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Abstract. Given aC1+γ hyperbolic Cantor setC, we study the sequenceCn,x of Cantor
subsets which nest down toward a pointx in C. We show thatCn,x is asymptotically
equal to an ergodic Cantor set valued process. The values of this process, calledlimit
sets, are indexed by a Ḧolder continuous set-valued function defined on Sullivan’s dual
Cantor set. We show the limit sets are themselvesCk+γ , C∞ or Cω hyperbolic Cantor
sets, with the highest degree of smoothness which occurs in theC1+γ conjugacy class
of C. The proof of this leads to the following rigidity theorem: if twoCk+γ , C∞ or Cω

hyperbolic Cantor sets areC1 conjugate, then the conjugacy (with a different extension)
is in fact alreadyCk+γ , C∞ or Cω. Within oneC1+γ conjugacy class, each smoothness
class is a Banach manifold, which is acted on by the semigroup given by rescaling
subintervals. Smoothness classes nest down, and contained in the intersection of them
all is a compact set which is the attractor for the semigroup: the collection of limit sets.
Convergence is exponentially fast, in theC1 norm.

0. Introduction
Consider the sequenceCn,x of Cantor subsets which nest down toward a pointx in a
hyperbolic Cantor setC ⊆ [0, 1], and which have been affinely rescaled to have left and
right endpoints at 0 and 1. We wish to describe how the geometry of these sets changes
as n increases. IfC is a linear set like the middle-third set this is not so difficult to
do (we always get just another copy ofC!) but, as we shall see, with nonlinearity the
behavior of this ‘scenery process’ gets much more interesting.

A different way to describe the small-scale structure ofC is by thescaling function,
introduced by Feigenbaum for a specific class of examples, and studied by Sullivan in
the present setting ofC1+γ hyperbolic Cantor sets.

A third approach is to define a flow, the continuous dynamics of which reflect the
geometrical notion of zooming continuously down toward a point. Ergodicity of the flow
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implies analogies of the Lebesgue density theorem, proved in [BeFi1] for Brownian zero
sets and hyperbolicC1+γ Cantor sets; the number that one obtains (order-two density) is
a conformal invariant and provides a measure of thelacunarity of the fractal; compare
[Mand]. This scenery flowis constructed for hyperbolic Cantor sets in [BeFi2], [BeFi3],
for hyperbolic Julia sets in [BeFiU], and for limit sets of geometrically finite Fuchsian
and Kleinian groups in [Fi4]. The associated translation (rather than dilation) scenery
flows are studied for hyperbolicC1+γ Cantor sets and the Fuchsian limit sets in [Fi4] and
[BuF], where theorems like those of [Fi3] are proved (an order-two ergodic theorem,
and infinite-measure unique ergodicity).

In this paper we will take a viewpoint close to that of Sullivan in [Su1], constructing
the scenery process in a similar way to the scaling function. It is also possible to work
in the other direction; in the later papers [BeFi2], [BeFi3] we show how to derive the
scaling function from the scenery flow, and conversely how to construct the scenery flow
from the scaling function. From this point of view the scenery process will be seen as
an intermediate object, serving to connect the scenery flow with the scaling function.

Sullivan’s main motivation in [Su1] was to develop an understanding of the geometry
of hyperbolic Cantor sets for use in a new, more ‘conceptual’ approach to the
Feigenbaum–Coullet–Tresser conjectures (see [Su2] and [deMvS]). (Lanford’s proof
[Lan] uses (rigorous) computer-assisted estimates.)

The first of these conjectures is the existence and uniqueness of a fixed point for the
action of the renormalization operator on a certain space of analytic folding maps (see the
discussion under ‘Related work’ below). A further conjecture states that for any folding
map which converges to this renormalization fixed point, the small-scale structure of its
attracting Cantor set will be the same.

To prove this last statement, Sullivan uses the following observation (which is
attributed by Rand [Ra] to Misiurewicz): for the particular case of the folding map which
is the renormalization fixed point, the Cantor set not only has the folding dynamics, which
is a bijection when restricted there, but also a two-to-oneC1+α dynamics, for which it
is a repeller. This second, hyperbolic, dynamics is much easier to work with in certain
respects. Indeed, the existence of this map led Sullivan to a separate question, which is
the subject of§§1–3 of [Su1]: for general hyperbolicC1+α Cantor sets, can one classify
differentiable structures? He shows that this can be done with a bounded Hölder scaling
function providing a complete smooth conjugacy invariant. This, in turn, as will be
explained below, is equivalent to knowing the small-scale structure of the Cantor set.
In this way the hyperbolic dynamics helps answer a question about the original folding
map.

Our own main focus is somewhat different to that of Sullivan in [Su1]. We want to
describe theexact geometry, at small scales, of the Cantor sets, whereas with respect
to the differentiable structure, all smoothly equivalent Cantor sets will look the same.
However, for this purpose the scaling function also contains precisely the information
one needs.

Our main theorems (Theorems 5.4, 7.4 and 7.5) concern the scenery process, the
smoothness of limit sets, andCk+γ rigidity respectively. We summarize the totality of
the resulting picture. Given oneC1+γ hyperbolic Cantor set, consider the collection of
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all Cantor sets which areC1+γ conjugate to it. Within this collection is a distinguished
subcollection, its limit sets. The free semigroup on two generators acts on the conjugacy
class (by rescaling subsets of the next level); the limit sets are an attractor for this
action, and the scenery process can be described as what one sees when walking out
a branch of the tree of the semigroup. Limit sets are exactly theratio sets (see§2)
built from the associated scaling function. Within the big collection are subcollections
with higher degrees of smoothness. The big collection forms an infinite-dimensional
Banach manifold, naturally identified with a factor of theC1+γ diffeomorphisms of the
interval, after one Cantor set has been chosen as a base point (the diffeomorphisms are the
conjugacies to this set). The subcollections nest down as smoothness increases, and by
rigidity these smoothness classes are also conjugacy classes. Contained in the intersection
of them all is the collection of limit sets, with the highest possible smoothness. Choosing
one of them as a common base point, these subcollections are naturally identified with the
Ck+γ diffeomorphisms of the interval. Each is a Banach manifold in its own topology,
and is dense in a larger collection with respect to its topology. The free semigroup
acts on each manifold. Its points are drawn exponentially fast in theC1 norm toward
the common attractor: the collection of limit sets, which form a compact subset of the
Banach manifold.

In the course of our paper we give careful proofs of several of Sullivan’s theorems
([Su1] is extremely sketchy). In some cases our different point of view leads us to
different arguments from those indicated in [Su1]. We will describe our approach and
results more fully after a further explanation of Sullivan’s ideas.

Sullivan’s differentiable structures.We begin with an ordered topological Cantor set, i.e.
a space which is homeomorphic and order isomorphic to the usual middle-third Cantor set.
For convenience we use6+ ≡ 5∞

0 {0, 1}, together with the product topology, and with
the lexicographic order.Charts are defined to be order-preserving homeomorphisms into
R; two chartsζ, ξ areCk+γ compatibleif ζ ◦ξ−1 extends, with that degree of smoothness,
to a diffeomorphism defined on neighborhoods of the embedded sets. Alinear C(k, α)

differentiable structureon 6+ will be a maximal atlas(a maximal compatible collection
of charts). Here, following [Su1], C(k, α) denotes all maps which areCk+γ for some
γ ∈ (0, 1]. Therefore, aC(k, α) linear differentiable structure determines and is
determined by a class of Cantor sets embedded in the real line, equivalent byC(k, α)

changes of coordinates.
For simplicity, we are restricting our attention to charts which are order preserving

and globally defined. We mention that the word ‘linear’ is being used in two ways:
when dynamics is introduced on these sets, it will usually be nonlinear; the differentiable
structures are called linear because they come from embeddings in the line. (Alternative
theories might have charts mapping6+ to a product of Cantor sets, or to a subset of
some fractal curve!)

Via the homeomorphism from6+, an embedded setC comes equipped with the
dynamics of the shift mapσ on 6+. The set also inherits from6+ a nested hierarchy
of intervals, corresponding to finite words (cylinder sets) in 6+. Sullivan uses the shift
map to defineC(1, α) hyperbolic Cantor sets(see§1 below) and the nested intervals to
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define theratio geometryof a Cantor set. This assigns to each interval the triple(l, g, r)

of length ratios of the left subinterval, middle gap and right subinterval respectively. The
hypothesis that an embedded Cantor setC is hyperbolicC(1, α) is enough to show that
a limiting ratio geometry, recorded by thescaling function, exists. The ratio geometry
is bounded away from 0 and 1, a condition calledbounded geometry; hence the limiting
values(a, b, c) are also in the interior of the simplex1 = {(a, b, c) : a + b + c = 1}.
Convergence to the scaling function is taken along inverse branches ofσ , which are
indexed by points of an abstract topological Cantor set called thedual Cantor set. Thus
the scaling function maps the dual Cantor set to1, onto a compact subset of its interior.
Convergence is exponentially fast, and the scaling function is Hölder continuous.

Locations in the Cantor set correspond to forward images underσ , since the digits
of 6+ tell whether the orbit of a point lies in the left or right third ofC. To study
smoothness of a conjugacy or an expanding map, one expects of course to use the
locations to estimate difference quotients. However, since convergence to the scaling
function is taken alonginversebranches ofσ , as the scale gets smaller and smaller, the
locations jump all over the set.

The first remarkable result from§§1–3 of [Su1] is that while indeed one cannot
compute the derivative of the shift map from the scaling function, nevertheless this
function contains complete information aboutC(1, α) differentiable structures.

More precisely, one has the following. As we have already mentioned, (1) a hyperbolic
C(1, α) Cantor set has a bounded Hölder scaling function. Next, (2) this depends only
on the differentiable structure, i.e. it is the same forC(1, α) conjugate Cantor sets.
Conversely, (3) an embedded Cantor set which has a bounded Hölder scaling function is
in fact C(1, α) hyperbolic. Finally, (4) in this case theC(1, α) differentiable structure is
determined by the scaling function. In other words, two hyperbolicC(1, α) Cantor sets
with the same scaling function areC(1, α) conjugate. In summary, the bounded Hölder
scaling function gives an intrinsic characterization of the differentiable structure, in the
sense that no embedding need be specified.

Furthermore, quoting [Su1]: ‘ . . . if the structure admits aC(k, α) refinement so that the
shift is C(k, α), this structure is also determined uniquely by the same scaling function
. . .’. Stated as a result about representatives instead of the entire equivalence class,
this can be interpreted as a rigidity theorem: if twoC(k, α) hyperbolic Cantor sets are
conjugate by a map which isC(1, α), then that map (possibly with a different extension
to the gaps) is in fact alreadyC(k, α).

Summary of results. We include in this paper careful statements and proofs, in particular,
of (1), (2) and (4) above, and ofC(k, α) rigidity (we mention that our use of the term
‘rigidity’ is different from that in §5 of [Su1]). Since we are interested in the geometry
of representatives rather than the equivalence class, all these results are stated in terms of
the conjugacy of embedded sets rather than the classification of differentiable structures.
As we said above, the reason for this emphasis is that our primary goal is to study the
scenery process, and all the sets in the scenery process are the same up to conjugacy.

A small technical difference to [Su1] is that we useCk+γ rather thanC(k, γ )

throughout. We do this because it gives sharper statements. Thus, for example, for
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rigidity we show thatC1 conjugacy impliesCk+γ conjugacy.
In part because of our change in focus, we give a different proof from that suggested

in [Su1] of (4). Each approach has its own advantages. Sullivan’s method, a direct
estimate of the derivative by difference quotients using sums of gap lengths, gives a
unified way of proving (3) as well as (4). However, one also needs to cite an extension
lemma, which is not included in [Su1]. On the other hand, our approach gives a unified
treatment ofC1 conjugacy and rigidity, and avoids calling on the separate extension
lemma. We do not prove (3) here, but will give a full proof (along the lines of [Su1])
elsewhere.

