
SMALL-SCALE STRUCTURE VIA FLOWS

ALBERT M. FISHER

Abstract. We study the small scale of geometric objects embedded in a Euclidean space by means
of the flow defined by zooming toward a point of the space. For a smooth embedded manifold
one sees just the tangent space asymptotically, but for fractal sets and related objects (space-filling
curves, nested tilings) the flow can be quite interesting, as the “scenery” one sees keeps changing.

For a Kleinian limit set the scenery flow and geodesic flows are isomorphic. This fact suggests
that for a Julia set the scenery flow could provide the analogue of the hyperbolic three manifold,
with its associated geodesic and horocycle actions.

A test is to see whether Sullivan’s formula for dimension (Hausdor↵ dimension of limit set equals
geodesic flow entropy) goes through for Julia sets. This is in fact true, and the resulting formula
“dimension equals scenery flow entropy” unifies the formulas of Sullivan and of Bowen-Ruelle.

For changing combinatorics, considering the model case of interval exchanges, renormalization is
given on parameter space by the Teichmüller flow of a surface; the scenery flow, now acting on a
space of nested tilings, extends this flow to a surface fiber bundle. Thus renormalization is realized
as flowing on a unification of the dynamical and the parameter space.

For fractal sets, the translation “horocycle” scenery flow has a natural conservative ergodic infinite
measure. This observation builds a bridge between fractal geometry and the probability theory of
recurrent events, suggesting on the one hand new theorems for the Fuchsian case and on the other a
new interpretation of some results on countable state Markov chains due to Feller and Chung-Erdös.
Interesting examples are seen in the intermittent return-time behavior of maps of the interval with
an indi↵erent fixed point.
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1. Introduction.

Suppose we center a mathematical microscope at some point of a fractal set, and turn the knob
continuously; as we zoom down toward smaller scales, ever-changing scenes go past us, as if we
were riding on a train taking us deeper and deeper into the heart of the fractal landscape. Let
us try to model such a fractal excursion mathematically. The continuously changing nature of the
process sugggests that a precise description will involve a continuous–time dynamical system, in
other words a flow. In this article, we shall sketch how such a flow (the scenery flow of the fractal
set) can be defined, and indeed, constructed rigorously for a variety of examples, and we shall see
how the scenery flow can be usefully applied in studying the fractal geometry. We shall, moreover,
see that this flow of magnification, and a related translation flow, provide close analogues of two
familiar flows: the geodesic and horocycle flows of a Riemann surface.
To begin our story, we shall recall some basic properties of these classical flows.

2. Geodesic and horocycle flows

Let C denote the complex plane and H ✓ C the upper half plane H = {z = x+ iy : y � 0}. The
interior of H, those points with y > 0, is given the hyperbolic metric, defined by ds2 = (dx2+dy2)/y2,
which makes it isometric to the Poincaré disk �. The orientation-preserving isometries for this
metric are the real Möbius transformations Möb(R), with

fA(z) = (az + b)/(cz + d)

for A =



a b
c d

�

where a, b, c, d 2 R and det(A) = ad� bc = 1; that is, A 2 SL(2,R).

The matrices A and �A for � 6= 0 give the same Möbius transformation, so Möb(R) ⇠= PSL(2,R).
Let � ✓ Möb(R) be a discrete subgroup. Then the identification space �\H is a Riemann surface;
this may be compact, or be noncompact with either finite or infinite area. The unit tangent bundle
of H can be identified with PSL(2,R). This correspondence is easily described. Take as base point
the unit vector ii which is located at the point i 2 H and points in the vertical direction; then, given
A 2 SL(2,R), let f ⇤

A(ii) be the image of this vector by the derivative map of fA, that is, it is the
vector located at the point fA(i) which has been been rotated appropriately by the argument of the
complex derivative. This image vector also has hyperbolic length one, as Möbius transformations
are isometries for the hyperbolic metric; so this defines a map from PSL(2,R) to the unit tangent
bundle T

1

(H). The group � acts on PSL(2,R) by left multiplication and one sees that �\PSL(2,R)
is the unit tangent bundle of the surface �\H.
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The geodesic flow on the surface is by definition the flow on this unit tangent bundle which moves
a vector along its tangent geodesic at unit speed. Algebraically, this is given by right multiplication

by Et ⌘



e
t
2 0
0 e�

t
2

�

on �\PSL(2,R). To understand this, note that this matrix is equivalent as a

Möbius transformation to



et 0
0 1

�

which dilates the plane by the factor et, and hence moves the

vector ii up the imaginary axis at unit speed in the hyperbolic metric. The action on a general
unit vector is then given by the conjugation by f ⇤

A which is a hyperbolic isometry, so this is indeed

the geodesic flow. The unstable horocycle flow hu
t is given by the right action of Hu

t ⌘



1 0
t 1

�

;

the stable flow acts by its transpose. As the names suggest, these preserve the unstable and stable
horocycles (circles tangent to the boundary R of H which are the base points of the unstable and
stable sets of the geodesic flow; for the point ii, this “circle” being the line y = 1).
For the simplest example of a noncompact, finite area surface, see Fig.1; here (depicted in the disk

model) � is a free group on two generators, these being two hyperbolic Möbius transformations, one
which shoves the interior of the disk to the right and one which moves everything up; the curved
quadrilateral in the center is a fundamental domain for this action. The left side is glued to the
right, and the bottom to the top, so the resulting surface is a torus, just like for the usual gluings
of a square, to get the quotient space R2/Z2, except that now the corner point gives a cusp, as it
goes out to 1 in the hyperbolic metric: this is a punctured torus (Fig. 2).
Classical results are:

Theorem 2.1. The geodesic and horocycle flows gt, h
u
t , h

s
t preserve Riemannian volume of the unit

tangent bundle of the surface M . This measure is finite i↵ the surface area is finite. For this case,
if M is compact (equivalently has no cusps) then:
(i) gt is ergodic, indeed is (finite entropy) Bernoulli (is measure-theoretically isomorphic to a
Bernoulli flow);
(ii) hu

t , h
s
t are uniquely ergodic, with entropy zero.

In the finitely generated, finite area case with cusps, all this is true except that hu
t , h

s
t are only

nearly uniquely ergodic; normalized Riemannian volume is the only nonatomic invariant probability
measure if we disallow measures supported on horocycles tangent to cusps.

More interesting for us will be the infinite area case, where the cusp opens up to flare out in a
hyperbolic trumpet, Figs. 3, 5; we return to this below.
The flows gt and hu

t do not commute, but do satisfy the following commutation relation:

hbga = gahe�sb.

In other words, the following diagram commutes:

T 1(M)
he�a·b
���! T 1(M)

ga

x

?

?

x

?

?

ga

T 1(M) ���!

hb

T 1(M)

One can prove this algebraically, or see it geometrically in the upper half plane (Fig. 6).
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Figure 1. Covering space for punctured torus

Remark 2.1. Because of the commutation relation, the pair (geodesic flow, horocycle flow) gives
an action of the (ax + b)-group (the real a�ne group) on T 1(M). This already hints that there
might be a relation with fractal geometry, as fractal sets genarally exhibit symmetries with respect
to both dilation and translation.

