Algebra is generous; she often gives
more than is asked of het.

—Jean le Rond d’Alembert
(1717-1783)

In Carl B. Boyer

A History of Mathematics
Wiley, 1968, p. 481
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6.0 Introduction: Fihonacci in (Vector) Space

The Fibonacci sequence was introduced in Section 4.6. It is the sequence
0,1,123,5,8,13, ...
of nonnegative integers with the property that after the first two terms, each term
is the sum of the two terms preceding it. Thus0 + 1 =11+ 1=2,1+2 =3,
2 +3 =5 andsoon.
If we denote the terms of the Fibonacci sequence by fy, fi, f5, . - . , then the entire
sequence is completely determined by specifying that

fo=0fi=1 and f,=f, 1+ fir forn=2
By analogy with vector notation, let’s write a sequence X, Xy, x,, X3, . . . as
X = [Xg, X1, X9y X35 . . .)
The Fibonacci sequence then becomes
f=1[fofufofs--.)=100112,...)

We now generalize this notion.

Definition A Fibonacci-type sequence is any sequence x = [xg, X1, X5, X3, . . .)
such that x, and x, are real numbers and x,, = x,,_, + x,,_, for n = 2.

Forexample, [1, V2,1 + V2,1 + 2V2,2 + 3V?2,...)isaFibonacci-type sequence.
Problem 1 Write down the first five terms of three more Fibonacci-type sequences.
By analogy with vectors again, let's define the sum of two sequences x = [x, X},
Xy ...)andy = [¥o ¥1» V2 - - ) to be the sequence
xt+ty=I[x+y% +y%+y,...)
If ¢ is a scalar, we can likewise define the scalar multiple of a sequence by

cx N [EaEaco . . .)
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The Lucas sequence is named after
Edouard Lucas (see page 336).

Problem 2 (a) Using your examples from Problem 1 or other examples, compute
the sums of various pairs of Fibonacci-type sequences. Do the re-
sulting sequences appear to be Fibonacci-type?

(b) Compute various scalar multiples of your Fibonacci-type se-
quences from Problem 1. Do the resulting sequences appear to be
Fibonacci-type?

Problem 3 (a) Prove thatif xand yare Fibonacci-type sequences, then soisx + y.

(b) Prove that if x is a Fibonacci-type sequence and c is a scalar, then
cx is also a Fibonacci-type sequence.

Let’s denote the set of all Fibonacci-type sequences by Fib. Problem 3 shows that,
like R", Fib is closed under addition and scalar multiplication. The next exercises
show that Fib has much more in common with R".

Problem 4 Review the algebraic properties of vectors in Theorem 1.1. Does Fib
satisfy all of these properties? What Fibonacci-type sequence plays the role of 07 For a
Fibonacci-type sequence x, what is —x? Is —x also a Fibonacci-type sequence?

Problem 5 In R", we have the standard basis vectors e, e,, . . ., €,. The Fibonacci
sequence f = [0, 1, 1, 2,...) can be thought of as the analogue of e, because its first
two terms are 0 and 1. What sequence e in Fib plays the role of e,?

What about e, e, . . . ? Do these vectors have analogues in Fib?

Problem 6 Letx = [xy, X}, X, . . .) be a Fibonacci-type sequence. Show that x is a
linear combination of e and f.

Problem 7 Show that e and f are linearly independent. (That is, show that if
ce + df =0,thenc=d=0.)

Problem 8 Given your answers to Problems 6 and 7, what would be a sensible
value to assign to the “dimension” of Fib? Why?

Problem 9 Are there any geometric sequences in Fib? That is, if

[1,r,r57%...)

is a Fibonacci-type sequence, what are the possible values of ?
Problem 10 Find a “basis” for Fib consisting of geometric Fibonacci-type sequences.
Problem 11 Using your answer to Problem 10, give an alternative derivation of
Binet’s formula [formula (5) in Section 4.6]:

_L<1+\/§>"_L<1‘\/§>”
W= 2 V5 2

for the terms of the Fibonacci sequence f = [f,, f1, f5, - . . ). [Hint: Express f in terms of
the basis from Problem 10.]

