A straight line may be the shortest

distance between two points, but it

is by no means the most interesting.
—Doctor Who

In “The Time Monster”
By Robert Sloman
BBC, 1972

Although this may seem a paradox,

all exact science is dominated by the
idea of approximation.

—Bertrand Russell
In W. H. Auden and

L. Kronenberger, eds.
The Viking Book of Aphorisms
Viking, 1962, p. 263
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1.0 Introduction: Taxicah Geometry

We live in a three-dimensional Euclidean world, and, therefore, concepts from
Euclidean geometry govern our way of looking at the world. In particular, imagine
stopping people on the street and asking them to fill in the blank in the following
sentence: “The shortest distance between two pointsisa ______” They will almost
certainly respond with “straight line” There are, however, other equally sensible and
intuitive notions of distance. By allowing ourselves to think of “distance” in a more
flexible way, we will open the door to the possibility of having a “distance” between
polynomials, functions, matrices, and many other objects that arise in linear algebra.

In this section, you will discover a type of “distance” that is every bit as real as
the straight-line distance you are used to from Euclidean geometry (the one that is a
consequence of Pythagoras’ Theorem). As you'll see, this new type of “distance” still
behaves in some familiar ways.

Suppose you are standing at an intersection in a city, trying to get to a restaurant
at another intersection. If you ask someone how far it is to the restaurant, that person is
unlikely to measure distance “as the crow flies” (i.e., using the Euclidean version of
distance). Instead, the response will be something like “It’s five blocks away.” Since this
is the way taxicab drivers measure distance, we will refer to this notion of “distance”
as taxicab distance.

Figure 7.1 shows an example of taxicab distance. The shortest path from A to B
requires traversing the sides of five city blocks. Notice that although there is more
than one route from A to B, all shortest routes require three horizontal moves and
two vertical moves, where a “move” corresponds to the side of one city block. (How
many shortest routes are there from A to B?) Therefore, the taxicab distance from A
to Bis 5.

Idealizing this situation, we will assume that all blocks are unit squares, and we
will use the notation d,(A, B) for the taxicab distance from A to B.

Problem 1 Find the taxicab distance between the following pairs of points:
(a) (1,2) and (5,5) (b) (2,4) and (3, -2)
(c) (0,0) and (=4, -3)  (d) (-2,3)and (1, 3)
(e) (1,Y) and (3,3 () (2.5,4.6) and (3.1, 1.5)
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Problem 2 Which of the following is the correct formula for the taxicab distance
d,(A, B) between A = (a,, a,) and B = (b, b,)?

(a) dt(A, B) = (al - b]) + (az - bz)
(b) (4, B) = (lay| = [b3]) + (as] = |2])
(c) di(4, B) = ’al - b1‘ + |a2 - b2|

We can define the taxicab norm of a vector v as
IV = di(v, 0)

Problem 3 Find |v|, for the following vectors:

Problem 4 Show that Theorem 1.3 is true for the taxicab norm.
Problem 5 Verify the Triangle Inequality (Theorem 1.5), using the taxicab norm
and the following pairs of vectors:

@) u = mv - M (b) u = {_”’V - {_ﬂ

Problem 6 Show that the Triangle Inequality is true, in general, for the taxicab
norm.

In Euclidean geometry, we can define a circle of radius r, centered at the origin, as
the set ofall x such that || x|| = r. Analogously, we can define a taxicab circle of radius
r, centered at the origin, as the set of all x such that |x|, = r.

Problem 7 Draw taxicab circles centered at the origin with the following radii:
(@ r=3 (b) r=14 (c)r=1

Problem 8 In Euclidean geometry, the value of 7 is half the circumference of a
unit circle (a circle of radius 1). Let’s define taxicab pi to be the number 7, that is half
the circumference of a taxicab unit circle. What is the value of 7,?

In Euclidean geometry, the perpendicular bisector of a line segment AB can be
defined as the set of all points that are equidistant from A and B. If we use taxicab
distance instead of Euclidean distance, it is reasonable to ask what the perpendicular
bisector of a line segment now looks like. To be precise, the taxicab perpendicular
bisector of AB is the set of all points X such that

d(X,A) = d,(X, B)
Problem 9 Draw the taxicab perpendicular bisector of AB for the following pairs
of points:
(a) A=1(2,1,B=(4,1) (b)) A=(-1,3),B=(-1,-2)
() A=(1,1),B=(5,3) (d A=(Q1),B=(5,5)

As these problems illustrate, taxicab geometry shares some properties with
Euclidean geometry, but it also differs in some striking ways. In this chapter, we will
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encounter several other types of distances and norms, each of which is useful in its
own way. We will try to discover what they have in common and use these common
properties to our advantage. We will also explore a variety of approximation problems
in which the notion of “distance” plays an important role.

Inner Product Spaces

In Chapter 1, we defined the dot product u - v of vectors u and vin R", and we have
made repeated use of this operation throughout this book. In this section, we will use
the properties of the dot product as a means of defining the general notion of an inner
product. In the next section, we will show that inner products can be used to define
analogues of “length” and “distance” in vector spaces other than R".

The following definition is our starting point; it is based on the properties of the
dot product proved in Theorem 1.2.

Definition  Aninner product onavector space V is an operation that assigns
to every pair of vectors u and v in V a real number (u, v) such that the following
properties hold for all vectors u, v, and w in V and all scalars c:

L (wv)=(vu

2.(u,v+w=uv)+ (uw

3. (cu,v) = c(u,v)

4. (u,u) = 0 and (u, u) = 0 if and only ifu = 0

A vector space with an inner product is called an inner product space.

Remark Technically, this definition defines a real inner product space, since it as-
sumes that V is a real vector space and since the inner product of two vectors is a real
number. There are complex inner product spaces too, but their definition is somewhat
different. (See Exploration: Vectors and Matrices with Complex Entries at the end of this
section.)

Example 1.1

»
B

R" is an inner product space with (u, v) = u + v. Properties (1) through (4) were

verified as Theorem 1.2.

The dot product is not the only inner product that can be defined on R".

Example 1.2

b

u v
Letu = [ 1] and v = { 1} be two vectors in R%. Show that
5] V)

(w,v) = 2uv; + 3wy,

defines an inner product.
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Solution  We must verify properties (1) through (4). Property (1) holds because
(u,v) = 2uv, + 3uyv, = 2viuy + 3vu, = (v, 0)

Wy

Next, let w = { }.We check that

W,
(w,v + w) = 2u,(v; + wy) + 3u,(v, + wy)
= 2uyv, + 2uyw, + 3uyv, + 3u,w,
= Quyv, + 3uyv,) + Quuw, + 3uw,)
= (u,v) + (u, w)

which proves property (2).
If ¢ is a scalar, then

(cu, v) = 2(cu)v, + 3(cuy)v,

= cQuv, + 3uv,)

c(u, v)

which verifies property (3).
Finally,

(w,u) = 2uyu, + 3uyu, = 2ul + 3u3 =0

and it is clear that (u, u) = 2u} + 3uj = 0 if and only if u; = u, = 0 (that is, if and
only if u = 0). This verifies property (4), completing the proof that (u, v), as defined,

is an inner product.

Example 7.2 can be generalized to show that if wy, ..., w, are positive scalars and
U Vi
u=|: and v =
ul’l V”

are vectors in R”, then

<u’ V> = wiVy A e ed e WyldyVy (1)

defines an inner product on R", called a weighted dot product. If any of the weights
w; is negative or zero, then Equation (1) does not define an inner product. (See Exer-
cises 13 and 14.)

Recall that the dot product can be expressed asu + v = u’v. Observe that we can
write the weighted dot product in Equation (1) as

(w,v) = u'Wy
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where W isthe n X n diagonal matrix

Wl O
W= :
0 Wn

The next example further generalizes this type of inner product.

Example 1.3

Let A be a symmetric, positive definite n X n matrix (see Section 5.5) and let wand v
be vectors in R". Show that

(u,v) = u'Av

defines an inner product.

Solution  We check that
(u,v) = u'Av = u-Av = Av-u
=Avou= ("4 u=v"Au = (v,u)
Also,
(n,v+ w) = u’Av + w) = u"Av + v'Aw = (0, V) + (u, W)
and
(cu,v) = (cu)TAv = c(u"Av) = c(u,v)

Finally, since A is positive definite, (u, u) = u’Au > 0 for all u # 0, so (u, u) =
u’Au = 0ifand only if u = 0. This establishes the last property.

4 =2

To illustrate Example 7.3, let A = [ 7}. Then

4 —21|v
(u,v) = u'Av = [y uz]{ 5 7“ 1} = duv, — 2uv, — 2uyv, + 7u,v,
_ v,

The matrix A is positive definite, by Theorem 5.24, since its eigenvalues are 3 and 8.
Hence, (u, v) defines an inner product on R
We now define some inner products on vector spaces other than R".

Example 1.4

\

In P,, let p(x) = ap + a;x + a,x” and q(x) = by + byx + b,x”. Show that
(p(x), q(x)) = agby + a,b; + ayb,

defines an inner product on %,. (For example, if p(x) = 1 — 5x + 3x* and q(x) =
6 + 2x — x*, then (p(x), q(x)) =1+ 6+ (=5) = 2+ 3 - (=1) = —7.)

Solution  Since %, is isomorphic to R’, we need only show that the dot product in R’
is an inner product, which we have already established.
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‘ »
o

;ﬂx\ Example 1.9 Let fand gbe in €[a, b], the vector space of all continuous functions on the closed
interval [a, b]. Show that

b
() = | fo0g00 ax

a

defines an inner product on €[a, b].

Solution We have
b

b
(fg)= J fogx) dx = J gX)f(x) dx = (g, f)

a a

Also, if h is in ‘6 [a, b], then

b
(fgt+h= J f0)(g(x) + h(x)) dx

a

b
= J (f(x)g(x) + f(x)h(x)) dx

a

b b
= J f(x)g(x)dx + { f(x)h(x) dx
(g +{fih)

If ¢ is a scalar, then

b
(c.g) = J of (x)g(x) dx

Il
o
R’
<o
=
=
Nl
oQ
—~~
Ral
QU
=

=c(fg)

b
Finally, (f, f) = J (f(x))* dx = 0,and it follows from a theorem of calculus that, since f

a

b
is continuous, (f, f) = J (f(x))* dx = 0if and only if fis the zero function. Therefore,

a

(f,£)is an inner product on €|[a, b]. l

Example 7.5 also defines an inner product on any subspace of € [a, b]. For example,
we could restrict our attention to polynomials defined on the interval [a, b]. Suppose
we consider P[0, 1], the vector space of all polynomials on the interval [0, 1]. Then,
using the inner product of Example 7.5, we have

1 1
(x*1 +x>=f x*(1 +x)dx=[(x2+x3)dx
0 0
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Properties of Inner Products

The following theorem summarizes some additional properties that follow from the
definition of inner product.

Theorem 1.1

Let u, v, and w be vectors in an inner product space V and let c be a scalar.

a. (u+v,w)=(u,w) +(v,w)
b. (u, cv) = c(u,v)
c. (u,0)=(0,v)=0

Proof We prove property (a), leaving the proofs of properties (b) and (c) as
Exercises 23 and 24. Referring to the definition of inner product, we have

(u+v,w)=(w,u+v) by (1)
=Wwu) + (w,v) by
=(ww) + {(nw) by

Length, Distance, and Orthogonality

In an inner product space, we can define the length of a vector, distance between vec-
tors, and orthogonal vectors, just as we did in Section 1.2. We simply have to replace
every use of the dot product u + v by the more general inner product (u, v).

Definition  Let uand v be vectors inan inner product space V.

1. The length (or norm) of vis ||v|| = V{v,v).
2. The distance between u and vis d(u, v) = |lu — v|.
3. uand v are orthogonal if (u, v) = 0.

Note that ||v| is always defined, since (v, v) = 0 by the definition of inner product, so
we can take the square root of this nonnegative quantity. As in R", a vector of length 1
is called a unit vector. The unit sphere in V is the set S of all unit vectors in V.

Example 1.6

\/

Consider the inner product on € [0, 1] given in Example 7.5. If f(x) = x and g(x)
3x — 2, find

@ £ (b) d(f.g) © (£.8)
Solution (a) We find that

(£f) = sz(X)dx = L x*dx = %T = %
so |fll = V(£f) = 1/V3.
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(b) Sinced(f,g) = |f — gl = V(f— &f— g)and
fl) —gl) =x—(Bx—2)=2—-2x=2(1 — x)

we have (f-gf—g =J’0 (f(x) — g(x)* dx =J’0 4(1 — 2x + x?) dx
O 4
:4[x—x2+—} ==
T

Combining these facts, we see that d(f, g) = V4/3 = 2/ V3.
(c) We compute

1 1 1
(f8) = L f(x)g(x) dx = L x(3x — 2)dx = L (3x* — 2x)dx = [x* — x%]; =0

g

It is important to remember that the “distance” between f and g in Example 7.6
does not refer to any measurement related to the graphs of these functions. Neither
does the fact that f and g are orthogonal mean that their graphs intersect at right
angles. We are simply applying the definition of a particular inner product. However,
in doing so, we should be guided by the corresponding notions in R* and R’, where
the inner product is the dot product. The geometry of Euclidean space can still guide
us here, even though we cannot visualize things in the same way.

Thus, fand g are orthogonal.

‘ »
o

Example 1.1 Using the inner product on R* defined in Example 7.2, draw a sketch of the unit
sphere (circle).

Solution Ifx = {x
Y
of all x such that |x| = 1, we have

1=|x] = Vixx)=V2x’* +3y* or 2x>+ 3y’ =1

This is the equation of an ellipse, and its graph is shown in Figure 7.2.

], then (x, x) = 2x* + 3y~ Since the unit sphere (circle) consists

Figure 1.2
A unit circle that is an ellipse
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We will discuss properties of length, distance, and orthogonality in the next sec-
tionand in the exercises. One result that we will need in this section is the generalized
version of Pythagoras’ Theorem, which extends Theorem 1.6.

Theorem 1.2

Pythagoras’ Theorem

Let u and v be vectors in an inner product space V. Then u and v are orthogonal
if and only if

lw +v]* = ful? + fv]?

Proof  Asyouwill be asked to prove in Exercise 32, we have
lw+vIP* = (u + voutv) = fuf” + 2(u,v) + |v|’

It follows immediately that Ju + v||* = |u|* + |v||* if and only if (u, v) = 0.
|-

Orthogonal Projections and the Gram-Schmidt Process

In Chapter 5, we discussed orthogonality in R". Most of this material generalizes
nicely to general inner product spaces. For example, an orthogonal set of vectors
in an inner product space V is a set {v,, . .., v} of vectors from V such that (v vj) =
0 whenever v; # v;. An orthonormal set of vectors is then an orthogonal set of unit
vectors. An orthogonal basis for a subspace W of V is just a basis for W that is an
orthogonal set; similarly, an orthonormal basis for a subspace W of V is a basis for W
that is an orthonormal set.

In R", the Gram-Schmidt Process (Theorem 5.15) shows that every subspace has
an orthogonal basis. We can mimic the construction of the Gram-Schmidt Process
to show that every finite-dimensional subspace of an inner product space has an or-
thogonal basis—all we need to do is replace the dot product by the more general inner
product. We illustrate this approach with an example. (Compare the steps here with
those in Example 5.13.)

8

Example 1.8

Y

Construct an orthogonal basis for %, with respect to the inner product

e = | fgn) de

by applying the Gram-Schmidt Process to the basis {1, x, x°}.

Solution Letx; = 1, x, = x,and x; = x°. We begin by setting v; = x; = 1. Next we
compute

: ! 1 X271
(v, vy) = f dx = x} =2 and (v, x,)= J iy = 7} -0
1 . .

=],



Science Source/Photo Researchers

938 Chapter 7 Distance and Approximation

s

Adrien Marie Legendre (1752-1833
was a French mathematician who
worked in astronomy, number
theory, and elliptic functions. He
was involved in several heated
disputes with Gauss. Legendre
gave the first published statement
of the law of quadratic reciprocity
in number theory in 1765. Gauss,
however, gave the first rigorous
proof of this result in 1801 and
claimed credit for the result,
prompting understandable outrage
from Legendre. Then in 1806,
Legendre gave the first published
application of the method of least
squares in a book on the orbits of
comets. Gauss published on the
same topic in 1809 but claimed
he had been using the method
since 1795, once again infuriating
Legendre.

perpy (v)

projw(v)

w

Figure 1.3

Therefore,

To find vs, we first compute

1 371 1 471
% 2 f x
, = 2dx = = == , = 3 dx = & =0,
(v, X3) J xtdx == }1 3 (V3 X3) X dx 4}1

=51 =
1
2
vy, vy) = J wide = =

Then

_ (V1 X3) (v, X;) 2
V3 —_ X3 - Vl - VZ =X —
(V1> vy) (V2 V)

0
(1) = 7x =x* —
3

[\)|w|w
W | =

It follows that {v), v,, v;} is an orthogonal basis for %, on the interval [—1, 1]. The
polynomials

1
1, % x*—3

are the first three Legendre polynomials. If we divide each of these polynomials by
its length relative to the same inner product, we obtain normalized Legendre polyno-

mials (see Exercise 41).

Just as we did in Section 5.2, we can define the orthogonal projection proj, (v)
of a vector v onto a subspace W of an inner product space. If {u;, . .., w} is an
orthogonal basis for W, then

<<:,l:>> U

projy(v) =

Then the component of v orthogonal to W is the vector

perpw(v) = v — projy(v)

As in the Orthogonal Decomposition Theorem (Theorem 5.11), projy(v) and
perpy (v) are orthogonal (see Exercise 43), and so, schematically, we have the situa-
tion illustrated in Figure 7.3.

We will make use of these formulas in Sections 7.3 and 7.5 when we consider
approximation problems—in particular, the problem of how best to approximate a
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given function by “nice” functions. Consequently, we will defer any examples until
then, when they will make more sense. Our immediate use of orthogonal projection
will be to prove an inequality that we first encountered in Chapter 1.

The Cauchy-Schwarz and Triangle Inequalities

The proofs of identities and inequalities involving the dot product in R" are easily
adapted to give corresponding results in general inner product spaces. Some of these
are given in Exercises 31-36. In Section 1.2, we first encountered the Cauchy-Schwarz
Inequality, which is important in many branches of mathematics. We now give a
proof of this result for inner product spaces.

Theorem 1.3

This inequality was discovered by
several different mathematicians,
in several different contexts. It is
no surprise that the name of the
prolific Cauchy is attached to it.
The second name associated with
this result is that of Karl Herman
Amandus Schwarz (1843-1921),
a German mathematician who
taught at the University of Berlin.
His version of the inequality that
bears his name was published

in 1885 in a paper that used
integral equations to study
surfaces of minimal area. A third
name also associated with this
important result is that of the
Russian mathematician Viktor
Yakovlevitch Bunyakovsky (1804-
1889). Bunyakovsky published the
inequality in 1859, a full quarter-
century before Schwarz’s work on
the same subject. Hence, it is more
proper to refer to the result as the
Cauchy-Bunyakovsky-Schwarz
Inequality.

The Cauchy-Schwarz Inequality

Let uand v be vectors in an inner product space V. Then
(vl = Ju[v]

with equality holding if and only if u and v are scalar multiples of each other.

Proof Ifu = 0, then the inequality is actually an equality, since

0, v)l =0 = [o]]Iv]

u v
uu and

(u, )

perpw v = v — proj,(v) are orthogonal, we can apply Pythagoras’ Theorem to obtain

Ifu # 0, then let W be the subspace of V spanned by u. Since projy, (v) =

Ivl?

Iprojw (v) + (v = projw () || = [lproju (v) + perpy(v)|* @)

Iprojw ) [* + [[perpw (v)|*

It follows that [|projy (v)||* = | v Now

(uv) mw>:<mwﬁmw:mw2<mﬁ

ww)” wu'/  \(wu)

Iproin 1 =

so we have

(u, v)?

ul”

= ||v|* or, equivalently, (u, v)* < |[u?|v]?

Taking square roots, we obtain |(u, v)| < |lu] ||v].
Clearly this last inequality is an equality if and only if ||proj, (v)|* = ||v|* By
Equation (2) this is true if and only if perpy, (v) = 0 or, equivalently,

(u, v)

v = projy(v) = (o u)
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If this is so, then v is a scalar multiple of u. Conversely, if v = cu, then

) = ) = cu (u,cu) B c(u, u) 0
perpy (v) = v — proj,(v) = cu wu) u=cu W u) u=
so equality holds in the Cauchy-Schwarz Inequality. -

For an alternative proof of this inequality, see Exercise 44. We will investigate
some interesting consequences of the Cauchy-Schwarz Inequality and related in-
equalities in Exploration: Geometric Inequalities and Optimization Problems, which
follows this section. For the moment, we use it to prove a generalized version of the
Triangle Inequality (Theorem 1.5).