Observation: The commutation relation tells us that hu
t is isomorphic to a speeded-up version of

itself. An ergodic theorist immediately will recognise that this is very special, as the entropy of a
sped-up transformation or flow multiplies by that factor, so in this case:

entropy((hu)t) = e�a
· entropy(hu

t ).

There are, thus, only two possiblities for the entropy of the flow (hu)t: 0, or 1!
We have already seen an example of zero entropy (the finite area Riemann surface case); next

we shall see a situation where infinite entropy occurs, and this example will lead us into the fractal
realm.
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Figure 2. Geodesic flow on punctured torus

3. Brownian motion and stable processes

Let ⌦ be the space of continuous functions from R to R, with the topology of uniform convergence
on compact sets. This makes ⌦ into a Polish space, that is, a complete separable metric space,
which is ideal from the point of view of measure theory.

Let µ denote Wiener measure on ⌦, conditioned to be 0 at time 0, and defined both for future
and past times. Then the scaling property of Brownian motion says: for B 2 ⌦ and a > 0,

B(at)/
p

a

is “distributed like” B(t). What this probability language means to an analyst is: the transformation
B 7! �a(B) defined by

(�a(B))(t) = B(at)/
p

a

preserves Wiener measure. To an ergodic theorist this suggests the following: defining

gt = �e�t ,

the action gt : ⌦ ! ⌦ is a measure- preserving flow! Next question: what flow is it? Answer: up to
measure theoretic isomorphism, it is (the) Bernoulli flow of infinite entropy. (See [Fis87], and see
[Fis04] for related work.) Call this the scaling flow of Brownian motion; geometrically it dilates
time and rescales space appropriately to give another Brownian path. See Fig. 7.

Next, consider the increment flow,

((hu)a(B))(t) = B(a+ t)� B(a).
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Figure 3. After opening the cusp.

This simply shifts the origin point (0, 0) along the graph of B(t), and since the process B(t) has
stationary increments, again preserves the measure µ.
Now comes the magical part: these two flows satisfy the same commutation relation as the

geodesic and horocycle flows of our surface! But what is (hu)t, measure-theoretically? Answer: it is
now infinite entropy. (One way to see this is to note that the increment flow is naturally isomorphic
to the shift flow on white noise, which is an infinite entropy Bernoulli flow; the isomorphism is given
by integration). So we have our “infinite entropy horocycle flow” example.
It is clear that the same commutation relation holds for any self-similar process with stationary

increments; examples are the stable processes, see [FL02].

4. Brownian zero sets

This study of Brownian motion gives us almost for free another example, which will make the
link to fractal subsets of the line. As is well known, the zero set of a Brownian path, ZB ✓ R,
has Hausdor↵ dimension 1/2, and for the gauge function � = (2t log log(1/t))

1
2 , has positive locally

finite Hausdor↵ measure H�. Now define the map from ⌦ to itself by B(t) 7! LB(t) where LB(t) =



SMALL-SCALE STRUCTURE VIA FLOWS 7

Figure 4. Transferred to upper half plane; “vertical lines” here are actually circles.

H�(ZB \ [0, t]), the total measure up to time t (and similarly for t < 0, but with negative sign).
Write µZ for the image measure on path space ⌦; this is Paul Levy’s local time. The flow gt preserves
this correspondence, hence the scaling flow on (⌦, µZ) is also a Bernoulli flow of infinite entropy
(being a factor of the flow on (⌦, µ)) [BF92]. But what about the increment flow? Here things
change: we slide into the gaps of the local time; the appropriate measure has become infinite. We
shall return to examine the consequences of this in §12.
Note: to vizualize the local time LB(t) of a Brownian path B, it helps to know (by a theorem

of Lévy) that local time paths are exactly maximum paths M bB(t) = sup{B(s) : s 2 [0, t]} for a

di↵erent Brownian path bB. The correspondence LB 7! M bB is induced by an interesting isomorphism
of Wiener space, given by a stochastic integral, see [BF92], [CW83]:

bB = �

Z t

0

sgnB(s)dB(s)
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Figure 5. Gluing, we now have infinite area

aa

b

ïa
e b

Figure 6. Hyperbolic distances (= flow times) in the upper half plane
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Figure 7. Sketch of a Brownian path; actual paths are much wilder: see [GS92].
The parabola is invariant under the scaling transformations.

5. The extended Cantor function (or Devil’s Staircase)

The graph of Brownian local time is a continuous, nondecreasing function with a dense set of flat
spots, reminiscent of the Cantor function– which suggests to us that we study that non-random
example in a similar way. In [Fis92] we see an extended version of the usual Cantor funtion as
depicted, say, in Mandelbrot’s book [Man82]. Note the upper and lower envelopes of the form ctd

for d = log 2/ log 3, the Hausdor↵ dimension of the Cantor set. Now this extended function L(t),
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defined to be identically 0 for t  0, satisfies

L(3t)/2 = L(3t)/3d = L(t);

this means that for the scaling flow gt of exponent d, gt0(L) = L, where t
0

= log 3; in other words,
the scaling flow of this graph is a single periodic orbit!

Rescaling this path represents zooming down toward the point 0 in the Cantor set. But though
the set C is, as we all know, “the same everywhere”, on closer inspection this isn’t quite so true.
What do we see, for instance, if we slide the graph of f over to the point 1/4 (which happens to be
in C) by the increment flow, and then begin rescaling? In this case, the orbit is no longer periodic,
but will converge asymptotically to a di↵erent periodic orbit, one with twice the previous length:
2 log 3 = log 9. But now di↵erently from the point 0, there is asymptotic scenery on both sides of
the point 1/4, and so the limiting graph now is nontrivial also for t  0. (The positive part of this
limiting graph is illustrated in [Fis92].)

And this is still very special: what happens when a general point of C replaces the number 1/4?
Answer: after taking the forward orbit closure (the omega-limit set), we get a mixing ergodic flow!
This will be naturally isomorphic to the scenery flow of the fractal set C, with which we began the
article. So now it is time to give some precise definitions.

6. The scenery flow

Let ⌦ = ⌦(Rn) be the collection of all closed subsets of Rn; topologize this with the Hausdor↵
metric on the one-point compactification (the Attouch-Wetts or geometric topology). This topology
makes ⌦ compact; for an example consider Fn = {n}; this sequence of subsets of R converges in
⌦(R) to the empty set, which is distance 0 from {1} in R [ {1}. See e.g. §2 of [BF96].

Define the magnification flow gt on ⌦ by A 7! et ·A. Choose a closed subset F ✓ Rn, choose a
point z 2 F , and define ⌦

(F,z) to be the omega-limit set of (F � z), the set translated so as to place
z at the origin. Thus,

⌦F,z =
\

T�0

closure

✓

[

t�T

gt(F � z)

◆

.

The flow (⌦F,z; gt) is the scenery flow of the set F at the point z.