The Lucas sequence is the Fibonacci-type sequence
I=1[lpl,h0h,...)=12,1,34,...)

Problem 12 Use the basis from Problem 10 to find an analogue of Binet’s formula
for the nth term [, of the Lucas sequence.
Problem 13 Provethatthe Fibonacciand Lucassequencesare related by the identity

f;z—l +fn+1 = l,, forn =1

[Hint: The Fibonacci-type sequences f = [1,1,2,3,...) and f"=101,01,1,...)
form a basis for Fib. (Why?)]

In this Introduction, we have seen that the collection Fib of all Fibonacci-type
sequences behaves in many respects like R?, even though the “vectors” are actually
infinite sequences. This useful analogy leads to the general notion of a vector space
that is the subject of this chapter.



The German mathematician
Hermann Grassmann (1809-
1877) is generally credited with
first introducing the idea of a
vector space (although he did
not call it that) in 1844. Unfor-
tunately, his work was very diffi-
cult to read and did not receive
the attention it deserved. One
person who did study it was the
Italian mathematician Giuseppe
Peano (1858-1932). In his

1888 book Calcolo Geometrico,
Peano clarified Grassmann’s
earlier work and laid down the
axioms for a vector space as

we know them today. Peano’s
book is also remarkable for
introducing operations on sets.
His notations U, N, and € (for
“union,” “intersection,” and “is
an element of”) are the ones we
still use, although they were not
immediately accepted by other
mathematicians. Peano’s axio-
matic definition of a vector space
also had very little influence for
many years. Acceptance came

in 1918, after Hermann Weyl
(1885-1955) repeated it in

his book Space, Time, Matter, an
introduction to Einstein’s general
theory of relativity.

Section 6.1  Vector Spaces and Subspaces 429

Vector Spaces and Suhspaces

In Chapters 1 and 3, we saw that the algebra of vectors and the algebra of matrices
are similar in many respects. In particular, we can add both vectors and matrices,
and we can multiply both by scalars. The properties that result from these two opera-
tions (Theorem 1.1 and Theorem 3.2) are identical in both settings. In this section,
we use these properties to define generalized “vectors” that arise in a wide variety
of examples. By proving general theorems about these “vectors,” we will therefore
simultaneously be proving results about all of these examples. This is the real power
of algebra: its ability to take properties from a concrete setting, like R", and abstract
them into a general setting.

Definition Let V be a set on which two operations, called addition and scalar
multiplication, have been defined. If u and v are in V, the sum of u and v is denoted
by u + v, and if ¢ is a scalar, the scalar multiple of u by c is denoted by cu. If the
following axioms hold for all u, v, and w in V and for all scalars ¢ and d, then V'is
called a vector space and its elements are called vectors.

l.u+visinV. Closure under addition
2utv=v+u Commutativity
.(utv)+w=ut(v+tw Associativity
4. There exists an element 0 in V, called a zero vector, such thatu + 0 = w
5. For each uin V, there is an element —u in V such thatu + (—u) = 0.
6.cuisin V. Closure under scalar multiplication
Z.c(utv)=cu+cv Distributivity
8.(c+tdu=cu+du Distributivity
9. ¢c(du) = (cd)u

10. lu=u

Remarks

® By “scalars” we will usually mean the real numbers. Accordingly, we should
refer to V' as a real vector space (or a vector space over the real numbers). It is also pos-
sible for scalars to be complex numbers or to belong to Z,,, where p is prime. In these
cases, V'is called a complex vector space or a vector space over Z,,, respectively. Most of
our examples will be real vector spaces, so we will usually omit the adjective “real” If
something is referred to as a “vector space,” assume that we are working over the real
number system.