Our proof of rigidity is intimately connected to the study of the scenery process. We
proceed as follows.

First we use limiting conjugacies to construct a set-valued analogue of the scaling
function. This function,y 7→ Cy , is defined fory in the dual Cantor set, is Ḧolder
continuous with respect to a metric derived from the corresponding Hausdorff measures
and has as its range a compact subset of the collection of all subsets of [0, 1] in that
measure metric, and also in the Hausdorff metric on sets. The scaling dynamics enters by
interpreting the dual Cantor set as the past of the natural extension of the expanding map
on C; the scenery processCn,x is then asymptotically given by evaluating the shift on
any extensionx = (y, x) of x ∈ C. Since the limit sets were constructed by conjugacies,
one can apply a lemma from the appendix of [Su1] to help determine their degree of
smoothness: we show they have the highest degree of smoothness (Ck+γ for somek ≥ 1,
C∞ or Cω) which occurs in theC1+γ conjugacy class ofC.

Next, the proof of rigidity follows as a corollary. Given two hyperbolicCk+γ Cantor
sets, if they areC1 conjugate they have the same scaling function. Hence they have the
same limit sets, which areratio Cantor setsconstructed from this function. Choosing
one of these to act as an intermediary, the composition should also beCk+γ . However,
the maps may be defined differently on the gaps, which would lead back to the extension
problem mentioned before. But now one has a simpler solution: a choice is made on
the middle third, and the rest of the definition follows automatically from the dynamics.
This completes the proof of rigidity. In summary: if twoCk+γ , C∞ or Cω hyperbolic
Cantor sets areC1 conjugate, then this conjugacy (with a different extension) is already
Ck+γ , C∞ or Cω respectively.

This leads, then, to the overall picture which is summarized at the end of the first part
of the Introduction.

Note on doubling maps.We next discuss, more completely, the relation of [Su1] and the
present paper to Sullivan’s work on renormalization theory. We have already described
one aspect of this: for the fixed point folding map, one can introduce a secondC1+α

hyperbolic map on its attracting Cantor set, and thus can apply hyperbolic methods
(the bounded distortion property, symbolic dynamics, Gibbs theory) in the study of its
small-scale geometry.

However, in Sullivan’s theory, in addition to this hyperbolic map on the Cantor set, a
second expanding map is also of key importance. This is adoubling map of the circle, by
which we mean a degree-two map of the circle, i.e. one which is topologically conjugate
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to z 7→ z2. This map is defined, up to smooth conjugacy, by (roughly speaking) the
action on external angles to its Julia set of the complex extension of the folding map
(for more precision see§VI.4 of [deMvS]).

In fact, all the results of the present paper also hold forCk+α hyperbolic doubling
maps. A scenery process enters the picture as follows. Preimages of the fixed point
partition the circle into two intervals. Pulling back this partition gives a hierarchy of
nested tilings of the interval, which can be thought of as having a fractal geometry: the
tiled interval is like a Cantor set which has been expanded to close the middle gaps, with
the tilings marking where these gaps had once been.

A scaling function is defined from the tilings in the obvious way. With an appropriate
Hausdorff-type metric on the space of nested tilings, one has an analogue of limit sets
and can define the scenery process and flow. See [BeFi3] and also the related work of
Pinto and Rand discussed below.

The doubling map plays the following role in Sullivan’s theory. Sullivan’s idea for
proving the first Feigenbaum–Coullet–Tresser conjecture on the existence and uniqueness
of a renormalization fixed point is to show that the renormalization operator acts locally
as a contraction on a Teichmüller space of folding maps. This space is a given topological
conjugacy class of folding maps modulo an identification: one associates to each of the
folding maps its smooth conjugacy class of doubling maps, which induces an equivalence
relation on the folding maps.

The next step is to classify invariant differentiable structures for doubling maps. This
classification is in terms of an invariant which can serve as a ‘modulus’ of the structure.
The idea is to then put a complex structure on the set of moduli as in classical Teichmüller
theory, and next to use Teichmüller theory in the proof of contraction. For the parallel
theory of hyperbolic Cantor sets, this ‘modulus’ is the bounded Hölder scaling function.
For the doubling maps (see [Su3]) the modulus can be nicely linked with classical surface
theory: it is again given by a scaling function, but equivalently it is given by a conformal
structure on aRiemann surface lamination: a compact laminated space with solenoidal
cross-section.

The point we wish to emphasize is the following. In Sullivan’s development of
renormalization theory, two very different hyperbolic maps become associated to the
renormalization fixed point folding map: a doubling map of the circle, defined up
to smooth conjugacy, and a specificC1+α hyperbolic map on the Cantor set. Then,
remarkably, much the same machinery gets used, in different ways, in the proofs of
these two very different conjectures.

It is important to mention here that things are not quite so simple away from the fixed
point. For this case one still has a single doubling map; however now the hyperbolic
Cantor set map should be replaced by asequenceof maps along a sequence of Cantor
sets: aMarkov family in the sense of Rand (see the discussion below).

Related work. One knows, from the rigidity theorem, that the maximum degree of
smoothness occurring in theC1+γ conjugacy class should be encoded somehow in the
scaling function. Work of Tangerman and Przytycki gives one way of recovering that
information [TPr ]. Pinto and Rand ([PR2, §5] and personal communication) and Sullivan



Hyperbolic Cantor sets 537

(personal communication) have suggested other approaches, in a related situation. It
would be nice to understand these different points of view in a unified way.

The rigidity theorem is also stated by Tangerman and Przytycki; it is proved as
a corollary of their main result. Their approach is quite different from ours and, in
particular, does make use of an extension lemma (a version of Whitney’s extension
theorem).

We have already mentioned the notion of Markov family and its role in renormalization
theory. Rand introduced this notion [Ra] to help study the relationship between scaling
functions and smooth conjugacy in a general situation where one has a sequence of
expanding maps of the interval, rather than a single map. See also [Pi] and [PR1, 2]:
our Theorems 5.3, 5.4 and 5.9 below (concerning limit conjugacies) are closely related
to Theorem 26 of Pinto’s thesis [Pi]. What we call the scenery process (see§5 below)
corresponds in [Pi] to the following. Given a Markov family, Pinto defines a limiting
family called arenormalization Markov family[Pi]. For the special case of a constant
Markov family, i.e. for a single hyperbolic map, the sequence of Cantor sets on which
this limiting family is defined is a pathC(σn(x)) in the scenery process. The choice of
a pointx in the shift space determines a particular renormalization family. (We became
aware of Tangerman and Przytycki’s preprint and of Rand and Pinto’s work after the
first version of the present paper—an IHES preprint, July 1992—was completed.)

Markov families provide a flexible and general framework for approaching a variety
of problems. Interesting examples of Markov families come from both renormalization
theory and from random dynamics and, indeed, this notion provides a link between these
two fields (see [AFi ]). In Pinto and Rand’s papers, the focus is on constructing smooth
conjugacies of Markov families given by the renormalization of one-dimensional maps,
including certain circle diffeomorphisms and folding maps: for instance, the folding
maps discussed above which are not a fixed or periodic point under renormalization.
For an example from random dynamics one can think of a Cantor set generated by a
sequence of random perturbations of a single hyperbolic map. In this paper we consider
only constant families, i.e. Cantor sets generated by one hyperbolic map. In fact, all the
results and methods of this paper hold for (two-sided) Markov families, including such
random hyperbolic Cantor sets. This is explained more fully in [BeFi3].

These ideas fit into a broader context. As we show in [AFi ], the basic notion
of mapping families (by which we mean a sequence of maps along a sequence of
spaces) makes sense for higher dimensions, with much of the standard theory of a
single hyperbolic transformation (possibly with singularities, as for pseudo-Anosov maps)
carrying through for hyperbolic mapping families: shadowing, the stable manifold
theorem, structural stability, and the existence of Markov partitions. These code the
family to a non-stationary symbolic dynamics; one can then prove the Ruelle–Perron–
Frobenius theorem and hence develop Gibbs theory (see also [BoG]) and apply this in
turn, for families on surfaces, when classifying differentiable structures.

Interesting work on the small-scale geometry of certain fractal sets, in quite different
settings, has been done by Furstenberg and Tan Lei. Tan Lei in [T] proves the beautiful
theorem that certain nonhyperbolic Julia sets, corresponding to Misiurewicz points in
the boundary of the Mandelbrot set∂M, are asymptotically the same as∂M at that



538 T. Bedford and A. M. Fisher

point. These points form a countable dense subset of∂M, yet the general case is still
far from completely understood. This type of asymptotic limit, as well as what we have
here called limit sets, provide examples of Furstenberg’s general notion of themicrosets
of a subset of Euclidean space (lectures and personal communication). These are by
definition all the limiting sets given by rescaling nested subsets by a sequence of affine
expansions. Furstenberg applies this in a continuation of the analysis begun in [Fu] for
determining the Hausdorff dimension of certain sets: intersections of generic translates
of linear Cantor sets, and intersections of linear Cantor sets in the plane with foliations of
straight lines at a generic slope. His study of these matters is related to the ‘times 2 times
3’ circle of problems in ergodic theory. An interesting and important area of research is
to develop similar results in a nonlinear setting, e.g. for general smooth foliations or for
nonlinear Cantor sets.

1. Two ways of building Cantor sets
1.1. Hyperbolic Cantor sets, Hausdorff and Gibbs measures.We start with the usual
middle-third Cantor set. LetS denote the 2-1 map on the middle-third setC defined
by x 7→ 3x (mod 1). The Hausdorff dimension ofC is d = log 2/ log 3. Writing Hd

for d-dimensional Hausdorff measure andµ for the restrictionµ = Hd |C , we recall
that µ is a Borel probability measure (total mass= 1) which is invariant underS.
The triple(C, S, µ) is canonically isomorphic to the one-sided Bernoulli left shiftσ on
6+ ≡ 5∞

0 {0, 1}, with infinite ( 1
2, 1

2) coin-tossing measure; the correspondence is given
by π : (x0x1 . . .) 7→ x, wherex ∈ C has ternary expansion

x =
∞∑
i=1

2xi3
−i .

A hyperbolicC1+γ Cantor setC by definition also has an expanding dynamicsS : C −→
C, but now instead of having straight lines as for 3x (mod 1), the graph ofS may be
nonlinear (see Figure 1).

To construct such a set, one definesC as a limit from two contraction mappings
ϕ0, ϕ1 : I −→ I . We first consider the case where these maps are orientation-preserving,
and arestrict contractions in the sense that the derivatives satisfy 0< α < Dϕi < β < 1.
We also require that

0 = ϕ0(0) < ϕ0(1) < ϕ1(0) < ϕ1(1) = 1.

This implies that the intervalsI0 ≡ ϕ0(I ), I1 ≡ ϕ1(I ) are disjoint. We assume that
ϕ0, ϕ1 areC1+γ maps for someγ ∈ (0, 1]. HereCk+γ means thekth derivativeDkϕi is
Hölder continuous with exponentγ ; note thatC1+1 meansDϕi is Lipschitz, soC2 implies
C1+1 (by compactness) but not conversely. (Exponentγ > 1 is excluded because in that
case, since the domainI is connected,ϕi is identically constant hence immediately of
orderC∞, while the whole purpose of Ḧolder conditions is to haveintermediategrades
of smoothness.) Our convention for Hölder continuity will be: if we are given thatf
satisfies|f (x) − f (y)| ≤ c0|x − y|γ , then we sayf is Hölder continuouswith Hölder
constantc0 and Hölder exponentγ . We remark that Sullivan in [Su1] works instead
with C(k, α) maps; these are defined to be the collection ofCk+γ maps for allγ ∈ (0, 1].
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FIGURE 1.