Example: Let C be the Cantor set C ✓ [0, 1]; define bC = [

1
k=0

3kC, so 3 · bC = bC. Then

g
log 3

( bC) = elog 3 bC = bC,

so the scenery flow of C at 0 is {et bC : t 2 [0, log 3]}, and this is a single periodic orbit of length log 3.
The total Hausdor↵ measure L(t) = Hd( bC \ [0, t]) gives a nondecreasing continuous function, the
extended Cantor function, and this produces a flow isomorphism to the scaling flow of the Cantor
function, described before.

Definition 6.1. The scenery flow of the set F is the flow of magnification by et on ⌦F , the union
of the scenery flow spaces of each point z 2 F (so ⌦F = [⌦F,z).

One can show [Fis92] that the scenery flow of the set C is naturally isomorphic to the following
special flow: the height log 3 suspension of the natural extension of the map 3x( mod 1) on C. As
a first consequence, since this flow is recurrent, a.e. orbit is dense and so the landscape encountered
while zooming down toward a general point passes through all possible limiting scenes; the orbit
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closure is the whole space. Moreover, the flow is ergodic, so, by the Birkho↵ ergodic theorem, the
scenes will be encountered with the right frequency. So in particular this proves that the order-two
(average) density exists and is a.s. constant. See [BF92] for a slightly di↵erent proof.
But what else can one say about this flow? The base map is isomorphic to the Bernoulli shift �

with weights (1/2, 1/2) on ⌃ = ⇧1
�1{0, 1} via ternary expansion, and this map has entropy log 2.

Now we see something interesting.
By Abramov’s formula,

flow entropy = (base entropy)/(expected return time),

so we conclude:
entropy(gt) = log 2/ log 3 = d = dim(C)!

This gives us a formula for dimension:

The Hausdor↵ dimension of C equals the entropy of the scenery flow.

This formula is not always valid: a counterexample is a Brownian zero set; the dimension is 1/2 but
the scenery flow is isomorphic to the scaling flow on local time, which, as we have seen, has infinite
entropy. Nevertheless, we wonder: is it possible that this formula is valid elsewhere?

7. The Fuchsian case

In fact we shall find just such an example in Fuchsian limit sets. Recall our modified punctured
torus, where we opened up the cusp into a trumpet. The limit set ⇤ of the group � is now a Cantor
subset of the boundary (Fig. 3; all the open intervals which are unions of the closed interval where
the fundamental domain now meets the boundary are removed, leaving a topological Cantor set).
So, what is its scenery flow? Well, first of all, the Cantor set is a subset of the circle, and zooming
down toward this we see a tangent line: the infinitesimal scenery of a circle is a line. That’s rather
boring! But if we consider the scenery flow of the limit set, things become much more interesting.
What we will see asymptotically is a collection of fractal subsets of the tangent space to the circle
(the real line) which is invariant under dilation. But what are these sets? The answer is satisfyingly
simple: they are the limit set ⇤ moved to the boundary R of H, the upper-half space model of the
hyperbolic disk. Here we have to allow all possible correspondences via Möbius transformations
from � to H such that a point of the limit set occurs both at 0 and 1. Next, what can we say
about the dynamics or ergodic theory of this scenery flow? We find:

Theorem 7.1. Let � be the unit disk with Poincaré metric, with boundary �� = S1. Let � be a
finitely generated Fuchsian group of second type (that is, the limit set ⇤ is not all of the boundary).
Then the scenery flow of ⇤ is a finite-to-one factor of the geodesic flow of the surface M = �\�,
and the limiting scenes are images of ⇤ in R with respect to Möbius transformations from � to H.

Proof. We construct the factor map directly. Let vp be a unit tangent vector based at the point
p 2 �. Consider the geodesic tangent to vp; this is a circle which meets �� orthogonally in two
points ⌘, ⇠ in the past, future directions respectively. Since a complex Möbius transformation is
determined uniquely by where it sends three points, there exists a unique Möbius transformation
↵ = ↵vp such that ↵ takes vp to the unit vector �ii which points in the direction �i at the location
i 2 H, taking p to i, ⌘, ⇠ to 1, 0 and the geodesic to the imaginary axis.
More precisely, ↵(p) = i and ↵⇤(vp) = �ii after normalization, where ↵⇤ is the derivative of ↵.

Now define a map ⇡̂ : T 1(�) ! ⌦ = { closed subsets of R} by vp 7! ↵vp(⇤).



12 ALBERT M. FISHER

Claim 1: for � 2 �, ⇡̂ � � = ⇡̂. This holds since �(⇤) = ⇤.
Now let ĝt be the geodesic flow on T 1(�).

Claim 2: ⇡̂(ĝtvp) = et · ⇡̂(vp). The reason is that in H, moving along the geodesic tangent to �ii
(the imaginary axis) toward the point 0 2 H is isomorphic by conjugacy to keeping the vector fixed
at location i and dilating H by the factor et.

Claim 1 tells us that ⇡̂ induces a well-defined map ⇡ : T 1(M) ! ⌦ on the factor space M = �\�.
Claim 3: ⇡ is finite-to-one.
Proof: Suppose ⇡̂(vp) = ⇡̂(wq) for some other vector wq tangent to �. Then (↵�1

wq
)� (vp) is a Möbius

transformation of � which preserves the limit set ⇤. Let e� be the subgroup of Möb(�) which has
been extended from � by adjoining all such elements. Then the limit set of e� is also ⇤. Now
Margulis’ Lemma implies that if �

1

✓ �
2

are groups of hyperbolic isomorphisms of Hn and have
the same limit set, then �

1

is of finite index in �
2

. Hence in the factor space T 1(M)there are at
most finitely many such vectors wq for a given vp.

We thank Bernie Maskit and Peter Waterman for their help with this part of the proof.
It remains to show:

Claim 4: The asymptotic limiting sceneries of the limit set in the circle S1 are the images by the
stereographic projections.
Proof: Choose a point z in the limit set and place the circle so this point is at the origin, in the
upper half space and tangent to the real axis. Zooming toward z for time t is equivalent to dilating
this picture by the factor et; let us at the same time consider the downward-pointing unit vector
at Euclidean height 1 in each picture. The Poincaré disks get larger and larger, approximating
H, and our tangent vector is moving via the geodesic flow. Now superimpose on this picture the
stereographic projection determined by that vector, that is, by its image in the original Poincaré
disk. The Möbius transformations converge to stereographic projections, proving the Claim. ⇤

8. Extension to hyperbolic n-space

The above proof extends immediately to hyperbolic n- space Hn with the following changes:
“geodesic flow” is replaced by “geodesic frame flow”, and “finitely generated” by “geometrically
finite”. Consider for instance n = 3. Then �3 is the unit ball in R3 with the Poincaré metric;
choice of a frame defines a unique “stereographic projection” to the upper half-space model H3,
sending the frame fp to the standard basis frame based at the point (0, 0, 1) 2 H3

✓ R3. The reason
we need frames is that pictures of the scenery flow are di↵erent when rotated, and the frame flow
includes this information. (For the case n = 2 of Fuchsian groups, there is no possibility of rotation
so the frame flow is in fact isomorphic to the geodesic flow, and finitely generated is equivalent to
geometrically finite.)