Theorem 1.4  The Triangle Inequality

Let u and v be vectors in an inner product space V. Then

lw+ vl = fuf| + v

Proof  Starting with the equality you will be asked to prove in Exercise 32, we have
Ju +v]* = fuf* + 20w, v) + | v

= Jlul? + 2w v + |v]*

< |lu|®> + 2ja|/|v]| + |v|? by Cauchy-Schwarz
= (ull + fv])?
Taking square roots yields the result. -
| Exercises 1.1 ;
. 1 4 4 6. (p(x), q(x)) is the inner product of Example 7.5 on the
InExercises 1-4,let w = | landv = . L vector space %, [0, 1]. Compute
2 3
1. (u, v) is the inner product of Example 7.2. Compute (@) (p(x), q(x)) () px) | (c) d(p(x), q(x))
@) (wv)  (b) [ull () d(u,v) 7. In Exercise 5, find a nonzero vector orthogonal to p(x).
2 (u,v) is the inner product of Example 7.3 with I8 8. In Exercise 6, find a nonzero vector orthogonal to p(x).

6 2
A= [ } Compute iy
2 3 12 In Exercises 9 and 10, let f(x) = sin x and g(x) = sin x +

(@) (u,v) () |u] (c) d(u,v) cos x in the vector space 6 [0, 2] with the inner product
3. In Exercise 1, find a nonzero vector orthogonal to u. defined by Example 7.5.
4. In Exercise 2, find a nonzero vector orthogonal to u. 9. Compute
@ (f8) ) [l (c) d(/. 8

In Exercises 5-8, let p(x) = 3 — 2xand g(x) =1 + x + x° 10. Find a nonzero vector orthogonal to f.

5. (p(x), q(x)) is the inner product of Example 7.4. Compute 11. Let g, b, and ¢ be distinct real numbers. Show that

@) (p(x),q(x) ) [p] (@ d(px),q(x) (p(x), q(x)) = p(a)q(a) + p(b)q(b) + p(c)q(c)



defines an inner product on %,. [Hint: You will need
the fact that a polynomial of degree n has at most n
zeros. See Appendix D.]

12. Repeat Exercise 5 using the inner product of Exer-
cise 1l witha=0,b=1,c= 2.

In Exercises 13-18, determine which of the four inner prod-
uct axioms do not hold. Give a specific example in each case.

u, | v
13. Letu = { "landv = { 1} in R% Define (u, v) = u;v,.
U V)
f .
14.Letu=| '|andv = '|in R Define
LU V2
(W, v) = uv; — UV,
T e
15.Letu=| '|andv = '|inR% Define
LU V2

(W, v) = uyv, + vy,

16. In P,, define (p(x), q(x)) = p(0)q(0).
17. In P,, define (p(x), q(x)) = p(1)q(1).
18. In M,,, define (A, B) = det(AB).

In Exercises 19 and 20, (u, v) defines an inner product

u v
on R?, whereu = [ 1} andv = { 1]. Find a symmetric
U, V2

matrix A such that (u, v) = u’Av.
19. (u,v) = duyv, + wyv, + uv, + 4wy,

20. (w,v) = wyv, + 2uv, + 2uv, + Sy,

In Exercises 21 and 22, sketch the unit circle in R” for the

u v
given inner product, where u = [ 1} and v = [ 1}.

U, V)

21. (w,v) = uv, + Fu,v,

22. (u, v> = 4w, + uyv, + uyvy + 4uy,
23. Prove Theorem 7.1(b).

24. Prove Theorem 7.1(c).

In Exercises 25-29, suppose that u, v, and w are vectors in
an inner product space such that

(wv)=1, (uw) =5, (v,w)=0
lal =1, vl = V3, |w| =2

Evaluate the expressions in Exercises 25-28.
25. (u + w,v — w)
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26.(2v — w,3u + 2w)
27. |u + v|
28. [2u — 3v + w|

29. Show that u + v = w. [Hint: How can you use
the properties of inner product to verify that
u+v-—w=07?]

30. Show that, in an inner product space, there cannot be
unit vectors uand v with (u,v) < —1.

In Exercises 31-36, (,v) is an inner product. In Exer-

cises 31-34, prove that the given statement is an identity.

3. + vyu—v) = |[u]? = |v|?

32. [lu + v|* = ful* + 2(u,v) + |Iv]”

33. luf® + |[v]* = 2 fu + v + 3w = v|?

3. () = fflu+ v[? = glu = v|?

35. Prove that |u + v| = |u — v| ifand only ifuand v
are orthogonal.

36. Prove that d(u, v) = V |u|* + |v||*ifand only if u

and v are orthogonal.

In Exercises 37-40, apply the Gram-Schmidt Process to the
basis I3 to obtain an orthogonal basis for the inner product
space V relative to the given inner product.

1 1
37.V=R4,B = { {0}, L} }, with the inner product in

Example 7.2

1

0
immediately following Example 7.3

1
38. V=R, B = { [ }, L} }, with the inner product

39.V=2,B={1,1 +x,1 + x + x%}, with the inner
product in Example 7.4

ﬁM&V=@MULB=ﬂJ+%1+x+ﬁhmmme

inner product in Example 7.5

iﬁll. (a) Compute the first three normalized Legendre

polynomials. (See Example 7.8.)
(b) Usethe Gram-Schmidt Process to find the fourth
normalized Legendre polynomial.

42. If we multiply the Legendre polynomial of degree n by
an appropriate scalar we can obtain a polynomial L, (x)
such that L,(1) = 1.

(a) Find Ly(x), L,(x), L,(x), and Ls(x).
(b) It can be shown that L,(x) satisfies the recurrence
relation

_2n — 1 L (%)
Ty et n

L,(x) n—-1

Ln*Z(x)



942 Chapter 7 Distance and Approximation

for all n = 2. Verify this recurrence for L,(x) and a quadratic inequality of the form

L;(x). Then use it to compute Ly(x) and Ls(x). G+ bt +c=0

43. Verify that if W is a subspace of an inner product

space V and vis in V, then perpy, (v) is orthogonal What are a, b, and c in terms of u and v?
to il wiily W (b) Use your knowledge of quadratic equations and

their graphs to obtain a condition on a, b, and ¢
for which the inequality in part (a) is true.
(c) Show that, in terms of u and v, your condition

in part (b) is equivalent to the Cauchy-Schwarz
(@) Lett be areal scalar. Then (fu + v,tu + v) = 0 Inequality.

for all values of ¢. Expand this inequality to obtain

44. Let u and v be vectors in an inner product space V.
Prove the Cauchy-Schwarz Inequality for u # 0 as
follows:



Explorations

Vectors and Matrices with Complex Entries

In this book, we have developed the theory and applications of real vector spaces,
the most basic example of which is R". We have also explored the finite vector spaces
7', and their applications. The set C" of n-tuples of complex numbers is also a vector
space, with the complex numbers C as scalars. The vector space axioms (Section 6.1)
all hold for C", and concepts such as linear independence, basis, and dimension carry
over from R" without difficulty.

The first notable difference between R" and C" is in the definition of dot product.

i
If we define the dot product in C" as in R", then for the nonzero vector v = [J we
have

vl =Vvv =Vi+1P=V-1+1=V0=0

This is clearly an undesirable situation (a nonzero vector whose length is zero) and
violates Theorems 1.2(d) and 1.3. We now generalize the real dot product to C"in a
way that avoids this type of difficulty.

Uy Yy
Definition 1fu=| : |andv = | |arevectorsinC", then the complex

U,

dot product of u and v is defined by

uv=uy oo+ uw,

The norm (or length) of a complex vector v is defined as in the real case:

[v] = Vv-v. Likewise, the distance between two complex vectors u and v is still
defined as d(u, v) = |ju—v]|.
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1. Showthat,forv=| : [inC" ||v| = VI + [+ - + 2.
V}’l
2. Letu = { ]andv = [2 a 3)l}lhnd
1+ 5i

(@) usv (b) fu| () |v| (d) d(u,v) (e) a nonzero vector orthogonal to u
(f) anonzero vector orthogonal to v

The complex dot product is an example of the more general notion of a complex
inner product, which satisfies the same conditions as a real inner product with two
exceptions. Problem 3 provides a summary.

3. Prove that the complex dot product satisfies the following properties for all
vectors u, v, and w in C" and all complex scalars.
(a) u*v=v-u
b) u*(v+w) =u-v+uw
(c) (cu)*v=c(u-v) and u-(cv) = c(u-v)
(d) weu=0 and u-u=0ifandonlyifu = 0.

For matrices with complex entries, addition, multiplication by complex scalars,
transpose, and matrix multiplication are all defined exactly as we did for real ma-
trices in Section 3.1, and the algebraic properties of these operations still hold. (See
Section 3.2.) Likewise, we have the notion of the inverse and determinant of a square
complex matrix just as in the real case, and the techniques and properties all carry
over to the complex case. (See Sections 3.3 and 4.2.)

The notion of transpose is, however, less useful in the complex case than in the
real case. The following definition provides an alternative.

Definition  1fAisacomplex matrix, then the conjugate transpose of A is the
matrix A* defined by

A* = AT

In the preceding definition, A refers to the matrix whose entries are the complex
conjugates of the corresponding entries of A; that is, if A = [a,-j], then A = [Eij ].
4. Find the conjugate transpose A * of the given matrix:

i 2 2 5-2i
A= b) A=

@) {—z’ 3} ) 542 -1 }
i i ) 300 14

. T
(c)A={ } dA=|1-i 4 i
4 0 3—4i . .
1+i O —1i

Properties of the complex conjugate (Appendix C) extend to matrices, as the next
problem shows.

5. Let A and B be complex matrices, and let ¢ be a complex scalar. Prove the
following properties:

(@) A = A (b)) A+B=A+B
() cA=cA (d) AB=AB
(e) (A)T = (A7)



Hermitian matrices are named
after the French mathematician
Charles Hermite (1822-1901).
Hermite is best known for his
proof that the number e is tran-
scendental, but he also was the
first to use the term orthogonal
matrices, and he proved that sym-
metric (and Hermitian) matrices
have real eigenvalues.

The properties in Problem 5 can be used to establish the following properties of
the conjugate transpose, which are analogous to the properties of the transpose for
real matrices (Theorem 3.4).

6. Let A and B be complex matrices, and let ¢ be a complex scalar. Prove the
following properties:

(a) (A%)* = A
(c) (cA)* = cA*

(b) (A + B)* = A% + B
(d) (AB)* = B*A*

7. Show that for vectors u and v in C", the complex dot product satisfies
u-v = w¥v. (This result is why we defined the complex dot product as we did. It
gives us the analogue of the formula u+v = u’v for vectors in R".)

For real matrices, we have seen the importance of symmetric matrices, especially
in our study of diagonalization. Recall that a real matrix A is symmetric if A” = A. For
complex matrices, the following definition is the correct generalization.

Definition A square complex matrix A is called Hermitian if A* = A—that
is, if it is equal to its own conjugate transpose.

8. Prove that the diagonal entries of a Hermitian matrix must be real.
9.  Which of the following matrices are Hermitian?

2 1+ [ —1 2 — 3i
A= b) A =
(@) L—i i} (b) 2-3 5
3 . 1 1+4i 3—4i
- . 1
= d)A=|1-4i j
(©) L—Si 3 } (@) to2 :
L3+ —1i 0
0 3 2 [ 3 0 -2
e) A=|-3 0 -1 f) A= 0 2 1
-2 1 0 -2 1 5

10. Prove that the eigenvalues of a Hermitian matrix are real numbers. [Hint:
The proof of Theorem 5.18 can be adapted by making use of the conjugate transpose
operation. ]

11. Prove that if A is a Hermitian matrix, then eigenvectors corresponding to
distinct eigenvalues of A are orthogonal. [Hint: Adapt the proof of Theorem 5.19
usingu+v = w*vinstead ofu-v = u’v.]

Recall that a square real matrix Q is orthogonal if Q7' = Q. The next definition
provides the complex analogue.

Definition

A square complex matrix U is called unitary if U~' = U*.

Just as for orthogonal matrices, in practice it is not necessary to compute U~ directly.
You need only show that U*U = I to verify that U is unitary.
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12.  Which of the following matrices are unitary? For those that are unitary, give
their inverses.

[i/\/i —i/\/f] b) [1 +i 1+ 1}

@ 1vi e L PR

o {3/5 _4/5} o (1+é)/\/8 (1) 2/3/6
4i/5  3i/5

(—-1-9)/V3 0 1/V3

Unitary matrices behave in most respects like orthogonal matrices. The following
problem gives some alternative characterizations of unitary matrices.

13.  Prove that the following statements are equivalent for a square complex
matrix U:
(a) Uis unitary.
(b) The columns of U form an orthonormal set in C" with respect to the complex
dot product.
(c) The rows of U form an orthonormal set in C" with respect to the complex dot
product.
(d) lluxll = lIx|l for every xin C".
(e) Ux-Uy = x-y for every xand y in C".

[Hint: Adapt the proofs of Theorems 5.4-5.7.]
14. Repeat Problem 12, this time by applying the criterion in part (b) or part (c)
of Problem 13.

The next definition is the natural generalization of orthogonal diagonalizability
to complex matrices.

Definition A square complex matrix A is called unitarily diagonalizable if
there exists a unitary matrix U and a diagonal matrix D such that

U*AU = D

The process for diagonalizing a unitarily diagonalizable n X n matrix A mimics
the real case. The columns of U must form an orthonormal basis for C" consisting of
eigenvectors of A. Therefore, we (1) compute the eigenvalues of A, (2) find a basis for
each eigenspace, (3) ensure that each eigenspace basis consists of orthonormal vec-
tors (using the Gram-Schmidt Process, with the complex dot product, if necessary),
(4) form the matrix U whose columns are the orthonormal eigenvectors just found.
Then U*AU will be a diagonal matrix D whose diagonal entries are the eigenvalues of
A, arranged in the same order as the corresponding eigenvectors in the columns of U.

15. In each of the following, find a unitary matrix U and a diagonal matrix D
such that U¥*AU = D.

2 i 0 -1
(@) :{—i 2} (b)A:L 0}
-1 1+ . 0
(c) :L—i 0} (d A=1|0 2‘ 1 -
0 1+ 3



See Linear Algebra with Applica-
tions by S. J. Leon (Upper Saddle
River, NJ: Prentice-Hall, 2002).

The matrices in (a), (c), and (d) of the preceding problem are all Hermitian.
It turns out that every Hermitian matrix is unitarily diagonalizable. (This is the
Complex Spectral Theorem, which can be proved by adapting the proof of Theo-
rem 5.20.) At this point you probably suspect that the converse of this result must
also be true—namely, that every unitarily diagonalizable matrix must be Hermitian.
But unfortunately this is false! (Can you see where the complex analogue of the proof
of Theorem 5.17 breaks down?)

For a specific counterexample, take the matrix in part (b) of Problem 15. Itis not
Hermitian, but it is unitarily diagonalizable.

It turns out that the correct characterization of unitary diagonalizability is the
following theorem, the proof of which can be found in more advanced textbooks.

A square complex matrix A is unitarily diagonalizable if and only if

A¥A = AA*

A matrix A for which A*A = AA* is called normal.

16. Show that every Hermitian matrix, every unitary matrix, and every skew-
Hermitian matrix (A* = —A) is normal. (Note that in the real case, this result refers
to symmetric, orthogonal, and skew-symmetric matrices, respectively.)

17.  Prove that if a square complex matrix is unitarily diagonalizable, then it
must be normal.

Geometric Inequalities and
Optimization Problems

This exploration will introduce some powerful (and perhaps surprising) applications
of various inequalities, such as the Cauchy-Schwarz Inequality. As you will see, certain
maximization/minimization problems (optimization problems) that typically arise in a
calculus course can be solved without using calculus at all!

Recall that the Cauchy-Schwarz Inequality in R" states that for all vectors wand v,

fu-vl = Julvl

with equality if and only if u and v are scalar multiples of each other. If u =
[x, - x,"andv=1[y; -~ y,]7, the above inequality is equivalent to

o+l S VREF AVt

Squaring both sides and using summation notation, we have

() =(32)(3)

a1



Equality holds if and only if there is some scalar k such that y; = kx; fori =1, ..., n.
Let’s begin by using Cauchy-Schwarz to derive a special case of one of the most
useful of all inequalities.

1. Let x and y be nonnegative real numbers. Apply the Cauchy-Schwarz

Inequality tou = {\/\[ﬂ andv = {g} to show that

VGRS (1)

with equality if and only if x = y.

2. (a) Prove inequality (1) directly. [Hint: Square both sides.] (b) Figure 7.4
shows a circle with center O and diameter AB = AC + CB = x + y. The segment
CD is perpendicular to AB. Prove that CD = Vxy and use this result to deduce
inequality (1). [Hint: Use similar triangles.]

The right-hand side of inequality (1) is the familiar arithmetic mean (or average)
of the numbers x and y. The left-hand side shows the less familiar geometric mean
of x and y. Accordingly, inequality (1) is known as the Arithmetic Mean-Geometric
Mean Inequality (AMGM). It holds more generally; for n nonnegative variables

Figure 1.4 .
Xps «« .« 5 Xy, it States
pp—— N T S
xlxz .. .xn S 1 2 "
with equality if and only if x;, = x, =+ = x,,.
In words, the AMGM Inequality says that the geometric mean of a set of nonnega-
tive numbers is always less than or equal to their arithmetic mean, and the two are
the same precisely when all of the numbers are the same. (For the general proof, see
Appendix B.)
We now explore how such an inequality can be applied to optimization problems.
Here is a typical calculus problem.
Example 1.9 Prove that among all rectangles whose perimeter is 100 units, the square has the
largest area.
y
Solution If we let x and y be the dimensions of the rectangle (see Figure 7.5), then
the area we want to maximize is given by
X X
A=xy
y We are given that the perimeter satisfies
Figure 1.5 2x + 2y = 100
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which is the same as x + y = 50. We can relate xy and x + y using the AMGM
Inequality:

x+ty
2

Vaxy = or, equivalently, xy =< j(x + y)*
Since x + y = 50 is a constant (and this is the key), we see that the maximum value
of A = xyis 50°/4 = 625 and it occurs when x = y = 25. I

Not a derivative in sight! Isn’t that impressive? Notice that in this maximiza-
tion problem, the crucial step was showing that the right-hand side of the AMGM
Inequality was constant. In a similar fashion, we may be able to apply the inequality to
a minimization problem if we can arrange for the left-hand side to be constant.

Example 1.10

=

“r

Figure 1.6

e

.
>

Prove that among all rectangular prisms with volume 8 m’, the cube has the mini-
mum surface area.

Solution  As shown in Figure 7.6, if the dimensions of such a prism are x, y, and z,
then its volume is given by
V = xyz
Thus, we are given that xyz = 8. The surface area to be minimized is
S =2y +2yz + 2zx

Since this is a three-variable problem, the obvious thing to try is the version of the

AMGM Inequality for n = 3—namely,
xt+ty+z
v/ xXyz = 7;/

Unfortunately, the expression for S does not appear here. However, the AMGM
Inequality also implies that
S  2xy + 2yz + 2zx
3 3
v/ (2xy)(2yz)(2zx)
=2V64 = 8

which is equivalent to S = 24. Therefore, the minimum value of S is 24, and it
occurs when

v

2xy = 2yz = 2zx
(Why?) This implies that x = y = z = 2 (i.e., the rectangular prism is a cube). I
3. Prove that among all rectangles with area 100 square units, the square has the

smallest perimeter.

1
4.  What is the minimum value of f(x) = x + ” for x > 07
949



5. A cardboard box with a square base and an open top is to be constructed
from a square of cardboard 10 cm on a side by cutting out four squares at the corners
and folding up the sides. What should the dimensions of the box be in order to make
the enclosed volume as large as possible?

6. Find the minimum value of f(x, y,z) = (x + y)(y + 2)(z + x) if x, y, and z are
positive real numbers such that xyz = 1.

8
7. For x > y > 0, find the minimum value of x + I [Hint: A substitu-
tion might help.] y(x=y)

The Cauchy-Schwarz Inequality itself can be applied to similar problems, as the
next example illustrates.

»

930

Example 7.11

Find the maximum value of the function f(x, y, z) = 3x + y + 2z subject to the
constraint x* + y* + 2> = 1. Where does the maximum value occur?