We defineS : I0 ∪I1 → I to be the map with inverse branchesϕ0, ϕ1. Note that since
Dϕi are bounded away from 0 and∞, it follows that S is C1+γ with the same Ḧolder
exponent, but with different Ḧolder constant. Inductively, form

Ix0...xn
= ϕx0(ϕx1 . . . (ϕxn

(I ))),

where xk ∈ {0, 1}; ⋃
Ix0...xn

(union over all choices, withn fixed) is thenth level
approximation to the Cantor set,C, defined as

C =
∞⋂

n=0

⋃
Ix0...xn

.

The restriction of the mapS to C mapsC to itself and is (just as for the middle-third
set) conjugate to the Bernoulli shift(6+, σ ) via the mapπ : (x0x1 . . .) 7→ x, wherex is
the unique element of∩∞

n=0Ix0...xn
.

A setC together with mapS : I0∪I1 → I defined in this way from strict contractions
ϕ0, ϕ1, will be called astrictly hyperbolicC1+γ Cantor set (with map).

Sometimes we are only interested in the dynamics onC itself. Knowledge of this
restricted mapS|C is equivalent to knowing howC is coded by6+. We will refer to
a set together with this labeling as amarked Cantor set. When we forget about this
coding,C will be referred to as theunderlying Cantor set of(C, S).

More generally, ahyperbolic C1+γ Cantor set is defined as follows. (Again we
assume thatϕ0, ϕ1 : I → I are order-preservingC1+γ diffeomorphisms such that
ϕ0(0) = 0, ϕ1(1) = 1, and ϕ0(1) < ϕ1(0). We also assume, as before, that there
existsα with 0 < α < Dϕi < 1. However now the upper bound is replaced by one of
the two equivalent conditions which follow. We writeϕx0...xn

≡ ϕx0 ◦ · · · ◦ ϕxn
.)
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PROPOSITION1.1. The following are equivalent:
(i) ∃β < 1 andN ≥ 0 such that for alln > N , for anyx0 . . . xn, Dϕx0...xn

< βn;
(ii) ∃c > 0 and β̃ < 1 such that for alln, for anyx0 . . . xn, Dϕx0...xn

< cβ̃n.

Proof. To pass from (ii) to (i), anyβ which satisfiesβ̃ < β < 1 will work. For the
converse, takec = max{(Dϕx0...xn

) · β−n | n ≤ N} and β̃ = β. �

Two C1+γ hyperbolic Cantor setsC, C̃ with mapsS, S̃ will be said to becontinuously
conjugate, or C0 conjugate, if there is an order-preserving homeomorphism8 : I → I

such that for allx ∈ I0 ∪ I1, S̃ ◦ 8(x) = 8 ◦ S(x). We sayC, C̃ are Ck+γ , C∞, Cω

conjugate if 8 and its inverse have that degree of smoothness. Note that from the
definition, for eachn, 8(Ix0...xn

) = Ĩx0...xn
. Therefore the conjugacy induces the identity

map on the corresponding shift spaces.
When 8 is defined (as above) on all ofI we will also call it a full conjugacy. A

restricted conjugacy is a conjugacy between the Cantor sets which can be extended to a
full conjugacy.

We immediately have the following lemma.

LEMMA 1.2. Let (C, S) be a hyperbolic Cantor set, and assume8 : I → I is a C1+γ

diffeomorphism. Define sets̃C ≡ 8(C), Ĩi ≡ 8(Ii) for i = 0, 1, and define the map
S̃ : Ĩ0 ∪ Ĩ1 → I by S̃ ≡ 8 ◦ S ◦ 8−1. Then(C̃, S̃) is also a hyperbolicC1+γ Cantor set.

Note that in this lemma, using condition (i),β̃ stays the same but the constantc may
change. Similarly, using (ii),N may change whileβ remains the same.

Thus, in particular, theC1+γ conjugate of a strictly hyperbolic set is still hyperbolic,
though strictness may be lost. We remark without proof that a converse holds: by a
well-known theorem due in its original form to Mather, any hyperbolic Cantor set is
conjugate to a strictly hyperbolic set (without changing the order of differentiability); see
for example [HP]. Therefore, if one is studying properties invariant with respect to the
equivalence relation given by conjugacy, one might as well begin with the assumption
that c = 1 in (ii); this situation occurs often in the dynamical systems literature. The
new metric onI is referred to as anadapted metricfor the hyperbolic mapS. However,
for our purposes it will be important to use the original metric, otherwise the notion of
the scenery process will lose its meaning. This will become clear in§5.

We recall from the theory of Bowen and Ruelle ([Bo1, 2], [Ru]; see also [Be]) that
the dimensiond of a hyperbolicC1+γ Cantor setC is strictly between 0 and 1 and that
Hausdorff (or conformal) measureµ = Hd |C has a unique normalized invariant version
v, called theGibbs measure(or Gibbs state). For the middle-third setµ = v; in general
they are boundedly equivalent (i.e. the Radon–Nikodym derivative is bounded away from
0 and∞); v is defined so as to be a probability measure whileµ may have total mass
6= 1. As in [BeFi1] we will need to use both measures.

We remark that all the results in this paper generalize with minor notational changes to
the following situation. The mapsϕi are also allowed to be orientation-reversing; there
may be more than two maps,ϕ1, . . . , ϕk, and the Cantor set is constructed by selecting
the maps with respect to some subshift of finite type6A on k symbols instead of the full
two-shift 6.
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1.2. Ratio Cantor sets. As before,6+ denotes5∞
0 {0, 1} and we now define:6− ≡

5−1
−∞{0, 1}, 6 ≡ 5∞

−∞{0, 1}. We will write y = (. . . y−2y−1) for y ∈ 6−, x =
(x0x1 . . .) ∈ 6+ and x = (y, x) = (. . . x−2x−1.x0x1 . . .) = (. . . y−2y−1.x0x1 . . .) for a
point in 6. We will let σ denote both the (full) left shift on6 and the left shift (with
truncation) on6+. 6+ is known as thefuture of 6, and6− as itspast.

Write 1 for the unit simplex inR3 and int1 for its interior. LetR be a continuous
function from6− to int1, and write the components asR = (Rl, Rg, Rr). These letters
will stand for left, gap and right respectively; by definition they add to 1 and each is
strictly positive. Forx = (y, x) ∈ 6 we will also think of R as a function on6 by
definingR(x) ≡ R(y).

Given the functionR, we will define for eachy ∈ 6− theratio Cantor setCy ⊆ [0, 1]
so as to satisfy the following: at each stage subintervals will have length ratiosR(σn(x)).
Thus, we first defineI y

0 = [0, Rl(y)], I
y

1 = [1 − Rr(y), 1]. The left intervalI y

0 has
subintervalsI y

00, I
y

01 which are defined to have lengths in the ratios

|I y

00|
|I y

0 | = Rl(. . . y−2y−10.),
|I y

01|
|I y

0 | = Rr(. . . y−2y−11.)

and left and right endpoints the same as those ofI
y

0 , respectively. Inductively, for
x ∈ 6+ andx = (y, x), I

y
x0...xn+1 is a subinterval ofI y

x0...xn
with length ratio

|I y
x0...xn+1|

|I y
x0...xn

| = R∗(σ nx).

Here∗ = l, i.e. this is the left subinterval, ifxn+1 = 0, and∗ = r, i.e. the right subinterval,
if xn+1 = 1.

Note that the fact thatR depends only on the past coordinatesy ∈ 6− of x is what
makes this well-defined, since therefore the ratio is the same for each other point in that
subinterval.

Finally we form the setCy as before, defining

Cy =
∞⋂

n=0

⋃
I y
x0...xn

.

The simplest example is again the middle-third set: takingR(y) = ( 1
3, 1

3, 1
3) for all

y ∈ 6−, Cy is the middle-third setC for eachy.
SinceR is a continuous map from a compact set into the interior of1 by assumption,

hence strictly into the interior, these intervalsIx0x1... nest down to a single point in [0, 1].
Hence eachCy inherits from6+ the dynamics of the shift mapσ (we will also writeσ

for this map onCy).
For R assumed to be Ḧolder continuous with some exponentα > 0 (which will be

the case in this paper) it turns out that each ratio Cantor setCy is also a hyperbolic
C1+γ Cantor set. (What needs to be shown is thatσ is C1+γ on Cy for someγ with
0 < γ < 1, which follows by a bounded distortion argument, and that it can be extended
to a mapS on I

y

0 ∪ I
y

1 without losing any smoothness and which is hyperbolic. This
can be proved from a lemma of Sullivan, (3) in the Introduction above. For a full proof
see [BeFi3].) Therefore it also has a Gibbs measure equivalent to Hausdorff measure.
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The dimensions ofCy and the Gibbs state, viewed as a measure on6+, are the same
for eachy ∈ 6− for the following reason: fory, w ∈ 6−, Cy and Cw have the same
scaling function and hence areC1+γ conjugate (see§7).

2. Statement of the problem: bounded distortion
Let C be a hyperbolic Cantor set. We wish to describe the geometry of the sequence of
nested Cantor sets one sees along the way when zooming down towards a point.

The notation will be as follows. Forx ∈ C with x = π(x0x1 . . .), let Cn,x be the set
C ∩ Ix0...xn

affinely rescaled to the unit interval, so as to have endpoints at 0 and 1.
Write µn,x for the corresponding Hausdorff measure, the restriction ofHd to the set

Cn,x . Thus we want to see how the sequence of sets, and of the corresponding measures,
varies asn −→ ∞.

The first obstacle we encounter is that you do not get from the intervalIx0...xn
to its

subintervalIx0...xn+1 by one application ofϕ0 (or ϕ1). Instead you have

Ix0...xn+1 = ϕx0 . . . ϕxn+1(I ) = ϕx0 . . . ϕxn+1(ϕ
−1
xn

. . . ϕ−1
x0

(Ix0...xn
)),

and since the maps do not commute, you have to go all the way back up and down the
tree again, with more nonlinearity introduced each time. To control this nonlinearity we
will use the well-known bounded distortion property in the following variation. For a
proof see [ShSu], [Mañé] or Lemma 6.4 below. We learned this version of bounded
distortion from M. Urbanski.

THEOREM 2.1. (Classical)With S as above,∃K > 0 such that for alln, for anyδ > 0,
if J is an interval such thatSm|J is one-to-one and the imageSm(J ) has diameter less
thanδ, then for allx, y ∈ J ,

e−Kδγ

<

∣∣∣∣DSmx

DSmy

∣∣∣∣ < eKδγ

.

We mention that one sees from the proof that ifc is the Ḧolder constant for log|DS|,
then the constantK is given byK = cβγ /(1 − βγ ).

As a consequence of this theorem, since 0< α < Dϕi < β < 1 implies that
αn < |Iwo...wn

| < βn for any w, we have the following corollary.

COROLLARY 2.2. For any m, n ≥ 0 and anyw ∈ 5∞
0 {0, 1} one has for allx, y ∈

Iw0...wn+m
,

e−Kβnγ

<
|DSm(x)|
|DSm(y)| < eKβnγ

.

The setCk,x belongs to the collection of 2k Cantor sets at levelk in the tree (rescaled).
We want to understand the geometry of the sets in this collection.