9. Ergodic theory and Sullivan’s formula

For the case of a Fuchsian group of second type, the geodesic flow of the surface M = �\� at
first glance is not nice from the point of view of ergodic theory: not only does T 1(M) have infinite
volume (this is not a priori a problem, as infinite measure ergodic theory can be brought in) but,
much worse than that, a.e. vector vp is non-recurrent, i.e. eventually leaves any compact region.
Sullivan’s insight is that interesting dynamics can be recovered if we restrict attention precisely to
those vectors which are recurrent for positive and negative times; these are exactly those vectors vp
for which the endpoints ⌘, ⇠ at �1,+1 belong to the limit set ⇤.
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Next question: is there a natural measure to put on this recurrent set, replacing Riemannian
volume? Sullivan’s answer is a modification of Patterson’s measure µ on ⇤. (For nice cases, µ is
the Hausdor↵ covering measure on ⇤; for some other cases, as Sullivan showed, it is the packing
measure.) Sullivan’s measure on T 1(M) is described as follows. It is defined first on T 1(�), in
a �-equivariant way; hence it projects to the factor space T 1(M). A unit tangent vector vp is
parametrized by the two endpoints ⌘ 6= ⇠, plus a real number (where it is along the geodesic).
Hence T 1(�) can be parameterized by (S1

⇥ S1

� diagonal)⇥ R. The recurrent set is represented
by (⇤⇥ ⇤� diagonal)⇥R. The measure is equivalent (shares the same sets of measure zero) with
(µ⇥ µ)⇥ Lebesgue measure; the Radon-Nikodym derivative with respect to this product measure
is 1/|⌘ � ⇠|2d, with distance measured in the Euclidean metric on the disk and d the Hausdor↵
dimension of ⇤.
This guarantees that the resulting measure (often known as the Patterson-Sullivan measure )

is �-equivariant and invariant for the geodesic flow. Sullivan then proves (we state the n-dimensional
version):

Theorem 9.1. Let � be a geometrically finite subgroup of Möb(�n). Then the geodesic flow is
ergodic for the Patterson-Sullivan measure µ̂, and µ̂ is the unique measure of maximal entropy,
with entropy equal to the Hausdor↵ dimension dim(⇤) = d.

Some background references are [Pat76],[Pat87], [Sul84], [Sul70].
We can hence conclude:

Corollary 9.2. The topological entropy of the scenery flow of the limit set of a geometrically finite
Kleinian group is equal to the Hausdor↵ dimension of the limit set.

Proof. The scenery flow is a finite index factor of the frame flow. The entropy of the frame flow
equals that of the geodesic flow, since it is an isometric extension. Since it is a finite-to-one factor,
entropy is preserved. ⇤

10. The scenery flow of a Julia set and hyperbolic Cantor set

The definition of the scenery flow (as an omega-limit set of the magnification flow acting on closed
subsets of Rn) makes sense for general fractal sets; sometimes we can identify this flow, constructing
it concretely. We have already discussed the example of the middle-1/3 Cantor set; this is a linear
Cantor set, and many other such linear flows (such as those generated by linear conformal IFS’s
with the open set condition) can be studied by a straightforward modification of this. The case
of Kleinian limit sets was also easy, as this is also a “linear” case; the maps are linear fractional
transformations, and, as we have seen above, the limiting sceneries are just given by stereographic
projection.
We describe next the case of hyperbolic Julia sets; conformal mixing repellors and hyperbolic

C1+↵ Cantor sets are dealt with in a similar way.
There is an analogy to the Kleinian case. There we had a homomorphism ⇡ from the hyperbolic

manifold T 1(M) = T 1(�\�) to the space ⌦ of scenes, conjugating the geodesic frame flow to the
magnification flow on sets.
Here we construct a “model scenery flow” which will play the role of T 1(M).
Let f : C ! C be a rational map which is hyperbolic on its Julia set J . Write Df for its

derivative, and f⇤ for the action of the derivative on the unit tangent bundle of J (by which we
mean the unit tangent bundle of C, restricted to J ). Let f̃ : b

J !

b

J denote the natural extension
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of this map. The space b

J is an inverse limit and can be identified with the space of sequences
ẑ = (. . . ˆz�1

ẑ
0

ẑ
1

. . . ) where ẑi = (zi, ✓i) 2 C ⇥ [0, 2⇡] represents a unit tangent vector and the
sequence satisfies ẑi+1

= f⇤(ẑi). Write b⌦ for this collection of sequences, with shift map �̂; let e⌦
denote the suspension flow over (b⌦, �̂) with height (= return time) log |Df(z

0

)|. This is our model
flow.
The flow homomorphism ⇡ from e⌦ to ⌦ is defined as follows: on the base, ⇡(ẑ) = Lẑ =

limn!1(Dfn(z�n)·(J �z�n)). The limit is in the Hausdor↵ metric on closed susets of bC ⌘ C\{1};
thus the Julia set has been centered at the nth preimage z�n and expanded and rotated by the de-
rivative map. That this always converges is a consequence of bounded distortion, see [BFU02].
We have:

Theorem 10.1. ([BFU02], [FU00]). For the hyperbolic Julia set of a rational map, there is, up
to rotation, a unique measure of maximal entropy for the model scenery flow. Its entropy satisfies
the formula “model flow entropy equals dim(J )”. When we include rotations, then for all but a
few exceptional cases, there is a unique measure of maximal entropy and the model scenery flow is
ergodic with respect to this measure.

Remark on proof: We refer the reader to [BFU02], but mention two interesting points.
First, ergodicity for the model flow implies a rotational symmetry for the scenery flow; that is,

when zooming down toward a.e. point we not only eventually see all possible scenes, but they occur
at all angles (and with the expected frequency). This question can, by a lemma of Furstenberg
[Fur61] see [BFU02] be formulated in terms of the non-existence of a certain circle-valued cocycle
or equivalently as a problem about the non-existence of invariant line fields (or cross fields); so, the
hard work in proving ergodicity has been transferred to that setting: see [FU00] and [May02].
Second, we sketch here the proof of the entropy formula because it is so instructive and works out

so nicely. Bowen’s formula for dimension [Bow79], [Rue82] reads: there exists a unique d such that
P (� log |Df |d) = 0; this is dim(J ). Here P (�) is the pressure of a function �, which can be defined
as P (�) = sup(h(µ)+

R

� dµ) where the supremum is taken over invariant probability measures and
h(µ) is the entropy of the transformation (J , f, µ). We know from the theory of Sinai-Ruelle-Bowen
that there exists a unique invariant measure µ such that the sup is attained. So we have for this
invariant measure µ:

0 = h(µ) +

Z

� log |Df |ddµ

hence

h(µ) =

Z

log |Df |ddµ) = d

Z

log |Df |dµ

and so
h(µ)

R

log |Df |dµ
= d.

