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Abstract. We study the relationship between minimality and unique ergodicity
for adic transformations. We show that three is the smallest alphabet size for a
unimodular “adic counterexample”, an adic transformation which is minimal but
not uniquely ergodic. We construct a specific family of counterexamples built from
(3 ⇥ 3) nonnegative integer matrix sequences, while showing that no such (2 ⇥
2) sequence is possible. We also consider (2 ⇥ 2) counterexamples without the
unimodular restriction, describing two families of such maps.

Though primitivity of the matrix sequence associated to the transformation im-
plies minimality, the converse is false, as shown by a further example: an adic
transformation with (2⇥ 2) stationary nonprimitive matrix, which is both minimal
and uniquely ergodic.

Research of the authors was partly supported by: the CNPQ, the Acordo Franco-
Brasil, FAPESP, and the CNRS.

1. Introduction

Adic transformations, as defined by Vershik [Ver89], o↵er a far-reaching general-
ization of the classical odometer (or adding machine) transformation of Kakutani
and von Neumann. Indeed, on a measure-theoretic level they are completely general:
as Vershik showed [Ver81], [LV92], any invertible measure-preserving transformation
of a Lebesgue space has an adic model. Moreover this can be constructed so as to
be strictly ergodic: to be both minimal (every orbit is dense) and uniquely ergodic

(that there is a unique invariant probability measure), thus giving a new proof of
the Jewett-Krieger theorem that every ergodic transformation has a strictly ergodic
model [Jew70], [Kri70].

The focus of this paper and its companion paper [Fis08] is the relationship between
the properties of minimality and unique ergodicity for transformations of a topological
space, making use of the framework of adic transformations. In this study Vershik’s
general theorem will be of no use; as it is purely measure-theoretic in nature, it erases
other aspects of the map being studied. Instead we find ourselves involved with a
quite di↵erent aspect of the theory of adic transformations: that of finding adic models
which are naturally adapted to the geometry or topology of a given transformation. In
a variety of cases, one can indeed find such adic models; examples we shall encounter
below include cutting and stacking constructions, substitution dynamical systems,
and interval exchange transformations.
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The first part of the paper concerns the construction of adic transformations which
though minimal are not uniquely ergodic. There is a long and interesting history of
maps with this feature, including the torus skew product of Furstenberg [Fur61] and
the Keynes-Newton and Keane interval exchange transformations [KN76], [Kea77].
Our approach will make use of criteria for minimality and unique ergodicity from
[Fis08] and explained below.

In the final part we study a specific adic transformation inspired by a substitution
dynamical system of [Fer95] which in turn is closely related to Chacon’s famous map
of the interval, constructed by cutting and stacking in [Cha69].

But first we recall the basic framework for Vershik’s maps. Letting (Ai)i�0 be a
sequence of finite alphabets with with #Ai = li and (Mi)i�0 a sequence of (li ⇥ li+1)
nonnegative integer matrices, we construct a Bratteli diagram with vertices Ai at level
i and with (Mi)kj directed edges from symbol k 2 Ai to j 2 Ai+1; we call Ei the set
of edges from level i to level (i + 1). We denote by ⌃+,0

(M) the set of all allowed infinite
edge paths e = (.e0e1 . . . ) in this diagram; this is a Markov compactum in Vershik’s
terminology. An incoming edge order (or just order) O on the Bratteli diagram is a
total order on the collection of all edges which enter a given symbol at some level k.
We define W s(e) = {ẽ 2 ⌃+,0

(M) : 9k � 0 with ei = ẽi for all i � k}; these collections
partition the space.

Vershik’s transformation will be defined as a map on the Markov compactum; the
orbit of a point e will be its stable equivalence class or stable manifold W s(e).

Beginning with the edge order O, we next place a total order on each W s(·) as
follows: given ẽ 2 W s(e), let k be the least integer such that ei = ẽi for all i � k, and
define e < ẽ i↵ ek�1 < ẽk�1 in the edge order O at that level.

This is O-lexicographic order; the map TO is defined to send a path e to its sucessor.
Writing NS for the collection of paths with no successor and NP for those with no
predecessor, then TO is a bijection from ⌃+

(M) \ NS to ⌃+
(M) \ NP . Defining N to be

the forward and backward images under iteration of these sets, then TO is a bijection
on ⌃+

(M) \ N . The number of points in NP and NS are bounded above by lim sup li
if that is finite, and in any case is countably infinite, as is N .

Although the space ⌃+,0
(M) \ N on which the adic transformation is defined for all

time is noncompact, it still makes sense to speak of minimality and unique ergodicity
in this context, with the usual definitions.

One can also define related dynamics on the whole space ⌃+,0
(M), and then compare

these properties for the di↵erent actions. There are two basic ways of doing this: by
considering extensions of the map to the whole space, or by replacing the action of
the map by that of a related group of homeomorphisms defined on all of ⌃+,0

(M), the
group FC of finite coordinate changes. Since N is countable, it follows that essential

minimality and essential unique ergodicity correspond for all three actions (the adic
transformation on ⌃+,0

(M) \ N , any extension to ⌃+,0
(M), or the group FC) by which

we mean respectively minimal o↵ of a countable set, and that there exists a unique
invariant nonatomic probability measure; with the assumption of primitivity (see
below for the definition) the nonatomic restriction can be removed. So in particular
these properties are independent of the particular order O placed on the diagram,
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and are determined solely by the matrix sequence (Mi)i�0. See Proposition 2.10 of
[Fis08].

Regarding extensions of the map, the most natural choice will be to take a con-
tinuous extension; however we note that even for simple examples this may not be
possible, see the discussion below of circle rotations and of the Chacon adic map.

Though we have termed W s(e) the “stable manifold” of a point, a priori this makes
no sense, as the nonstationary combinatorics means there is no actual shift dynamics:
a left shift map � should send an edge path e = (e0, e1, . . . ) to �(e) = (e1, e2, . . . );
however �(e) is not an element of the same the Markov compactum ⌃+,0

(M). So what
we do is to simply enlarge the space as follows: writing �(M)i�0 = (Mi+1)i�0 for the
shifted sequence of matrices, we set ⌃+,k

(M) ⌘ ⌃+,0
�k(M). We then form the disjoint union

⌃+
(M) ⌘

`1
k=0⌃

+,k
(M), the nonstationary subshift of finite type defined by the matrix

sequence; ⌃+,k
(M) is called the kth

component of ⌃+
(M). This has been constructed so the

map � now takes the kth component of the nsft to the (k + 1)st component. With
this definition, and with respect to a natural metric which makes each component a
Cantor set, W s(e) is indeed the “stable manifold” of that point with respect to this
mapping family or nonstationary dynamical system, see [AF05]; the stable manifolds
subdivide each component into equivalence classes, and the map TO extends to the
entire nsft, preserving each such equivalence class.

In the case when the Mi are 0 � 1 matrices (so equivalently the diagram has
no multiple edges) we can replace the edge shift space defined above by a vertex

shift space, as an edge path (e0, e1, . . . ) determines a unique vertex path (x0, x1 . . . )
where xi is the “tail” of the arrow ei. The simplest situation is a stationary adic
transformation, where the alphabets, matrices and orders are constant. Thus M is
a square matrix, and the nsft ⌃+

(M) factors onto its zeroth component ⌃+,0
(M) which in

turn is canonically identified with the subshift of finite type (sft) ⌃+
M . Note that the

Bratteli diagram then factors onto (and can be replaced by) the usual graph of an
sft, and that the sft comes in either an edge or vertex presentation (see e.g. [LM95])
depending as to whether or not this graph has multiple edges.

There is an intimate relation between the adic transformation framework and that
of substitution dynamical systems, which we now describe. In particular this connec-
tion led us to the final example studied below, the Chacon adic transformation.