A first approximation is the original set itself (at level 0). But by bounded distortion,
for n large the 2n sets at leveln provide much better models for the 2m+n sets at level
k = m + n and, moreover (and this is the strength of bounded distortion) this is true for
all m simultaneously. The reason is that since by definition

Sm(Iy0...ymx0...xn
) = Ix0...xn

,
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and sinceIx0...xn
has small diameter, by the corollary the derivative ofSm is close to

constant, henceSm is close to linear.
In summary, consider all the Cantor subsets which have this same image underSm to

be grouped in one equivalence class. The 2k sets at levelk are split into 2n equivalence
classes, each with 2m members which all have approximately the same geometry (but
whose locations are scattered throughout the space!). As we scale down toward a point
x, we are seeing sets given by these approximations.

Note that the equivalence class of a given interval at levelk depends on the
immediately previousn branches, rather than on its initial branching structure. We
will see in the next section how Sullivan uses this observation to study the asymptotics,
associating to the Cantor set a functionR like that used to define the ratio Cantor sets
in the previous section. Then, in§5, we will show that the sequence of sets one sees in
C is asymptotically the same as that for the ratio Cantor setsCy , and for the setCy the
nested sequence of subsets has an exact description.

Remark. The scenery process of a ratio Cantor set.Each subset in this sequence is itself
a ratio Cantor set. Moreover, the sets change in the following way. WritingC

y
n,x for

the setCy ∩ I
y
x0...xn

affinely rescaled to [0, 1] as above, one has (immediately from the
definition) thatCy

n,x = Cσn(x) for all n ≥ 0.
With the Gibbs measure on the full shift, this gives a stationary, set-valued process

which in forward time describes exactly what one sees as one zooms down toward
Hausdorff-almost every point in the ratio Cantor setCy . See§§4 and 5 below.

3. Sullivan’s scaling function
Now we return to the study of a hyperbolic Cantor setC. Instead of treating the structure
of the entire setIx0...xn

∩ C, which is what we have been emphasizing so far, Sullivan
focuses on the information contained in the first step of its construction, given by the
relative lengths of the subintervals ofIx0...xn

. These subintervals are the left thirdIx0...xn0,
right third Ix0...xn1 and middle gap writtenGx0...xn

. We normalize the lengths of these
three intervals, defining forx ∈ C andn ≥ 0, wherex = π(x0x1 . . .),

Rn,x = (|Ix0...xn0|, |Gx0...xn
|, |Ix0...xn1|)/|Ix0...xn

|.
Sullivan calls this theratio geometry functionof C; it mapsN × C to the interior of the
unit simplex1 ⊆ R3 and determinesC uniquely (one simply constructsC to have these
ratios).

Next we write, fory = (. . . y−2y−1) in C̃ ≡ 5−1
−∞{0, 1},

Rn(y) = (|Iy−n...y−10|, |Gy−n...y−1|, |Iy−n...y−11|)/|Iy−n...y−1|.
Following Sullivan, it is nice to think of̃C as a distinct Cantor set, dual toC (and

called thedual Cantor set). Later for the dynamical interpretation we will instead view
C̃ as6−, that is, as the past coordinates of the full shift6 ≡ 5∞

−∞{0, 1}. We will use
whichever symbol (̃C or 6−) is most appropriate in the context.

As in [Bo1], for any β ∈ (0, 1), the β-metric on6− (which defines what is meant
below by Ḧolder continuity) is taken to bedβ(y, w) = βn, wheren is the greatest positive
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integer such thaty−n . . . y−1 = w−n . . . w−1. When6− is thought of as̃C, i.e. as the
dual to a specific hyperbolic Cantor setC, we chooseβ to be (as before) the upper bound
on Dϕi . We mention that ifβ is replaced by some other numberβ̃ ∈ (0, 1), then the
metrics are related by

dβ̃ = (dβ)log β̃/ logβ,

and the Ḧolder exponentγ for R in the statement of the next theorem would change to
γ · (log β̃/ logβ).

THEOREM 3.1. (Sullivan) LetC be a hyperbolicC1+γ Cantor set. For everyy in the dual
Cantor setC̃,

R(y) ≡ lim
n→∞ Rn(y)

exists. The convergence is of orderO(βnγ ), uniformly iny, and the functionR is Hölder
continuous with exponentγ in theβ metric. R takes values strictly in the interior of1.

Definition.R is called thescaling functionof C.

Proof. We will first show that for eachy, Rn(y), n = 1, 2, . . . , is a Cauchy sequence.
Since

Sm(Iy−(n+m)...y−1) = Iy−n...y−1

and similarly for the subintervals, applying the mean value theorem and bounded
distortion property (Corollary 2.2) we have for allm ≥ 0 that

Rn(y) = Rn+m(y)e±Kβnγ

.

Therefore,Rn(y) is Cauchy sequence (i.e. each of its three coordinates is a Cauchy
sequence) and hence it converges; call the limitR(y). Next, if y, w ∈ 5−1

−∞{0, 1} agree
on the coordinates−n, . . . ,−1, then sinceRn(y) = R(y)e±Kβnγ

and Rn(y) = Rn(w),
we have

R(y) = R(w)e±2Kβnγ

.

Writing ‖ · ‖ for the sup norm inR3, this implies that, with the log taken by components,

‖ logR(y) − logR(w)‖ ≤ 2K(dβ(y, w))γ ,

i.e. logR is Hölder continuous with exponentγ and therefore so isR. �
Thus (since the normalized lengths add to one)R mapsC̃ onto a compact subset of

the interior of the unit simplex inR3.

4. Dynamical versions of Sullivan’s theorem
In this and the next two sections we return to the original motivating question: what
does the sequence of setsCn,x look like? This is exactly what one sees for thenth level
Cantor set as one zooms down towardx. The answer will be given in several forms
which can be thought of as dynamical versions of Sullivan’s theorem. We begin by
describing the behavior of the sequence of ratiosRn,x asn −→ ∞.

First we state Theorem 3.1 in a dynamical form. Here it will be crucial to think of
the dual Cantor set̃C as the past6− of 6. We extend the functionR to 6 by defining
R(x) = R(y) for x = (y, x). This function depends only on the past coordinatesy of x.
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COROLLARY 4.1. For eachx ∈ C, for any choice ofw ∈ 6 such that∃k ≥ 0 with
wk, wk+1 . . . = xk, xk+1 . . . (wherex = π(x0x1 . . .)) then

‖Rn,x − R(σnw)‖ −→ 0 asn −→ ∞.

The proof is immediate from the definitions, and in fact if the Hölder constant forR
is c > 0 so that

‖R(x) − R(z)‖ ≤ cdβ(x, z),

one has

‖Rn,x − R(σn(w))‖ ≤ cβn−k;
here theβ-metric has been extended to6 in the natural way, with pointsx, w having
to agree on coordinates from−n to n.

We note that, equivalently, ifx andw are in the same stable set in(C, S), then the
sequenceRn,x (with any past) is in the stable set (in the shift on sequence space) of
the sequence given byR sampled along the shift orbit ofx, with an exponential rate of
convergence.

Probabalistic interpretation: the scaling process.As we will see, we find that for the
question we have asked (how does the sequence of ratios behave), which begins as a
geometrical question, the natural answer, in Corollary 4.2, will be stated in the language
of probability theory. Indeed the reader with a background in probability theory as well
as dynamics will immediately see that the last statement above can be interpreted as
giving a pathwise convergence theorem for a stochastic process.

We remark that despite this use of probability concepts, in fact no probabalistic
methods at all will be used in the proof; all the actual work is just analysis and hyperbolic
dynamics, and has already been carried out in Theorem 3.1 above.

In order to clarify these points for the reader without a background in probability
theory, we bring in some basic concepts from probability theory, and then review the
fundamental connection of probability theory with ergodic theory. Especially good
introductions to probability theory are [Lam] and [GSt]; for the link with ergodic theory
see [Bi].

The main objects of study in probability theory are stochastic processes (the word
stochasticjust meansrandom). We recall that astochastic processis simply a (one- or
two-sided) sequence of measurable functionsfi (known asrandom variables) defined on
some probability space(�, ν). This is the analyst’s interpretation. However, it is also
important to understand the probabilist’s viewpoint.

A probabilist thinks of the sequence of valuesfi ≡ fi(ω) as the primary object, with
ω unknown but distributed according to the measureν on �. Thus, if one knows the
present value of the ‘variable’f , that is fi , one has various possibilities for its next
value,fi+1.

From this point of view only the process is important, not the underlying space�.
In fact, usually one does not give the measure explicitly, or even specify what exactly
the space is. Rather one specifies certain attributes of the variables, e.g. the initial
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distribution of values off , how that changes in time, and dependence properties such
as independence or the Markov property.

However, to put things on a firm foundation one has to move back to the analysis
setting and at least prove the existence of such a space and measure which will ‘carry’
the process. Kolmogorov’s consistency theorem gives a way of doing that. Assume for
simplicity that the values off lie in a compact metric spaceM. We take the space� to be
the space ofsample paths{(. . . , fi(ω), . . .)}. This is a subset of5∞

0 M, and inherits from
that space the product topology and the product Borelσ -algebra. Kolmogorov’s theorem
says that if the description of the processfi has specified the finite joint distributions (i.e.
the measures ofcylinder sets) in a consistent way, then this defines a unique measure
on �. (The proof uses weak-∗ compactness of the space of probability measures which
follows from the compactness of the product space.) In this way one shows that there
exists a concrete model for the process. Moreover, this particular choice of� is canonical
in that it is thesmallestsuch space, in the following precise sense: for any other such
space, the random variables will factor through�.

There is a technical point: note that by the compactness assumption on values,�

is, in particular, a Polish space (a complete separable metric space). Therefore it is a
Lebesgue spacein the sense of Rochlin, i.e. it is measure-isomorphic to the unit interval,
plus (possibly) countably many atoms (points). This becomes important for the ergodic
theory interpretation; see the discussion in [Fi1].

We remark that of course one reason why dynamical systems has developed into
such a rich and interesting area is that so many different fields can be brought to bear:
geometry, topology, ergodic theory, probability theory and information theory. Each
of these contributes not only its own collection of tools but also its unique developed
intuition together with a natural set of questions to ask.

The main objects from the point of view of ergodic theory are of course measure-
preserving transformations of a Lebesgue space.

Therefore the basic picture (and hence one’s basic intuition) is geometrical. So even
if the map is not given to us in a geometrical form, if, say, it does not originate from
some algebraic or geometric model, we visualize it as a transformation moving points
around in a measure space. Concepts such as generic points, mixing, and entropy follow
naturally from this point of view.

So if we can place this probabalistic object (a stochastic process) into the ergodic
theory setting, we will have a new set of questions to ask and tools to work with. We
recall how this translation is made.

Suppose we are given a stochastic process. For definiteness we take� to be path
space as described above. Then if the process is invariant in some way, we interpret this
invariance as a transformation—and then we have the ergodic theory setup.

We will now give the most basic and important example of an invariance (for other
examples, see [Fi1, 2], [BeFi3]). A stochastic process is, by definition,stationary if
a time-change does not alter the probability of an event. Equivalently, as is easy to
see, the space of paths, acted on by the shift transformation, is a measure-preserving
transformation of a probability space.

Now if we are given a measure-preserving transformation, we can conversely move to
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the probability setting. Indeed, a transformationT : X → X determines many stationary
stochastic processes. Take the underlying probability space� to be justX and choose
any measurable functionf , and evaluate it along orbits; this defines a stationary process
fi(ω) ≡ f (T i(ω)).

The example we are interested in here isR(σnw), which as we will see is a (1-valued)
stationary stochastic process. We will call this thescaling process. In the next section
we will encounter set- and measure-valued versions of this.