Solution  This sort of problem is usually handled by techniques covered in a multi-
variable calculus course. Here’s how to use the Cauchy-Schwarz Inequality. The func-
tion 3x + y + 2z has the form of a dot product, so we let

3 x
u=|1| and v=|y
2 z

Then the componentwise form of the Cauchy-Schwarz Inequality gives
BGx+y+2=3F+1+2)*+y*+2) =14
Thus, the maximum value of our function is V14, and it occurs when
x 3
y|=k|1
z 2

Therefore, x = 3k, y = k, and z = 2k, so 3(3k) + k + 2(2k) = V14. It follows that
k = 1/V14, and hence

X 3/V14
y|=11/Vi4
z

2/\V14 4

8. Find the maximum value of f(x, y,z) = x + 2y + 4zsubjecttox” + 2y* + 22 = 1.
2

z
9. Findthe minimum value of f(x, y,z) = x* + y*+ ?subject tox+y+z=10.

10. Find the maximum value of sin 6 + cos 6.
11. Find the point on the line x + 2y = 5 that is closest to the origin.

There are many other inequalities that can be used to solve optimization prob-
lems. The quadratic mean of the numbers x,, . . ., x,, is defined as

&+t
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Figure 1.1

Ifxy, ..., x, are nonzero, their harmonic mean is given by

n
x, +1/x, + -+ 1/x,

It turns out that the quadratic, arithmetic, geometric, and harmonic means are all
related.

12. Letx and y be positive real numbers. Show that

2 2
x+yzx+yZ x_yZ;
V 2 2 1/x+1/y

with equality if and only if x = y. (The middle inequality is just AMGM, so you need
only establish the first and third inequalities.)

13.  Find the area of the largest rectangle that can be inscribed in a semicircle of
radius r (Figure 7.7).

14. Find the minimum value of the function
(x + y)2
xy
for x, y > 0. [Hint: (x + y)*/xy = (x + y) (1/x + 1/y).]

fle,y) =

15. Let x and y be positive real numbers with x + y = 1. Show that the mini-

mum value of
1\2 1\2
fle,y) = <x+ ;) + (y+ ;)

is 2, and determine the values of x and y for which it occurs.
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Chapter 7 Distance and Approximation

f

(5]

In the last section, you saw that it is possible to define length and distance in an inner
product space. As you will see shortly, there are also some versions of these two con-
cepts that are not defined in terms of an inner product.

To begin, we need to specify the properties that we want a “length function”
to have. The following definition does this, using as its basis Theorem 1.3 and the
Triangle Inequality.

Definition A norm on a vector space V is a mapping that associates with
each vector v a real number |v||, called the norm of v, such that the following prop-
erties are satisfied for all vectors u and v and all scalars c:

1. ||[v] = 0,and |v| = 0ifand onlyifv = 0.

vl
3. Ju+ vl = fuf + v

2. |ev] =

A vector space with a norm is called a normed linear space.

v

Example 1.12

Show that in an inner product space, [v| = V/(v, v) defines a norm.

Solution  Clearly, V/(v, v) = 0. Moreover,
Viv,v) =0 (v,v)=0&=v=0

by the definition of inner product. This proves property (1).
For property (2), we only need to note that

lev| = Viev,ev) = V@(w,v) = VEV(v,v) = |dIv]

Property (3) is just the Triangle Inequality, which we verified in Theorem 7.4. I

We now look at some examples of norms that are not defined in terms of an inner
product. Example 7.13 is the mathematical generalization to R" of the taxicab norm
that we explored in the Introduction to this chapter.

Example 1.13

=

The sum norm |v| of a vector v in R" is the sum of the absolute values of its compo-
nents. That is, if v = [v, --- v,] 7, then

[vle = Tl + -+ [v,
Show that the sum norm is a norm.
Solution  Clearly, ||v|, = |v,| + -~ + |v,| = 0, and the only way to achieve equality

isif |v;| =--- = |v,| = 0. But this is so ifand only if v, = --- = v, = 0 or, equivalently,
v = 0, proving property (1). For property (2), we see that cv = [cv, -+ ¢v,]", 50

levly = levil + -+ fev,| = lellwi| + -+ [v,]) = el|v]



Section 7.2 Norms and Distance Functions 553

Finally, the Triangle Inequality holds, because ifu = [u; -+ u,]7, then
fu+ vl = lu +wl+ -+ fu, + v

ll‘

=< (lm| + D+ -+ (Ju,l + v

= (lwl + -+ w,)) + (vl + -+ ) = [uls + vl I

The sum norm is also known as the 1-norm and is often denoted by |[v],. On R?, it
is the same as the taxicab norm. As Example 7.13 shows, it is possible to have several
norms on the same vector space. Example 7.14 illustrates another norm on R".

>

Example 71.14

T

The max norm ||v|,, of a vector v in R" is the largest number among the absolute
values of its components. That is, if v=[v; - v,]7, then

[Vl = max{[v],.... [v,|}

Show that the max norm is a norm.

Solution  Again,itis clear that |v||,, = 0. If ||v||,, = 0, then the largest of |v,|,..., |v,|
is zero, and so they all are. Hence, v) = - = v,, = 0, so v = 0. This verifies property (1).
Next, we observe that for any scalar ¢,
vl = max{levl,...., lewl} = lelmax{|nl, ... [v,J} = lel vl
Finally, foru = [u; - u,] T we have
”u + V”m = max{‘ul + V1|7 reo ‘un + Vn|}

= max{|u1‘ + |V1" Do) |un‘ + |Vn|}

= max{[u|,..., [u,[} + max{[w],.... v} = Jul, + V],
(Why is the second inequality true?) This verifies the Triangle Inequality. I

The max norm is also known as the co-norm or uniform norm and is often
denoted by [v]... In general, it is possible to define a norm |v|, on R" by

¥y = (l? + - + Iy loye
for any real number p = 1. For p = 1, |v|; = |v|,, justifying the term 1-norm. For
p=2
Mo = (nf 4+ D2 = VAT 5t 32

which is just the familiar norm on R" obtained from the dot product. Called the
2-norm or Euclidean norm, it is often denoted by ||v|z. As p gets large, it can be
shown using calculus that |v], approaches the max norm [v],,. This justifies the use
of the alternative notation |v||, for this norm.

Example 71.19

For a vector v in Z3, define |[v|y to be w(v), the weight of v. Show that it defines a
norm.
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Solution  Certainly, ||v|; = w(v) = 0, and the only vector whose weight is zero is
the zero vector. Therefore, property (1) is true. Since the only candidates for a scalar
care 0 and 1, property (2) is immediate.

To verify the Triangle Inequality, first observe that if u and v are vectors in Z5,
then w(u + v) counts the number of places in which uwand v differ. [For example, if

u=1[1 1 01 0]" and v=100 1 1 1 1]

thenu+v=1[ 0 1 0 1]% sow(m+v)=3in agreement with the fact that
u and v differ in exactly three positions.] Suppose that both u and v have zeros in #,
positions and 1s in 7, positions, u has a 0 and v has a 1 in #g; positions, and u has a
1 and v has a 0 in 1, positions. (In the example above, ny = 0, n, = 2, ny; = 2, and
ny,, = 1.) Now

w) = n + ny w(v) =n, + ny, and w(u + v) = ny, + ny
Therefore,
[u + vz = wu + v) = nyy + ny,

= (n; + ny) + (n, + ngy) — 2my

I

(n, + nyp) + (ny + ngy)

w(u) + w(v) = [lully + [v]y
The norm |v| is called the Hamming norm.

Distance Functions 4

For any norm, we can define a distance function just as we did in the last
section—namely,

d(u,v) = |ju — v|

| >»
o

Example 1.16

3 =
Letu = [_2} andv = { J. Compute d(u, v) relative to (a) the Euclidean norm,

(b) the sum norm, and (c) the max norm.

4
Solution  Each calculation requires knowing thatu — v = {_3}.

(a) Asis by now quite familiar,

dp(u,v) = Ju — v|; = V42 + (-3 =V25=5

b) d(u,v)=|u—v|,= 4] + |-3| =7
-3} =4

(c) dy(u,v) = [u — v||, = max{|4],

-

The distance function on Z; determined by the Hamming norm is called the
Hamming distance. We will explore its use in error-correcting codes in Section 8.5.
Example 7.17 provides an illustration of the Hamming distance.
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Example 1.17

Find the Hamming distance between

u=1[1 1 01 0]" and v=100 1 1 1 1]F

Solution  Since we are working over Z,,u — v =u + v. But
dy(u,v) = |u + vz = wu + v)

As we noted in Example 7.15, this is just the number of positions in which u and v
differ. The given vectors are the same ones used in that example; the calculation is

therefore exactly the same. Hence, dy(u, v) = 3. I

Theorem 7.5 summarizes the most important properties of a distance function.

Theorem 1.5

Let d be a distance function defined on a normed linear space V. The following
properties hold for all vectors u, v, and win V:

a. d(u,v) =0,and d(u, v) = 0 ifand only ifu = v.
b. d(u,v) = d(v,u)
c. d(u,w)=d(u,v) +d(v,w)

Proof (a) Using property (1) from the definition of a norm, it is easy to check that
d(w,v) = |lu — v| = 0, with equality holding if and only if u — v = 0 or, equivalently,
u=yv.

(b) You are asked to prove property (b) in Exercise 19.

(c) We apply the Triangle Inequality to obtain

dw,v) + div,w) = jlu — v|] + |[v — w|

= - + (v - w)
= Ju = w| = du,w) -

A function d satisfying the three properties of Theorem 7.5 is also called a metric,
and a vector space that possesses such a function is called a metric space. These are
very important in many branches of mathematics and are studied in detail in more
advanced courses.

We can define norms for matrices exactly as we defined norms for vectors in R".
After all, the vector space M,,, of all m X n matrices is isomorphic to R™", so this is
not difficult to do. Of course, properties (1), (2), and (3) of a norm will also hold in
the setting of matrices. It turns out that, for matrices, the norms that are most useful
satisfy an additional property. (We will restrict our attention to square matrices, but
it is possible to generalize everything to arbitrary matrices.)



996

Chapter 7 Distance and Approximation

Definition A matrix norm on M,, is a mapping that associates with each
n X n matrix A a real number |A|, called the norm of A, such that the following
properties are satisfied for all # X n matrices A and B and all scalars c.

1. [|A] = 0and |A|| = 0ifand only if A = O.
2 |lcAll = [c[|A]

3. |A + B| = |A] + [B]

4. |AB| = |A|B|

A matrix norm on M,,,, is said to be compatible with a vector norm ||x|| on R" if, for
all n X n matrices A and all vectors xin R", we have

|Ax] = [Allx]

»

Example 1.18

The Frobenius norm |A| of a matrix A is obtained by stringing out the entries of the
matrix into a vector and then taking the Euclidean norm. In other words, |A||z is just
the square root of the sum of the squares of the entries of A. So, if A = [a,-j] , then

n
lAle=\/ X a3
=1

S

(b) Show that the Frobenius norm is compatible with the Euclidean norm.

(a) Find the Frobenius norm of

(c) Show that the Frobenius norm is a matrix norm.

Solution (a) |Allz = /32 + (=1)2 + 22 + 42 = V30

Before we continue, observe thatif A, = [3 —1]and A, = [2 4] are the row

vectors of A, then || A, ||, = V32 + (—=1)2and ||A,ll = V22 + 4% Thus,
[All: = VIIAE + 1A 1I%

3 =il
Similarly, ifa, = [2} and a, = { 4} are the column vectors of A, then

Al = Vil + lla,ll;

It is easy to see that these facts extend to #n X #n matrices in general. We will use these
observations to solve parts (b) and (c).

(b) Write A=
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Then
Ax
[Ax[lz = ||| :
AnX E

= ViAxli + -+ [axlE

= VIAEIxE + - + A, lxI2

VAR + -+ AR Il
Allllx .

where the inequality arises from the Cauchy-Schwarz Inequality applied to the
dot products of the row vectors A; with the column vector x. (Do you see how
Cauchy-Schwarz has been applied?) Hence, the Frobenius norm is compatible with
the Euclidean norm.

(c) Letb,denote the ith column of B. Using the matrix-column representation of the
product AB, we have

|ABlr = || [Ab,- - - Ab,] |
= VIAb 12 + - + [ 4b, |12
= VIIAlZIb, 12 + - + [AlZ]b, I y-gt. (b)
= Al Vb2 + - + [Ib,lI2
= [lAllzlIBIl

which proves property (4) of the definition of a matrix norm. Properties (1) through
(3) are true, since the Frobenius norm is derived from the Euclidean norm, which
satisfies these properties. Therefore, the Frobenius norm is a matrix norm. 1

For many applications, the Frobenius matrix norm is not the best (or the easiest)
one to use. The most useful types of matrix norms arise from considering the effect
of the matrix transformation corresponding to the square matrix A. This transfor-
mation maps a vector x into Ax. One way to measure the “size” of A is to compare
x|l and || Ax]| using any convenient (vector) norm. Let’s think ahead. Whatever
definition of || A || we arrive at, we know we are going to want it to be compatible with
the vector norm we are using; that is, we will need

| Ax]l

|Ax]l = Al lIx]| or
x|l

< ||A|l forx#0

Ax
The expression ”THH measures the “stretching capability” of A. If we normalize each
X

nonzero vector x by dividing it by its norm, we get unit vectors X = x and thus

- ()

-
1l
lAx[l _ 1

1
= L Jlax]| = ‘—(AX)
=l Tl ]

\ — [zl
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Figure 1.8

If x ranges over all nonzero vectors in R", then X ranges over all unit vectors (i.e., the
unit sphere) and the set of all vectors Ax determines some curve in R". For example,

3 2
Figure 7.8 shows how the matrix A = [2 0} affects the unit circle in R*—it maps it

into an ellipse. With the Euclidean norm, the maximum value of || A%|| is clearly just
half the length of the principal axis—in this case, 4 units. We express this by writing
max ||A%]| = 4

lI%ll=1

In Section 7.4, we will see that this is not an isolated phenomenon. That is,

lAx|l .
= max||Ax
x#0 | x| lzli=1

always exists, and there is a particular unit vector y for which [ Ay| is maximum.

Now we prove that Al = |Iln“ax || Ax|| defines a matrix norm.
x||=1
Theorem 1.6 If ||x|| isa vector norm on R", then ||A|| = ﬁn”ax || Ax|| defines a matrix norm on M,,,
x|[=1

that is compatible with the vector norm that induces it.

Proof (1) Certainly, |[Ax|| = 0 for all vectors x, so, in particular, this inequality
istrueif ||x|| = 1. Hence, ||A|| = mrlx |Ax|| = 0also.If || A|| = 0, then we must have
x[|=1

||[Ax|| = 0—and, hence, Ax = 0—for all x with ||x|| = 1. In particular, Ae; = 0 for
each of the standard basis vectors e; in R". But Ae; is just the ith column of A, so we
must have A = O. Conversely, if A = O, it is clear that ||A]| = 0. (Why?)

(2) Letcbe a scalar. Then

leAll = max|lcAx|| = max|c|[|Ax[l = [c[max[lAx]l = [c[[[All
=1 lel=1 eli=1
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(3) Let Bbeann X n matrix and let y be a unit vector for which

A+ Bl = ﬁfgﬂlm + B)x|| = [(A + Byll
Then lA + Bl =4 + B)Y”
= ||Ay + Byl
= |lAyll + [IByll
=< [lAll + IIBl

(Where does the second inequality come from?) Next, we show that our definition is
compatible with the vector norm [ property (5)] and then use this fact to complete the
proof that we have a matrix norm.

(5) If x = 0, then the inequality | Ax|| = ||A] ||x]| is true, since both sides are zero.
If x # 0, then from the comments preceding this theorem,

A A
” X” <= max || X“ = ||A||
xz0 | x||

Hence, |Ax|l =< lAllllxIl.
(4) Let z be a unit vector such that || AB| = ‘max|| (AB)x|| = || ABz|. Then

Ixll=1

|ABIl = ||ABz||
= ||A(B2)|
= ||All| Bzl by property (5)
= [|AllIIBIlllzll ~ byproperty (5)
= Al lIBll

This completes the proof that lA] = rlnHax | Ax| defines a matrix normon M,, that is
x||=1

compatible with the vector norm that induces it. — m

Definition The matrix norm || A in Theorem 7.6 is called the operator norm
induced by the vector norm || x||.

The term operator norm reflects the fact that a matrix transformation arising from a
square matrix is also called a linear operator. This norm is therefore a measure of the
stretching capability of a linear operator.

The three most commonly used operator norms are those induced by the sum
norm, the Euclidean norm, and the max norm—namely,

4l = maxllAxll, Al = max [Axll, [lAll. = max[lax],,

[Ixllo=1 x[lg=1 lIxllu=1

respectively. The first and last of these turn out to have especially nice formulas that
make them very easy to compute.
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Theorem 1.1 LetAbeann X nmatrix with column vectors a,and row vectors A ;fori = 1,...,n.

j=1..., J=L0

o llall, = max {lglly = max { Sila,l}
n = n =1

b. [[All. = max {[All} = max { E,a,-j!}
n 1 n j:l

i=1,...

In other words, ||A]|, is the largest absolute column sum, and |A]l.. is the largest
absolute row sum. Before we prove the theorem, let’s look at an example to see how
easy it is to use.

Example 1.19 |  Let

1 -3 2
A= 4 -1 =2
=5 1 3

Find [|All, and [[A[l...
Solution  Clearly, the largest absolute column sum is in the first column, so
Ally = llally = 1] + [4] + |=5] = 10
The third row has the largest absolute row sum, so
lAll. = Al = [=5] + 1] + [3] =9
With reference to the definition ||A|l, = ‘max | Ax ||, we see that the maximum

Ixll,=1
value of 10 is actually achieved when we take x = ey, for then

[Ae, [l = lla,ll; = 10 = [lAl,

For ||A]l. = Hnﬂax | Ax||,,, if we take
X[lm=1

-1
X = 1
1
we obtain
1 -3 2 (] —1 -2
x|, = 4 -1 =2 1 =] -7
=5 1 3 1] 1lm 9 {llm

= max{|-2|,|-7],19[} = 9 = llAll. ]

We will use these observations in proving Theorem 7.7.
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Proof of Theorem 1.1  The strategy is the same in the case of both the column sum
and the row sum. If M represents the maximum value, we show that lAax] = M
for all unit vectors x. Then we find a specific unit vector x for which equality occurs.
It is important to remember that for property (a) the vector norm is the sum norm
whereas for property (b) it is the max norm.

(a) Toprove(a),letM = max {||a I .}, the maximum absolute column sum,and let
J= e,

lx|l, = 1. Then |x,| + -+ |x, | 1,s0

lAx|l, = llxa, + - + xa,ll,
= Ixlllally + -+ Ix,llla,ll,
= |x1|M + - + ‘xn‘M

= (|x1| I8 560 dE |x,,\)M=1-M=M

If the maximum absolute column sum occurs in column k, then with x = e, we obtain

Al = llall, = M
Therefore, [|All, = HmaX A, = w = _ ax {||a |}, as required.
(b) The proof of property (b) is left as Exerc1se 32 i |

In Section 7.4, we will discover a formula for the operator norm Al ,» although
it is not as computationally feasible as the formula for |All, or ||All..

The Gondition Number of a Matrix

In Exploration: Lies My Computer Told Me in Chapter 2, we encountered the notion
of an ill-conditioned system of linear equations. Here is the definition as it applies to
matrices.

Definition A matrix A is ill-conditioned if small changes in its entries can
produce large changes in the solutions to Ax = b. If small changes in the entries
of A produce only small changes in the solutions to Ax = b, then A is called
well-conditioned.

Although the definition applies to arbitrary matrices, we will restrict our atten-
tion to square matrices.

Example 1.20

Show that A = E } is ill-conditioned.

1.0005

Solution Ifwe takeb = {3

1
, then the solutionto Ax =bisx = . However,
3.0010 2

if A changes to
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2
then the solution changes to x' = L} (Check these assertions.) Therefore, a relative

change of 0.0005/1.0005 = 0.0005, or about 0.05%, causes a change of 2 — 1)/1 = 1,
or 100%, in x; and (1 — 2)/2 = —0.5, or —50%, in x,. Hence, A is ill-conditioned. 1

We can use matrix norms to give a more precise way of determining when
a matrix is ill-conditioned. Think of the change from A to A’ as an error AA that,
in turn, introduces an error Ax in the solution xto Ax = b. Then A’ = A + AA and
x' = x + Ax. In Example 7.20,

AA:{O 0 } and Ax={ 1}
0 0.0005 -1

Then, since Ax = b and A’x" = b, we have (A + AA) (x + Ax) = b. Expanding and
canceling off Ax = b, we obtain

A(Ax) + (AA)x + (AA)(Ax) = 0 or A(Ax) = —AA(x + Ax)

Since we are assuming that Ax = b has a solution, A must be invertible. Therefore, we
can rewrite the last equation as

Ax = —A(AA)x + Ax) = —A " (AA)X’

Taking norms of both sides (using a matrix norm that is compatible with a vector
norm), we have

—A=1(A)x’ || = [|A7H(AA)X||
la=rAaa) x|l
= lA7M I Taal x|l

| Ax||

A

(What is the justification for each step?) Therefore,

| Ax|| . . | AA]
== [lA7IAAll = (lATHAlD
x| Al
The expression [|[A='||A] is called the condition number of A and is denoted by

cond(A). If A is not invertible, we define cond(A) = co.

