T : X → X, we first extend the return-time function to all
of X, setting

rA(x) = inf{n > 0 : T n(x) ∈ A}
and rA(x) =∞ iff x never returns to A.

Again defining B = Ac, we extend the return-time partition to all of X, setting

Ak = {x ∈ A : rA(x) = k} and Bk = {x ∈ B : rA(x) = k}. (164)

Note that now:

Ak = A ∩ T−1(B) ∩ · · · ∩ T−(k−1)(B) ∩ T−k(A) and

Bk = B ∩ T−1(B) ∩ · · · ∩ T−(k−1)(B) ∩ T−k(A).
(165)

The dynamics of T is as indicated in the illustration on the right side of Fig. 112
(borrowed from [AW73], where it is used to study a famous infinite measure-preserving,
noninvertible map called Boole’s transformation): A1 and B1 map to A; Bk+1 ∪Ak+1

maps onto Bk; A∞ maps to B∞ which maps to itself. This Adler-Weiss picture
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· · ·

···

A1A2A3A• A4· · ·
B1B2B3B• · · ·

a

eA2
eA3eA4

eA1

eB3
eB1

eB1

eB1

eB2

eB2

eA1

Figure 112. The semiconjugacy from the noninvertible tower (X̃, T̃ )

to the Adler-Weiss model of the original map (X,T ); here B̃i = α−1(Bi).

of (X,T ) - (perhaps it should be called a split-level house!) replaces the Kakutani
skyscraper (the internal tower) of Fig. 18 when the map is not invertible.

The induced map TA : A \ A∞ → A is defined as before, and we construct the

tower over (A, TA) with height function rA, now writing (X̃, T̃ ) for the tower space

and map (Â, T̂A, rA). The base of the tower will be denoted Ã ≡ A× {0}, with B̃ its

complement. We define subsets Ãi, B̃i of X̃ by replacing A,B with Ã, B̃ in equations

(164), equivalently (165). We write T̃A for the map (x, 0) 7→ (TA(x), 0) on Ã \ Ã∞.

Note that the map (X̃, T̃ ) is invertible inside the tower but not on the top.

This external tower maps to the split-level model of (X,T ) by α : X̃ → X where

α(x, k) = T k(x). Here (x, k) ∈ X̃; thus, x ∈ A and k < rA(x). We have:

Lemma 50.1.
(i) The map α is a homomorphism from (X̃, T̃ ) to its image inside of (X,T ).

(ii)For each k ≥ 1, α−1(Ak) = Ãk and α−1(Bk) = B̃k.
(iii) If T is invertible, then α is a bijection to its image.

Proof. By definition of α, we have this commutative diagram, where x ∈ A and
n = rA(x)− 1:

(x, 0) � T̃n //
_

α

��

(x, n) � T̃ //
_

α

��

(TA(x), 0)
_

α

��
x � Tn // T n(x) � T // TA(x)

Therefore the following diagram commutes, proving (i):

X̃

α

��

T̃ // X̃

α

��
X

T // X

For (ii), since α ◦ T̃ = T ◦ α, for the action on sets via the inverse image maps we

have α−1 ◦ T−j = T̃−j ◦ α−1. Hence the definition of Ak, Bk in (165) converts, after
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the application of α−1, to the corresponding definition of Ãk, B̃k. Thus α−1(Ak) = Ãk
and α−1(Bk) = B̃k.

To prove (iii), suppose α(x) = α(y) = z. Suppose z ∈ Ak; then by (ii) both x and

y are in Ãk, but α is a bijection from Ã to A, so x = y. If z ∈ Bk, then x, y ∈ B̃k by

(ii). We follow x, y down the tower to the base Ã, by applying T̃−1 the appropriate

number of times. Since T̃ is invertible inside the tower, this gives two points x′, y′.
Now we follow z down to z′ ∈ A; assuming T is invertible, this gives a single point

z′; we have that α(x′) = α(y′) = z′. But since α is a bijection from Ã to A, x′ = y′

and hence x = y.
�

We shall say that a set A ⊆ X is recurrent iff every x ∈ X eventually enters
A, so rA is finite for each x ∈ X exactly when A is a recurrent set. Equivalently,
∪∞n=1T

−nA = X. In particular, every point of A itself returns to A.