We recall the definition of ageneric point x for an ergodic measure-preserving
transformationT on a compact metric spaceX with probability measurem. For each
continuousf : X → R, which can be thought of as anobservable, x satisfies

lim
N→∞

1

N

N−1∑
k=0

f (T kx) =
∫

X

f dm.

That is,x samples each continuous observable well with respect to time averages. IfX

is a Polish space, complete metric but not necessarily compact—this will occur in the
next section—then we instead sample the continuous functions with compact support. By
the remarks in the previous paragraphs, this definition also makes sense for a stationary
ergodic stochastic process if the path space has been given the topology of a Polish
space. In the definition of a generic point we only take time averages toward+∞, so
in the case of a two-sided stochastic process, it will also be natural to allow a one-sided
sequence as a generic point.

If the measure lives in a compact part of the space (which will always be the case in
this paper) then by an ergodic theorem of Kryloff and Bogliouboff (i.e. by the Birkhoff
ergodic theorem plus compactness)m-almost everyx is a generic point.

Now µ is equivalent to the Gibbs measureν, which is invariant and has a unique
invariant natural extension̂ν on (6, σ ). Hence by Kryloff and Bogliouboff, applying
the previous corollary, we have the following.

COROLLARY 4.2. For µ-a.e.x ∈ C, the (one-sided) sequenceR1,x, R2,x . . . is a generic
point for the ergodic1-valued processR(σn(w)) for n ∈ Z, given byw ∈ 6 being
distributed likeν̂.

5. Conjugacies and the scenery process
In this section we will construct a set-valued version of the scaling function, and use it to
prove analogues of Corollaries 4.1 and 4.2 which will describe how the sequence of sets
Cn,x approximates the scenery process. We will make use of three different metrics on
collections of Cantor sets. One metric, which is derived from theC1 norm on the space
of conjugaciesof Cantor sets, is well suited to proofs and is natural from an abstract
point of view. There we will prove properties (convergence at an exponential rate and
Hölder dependence) which will then pass over to two geometrically defined metrics: the
Hausdorff metric, and a metric derived from the Hausdorff measures.

Three metrics. Our metrics will be defined on several different spaces. Fix a hyperbolic
C1+γ Cantor set with map(C, S). We writeE1+γ ≡ E1+γ (C) for the collection of Cantor
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sets (with maps) which areC1+γ conjugate to(C, S) (from Lemma 1.2 these are also
hyperbolic C1+γ Cantor sets). We writeE1+γ

∗ for the quotient space ofE1+γ , where
(C, S) and(C, S̃) are identified ifS = S̃ on C. This is the collection of marked Cantor
sets conjugate toC or, equivalently, the pairs(C, S|C) with restricted maps.E1+γ

∗∗ will
denote the collection of underlying Cantor sets. We write Diff1+γ for the C1+γ order-
preserving diffeomorphisms ofI . Given a choice of the pair(C, S), Diff 1+γ projects
ontoE1+γ (C) in a natural way:f is mapped to(Cf , Sf ) ≡ (f (C), f ◦ S ◦ f −1). This is
many-to-one because there is some freedom given by the gaps; see Proposition 8.3. We
note that the projection fromE1+γ to E1+γ

∗ is also many-to-one.
The scenery process can be thought of as taking values inE1+γ

∗ , the marked Cantor
sets, or in the space of underlying setsE1+γ

∗∗ . We will first prove convergence in the
space of conjugacies, Diff1+γ ; this will then imply convergence in the other spaces.

First we consider two metrics onE1+γ
∗∗ . We recall the definition of theHausdorff

metric on the collection of closed subsets of the intervalI :

dH (A, B) = inf{ε : A + (−ε, ε) ⊇ B andB + (−ε, ε) ⊇ A}.

This defines a metric onE1+γ
∗∗ , and a pseudo-metric on the other spaces defined above.

Next, we define the following metric on the set of finite Borel measures on [0,
1], denotedM. We enumerate in some fixed way,E1, E2, . . . , En . . . , the countable
collection of binary intervals. For example, takingk = 1, 2, . . . andj = 0, . . . , 2k − 1,
we setn = 21 + · · · + 2(k−1) + j and defineEn = [j2−k, (j + 1)2−k]. Then for ν1, ν2

in M, set

d(ν1, ν2) =
∞∑

n=1

|ν1(En) − ν2(En)|/2−n.

This metric induces a topology equivalent to the weak topology onM in the language of
probability theory; in analysis terminology this is the weak-∗ topology onM, the dual
of the space of continuous functions.

On E1+γ
∗∗ we define themeasure metricdM from this, setting

dM(C, D) = d(Hd |C, Hd |D),

whereHd is d-dimensional Hausdorff measure (see [Fa] for definitions and background
on Hausdorff dimension and measure). On the other spaces, this again defines a pseudo-
metric.

Next, recall that theC1-norm of f : I → R is

‖f ‖C1 = ‖f ‖∞ + ‖Df ‖∞.

We identify Diff1+γ with the collection of triples(Cf , Sf , f ) for f ∈ Diff 1+γ , to be
written asÊ 1+γ (as we noted above, the map from̂E 1+γ to E1+γ is not one-to-one). The
C1-norm on Diff1+γ determines a metric on̂E 1+γ as follows. Forf , g in Diff 1+γ , we
write

dC(Cf , Cg) = ‖f − g‖C1.

We call this theC1 metric on Ê 1+γ .
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Note.The metricdC keeps track of the mapS on all of its domainI0 ∪ I1, while dH and
dM only see the Cantor sets. Thus, for theC1 metric, writing I for the identity map,
(C, S, I) and (C, Sf , f ) will be a positive distance apart unless, in particular,S = Sf

on all of I0 ∪ I1 (of course one also needsf = I).

The definition ofdC depends on the initial choice of the set(C, S) (with the identity
map). The next proposition shows how the metric varies if we change this ‘base point’
of Ê 1+γ . As we will see in§8, Diff1+γ is a Lie group and this is also a statement about
bounded invariance of a metric on that group.

PROPOSITION5.1. Let D ∈ E1+γ , with D = 8(C) and with8 ∈ Diff 1+γ . We have

1

K
dD < dC < KdD,

whereK = 2 max{‖D8‖∞, ‖D(8−1)‖−1
∞ }.

Proof. We note that from the definition of theC1-norm one has that iff : I → I with
f (0) = 0, then ‖f ‖C1 ≤ 2‖Df ‖∞. Therefore if alsog(0) = 0, then ‖g ◦ f ‖C1 ≤
2‖g‖C1‖f ‖C1.

Now for f , g and8 as in the statement of the Proposition, we have

dD(Cf , Cg) = ‖f ◦ 8−1 − g ◦ 8−1‖C1 = ‖(f − g) ◦ 8−1‖C1

≤ 2‖f − g‖C1‖8−1‖C1 = dC(Cf , Cg)‖8−1‖C1

which gives one of the inequalities. The other is proved in the same way. �

Next we will look at how (onÊ 1+γ ) the pseudo-metricsdH anddM compare to the
metric dC . First we recall how the Hausdorff measure transforms under mappings.

Definitions.Given a one-to-one differentiable map9 : M −→ N between open subsets
of R, and given a Borel measureµ on M and a real numberd > 0, we write
(9?µ)(E) = µ(9−1E) and

(9̌µ)(E) =
∫

9−1E

|D9|d dµ.

Thus,9?µ is the usualpush forwardof µ, and9̌µ is the (9, d)-conformal transform
of µ.

Hausdorff measure has theconformal transformation propertywith respect toC1 maps:
for 9 : R → R a C1 diffeomorphism,

Hd = 9̌(Hd).

PROPOSITION5.2. With dH , dM anddC denoting the Hausdorff, measure, andC1 metrics
respectively, for allCf , Cg ∈ Ê 1+γ ,

dH (Cf , Cg) ≤ dC(Cf , Cg),

and for9(x) = 5x + 4x2, we have for allCf ∈ E r (C),

dM(C, Cf ) ≤ 9(dC(C, Cf )).



550 T. Bedford and A. M. Fisher

Proof. For the Hausdorff (pseudo)-metric this is immediate using theL∞ norm, since

dH (Cf , Cg) ≤ ‖f − g‖∞ ≤ dC(Cf , Cg).

For the second inequality, writingI for the identity map onI , we have

dC(C, Cf ) ≡ ‖f − I‖C1,

and writingµ = Hd |C, µf = Hd |Cf
,

dM(C, Cf ) ≡
∑

n

|µEn − µf En|2−n

=
∑

n

∣∣∣∣ ∫
f −1En

|Df |d dµ −
∫

En

1dµ

∣∣∣∣2−n

≤ 2‖f − I‖∞‖Df ‖d
∞

∑
n

2−n +
∑

n

2−n

∫
f −1En∩En

||Df |d − 1| dµ

(here the first term bounds the contribution, for each intervalEn, of its two ends not
matching up exactly withf −1En; we used the fact that sincef is a diffeomorphism of
I , ‖Df ‖∞ ≥ 1).

Next, we note that for allx > 0, |xd − 1| ≤ |x − 1|. Hence||Df |d − 1| ≤ ||Df | − 1|,
so the above is

≤ 2‖f − I‖∞(1 + ‖|Df | − 1‖∞) + ‖|Df | − 1‖∞
∑

n

|En|2−n

≤ 4‖|Df | − 1‖∞(1 + ‖|Df | − 1‖∞) + ‖|Df | − 1‖∞
≤ 4(1 + ‖|Df | − 1‖∞ + 1)(‖|Df | − 1‖∞) = 5‖|Df | − 1‖∞ + 4(‖|Df | − 1‖∞)2

≤ 9(dC(C, Cf )),

as claimed. �

We define the (restricted) C1 metric on E1+γ
∗ to be

dC∗(Cf , Cg) = ‖f − g‖C1,C

where this indicates that the sup norms are taken over the Cantor setC. Obviously,
dC∗ ≤ dC on Ê 1+γ .

The first theorem that we are aiming for is the following.

THEOREM 5.3. Given aC1+γ hyperbolic Cantor set(C, S), for everyy = (. . . y−n . . . y−1)

∈ 6−, the limit
C(y) ≡ lim

n−→∞ Cy−n...y−1

exists. Convergence is exponentially fast, andC(y) is Hölder continuous with exponent
γ (for both metrics onE1+γ

∗∗ , and for the restrictedC1 metric on the marked Cantor sets
E1+γ

∗ ). Moreover,C(y) = Cy , the ratio Cantor set built from the scaling function of
(C, S).

Thus, C(y) is a set-valued version of the scaling functionR(y) (compare
Theorem 3.1). To prove Theorem 5.3, we first construct, in Theorem 5.9, certain
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conjugacies, proving convergence in theC1 metric. Convergence in the Hausdorff and
measure metrics then follows from Proposition 5.2. Before giving this construction, we
state several further consequences of Theorem 5.9.

In the same way as for the scaling functionR(y), we also defineC(·) on the full shift
space6, settingC(x) = C(y) for x = (y, x).

THEOREM 5.4. For everyx ∈ C, the sequenceCn,x ≡ Cx0...xn
is asymptotic toC(σn(x)),

with an exponential rate of convergence, for anyx in 6 with the same future coordinates
(x0, x1, . . .).

This is like Corollary 4.1. We will writeLC for the (compact) subset ofE1+γ
∗ (with

respect to all three metrics) which is the range of the functionx 7→ C(x). This is the
collection of (marked) limit sets. Since the function is continuous and the domain6 is
compact, we then have the following.

PROPOSITION5.5. The collection of limit sets is compact.

Definition. Given aC1+γ hyperbolic Cantor setC, the set-valued scenery processof C

is the processC(σn(x)) = Cσn(x), with x ∈ 6, distributed according to the measureν̂.