Given an ordered Bratteli diagram, we note that the information furnished by
the matrix sequence (Mi)i�0 together with the order O can instead be conveniently
specified by a sequence (⇢i)i�0 of substitutions ⇢i : Ai+1 ! A⇤

i , where A⇤
i denotes the

finite words on that alphabet: if ⇢k(j) = a0a1...an, then there are n edges entering
symbol j, ordered as their tail symbols ai appear from left to right. Here we should
visualize the substitution sequence as acting from right to left in the Bratteli diagram,
the opposite of the “future” direction indicated by the directed edges. By definition,
the matrix of the substitution ⇢k is then the (lk ⇥ lk+1) matrix Mk with (Mk)ij the
number of occurences of the letter i in ⇢k(j); note that this gives exactly the matrix
sequence used to define the Bratteli diagram.

For the case of a single substitution ⇢ : A! A⇤, we recall how one defines from this
a substitution dynamical system; then we describe the canonical connection between
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Figure 1. Stable trees for the odometer and Morse adic transformations.

stationary adic transformations and substitution dynamical systems, first noted by
Livshits [Liv87], [Liv88].

First we extend this map to ⇢ : A⇤ ! A⇤ by concatenation; then choosing some
symbol a 2 A and iterating, the collection of finite words ⇢n(j) will converge either
to a fixed point (i↵ ⇢(a) begins with a) or to a periodic orbit; for a = (.a0a1 . . . ) one
of these one-sided infinite words in ⇧1i=0A, we let ⌦a denote the orbit closure in the
natural sense of a for the left shift map S on the biinfinite space ⇧1�10A. Note that
if the matrix M of ⇢ is primitive (i.e. there exists n > 0 such that all the entries of
M are strictly positive), then ⌦a does not depend on the choice of the letter a.

Two simple examples which already illustrate the relationship noted by Livshits as
well as various other general aspects of the theory are the odometer transformation
and the Morse adic transformation. These are both stationary adic transformations,

with alphabet A = {0, 1} and matrix M =


1 1
1 1

�
, so ⌃+

M is a full one-sided Bernoulli

shift space (here we take the vertex representation). For the adding machine we order
the edges entering the symbol 0 by 00 < 10, and those entering 1 by 01 < 11, i.e. in
both cases just by the natural order on the alphabet. For the Morse transformation,
we have edges ordered by: 00 < 10, but 11 < 01. The associated substitutions are:
for the odometer ⇢(j) = 01 for all j, for the Morse adic ⇢(0) = 01, ⇢(1) = 10.

To describe the relationship to substitution dynamical systems we first recall a
geometric picture of the adic dynamics, given by the stable tree model [Fis08]; we
describe this for a 0�1 matrix sequence (Mi)i�0. Choosing (.x0x1 . . . ) 2 ⌃+

(M) (in the
vertex representation, so xi 2 Ai) we draw the edges connecting the xi as the “trunk”
of an inverted tree; edges then branch o↵ at each level, from left to right according
to the order O. The dynamics of TO then simply sends an infinite vertical string to
the next one to the right. See Fig. 1 for the odometer and Morse examples, and also
see Figs. 8, 9, 10 below.

This figure also shows an orbit of the corresponding substitution dynamical sys-
tem: it is the very bottom row of digits, and is shifted to the left by the same
dynamics! Choosing as the trunk x0x1 · · · = 000 . . . , for the adic map this is the peri-
odic sequence .0101010 . . . , while for the Morse example it is the famous Morse-Thue
sequence .01101001 . . . . Taking the collection of all possible trunks, one can show
we get the orbit closure space ⌦. This gives a di↵erent way of constructing ⌦ (and
which easily generalizes to the nonstationary situation, where “fixed points” may not
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exist!) Now we can see the precise relationship between the adic transformation and
the substitution dynamical system (⌦, S): there is always a factor map from the adic
transformation to the substitution dynamical system, and this is a bijection exactly
when we can recover all the higher information in the tree from its “leaves” (the
lowest level in the figure). This is possible for the Morse substitution as it satis-
fies Mosse’s conditions of being primitive and recognizable [Mos92], [Mos96], [Hos00],
giving Livshits’ observation, but not for the odometer, where the substitution dy-
namical system consists of a single periodic orbit of period two. Thus the validity of
the Livshits correspondence depends heavily on the particular order on the diagram.
See the end of §5 for another concrete case of this.

As we have indicated, one can also make sense of the Livshits correspondence in
the nonstationary setting. For an example of this, studied in [AF01], we define a pair
of substitutions ⇢a, ⇢b with constant alphabet A = {0, 1} by ⇢a(0) = 0, ⇢a(1) = 10
and ⇢b(0) = 01, ⇢b(1) = 1. Choosing a sequence n = (.n0n1 . . . ) in ⇧10 N⇤ where
N⇤ = {1, 2, . . . }, we define a substitution sequence (⌘i)i�0 by ⌘i = ⇢a for 0  i  n0�1,
⌘i = ⇢b for n0  i  n0 + n1 � 1, and so on. Note that the associated matrices are

Ma =


1 1
0 1

�
, Mb =


1 0
1 1

�
.

One can then prove that the corresponding nonstationary substitution dynamical
system (respectively adic transformation) is minimal and uniquely ergodic, and that
both are measure-theoretically isomorphic to the circle rotation x 7! x + ✓(mod1) of
angle ✓ = ↵/(1 + ↵) 2 (0, 1/2), where

↵ = [n0 . . . nk . . . ] ⌘ 1

n0 +
1

n1 + · · ·
.

To get the angles in (1/2, 1) we begin with ⇢b instead of ⇢a. See [AF01] for the
nonstationary substitution point of view and [Fis08] for the adic version of this.

An interesting feature of this model is that #NS = 1 while #NP = 2; as a
consequence there is no possible extension of T to a homeomorphism on the whole
space. On the other hand, a di↵erent “dual” definition of the substitutions (with the
same matrices) does permit such an extension, which topologically factors onto the
circle rotation. See [Fis08] and [Fis] for a geometrical explanation of what we mean
by duality and why this phenomenon occurs.

This representation of circle rotations is the simplest example of an adic model for
interval exchange transformations (as a circle rotation is an exchange of two inter-
vals); that such a model is possible is implicit in [Fer97], where it is shown that every
interval exchange can be naturally represented as a cutting and stacking transforma-
tion, while each cutting and stacking transformation has an adic model. A precise
realization based on the Rauzy induction procedure is presented in [Fis]; for mini-
mal interval exchange transformations the map from the adic transformation to the
interval exchange is almost surely bijective.

The di↵erence between the stationary and nonstationary examples we have de-
scribed is highlighted by bringing in the associated shift dynamics. For the odometer
and Morse examples, the adic transformations are transverse dynamical systems to
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the left shift map (⌃+
M , �); they satisfy a similar commutation relation, � �T 2 = T ��

to that for the the stable horocycle flow and geodesic flow on a compact surface of
constant negative curvature, for which hs � gt = gt � hets. See [Ver94] regarding the
general philosophy of transverse dynamics and more examples.

Note that since in the above equation T is semiconjugated to its square, it must have
entropy equal to either 0 or 1. And indeed, for the Morse and odometer examples,
both maps are zero entropy, minimal and uniquely ergodic; this is an immediate
consequence of the fact that the maps permute the collection of cylinder sets of each
level. These three properties also hold for the horocycle flow, see [Fur73], and for all
stationary adic transformations with primitive matrix as we explain shortly.

Similarly, a general adic transformation (⌃+,0
(M), TO) can be thought of as a transverse

dynamical system, with respect to the nonstationary dynamics of the left shift map on
the nsft (⌃+

(M), �). Considering for example the circle rotation adic transformations,
in fact all of this can be imbedded in an appropriate flow space, which extends Veech’s
Teichmüller flow, here for the simplest (torus) case, see[AF01].