Theorem 50.2.
(i) Given a measurable map T of a measurable space (X,A) and A ∈ A, then Ak, Bk

are measurable sets, and rA, TA, T̃ , and α are measurable functions.
If µ is an invariant measure and µ(A) is positive finite, then if A is recurrent:

(ii) µ(Bk)→ 0 as k →∞;
(iii)(Adler-Weiss [AW73]) the map TA preserves µ|A (the measure µ restricted to A);

(iv) the map α : X̃ → X sending (x, n) to T n(x) is a homomorphism from the tower

(X̃, T̃ , µ̃) to (X,T, µ). This is onto a.s., hence a factor map;
(v) the map α is an isomorphism iff (X,T, µ) is invertible.

Proof. In the first statement, we are given a σ−algebra A with respect to which the
map T and the subset A are measurable, and it is understood that N∗ ≡ {1, 2, . . . }
is equipped with the discrete topology (every set is open) and the associated Borel
σ−algebra (every set is measurable). By (165) Ai and Bi are measurable sets, hence
rA is measurable.

By definition T−1
A (E) consists of all points in A that take some least time k to

return to A and then enter it in the subset E. By (165), we can write this set as the
disjoint union

T−1
A (E) = ∪∞k=1Ak ∩ T−k(E). (166)

Therefore TA is measurable, since T hence each T k is.

The tower map T̃ inside the tower simply moves the level of a column upwards, so

is measurable. That is, for E ⊆ X̃ \ Ã, T̃−1(E) is measurable. It suffices to show the

same for E ⊆ Ã. Write Ť for the map from the base Ã to the top B̃1, defined on Ak to

be T̃ k−1; this map is a bimeasurable bijection. Then for E ⊆ Ã, T̃−1(E) = Ť (T−1
A (E))

which is measurable.
Next we show that α is measurable. Consider first E ⊆ A. But α is essentially

the identity map on the bases, that is α−1(E) = E × {0} which is measurable. Next

suppose that E ⊆ B1, and let Ẽ = T−1(E). Consider Ẽ ′ ≡ Ť−1(Ẽ); this takes

Ẽ down the tower to the base, and since Ť is a bimeasurable bijection, this set

is measurable iff Ẽ is. Now pull back E to a set E ′ ⊆ A via applications of T .
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Now T−1(B1) = A1 ∪ B2, T−1(B2) = A2 ∪ B3, T−1(B3) = A3 ∪ B4, and so on, so
E ′ = T−1(E ∩B1) = (E ′ ∩ A1) ∪ (E ′ ∩ A2) ∪ (E ′ ∩ A3) ∪ . . . so E ′ = ∪k=1∞E

′ ∩ Ak)
But Ť−1(Ẽ) = ???
α−1(E) has the same measure as T−1

A (E) which by part (iii) is equal to µ(E).
For (ii), to show that µ(Bk) → 0, note that T−1(A) = A1 ∪ B1, so µ(A) =

µ(T−1A) = µ(A1) + µ(B1). Similarly, T−1(B1) = A2 ∪ B2, so µ(B1) = µ(T−1B1) =
µ(A2) + µ(B2). Continuing inductively, at stage n we have µ(A) =

∑n
k=1 µ(Ak) +

µ(Bn). So µ(Bn) = µ(A)−∑n
k=1 µ(Ak) =

∑∞
k=n+1 µ(Ak)+µ(A∞) for each n. Since A

has finite measure the sum
∑∞

k=1 µ(Ak) converges, and by recurrence A∞ has measure
zero. Thus µ(Bk)→ 0 as claimed.

Now we prove (iii). Let E ⊆ A. The set T−1
A (E) consists of all points in A that

take some time k to return to A and then enter it in the subset E. We can write this
set as a disjoint union

T−1
A (E) = ∪∞k=1Ak ∩ T−k(E), (167)

which is measurable. Using the same idea as before, for each n,

µ(E) =
n∑

k=1

µ(Ak ∩ T−kE) + µ(Bn ∩ T−nE).