What are we to make of the inequality just above? The ratio ||AA|/[[A]l is a
measure of the relative change in the matrix A, which we are assuming to be small.
Similarly, | Ax|| /[ x"| is a measure of the relative error created in the solution to
Ax = b (although, in this case, the error is measured relative to the new solution, x’,
not the original one, x). Thus, the inequality

| Ax|| |AA
=< cond(A)—— (1)
x|l Al

gives an upper bound on how large the relative error in the solution can be in terms
of the relative error in the coefficient matrix. The larger the condition number, the
more ill-conditioned the matrix, since there is more “room” for the error to be large
relative to the solution.
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Remarks

* The condition number of a matrix depends on the choice of norm. The most
commonly used norms are the operator norms [|A]l ,and ATl

e For any norm, cond(A) = 1. (See Exercise 45.)

\/

Example 1.21

1
Find the condition number of A = [ } relative to the co-norm.

1 1.0005

Solution  We first compute

Lo [ 2001 —2000
—2000 2000

Therefore, in the co-norm (maximum absolute row sum),
IAll. =1 + 1.0005 = 2.0005 and [|A7"||, = 2001 + |-2000| = 4001

socond..(A) = [[A7Y.]|All. = 4001(2.0005) =~ 8004. I

It turns out that if the condition number is large relative to one compatible
matrix norm, it will be large relative to any compatible matrix norm. For example,
it can be shown that for matrix A in Examples 7.20 and 7.21, cond,(A) = 8004,
cond,(A) = 8002 (relative to the 2-norm), and condp(A) = 8002 (relative to the
Frobenius norm).

The Convergence of Iterative Methods

In Section 2.5, we explored two iterative methods for solving a system of linear equa-
tions: Jacobi’s method and the Gauss-Seidel method. In Theorem 2.9, we stated with-
out proof that if A is a strictly diagonally dominant n X 7 matrix, then both of these
methods converge to the solution of Ax = b. We are now in a position to prove this
theorem. Indeed, one of the important uses of matrix norms is to establish the con-
vergence properties of various iterative methods.

We will deal only with Jacobi’s method here. (The Gauss-Seidel method can be
handled using similar techniques, but it requires a bit more care.) The key is to re-
write the iterative process in terms of matrices. Let’s revisit Example 2.37 with this in
mind. The system of equations is

7 —1
o) A= { } and b = [ 5}
3 =5 =57/
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We rewrote Equation (2) as

5+ x,
X =
7
3
7 + 3x; G)
x2 =8 -
5
which is equivalent to
7x, = x, +5
(4)

_sz = _3x1 - 7

or, in terms of matrices,

s R Y .

Study Equation (5) carefully: The matrix on the left-hand side contains the diagonal
entries of A, while on the right-hand side we see the negative of the off-diagonal
entries of A and the vector b. So, if we decompose A as

{7 —1} {0 0} {7 0} [0 —1}
3 -5 30 0 -5 0 0

then Equation (5) can be written as
Dx=—(L+Ux+b
or, equivalently,
x=-DYL+Ux+D'b (6)

since the matrix D is invertible. Equation (6) is the matrix version of Equation (3).
It is easy to see that we can do this in general: An n X »n matrix A can be written as
A =L+ D + U, where D is the diagonal part of A and L and U are, respectively, the
portions of A below and above the diagonal. The system Ax = b can then be writ-
ten in the form of Equation (6), provided D is invertible—which it is if A is strictly
diagonally dominant. (Why?) To simplify the notation, let’slet M = —D™'(L + U) and
¢ = D 'b so that Equation (6) becomes

x=Mx+ ¢ (7)

Recallhowwe use this equation in Jacobi’s method. We start with an initial vector
X, and plug it into the right-hand side of Equation (7) to get the first iterate x,—that
is, x, = Mx, + c. Then we plug x, into the right-hand side of Equation (7) to get the
second iterate x, = Mx, + c. In general, we have

Xp41 = MXk + c (8)
for k = 0. For Example 2.37, we have

RL R R
M=-DL+U)=- =
0 -5

w e T



Section 7.2 Norms and Distance Functions 965

1 5 5
7110 z H 0.714
: «= (3 ola] + [ =[]~ [Vieo
0 T2 1.400
%MMM} m {0.914
X = Tz =
0][1.400 Z 1.829
and so on. (These are exactly the same calculations we did in Example 2.37, but writ-
ten in matrix form.)
To show that Jacobi’s method will converge, we need to show that the iterates x;
approach the actual solution x of Ax = b. It is enough to show that the error vectors

x; — X approach the zero vector. From our calculations above, Ax = b is equivalent
tox = Mx + c. Using Equation (8), we then have

e O uw O
o

X1 — X = Mx, +¢c— (Mx + ¢)
= M(x; — x)

Now we take the norm of both sides of this equation. (At this point, it is not impor-
tant which norm we use as long as we choose a matrix norm that is compatible with
a vector norm.) We have

%y = xll = MG — 0l = [[MlIx, — x| 9)

Ifwe can show that | M|| < 1, thenwewill have ||x., — x|l < [|x, — x|/ forallk=0,
and it follows that || X, — x| approaches zero, so the error vectors x;, — x approach
the zero vector.

The fact that strict diagonal dominance is defined in terms of the absolute values
of the entries in the rows of a matrix suggests that the co-norm of a matrix (the opera-
tor norm induced by the max norm) is the one to choose. If A = [a,-]-] , then

0 —ayp/ay, —ay,/ay
M = _azf/azz 0 _az;.x/azz
_anl/ann _anZ/ann e 0

(verify this), so, by Theorem 7.7, IM]|.. is the maximum absolute row sum of M.
Suppose it occurs in the kth row. Then
—ap

|_ak,k+1| 4. — Ay,

M.

-+

‘_ak,k1|
Ak ’ ’ gk |

‘ak1| toeee+ ‘ak,k—l‘ + |ak,k+1| toeee A+ |akn‘

Ak Akk

‘akk|

since A is strictly diagonally dominant. Thus, I M|l..< 1, so ||x, — x|| = 0, as we
wished to show.

Example 1.22

Compute M. in Example 2.37 and use this value to find the number of iterations

required to approximate the solution to three-decimal-place accuracy (after round-
ing) if the initial vector is xo = 0.
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1

7

0

Solution We have already computed M = L 0}, so [M|l.=%=06<1
5

(implying that Jacobi’s method converges in Example 2.37, as we saw). The approxi-

mate solution x; will be accurate to three decimal places if the error vector x, — x
has the property that each of its components is less than 0.0005 in absolute value.
(Why?) Thus, we need only guarantee that the maximum absolute component of
X, — x is less than 0.0005. In other words, we need to find the smallest value of k such
that

lx. — xIl,, < 0.0005

Using Equation (9) above, we see that

% = xlly = IMllllxy = xlLy = IMIEIx, = xll,, = - = [IMIElx, — xlI,,
07147 _
Now [|M|l., = 0.6 and I|x, — xl,, = lIxo — x|l,, = lIx,1l,, = Laoo |l = 1.4,
SO

IMIElIx, = xll,, = (0.6)%(1.4)

(If we knew the exact solution in advance, we could use it instead of x,. In practice,
this is not the case, so we use an approximation to the solution, as we have done here.)
Therefore, we need to find k such that

(0.6)%(1.4) < 0.0005
We can solve this inequality by taking logarithms (base 10) of both sides. We have
10g,(((0.6)"(1.4)) < log,((5 X 107*) = klog,,(0.6) + log,((1.4) < log,,5 — 4
= —0.222k + 0.146 < —3.301
=k > 155

Since k must be an integer, we can therefore conclude that k = 16 will work and
that 16 iterations of Jacobi’s method will give us three-decimal-place accuracy in
this example. (In fact, it appears from our calculations in Example 2.37 that we
get this degree of accuracy sooner, but our goal here was only to come up with an

estimate.) 1

I Exercises 1.2

\

-1 2 4. (@) What does d,(u, v) measure?
In Exercises 1-3, letu = 4 landv=| —2|. (b) What does d,,(u, v) measure?
-5 0

1. Compute the Euclidean norm, the sum norm, and the

max norm of u.

In Exercises 5and6,letu =1 0 1 1 0 0 1]Tand
v=[0 11 0 1 1 1]~

2. Compute the Euclidean norm, the sum norm, and the 5. Compute the Hamming norms of w and v.

max norm of v.

6. Compute the Hamming distance between u and v.

3. Compute d(u, v) relative to the Euclidean norm, the 7. (a) For which vectors vis |lv|l; = [[v|],,? Explain

sum norm, and the max norm.

your answer.



(b) For which vectorsvis ||v|, = [|v]],? Explain your
answer.
(c) For which vectors v is ||v||5 = ||V||m = ||V||E?

Explain your answer.

8. (a) Under what conditionsonuandvis [u + v||; =
I u||E + ||v||E? Explain your answer.
(b) Under what conditions on uand v is

||u + v||5 = ||u||s + ||v||s? Explain your answer.
(c) Under what conditions on u and v is

lu + vll,, = llull,, +lvll,? Explain your

answer.

9. Show that for all vin R", [v], = | vl
10. Show that forall vin R", [[vllz = [Ivl.
11. Show that for all vin R, [|v]l, < n|lvll,.
12. Show that forall vin R", [|v|l; = Vaullv|,.

13. Draw the unit circles in R? relative to the sum norm
and the max norm.

14. By showing that the identity of Exercise 33 in
Section 7.1 fails, show that the sum norm does not
arise from any inner product.

In Exercises 15-18, prove that Il defines a norm on the
vector space V.

15. V = R?,

MH — max{|2a|, |3b]}
16. V = M, |All = max{[a;[}
2y
1
Bha7. v =<0, 1], lIf :f f(x)] dx
0

18. If Il = max 11631

19. Prove Theorem 7.5(b).

In Exercises 20-25, compute || All ., |All}, and IA]l...

(2 3 [0 -1
20.A = 21. A =
14 1 -3 3
_ (2 1 1
1 5
22. A = 23.A=1(1 3 2
-2 -1
L1 1 3
0 -5 2 K|
24 A=| 3 1 -3|25A=|0 -1 2
-4 —4 3 13 -3
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In Exercises 26-31, find vectors x and y with x|, = 1and
lyll,, = 1suchthat [|All, = | Ax|| and [|All.. = [|Ayll,.
where A is the matrix in the given exercise.
26. Exercise 20 27. Exercise 21
29. Exercise 23 30. Exercise 24
32. Prove Theorem 7.7(b).
33. (a) If [|A]l is an operator norm, prove that 1|l = 1,
where I'is an identity matrix.
(b) Is there a vector norm that induces the

Frobenius norm as an operator norm? Why
or why not?

28. Exercise 22
31. Exercise 25

34. Let || A| be a matrix norm that is compatible with a
vector norm ||x|| . Prove that ||A || = |)\\ for every
eigenvalue A of A.

In Exercises 35-40, find cond,(A) and cond..(A). State
whether the given matrix is ill-conditioned.

(3 1 [ 1 -2
35.A = 36. A =
4 2 -3 6
(1 0.99 [ 150 200
37.A = 38. A =
11 13001 4002
(1 1 1 1 5 3
39A=|5 5 6 0. A=1{3 § 3
L1 0 0 [; 1 3
1 k
4]1. Let A = .
11

(a) Find a formula for cond.(A) in terms of k.
(b) What happens to cond..(A) as k approaches 1?

42. Consider the linear system Ax = b, where A is invert-

ible. Suppose an error Ab changesbtob’ = b + Ab.
Let x’ be the solution to the new system; that is,
Ax" = b’. Let x’ = x + Ax so that Ax represents
the resulting error in the solution of the system.
Show that

[Ab ||

| Ax||
——— = cond(A)—
[l bl

for any compatible matrix norm.

10 10 100
43. Let A = and b = .
10 9 99

(a) Compute cond..(A).

_ 10 10
(b) Suppose A ischangedto A’ = {10 -
large a relative change can this change produce in
the solution to Ax = b? [Hint: Use inequality (1)

from this section.]

}. How
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(c) Solve the systems using A and A" and determine 46. Show that if A and B are invertible matrices, then

the actual relative error.

(d) Suppose b ischangedto b’ =

cond(AB) = cond(A)cond(B) with respect to any
matrix norm.

100
{ } How largea
101 47. Let A be an invertible matrix and let A, and A,, be the

relative change can this change produce in the eigenvalues with the largest and smallest absolute val-
solution to Ax = b? [Hint: Use Exercise 42.] ues, respectively. Show that
(e) Solve the systems using b and b’ and determine |
the actual relative error. cond (A) = \T]
1 1 1 1 . . .
[Hint: See Exercise 34 and Theorem 4.18(b) in
44. LetA = | 2 5 O0|andb=|2]. Section4.3.]
1 -1 2 3 \ e
cas In Exercises 48-51, write the given system in the form
(RCemputetonc () of Equation (7). Then use thefnethod of Example 7.22 to
1 S estimate the number of iterations of Jacobi’s method that
(b) Suppose Aischangedto A" = | 1 5 0 |.How il be needed to approximate the solution to three-decimal-
1 -1 2 place accuracy. (Use x, = 0.) Compare your answer with
large a relative change can this change produce in the solution computed in the given exercise from Section 2.5.
the solution to Ax = b? [Hint: Use inequality (1) 48. Exercise 1, Section 2.5  49. Exercise 3, Section 2.5

from this section.]

(c) Solve the systems using A and A" and determine

the actual relative error.

50. Exercise 4, Section 2.5 51. Exercise 5, Section 2.5

Exercise 52(c) refers to the Leontief model of an open econ-

1 omy, as discussed in Sections 2.4 and 3.7.
(d) Suppose b is changedto b’ = | 1 |. How large a 52. Let A be an n X n matrix such that |A| < 1, where
3 the norm is either the sum norm or the max norm.
relative change can this change produce in the (a) Provethat A" — Oasn — .
solution to Ax = b? [Hint: Use Exercise 42.] (b) Deduce from (a) that I — A is invertible and
(e) Solve the systems using b and b’ and determine I-A"=T+A+A+ A+
the actual relative error. [Hint: See the proof of Theorem 3.34.]
45, Show that if A is an invertible matrix, then (c) Show that (b) can be used to prove Corollaries
cond(A) = 1 with respect to any matrix norm. 3.35and 3.36.

m @
- £

Least Squares Approximation

I'n many branches of science, experimental data are used to infer a mathematical rela-
tionship among the variables being measured. For example, we might measure the height
of a tree at various points in time and try to deduce a function that expresses the tree’s
height & in terms of time ¢. Or, we might measure the size p of a population over time and
try to find a rule that relates p to t. Relationships between variables are also of interest in
business; for example, a company producing widgets may be interested in knowing the
relationship between its total costs ¢ and the number # of widgets produced.

In each of these examples, the data come in the form of two measurements:
one for the independent variable and one for the (supposedly) dependent variable.
Thus, we have a set of data points (x; y;), and we are looking for a function that best
approximates the relationship between the independent variable x and the dependent
variable y. Figure 7.9 shows examples in which experimental data points are plotted,
along with a curve that approximately “fits” the data.
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»
>
»
| 2

»
L

Figure 1.9
Curves of “best fit”

Roger Cotes (1682-1716) was an
English mathematician who, while
a fellow at Cambridge, edited the
second edition of Newton’s Prin-
cipia. Although he published little,
he made important discoveries in
the theory of logarithms, integral
calculus, and numerical methods.

The method of least squares, which we are about to consider, is attributed to
Gauss. A new asteroid, Ceres, was discovered on New Year’s Day, 1801, but it disap-
peared behind the sun shortly after it was observed. Astronomers predicted when
and where Ceres would reappear, but their calculations differed greatly from those
done, independently, by Gauss. Ceres reappeared on December 7, 1801, almost ex-
actly where Gauss had predicted it would be. Although he did not disclose his meth-
ods at the time, Gauss had used his least squares approximation method, which he
described in a paper in 1809. The same method was actually known earlier; Cotes
anticipated the method in the early 18th century, and Legendre published a paper
on it in 1806. Nevertheless, Gauss is generally given credit for the method of least
squares approximation.

We begin our exploration of approximation with a more general result.
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The Best Approximation Theorem

In the sciences, there are many problems that can be phrased generally as “What is
the best approximation to X of type Y?” X might be a set of data points, a function,
a vector, or many other things, while ¥ might be a particular type of function, a vec-
tor belonging to a certain vector space, etc. A typical example of such a problem is
finding the vector w in a subspace W of a vector space V that best approximates (i.e.,
is closest to) a given vector v in V. This problem gives rise to the following definition.

Definition 1f W is a subspace of a normed linear space V and if v is a vector
in V, then the best approximation to v in W is the vector vin W such that

v =¥l <|v—wl

for every vector w in W different from v.

In R* or R’, we are used to thinking of “shortest distance” as corresponding to
“perpendicular distance” In algebraic terminology, “shortest distance” relates to the
notion of orthogonal projection: If W is a subspace of R"” and v is a vector in R", then
we expect projy (v) to be the vector in W that is closest to v (Figure 7.10).

Since orthogonal projection can be defined in any inner product space, we have
the following theorem.

Figure 1.10
If v = projy(v), then
lv-vl <|v- wl| forallw # v

Theorem 1.8

The Best Approximation Theorem

If W is a finite-dimensional subspace of an inner product space V and if vis a vec-
tor in V, then projy,(v) is the best approximation to vin W.

Proof Let w be a vector in W different from proj,(v). Then proj,,(v) — w is also
in W, so v — projy,(v) = perpy(v) is orthogonal to proj,,(v) — w, by Exercise 43 in
Section 7.1. Pythagoras’ Theorem now implies that

[v = proju(|* + [[projw(v) — wi* = |(v = projy (v)) + (projy, (v) — w)

= v — wl?
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as Figure 7.10 illustrates. However, |proj,,(v) — w|*> > 0, since w # proj(v), so
[v = proju(|* < |[v = projuw (V)[* + [[proju (v) — w|* = [v — w]?

or, equivalently,

[v = projy ()] < v — w] _ eem

Example 1.23 1 5 3
Letu, = 2 |,u, = | —2 |,andv = | 2 |.Findthebestapproximation to vin the

-1 1 5

plane W = span(u,, u,) and find the Euclidean distance from vto W.

Solution  The vector in W that best approximates v is proj,,(v). Since u, and u, are

orthogonal,
) u v u, v
prO] w (V) = W u, + W u, w,
1 5 3
=2 2| +%¥ -2|=|-%
-1 1 :
The distance from vto W is the distance from v to the point in W closest to v. But this
distance is just ||[perpy (v)|| = v — projy (v)|. We compute
3 3 0
voprojy( = (2] = | =5 | =%
5 1 24
5 5
50 Iv = projuv)| = V0* + &) + &2 = V& = 12V5/5

which is the distance from vto W. l

In Section 7.5, we will look at other examples of the Best Approximation Theorem
when we explore the problem of approximating functions.

Remark The orthogonal projection of a vector v onto a subspace W is defined
in terms of an orthogonal basis for W. The Best Approximation Theorem gives us an
alternative proof that proj,,(v) does not depend on the choice of this basis, since there
can be only one vector in W that is closest to v—namely, proj(v).

Least Squares Approximation

We now turn to the problem of finding a curve that “best fits” a set of data points. Be-
fore we can proceed, however, we need to define what we mean by “best fit” Suppose
the data points (1, 2), (2, 2), and (3, 4) have arisen from measurements taken during
some experiment. Also suppose we have reason to believe that the x and y values are
related by a linear function; that is, we expect the points to lie on some line with equa-
tion y = a + bx. If our measurements were accurate, all three points would satisfy this
equation and we would have

2=a+b-1 2=a+b-2 4=a+b-3
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This is a system of three linear equations in two variables:

a+ b=2 1 1 2
a

a+2b=2 or 1 Z[b}: 2

a+3b=4 1 3 4

Unfortunately, this system is inconsistent (since the three points do not lie on a
straight line). So we will settle for a line that comes “as close as possible” to passing
through our points. For any line, we will measure the vertical distance from each data
point to the line (representing the errors in the y-direction), and then we will try to
choose the line that minimizes the total error. Figure 7.11 illustrates the situation.

y=a+ bx

Figure 1.1
Finding the line that minimizes e} + &5 + &3

If the errors are denoted by €, €,, and &;, then we can form the error vector

We want e to be as small as possible, so ||| must be as close to zero as possible. Which
norm should we use? It turns out that the familiar Euclidean norm is the best choice.
(The sum norm would also be a sensible choice, since ||, = |&,| + |&,| + |&;] isthe
actual sum of the errors in Figure 7.11. However, the absolute value signs are hard to
work with, and, as you will soon see, the choice of the Euclidean norm leads to some
very nice formulas.) So we are going to minimize

le| = Ve + &5 + &} or, equivalently, |e|*> = ] + &} + &3

This is where the term “least squares” comes from: We need to find the smallest sum
of squares, in the sense of the foregoing equation. The number |e| is called the least
squares error of the approximation.
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From Figure 7.11, we also obtain the following formulas for ¢, €,, and &; in our
example:

g=2-(a+b1) gg=2—-(a+b:2) eg=4—(a+b-3)

»

Example 1.24 Which of the following lines gives the smallest least squares error for the data points
(1,2),(2,2),and (3, 4)?