In this nonstationary shift case, however, the three properties of zero entropy, min-
imality and uniquely ergodicity may no longer all hold true; one can have minimality
without unique ergodicity, as described below; also the transverse map may have
entropy in (0,1); indeed by Vershik’s general theorem, all ergodic maps have adic
models; we note that in the positive entropy case the alphabet sizes must however be
unbounded.

Now we turn to the criteria for minimality and unique ergodicity we shall use below.
Considering first the stationary case, as shown in Lemma 2.4 of [BM77], for an sft

⌃+
M with M primitive, then the stable equivalence relation on (⌃+

M , �) is uniquely
ergodic. At the time the Bowen-Marcus paper was written, adic transformations had
not yet been defined, but in this alternative language their theorem says that any adic
transformation T defined on ⌃+

M with M primitive is uniquely ergodic. The Bowen-
Marcus proof has these ingredients: first, primitivity of M implies the shift map is
mixing for invariant Markov measures whose support is the sft, hence for the Parry
measure µ (the measure of maximal entropy), see Theorem 1.31 of [Wal82]; next, using
mixing, there is a unique transverse invariant probability measure ⌫ equivalent to this
(i.e. sharing the same null sets); this is the eigenmeasure for the Ruelle operator with
potential zero.

In [Fis08] we extend this proof to the nonstationary context as follows. First, we
define a matrix sequence (Mi)i�0 to be primitive i↵ for each k 2 N, there exists m > 0
(depending on k) such that all entries of the matrix M (k,m) ⌘ MkMk+1 . . . Mm�1

are strictly positive. We say the sequence is Perron-Frobenius i↵ the images of the
positive cone Cm in the space of column vectors Rlm by the matrices when applied in
the following order, MkMk+1 . . . Mm�1Cm = M (k,m)Cm, nest down to a single strictly
positive ray. Next we define nonstationary Parry measure (done in the last section of
[AF01] for the special case of rotation adics), and extend mixing to the nonstationary
context in an appropriate way. Then, making use of the projective metric, we show the
Perron-Frobenius condition is equivalent to nonstationary mixing, and lastly we push
through a Bowen-Marcus type of argument. Our conclusion is that for a primitive
sequence (Mi)i�0, unique ergodicity is equivalent to the Perron-Frobenius condition.
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The primitivity condition was introduced by Livshits and Vershik in the funda-
mental paper [LV92], where it was remarked that primitivity of the sequence implies
minimality of the adic transformation; the (simple) proof is given in [Fis08]. No
doubt due to this fact, Livshits and Vershik choose this term (“minimality”) for what
we prefer to call primitivity; one reason for our choice of terminology is that there
are examples of minimal adic transformations with nonprimitive sequences, as shown
below by the Chacon example.

A first example of an adic transformation which is minimal but not uniquely ergodic
is the Pascal adic transformation defined by Lodkin and Vershik [LV85], so-called
because the Bratteli diagram is like the Pascal triangle laid over on its side, with
#An = n for n � 0 and matrices Mn with (Mn)ij = 1 if j = i, i+1 and otherwise = 0.
This map in fact has a continuum of invariant measures, indexed by the collection of
Bernoulli coin-tossing measures; for an in-depth study see [MP05]. However we shall
concentrate here on a very di↵erent type of example, which has a bounded alphabet
size.

Our examples are closest in spirit to Keane’s interval exchange. In fact any ex-
change of d intervals codes in a natural way as an adic transformation on an alphabet
of d symbols, with the matrices being those that naturally appear in the theory for a
quite di↵erent purpose (that of describing the induction procedure); see [Fer97] and
[Fis]. The matrices occuring in Keane’s famous counterexample give a (4 ⇥ 4) non-
negative unimodular (i.e. determinant one), primitive matrix sequence (Mi)i�0 for
which the Perron-Frobenius property fails, so by our criterion the adic transformation
is minimal but not uniquely ergodic as is the case for the interval exchange.

It is known that Keane’s counterexample has the least number of intervals possible
(four) for such a map; that of Keynes and Newton had five intervals. So the question
we asked ourselves is: within the much wider realm of adic transformations, what
is the smallest alphabet possible for an “adic counterexample”, first, if we require
unimodularity; next, if we remove that restriction? We show:

Theorem. For the unimodular case, there are (3⇥ 3) counterexamples, but no such
(2 ⇥ 2) adic transformation is possible. Without the restriction of determinant one,
there are (2⇥ 2) counterexamples as well.

We next turn to the Chacon example. This is a stationary adic transformation with

nonunimodular matrix A =


3 0
1 1

�
which is nevertheless both minimal and uniquely

ergodic. We call this the Chacon adic transformation because of its relation to a
well-known substitution known by that name, see [Fer95].

For the primitive case unique ergodicity is true equivalently for the adic transfor-
mation, for any extension, and for the group FC; for the nonprimitive case this may
no longer quite be true, as shown by this example. Here minimality and unique er-
godicity hold for the adic transformation, but what is true for FC is that the action is
essentially minimal and essentially uniquely ergodic as defined above. We then show
that despite the nonprimitivity, minimality and unique ergodicity remain true for any
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other adic transformation with this same matrix. See Proposition 5.2. In fact for this
example N is a single point, which is a fixed point for FC, and there is no continuous
extension of the adic transformation to this point (see Remark 5.1).

Our proof of essential minimality and unique ergodicity for the Chacon adic goes
by way of coding to a (3⇥3) primitive example. The proof is geometrical and is based
on the stable tree view of the adic transformations explained above. We mention that
though this is a coding from one subshift of finite type space to another, it has the
interesting feature that though it conjugates the adic transformations, it does not
(quite) conjugate the corrresponding shift maps.

Further remarks. For alphabet size one, the nontrivial examples are always both
minimal and uniquely ergodic. Indeed, the matrix sequence is then Mi = [ni] for
some integers ni, with ni � 2 infinitely often to avoid a trivial path space; there is
up to permutation only one incoming edge order possible, so there is a single adic
transformation compatible with each such sequence. This is a nonstationary odometer

in that it is a nonstationary version of the Kakutani-von Neumann d-adic odometer
(or adding machine), given by constant case ni = d. The map permutes the cylinder
sets of each level, and so is both minimal and uniquely ergodic, the only possible
invariant probability measure giving equal mass to each cylinder. (Alternatively, the
(1⇥1) matrix sequence is trivially both primitive and Perron-Frobenius, so minimality
and unique ergodicity follow by our criteria.)

If one wants to prove that the Perron-Frobenius property holds for a given matrix
sequence, then a useful tool is Birkho↵’s upper bound for the projective metric, see
[Fis08]. To produce a counterexample, however, we need a lower bound and one needs
to consider more closely the combinatorics of the matrix sequence. This is the kind
of argument that occurs in [Kea75] and which we encounter here.

For background on interval exchanges see [Kea75], [Kea77], [Vee78], [Vee82], [Mas82]
and the recent excellent exposition [Via06]. Regarding substitution dynamical sys-
tems see [Fer02], [Fer95], [Hos00] and regarding adic transformations, see [LV92],
[Ver89], [Ver94], [Ver95b], [Ver95a].

After this paper and [Fis08] had been submitted we received the preprint [BKMS09];
despite its title and abstract, in fact the nonstationary case is also addressed, see
Theorem 2.8 there, and in particular the authors have independently come up with
a completely di↵erent proof from that of [Fis08] that the Perron-Frobenius property
implies unique ergodicity. In fact their argument is related to the “column stochastic
matrix” method used in the study below of the nonsymmetric (2 ⇥ 2) case, as both
can be understood via a cutting-and-stacking construction of the invariant measures;
this argument can be extended to the general primitive as well as certain nonprimitive
cases, including the Chacon example and the infinite measure example of [Fis92], see
in particular Remark 2.10 of [BKMS09] regarding the infinite measure case.