Since µ(Bn)→ 0 as n→∞, we have

µ(E) =
∞∑

k=1

µ(Ak ∩ T−kE) (168)

and by (167) TA is measure-preserving as claimed.
Next we prove (iv). By Lemma 50.1, we know that α is a semiconjugacy in the set

category; it is clearly measurable.
...........????
If A is transitive then α is onto, since y ∈ X is T n(x) for some x ∈ A, and taking

the least such n, then y = α(x, n).
By part (i), the map T is transitive, hence α is onto.
..............
We verify that it is measure-preserving.
We note that α(x, 0) = x ∈ A, while for 1 ≤ k ≤ r(x)− 1, α(x, k) = T k(x) ∈ Ac =

B.
Consider a set E ⊆ A. We have α−1(E) = E × {0} which has the same measure

as E.
Next suppose that E ⊆ B1. Let Ẽ = T−1(E). We shall show the set α−1(E) has

the same measure as T−1
A (E) which by part (iii) is equal to µ(E).

First we claim that α−1(E) is contained a subset of the top of the tower. Indeed,
for x ∈ E, Tx ∈ A but x /∈ A. Thus the inverse image α−1(x) is in the top of the
tower, since all points in this set have the form (w, r(w)− 1). We project each such
point to (w, 0) in the base. This is in T−1

A (E) × {0}; we note that conversely every
point in this set has that form.
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Pictorially, we take each part of α−1(E) in a given column down its elevator until
it hits the base. This preserves measure within the tower. But the resulting set is
T−1
A (E)× {0} which has the same measure as T−1

A (E), as stated.

Finally, if T is 1−1, then α is: the map T̃ is a bijection up the tower, and T as well;
now α is a bijection from the base to A, so that property transports up the tower.

....
False proof that

(ii)The set A is transitive.
We shall say A is transitive if ∪∞n=0T

nA = X.
If A is transitive, then α is onto hence a factor map.
Now we prove (ii). Consider W = {x : x ∈ (T n(A))c for each n ≥ 0}. We are to

show that µ(W ) = 0. A priori forward images are not always measurable, but we are
assuming the measure space is complete, and will bound this set by small measurable
sets.

Since {Bi} partition B, W = ∪∞i=1W ∩ Bi. Now if x ∈ W ∩ B1 and T (y) = x, and
y /∈ A, then y ∈ B2. Hence T−1(W ∩B1) ⊆ W ∩B2, and similarly for higher powers.
So µ(W ∩ B1) = µ(T−1(W ∩ B1)) ≤ µ(W ∩ B2) ≤ µ(W ∩ Bn) → 0 as n → ∞. So
recurrence does imply transitivity.

?? �

Note that part (iii) above gives a fourth proof of Theorem 5.1, Poincaré recurrence.

50.2. Noninvertible towers and the natural extension.

51. Appendix: Transitive points for group actions

Here we extend the ideas of §5.2 to flows and semiflows. The “no isolated points”
property will be replaced by an appropriate condition (that compact pieces of flow
orbits cannot fill up an open subset). First we have these definitions:

Definition 51.1. Given a topological space (X, T ), a continuous flow τt on X is a
jointly continuous map τ : X × R → X which satisfies the flow property: writing
τt(x) = τ(x, t), this is τt+s = τt ◦ τs. To define a continuous semiflow we replace R
above by R+ = [0,+∞).

Given a flow on X, a point x ∈ X is transitive iff it has a dense biinfinite orbit,
{τt(x) : t ∈ R}; the flow is transitive iff there exists a transitive point. A point x
is forward transitive for a flow or semiflow if the forward orbit {τt(x) : t ≥ 0} is
dense, and a (semi)flow is forward transitive iff there exists such a point.

For our statement we need a replacement for the notion of no isolated points.

Definition 51.2. Given a topological (semi)flow τt on X, we say the flow has no
isolated orbit segments iff given any nonempty open set U , x ∈ X and J ⊆ R a
compact interval, then U \ {τt(x) : x ∈ J} is a nonempty open set (it is open since
the continuous image of a compact set is compact).

Here is a topological property of X which guarantees this. A curve in X is a
continuous bijective map γ : J → X where J is some subinterval of R. We say the
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space X has no isolated compact curves iff given any nonempty open set U , and
any curve γ defined on J a compact interval, then U \ γ(J) is a nonempty open set.
Since orbits of τt are curves, this implies the no isolated orbit segment property.