Now the formula on the left is (base entropy)/(expected return time), hence (by Abramov’s formula)
equals the special flow entropy.
The scenery flow is, a priori, a magnification flow defined on sets; however, it is natural to

carry along more information, given (for the previous examples) by a labelling inherited from the
Kleinian group or map f respectively. This information is provided by the model flows; we call this
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the labelled or marked scenery flow. We conclude with a dimension formula which unites Sullivan’s
formula for Kleinian limit sets, with Bowen’s for Julia sets and “cookie cutter” Cantor sets:

Theorem 10.2. For geometrically finite Kleinian groups in dimension n, hyperbolic rational maps,
conformal mixing repellors, and hyperbolic C1+↵ Cantor sets, we have the formula:

The entropy of the marked scenery flow of the limit set is equal to the Hausdor↵ dimension of
the limit set.

11. Doubling maps and the Riemann surface lamination

The simplest example of a hyperbolic Julia set is for the map f(z) = z2+ c with c = 0; then J is
the circle S1 and f restricted to J is the usual doubling map of S1, isomorphic to x 7! 2x( mod 1)
on the unit interval. In this case, the natural extension of f is the hyperbolic map in the solenoid
f̂ : bS !

bS, which in turn is an a.s. one-to-one factor of the Bernoulli shift � : ⌃ ! ⌃ for ⌃ ⌘ ⇧1
�1.

Here |Df | = 2 so the model flow is the special flow of height log 2 over the solenoid. The base
entropy is log 2, so the flow entropy is (by Abramov) log 2/ log 2 = 1, which is, indeed, the Hausdor↵
dimension of the Julia set S1. In this case the model flow space is identical to Sullivan’s Riemann
surface lamination [Sul92], [Sul91]; we thank especially D. Sullivan and J. Kahn for conversations
on this point. See also Chapter VI of de Melo and van Strien [dMvS93] regarding these papers of
Sullivan.
This suggests that the model flow for a general hyperbolic Julia set is, on the one hand, a

generalization of the Riemann surface lamination and on the other, an analogue for rational maps
of the recurrent part of the frame bundle of the hyperbolic n-manifold �\�n. Minsky and Lyubich,
building partly on our construction of sceneries, and extending that to general rational maps,
showed the following remarkable result: that a rigidity theorem of Thurston for rational maps can
be proved analogously to Mostow’s rigidity theorem for Kleinian groups, replacing the 3- manifold by
the “hyperbolic 3-manifold lamination”. (They succeed moreover in extending Thurston’s theorem
by this approach.) See [ML97] and see [KL01], [Lyu02] for related work. All of this, also [BFU02]
and [FU00], fits the philosophy of the Sullivan-Thurston “dictionary” between Kleinian groups and
rational maps.
The Riemann surface lamination is a double suspension: the solenoid is a suspension of the adic

transformation (odometer), giving a flow (hu)t, and the scenery flow space is a suspension flow gt
over that (now suspending the hyperbolic map). This space carries two flows: the flow which spins
around the solenoid direction, which is just the lift of the rotation flow on the circle, and which
preserves each level, and the vertical flow. This pair of flows hu, g satisfy the same commutation
relation as before–which is, indeed, exactly what should happen, since the solenoid leaves at a given
height are the unstable leaves of the vertical flow.

12. The horocycle flow: infinite measures, return times and average density

Let us consider the case of a Fuchsian group of first type (the limit set is the circle); here the
appropriate measure for the geodesic flow and for the horocycle flows hu, hs is the same: Riemannian
volume on T 1(M). For a group of second type, the situation is radically di↵erent: our recurrent
measure is Patterson-Sullivan measure µ̂, but this is no longer invariant for hu or hs. The reason
is that any given horocycle tangent to the limit set ⇤ meets the recurrent set in a fractal subset
of the horocycle. The natural measure, therefore, is a modification of this: it is now equivalent to
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(Lebesgue measure⇥ µ)⇥ Lebesgue measure. That is, e.g. for hs, the boundary point ⇠ at +1 of
a vector vp in the support of this measure is required to be in the limit set, while the infinite past
boundary point ⌘ is free to wander along the real line; these points have conditional measure given
by Patterson measure µ and by Lebesgue measure on R respectively.
(This was noticed by myself and M. Burger independently and about the same time– both of us

later than Patrick Kenny, in his very interesting but unfortunately unpublished thesis).
In nice cases, this measure (which we call Kenny measure), is the unique invariant Radon

measure up to multiplication by a constant (since it is infinite there is always this choice of nor-
malization). See [Ken83] for the general no-cusp case, [Bur90] for the no-cusp case with dimension
> 1/2. With M. Burger we have a proof di↵erent from Kenny’s which includes the case with cusps
allowed (where we rule out atomic measures and measures supported on horocycles around the
cusps in the statement of unique ergodicity); manuscript in preparation.
It is natural to wonder what happens for other fractal sets. For instance for hyperbolic C1+↵

Cantor sets, one can also prove infinite-measure unique ergodicity, using techniques of [BM77],
combined with [BF96] and [BF97], see also [Fis03a]. (The specific case of the middle-third Cantor
set is worked out in detail in [Fis92].)
The philosophy suggested by these examples is:

For some infinite measure preserving transformations,
the returns to a finite measure subset are a fractal-like subset of times.

This idea of a “fractal-like” subset of the integers can be made precise by use of the scaling flow
(as t ! �1 for the way we have defined that flow here). The notion of average (or order-two)
density of extends to integer fractal sets, playing the role of a finitely additive Hausdor↵ measure,
see [BF92]. This idea then leads to a new type of ergodic theorem, given by normalization by the
“dimension” followed by a log average [Fis92]. Then the average density reappears in a di↵erent
guise: the limiting value of the time average is the expected value of the observable times the
average density of the fractal integer set.
Further insight is given by examples coming from probability theory. Certain countable state

Markov chains (called “recurrent events” by Feller [Fel49]) exhibit this type of behavior.
This led us to the rediscovery of a result of Chung and Erdös for simple random walks, and to

an extension of that little-known but beautiful theorem of 1950 [CE51], see [ADF92].
Now since infinite measure-preserving transformations can have a geometrical significance, related

to fractal sets, one might wonder whether there might be examples of a transition from to infinite
measure, based on this point of view; that might be regarded as analogous to a change of phase in
physics.
Just such a phenomenon occurs for certain maps of the interval with an indi↵erent (or neutral

or parabolic) fixed point. Here there is a 1- parameter family of maps (see [FL01], [FL02], [FL04]),
related to the Markov chain examples just discussed and also to the Manneville-Pomeau maps (see
also [Lop93]) as well as to the interesting counterexamples of Hofbauer [Hof77], which exhibits three
“phases” of behavior, as the parameter ↵ ranges from 0 to 1.
We consider the distribution of returns to the right half of the interval. For ↵ 2 (2,1), the mean

and variance are finite; for ↵ 2 (1, 2), variance is infinite but mean is finite, while for ↵ 2 (0, 1),
both are infinite. For (1, 2] and (2,1) the unique absolutely continuous invariant measure for the
map is finite; for (0, 1] it is infinite. The asymptotic return-time behavior for [2,1) is Gaussian; for
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(1, 2] it is stable, passing through all the completely asymmetric stable laws; for (0, 1) it continues
on, through all the Mittag-Le✏er processes.