Acknowledgements: We thank Xavier Bressaud and Julien Cassaigne for suggest-
ing we consider the (2 ⇥ 2) counterexample and Chacon substitutions respectively,
and Thierry Monteil as well as Cassaigne for conversations about the Chacon map.
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We thank B. Solomyak for his suggestion that the Birkho↵ contraction bounds
given in [Fis08] might furnish a converse to the statement of Proposition 3.1; we have
included this argument in the final version of the paper.

2. The unimodular (2⇥ 2) case

First we show that a (2⇥2) unimodular “adic Keane counterexample” cannot exist.

Definition 2.1. We say an adic transformation is nontrivial if the space ⌃+,0
(M) \ N

on which the transformation acts is nonempty.

Proposition 2.1. Let (Mi)1i=0 for i � 0 be a sequence of (2 ⇥ 2) unimodular (i.e.

determinant-one) nonnegative integer matrices. Then for any (nontrivial) adic trans-

formation defined from the matrices, minimality is equivalent to unique ergodicity, and

both are equivalent to primitivity of the matrix sequence.

Proof. The collection of nonnegative matrices with determinant one is the semigroup

SL(2, N) (here N = {0, 1, . . . }), which is generated freely by the matrices P =


1 0
1 1

�

and Q =


1 1
0 1

�
(this is well known, for a proof see e.g. Lemma 3.11 of [AF05]). Given

a sequence (Mi)1i=0 in SL(2, N), we factor in this way each Mi sucessively, producing
a new sequence (Aj)1j=0 with each Aj = P or Q. This additive sequence is clearly
primitive if and only if Aj is not eventually always equal to P or Q. In that case,

we can take partial products to produce a multiplicative sequence of the form bAi =
1 0
ni 1

�
or bAi =


1 ni

0 1

�
, for ni positive integers, with the choice of upper or lower

triangular alternating for i even or odd. Hence in (Ai) the pair AiAi+1 = QP =


2 1
1 1

�

occurs infinitely often; a simple direct argument then shows the cones M0M1 · · ·MkC
+

nest down to a single direction, proving the topological Perron-Frobenius condition.
For a second proof note that QP gives a definite contraction in the projective metric
and so the projective diameter of these cones goes to zero, see [Fis08]; for a third
proof, Proposition 4.1 of [AF05] explicitly finds the unique positive right eigenvector
sequence for the matrix sequence ( bAi), existence of which is equivalent to the Perron-
Frobenius condition.

Applying these criteria, we therefore have minimality and unique ergodicity in the
case where infinitely many of both P and Q appear. And if on the other hand the
sequence ends with infinitely many P or Q, then the adic transformation is trivial,
as N is the whole space.

From a di↵erent perspective, the adic transformation can in either case be extended
in a unique way to all of ⌃+,0

(M); it factors onto an irrational circle rotation in the
nontrivial case, and onto a finite periodic orbit in the trivial case. See the introduction
and Examples 3, 4 of [Fis08]. ⇤
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3. Nonunimodular (2⇥ 2) counterexamples

3.1. A symmetric counterexample. We define a sequence of symmetric (2 ⇥ 2)
matrices with determinant greater than one (in fact growing very rapidly) and give
a condition for the sequence to be primitive but not Perron-Frobenius. These are

Mi =


ni 1
1 ni

�
, for (ni) a sequence of positive integers. Our result is:

Proposition 3.1. Any adic transformation with matrix sequence (Mi)i�0 is minimal;

if

P1
i=0 1/ni < 1, then it is not uniquely ergodic; if

P1
i=0 1/ni = +1 then it is

uniquely ergodic.

Proof. The sequence (Mi)i�0 is certainly primitive, implying minimality. For the first
statement we show first that if

P1
i=0 1/ni < 1, then it is not Perron-Frobenius. We

write Mi = niI + N where I is the identity matrix and N =


0 1
1 0

�
is nilpotent (i.e.

N2 = I). Now,

M0M1 · · ·Mk = ⇧k
i=0(niI + N) =


ak bk

bk ak

�
= akI + bkN,

where a0 = n0, b0 = 1 and
ak+1 =nk+1ak + bk,

bk+1 =ak + nk+1bk.
(1)

From
bk+1

ak+1
=

ak + nk+1bk

nk+1ak + bk
 ak + nk+1bk

nk+1ak
=

bk

ak
+

1

nk+1
,

we prove by induction that for all k � 0

bk

ak


kX

i=0

1

ni
.

So if
P1

i=0
1
ni

= ↵ < 1, then

lim sup
k!1

bk

ak
 ↵ < 1,

or equivalently:

lim inf
k!1

ak

bk
� ↵�1 > 1.

The image of the positive cone, M0M1 · · ·MkC
+, is a symmetric cone bounded

below by the vector


ak bk

bk ak

� 
1
0

�
and above by


ak bk

bk ak

� 
0
1

�
; these vectors have slope

 ↵ < 1 and � ↵�1 > 1 respectively, so the (nested) intersection of the cones also
has these bounds, and is nontrivial. This proves that the Perron-Frobenius condition
fails.
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Next, if
P1

i=0 1/ni < 1, we simply apply the argument to the matrix sequence
(Mi)i�k where k is such that

P1
i=k 1/ni < 1. Since by definition of the Perron-

Frobenius condition the cones must nest to a single ray for each k � 0, this proves
the claim.

For the second statement we follow a suggestion of Boris Solomyak and make use of
the contraction upper bounds given in [Fis08]. We know that the Perron-Frobenius
condition is satisfied i↵ the Birkho↵ contraction coe�cient for the matrix product
M0M1 · · ·Mk goes to zero; combining Corollary 7.9 and Proposition 7.3 of [Fis08], an
upper bound is given by the product of the coe�cients for the individual matrices,
which is equal to

kY

0

tanh
�✓i

4

�

where ✓i = log(n2
i ). So defining "i = 2/(exp(✓i/2) + 1), then this goes to 0 i↵P1

0 log(1 � "i) = +1, i↵
P1

0 "i = +1, i↵
P1

0 exp(�✓i/2) =
P1

i=0 1/ni = +1,
as claimed. ⇤

3.2. A nonsymmetric counterexample. This class of examples has several mo-
tivations: to give a quite flexible and general criterion for a (2 ⇥ 2) sequence to be
a counterexample, to introduce some techniques for dealing with this nonsymmetric
case, and to examine in isolation combinatorics which arose in the study of related
interval exchange counterexamples on four intervals [FZ06].

From a “purely adic” point of view, the intuition behind the choice of matrices is
similar to that for the symmetric case. Given a matrix sequence (Mi)i�0, if the deter-
minant of M0 · · ·Mk is strictly positive, then equivalently the cone C+

k = M0 · · ·MkC
+

is not a single ray. For a counterexample we want this in the limit, that the infinite
intersection \kC

+
k is also nontrivial; the rough idea is to require that for k large Mk be

projectively su�ciently close to the identity that the cones decrease by a summable
amount. For the symmetric case just treated we carried this out explicitly. But now
we take a di↵erent approach, first normalizing the matrices: we replace (Mi)i�0 by
a related stochastic matrix sequence (Pi)i�0. It is important for the proof that these
are column-stochastic rather than the usual row-stochastic sequences which appear
in Markov chain theory (also in the nonstationary setting, as in [Fis08]).

Our result is:

Theorem 3.2. For a nonnegative integer matrix sequence (Mk)k�0 satisfying the four

conditions which follow, then any adic transformation with matrix sequence (Mk)k�0

is minimal but is not uniquely ergodic.

Proof. We write Mk =


nk nk

mk mk

�
, with strictly positive integer entries. So this is

primitive, and we are to show the sequence (Mk)k�0 is not Perron-Frobenius.

We set for k � 0,

M0M1 · · ·Mk =


ak bk

ck dk

�
,



12 SEBASTIEN FERENCZI, ALBERT M. FISHER AND MARINA TALET

giving
ak+1 = nk+1ak + mk+1bk,

bk+1 = nk+1ak + mk+1bk,
(2)

with similar equations (which we shall not need) for (ck) and (dk).