Note that if X is a metric space, it is equivalent to require that this be nonempty
for all balls U = Bδ(x).

Note further that a special semiflow, that is a suspension over a continuous map
with continuous return-time function, such that the base map has no isolated points,
certainly satisfies the no isolated orbit segment property.

Proposition 51.1. Let (X, T ) be a Polish space, and let τt be a (semi)flow on X,
with no isolated orbit segments.
(i) Then if τt is a transitive flow, the set E of forward transitive points is residual.
(ii)If τt is a forward transitive semiflow, the set E of forward transitive points is
residual.

The same holds if instead of asumming no isolated orbit segments, we assume that
there exists t0 such that the time-t0 map T ≡ τt0 has a (forward) transitive point.

Proof. As before, let {Ui}i≥1 be a countable base for the topology T of the separable
metric space (X, d). Now we have

E = inf Gj = ∩j≥1 ∪t≥0 τ−t(Uj).
We wish to show each of the open sets Gj is dense. Thus we claim that for each i ≥ 1,
Ui meets Gj.

For part (i), we are given that there exists a transitive point x with {τt(x) : t ∈ R}
dense; for (ii) we know this for R+. Since the flow space X has no isolated orbit
segments, this orbit cannot be periodic.

Let U be an open set. Since τt is jointly continuous, given w ∈ X, the curve τt(w)
is a continuous map from R to X, so the inverse image in R of U by this curve is
open hence a countable union of disjoint intervals. Since there are no isolated orbit
segments, this inverse image is unbounded at +∞ for a semiflow, and also at -∞ for
a flow.

Now we argue as for the case of a map. Given i, j ≥ 0, the orbit of x enters both
Ui and Uj in an unbounded, infinite number of time intervals. So it enters one of
them first. If it is Ui, we are done, exactly as before, as Ui meets Gj. Now if the
flow or semiflow is forward transitive, this is always the case for some point, as the
intervals corresponding to Ui and Uj each occur infinitely often towards +∞. Lastly,
in the flow case, given a biinfinitely transitive point and that Uj occurs first, then
there is an interval of times J = [a, b] such that U ≡ Uj ∩ {τ−t(Ui) : t ∈ J} is
nonempty. By the property of no isolated orbit segments, there is some s > b such
that U ∩ τ−s(U) is nonempty. Therefore, reasoning as for discrete time, Ui meets Gj

and we are done. �

Remark 51.1. One can extend the notion of transitive point to an action of a group
G action on a topological space X by continuous maps (hence by homeomorphisms,
since we have inverses). Note that the group itself is not required to have a topology.
We shall say the action is dynamically transitive iff there exists a transitive point.
The reason we have added the modifier “dynamically” is because of this much stronger
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property: the action is called transitive iff for each x, y ∈ X there exists g ∈ G with
g(x) = y. Thus a transitive transformation or flow is generally not transitive as a Z−
or R−action!

52. Yet more examples

52.1. The boundary at infinity of the free semigroup and free group. –use
erg thm to show goes to ∞ a.s.

52.2. Graph-directed IFS.

53. Substitution dynamical systems and adic transformations

53.1. The Morse-Thue example.

53.2. The golden rotation.

53.3. Tiling spaces and nonstationary solenoids.

53.4. The space-filling curve of Arnoux and Rauzy.

53.5. Penrose tiles ala Robinson.

54. Nonstationary dynamical systems

55. Infinite ergodic theory

Hopf thm, ∞ meas: r walk, Ch-Erd. ; integer Cantor set

55.1. The scenery flow for hyperbolic Cantor sets.

56. Conformal measures

57. Back to the scenery flow

57.1. Bowen’s formula for Hausdorff dimension.

57.2. Entropy of the scenery flow.

57.3. Geometric models for Gibbs states.

57.4. Unique ergodicity for the horocycle flow.

57.5. The scenery flow of a hyperbolic Julia set.

57.6. Infinite measures.



476 ALBERT M. FISHER

58. Móbius transformations and the scenery flow of rotation tilings

59. The frame flow and the scenery flow for Kleinian limit sets

60. The scenery flow of a hyperbolic Julia set

61. The Oseledec Theorem

62. The Oseledec Theorem and the boundary at infinity

63. The boundary of a Gromov hyperbolic group

64. The Stable Manifold Theorem

65. Ideas

–towers: (WANT INVERTIBLE EX WHERE XA IS NOT INVARIANT SET)
T compressible iff TA is....??
-amenability
–is weak mixing true for infinite product?
hyp metric: see Pliss Lemma used by Pujals ? Peson ??