’ (@ y=1+x
(b) y= -2+ 2x
(c)y=§+x

Solution Table 7.1 shows the necessary calculations.

Table 1.1

y=1+x y=-2+2x y=§+x
& 2—-(1+t1)= 0 2=(-2+2=2 2 —~G+ =5
& 2-(1+2)=-1 2-(-2+4)=0 2-G+2)=-%
& 4—-(1+3)= 0 4—(-2+6)=0 4-G+3)=1
E+ed+el OCH(ED+H0P= 1 2+02+0°=4 @GP+ +6r=1%
le] 1 2 V2I=~0816

A
y/=1+x

Figure 1.12

We see that the line y = 5 + x produces the smallest least squares error among
these three lines. Figure 7.12 shows the data points and all three lines. I
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It turns out that the line y = 5 + x in Example 7.24 gives the smallest least squares

error of any line, even though it passes through none of the given points. The rest of
this section is devoted to illustrating why this is so.

In general, suppose we have n data points (x, 1), ..., (x,, ¥,) and aline y = a + bx.
Our error vector is

n

where &; = y; — (a + bx;). The line y = a + bx that minimizes &2 + -+~ + &2 is called
the least squares approximating line (or the line of best fit) for the points (x;, y;), ...,
(X, ¥u). As noted prior to Example 7.24, we can express this problem in matrix form. If
the given points were actually on the line y = a + bx, then the » linear equations

a+ bx;, =y
a+ bx,=y,

would all be true (i.e., the system would be consistent). Our interest is in the case
where the points are not collinear, in which case the system is inconsistent. In matrix
form, we have

I x N
L x(lal _|»n
P M_ :
Lo I

which is of the form Ax = b, where

I x N

A= . x.z, x=[a], b=|"
: b

1 X, Y

The error vector e is just b — Ax (check this), and we want to minimize ||e|? or, equiv-
alently, |le|. We can therefore rephrase our problem in terms of matrices as follows.

Definition 1fAisanm X n matrix and b is in R”, a least squares solution of
Ax = b is a vector x in R" such that

Ib — Ax| = [b — Ax|

forall xin R".
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Solution of the Least Squares Problem

Any vector of the form Ax isin the column space of A, and as x varies over all vec-
tors in R", Ax varies over all vectors in col(A). A least squares solution of Ax = b is
therefore equivalent to a vector y in col(A) such that

[b =yl =Ilb-yl

for all y in col(A). In other words, we need the closest vector in col(A) to b. By the
Best Approximation Theorem, the vector we want is the orthogonal projection of b
onto col(A). Thus, if x is a least squares solution of Ax = b, we have

Ai = projcol(A)(b) (1)
In order to find X, it would appear that we need to first compute proj.4)(b) and then

solve the system (1). However, there is a better way to proceed.
We know that

b—-Ax=b— projcol(A)(b) = perpcol(A)(b)

is orthogonal to col(A). So b — Ax is in (col(A))* = null(A"). Therefore
AT(b — AX) = 0, which, in turn, is equivalent to A™ — ATAX=0or

ATAx = AT

This represents a system of equations known as the normal equations for x.

We have just established that the solutions of the normal equations for x are pre-
cisely the least squares solutions of Ax = b. This proves the first part of the following
theorem.

Theorem 1.9

The Least Squares Theorem

Let A be an m X »n matrix and let b be in R™. Then Ax = b always has at least one
least squares solution x. Moreover:

a. xis a least squares solution of Ax = b if and only if x is a solution of the normal
equations A"Ax = A”b.

b. A haslinearly independent columns ifand only if A7A is invertible. In this case,
the least squares solution of Ax = b is unique and is given by

x=(ATA) AT

Proof  We have already established property (a). For property (b), we note that the
n columns of A are linearly independent if and only if rank(A) = n. But this is true if
and only if A”A is invertible, by Theorem 3.28. If A”A is invertible, then the unique
solution of ATAX = ATb is clearly x = (ATA) T ATp. ___ eem
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Example 1.29

Y

Find a least squares solution to the inconsistent system Ax = b, where

1 5 3
A= 2 —2| and b=|2
-1 1 5
Solution  We compute
1 5
. 1 2 -1 6 0
A'A = 2 —2|=
5 -2 1 . 0 30
1 2 -1 > 2
and ATb = 2| =
5 =2 1 ) 16

The normal equations ATAx = ATb are just
X =
0 30 16

1
which yield x = {é] The fact that this solution is unique was guaranteed by
15

Theorem 7.9(b), since the columns of A are clearly linearly independent. I

Remark We could have phrased Example 7.25 as follows: Find the best approxi-
mation to b in the column space of A. The resulting equations give the system Ax = b
whose least squares solution we just found. (Verify this.) In this case, the components
of x are the coefficients of that linear combination of the columns of A that produces
the best approximation to b—namely,

1 5 3

8 _ 2

% 2|+ =2 =3
-1 1 :

This is exactly the result of Example 7.23. Compare the two approaches.

Example 1.26

Find the least squares approximating line for the data points (1, 2), (2, 2), and (3, 4)
from Example 7.24.

Solution  We have already seen that the corresponding system Ax = b is
1

1 2
1 2| =12
b
13 4
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where y = a + bxis theline we seek. Since the columns of A are clearly linearly inde-
pendent, there will be a unique least squares solution, by part (b) of the Least Squares
Theorem. We compute

1 1 2
1 1 1 3 6 1 1 1 8
ATA = 1 2| = and A™b = 2| =
1 2 3 - 6 14 1 2 3 A 18

Hence, we can solve the normal equations A”Ax = A"b, using Gaussian elimination

to obtain
1 0 _%}
0 111
2

Sox = {ﬂ, from which we see that a = 3, b = 1 are the coefficients of the least

3 68
[ATA[ATD] = { ‘ } —
6 1418

squares approximating line: y = % + x I

The line we just found is the line in Example 7.24(c), so we have justified our
claim that this line produces the smallest least squares error for the data points (1, 2),
(2, 2), and (3, 4). Notice that if x is a least squares solution of Ax = b, we may com-
pute the least squares error as

el = 1Ib — Ax|

Since AX = proj.y4)(b), this is just the length of perp ,4)(b)—that is, the distance
from b to the column space of A. In Example 7.26, we had

2 L | :

e=b-Ax=[2|-|1 2H= -1
1

4 3 L

so, as in Example 7.24(c), we have a least squares error of |e| = \/§ =~ (.816.

Remark Note that the columns of A in Example 7.26 are linearly independent,
SO (ATA)—1 exists, and we could calculatex asX = (ATA) 'ATb. However, it is almost
always easier to solve the normal equations using Gaussian elimination (or to let your
CAS do it for you!).

It is interesting to look at Example 7.26 from two different geometric points of
view. On the one hand, we have the least squares approximating line y = % + x,
with corresponding errors &, = 3, &, = —3, and &; = 3, as shown in Figure 7.13(a).
Equivalently, we have the projection of b onto the column space of A, as shown in
Figure 7.13(b). Here,

P = Projea(b) = Ax =

[
I
= Wl wln

W=
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(@)
Figure 1.13

&
and the least squares error vector is e =

if the data points were collinear?] &,

w|: w|oo W |

W = col(A)
(b)

€, |. [What would Figure 7.13(b) look like

>»

Example 1.21

>

Find the least squares approximating line and the least squares error for the points

(1,1),(2,2),(3,2),and (4, 3).

Solution
four points into this equation, we obtain

a+ b=1 1
a+2b=2 1
or
a+ 3 =2 1
a+ 4 =3 1

Let y = a + bx be the equation of the line we seek. Then, substituting the

W NN

So we want the least squares solution of Ax = b, where

and

—_ = =
W N =

N

NN

b

w

Since the columns of A are linearly independent, the solution we want is

x = (ATA)"'ATd =

(Check this calculation.) Therefore, we take a

G| N|—

5 and b = 2, producing the least

squares approximating line y = § + 2x, as shown in Figure 7.14.
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Figure 7.14

Since

W NN
—_— = =

the least squares error is |le| = V/5/5 =~ 0.447.

W N

el

We can use the method of least squares to approximate data points by curves

other than straight lines.

Example 1.28

»

Find the parabola that gives the best least squares approximation to the points (—1, 1),

(0, —1), (1, 0), and (2, 2).

Solution The equation of a parabola is a quadratic y = a + bx + cx’. Substituting
the given points into this quadratic, we obtain the linear system

a— b+ ¢ = 1 1
a = —1 1
or
a+ b+ ¢ = 0 1
a+2b+4 = 2 1

-1
0
1
2

1
0
1
4

Thus, we want the least squares approximation of Ax = b, where

1 -1 1

1 0 0
A:

1 1 1

1 2 4

and b =

NN O
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We compute

4 2 6 2
ATA=12 6 8| and Ab=|3
6 8 18 9
so the normal equations are given by
4 2 6 2
2 6 8|x=13
6 8 18 9
whose solution is
7
10
= 3
x=| —3
1
Thus, the least squares approximating parabola has the equation
y= - - sx+x
as shown in Figure 7.15.
y o)
4 \f*%*l\'Jr_\-
4 —+
3 —+
2+ (2.2)
(=L D LT
(1,0
f f f + f —x
-3 -2 -1 \-/ 2 3
“1t0,-n
_2 -
Figure 1.15
A least squares approximating parabola I

One of the important uses of least squares approximation is to estimate constants
associated with various processes. The next example illustrates this application in the
context of population growth. Recall from Section 6.7 that a population that is grow-
ing (or decaying) exponentially satisfies an equation of the form p(t) = ce, where
p(t) is the size of the population at time ¢ and c and k are constants. Clearly, ¢ = p(0),
but k is not so easy to determine. It is easy to see that

(1)
k=22
p(®)
which explains why k is sometimes referred to as the relative growth rate of the popu-
lation: It is the ratio of the growth rate p’(t) to the size of the population p(t).



Section 7.3  Least Squares Approximation 981

»

CAS  Example 1.29

Tahle 1.2

Population
Year (in billions)
1950 2.56
1960 3.04
1970 3.71
1980 4.46
1990 5.28
2000 6.08

Source: U.S. Bureau of the Census, Inter-
national Data Base

o

Table 7.2 gives the population of the world at 10-year intervals for the second half of
the 20th century. Assuming an exponential growth model, find the relative growth
rate and predict the world’s population in 2010.

Solution Let’s agree to measure time ¢ in 10-year intervals so that t = 0 is 1950,
t = 11is 1960, and so on. Since ¢ = p(0) = 2.56, the equation for the growth rate of
the population is

p = 2.56€"

How can we use the method of least squares on this equation? If we take the natural
logarithm of both sides, we convert the equation into a linear one:

Inp = In(2.56€")
= In2.56 + In(e")
=~ 0.94 + kt

Plugging in the values of t and p from Table 7.2 yields the following system (where we
have rounded calculations to three decimal places):

0.94 = 0.94
k=0.172
2k = 0.371
3k = 0.555
4k = 0.724
5k = 0.865

We can ignore the first equation (it just corresponds to the initial condition ¢ =
p(0) = 2.56). The remaining equations correspond to a system Ax = b, with

1 0.172
2 0.371
A=|3| and b =|0.555
4 0.724
5 0.865

Since ATA = 55 and ATb = 9.80, the corresponding normal equations are just the
single equation

55x = 9.80

Therefore, k = x = 9.80/55 = 0.178. Consequently, the least squares solution has
the form p = 2.56e""% (see Figure 7.16).
The world’s population in 2010 corresponds to t = 6, from which we obtain

p(6) = 2.56¢*178¢ ~ 7448

Thus, if our model is accurate, there will be approximately 7.45 billion people on
Earth in the year 2010. (The U.S. Census Bureau estimates that the global population
will be “only” 6.82 billion in 2010. Why do you think our estimate is higher?)
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Population (in billions)

Decades since 1950

Least Squares via the OR Factorization

It is often the case that the normal equations for a least squares problem are
ill-conditioned. Therefore, a small numerical error in performing Gaussian elimina-
tion will result in a large error in the least squares solution. Consequently, in practice,
other methods are usually used to compute least squares approximations.

Itturns out that the QR factorization of A yields a more reliable way of computing
the least squares approximation of Ax = b.

Theorem 1.10

Let A be an m X n matrix with linearly independent columns and let b be in R™.
If A = QR is a QR factorization of A, then the unique least squares solution x of
Ax=Dbis

x=R'Q

Proof Recall from Theorem 5.16 that the QR factorization A = QR involves an
m X n matrix Q with orthonormal columns and an invertible upper triangular
matrix R. From the Least Squares Theorem, we have

ATAx = Ab
= (QR)'QRX = (QR)"D
= R'Q"QRx = R'Q"b
= R'Rx = R'Q'b

since Q'Q = I. (Why?)
Since R is invertible, so is RT, and hence we have

Rx = Qb or, equivalently, x = R"'Q’b — eem

Remark Since R is upper triangular, in practice it is easier to solve Rx = Q'b
directly than to invert R and compute R~ 'Q”b.
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\

Example 1.30

Use the QR factorization to find a least squares solution of Ax = b, where

1 2 2 2
-1 1 -3
A= and b=
-1 0 1 —2
1 1 2 0

Solution From Example 5.15,

1/2 3V5/10 —V6/6

-1/2 3V5/10 of 2 ] e

ATR=N 1 VEe Ve 8 \/g 3@%
1/2  V5/10  Ve6/3
We have
2 sz -2 12 | 7/2
Q™ = |3V5/10 3V5/10 V5/10 V5/10 L= -\/5/2
-V6/6 0 Ve/6  V6/3 0 -2V6/3
so we require the solution to Rx = Qb, or
2 1 1/2 7/2
0 V5 3V5/2|x=| —V5/2
0 0 V6/2 -2V6/3
Back substitution quickly yields
4/3
X = 3/2

—4/3 4
Orthogonal Projection Revisited

One of the nice byproducts of the least squares method is a new formula for the or-
thogonal projection of a vector onto a subspace of R™.

Theorem 1.11

Let W be a subspace of R™ and let A be an m X #n matrix whose columns form a
basis for W. If v is any vector in R™, then the orthogonal projection of v onto W
is the vector

projy (v) = A(ATA)'ATv

The linear transformation P : R™ — R™ that projects R™ onto W has A(ATA) AT
as its standard matrix.

Proof  Given the way we have constructed A, its column space is W. Since the
columns of A are linearly independent, the Least Squares Theorem guarantees that
there is a unique least squares solution to Ax = v given by

x = (ATA) ATy
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By Equation (1),
AX = projea)(v) = projy(v)
Therefore, projy(v) = A((ATA) 'ATv) = (A(ATA) 'AT)v

as required. Since this equation holds for all vin R™, the last statement of the theorem
follows immediately. —emm

We will illustrate Theorem 7.11 by revisiting Example 5.11.

Example 1.31

3
Find the orthogonal projection of v = | —1 | onto the plane W in R’ with equation
2

x —y + 2z = 0, and give the standard matrix of the orthogonal projection transfor-
mation onto W.

Solution  Asin Example 5.11, we will take as a basis for W the set

1 =1l
1], 1
0] 1
We form the matrix
(1 -1
A=|1 1
LO 1
with these basis vectors as its columns. Then
1 -1
; 110 2 0
A'A = 1 1| =
-1 1 1 0 3
0 1
1
s 0
$0 (ATA) ' = [2 1}
0 3

By Theorem 7.11, the standard matrix of the orthogonal projection transformation
onto W is

1 -1 5 1 1
ET: : O] 110 DS
AA'A) 'A"=A=|1 1 1 = A 3
0 sJjl—-1 11 11 1
0 1 Y3033
so the orthogonal projection of v onto W is
S s [
projy(v) = A(ATA)"Av=| ¢ ¢ I||-1|=]| 3
11 L 2 _2
303 3 3

which agrees with our solution to Example 5.11. I
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Remark Since the projection of a vector onto a subspace W is unique, the stan-
dard matrix of this linear transformation (as given by Theorem 7.11) cannot depend
on the choice of basis for W. In other words, with a different basis for W, we have a
different matrix A, but the matrix A(ATA) AT will be the same! (You are asked to
verify this in Exercise 43.)

The Pseudoinverse of a Matrix

If A isan n X »n matrix with linearly independent columns, then it is invertible, and
the unique solution to Ax = bis x = A™'b. If m > nand A is m X n with linearly
independent columns, then Ax = b has no exact solution, but the best approximation
is given by the unique least squares solution x = (A”A) "'Ab. The matrix (A7A) AT
therefore plays the role of an “inverse of A” in this situation.

neﬁniliﬂn If A is a matrix with linearly independent columns, then the
pseudoinverse of A is the matrix A" defined by

A+ — (ATA)—IAT

Observe that if A is m X n, then A" is n X m.

Example 1.32

\

1 1
Find the pseudoinverseof A = | 1 2 |.
1 3

Solution  We have already done most of the calculations in Example 7.26. Using our
previous work, we have

A+=(ATA)1AT=[ ; _IHI : 1}={
=1 % —

1 2 3 I

The pseudoinverse is a convenient shorthand notation for some of the con-
cepts we have been exploring. For example, if A is m X n with linearly independent
columns, the least squares solution of Ax = b is given by

SRS

O W=
YN
[

x=A"b
and the standard matrix of the orthogonal projection P from R™ onto col(A) is
[P] = AA"

If A is actually a square matrix, then it is easy to show that A® = A™! (see
Exercise 53). In this case, the least squares solution of Ax = b is the exact solution,
since

x=Ab=A"b=x
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#—>  The projection matrix becomes [P] = AA™ = AA™! = [ (What is the geometric
interpretation of this equality?)
Theorem 7.12 summarizes the key properties of the pseudoinverse of a matrix.
w—>  (Before reading the proof of this theorem, verify these properties for the matrix in
Example 7.32.)

Theorem 7.12  Let A be a matrix with linearly independent columns. Then the pseudoinverse
A" of A satisfies the following properties, called the Penrose conditions for A:

a. AATA=A
b. ATAAT = A"
c. AA" and A" A are symmetric.

Proof  We prove condition (a) and half of condition (c) and leave the proofs of the
remaining conditions as Exercises 54 and 55.

(a) We compute
AATA = A((ATA)'ATA
= A(ATA)71(ATA)
=AlI=A

(c) By Theorem 3.4, ATA s symmetric. Therefore, (ATA) s also symmetric, by
Exercise 46 in Section 3.3. Taking the transpose of AA ", we have

(AAT)T = (A(ATA)7'AT)T
= (ADT((ATA)™)TAT
= A(ATA)7'AT
= AAY B
Exercise 56 explores further properties of the pseudoinverse. In the next section,

we will see how to extend the definition of A™ to handle all matrices, whether or not
the columns of A are linearly independent.

\

I Exercises 1.3

CAS

In Exercises 1-3, consider the data points (1, 0), (2, 1), and In Exercises 7-14, find the least squares approximating line

(3, 5). Compute the least squares error for the given line. for the given points and compute the corresponding least
In each case, plot the points and the line. squares error.
Ly=-2+2x 2.y=x 3.y=-3+3x 7.(1,0),(2,1), (3,5)

In Exercises 4-6, consider the data points (=5, 3), (0, 3), 8.(1,6),(2,3), (3. 1)
(5, 2), and (10, 0). Compute the least squares error for the 9.(0,4),(1,1),(2,0)
given line. In each case, plot the points and the line. 10. (0, 3), (1, 3), (2, 5)

4-)/: 3_%)( 5.}/:% 6.)/: 2 _%x 11‘(_5,_1),(0)1)’(5’2)’(10’4)

(
(



12. (=5, 3), (0, 3), (5, 2), (10, 0)
13.(1, 1), (2, 3),(3,4),(4,5),(5,7)
14. (1, 10), (2, 8), (3, 5), (4, 3), (5, 0)

In Exercises 15-18, find the least squares approximating
parabola for the given points.

15.(1,1),(2, —2), (3, 3), (4, 4)

16. (1, 6), (2,0), (3, 0), (4, 2)
17.(—2,4),(—1,7),(0,3),(1,0), (2, —1)
18. (_2 0)) (_1: _11)1 (0) _10)’ (1) _9)r (2) 8)

In Exercises 19-22, find a least squares solution of Ax = b
by constructing and solving the normal equations.