Note that stationarity and ergodicity of this process follow immediately from
invariance and ergodicity of the measureν̂.

The space of paths is a compact subset of the Polish space5+∞
−∞E1

∗∗ (or 5+∞
−∞E1

∗ for
the marked sets) with the product topology determined by the topologies of any of the
three metrics; see the proof of Corollary 5.6.

We mention why we use probability terminology—thescenery process—for the map
C(x) 7→ C(σx). Note that this dynamics is not in fact given by a map onLC itself.
Indeed, at every stage you have two choices: the right- or left-hand subsets from the
next level of the ratio Cantor setC(x), with the choice of left or right depending on
whetherx0 is 0 or 1. Or, from a different viewpoint, one has the dynamics onLC of a
semigroup action; see the note at the end of the paper.

The next result is like Corollary 4.2.

COROLLARY 5.6. For µ-a.e.x ∈ C, the sequence of (rescaled) Cantor setsCn,x which
nest tox is a generic point for the stationary ergodic set-valued processCσn(x) determined
by (6, σ, ν̂).

In §2 we definedµn,x to be the sequence of Hausdorff measuresHd |Cn,x
. Convergence

of Cn,x to C(y) in the measure metric can be rephrased as follows.

COROLLARY 5.7. For everyy = (. . . y−n . . . y−1) ∈ 6−, the limit

M(y) ≡ lim
n−→∞ µy−n...y−1

exists, and is H¨older continuous with exponentγ .

The support of the measureM(y) is the setC(y), and M(y) is a measure-valued
version of the scaling function.
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As we did for the set-valued process, we defineM(x) = M(y). We define the
measure-valued scenery processM(n, x) ≡ M(σn(x)), again withx ∈ 6, distributed
like ν̂. We have the following.

COROLLARY 5.8. For µ-a.e. x ∈ C, the sequenceµx0...xn
is a generic point for the

stationary ergodic measure-valued processM(σn(x)) determined by(6, σ, ν̂).

Now we proceed to the proofs. For each intervalIw0...wn
with wi = 0 or 1, we write

Aw0...wn
for the affine map which expands the interval to the unit intervalI . We then set

A
y
n = Ay−n...y−1 for y ∈ C̃. This expands the intervalIy−n...y−1 to I affinely. Next, define

mapsϕ
y

k,n : I → I for k ≥ n by

ϕ
y

k,k = identity and ϕ
y

k,n = ϕyk
◦ · · · ◦ ϕy−(n+1), for k ≥ n.

We will also writeϕ
y

k for ϕ
y

k,0.
For 0≤ n ≤ k, we define8y

k,n : I → I by

8
y

k,n = A
y

k ◦ ϕ
y

k,n ◦ (Ay
n)

−1.

It follows that:
(1) for eachn, 8

y
n,n = identity;

(2) for all m ≥ k ≥ n, 8
y
m,n = 8

y

m,k ◦ 8
y

k,n; and
(3) 8

y

n,0 = A
y
n ◦ ϕ

y
n .

We will also write8
y
n for 8

y

n,0.
The sequence8y

n is, to use Sullivan’s words, ‘a sequence of. . . compositions (of
contractions). . . renormalized by post composition with linear maps to obtain mappings
between unit intervals. . .’ (Appendix of [Su1]). As Sullivan states, and as we will prove
in the next section, such a sequence is precompact inC(k, α) if the original hyperbolic
Cantor set isC(k, α).

This gives convergence along some subsequence8
y
nk

. Unfortunately, however, this
is not enough for our goal of proving an ergodic theorem for Cantor sets and measures
(i.e. Corollaries 5.6 and 5.8)—for that purpose we want to prove that the sequence itself
converges. We do this in the next theorem, using bounded distortion, and then in the
next section we return to Sullivan’s idea to prove smoothness of the resulting limiting
conjugacy.

THEOREM 5.9. Let (C, S) be aC1+γ -hyperbolic Cantor set. For eachy in the dual Cantor
setC̃,

8y ≡ lim
n→∞ 8y

n

exists. This is an order-preserving diffeomorphism fromI to I . Convergence is of order
O(βnγ ) in theC1 norm, uniformly iny, and the functiony 7→ 8y is Hölder continuous
of orderγ , in theβ-metric.

Proof. We will show, using bounded distortion, that forn large and fork > n arbitrary,
8

y

k,n is close to the identity. Then since8y

k,0 = 8
y

k,n ◦8
y

n,0, this will imply convergence.
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Now, since the mapsA are affine they have constant derivative. So for eacha ∈ I ,
for m = k − n, we have

(D(8
y

k,n))(a) ≡ D(A
y

k ◦ (Sm)−1 ◦ (Ay
n)

−1)(a) = DA
y

k

DA
y
nDSm(z)

for z ≡ (Ay
n)

−1(a)

= DSm(z0)

DSm(z)
for somez0 ∈ Iy−k ...y−1,

by the mean value theorem. Therefore, by Corollary 2.2

e−Kβnγ

< D8
y

k,n(a) < eKβnγ

for all k > n, y ∈ C̃ and alla ∈ I . This implies the sequenceD8
y
n, n = 0, 1, 2 . . . , is

Cauchy, hence converges. Since8
y
n(0) = 0 for all n, it follows from the fundamental

theorem of calculus that the limit8y ≡ limn→∞ 8
y
n exists, and thatD8y = lim D8

y
n.

By Corollary 2.2,D8y is bounded away from 0 and∞ by e±Kβγ

; in particular,8y is
an order-preserving diffeomorphism fromI to I , as claimed.

We define for eachn,
8y

∞,n = lim
k→∞

8
y

k,n;

the limit exists by the above arguments, and this map isC1 close to the identity map
I : I → I . We have for eachn that

8y = 8y
∞,n ◦ 8

y

n,0,

and that:
(1) ∃k0 > 0 such that

‖8y
∞,n − I‖C1 < k0β

nγ .

The constantk0 here only depends onK from Corollary 2.2, which in turn depends
on β, the upper bound for|Dϕi |. Here is the calculation. We have

‖8y
∞,n − I‖C1 ≤ ‖D8y

∞,n − 1‖∞

and we know that
e−K ≤ e−Kβnγ ≤ D8y

∞,n ≤ eKβnγ ≤ eK

for all n. Now, since forx in the interval [e−K, eK ] one has|ex − 1| < k0x + 1, where
we takek0 = (exp(exp(K)) − 1)/(exp(K)), statement(1) holds true.

Now recall from the proof of Proposition 5.1 that forf, g : I → I with f (0) = 0
andg(0) = 0, then‖g ◦ f ‖C1 ≤ 2‖g‖C1‖f ‖C1. From this, it follows that statement(1)

is equivalent to:
(2) ∃k1 > 0 such that

‖8y
n − 8y‖C1 < k1β

nγ

(here we can takek1 = (eK)k0).
Both statements express, in different ways, that8y is close to8y

n,0, with exponentially
fast convergence;(2) is what we stated in the theorem. Finally, it is now also easy to
check Ḧolder continuity:
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(3) ∃k2 > 0 such that for ally, w ∈ C̃,

‖8y − 8w‖C1 ≤ k2(dβ(y, w))γ . �

Proof of Theorem 5.3.Writing C
y
n for 8

y
n(C) = Cy−n...y−1, andCy ≡ 8y(C), statement

(2) above says exactly that
dC(Cy

n , Cy) < k1β
nγ .

Hence we have convergence in theC1 metric. By Proposition 5.2, therefore,dH has the
same bound. For the measure metric, we have

dM(Cy
n , Cy) ≤ 9(dCy (Cy, Cy

n ))

= 9(‖8y
∞,n − I‖C1)

≤ 9(k0β
nγ )

by (1), and this is≤ k3β
nγ , wherek3 = k0(5 + 4k0). Next we show Ḧolder continuity.

Now dC(Cy, Cw) = ‖8y − 8w‖C1, so (3) proves Ḧolder continuity for theC1 and
Hausdorff metrics. Then, applying Proposition 5.1,dM(Cy, Cw) ≤ 9(dCy (Cy, Cw)) ≤
9(dC(Cy, Cw)‖8−1‖C1) ≤ 9(eKk2β

nγ ) ≤ k4β
nγ , wherek4 = 5a + 4a2 anda = eKk2.

Finally, it is clear from the constructions thatC(y) has ratio geometry given byR(y),
henceC(y) is indeed equal toCy . �

Proof of Theorem 5.4.From the proof of Theorem 5.3, since the exponential bound is
uniform over all sets of leveln, we have that thedC-distance fromC(σnx) to Cx0...xn

is
bounded byk1β

nγ . The bounds fordH anddM then follow as above. �

Proof of Corollary 5.6. We give the proof for the process which takes values in
the collection of marked sets. Here the space will be5∞

−∞E1
∗ (C), with the shift

transformation; this is a Polish space (sinceE1
∗ is a Polish space; we useE1

∗ rather
than E1+γ

∗ so as to have a complete space). Therefore we know from our definitions
what it will mean for the one-sided sequenceCn,x to be a generic point. Now the map
x 7→ (. . . C(σ−1x), C(x), C(σx) . . .) from 6 has as its image a compact invariant subset
of 5∞

−∞LC ⊆ 5∞
−∞E1

∗ (C); this image is the space of paths of the scenery process, and
is the support of the image of the measureν̂. The ergodicity of(6, ν̂, σ ) passes over
to the scenery process, hence a.e. the path(. . . C(σ−1x), C(x), C(σx) . . .) is generic for
the shift on path space. Finally, since by Theorem 5.4 we know the sequenceCn,x is
forward asymptotic toC(σnx), we will compute the same time average for the continuous
functions. Thus,Cn,x is generic forν-a.e.x and hence forµ-a.e.x. �

6. Smoothness of conjugacies
Now we will see how to prove that the conjugacies of§5 in fact have higher smoothness
properties.

The basic idea will be to imitate what one knows about analytic maps forCk+γ or
C(k, γ ) maps. Thus Lemma 6.2 is a version of Leibnitz’ formula, and Lemma 6.3 is
one step in showingCk+γ maps are morphisms in a category. This means they can be
used to define equivalence relations on sets, and to give the analogue of differentiable
structures. One also imitates the Arzela–Ascoli theorem in Lemma 6.4; as Sullivan says
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in the Appendix of [Su1], and quoted in the previous section, the sequence8
y
n will be

precompact inC(k, α). (As usual, instead we do our proofs inCk+γ .)
Here is the main theorem we are aiming for.

THEOREM 6.1. Let C be aCk+γ hyperbolic Cantor set, and let8y : I → I be defined as
in §5. We claim:
(i) if k = 1, 2, . . . , then8y is Ck+γ (with the same H¨older exponent, but a different

Hölder constant);
(ii) if k = ∞ or ω, then8y is C∞ or Cω respectively.

First we need a few lemmas.

LEMMA 6.2. For A ⊆ R, if f : A → R and g : A → R are bounded,γ -Hölder
continuous with H¨older constantsc, d, then:
(i) f + g is γ -Hölder with constantc + d; and
(ii) f · g is γ -Hölder with constantc‖g‖∞ + d‖f ‖∞.

Proof. (i) is immediate. The argument for (ii) comes by imitating the proof of Leibnitz’
rule in the calculus:

|f (x)g(x) − f (y)g(y)| = |[f (x) − f (y)]g(x) + f (y)[g(x) − g(y)]|
≤ c|x − y|γ ‖g‖∞ + d|x − y|γ ‖f ‖∞.

�

LEMMA 6.3. Fix k ≥ 1. For A, B ⊆ R, let f : A → B and g : B → R be such that
Dk(f ), Dk(g) are bounded andγ -Hölder. ThenDk(g ◦ f ) is γ -Hölder.