Conditions:

[1] Let (�i)i�1, (⇠i)i�1 be real sequences � 1 such that
X

i�1

1

�i
and

X

i�1

1

⇠i
< +1

Defining

K = exp

✓X

i�1

1

�i
+

X

i�1

1

⇠i

◆
,

we then define �0 = ⇠0 = K.

We have two integer sequences nk, mk � 1 for k � 0 (the sequences can be fixed
from the beginning, or these values can be chosen along the way), and then choose
inductively two further integer sequences nk, mk � 1 so that these four sequences
satisfy:

[2] n0m0 > n0m0

so equivalently, detM0 > 0,

and so that for all k � 0 :

[3] mk+1 > nk+1

�
�k

nk

nk

�
,

[4] nk+1 > mk+1

�
⇠k

bk

ak

�
.

Lemma 3.3. Conditions [3] and [4] guarantee that

[5]
↵0

�0
⌘ n1

n1
⇥ n0n1 + n0m1

n0n1 + n0m1
> K,

and that for all k � 1,

[6] detMk = nkmk � nkmk > 0.

Proof of Lemma 3.3. We start by proving [5]. From [3] and [4], for k = 0, since
�0 = ⇠0 = K, we have:

m1 > K
n0

n0
n1, and m1 <

n0

n0K
n1.

Hence
↵0

�0
⌘ n1

n1
⇥ n0n1 + n0m1

n0n1 + n0m1
=

n1

n1

✓
n1 + n0

n0
m1

n1 + n0
n0

m1

◆
>

1 + K

1 + 1
K

= K.
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We next prove [6]. Multiplying [3] and [4] gives for all k � 0

nk+1mk+1 > nk+1mk+1

✓
�k⇠k

nk

nk

bk

ak

◆
� nk+1mk+1

✓
nk

nk

bk

ak

◆
.

So if we can show that
nk

nk

bk

ak
� 1 (3)

then indeed detMk+1 > 0 for any k � 0. We prove (3) by induction. Recalling that
a0 = n0 and that b0 = n0, it is true for k = 0. Assuming (3) holds for k we prove it
for (k + 1). To this end, we define the following function on the reals:

fk(t) =
nk + mkt

nk + mkt
.

Its derivative is

f 0k(t) =
detMk

(mkt + nk)2

(indeed fk is a fractional linear transformation!). By the induction hypothesis this is
> 0 so fk(·) is a strictly increasing function. Since bk�1/ak�1 > 0 for all k � 1, we
arrive at

bk

ak
= fk

✓
bk�1

ak�1

◆
> fk(0) =

nk

nk
,

which delivers (3) and hence [6], as desired. ⇤

Proof of Theorem 3.2: We define an associated sequence (Pk)k�0 which is column-
stochastic, that is, the column sums are one. This sequence of matrices will be
easier to work with than the original sequence (Mk). Choosing the initial row vector
ht
�1 =

⇥
1 0

⇤
, we define ht

k = ht
�1M0M1 · · ·Mk =

⇥
ak bk

⇤
; this is a left eigenvector

sequence with eigenvalue one, i.e.

ht
k = ht

k�1Mk for k � 1;

the entries of ht
k are strictly positive for k � 0.

We then write Hk, k � 0, for the diagonal matrix with entries given by ht
k , so

Hk =


ak 0
0 bk

�
,

and we define our new matrix sequence by

Pk = HkMk+1H
�1
k+1, k � 0.

Writing 1t for the row vector
1t =

⇥
1 1

⇤
,

we note that

1tPk = 1tHkMk+1H
�1
k+1 = ht

kMk+1H
�1
k+1 = ht

k+1H
�1
k+1 = 1t.

Thus 1t defines a (constant) left eigenvector for Pk with eigenvalue one, so the Pk are
column-stochastic (with strictly positive entries).



14 SEBASTIEN FERENCZI, ALBERT M. FISHER AND MARINA TALET

We write Pk =


pk pk

1� pk 1� pk

�
; then

P0P1 · · ·Pk = H0M1 · · ·Mk+1H
�1
k+1 ⌘


↵k �k

1� ↵k 1� �k

�

which is also column-stochastic. (One checks that for k = 0 the previous definition
of ↵0/�0 in Lemma 3.3 agrees with this.) We now explain the strategy of the proof.
Letting C+ denote the positive cone in the space of column vectors R2, then C+

k =
P0P1 · · ·PkC

+ is the cone spanned by the two column vectors


↵k

1� ↵k

�
and


�k

1� �k

�
.

We wish to show that C+
1 = \k�0C

+
k is nontrivial.

By [6] of Lemma 3.3, detM1M2 · · ·Mk+1 > 0; this is equivalent to detP0P1 · · ·Pk =
↵k � �k > 0, so �k < ↵k for all k � 0.

We claim that (↵k) is a decreasing and (�k) an increasing sequence. Indeed, �k+1 =
�k + (↵k � �k)pk+1 with �k < ↵k and pk > 0 for all k � 0; the argument for (↵k) is
similar.

We write ↵ = limk!1 ↵k = infk�0 ↵k and � = limk!1 �k = supk�0 �k. Note that
0 < ↵  � < 1. Therefore,

lim
k!1

P0 · · ·Pk = lim
k!1


↵k �k

1� ↵k 1� �k

�
=


↵ �

1� ↵ 1� �

�
.

Now the cone C+
1 is spanned by the columns of this limiting matrix. We claim that

it is nontrivial if and only if the cone \k�0M0M1 . . . MkC
+ is.

Indeed, M0M1 . . . Mk+1C
+ = M0H

�1
0 P0 · · ·PkHk+1C

+ = M0H
�1
0 P0 · · ·PkC

+, since
Hk+1C

+ = C+. So \k�0M0M1 . . . Mk+1C
+ = \k�0M0H

�1
0 C+

k = M0H
�1
0 C+

1.
As a result, C+

1 is nontrivial if and only if � < ↵.

The rest of the proof of Theorem 3.2 is devoted to showing that � < ↵.

To this end, we define

Ak+1 Bk+1

Ck+1 Dk+1

�
= P0P1 · · ·PkHk+1 = (P0P1 · · ·Pk�1Hk)Mk+1,

so for k � 1, just as in (2),

Ak+1 = nk+1Ak + mk+1Bk

Bk+1 = nk+1Ak + mk+1Bk
. (4)

On the other hand, we have:


Ak+1 Bk+1

Ck+1 Dk+1

�
= P0 · · ·PkHk+1 =


↵k �k

1� ↵k 1� �k

� 
ak+1 0

0 bk+1

�

so

Ak+1 = ↵kak+1, and Bk+1 = �kbk+1. (5)
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From the second equation in (4),

Ak =
Bk+1 �Bkmk+1

nk+1

Substituting into the first equation in (4) for k and (k + 1) gives

Bk+2 �Bk+1mk+2

nk+2
=

Bk+1 �Bkmk+1

nk+1
· nk+1 + Bkmk+1

so
Bk+2

nk+2
+

✓
nk+1mk+1

nk+1
�mk+1

◆
Bk =

✓
mk+2

nk+2
+

nk+1

nk+1

◆
Bk+1.

By [6] , detMk+1 > 0 so the quantity in parentheses on the left is > 0. Therefore,
for all k � 0,

Bk+2 <

✓
mk+2 +

nk+1nk+2

nk+1

◆
Bk+1. (6)

Now from (2), bk+1 > mk+1bk and �k = Bk+1

bk+1
from (5).

This in conjunction with (6) (with index lowered by one) together with [3] leads to

�k <
mk+1 + nknk+1

nk

mk+1

Bk

bk
=

✓
1 +

nknk+1

nkmk+1

◆
�k�1 

✓
1 +

1

�k

◆
�k�1.