301 1
1994=[1 1[,b=]1
1 2 1
(1 -2 1
20.A=|3 —2|b= 1]
12 1] 1
r1 —27 ro4
A=Y Ple=]| !
2 5 —3
|3 | 4
T 10 1
wa=| 2 Vb=
-1 1 -1
L0 2 2

In Exercises 23 and 24, show that the least squares solution
of Ax = b is not unique and solve the normal equations to
find all the least squares solutions.

11 0 0 1

1 0 1 1 -3
23.A = b=

0 -1 1 1 2

1 -1 1 0 4

0o 1.1 0 5

1 -1 1 -1 3
24. A = b=

1 01 0 -1

111 1 1

In Exercises 25 and 26, find the best approximation to a
solution of the given system of equations.

25. x+ y— z= 2 26. 2x + 3y +z=21

—y+2z= 6 x+ y+z= 7
Ix+2y— z=11 —x+ y—z=14
—x + z= 0 2y+z= 0
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In Exercises 27 and 28, a QR factorization of A is given.
Use it to find a least squares solution of Ax = b.

2 1 2 1
3 3 3 1
27A=|2 0[,Q=1]% -3 ,RZ{ },b=
s 0 1
L1 1 i3
1 o0 1/Ve 1/V2
286A=| 2 -1[,Q=| 2/Ve 0 |
-1 1 -1/Ve6 1/V2
1
R_{\/E —\/é/z}b_ X
0 1/V2/) X

29. A tennis ball is dropped from various heights, and the
height of the ball on the first bounce is measured. Use
the data in Table 7.3 to find the least squares approxi-
mating line for bounce height b as a linear function
of initial height h.

Table 1.3

h(cm) 20 40 48 60 80 100
b(cm) 145 31 36 455 59 73.5

30. Hooke’s Law states that the length L of a spring is
a linear function of the force F applied to it. (See
Figure 7.17 and Example 6.92.) Accordingly, there
are constants a and b such that

L =a+ bF

Table 7.4 shows the results of attaching various
weights to a spring.

~ AN\
|

Figure 1.11

Tahle 1.4

F(oz) 2 4 6 8
LGn) 74 96 115 136
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Tahle 1.9
Year of Birth 1920 1930 1940
Life Expectancy (years) 54.1 59.7 62.9

1950 1960 1970 1980 1990
68.2 69.7 70.8 73.7 75.4

Source: World Almanac and Book of Facts. New York: World Almanac Books, 1999

(a) Determine the constants a and b by finding the
least squares approximating line for these data.
What does a represent?

(b) Estimate the length of the spring when a weight of
5 ounces is attached.

31. Table 7.5 gives life expectancies for people born in the
United States in the given years.

(@) Determine the least squares approximating line
for these data and use it to predict the life expec-
tancy of someone born in 2000.

(b) How good is this model? Explain.

32. When an object is thrown straight up into the air,
Newton’s Second Law of Motion states that its height
s(t) at time ¢ is given by

s(t) = so + ot + 5gt°

where v, is its initial velocity and g is the constant of
acceleration due to gravity. Suppose we take the mea-
surements shown in Table 7.6.

Tahle 1.6
Time (s) 0.5 1 1.5 2 3
Height (m) 11 17 21 23 18

(a) Find the least squares approximating quadratic for
these data.

(b) Estimate the height at which the object was
released (in m), its initial velocity (in m/s), and its
acceleration due to gravity (in m/s?).

(c) Approximately when will the object hit the
ground?

33. Table 7.7 gives the population of the United States at
10-year intervals for the years 1950-2000.

(a) Assuming an exponential growth model of the
form p(t) = ce*, where p(t) is the population at
time t, use least squares to find the equation for
the growth rate of the population. [Hint: Lett = 0
be 1950.]

(b) Use the equation to estimate the U.S. population

in 2010.
Tahle 1.1
Population
Year (in millions)
1950 150
1960 179
1970 203
1980 227
1990 250
2000 281

Source: U.S. Bureau of the Census

34. Table 7.8 shows average major league baseball salaries
for the years 1970-2005.

(a) Findthe least squares approximating quadratic for
these data.

(b) Find the least squares approximating exponential
for these data.

(c) Which equation gives the better approximation?
Why?

(d) What do you estimate the average major league
baseball salary will be in 2010 and 2015?

Tahle 1.8
Average Salary
Year (thousands of dollars)
1970 29.3
1975 44.7
1980 143.8
1985 371.6
1990 597.5
1995 1110.8
2000 1895.6
2005 2476.6

Source: Major League Baseball Players Association



35. A 200 mg sample of radioactive polonium-210 is ob-
served as it decays. Table 7.9 shows the mass remain-
ing at various times.

Assuming an exponential decay model, use least
squares to find the half-life of polonium-210. (See
Section 6.7.)

Table 1.9
Time (days) 0 30 60 90
Mass (mg) 200 172 148 128

36. Find the plane z = a + bx + cy that best fits the data
points (0, _4, 0), (5, 0) 0)) (4» _1) 1)’ (1) _3) 1)) and
(-1, =5, —2).

In Exercises 37-42, find the standard matrix of the
orthogonal projection onto the subspace W. Then use this
matrix to find the orthogonal projection of v onto W.

=[]} = ]
oo =)= ]

(1 1

39 W=span| | 1| |,v=|2
3
40. W = span 21 L,v=1]0

41. W = span 0|1

42. W =span| | =2 [,| 0| |, v=]2
1 -1 3

43. Verify that the standard matrix of the projection onto
W in Example 7.31 (as constructed by Theorem 7.11)
does not depend on the choice of basis. Take
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as a basis for W and repeat the calculations to show
that the resulting projection matrix is the same.

44. Let A be a matrix with linearly independent columns
and let P = A(ATA) 'AT be the matrix of orthogonal
projection onto col(A).

(a) Show that P is symmetric.
(b) Show that P is idempotent.

In Exercises 45-52, compute the pseudoinverse of A.

i 1
1
45. A = 2] 46. A = | —1
i L 2
1 3 (1 3
47.A=| -1 1 48. A =13 1
L 0 2 12 2
(1 1 (1 2
49. A = 50. A =
10 1 13 4
o0 0 2 0
1 0 1 01 -1
51. A = 52. A =
0 1 1 1 1 -2
1 1 1 L0 0 2

53. (@) Show that if A is a square matrix with linearly
independent columns, then A* = A7,
(b) If A is an m X n matrix with orthonormal
columns, what is A*?

54. Prove Theorem 7.12(b).
55. Prove the remaining part of Theorem 7.12(c).

56. Let A be a matrix with linearly independent columns.
Prove the following:

(@) (cA)™ = (1/c)A™ for all scalars ¢ # 0.
(b) (A)™ = Aif A is a square matrix.
(c) (A" = (A")Tif A is a square matrix.

57. Let n data points (xy, y;), . . ., (X,, ¥,,) be given. Show
that if the points do not all lie on the same vertical
line, then they have a unique least squares approxi-
mating line.

58. Let n data points (x}, y,), . . ., (x,, ¥,) be given.
Generalize Exercise 57 to show that if at least k + 1
of xy, ..., x, are distinct, then the given points have
a unique least squares approximating polynomial of
degree at most k.
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L=

The Singular Value Decomposition

In Chapter 5, we saw that every symmetric matrix A can be factored as A = PDP7,
where P is an orthogonal matrix and D is a diagonal matrix displaying the eigenval-
ues of A. If A is not symmetric, such a factorization is not possible, but as we learned
in Chapter 4, we may still be able to factor a square matrix A as A = PDP ", where
D is as before but P is now simply an invertible matrix. However, not every matrix
is diagonalizable, so it may surprise you that we will now show that every matrix
(symmetric or not, square or not) has a factorization of the form A = PDQ T where
Pand Q are orthogonal and D is a diagonal matrix! This remarkable result is the sin-
gular value decomposition (SVD), and it is one of the most important of all matrix
factorizations.

In this section, we will show how to compute the SVD of a matrix and then con-
sider some of its many applications. Along the way, we will tie up some loose ends by
answering a few questions that were left open in previous sections.

The Singular Values of a Matrix

For any m X n matrix A, the n X n matrix A”A is symmetric and hence can be or-
thogonally diagonalized, by the Spectral Theorem. Not only are the eigenvalues of
ATA all real (Theorem 5.18), they are all nonnegative. To show this, let A be an eigen-
value of A"A with corresponding unit eigenvector v. Then

(Av) - (AV) = (Av)TAv = vIATAV
VvIAv = Avv) = Afv[]* = A

0 = [Av|?

Il

It therefore makes sense to take (positive) square roots of these eigenvalues.

Definition 1fAisan m X n matrix, the singular values of A are the square
roots of the eigenvalues of A”A and are denoted by o, . . . , o,,. It is conventional
to arrange the singular values so thato, = 0, =--- = 0,

Example 1.33

\

Find the singular values of

>
Il
O =
=

Solution The matrix

B {2 1}
1 2
has eigenvalues A, = 3 and A, = 1. Consequently, the singular values of A are o, =

VA, = V3ando, = VA, = 1. I

1
1 10

ATA = 1
1 0 1

0

—_ O
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To understand the significance of the singular values of an m X n matrix A,
consider the eigenvectors of ATA. Since A”A is symmetric, we know that there is an
orthonormal basis for R" that consists of eigenvectors of ATA. Let {v,, ..., v,} be such
a basis corresponding to the eigenvalues of A”A, ordered so that A\, = A, =+ = A,.
From our calculations just before the definition,

A = ||Avy)?
Therefore, o= VA = |Av)
In other words, the singular values of A are the lengths of the vectors Av,, . . ., Av,.

Geometrically, this result has a nice interpretation. Consider Example 7.33 again.
If x lies on the unit circle in R (i.e., [x| = 1), then

JAX[* = (Ax) - (Ax) = (Ax)T(4x) = x"ATAx

2 1ix > p

[x, x,] = 2x7 + 2x;x, + 2x3
1 2]lx

which we recognize is a quadratic form. By Theorem 5.25, the maximum and mini-

mum values of this quadratic form, subject to the constraint |x| = 1, are A, = 3 and

X, = 1, respectively, and they occur at the corresponding eigenvectors of ATA—that

is, when \% {1/\/5} and v [_1/\/5} espectively. Since
is, whenx = v, = X=v,= , T ctively. Sinc
lv2 2 1/v72] P Y
HAvin = ViTATAVi = A
for i = 1, 2, we see that o, = |Avy|| = V3 and o, = |Av,| = 1 are the maximum

and minimum values of the lengths |Ax| as x traverses the unit circle in R?.
Now, the linear transformation corresponding to A maps R* onto the plane in R?
W—>  with equation x — y — z = 0 (verify this), and the image of the unit circle under this
transformation is an ellipse that lies in this plane. (We will verify this fact in general
shortly; see Figure 7.18.) So o, and o, are the lengths of half of the major and minor
axes of this ellipse, as shown in Figure 7.19.
We can now describe the singular value decomposition of a matrix.

y X
s multiplication 1
by A
— Py
A
/“\ 2__
5 0 5
)C/ T 0]
)
f f I —x
24 y -2 0 / 2
_2 -
Figure 1.18

The matrix A transforms the unit circle in R* into an ellipse in R’ Figure 1.19
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The Singular Value Decomposition
We want to show that an m X #n matrix A can be factored as
A=U3VT

where Uis an m X m orthogonal matrix, V is an n X » orthogonal matrix, and X is
an m X n “diagonal” matrix. If the nonzero singular values of A are

o, =0, = =0,>0
and o, = 0,., = -+ =0, = 0, then 2 will have the block form
D= {DO] . , where D = O:-l 0 (1)
Oi0 | )m—r 0 Oir

and each matrix O is a zero matrix of the appropriate size. (If r = morr = n, some of
these will not appear.) Some examples of such a matrix X with r = 2 are

50 0
4 0 0 20 i 02 0
= , S=]0 2|, =10 3 0], =

2[030}2 % =100 0

00 0 0 0
00 0

(What is D in each case?)
To construct the orthogonal matrix V, we first find an orthonormal basis
{Vi,...,v,} for R" consisting of eigenvectors of the # X n symmetric matrix ATA. Then

V=1I[v - v,

is an orthogonal #n X # matrix.

For the orthogonal matrix U, we first note that {Av,, ..., Av,} is an orthogonal set
of vectors in R™. To see this, suppose that v, is the eigenvector of A”A corresponding
to the eigenvalue A;. Then, for i # j, we have

(4v) - (Av) = (Av) Ay,
= V,TATAVJ
= ViAy;
= A(v;'v) =0

since the eigenvectors v; are orthogonal. Now recall that the singular values satisfy
o; = |Av;| and that the first r of these are nonzero. Therefore, we can normalize
Avy, ..., Av, by setting

1 .
u=—Av, fori=1,...,r
O;
This guarantees that {u,, . .., u,} is an orthonormal set in R™, but if r < m it will not
be a basis for R™. In this case, we extend the set {u,, . .., u,} to an orthonormal basis

{uy,...,u,} for R™. (This is the only tricky part of the construction; we will describe
techniques for carrying it out in the examples below and in the exercises.) Then we set

U=[u - u,]
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All that remains to be shown is that this works; that is, we need to verify that with
U, V,and = as described, we have A = USV T, Since V' = V™, this is equivalent to
showing that

AV = U3
We know that Avi=cn; fori=1,...,r
and [Av;| = o; = 0fori=r+1,..., n Hence,
Av;=0 fori=r+1,...,n
Therefore, AV = Alvy, - v,]
= [Av, -+ Av,]
= [Av, - Av, 0 --- 0]
:[01111 ceoou, 0 --- 0]
0-1 PN 0 E
= [ul um] : O
0 Ori ...
@) : 0

Uz

as required.
We have just proved the following extremely important theorem.

Theorem 1.13

The Singular Value Decomposition

Let A be an m X n matrix with singular values ¢y = 0, = -+ = ¢, > 0 and
Or4) = 0,49 == 0, = 0. Then there exist an m X m orthogonal matrix U,
an n X n orthogonal matrix V, and an m X »n matrix 2 of the form shown in
Equation (1) such that

A=U3vT

A factorization of A as in Theorem 7.13 is called a singular value decomposition
(SVD) of A. The columns of U are called left singular vectors of A, and the columns
of V are called right singular vectors of A. The matrices U and V are not uniquely
determined by A, but 2 must contain the singular values of A, as in Equation (1). (See
Exercise 25.)

\/

Example 1.34

Find a singular value decomposition for the following matrices:
1 1

1 10
(a)A—[0 . 1] b) A=1|1 0
0 1
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Solution (a) We compute

1 10
ATA=1]1 1 0
0 0 1

and find that its eigenvalues are A, = 2, A, = 1, and A; = 0, with corresponding
eigenvectors

1 0 -1
, 10, 1
0 1 0

(Verify this.) These vectors are orthogonal, so we normalize them to obtain

1/V2 0 -1/\V2
vi=|1/V2|, v,=|0|, v,= 1/V2
0 1 0

The singular values of A are o = V2, o, =V1=1,ando; = VO = 0. Thus,
1/V2 0 —-1/V2

V2 0 0
Vv=|1/V2 0 1/V2| and 2={0 ) 0}
0 1 0
To find U, we compute
1 1 (1 1 0 Fl/\/f 1
= —Av, = —= 1/V2 | =
= A \6{0 0 1} /0 M
1 11 1 0] 0 0
and uZZ—AVZZ{ 0 :[}
o, tlo o 1|} 1

These vectors already form an orthonormal basis (the standard basis) for R?, so we

have
o )
U:
0 1
This yields the SVD
1/V2 1/V2 0
1 10 1 0][v2 0 o0 [V2 1/V2 .
Ao 0 1] o 1)lo 1 off © OO SRt
-1/V2 1/V2 o

which can be easily checked. (Note that V had to be transposed. Also note that the
singular value o3 does not appear in 2.)
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(b) This isthe matrix in Example 7.33, so we already know that the singular values are

, 1/V2 -1/V2
o, = V3 and o, = 1, corresponding to v, = [1/\/5} and v, = [ So

1/V2]

DR= \gg (1) and V={1/\6 _1/\/5}
1/V2  1/V2

0 O

For U, we compute
11 . [2/Ve
ulzo_LAm:% 1 0 Ef\\g =|1/Ve
! 0 1 - L1/Ve
11 o [ o

and u2=O_LAV2=% 1 0 {_xg =|-1/V2
? 0 1 L 1/V2

This time, we need to extend {u,, u,} to an orthonormal basis for R*. There are
several ways to proceed; one method is to use the Gram-Schmidt Process, as in
Example 5.14. We first need to find a linearly independent set of three vectors that con-
tains u; and u,. If e; is the third standard basis vector in R?, it is clear that {u;, u,, e;}
is linearly independent. (Here, you should be able to determine this by inspection, but
a reliable method to use in general is to row reduce the matrix with these vectors as
its columns and use the Fundamental Theorem.) Applying Gram-Schmidt (with
normalization) to {uy, u,, e;} (only the last step is needed), we find

-1/V3
u; = 1/V3
1/V3

2/Ve6 0 -1/V3
50 u=|1/Ve —-1/V2 1/V3
1/Ve 1/NV2  1/V3

and we have the SVD
1 1 2/V6 0 -1/V31[V3 0

A=|1 o0o|=|1/Ve —-1/V2 1/V3||l 0 1 [_1;@ iﬁ\\/[ﬂ:UL‘VT
0 1 1/Ve 1/NV2 1/NV3JL 0o

.y

There is another form of the singular value decomposition, analogous to the
spectral decomposition of a symmetric matrix. It is obtained from the SVD by
an outer product expansion and is very useful in applications. We can obtain this
version of the SVD by imitating what we did to obtain the spectral decomposition.
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Accordingly, we have

o, O
. . 0 Vi
A=U3V'= [y u,] o :
0 g, T
s v,
(0] o)
g
Vi
o, 0 :
: . . 0 V,T
=[w - wiv, - ou,l : T
R4 e
0 0 :
L v
_ S
o, 0 Vi Vi
= [u u,] N | W w,][O]]| :
L O o, _v,T_ vf
'—0'1 0] —vlT-
= [ ul| : : E
L O o, _V,T_
vi
= [ow, - ou]|
\d
=ouvi + -+ ouv’

using block multiplication and the column-row representation of the product. The
following theorem summarizes the process for obtaining this outer product form of
the SVD.

Theorem 7.14 The Outer Product Form of the SVD

Let A be an m X n matrix with singular valueso, = 0,=-=0,>0ando,., =
O, ,=""=0,=0.Letuy,...,u,beleft singular vectors and let vy, ..., v, be right
singular vectors of A corresponding to these singular values. Then

- T .. T
A =ouyv; t + oy,

Remark If A is a positive definite, symmetric matrix, then Theorems 7.13 and
7.14 both reduce to results that we already know. In this case, it is not hard to show
that the SVD generalizes the Spectral Theorem and that Theorem 7.14 generalizes the
spectral decomposition. (See Exercise 27.)

The SVD of a matrix A contains much important information about A, as out-
lined in the crucial Theorem 7.15.
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Theorem 1.15

LetA = USV7 bea singular value decomposition ofanm X n matrix A. Let oy, ...,
0, be all the nonzero singular values of A. Then:

a. Therank of Aisr.

b. {u,,...,u} is an orthonormal basis for col(A).

c. {u,,y,...,u,}isan orthonormal basis for null(AT).

d. {vy,...,v,}isan orthonormal basis for row(A).

o

. V.11, ..., v,}isan orthonormal basis for null(A).

Proof (a) By Exercise 61 in Section 3.5, we have

rank(A) = rank(UX V)

= rank(SV7)

= rank(2) = r
(b) We already know that {u,, ..., u,} is an orthonormal set. Therefore, it is linearly
independent, by Theorem 5.1. Since w; = (1/0,)Av;fori =1, ..., r, each u; is in the

column space of A. (Why?) Furthermore,

r = rank(A) = dim(col(A))

Therefore, {u,, ..., u,} isan orthonormal basis for col(4), by Theorem 6.10(c).
(c) Since {u,,...,u,}isan orthonormal basis for R"” and {uy, ..., u,} is a basis for
col(A), by property (b), it follows that {u,,, ..., u,} is an orthonormal basis for the

orthogonal complement of col(A). But (col(A)) = null(AT), by Theorem 5.10.

(e) Since
Avr+1 = "':AVHZO

the set {v,.,,...,v,} isan orthonormal set contained in the null space of A. Therefore,
{V.+1 ..., V,} is alinearly independent set of n — r vectors in null(A). But

dim(null(A)) = n — r

by the Rank Theorem, so {v,,...,V,} is an orthonormal basis for null(4), by Theo-
rem 6.10(c).