Example 66. other non-compact groups

–Coudene Banach-Saks, Hopf argument, von Neumann Erg Thm proof, mixing.
–new proof of Caratheodory extension;
—for primitive matrix sequence, the other eigenvalues show up as finitely additive

charges like Boyland/Bufetov; by Alexandroff’s thm these signed measures can’t be
regular?!

—this passes over to the upper triangular situation;
—giving a version of Oseledec splitting like with Simon;
—check out Kaimanovich as quoted by Margulis/K: do they really handle all se-

quences???
–version for Gromov hyperbolic/ for Teich space.
–Harmonic functions when not independent? Harmonic projectin????
–averages ala Manuel in that case??
–Hermitian version of Oseledec???
–when PF condition fails what happens to the other exponents? e.g. two positive

then fewer nonpositive; two countably additve.
–asip like Freedman; joining like Dudley
–stable limit thm.
–Martingale CLT/ Gordin
–subadditve erg thm.
–vel changes in flows
—nonst dyns driven not by stat dyns but by something else (global warming;

universe expansion)...
–use Polish spaces for nat’l extn
–tightness/Fomin
–Dye via adic
–microsets
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–Ehrenfest urn
–RW on Z,Z2

–note : dual stmt for Parry is related to Birkhoff comp subspace

66. Self-similar groups

Theorem 66.1. B0 ∈ B0 to this cross-section are B1, . . . , Bi with Bi+1 = AiBiDi

where Bi =

[
ai ci
−bi di

]
, Di =

[
λi 0
0 λ−1

i

]
and

for parity 0:

ai = [nini+1 . . . ], bi = 1, di/ci = [ni−1ni−2 . . . ], and λi = 1/ai, and Ai =

[
1 0
ni 1

]
,

for parity 1:

bi = [nini+1 . . . ], ai = 1, ci/di = [ni−1ni−2 . . . ], and λi = 1/bi and Ai =

[
1 ni
0 1

]
.

Fractal geometry, log averages, and infinite measures in ergodic theory
A measure- preserving transformation is called recurrent if the set of return times

to a finite measure subset is infinite for a.e. initial point.
For transformations which preserve a finite measure, recurrence always holds, by

Poincare’s Recurrence Theorem. A stronger statement is Kac’ theorem that the
expected return time, in the ergodic case (meaning there are no nontrivial invariant
subsets) is inversely proportional to the subset measure.

Birkhoff’s ergodic theorem gives the much deeper statement that the frequency of
returns a.s. converges to this measure. This leads to the statement “time average
equals space average”, extending the Strong Law of Large Numbers far beyond the
original setting of independent coin-tosses.

Let us call an integer set sparse if it is infinite and of density zero. For example, in
the conservative (equivalently, recurrent) ergodic infinite measure setting, the return
times to a finite measure subset are always sparse. Thus the statement “time average
equals space average” still holds in a trival sense as both are zero.

However for certain cases a nontrivial meaning for this statement can be discovered.
This is when the return sets have a fractal-like structure. Then we can define the
“Hausdorff dimension” of the integer subset to be d = lim logNA

n / log n where NA
n (x)

is the number of returns of x to the set A up to time n. We then normalize by nd

followed by application of a log average. The result is an order-two ergodic theorem.
Cases where this has been shown to work are of three basic types: adic exam-

ples, incuding certain infinite measure-preserving interval exchange transformations;
renewal- type examples, including certain maps of the interval with a neutral fixed
point; and horocycle flows of a geometrically finite Riemann surface of second type.

The analysis of all of these is based on the idea of constructing a related scenery
flow which shows the fractal-like behavior.

In this talk we survey some of these ideas, developed together with coauthors Tim
Bedford, Mariusz Urbanski, Jon Aaronson, Manfred Denker, Pierre Arnoux, and
Marina Talet.
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