Thus

�k < �0

kY

i=1

✓
1 +

1

�i

◆
, k � 1. (7)

We next find a lower bound for ↵k, and equivalently an upper bound for 1/↵k.
From (5) and (4), ↵kak+1 = Ak+1 > Aknk+1 = ↵k�1aknk+1 so, using the first equation
in (2),

1

↵k
<

ak+1

ak

1

nk+1

1

↵k�1
=

✓
1 +

bk

ak

mk+1

nk+1

◆
1

↵k�1
<

✓
1 +

1

⇠k

◆
1

↵k�1
.

Therefore, for all k � 1,

1

↵k
<

1

↵0

kY

i=1

✓
1 +

1

⇠i

◆
. (8)

Thus, multiplying (7) and (8) then taking the limit as k !1, we arrive at

�

↵
 �0

↵0

1Y

i=1

✓
1 +

1

�i

◆✓
1 +

1

⇠i

◆
 �0

↵0
exp

✓ 1X

i=1

1

�i
+

1X

i=1

1

⇠i

◆
=

�0

↵0
K < 1,

where we have used [1] in deriving the first inequality, then the fact that log(1+x)  x
for all x > �1 in writing the second one then finally condition [5]. So � < ↵ and we
are done with the proof of Theorem 3.2.

⇤
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4. A (3⇥ 3) unimodular counterexample

This class of examples is inspired by the combinatorics of the (4⇥ 4) matrices

Lj =

0

BB@

0 0 1 1
mj � 1 m 0 0

nj nj nj � 1 nj

1 1 1 1

1

CCA

which appear in [Kea77]; they can be used to define an adic transformation which is
isomorphic to the interval exchange, see [Fis] (though these matrices play a di↵erent
role in Keane’s paper).

The idea is to remove a row and column from the above matrices, following this by
a permutation of the columns, with everything chosen in such a way as to allow the
rest of Keane’s argument to still go through.

Our matrix sequence (Mi)i�0 is:

Mj =

0

@
mj 0 mj � 1
nj nj � 1 nj

1 1 1

1

A .

As in the last case detMj = �1, and again we replace it by the sequence (M2jM2j+1)j�0

to get a sequence with determinant one.
On R3 we use the norm |x| =

P3
i=1 |xi|. Writing C+ for the positive cone of R3,

then C+ projects to the unit simplex � = {x 2 C+ : |x| = 1} by ⇡ : x 7! x/|x|. We

normalize the linear map Mj on the cone to a nonlinear map fMj on the simplex by
fMj(x) = ⇡ �Mj(x) = Mj(x)/|Mj(x)|.
Theorem 4.1. Suppose that for i � 0, mi, ni are positive integers satisfying:

n0 � 6 and that for all k � 0,
(3nk + 1)  2mk  nk+1.

Then the sequence (Mi)i�0 is not Perron-Frobenius, and so any adic transformation

defined by taking the Mi as edge matrices and then fixing an incoming edge order, is

minimal (since the sequence is primitive) but is not uniquely ergodic.

First we need some lemmas. Fixing k, and given a vector x(k+1) 2 �, we define
inductively for 0  j  k:

x(j) = fMjx
(j+1)

so x(0) = fM0 � fM1 � · · · � fMk(x(k+1)). What we will show is that there are two disjoint
subsimplices in � such that for any k, (e1)

(0) and (e2)
(0) are in these subsimplices,

see Fig. 2.

Lemma 4.2. For any j � 0, for any x 2 �, (fMj(x))3  1/nj.

Proof. We have (Mjx)3 = 1 while |Mj(x)| = nj + (mj + 1)x1 + mjx3 � nj. ⇤

Lemma 4.3. Taking x(k+1) = e2, fixing k � 1, then for any 0  j  k + 1, x
(j)
1 

1/nj.
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�

�

e3

e1 e2

e(0)
1 e(0)

2

Figure 2. For each k, the image simplex �k contains points which
belong to disjoint subsimplices of �.

Proof. For (k +1) this is true since x
(k+1)
1 = (e2)1 = 0. For the (decreasing) induction

step, assuming x
(j+1)
1  1/nj+1 we shall prove that then x

(j)
1  1/nj. Now we know

that x
(j+1)
3  1/nj+1 for any j  k; this is true for j = k since x

(j+1)
3 = 0, while for

all j < k we apply Lemma 4.2. Now since

x
(j)
1 =

mjx
(j+1)
1 + (mj � 1)x(j+1)

3

nj + (mj + 1)x(j+1)
1 + mjx

(j+1)
3

(9)

this will certainly be smaller than 1/nj if mjx
(j+1)
1 + (mj � 1)x(j+1)

3  1. And this

follows from the condition mj  nj+1/2 together with x
(j+1)
3 , x

(j+1)
1  1/nj+1. ⇤

Lemma 4.4. For x(k+1) = e2, for k � 0, x
(0)
2 � 1� 2/n0.

Proof. This follows from the previous two lemmas since x
(0)
2 = 1 � x

(0)
1 � x

(0)
3 �

1� (1/n0 + 1/n0). ⇤

Lemma 4.5. Taking now x(k+1) = e1, then for all k � 0, x
(0)
1 = (e(0)

1 )1 � 1
3 .

Proof. We prove in fact that for all j  k+1, x
(j)
1 � 1

3 , again proceeding by induction.

For j = k + 1, x(k+1)
1 = 1 � 1

3 ; for the induction step we assume that x
(j+1)
1 � 1

3 and
prove it for j.

Now again x
(j)
1 satisfies equation (9). We are to prove that

3mjx
(j+1)
1 + 3(mj � 1)x(j+1)

3 � nj + (mj + 1)x(j+1)
1 + mjx

(j+1)
3

or equivalently that

(2mj � 1)x(j+1)
1 � (3� 2mj)x

(j+1)
3 + nj

or
2mj(x

(j+1)
1 + x

(j+1)
3 ) � (x(j+1)

1 + x
(j+1)
3 ) + nj + 2x(j+1)

3 .

Using the assumption that mj � (3nj + 1)/2, it is enough to show that

3nj(x
(j+1)
1 + x

(j+1)
3 ) � nj + 2x(j+1)

3

or equivalently
3njx

(j+1)
1 � nj � (3nj � 2)x(j+1)

3 .
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But since x
(j+1)
1 � 1

3 while � 1
nj+1

 �x
(j+1)
3 (also for the initial case x

(k+1)
3 = 0) and

(3nj � 2) > 0, this is true. ⇤
Proof of theorem 4.1: Since Mi has entries all > 0, the sequence Mi is certainly
primitive hence any adic transformation defined from it by choosing an incoming edge
order on the Bratteli diagram is minimal.

But the image simplex �k ⌘ fM0 � fM1 � · · · � fMk(�) contains the points e
(0)
1 =

e
(0)
1 (k), with first coordinate � 1/3, and e

(0)
2 = e

(0)
2 (k) whose second coordinate is

> 1 � 2/n1 � 2/3; these conditions define two subsimplices which meet at a single
point on the boundary of �. By primitivity there exists a > 0 such that the third
coordinate of each is > a for all k, so these points are in fact in disjoint subsimplices,
see Fig. 2. Hence the image simplices � ◆ �1 ◆ · · ·�k+1 · · · cannot nest down to a
single point. ⇤

5. A nonprimitive uniquely ergodic adic transformation

We call this example the Chacon adic transformation because of its connection to
a substitution dynamical system of [Fer95], [Fer02], which in turn is closely related
to Chacon’s transformation, a well-known map of the unit interval constructed by
cutting and stacking [Cha69]. The matrix which defines the Bratteli diagram is

A =


3 0
1 1

�
.

As described in the introduction, we think of the substitution ⇢ : 0 7! 0010, ⇢ : 1 7! 1
as mapping from right to left on the Bratteli diagram and so defining an incoming
edge order, see Fig. 3.