(d) Property (d) follows from property (e) and Theorem 5.10. (You are asked to
prove this in Exercise 32.) __m

The SVD provides new geometric insight into the effect of matrix transforma-
tions. We have noted several times (without proof) thatan m X » matrix transforms
the unit sphere in R" into an ellipsoid in R™. This point arose, for example, in our
discussions of Perron’s Theorem and of operator norms, as well as in the introduction
to singular values in this section. We now prove this result.
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Theorem 1.16

Let A bean m X n matrix with rank r. Then the image of the unit sphere in R"
under the matrix transformation that maps x to Ax is

a. the surface of an ellipsoid in R™ if r = #.
b. a solid ellipsoid in R if r < n.

Proof  Let A = USV be a singular value decomposition of the m X # matrix A. Let
the left and right singular vectors of Abe u,, ..., u, and vy, ..., v,, respectively. Since
rank(A) = r, the singular values of A satisfy

ogo=z0,=z--=z0,>0 and o0,,,=0,,="""=0,=0

X1
by Theorem 7.15(a). Let x

be a unitvector in R". Now, since V'is an orthogonal
xn
matrix, so is V7, and hence V'x is a unit vector, by Theorem 5.6. Now

T
Vi V{X
\% TX — X — .
T T.
Va v, X

so (Vx)? + o+ (v = 1.
By the outer product form of the SVD, we have A = ojuy! + - + oy’
Therefore,

AX = ouvix + - + ouvix

= (ovix)u, + -+ + (o, vy,

=yw t+ - tyu,
where we are letting y; denote the scalar o;v/x.
(a) Ifr = n, then we must have n = m and

Ax = yu; + - + yu,
= Uy
4!

where y = | ! |. Therefore, again by Theorem 5.6, [|Ax| = [Uy| = |y|, since U is

Ya
orthogonal. But

2 2
(y_l) oot (y_") = TR+ + (TR = 1
g, g,

which shows that the vectors Ax form the surface of an ellipsoid in R™. (Why?)

(b) If r < u, the only difference in the above steps is that the equation becomes

2 2
<y_1>+...+<&>§1
Ul (T,

since we are missing some terms. This inequality corresponds to a solid ellipsoid
in R™ — m
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Example 1.35

Describe the image of the unit sphere in R’ under the action of the matrix

[1 1 0}
A:
0 0 1
Solution  In Example 7.34(a), we found the following SVD of A:
2 1/v2 0
{1 1 0}_[1 OHW 0 0} ”(;f /Sf :
0 0 1 0 1JLOo 1 0
-1/V2 1/V2 0

Since r = rank(A) = 2 < 3 = n, the second part of Theorem 7.16 applies. The image
of the unit sphere will satisfy the inequality

2 2 2
<%> +<}%> =1 or %+y§§1

relative to y,y, coordinate axes in R (corresponding to the left singular vectors u,
and u,). Since u; = e, and u, = e,, the image is as shown in Figure 7.20.

Figure 7.20

.

In general, we can describe the effect of an m X n matrix A on the unit sphere
in R" in terms of the effect of each factor in its SVD, A = UV, from right to left.
Since V7 is an orthogonal matrix, it maps the unit sphere to itself. The m X 1 matrix
2 does two things: The diagonal entries 07,1 = 0,2, =+ = 0, = 0 collapse n — r
of the dimensions of the unit sphere, leaving an r-dimensional unit sphere, which the
nonzero diagonal entries o, . . . , o, then distort into an ellipsoid. The orthogonal
matrix U then aligns the axes of this ellipsoid with the orthonormal basis vectors
u,,...,u,in R™ (See Figure 7.21.)

Applications of the SUD

The singular value decomposition is an extremely useful tool, both practically and
theoretically. We will look at just a few of its many applications.
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Figure 1.21
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Rank  Until now, we have not worried about calculating the rank of a matrix from
a computational point of view. We compute the rank of a matrix by row reducing
it to echelon form and counting the number of nonzero rows. However, as we have
seen, roundoff errors can affect this process, especially if the matrix is ill-conditioned.
Entries that should be zero may end up as very small nonzero numbers, affecting our
ability to accurately determine the rank and other quantities associated with the ma-
trix. In practice, the SVD is often used to find the rank of a matrix, since it is much
more reliable when roundoff errors are present. The basic idea behind this approach
is that the orthogonal matrices U and V in the SVD preserve lengths and thus do not
introduce additional errors; any errors that occur will tend to show up in the matrix 2.

¢AS  Example 1.36

\/

Let
8.1650 —0.0041 —0.0041 8.17 0 0
A =]4.0825 —3.9960 4.0042 | and B = |4.08 —4 4
4.0825 4.0042 —3.9960 4.08 4 —4

The matrix B has been obtained by rounding off the entries in A to two decimal
places. If we compute the ranks of these two approximately equal matrices, we find
that rank(A) = 3 but rank(B) = 2. By the Fundamental Theorem, this implies, among
other things, that A is invertible but B is not.

The explanation for this critical difference between two matrices that are approxi-
mately equal lies in their SV Ds. The singular values of A are 10, 8, and 0.01, so A has
rank 3. The singular values of B are 10, 8, and 0, so B has rank 2.

In practical applications, itis of ten assumed that ifa singular value is computed to
be close to zero, then roundoff error has crept in and the actual value should be zero.
In this way, “noise” can be filtered out. In this example, if we compute A = US V" and
replace

10 0 0 10 0 0
S=|0 8 0 by =0 8 0
0 0 001 00 0

then US'V! = B. (Try it!) 1

Matrix Norms and the Gondition Number The SVD can provide simple formulas
for certain expressions involving matrix norms. Consider, for example, the Frobenius
norm of a matrix. The following theorem shows that it is completely determined by
the singular values of the matrix.
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Theorem 1.11

Let A bean m X n matrix and let oy, . . ., o, be all the nonzero singular values of
A. Then

Al = Voi + -+ o7

The proof of this result depends on the following analogue of Theorem 5.6:

If Aisanm X n matrix and Q isan m X m orthogonal matrix, then

IQAllr = [|Allz (2)

To show that this is true, we compute
|QA[E = [[Qa; -+ Qa,lfz
= [Qayl; + -+ [|Qal;
= il + -+ Jal
= Al

Proof of Theorem 7.17  Let A = USV” be a singular value decomposition of A. Then,
using Equation (2) twice, we have

F— F
lAlE = Uz VT2
= |2V = IGVHT
= VI =[S = oF + o+ o

which establishes the result. ___ aam

\

CAS

Example 1.31

Verify Theorem 7.17 for the matrix A in Example 7.18.

3 1
Solution The matrix A = [2 4} has singular values 4.5150 and 3.1008. We

check that

V/4.5150% + 3.10082 = V30 = A,

which agrees with Example 7.18.

In Section 7.2, we commented that there is no easy formula for the operator
2-norm of a matrix A. Although that is true, the SVD of A provides us with a very nice
expression for ||A|,. Recall that

|All; = max|Ax]

/=1

where the vector norm is the ordinary Euclidean norm. By Theorem 7.16, for |x|| = 1,
the set of vectors |Ax| lies on or inside an ellipsoid whose semi-axes have lengths
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equal to the nonzero singular values of A. It follows immediately that the largest of
these is o, so

IA]l, = o,
This provides us with a neat way to express the condition number of a (square)

matrix with respect to the operator 2-norm. Recall that the condition number (with
respect to the operator 2-norm) of an invertible matrix A is defined as

cond,(A) = [|A7,|Al,

As you will be asked to show in Exercise 28, if A = USV7, then A™! = V= 'UT.
Therefore, the singular values of A~ are 1/, . .., 1/0, (why?), and

1o,z =1/0,

It follows that [A™]|, = 1/0,, s0

cond,(A) = —

Example 1.38

E. H. Moore (1862-1932) was an
American mathematician who
worked in group theory, number
theory, and geometry. He was
the first head of the mathemat-
ics department at the University
of Chicago when it opened in
1892. In 1920, he introduced a
generalized matrix inverse that
included rectangular matrices.
His work did not receive much
attention because of his obscure
writing style.

\

Find the 2-condition number of the matrix A in Example 7.36.

Solution  Since o, = 10 and o3 = 0.01,

o 10
cond,(4) = — = —— = 1000

This value is large enough to suggest that A may be ill-conditioned and we should be

wary of the effect of roundoff errors. i

The Pseudoinverse and Least Sguares Approximation In Section 7.3, we pro-
duced the formula A™ = (ATA)'AT for the pseudoinverse of a matrix A. Clearly, this
formula is valid only if ATA is invertible, as we noted at the time. Equipped with the
SVD, we can now define the pseudoinverse of any matrix, generalizing our previous
formula.

Definition 1Let A = USVT be an SVD for an m X #n matrix A, where 3 =
[D 0)
(0]

0,=0,==0,>0o0f A The pseudoinverse (or Moore-Penrose inverse) of A
is the n X m matrix A™ defined by

} and D isan r X r diagonal matrix containing the nonzero singular values

At =v3tUT

where 37 is the n X m matrix
s+ — {D“ o}
O O
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Example 1.39 Find the pseudoinverses of the matrices in Example 7.34.
Solution (a) From the SVD
1/V2 1/V2 0
1 1 0 1 0 2 0 0
A= {o 0 1} N {0 1}{\g_ 1 o} 0 0 L= U2V
-1/V2 1/V2 0
we form
1/V2 0
2T = 0 1
0 0
Then
1/V2 0 —-1/V2 UVEO’IO 1/2 0
AT=v3tuT=11/vV2 0 1/V2 0 1 {0 J: 1/2 0
0 1 0 0 0 0 1
(b) We have the SVD
11 2/V6 0 -1/V3][V3 0],
a / 1/V2 1/V2 .
A=|10|=|1/V6e —-1/V2 1/V3|l 0 1 CUNE N3 = UV
0 1 1/vVe 1/V2 1/V3]L oo o]t
T 1/V3 0 0]
o 37 = { V3
% 0 1 0
-‘ ‘_ and
5 k| 2/Ve 1/Ve 1/Ve
g : . e [1/V2 =1/V27[1/V3 0 0 /V6 / /
g A=VEU=1/\/§ vall o 1 o 0 -1/V2 1/V2
-1/V3  1/V3 1/V3
One of those who was unaware of
Moore’s work on matrix inverses 1/3 2/3 —1/3
was Roger Penrose (b.1931), who = 1/3 _1/3 2/3

introduced his own notion of

a generalized matrix inverse

in 1955. Penrose has made many
contributions to geometry and
theoretical physics. He is also the
inventor of a type of nonperiodic
tiling that covers the plane with
only two different shapes of tile,

yet has no repeating pattern. He has
received many awards, including the
1988 Wolf Prize in Physics, which
he shared with Stephen Hawking. In
1994, he was knighted for services
to science. Sir Roger Penrose is
currently the Emeritus Rouse Ball
Professor of Mathematics at the
University of Oxford.

I

Itisstraightforward to check that this new definition ofthe pseudoinverse general-
izes the old one, for if the m X nmatrix A = USV T has linearly independent columns,
then direct substitution showsthat (ATA) 'AT = VZ" U, (Youareasked to verify this
in Exercise 50.) Other properties of the pseudoinverse are explored in the exercises.

We have seen that when A has linearly independent columns, there is a unique
least squares solution X to Ax = b; that is, the normal equations ATAx = ATb have the
unique solution

x = (ATA) 'ATb = A7Db

When the columns of A are linearly dependent, then A”A is not invertible, so the nor-
mal equations have infinitely many solutions. In this case, we will ask for the solution
x of minimum length (i.e., the one closest to the origin). It turns out that this time we
simply use the general version of the pseudoinverse.



604

Chapter 7 Distance and Approximation

Theorem 1.18

The least squares problem Ax = b has a unique least squares solution x of minimal
length that is given by

x=ADb

Proof Let A be an m X n matrix of rank r with SVD A = USV T (so that AT =
V="UT). Lety = V'x and let c = U”b. Write y and ¢ in block form as

B YI j| B [CI }
= and ¢ =
Y L’z <
where y, and ¢, are in R".

We wish to minimize |b — Ax]| or, equivalently, |[b — Ax| Using Theorem 5.6
and the fact that U7 is orthogonal (because U is), we have

[b — Ax|* = |[UT(b — Ax)|* = |UT(b — USVX)|* = |[U'd — UTUSV'x|?

PR P 14 I (e
) O Olly G
The only part of this expression that we have any control over is y;, so the mini-

mum value occurs when ¢; — Dy, = 0 or, equivalently, when y; = D™ 'c,. So all least
squares solutions x are of the form

2

||c—zy||2=\

{D‘lcl}
x=Vy=V
Y2

B _ D',
Set x=Vy=V 0

We claim that this x is the least squares solution of minimal length. To show this, let’s

suppose that
’ ’ |:D_1C1:|
x =Vy =
Y2
is a different least squares solution (hence, y, + 0). Then
Il = 1vyl = Iyl <ly'l = vyl = Ix'I

as claimed.
We still must show that x is equal to A™b. To do so, we simply compute

_ _ D', D' Ol[¢q
x=Vy=V =V
0 O O]lg

=V3%c=V3"Ub=A"D o

Example 1.40

Find the minimum length least squares solution of Ax = b, where

el e
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Solution The corresponding equations
x+y=20
x+ty=1

are clearly inconsistent, so a least squares solution is our only hope. Moreover, the
columns of A are linearly dependent, so there will be infinitely many least squares
solutions—among which we want the one with minimal length.

An SVD of A is given by
A_[l 1}_[1/\6 1/\/5“2 0“1/\/5 l/ﬁ}—UEVT
Tl 1) V2 —1/V2)lo o]l/NV2 —1/NV2)

(Verify this.) It follows that

1/vV2  1/V2][1/2 o][1/V2  1/V2 1/4 1/4
1/V2 —1/\6“0 0”1/\6 —1/\/2}:[1/4 1/4}

1 1
1 1
a1l i 1
You can see that the minimum least squares solution in Example 7.40 satisfies
x + y = 1. In a sense, this is a compromise between the two equations we started

with. In Exercise 49, you are asked to solve the normal equations for this problem
directly and to verify that this solution really is the one closest to the origin.

AT =ViTUT = {

) izA*bz{

s

The Fundamental Theorem of Invertible Matrices It is appropriate to conclude
by revisiting the Fundamental Theorem of Invertible Matrices one more time.
Not surprisingly, the singular values of a square matrix tell us when the matrix is
invertible.

Theorem 1.19

The Fundamental Theorem of Invertible Matrices: Final Version

Let A be an # X n matrix and let T: V — W be a linear transformation whose
matrix [T]._g with respect to bases B and C of V and W, respectively, is A. The
following statements are equivalent:

A is invertible.

Ax = b has a unique solution for every b in R".
Ax = 0 has only the trivial solution.

. The reduced row echelon form of A is I,,.

A is a product of elementary matrices.

rank(A) = n

. nullity(A) =0

. The column vectors of A are linearly independent.
The column vectors of A span R".

The column vectors of A form a basis for R".

. The row vectors of A are linearly independent.
The row vectors of A span R".

R oge th D A0 T
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m. The row vectors of A form a basis for R".

n. det A#0

o. 01is not an eigenvalue of A.
p. Tisinvertible.

q. T is one-to-one.

r. Tis onto.

s. ker(T) = {0}

t. range(T) = W

u

0 is not a singular value of A.

Proof  First note that, by the definition of singular values, 0 is a singular value of A if
and only if 0 is an eigenvalue of A"A.

(a) = (u) IfAisinvertible, sois AT, and hence ATA isaswell. Therefore, property (o)
implies that 0 is not an eigenvalue of A”A, so 0 is not a singular value of A.

(u) = (a) If 0 is not a singular value of A, then 0 is not an eigenvalue of ATA.
Therefore, ATA is invertible, by the equivalence of properties (a) and (o). But then

rank(A) = n, by Theorem 3.28, so A is invertible, by the equivalence of properties (a)
and (f). __ s
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Figure 1.22

Vignette ¢

Digital Image Compression 0
N

L H

Among the many applications of the SVD, one of the most impressive is its use in
compressing digital images so that they can be efficiently transmitted electronically
(by satellite, fax, Internet, or the like). We have already discussed the problem of
detecting and correcting errors in such transmissions. The problem we now wish to
consider has to do with reducing the amount of information that has to be transmit-
ted, without losing any essential information.

In the case of digital images, let’s suppose we have a grayscale picture that is
340 X 280 pixels in size. Each pixel is one of 256 shades of gray, which we can repre-
sent by a number between 0 and 255. We can store this information in a 340 X 280
matrix A, but transmitting and manipulating these 95,200 numbers is very expensive.
The idea behind image compression is that some parts of the picture are less interest-
ing than others. For example, in a photograph of someone standing outside, there
may be a lot of sky in the background, while the person’s face contains a lot of detail.
We can probably get away with transmitting every second or third pixel in the back-
ground, but we would like to keep all the pixels in the region of the face.

It turns out that the small singular values in the SVD of the matrix A come from
the “boring” parts of the image, and we can ignore many of them. Suppose, then, that
we have the SVD of A in outer product form

A=owvi + -+ ouyv’
Let k = r and define Ay =owvi + - + oy
Then Ay is an approximation to A that corresponds to keeping only the first k singu-
lar values and the corresponding singular vectors. For our 340 X 280 example, we may
discover that it is enough to transmit only the data corresponding to the first 20 singular

values. Then, instead of transmitting 95,200 numbers, we need only send 20 singular values
plus the 20 vectors uy, . . ., Uy, in R** and the 20 vectors v, . . . , v,o in R*®, for a total of

20 + 20340 + 20-280 = 12,420

numbers. This represents a substantial saving!

The picture of the mathematician Gauss in Figure 7.22 is a 340 X 280 pixel image.
It has 256 shades of gray, so the corresponding matrix A is 340 X 280, with entries
between 0 and 255.

It turns out that the matrix A has rank 280. If we approximate A by A;, as de-
scribed above, we get an image that corresponds to the first k singular values of A.
Figure 7.23 shows several of these images for values of k from 2 to 256. At first, the
image is very blurry, but fairly quickly it takes shape. Notice that A;, already gives
a pretty good approximation to the actual image (which comes from A = A,q, as
shown in the upper left-hand corner of Figure 7.23).

Some of the singular values of A are o, = 49,096, o = 22,589, 03, = 10,187,
Oy = 484,053 = 182,055 = 5,and 0,4p = 0.5. The smaller singular values contribute very
little to the image, which is why the approximations quickly look so close to the original.

607
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In Exercises 1-10, find the singular values of the given matrix.

(2 0 2 1
1.A = 2. A=
10 3 1 2
11 V2 o1
3.A = 4. A = -
L0 0} { 0 \/2}
(3
5.A = } 6. A= [3 4]
| 4
[0 0 [0
7.A = 3 8. A= 0
L—=2 0 12 —2
_ 1 0 1
2 0 1
9. A = } 10.A=|0 -3 0
0 2 0
- L1 0 1

In Exercises 11-20, find an SVD of the indicated matrix.

1 1
aan[ ]
I 1

1 -1
wanll 7]
1 1

16. A in Exercise 6
18. A in Exercise 8

1 11
20. A =
1 1 1

11. A in Exercise 3

=2
wan] 0]
-3 0

15. A in Exercise 5
17. A in Exercise 7

19. A in Exercise 9

In Exercises 21-24, find the outer product form of the SVD
for the matrix in the given exercises.

21. Exercises 3 and 11 22. Exercise 14
23. Exercises 7 and 17 24. Exercises 9 and 19

25. Show that the matrices U and V in the SVD are not
uniquely determined. [Hint: Find an example in which
it would be possible to make different choices in the
construction of these matrices.]

26. Let A be a symmetric matrix. Show that the singular
values of A are:
(a) the absolute values of the eigenvalues of A.
(b) the eigenvalues of A if A is positive definite.

27. (a) Showthat, for a positive definite, symmetric
matrix A, Theorem 7.13 gives the orthogonal
diagonalization of A, as guaranteed by the Spectral
Theorem.

\/

(b) Show that, for a positive definite, symmetric
matrix A, Theorem 7.14 gives the spectral
decomposition of A.

28.If A isan invertible matrix with SVD A = U3V7,
show that 3 is invertible and that A™! = V31U is
an SVD of A7,

29. Show that if A = UV 7T is an SVD of A, then the left
singular vectors are eigenvectors of AA”.

30. Show that A and A” have the same singular values.

31. Let Q be an orthogonal matrix such that QA makes
sense. Show that A and QA have the same singular
values.

32. Prove Theorem 7.15(d).

33. What is the image of the unit circle in R? under the
action of the matrix in Exercise 3?

34. What is the image of the unit circle in R* under
the action of the matrix in Exercise 7?

35. What is the image of the unit sphere in R’ under the
action of the matrix in Exercise 92

36. What is the image of the unit sphere in R’ under
the action of the matrix in Exercise 10?

In Exercises 37-40, compute (a) |Al, and (b) cond,(A) for
the indicated matrix.