This last region (infinite measure) is the realm of fractal-like return times. The Mittag-Le✏er
paths are similar to Cantor functions. The increment flow along these processes has infinite measure,
and is a horocycle flow for the corresponding scaling flow (which is the “geodesic flow”). For all
parameters ↵ 6= 1 the scaling flow on paths is infinite entropy Bernoulli (the case ↵ = 1 is handled
in a special way as it has an extra drift parameter). This example completes a circle of ideas begun
in [Fis92] and [ADF92]. For extensive background on infinite-measure ergodic theory see [Aar97]
and also [Zwe95].

13. Spaces of tilings

Fractal sets are but one of the geometric forms with an interesting small-scale structure. Other
examples are tilings of Rn which have some sort of self-similar nesting character.

The simplest example is the binary tiling of the unit interval; at level n � 0, there are 2n+1 tiles
given by the intervals of the form [k · 2�(n+1), (k+1) · 2�(n+1)]. This is a space of nested tilings with
a hierarchical structure much like that of a fractal set. Indeed, the tiling structure is generated by
the dynamics of the map f : x 7! 2x( mod 1) and can be thought of as a “cookie cutter Cantor
set without the gaps”. The space of nested tilings is topologized in a natural way related to the
Hausdor↵ metric on the one-point compactification of R, and the scenery flow for this space of
tilings is modelled by the height log 2 suspension flow over the natural extension of f , discussed
before, i.e. by Sullivan’s Riemann surface lamination.
Now the binary tilings are the joins of pullbacks of the standard Markov partition P = {P

0

, P
1

} =
{[0, 1/2], [1/2, 1]} for this map. This suggests that Markov partitions give interesting candidates
for a scenery flow. A next example to consider is that of an Anosov toral automorphism, such as


2 1
1 1

�

. Here we will have two scenery flows, one for the stable and one for the unstable foliation.

The resulting model scenery flow (for the unstable case) is the height log |Dfu
| suspension of the

Anosov di↵eomorphism; the horocycle flows are the translations of the tilings, and this is modelled
by the unstable flow of the suspension.

14. Markov partitions and number systems

We have seen how to model the scenery flow of some tilings of the line, associated to the doubling
map of the circle and Anosov automorphisms of the two-torus; but what about tilings of the plane,
such as the Penrose, Rauzy or dragon tilings? A nice class of examples are fractal tilings associated
to “complex number systems”; we describe what happens for one of the best-known examples, given
by the base b = (�1 + i): the famous twin dragon tiling studied by Dekking, Gardner, Knuth,
Gilbert, and others [Gil82], [Dek82] . Write ⌃ = ⇧1

�1{0, 1} and consider the subset ⌃
0

such that
for a = (. . . a�1

a
0

a
1

. . . ) there exists M 2 Z such that ai = 0 for all i  M . Then as is well-known,
every z 2 C has at least one expansion

z =
1
X

i=�1

aib
�i.



18 ALBERT M. FISHER

The analogue of the unit interval (for binary expansions of the real numbers) is the subset F of the
plane such that M = 0, so z =

P1
i=1

aib
�i. This is the twin dragon fractal, see e.g. [Gil82]. It is

the union of two sets, F = F
0

[ F
1

, those points with a
1

= 0 and 1 respectively.
These are similar to F and are translates of each other, since F

0

= b�1F and F
1

= b�1F + b�1.
The set F is a fundamental domain for the lattice Z+iZ ' Z+Z. The map Z 7! b ·z multiplies area
by the factor 2, and sends this lattice into itself. Hence this map induces a transformation of the
torus, A : T ! T for T ⌘ C/(Z� iZ) ' R2/(Z� Z), which is a two -to - one toral endomorphism.
To an ergodic theorist, the tiling arises in this way: P = {F

0

, F
1

} is a generating Markov partition
for A. Indeed, a theorem of Bowen [Bow78] (see also [Caw91]) says that a Markov partition for
an n� toral automorphism for n � 3, or toral endomorphism for n � 2, cannot have a smooth
boundary. However it can still be geometrically nice (and fractal!): there are examples of toral
endo- and automorphisms with fractal Markov partition boundaries [Bed86]. For related work see
Dekking [Dek82] (Bedford’s construction made use of Dekking’s approach) and also [Pra99], [KV98],
[Sie00] and [Man02].
This dynamical point of view is useful for us, since we now want to build the scenery flow of the

pair (map, partition), i.e. of the hierarchy of nested tilings generated by pullbacks of the Markov
partition. And here we are guided by the example of the doubling map of the circle: the map A is
a sort of doubling map of the torus!
Our model flow is therefore simply this: the height log |DA| = log |b| = 1/2 log 2 suspension flow

over the natural extension of the map A. This extension is coded by the full shift ⌃, rather than ⌃
0

,
and we would like to see a geometric interpretation of that larger space. It will help the explanation
to define an equivalence relation on ⌃: points x and y are past equivalent i↵ there exists M 2 Z
such that xi = yi for all i  M . Fixing a point x 2 ⌃, we will map its equivalence class hxi onto the
complex plane as follows. All points of the form (. . . x�1

x
0

a
1

a
2

. . . ) map to
P1

i=1

aib
�i

2 F. Now we
extend this labelling to other regions: the points of the form (. . . x�1

x̃
0

a
1

a
2

. . . ) for x̃
0

= (x
0

+ 1)(
mod 2) are in a copy of F shifted by 1 = b0 or �1 appropriately (the first if x

0

= 0, the second
if x

0

= 1). Continuing in this fashion, translating at stage n by bn or �bn, we tile the plane with
tilings of each level in the hierarchy.
Dynamically, all the R2-translates of this tiled plane give its unstable leaf in the scenery flow. The

translates are identified by choice of a point in this plane; that is, by choosing some other y 2 hxi.
Now we see the significance of the past and future digits of x: the digits  k determine the large
scale structure of the tiling, while those � k specify the small-scale structure, and equivalently,
determine the exact location of a point in the leaf.
The flow space is locally (disk ⇥ Cantor set ⇥ interval), the Cantor set coming from the choice

of past digits in ⌃. So this is locally (R3

⇥ Cantor set), and can be given a natural hyperbolic
structure; i.e. it is another example of a hyperbolic 3- manifold lamination in the sense of Minsky
and Lyubich, see §11.
Note that Abramov’s formula now gives flow entropy 2, the dimension of the plane, as we would

expect.