We claim that both minimality and unique ergodicity hold for the adic transfor-
mation (⌃+

A \ N , TO). We give a self-contained and “purely adic” proof of this, not
making use of the substitution dynamical system (see Remark 5.2). In this proof we
compare this map to two related adic transformations, also given by substitutions.

We call elements of the alphabet vertices and label edges by pairs of vertices sep-
arated by letters in {a, b, c, d}; a symbol is a vertex or a letter. To specify an edge
path we could list the sequence of edges, but usually we write it in a shorter form as a
single string of symbols, consisting of the corresponding vertex sequence with letters
inserted when necessary to specify an edge unambiguously.

In the Chacon adic space ⌃+
A there are four incoming edges to the vertex 0, ordered

as 0a0 < 0b0 < 1c0 < 0d0, and one edge 11. We use a bar to indicate infinitely
repeated symbols, so e.g. (.0d) = (.0d0d . . . ). The set of points (i.e. edge paths)
with no successor is NSA = {(.0d), (.1)} and those with no predecessor is NPA =
{(.0a), (.1)}.
Remark 5.1. This gives an example of an adic transformation with no continuous
extension to all of ⌃+

A. Indeed, no such definition is possible at the point (.0d), since
the successor of (.0d0d . . . 0d0b0) is (.11 . . . 10) while the successor of (.0d0d . . . 0d0a0)
is (.0a0a . . . 0a0b0).
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0
a //

d //b // 0
a //

d //b // 0
a //

d //b // 0 · · ·

1 //

c���

@@���

1 //

c���

@@���

1 //

c{{{{

=={{{{

1 · · ·

Figure 3. Bratteli diagram for the Chacon adic transformation; the
edge paths form the space ⌃+

A; the substitution maps from right to left.
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Figure 4. Diagram for the intermediate transformation, giving the
space ⌃+

B; incoming orders for vertices 0 and 2 are shown.

Next we define two related stationary adic transformations, both with alphabet
A = {0, 1, 2}; see Figs. 4, 5. For the first of these, the intermediate transformation,
the matrix is

B =

2

4
2 0 1
1 1 1
1 0 2

3

5 with substitution ⇢B : 0 7! 0012, 1 7! 1, 2 7! 2012.

In this diagram there are 9 edges. Those entering vertex 0 are ordered 0a0 <
0b0 < 1c0 < 2d0 and those entering 1 are ordered 2a2 < 0b2 < 1c2 < 2d2, and
there is one edge 11 entering the vertex 1. Here NSB = {(.2d), (.1)} and NPB =
{(.0a), (.2a), (.1)}.

Next we define the final transformation, given by matrix

C =

2

4
2 0 1
1 1 1
1 1 1

3

5 , with substitution ⇢C : 0 7! 0012, 1 7! 12, 2 7! 012.

For this space, there are again 9 edges, with four entering vertex 0 ordered 0a0 <
0b0 < 1c0 < 2d0 (as before), then three entering 2 ordered as 0b2 < 1c2 < 2d2
and lastly two entering 1 ordered by 11 < 2a1. Now NSC = {(.2d2d2d . . . )} and
NPC = {(.0a0a0a . . . ), (.111 . . . )}. We write W s((.1)) for the stable equivalence class
of (.1): all sequences of the form (. ⇤ ⇤ · · · ⇤ 111 . . . ), where ⇤ means “any symbol”,
and note that this is a countable set.

We note that the successor of (.1) is now defined and equals (.2a1), which in turn
maps to (.0b2a1), then (.1c2a1), and so on.

We shall prove:
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Figure 5. Diagram for the final transformation on ⌃+
C , showing in-

coming orders for vertices 0, 2 and 1.

Theorem 5.1. There exist injective continuous maps � : ⌃+
A ! ⌃+

B and  : ⌃+
B !

⌃+
C, such that � is onto all of ⌃+

B minus a countable set and preserves the lexicographic

orders, while  is a bijection, which is order-preserving after a single point has been

removed from both spaces. The dynamics of the adic transformations TA on ⌃+
A \

NA, TB on ⌃+
B \ NB and TC on ⌃+

C \ NC are conjugated by the maps. The shift

transformations are also conjugated by �, but this is not true for  .

These maps conjugate the actions of FCA restricted to ⌃+
A \ {.1}, of FCB on ⌃+

B \
({1} [W s(.2a)) and of FCB on ⌃+

B \W s(.1).

Proof. We define � : ⌃+
A ! ⌃+

B.
Given x = (xi) 2 ⌃+

A, where the symbol sequence xi 2 {0, 1, a, b, c, d} specifies
an edge path, we determine the image �(x) as follows. If we see a block consisting
entirely of 0d or 0a and ending with 0d, we change each 0 to 2. In particular, if the
string x ends in an infinite string of 0a and 0d, which contains infinitely many 0d,
then we change each 0 to 2 there.

We note that by this definition � is a well-defined map from ⌃+
A to ⌃+

B. It is also
shift-invariant, since the code only depends on what happens to the right, so cutting
o↵ an edge on the left does not a↵ect this. We claim next that � is in fact a bijection
from ⌃+

A to ⌃+
B, and that it preserves lexicographic order. It will follow that � is a

bijection on the sets NS,NP and N of the two spaces, and that it conjugates the
successor maps TA : ⌃+

A \ NSA ! ⌃+
A \ NPA and TB : ⌃+

B \ NSB ! ⌃+
B \ NPB and

hence the adic transformations on ⌃+
A \ NA, ⌃+

B \ NB.
For this one can give a combinatorial proof, checking all cases, but which contributes

little to the understanding of what is going on. So instead we give a geometrical proof
based on the pictures which underlie the combinatorial argument. These are pictures
of infinite trees, which rather being infinite towards the branches as often occurs in
mathematics are infinite towards the root (drawn upwards!), see Fig. 8. Each tree
represents an equivalence class W s(x) for some x = (xi) 2 ⌃+

A; this is the stable tree

of x, as described in the introduction. To construct the stable tree of a given string
x, we write the vertices as nodes of the tree and the letters as edges, ordered from left
to right; the 0th vertex is at the bottom, the first above that, with the infinite trunk
representing x extending upwards and all the paths in W s(x) branching o↵ to the
left and right. The adic transformation then has a purely geometrical description, as
shifting from right to left along the ending nodes at the bottom of this tree.
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Our map � is now easily described. It takes a stable tree in ⌃+
A to a stable tree in

⌃+
B as follows: we leave all the edges in place, but change some of the vertex labels

from 0 to 2. The substitution maps in the downwards direction; this change is made
so as to agree with the new substitution rule ⇢B, and leads to the coding description
just given. This proves that we have a bijection which does preserve the lexicographic
order, as claimed. The figure shows a finite part of a stable tree, ending on top with
edge 0b0. The situation depicted is typical for any such tree. Note that the code after
(above) this location does not change this part of the code, and so this proof is valid
no matter what are the previous symbols.

The figure shown covers only the case where some 0b appears. There are thus two
cases not covered. The first is where the string ends in 111 . . . (which means it is
necessarily (.11 . . . )). Now �(.11 . . . ) = (.11 . . . ), handling that case. The second
case is where it ends in a sequence of 0a and 0d; this subdivides into the cases with
finitely or infinitely many 0d. If there are finitely many 0d, then this is just like
the figure but with a 0a on the top replacing the 0b; nothing above that is changed.
Lastly, if we have infinitely many 0d, then any subtree below a given 0d behaves as
if it were the 0d branch below 0b in the figure shown. The trees are nested as we go
upwards, so the bijectivity and order-preservation hold here as well.