37. A in Exercise 3
1Qﬂ

38. A in Exercise 8
10 10 ﬂ

1 1

39.A = {
100 100 1

40.A={

In Exercises 41-44, compute the pseudoinverse A* of A in
the given exercise.

41. Exercise 3

43, Exercise 9

42. Exercise 8
44, Exercise 10

In Exercises 45-48, find A™ and use it to compute the mini-
mal length least squares solution to Ax = b.

1 2 3
-l o[

12 4 5

(3 0 0 3
46. A = ,b =

0 0 2 0

11 1
47.A=|1 1|,b=12

11 1 3




610 Chapter 7 Distance and Approximation

1 0 1 1
48.A=|0 1 0|,b=|1
1 0 1 1

49. (a) Set up and solve the normal equations for the
system of equations in Example 7.40.

(b) Find a parametric expression for the length of a
solution vector in part (a).

(c) Find the solution vector of minimal length and
verify that it is the one produced by the method
of Example 7.40. [Hint: Recall how to find the
coordinates of the vertex of a parabola.]

50. Verify that when A has linearly independent col-
umns, the definitions of pseudoinverse in this section
and in Section 7.3 are the same.

51. Verify that the pseudoinverse (as defined in this
section) satisfies the Penrose conditions for A
(Theorem 7.12 in Section 7.3).

52. Show that A™ is the only matrix that satisfies the
Penrose conditions for A. To do this, assume that
A’ is a matrix satisfying the Penrose conditions:
(a) AA'A = A,(b) A’AA" = A’,and (c) AA" and A’A
are symmetric. Prove that A" = A", [Hint: Use the
Penrose conditions for A™ and A’ to show that
A" =A'AA" and A’ = A’AA”. Tt is helpful to note
that condition (c) can be writtenas AA’ = (A’)TAT and
A’A = AT(A")T, with similar versions for A™.]

53. Show that (A")" = A. [Hint: Show that A satisfies the
Penrose conditions for A*. By Exercise 52, A must
therefore be (A7) "]

54. Show that (A™)T = (AT)". [Hint: Show that (A™)T

56. Let Q be an orthogonal matrix such that QA makes
sense. Show that (QA)" = AT Q".

57. Prove that if A is a positive definite matrix with SVD
A=UsV' thenU=V.

58. Prove that for a diagonal matrix, the 1-, 2-, and
c-norms are the same.

59. Prove that for any square matrix A, |A[3 = |A[,[A]...
[Hint: | A3 is the square of the largest singular value of
A and hence is equal to the largest eigenvalue of ATA.
Now use Exercise 34 in Section 7.2.]

a«vi/ Every complex number can be written in polar form as

z=re wherer = |z|isa nonnegative real number

and 0 is its argument, with le?] = 1. (See Appendix C.)
Thus, z has been decomposed into a stretching factor r and
a rotation factor €”. There is an analogous decomposition
A = RQ for square matrices, called the polar
decomposition.

60. Show that every square matrix A can be factored as
A = RQ, where R is symmetric, positive semidefinite
and Q is orthogonal. [Hint: Show that the SVD can be
rewritten to give

A=U03vT=Uus(WTuv? = (UsuHwvY

Then show that R = USU” and Q = UV" have the
right properties.]

Find a polar decomposition of the matrices in
Exercises 61-64.

61. A in Exercise 3 62. A in Exercise 14

satisfies the Penrose conditions for A”. By Exercise 52, 4 2 =3
(A™)T must therefore be (AT)".] 63. A = { 1 2] 64. A = | —2 ) 6
55. Show that if A is a symmetric, idempotent matrix, then o 4 -1 6
AT = A
! :
s Applications
$ N
Approximation of Functions
In many applications, it is necessary to approximate a given function by a “nicer”
%\ function. For example, we might want to approximate f(x) = e by a linear func-

tion g(x) = ¢ + dx on some interval [a, b]. In this case, we have a continuous
function f, and we want to approximate it as closely as possible on the interval [a, b]
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by a function g in the subspace ;. The general problem can be phrased as
follows:

Given a continuous function fon an interval [a, b] and a subspace W of €[a, b],
find the function “closest” to f in W.

The problem is analogous to the least squares fitting of data points, except now we
have infinitely many data points—namely, the points on the graph of the function f.
What should “approximate” mean in this context? Once again, the Best Approxima-
tion Theorem holds the answer.

The given function f lives in the vector space € [a, b] of continuous functions on
the interval [a, b]. This is an inner product space, with inner product

b
(f.8) = J’ f(x)g(x) dx

If W is a finite-dimensional subspace of € [a, b], then the best approximation to f in W
is given by the projection of fonto W, by Theorem 7.8. Furthermore, if {u,, . .., w} is
an orthogonal basis for W, then

(u, ) (e f)

prOjW(f) - <ul’“1>u1 T (g, uy)

W

\

Example 7.41

Find the best linear approximation to f(x) = e* on the interval [—1, 1].

Solution Linear functions are polynomials of degree 1, so we use the subspace
W= ®,[—1,1] of €[—1, 1] with the inner product

(g = J’jlf(x)g(x)dx
A basis for ,[—1, 1] is given by {1, x}. Since
(1,x) = Jl xdx =0
-1
this is an orthogonal basis, so the best approximation to f in W is
1, e* x, e*
<(1, 1)>1 * <<x, x>>x

g(x) = projy(e*) =

1 1
f (1-e¥)dx f xe* dx
—1

=il

= + 1 X
,[ (1-1)dx f x2dx
=i |
e—e ! 27!

= + =«

2 3

He—e ")+ 3¢ 'x=~1.18 + 1.10x
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g(x)

fx)

a

Figure 1.25

1
»—  where we have used integration by parts to evaluate [ xe* dx. (Check these calcula-

tions.) See Figure 7.24. -1

>
>

fx) = ¢€*

gx) = 1.18 + 1.10x

v
=

T T
/— 1 1 2

Figure 1.24 I

The error in approximating f by g is the one specified by the Best Approxima-
tion Theorem: the distance | f — g| between fand g relative to the inner product on
€©[—1, 1]. This error is just

Ir- ol =/ [ 6 - s

andisoften called the root mean square error. With the aid ofa CAS, we find that the
root mean square error in Example 7.41 is

1
le* — G(e — e™!) + 3¢ )| =\/J_l(e" — e — e — 3¢ x)?dx =~ 023

Remark The root mean square error can be thought of as analogous to the area
between the graphs of fand g on the specified interval. Recall that the area between
the graphs of fand g on the interval [a, b] is given by

b
J [f(x) — g(x)|dx

(See Figure 7.25.)

Although the equation in the above Remark is a sensible measure of the “error”
between fand g, the absolute value sign makes it hard to work with. The root mean
square error is easier to use and therefore preferable. The square root is necessary to
“compensate” for the squaring and to keep the unit of measurement the same as it
would be for the area between the curves. For comparison purposes, the area between
the graphs of fand g in Example 7.41 is

1
4( le* — (e —e™!) — 3¢ x| dx =~ 0.28
1
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Example 4.30

Find the best quadratic approximation to f(x) = e* ontheinterval [—1, 1].

Solution A quadratic function is a polynomial of the form g(x) = a + bx + cx* in
W = ®,[—1, 1]. This time, the standard basis {1, x, x*} is not orthogonal. However,
we can construct an orthogonal basis using the Gram-Schmidt Process, as we did in
Example 7.8. The result is the set of Legendre polynomials

{1, 222 = 5}

Using this set as our basis, we compute the best approximation to fin W as g(x) =
projy (e*). The linear terms in this calculation are exactly as in Example 7.41, so we
only require the additional calculations

1 1 1
<xz - }?,€X> = f (x? — %)e" dx = f xZe* dx — %J e*dx = %(e — 7¢7Y)

—] -1 -1
1 1
and (xz—i,xz—%)zj (xz—é)zdle[ (x* —2x*+ Pdx =L
=i | =i |

Then the best quadratic approximation to f(x) = e* on the interval [—1, 1] is

(1, %) (x, e*) (x* — 3, e)
(x) = projy(e*) = 1+ x + ) (x? = 3)
AL LY ex)” - hat )
He—7e)
=le—e™) + 3¢ x + 11— (x* = 3)
45
3(11e”! — e 15(e — 7e”")
= (T) +3e'x + %xz ~1.00 + 1.10x + 0.54x>
(See Figure 7.26.)
y
A
s fo=e

g(x) = 1.00 + 1.10x + 0.54x2

2 ] 1 2

Figure 1.26
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Notice how much better the quadratic approximation in Example 7.42 is than the
linear approximation in Example 7.41. It turns out that, in the quadratic case, the root
mean square error is

1
Hf—gMH=JﬁJw—gmywzom

In general, the higher the degree of the approximating polynomial, the smaller the
error and the better the approximation.

In many applications, functions are approximated by combinations of sine and
cosine functions. This method is particularly useful if the function being approxi-
mated displays periodic or almost periodic behavior (such as that of a sound wave, an
electrical impulse, or the motion of a vibrating system). A function of the form

p(x) = ay+ a;cosx + a,cos2x + -+ + a,cosnx + by sinx (1)

+ b,sin2x + -+ + b, sin nx

is called a trigonometric polynomial; if a, and b, are not both zero, then p(x) is said
to have order n. For example,

p(x) =3 — cosx + sin 2x + 4 sin 3x

is a trigonometric polynomial of order 3.
Let’s restrict our attention to the vector space €[ —r, 7] with the inner product

(£8) = J f(x)g(x)dx

-

The trigonometric polynomials of the form in Equation (1) are linear combinations
of the set

B={1,cosx,...,cos nx,sinx, ..., sin nx}

The best approximation to a function fin €[—, 7] by a trigonometric polynomial
of order n will therefore be proj,(f), where W = span([3). It turns out that B is an
orthogonal set and, hence, a basis for W. Verification of this fact involves showing
that any two distinct functions in 3 are orthogonal with respect to the given inner
product. Example 7.43 presents some of the necessary calculations; you are asked to
provide the remaining ones in Exercises 17-19.

Example 1.43

\

Show that sin jx is orthogonal to cos kx in €[—r, 7] for j, k = 1.

Solution  Using a trigonometric identity, we compute as follows: If j # k, then

T

J sin jx cos kx dx = %,( [sin(j + k)x + sin(j — k)x]dx

{cos(j + k)x N cos(j — k)x]7
itk i—k |

(Y

=0

since the cosine function is periodic with period 2.
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If j = k, then

" 1
f sin kx cos kxdx = — [sin kx]™_ =0

2k

-

since sin k7r = 0 for any integer k. I

In order to find the orthogonal projection of a function fin €[—r, 7] onto the
subspace W spanned by the orthogonal basis B, we need to know the squares of the
norms of the basis vectors. For example, using a half-angle formula, we have

(sin kx, sin kx) = J sin® kx dx

-

= %j (1 — cos 2kx)dx

T

_1{ B sin2er
2| ¥ 2%k |,

=

In Exercise 20, you are asked to show that (cos kx, cos kx) = 7 and (1, 1) = 2.
We now have

projuy{f) = ay + a;cosx + - -+ + a,cos nx + bysinx + --- + b, sinnx  (2)

where
R AL
a = % = éf:f(x) cos kxdx 3)
b = @% = :J:Tf(x) sin kx dx

for k = 1. The approximation to f given by Equations (2) and (3) is called the nth-order
Fourier approximation to f on [—ar, ). The coefficients ay, a, . .., a,, by, ..., b,
are called the Fourier coefficients of f.

Example 1.44 Find the fourth-order Fourier approximation to f(x) = x on [—, 7].

Solution  Using formulas (3), we obtain

1 J ’ 1 [x2]7
ay=—| xdx=—|— =0
2] 2w | 2]
and for k = 1, integration by parts yields

1(" 1|x 1 "
akZ;‘( xcoskxdx=;{ksinkx+pcoskx} =0

_m -
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Photo Researchers

Jean-Baptiste Joseph Fourier
(1768-1830) was a French
mathematician and physicist who
gained prominence through his
investigation into the theory of
heat. In his landmark solution of
the so-called heat equation, he
introduced techniques related to
what are now known as Fourier
series, a tool widely used in many
branches of mathematics, physics,
and engineering. Fourier was a
political activist during the French
revolution and became a favorite
of Napoleon, accompanying him

on his Egyptian campaign in 1798.

Later Napoleon appointed Fourier
Prefect of Isére, where he oversaw
many important engineering

projects. In 1808, Fourier was made

a baron. He is commemorated by
a plaque on the Eiffel Tower.
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and

1

ko

-

1(7 1
—f x sin kx dx = —
T T

1
{—};cos kx + Psin kx]

k

{—w cos kar — ar cos(—kar)

2
—— ifkis even

k

2
E if k is odd

2(_ 1)k+1

k

|

T

-

It follows that the fourth-order Fourier approximation to f(x) = xon [—7, @] is

2(sin x — §sin 2x + § sin 3x — § sin 4x)

Figure 7.27 shows the first four Fourier approximations to f(x) = x on [—, 7].

>

y=x
| — X
- T
n=1
y
4
y=x
| > x
- T
n=73
Figure 1.217

»
>

>
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You can clearly see the approximations in Figure 7.27 improving, a fact that can
be confirmed by computing the root mean square error in each case. As the order of
the Fourier approximation increases, it can be shown that this error approaches zero.
The trigonometric polynomial then becomes an infinite series, and we write

fx) = ay + D (a, cos kx + by sin kx)
=1

This is called the Fourier series of fon [— 7, 7].

Mariner 9 used the Reed-Muller code Rs, whose minimum distance is 2* = 16.
By Theorem 1, this code can correct k errors, where 2k + 1 = 16. The largest value
of k for which this inequality is true is k = 7. Thus, R; not only contains exactly the
right number of code vectors for transmitting 64 shades of gray but also is capable
of correcting up to 7 errors, making it quite reliable. This explains why the images
transmitted by Mariner 9 were so sharp!

\/

Iixercises 1.9

Approximation of Functions

In Exercises 1-4, find the best linear approximation to f on

the interval [—1,1].

1. f(x) = x? 2 flo) = x* 4+ 2x
3. f(x) = x° 4. f(x)

In Exercises 5 and 6, find the best quadratic approximation

to f on the interval [—1,1].

19. Show that sin jx is orthogonal to sin kx in € [—r, 7]
forj # k,j, k= 1.

20. Show that |[1|* = 27 and |cos kx| =  in 6[—, ].

In Exercises 21 and 22, find the third-order Fourier approxi-
mation to fon [—m, 7).

21. f(x) = |x] 22. f(x) = x*

In Exercises 23-26, find the Fourier coefficients ay, a;, and

5. f(x) = |x| 6. f(x) = cos(wx/2) b, of fon [—, 7.

7. Apply the Gram-Schmidt Process to the basis {1, x} to
construct an orthogonal basis for %[0, 1]. 23. f(x) = {

8. Apply the Gram-Schmidt Process to the basis B
{1, x, x?} to construct an orthogonal basis for ,[0, 1]. 24, f(x) = { 1
1

0 if—7w=x<0
1 ifosx==w
f—7mr=x<0

f0=x=w«

In E.xercises 9-12, find the best linear approximation to f on 25. f(x) = 7 — x 26. f(x) = |x|

the interval [0, 1].

9. f(x) = x* 10. f(x) = Vx Recall that a function f is an even function if f(—x) = f(x) for
11. f(x) = e* 12. f(x) = sin(mx/2) all x; f is called an odd function if f(—x) = —f(x) for all x.

In Exercises 13- 16, find the best quadratic approximation

to f on the interval [0, 1].

27. (a) Prove thatJ f(x)dx = 0if f is an odd function.

-7

(b) Prove that the Fourier coefficients a, are all zero if

13. f(x) = x° 14. f(x) = Vx f is odd.

15. f(x) = e* 16. f(x) = sin(7x/2)

17. Show that 1 is orthogonal to cos kx and sin kx in

28. (a) Prove thatj fx)dx =2 j f(x)dxif fis an even
—ar 0

G[—m, 7] fork=1. function.
18. Show that cos jx is orthogonal to cos kx in €[ —, 7] (b) Prove that the Fourier coefficients b, are all zero if
forj # k,j,k=1. fis even.
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Key Definitions and Concepts

Best Approximation Theorem, 570

b2

4

least squares error, 572

orthonormal set of

Cauchy-Schwarz Inequality, 539

condition number of a matrix, 562

distance, 535

Euclidean norm (2-norm), 553

Frobenius norm, 556

Fundamental Theorem of Invertible
Matrices, 605

Hamming distance, 554

Hamming norm, 554

ill-conditioned matrix, 561

inner product, 531

inner product space, 531

norm), 553
norm, 535,552

orthogonal basis,
orthonormal basis,

Review Questions
1. Mark each of the following statements true or false:

(@) Ifu = {ul} andv = {Vl},then (u,v) = uv, +
U

Vs

mu,v, defines an inner product on R”.

(b) Ifu = {ul} andv = [Vl}, then (u, v) = 4uyv, —
U V2

2u,v, — 2u,vy + 4u,v, defines an inner product
on R%

(c) (A, B) = tr(A) + tr(B) defines an inner product on
M22-

(d) If u and v are vectors in an inner product space
with [lull = 4, [Ivll = V/5 and (u,v) = 2, then
lu+ vl = 5.

(e) The sum norm, max norm, and Euclidean norm
on R" are all equal to the absolute value function

when n = 1.
(f) If a matrix A is well-conditioned, then cond(A) is
small.

(g) If cond(A) is small, then the matrix A is
well-conditioned.

(h) Every linear system has a unique least squares
solution.

(i) If A is a matrix with orthonormal columns, then
the standard matrix of an orthogonal projection
onto the column space of A is P = AA”.

(j) If A isasymmetric matrix, then the singular

values of A are the same as the eigenvalues of A.
618

least squares solution,
Least Squares Theorem, 575
matrix norm, 556

max norm (co-norm, uniform

normed linear space,
operator norm, 559
537 Triangle Inequality, 540
orthogonal projection,
orthogonal (set of ) vectors, 537

574, 604 vectors, 537

pseudoinverse of a matrix,
585, 602

singular value decomposition
(SVD), 593

singular values, 590

552 singular vectors, 593

sumnorm (1-norm), 552

538, 583 unit sphere, 535

unit vector, 535

537 well-conditioned matrix, 561

In Questions 2-4, determine whether the definition gives an
inner product.

2. {p(x), q(x)) =P(0)q 1) + p(1)q(0) for p(x), q(x) in P,
3. (A, B) = tr(A"B) for A, Bin M,,
4.(hg = (1 >;(f(x) maxg )) for f, g in €[0, 1]

In Questions 5 and 6, compute the indicated quantity using
the specified inner product.
5. 111 4+ x + 22| if (ag + arx + ax? by + byx + bx?) =
aobo + alhl + azbz

6. d(x, x?) if {p(x), q(x)) = f x)q(x) dx

In Questions 7 and 8, construct an orthogonal set of vectors
by applying the Gram-Schmidt Process to the given set of
vectors using the specified inner product.

7. {{IJ [1}} if (u, v) = u’ Av, where A = {6 4}
1 2 4 6

1
8. {1, x, x*} if (p(x), q(x)) = J )q(x) dx
0

In Questions 9 and 10, determine whether the definition
gives a norm.

9. ||v|]| = v’vfor vin R"

10. [[p()[| = [p(0)] + [p(1) = p(0)] for p(x) in P,



11.

12.

13.

14.

15.

1 0.1 0.11
Show that the matrix A = | 0.1 0.11  0.111 |is
0.11 0.111 0.1111

ill-conditioned.
Prove that if Q is an orthogonal n X #n matrix, then its
Frobenius norm is || Q|| = Va.

Find the line of best fit through the points (1, 2), (2, 3),
(3,5), and (4, 7).

Find the least squares solution of
1 2 1
1 o|[x] | o
PR Lcj N
0 ) 3
1
Find the orthogonal projection of x = | 2 | onto the
1 1 3

column spaceof A = | 0 1
1 0
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16. If u and v are orthonormal vectors, show that
P = uu’ + vv' is the standard matrix of an or-
thogonal projection onto span (u, v). [Hint: Show that
P = A(ATA) AT for some matrix A.]

In Questions 17 and 18, find (a) the singular values, (b) a
singular value decomposition, and (c) the pseudoinverse of
the matrix A.

11
11 -1
172A4=10 0 18. A =
R 11 -1

19. If P and Q are orthogonal matrices for which PAQ is
defined, prove that PAQ has the same singular values
as A.

20. If A is a square matrix for which A = O, prove that
(A")?=0.