15. Changing combinatorics

Another class of interesting one-dimensional tilings are those given by the renormalization hierar-
chy of an interval exchange transformation. If the transformation has “periodic combinatorics”, in
other words, if we come back to exactly the same transformation after a finite number of renormal-
izations (an induction on certain subintervals, called Rauzy induction), then the interval exchange
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can be realized as the return map of the stable (horocycle) flow of a pseudo-Anosov map of a
surface. In this case, the scenery flow for the nested tiling is modelled much as above, by a suspen-
sion flow over this pseudo-Anosov map. But what should one do for the general case of “changing
combinatorics”?
First answer: one can replace the single pseudo-Anosov map by a sequence of maps along a
sequence of spaces. This defines a new type of dynamical system, a mapping family. See [AF03]
for a development of the basic theory and an in-depth study of the simplest example (exchanges of
two intervals).
Second answer: consider all such exchanges at once (with the number of intervals fixed); now
the model is a suspension flow over a skew product transformation, the base of the skew product
being the shift on a subshift of finite type define by a Rauzy graph. This flow can be viewed in
a completely geometrical way: it is the naturally defined extension of the Teichmüller flow of the
surface, to the surface fiber bundle; see [AF01]. (These are the first two of a planned series of
related papers; see [Fis03b] and those papers for much more information.)
This analysis builds on and ties in with the beautiful theories developed by Rauzy, Thurston,

Veech, Masur, Kerkho↵, Smillie, Vershik and many others.

16. Renormalization and scenery

This last example exhibits a link between “renormalization” and a scenery flow. Call parameter
space the collection of exchanges of k intervals; let us term renormalization the transformation
defined on this space, given by Rauzy induction. This transformation imbeds in a flow, as a factor of
a return map to a crossection, for the Teichmüller flow of a surface. That imbedding simultaneously
provides an inverse for renormalization and extends it to continuous time.
Call dynamical space any individual interval with its exchange transformation; its scenery is

a space of nested tilings of the line. Since this scenery flow extends the Teichmüller flow, the
construction places parameter space and dynamical space (the interval exchanges themselves) in a
single unified picture.
Following this example, we can return to the flows we started with: the geodesic and horocycle

flows of a Riemann surface, and reinterpret them in this new light. Let us recall the commutation
relation. It now says: the horocycle flow is a fixed point of renormalization, as

The geodesic flow renormalizes the horocycle flow to itself.

This may make us think of the Coullet-Tresser- Feigenbaum map, also a fixed point for a renor-
malization operator; but what is its scenery flow? This map f has a Cantor set attractor, and
is zero-entropy and uniquely ergodic as it is in fact topologically conjugate to the odometer T on
one-side shift space ⌃+. But there is a second map g, conjugate to the shift �, which has an analytic
extension, and for which the same Cantor set is a repellor, making it in particular a hyperbolic C1+↵

Cantor set. See [Fal85], [Fei88], [Ran88], and [Sul87]. Therefore we can construct the scenery flow
as in §10 above, see also §19. As for all the hyperbolic Cantor sets, the scenery horocycle flow is
infinite-measure uniquely ergodic, see §12. In these constructions, as in [Fis92], a key role is played
by the commutation relation g � f 2 = f � g between the pair of maps, a relation which reflects
their conjugacy to the shift/ odometer pair. This is a discrete time version of the commutation
relation between geodesic and horocycle flows. And the analogy is now precise: the maps extend to
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flow cross-sections for the the dilation and translation scenery flows, and this pair of flows satisfies
exactly that relation.

17. Space-filling curves

We remark that the scenery flow of a space-filling curve can be studied by combining some of the
above ideas: the flow is a scaling flow on a path space, and this space is combinatorially related to
the Markov partition example given above. Moreover, some nonstationary examples can be brought
into play with the ideas regarding changing combinatorics. See [AF] for some more detailed studies
in this direction.

18. Self-affine fractals

Here the scaling should be done by a one- parameter a�ne group. In fact an example has already
been given above, the scaling flow on path space: e.g. the scaling flow of Brownian motion acts

a�nely on the graphs (t, B(t)) as subsets of R2, via the matrices
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19. Nonlinear scenery and smooth classification

When a fractal subset of the real line carries a smooth dynamics, e.g. when it is the attractor
or repellor of a di↵erentiable map, then a smooth change of coordinates gives a conjugacy between
the two dynamical systems. Hence studying smooth modifications of the set is related to classifying
dynamics up to smooth conjugacy. A general principle is to study first topological conjugacy, and
then the finer relation of smooth conjugacy within each topological equivalence class. Knowing a
smooth equivalence class is then equivalent to having an invariant di↵erentiable structure for the
topological map. So one is interested in classifying such di↵erentiable structures, and at a higher
level, of grouping them all together in an appropriate space. Ideally, the smooth invariants should
have a nice form (perhaps as points in a subset of a function space) which make this collection easy
to study. Then one would like to define some natural closure or completion, resulting in a sort of
Teichmüller space for the space of maps.
This philosophy has been promoted and developed especially by Sullivan; originally he needed

this as part of his machinery for giving a “conceptual proof” of convergence to the Feigenbaum
renormalization fixed point [Sul92], [dMvS93].
Now for a fractal subset of R, it is clear that the scenery flow is not a↵ected by applying a smooth

change of coordinates.
What we wish to sketch here is how two other, quite well-behaved invariants of smooth conjugacy

are related to this flow. These are the scaling function and the invariant Gibbs measure.
In [BF96], we constructed the scenery flow of a hyperbolic C1+↵ Cantor set first for periodic

points and then extending to general points. We now describe two other constructions for this flow.
First, the model scenery flow can be constructed by the same limiting procedure as sketched for
Julia sets in §10. This results in a coding by the height log |Df | suspension flow over the natural
extension of the Bernoulli shift map (⌃, �, µ) (where µ is the Gibbs measure for the potential
' = �d log |Df |). A second way begins with a Hölder continuous scaling function F of Feigenbaum
and Sullivan. This is a function is defined on the past and present of the shift space ⌃, that is, in
the digits (. . . x�2

x�1

x
0

), and tells the ratio of the subinterval with that label to the next larger
interval labelled (. . . x�2

x�1

). The scenery is constructed by building up these intervals inductively
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in a way entirely analogous to the procedure of [Fis92]. Now the model scenery flow will have a
di↵erent return time function. The natural cross-section to take is when the subinterval at a given
level has length 1; this means that the flow return time will be logF . Note that these functions are
completely di↵erent; in particular, log |Df | is defined on the future digits while logF is defined on
the past.
The extended Cantor sets (that is, extended to all of R) built in both manners are identical, up

to a change of scale, as both the scaling function and limiting scenes are produced by a similar
limiting procedure, based on bounded distortion.
This change of scale is important, as it explains the exact connection between log |Df | and logF .