Proof. This now follows by induction from the chain rule plus Lemma 6.2. �

The next lemma is basically the same as the ‘bounded variation’ lemma, Lemma 1.15
from [Bo1], except it is written in the reverse direction with the contractionsϕi instead of
the inverse mapS. For the special casefi = ϕwj

andhi = log |Dϕwj
|, wherei + j = n,

one gets exactly the bounded distortion property (Theorem 2.1). The formulation given
here is from the Appendix of [Su1]; the key idea for proving our Theorem 6.1, which is
also in that Appendix (the sentence immediately preceding the corollary there) will be
how to use this lemma to control higher-order derivatives of the composition. One can
summarize the idea as follows: do not look at log|Dkϕxi

|, but instead atDk−1 log |Dϕxi
|.

Then we are applying the linear operatorDk to a sum, which leads to the proof.
As usual, for notational simplicity, we assume strict hyperbolicity.

LEMMA 6.4. Consider a composition of contractionsfn ◦ · · · ◦ f1, with fi : Ji → Ji+1

for intervalsJi ⊆ R, and such that|Dfi | < β < 1. For a point x ∈ J , write x1 = x,
xi+1 = fi(xi). Let hi : Ji → R be Hölder continuous with the same exponentγ ∈ (0, 1]
and the same constantc. Then forh(x) ≡ h1(x1) + . . . + hn(xn), h is also γ -Hölder
continuous, with constantc0 = cβγ /(1 − βγ ) (independent ofn).

Proof. Immediate from the geometric series, since forx, y ∈ J1 we have|xi −yi | < βi . �
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The next lemma is more subtle than one might at first think. We wish to thank
Z. Nitecki and M. Urbanski for discussions which resulted in a first proof, and Y. Kifer
for then finding the much simpler argument given here.

LEMMA 6.5. Let fn : I → I be continuous functions with continuouskth derivative and
assume that there exist functionsf, g such that:
(i) fn → f ; and
(ii) Dkfn → g, uniformly asn → ∞.
ThenDkf = g.

Proof. We define, for each 0≤ j ≤ k, functionsgj , and sequences of functionsfn,j and
pn,j by

gk = g and gj−1(t) =
∫ t

0
gj ,

fn,k = Dkfn and fn,j−1(t) =
∫ t

0
fn,j ,

pn,j = Djfn − fn,j .

Thus

pn,k ≡ 0,

pn,k−1(t)j = (Dk−1fn)(t) − ((Dk−1fn)(t) − (Dk−1fn)(0)) ≡ (Dk−1fn)(0),

pn,k−2(t) = Dk−2fn(0) + t (Dk−1fn)(0),

and similarly (for eachn) pn,j is for all j a polynomial of degreek − j − 1, such that
Dpn,j = pn,j+1. Now for eachj , limn→∞ fn,j = gj . In particular,

g0 = lim
n→∞ fn,0 = lim

n→∞(fn − pn,0) = f − lim pn,0.

Hence, limn→∞ pn,0 converges (uniformly) to some polynomialp0 with degree at most
k − 1, and we haveg0 = f − p0. Therefore,

g = Dkg0 = Dkf − Dkp0 = Dkf

as claimed. �

Proof of Theorem 6.1.Since Dkϕ0 and Dkϕ1 are γ -Hölder, by Lemma 6.3 so is
Dk−1 logDϕi , with some Ḧolder constantc0. Now we apply Lemma 6.4 to

fn ◦ · · · ◦ f1 = ϕyn
◦ · · · ◦ ϕy1 ≡ ϕy

n

and
hj ≡ D(k−1) logDϕyj

.

For x ∈ I , writing x1 = x, x2 = h1(x), etc as in Lemma 6.4, since

D(k−1) logDϕy
n =

n∑
j=1

hj (xj ),
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we conclude thatD(k−1) logDϕ
y
n is γ -Hölder, with some different constantc1 which is,

however, independent ofn.
Now to prove the theorem, first consider the casek ≥ 2. Here we have

D(k−1) logD8
y
n = D(k−1) logDϕ

y
n , since the constant derivative ofA

y
n disappears upon

higher differentiation. Fork = 1 these are not equal; they differ by the constant logDA
y
n

(which increases withn). However, these cancel upon subtraction, so in either case we
have, for anya, b ∈ I ,

| logD8y
n(a) − logD8y

n(b)| = | logDϕy
n(a) − logDϕy

n(b)|.
Therefore for allk ≥ 1, Dk−1 logD8

y
n is a sequence of bounded functions which isγ -

Hölder with the same constant,c1. Also, this sequence is uniformly bounded. Fork = 1
this follows from bounded distortion, as in the proof of Theorem 5.4, and in fact a bound
is eKβγ

. Fork > 1, we argue as follows. If it were unbounded, then by Hölder continuity
with the same constant, some subsequence goes uniformly to either+∞ or −∞. By
integration (k − 1) times, by induction this contradicts the boundedness fork = 1.
This implies equicontinuity. Now by boundedness and equicontinuity, there is some
convergent subsequence, using the standard diagonalization argument as in the proof of
the Arzela–Ascoli theorem. At the same time, from§5 we know that limD8

y
n = D8y

exists which implies logD8
y
n converges to logD8y . Calling the subsequence

logD8y
nj

= fj ,

we are in the situation of Lemma 6.5:fj → f , Dk−1fj → g, henceDk−1f = g. Thus
Dk−1 logD8y is a uniform limit ofγ -Hölder functions with the same constantco, hence
the limit is γ -Hölder with constantco. From Lemma 6.3,Dk8y is alsoγ -Hölder and
we are done fork = 1, 2, . . . .

Finally, note that fork = ∞ we are done by part (i), and fork = ω we can apply
Arzela–Ascoli to see that{8y

n} is a normal family, hence the limit8y is also analytic.�
Remark.We emphasize again the subtle point in the logic of this argument:C1+γ

convergence of8y
n to 8y is not known. What wedo know is convergence in the

C1 norm (from Theorem 5.9) and convergence along asubsequencein the C1+γ norm,
as just shown. This is enough to prove the claim of the theorem.

7. Smoothness of limit sets and rigidity
Given twoC1+γ hyperbolic Cantor sets(C, S) and(Ĉ, Ŝ), recall that the (full) conjugacy
8 is an order-preserving map defined on all ofI . This map is uniquely determined on
C by the conjugacy equation, since, as one sees, the symbolic dynamics is preserved.
Note that for any two topological Cantor sets, once they have been coded by the two-
shift 6+ in an order-preserving way, this conjugacy on the Cantor sets extends to a
homeomorphism onI . The issue, therefore, is what types of conjugacies preserve what
type of structure. As is well known and not hard to show, for instance, a biLipschitz8

will preserve the Hausdorff dimension. We noted in [BeFi1] that C1 maps preserve the
order-two density. Furthermore, forC1 conjugacy from [Su1] one has the following.

LEMMA 7.1. If two C1+γ hyperbolic Cantor sets areC1 conjugate, then they have the same
scaling function.



558 T. Bedford and A. M. Fisher

Proof. By uniform continuity of the derivatives, since we already know the scaling
functions exist from Theorem 3.1, this is immediate. �

Hence under the same assumption, by Corollary 5.3 we have the following.

COROLLARY 7.2. They have the same collection of limit sets.

To prove our rigidity theorem, we will need the following.

LEMMA 7.3. Let (C, S) be a hyperbolicCk+γ Cantor set. Let̂S : I0 ∪ I1 → I be aCk+γ

map such thatS = Ŝ on C. ThenS and Ŝ are Ck+γ conjugate.

Proof. The conjugacy is the identity map onC; what we want to do is define it on the
gaps. We begin by defining8 to be the identity also on the gapG betweenI0 and I1.
The conjugacy is then uniquely defined from the conjugacy equation by the dynamics.
That is, writingGx0...xn

= ϕx0...xn
(G), we have fora ∈ Gx0...xn

,

8(a) = ϕ̂x0...xn
(ϕ−1

x0...xn
(a)) = ϕ̂x0...xn

(Sn(a)).

One immediately checks that with this definition8 is a conjugacy.
This map isCk+γ on the interiors of all the gaps. At points inC, to checkCk+γ one

must be careful because these points are also limits of interior points in the gaps.
Here is one way of proving8 is everywhereCk+γ . Define a sequence of maps

8n : I → I , where80 = the identity,81 = 80 on G and ϕ̂x0 ◦ S everywhere else (i.e.
on I0 ∪ I1) and, inductively, set8n to be equal to8n−1 everywhere except on

⋃
Ix0...xn

,
where it is defined to bêϕx0...xn

◦ Sn.
These maps converge uniformly to8. So if we can show that for eachn, Dk8n is

γ -Hölder with a constant independent ofn, this will carry over to the limit and we will
be done (here we will use the fact that the mapsϕ̂x0...xn

◦ Sn areγ -Hölder with a fixed
constant).

The advantage of this method is that we must only check smoothness at each stage,
and so each time at only finitely many points.

Now consider the mapf = ϕ̂x0...xn
◦Sn on C∩Ix0...xn

. It is the identity there, and since
C is dense in itself,Df = 1 on that set. Since it is twice differentiable,D2f = 0 there
and similarly forDkf . Therefore when we define8n by gluing together̂ϕx0,...,xn−1 ◦Sn−1

and ϕ̂x0...xn
◦ Sn at an endpointp, the two functions agree atp for all derivatives≤ k.

Also, Dk is γ -Hölder for each piece. Hence, for alln, 8n is Ck+γ with a fixed Ḧolder
constant, as we wanted to show, and so we are done. �

This produces one conjugacy. In§8 we will return to this proof in order to studyhow
many such maps8 there are.

We are now ready to prove the following.

THEOREM 7.4. (Highest smoothness)Given aC1+γ hyperbolic Cantor setC, its limit sets
have the highest degree of smoothness of any hyperbolicC1+γ Cantor set in theC1+γ -
conjugacy class ofC.
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Proof. Let (Ĉ, Ŝ) be aCk+γ , C∞ or Cω hyperbolic Cantor set which isC1 conjugate to
C. By Corollary 7.2,C and Ĉ have the same limit sets, and by Theorem 6.1, the map
8̂y : I → I defines a dynamicsSy : I

y

0 ∪ I
y

1 → I by conjugation with the map̂S, which
has that same degree of smoothness. �

THEOREM 7.5. (Rigidity) If (C, S) and(Ĉ, Ŝ) are twoCk+γ , C∞ or Cω hyperbolic Cantor
sets which either (a) areC1 conjugate by a map8, or (b) have the same scaling function
R, then they are in fact conjugate by a map̃8 : I → I which for (a) agrees with8 on C

or for (b) agrees with the coding; this map isCk+γ , C∞ or Cω respectively.

Proof. By either hypothesis they have the same limit sets. Choose one,Cy . Again by
Theorem 6.1, the maps8y , 8̂y have the same smoothness asS, Ŝ. Now let Sy , Ŝy

denote the maps defined onI
y

0 ∪ I
y

1 by these conjugacies. We are exactly in the situation
of Lemma 7.3, and have a conjugacy8 of Sy and Ŝy . Composing the three maps

(8̂y)−1 ◦ 8 ◦ 8y

finishes the proof. �

8. Banach space structure
Fix a hyperbolicC1+γ Cantor set(C, S). For r = k + γ , whereγ ∈ (0, 1], k ≥ 1 or for
r = ∞, ω, we writeE r ≡ E r (C) for the collection of Cantor sets (with maps) which are
Cr conjugate to(C, S). (From Lemma 1.2 these are also hyperbolicC1+γ Cantor sets.)
The spaces Diffr , Ê r , E r

∗ andE r
∗∗ are defined as they were in§5 for the caser = 1 + γ .