We have shown bijectivity and order-preservation from any stable tree in the first
space to a corresponding tree in the second. To check surjectivity, we have to be
sure that no stable tree in ⌃+

B has been entirely missed– but that is just what has
happened! We have already covered all cases where 0 or where 2d occurs infinitely
often, so the only possibility is a string which ends in all 2a. And indeed, the path (.2a)
has no preimage under �. This point is in NPB, and its stable tree is W s((.2a)) =
{(.2a), (.0b2a), (.1c2a), . . . }, listed in dynamical order of T n

B((.2a)).
We recall from §2.2 of [Fis08] that the group FC on the space ⌃+

A is generated by
the collection of maps � which interchange two cylinder sets of equal length which
end in the same edge. From the stable tree picture just described, we see that the
cylinder sets in ⌃+

A ending with 0d at some fixed level n correspond bijectively to
those in ⌃+

B ending on 2d, so these generating maps correspond via the conjugacy.
The point (.1) is a fixed point for FC in both spaces. Hence (⌃+

A,FCA) is conjugate
to the restricted action (⌃+

B \W s(.2a),FCB).
Next we define  : ⌃+

B ! ⌃+
C .

We search in a string y until we find the first occurence of 2d0 or 2d2. We code the
maximal block 2a2a . . . 2a2d0 to 2a1 . . . 1c0, and the maximal block 2a2a . . . 2a2d2 to
2a1 . . . 1c2; in this definition we also allow no a0s. We also code a maximal infinite
string 2a which follows some finite string to 2a1. All other strings are left unchanged.
For some examples, 2d0 is mapped to 1c0, 2a2a2a2d0 is mapped to 2a111c0, and
(.1c2a2d) is mapped to (.1c2a1c). We claim this defines an order-preserving map
from ⌃+

B to ⌃+
C .

For the proof see Figs. 9, 10: we depict what happens for a finite tree below an
edge 2d0, the case of 2d2 being similar. The map may remove an edge and replace
it elsewhere, as indicated, but as the location in the tree is unchanged, this gives a
bijection between the two finite stable trees, which moreover is order-preserving since
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the lexicographic orders have been represented geometrically from left to right. Note
that the new tree faithfully represents the new substitution rule ⇢C .

The map on such a finite tree is well-defined, as knowing further edges above this
will not change this part of the code (i.e. the tree pictures are nested). This implies
that there is an order-preserving bijection between two stable trees when the string
y 2 ⌃+

B contains infinitely many vertices 0 or infinitely many occurences of 2d. The
only other possibility in the domain of  is a string (.1) or a string ending in 2a. But
by definition  (.1) = (.1) and the end of a string of the form 2a is coded to 2a1. This
concludes the proof that  is well-defined on all of ⌃+

B and is injective.
It remains to check surjectivity. Points of the following type have preimages, as we

have seen: those with vertex 0 or 2d occuring infinitely often. Also, any tree below
1c2 has a well-defined preimage, as one sees from the figure. A path ending in 2a1
is the image of one ending in 2a, covering that case. The image of (.1) is (.1). This
covers all cases, so the map is onto and hence is a bijection from ⌃+

B onto ⌃+
C .

To complete the verification of order-preservation there is one more tree to check
in ⌃+

C , the tree containing (.11 . . . ). In ⌃+
B this tree contains that one path but in ⌃+

C

the stable tree of  (.11 . . . ) = (.11 . . . ) has countably many paths. This string is in
NSB\NPB and inNPC but notNSC , as there it has a successor,  (.2a) = (.2a1 . . . ).
The adic orbit then follows the images of T n

B applied to this point, see Fig. 7. So  
is an order-preserving bijection from ⌃+

B \ {(.11 . . . )} onto ⌃+
C \ {(.11 . . . )}.

Interestingly, this time the map is not shift-invariant. For an example,  (.2a2d0b0) =
(.2a1c0b0) but  (�(.2a2d0b0)) =  (.2d0b0) = (.2d0b0) 6= (.1c0b0) = �(.2a1c0b0).
One can also see this in the tree picture: whether or not one of the new branches is
used depends on the final edge, so if this is removed no change is made.

Finally we consider the actions of FCB and FCC . By similar reasoning as before,
the action of FCB restricted to ⌃+

B \ (W s(.2a) [ {.1}) is conjugate to the action of
FCC on ⌃+

C \W s(.1). The statement in the theorem follows.
⇤

We then conclude:

Proposition 5.2.
(i)The action of the group FCC on ⌃+

C is minimal and uniquely ergodic; while this is

false for FCA on ⌃+
A and FCB on ⌃+

B, both of these actions are essentially minimal

and essentially uniquely ergodic.

(ii) Any adic transformation on (⌃+
M \ NM , TM,O) for M = A, B or C and for any

order O is both minimal and uniquely ergodic.

Proof. (i) Since the matrix C is primitive, by Lemma 2.4 of [BM77] the action of
FCC is uniquely ergodic. (Alternatively one can apply the criterion of [Fis08] to the
constant sequence C, as the “Perron-Frobenius property” follows of course from the
Perron-Frobenius theorem). Minimality follows easily from primitivity, as shown for
the nonstationary case in [Fis08].

The invariant probability measure is nonatomic, and is taken by the conjugacies of
Theorem 5.1 to nonatomic invariant probability measures for FCB and FCA. Con-
versely any nonatomic measure on those spaces gives zero mass to NB,NA and so
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transports to an invariant probability measure for FCC . Minimality for FCC implies
essential minimality for FCB,FCA since NB,NA are countable sets.
(ii) Given one of the adic transformations (⌃+

M \NM,O, TM,O), we know from (i) that
FCM is essentially minimal and essentially uniquely ergodic. A nonatomic invari-
ant measure for FCM is invariant for TM,O, showing existence, while any invariant
probability measure µ for TM,O on ⌃+

M \ NM,O is invariant for FCM (one checks
this on cylinder sets, see Proposition 2.9 of [Fis08]), showing uniqueness. Hence
(⌃+

M \ NM,O, TM,O) is uniquely ergodic.
The orbits of FCA are identical to the stable equivalence classes; we know these

are all dense except for the equivalence class of (.1) which is a fixed point for FCA.
The same holds for FCB. Thus both these actions are essentially minimal.

⇤
So in particular the Chacon adic transformation (⌃+

A \NA, TA) is both minimal and
uniquely ergodic.

Remark 5.2. The substitution defining the “final adic” above comes from [Fer02]
where the Chacon substitution dynamical system was compared to that substitution
dynamical system. Our proof here is essentially an “adic version” of that idea.

A point that we find interesting in the above construction is that though the map
� conjugates the adic transformations, it does not congugate the shift maps. We
note that this is a one-sided phenomenon, as the corresponding block code on the
two-sided spaces does conjugate the shifts as well. A geometrical view of this will be
given in a later paper.

We mention that a quick (but not self-contained) proof of the minimality and unique
ergodicity of the Chacon adic transformation can be given which is based on the
following three facts: Mosse’s recognizability theorem ([Mos92], [Mos96], [Hos00]), the
canonical correspondence between stationary adic transformations and substitution
dynamical systems for the primitive, recognizable case, first noted by Livshits, [Liv87],
[Liv88], and the known fact (proved in any of several known ways [Fer02]) that the
Chacon substitution dynamical system is minimal and uniquely ergodic. In brief,
there is always a canonical factor map from the edge path space ⌃+

A\N to the biinfinite
substitution dynamical system (⌦, S) with left shift map S; this is bijective i↵ the
substitution is recognizable, which is implied by aperiodicity via Mosse’s theorem.
In contrast to our purely adic proof, the validity of this approach depends on the
order O, as recognizability is not independent of the particular substitution chosen.
For an example of this, the Thue-Morse substitution ⇢(0) = 01, ⇢(1) = 10 and the

substitution e⇢(0) = 01, e⇢(1) = 01 have the same matrix


1 1
1 1

�
, yet while the first is

recognizable the second is not; indeed as an adic transformation e⇢ gives the adding
machine, but the corresponding substitution dynamical system consists of a factor of
this, a space with two points which are interchanged by the map.
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