The scale change expresses the natural flow isomorphism between the two suspension flows, and
amounts to a change of the cross-section; in a di↵erent language, this gives the relation of cohomology
between these two functions. For a di↵erent proof of this see [BF96].
To show the complete equivalence of these two ideas, we need to know that an extended Cantor

set built up inductively in this way from a Hölder scaling funtion in fact comes from a hyperbolic
C1+↵ map of a Cantor set in the unit interval. Here we use a nice lemma of Sullivan [Sul87], see also
[PT96], that cutting down to a window, each of the Cantor subsets we see which form part of such
an extended set, is in fact a C1+↵ hyperbolic Cantor set with respect to the natural shift dynamics.
This shows that indeed there is a one-to-one correspondence between smooth equivalences classes
of maps and Hölder scaling functions.
Once we know this fact, we get something stronger: as shown in [BF97], these particular hyper-

bolic Cantor sets which occur in the asymptotically infinitely small scale are locally the smoothest
possible representatives of their C1 conjugacy class. This leads to a sort of rigidity theorem, see
that paper for a precise statement.
All of the above material was worked out together with Tim Bedford.
A di↵erent but closely related example of this philosophy comes from the smooth classification

of doubling maps.
Let f : S1

! S1 be a degree 2 hyperbolic C1+↵ map of the circle. Using the same machinery just
discussed for cookie-cutter Cantor sets, one constructs the scaling function and scenery flow.
The scaling function now has an interesting new interpretation: it is the conditional Gibbs

measure on that leaf of the solenoid. Better explained: a solenoid leaf is a past equivalence class;
the scaling function F is defined on the past, and since relative lengths of subintervals now add up
to 1, knowledge of these lengths, at all future (sub)scales, defines a relative measure. Indeed, that
is equivalent to such knowledge, and one can prove that this measure is the Gibbs state conditioned
on the past. In other words, logF a transition function: what Keane calls the g-function of a
g-measure [Kea72]. In this way the function gains a completely geometrical interpretation, as a
scaling function for a doubling map. (We mention that this was noticed independently by Misha
Lyubich, personal conversation).
Now we return to the notion of a Teichmüller theory for these maps, as sought by Sullivan.

For the doubling maps, as Sullivan discovered, this connection is not merely allegorical: there is
a classical (or nearly so!) Teichmüller space floating around somewhere. As Sullivan noted (see
[Sul92]) there is a correspondence between conformal structures on the Riemann surface lamination
and scaling functions. See Theorem VI.6.1 of [dMvS93] for a proof in the analytic case.
Here the scenery flow picture helps to make this conformal structure more easily understood: for

it is just the natural conformal structure on the height log |Df | suspension flow over the solenoid.
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What is remarkable is that there is a two-sided correspondence, which has been worked out by
Alberto Pinto and Sullivan (preprint in progress).
Now by a theorem of Shub [Shu85], [Nit71], a nonlinear expanding map f is topologically con-

jugate to the linear map of the same degree, in this case to the doubling map x 7! 2x( mod 1).
So here one has a finer classification, in the C1 category: a smooth equivalence class of hyperbolic
C1+↵ maps is determined by the topological data (degree) plus any one of these:
– a Gibbs measure class
–a Hölder scaling function
– a scenery flow with Hölder return time.
Pinto and Sullivan add “a conformal structure on the RSL” plus conditions, which I don’t un-

derstand well enough to quote here, extending the whole setting as far as possible. This leads them
to some delicate and beautiful analysis. In this way they are able to come up with an appropriate
notion of Teichmüller space for degree d maps.
Here is one way of viewing all this. Given a hyperbolic doubling map, Cantor set or Julia set, the

construction of the scenery is a sort of linearization procedure – and the space of scenes is a tangent
object, the analogue of a tangent space. As such, it is acted on (linearly) by the derivative of the
map. This gives the return map to a cross-section of the scenery flow. The flow itself is simply
dilation, and is linear as well. So to where has the all nonlinearity of the original map disappeared?
Answer: it is coded into the flow space, by means of the identifications made when defining that
space; and that information is, in turn, remembered by the conformal structure of the Riemann
surface lamination.
We have already discussed scenery for a linear Anosov toral di↵eomorphism f . For the nonlinear

case, again we will have two scenery flows, one for the stable and one for the unstable foliation.
The topological classification of such maps f parallels that for expanding circle maps; by theorems

of Franks and Manning [Fra69], [Fra70], [Man74] f is topologically conjugate to a linear model,
the action on homology. The smooth classification now proceeds as before, and again leads to
Teichmüller theory; see [Caw93] which completes a classification begun in [MM87], [dlL87]. All of
this work, in turn, extends to the case of changing combinatorics. In this way, one studies certain
nonlinear circle di↵eomorphisms by means of a “Teichmüller space over Teichmüller space”, of maps,
and the torus, respectively. (Work with Arnoux, in progress; see [Fis03b]).
Smooth classification in the higher dimensional nonlinear case is a great deal more di�cult, and

much remains to be done.

20. Non-homogeneous fractals

In §8 of [BF96] we defined a closed subset of Rn to be a spatially homogeneous fractal i↵ the
scenery flow is nontrivial and is the same space, for every point in a dense G�. This is true for all
the examples discussed so far.
There are however many interesting fractal sets which are non-homogeneous in that they are

“di↵erent” at every point; a precise way of saying this might be: the scenery flow exists at every
point but is di↵erent everywhere. One example is this: consider the “theater curtain” pictures in
[Man82], which interpolate middle- interval Cantor sets from the whole unit interval to the empty
set. Now slice along a diagonal. The resulting Cantor set has asymptotically the same scenery flow
as the corresponding horizontal slice at that point. There is a natural generalization of Hausdor↵
measure, given by a weak limit; its pointwise dimension [LY85] and order-two (average) density
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should accompany this change, the latter selecting a Cantor subset of the values of the graph
depicted on p. 107 of [Fal97], see Patzschke and Zähle [PZ93].
Another beautiful class of examples of fractal sets which are both non-homogeneous and locally

self-a�ne was discussed in this conference by Falconer; it is interesting to speculate on how the
scenery flow varies from point to point.
But the holy grail of non-homogeneous examples is without much doubt the Mandelbrot set

boundary M . As Tan Lei showed [Tan90], at certain points of M the scenery flow can be precisely
analysed: for a Misiurewicz point c, the scenery flow of M at c 2 M is that of the Julia set Jc at c
for the map z 7! z2 + c. However what happens at this set of points, even though it is a countable
dense subset of M , says next to nothing about the nearby points. The limiting scenery there is
anybody’s guess and seems to be a deep and di�cult problem. (Warning: to have a meaningful
result, it is probably necessary to modify the mode of convergence to the scenery flow: perhaps
throwing out a set of times of density zero?) But in any case, without any doubt, there is a lot of
exciting exploring yet to be done at the small scales of these and other related fractal landscapes.
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Scientifiques, Paris), 50:11–25, 1979.
[Bur90] Marc Burger. Horocycle flow on geometrically finite surfaces. Duke Math. J., 61(3):779–803, 1990.
[Caw91] Elise Cawley. Smooth Markov partitions and toral automorphisms. Ergodic Theory Dynamical Systems,

11(4):633–651, 1991.
[Caw93] Elise Cawley. The Teichmüller space of an Anosov di↵eomorphism of T2. Invent. Math., 112:351–376,

1993.
[CE51] K.L. Chung and P. Erdös. Probability limit theorems assuming only the first moment I. Memoir Amer.

Math. Soc., 6, 1951.
[CW83] K. L. Chung and R. J. Williams. Introduction to Stochastic Integration. Birkhäuser, Basel, 1983.
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