In this section we will see hoŵE r can be viewed as a Banach manifold, in fact a
Banach Lie group. We will also define a natural topology onE r , and show that̂E r factors
nicely overE r as a topological space.

We first define theCγ norm on the Ḧolder functionsCγ (I, R) to be

‖f ‖Cγ = ‖f ‖∞ + sup
x,y∈I

|f (x) − f (y)|
|x − y|γ .

For r = k + γ , whereγ ∈ (0, 1], k ≥ 1, theCr norm will be

k−1∑
l=0

‖Dlf ‖∞ + ‖Dkf ‖Cγ .

For C∞, we define
‖f ‖C∞ = sup

l

{‖Dlf ‖∞},

and for Cω we will use the sup norm (since it is equivalent to all the otherCr norms
there).

By definition a Banach manifold is a manifold which is locally modelled on a Banach
space, and a Lie group is a group which is also aC∞ manifold modelled on a complete,
locally convex vector space (see e.g. [Mi ]). Recall that Diffr denotes theCr order-
preserving diffeomorphisms ofI . Now the choice of a set inE r identifies the collection
Ê r with Diff r , as we have seen in§5. Diffr is an open subset ofCr

0,1(I, R), which is how



560 T. Bedford and A. M. Fisher

we will write the set of allCr functions fromI to R such thatf (0) = 0 andf (1) = 1.
This in turn is a closed affine subspace ofCr (I, R). To see this, note that, defining

Br
0,1(I, R) = {f ∈ Cr (I, R) : f (0) = 0 = f (1)},

two functions inCr
0,1 differ exactly by an element ofBr

0,1. Now Br
0,1 is a Banach space

with the Cr norm. Hence,̂E r is a Banach manifold: it is identified with Diffr , which in
turn corresponds to an open subset ofBr

0,1. Now Diffr is a group, hence it (and therefore
Ê r ) is a Banach Lie group. Two choices have been made: the choice of a Cantor set in
E r , and of a special point (the identity) in Diffr . These choices determined the maps to
Br

0,1 and hence the metric (inherited from theCr norm). Both choices, moreover, amount
to the same thing: changingC to D in E r (as in Proposition 5.1, forr = 1) corresponds
to a right translation in the group Diffr .

Now in a Lie group one ideally would like to work with a (left- or right-) invariant
metric. If the group is compact (or, more generally, amenable) one can make a given
metric invariant (while keeping equivalence) by averaging over translations. In our case,
however, one cannot get an equivalent invariant metric—Diffr is not only non-compact
but non-amenable! The (non-uniform) bounded equivalence proved in Proposition 5.1
is, nevertheless, enough for what we needed for the proof of Theorem 5.3.

In summary, we have the following proposition.

PROPOSITION8.1. Ê r is a Banach manifold. It is naturally identified up to right
composition with the Banach Lie groupDiff r , and with an open subset of a closed affine
subspace ofCr (I, R).

An estimate similar to that shown in Proposition 5.1 forr = 1 holds for r > 1.
Therefore one has, forr = k + γ, ∞, ω, the following proposition.

PROPOSITION8.2.
(a) TheCr metric onDiff r is right-invariant up to (non-uniform) bounded equivalence.
(b) The Cr metric on Ê r is base-point independent up to (non-uniform) bounded

equivalence.

We note thatE r
∗ , the space of marked Cantor sets, is also a Banach manifold by the

same reasoning as for Diffr : it is an open subset of a closed affine subspace ofCr (C, R).
Next we will describe more fully the relationship between the spacesÊ r and E r .

For r = k + γ , we write Diffr0(I ) for the collection ofCr diffeomorphisms of the unit
intervalI whose firstk derivatives are 1, 0, . . . , 0 at the endpoints. This is also a Banach
manifold.

PROPOSITION8.3. Given the choice of a Cantor setC, Ê r factors naturally, set
theoretically and topologically, as

Ê r = E r × Diff r
0(I ),

with the topology onE r defined below.
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Proof. First, let us consider how manyCr maps fromI to I there are, conjugating(C, S)

with (C, Ŝ) (the Cantor sets are the same, but the maps may be different off of the Cantor
sets). In the proof of Lemma 7.3, note that instead of starting with8 equal to the identity
on the gapG we could have taken anyCk+γ diffeomorphism fromG to itself which
has derivatives that agree with the identity at the endpoints, up to orderk. Conversely,
any conjugacy is specified by its values onG, since elsewhere it is then determined by
the dynamics. Therefore we see that the set ofCr conjugacies from(C, S) to (C, Ŝ)

correspond naturally to Diffr
0(I ) (this is also true whenS = Ŝ!).

Next we consider how many differentCr conjugacies are possible in the rigidity
theorem from(C, S) to (Ĉ, Ŝ). Given the existence of one such map and hence a
restricted conjugacy, we can define (all the) other extensions by a method like that used
in the proof just given. That is, we first define the conjugacy arbitrarily on the first-level
gaps (but with the correct derivatives of order≤ k at the endpoints), then we extend by
the dynamics. Or we can quote that statement directly, making use of a ratio Cantor set
as intermediary as in the proof of Theorem 7.5, and now replacing8 by one of the more
general maps described above.

This shows we have a product of sets.E r has not yet been given a topology. However,
from the product decomposition, we can define a family of metrics as follows. Choosing
one element of Diffr0 defines an embedding intôE r , and we just use theCr metric there.
(One would like to get a more natural definition by taking the infimum over all such
choices; however, it is then not clear that the triangle inequality will hold.) At any rate,
the metrics are equivalent and so this defines a natural topology onE r .

We will show that theCr metric onÊ r is equivalent to the product of the metrics on
E r and Diffr0.

It is easy to see that the map fromE r to each factor is continuous (to Diffr
0 it is

also affine). For the converse, given the base point(C, S), first let f, g ∈ Diff r be such
that (Cf , Sf ) = (Cg, Sg). Write f0, g0 for the corresponding elements of Diffr

0, i.e. the
restrictions off andg to the middle gap ofC (rescaled in the range). We claim that if
f0 andg0 are close in Diffr0, thenf andg are close in Diffr . The formula forf on an
nth level gap ofC is

f (a) = ϕf
x0...xn

◦ f0 ◦ ϕ−1
x0...xn

(a).

Here,ϕ, ϕf denote inverse branches forS andSf respectively. By assumption,ϕf = ϕg.
Now by bounded distortion (Lemma 6.4) fork = 1, and for generalk by the proof of
Theorem 6.1,Dkϕ

f
x0...xn

is uniformly γ -Hölder with constant independent ofn. This
proves‖f − g‖C1 is small, which is what we wanted to show.

Next we drop the assumption thatf andg give the same maps. We have chosen an
element of Diffr0 to define the metric onE r . Let f̃ , g̃ denote the maps in Diffr such
that f̃0 = g̃0 is that element with(Cf , Sf ) = (Cf̃ , Sf̃ ) and similarly forg. Now, by

definition, the distance between the pairs inE r is ‖f̃ − g̃‖C1. So we just apply the
triangle inequality using the previous case to conclude thatdC(Cf , Cg) ≡ ‖f − g‖C1 is
also small. �

Remark.In a conversation about the proof of Lemma 7.3, Yair Minsky pointed out to
us an interesting parallel between that argument and Sullivan’s ‘flexibility and rigidity’
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theorem for Kleinian groups. Sullivan showed, for a finitely generated Kleinian group
0, that the limit set3 of the group itself is ‘rigid’, i.e. a quasiconformal conjugacy (to
another Kleinian group) which lives (Lebesgue almost-surely) on3 must be M̈obius.
This is a consequence of Sullivan’s lemma that3 carries no measurable0-invariant
line fields. (Note that by contrast, for hyperbolic Cantor sets, quasisymmetric conjugacy
does not imply smooth conjugacy; as we have seen, one also needs to know the scaling
function.)

Sullivan used this to show that a quasiconformal conjugacy is determined by a Beltrami
differential on�/0, where� is the domain of discontinuity. Thus, in a sense one has
rigidity on the limit set and flexibility off it. The group actions correspond to the two
(not restricted) expanding maps, and the surface�/0 or, equivalently, a fundamental
domain for the action of0 on � is analogous to the gapG of the Cantor set. As is
the case there, the conjugacy is then specified elsewhere by the dynamics. Sullivan’s
theorem can then be stated as follows: Teich(0) = Teich(�/0), where this refers to the
Teichm̈uller space of a group and of a surface respectively; this formulation led to the
statement in Proposition 8.3.

Concluding remarks: limit sets as the attractor of a semigroup action.E1+γ denotes the
C1+γ equivalence class of a givenC1+γ hyperbolic Cantor set. The nested subclasses
E r for maps of smoothnessr = k + γ, ∞, ω, are also conjugate with that higher
degree of smoothness. Thus, smoothness classes are also conjugacy classes. Choosing
one set inE r as a base point,E r is naturally identified with a topological factor of
the Cr orientation-preserving diffeomorphisms of the interval, Diffr , which is a Banach
manifold. Moreover, we can choose one Cantor set as a common base point for all the
E r , since by Theorem 7.4 the smoothest Cantor sets exist. Then the nested collections
E1+γ ⊇ · · · ⊇ E r · · · are naturally identified with factors of Diff1+γ ⊇ · · · ⊇ Diff r · · ·.
(Each is a Banach manifold with its own topology, and is a dense subset of the larger
collections with respect to their topologies.) The spaces of marked Cantor setsE r

∗ are also
Banach manifolds. The free semigroup on two generatorsFS2 acts on each submanifold
E r

∗ by replacing it with its left or right Cantor subset. From Theorem 7.4, the limit sets
are in the intersection of theE r

∗ . From Theorem 5.3, because the bounds are uniform
over all Cantor subsets of leveln, the collection of limit sets is an attractor for this
action. This convergence is exponentially fast in theC1 norm. (Warning: we have only
shown convergence inthis norm; see the Remark at the end of§6.) The semigroup
action on the attractor itself, and the relationship of that action to the scenery process,
can be described symbolically very simply as follows. Recall the mapy 7→ Cy for y in
the dual Cantor set6− andCy , the corresponding ratio Cantor set. Now just concatenate
y on the right with a finite string of symbolsx0x1 . . . xn. A path in the scenery process
is determined by infinitely many such choices of 0 and 1; these are successively added
onto y as the bi-infinite wordx ≡ (y, x) (wherex ≡ x0x1 . . .) is shifted to the left in
the processCσn(x). The geometrical meaning ofx0x1 . . . is this: when zooming down
toward the locationπ(x) specified by those digits, in any limit set or, indeed, in any set
in that C1-equivalence class, by Theorem 5.4 this is asymptotically the sequence of sets
which we see.



Hyperbolic Cantor sets 563

Acknowledgements.We wish to thank our colleagues and friends for conversations,
encouragement and inspiration regarding this and related projects. We give special thanks
to M. Urbanski, B. Mandelbrot, S. Kakutani, and D. Sullivan. The second-named author
would also like to thank the Dynamical Systems seminar at Memphis State University
for their encouragement to give a series of lectures on these topics (Spring 1990) and
Yale University, MSRI, IHES, CUNY, the CNRS, Université Paris-Nord, and SUNY at
Stony Brook for their support while the paper was being written.

REFERENCES

[AFi] P. Arnoux and A. M. Fisher. Anosov families: renormalization, random dynamics and the
Teichm̈uller mapping flow (in preparation).

[Be] T. Bedford. Applications of dynamical systems theory to fractal sets: a study of cookie cutter
sets.Proceedings of the S´eminaire de Math´ematiques Sup´erieures ‘Fractal Geometry and Analysis’
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