In fact, the scalars can be chosen from any number system in which, roughly
speaking, we can add, subtract, multiply, and divide according to the usual laws of
arithmetic. In abstract algebra, such a number system is called a field.

¢ The definition of a vector space does not specify what the set V consists
of. Neither does it specify what the operations called “addition” and “scalar multi-
plication’’ look like. Often, they will be familiar, but they need not be. See Example 6.6
and Exercises 5-7.

We will now look at several examples of vector spaces. In each case, we need to
specify theset Vand the operations of addition and scalar multiplication and to verify
axioms 1 through 10. We need to pay particular attention to axioms 1 and 6 (closure),
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axiom 4 (the existence of a zero vector in V'), and axiom 5 (each vector in V must have
a negative in V).

Example 6.1

For any n = 1, R" is a vector space with the usual operations of addition and scalar

multiplication. Axioms 1 and 6 follow from the definitions of these operations, and
the remaining axioms follow from Theorem 1.1. I

Example 6.2

The set of all 2 X 3 matrices is a vector space with the usual operations of matrix
addition and matrix scalar multiplication. Here the “vectors” are actually matrices.
Weknow that the sum of two 2 X 3 matricesis alsoa 2 X 3 matrix and that multiply-
ing a 2 X 3 matrix by a scalar gives another 2 X 3 matrix; hence, we have closure.
The remaining axioms follow from Theorem 3.2. In particular, the zero vector 0 is the
2 X 3 zero matrix, and the negative of a 2 X 3 matrix A is just the 2 X 3 matrix —A.
There is nothing special about 2 X 3 matrices. For any positive integers m and n,
theset of all m X n matrices forms a vector space with the usual operations of matrix
addition and matrix scalar multiplication. This vector space is denoted M,,,,.. <—L

Example 6.3

Let %, denote the set of all polynomials of degree 2 or less with real coefficients.
Define addition and scalar multiplication in the usual way. (See Appendix D.) If

p(x) = ag + ayx + ax’ and q(x) = by + byx + byx’
are in %5, then
p(x) + q(x) = (ag + by) + (a, + b)x + (a, + by)x*
has degree at most 2 and so is in %,. If ¢ is a scalar, then
cp(x) = cag + cax + cax’

is also in %,. This verifies axioms 1 and 6.

The zero vector 0 is the zero polynomial—that is, the polynomial all of whose
coefficients are zero. The negative of a polynomial p(x) = ay + a,x + a,x” is the poly-
nomial —p(x) = —a, — a;x — a,x” It is now easy to verify the remaining axioms. We
will check axiom 2 and leave the others for Exercise 12. With p(x) and q(x) as above,
we have

p(x) + q(x) = (ap + ayx + ax?) + (by + byx + byx?)

by + ay) + (b, + a)x + (b, + a,)x?

(
(ag + by) + (a; + b)x + (a, + by)x?
(
(

by + byx + bx?) + (ag + ax + ax?)

q(x) + p(x)

where the third equality follows from the fact that addition of real numbers is

commutative.
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In general, for any fixed n = 0, the set 2, of all polynomials of degree less than or
equal to # is a vector space, as is the set % of all polynomials.

>

Example 6.4

Let & denote the set of all real-valued functions defined on the real line. If fand g are
two such functions and c is a scalar, then f + g and cf are defined by

(f+8x) =fx) +gx) and (¢f)(x) = cf (x)

In other words, the value of f + g at x is obtained by adding together the values of f
and g at x [Figure 6.1(a)]. Similarly, the value of cfat x is just the value of fat x mul-
tiplied by the scalar ¢ [Figure 6.1(b)]. The zero vector in % is the constant function
fo that is identically zero; that is, fy(x) = 0 for all x. The negative of a function fis the
function — f defined by (—f) (x) = —f(x) [Figure 6.1(c)].

Axioms 1 and 6 are obviously true. Verification of the remaining axioms is left as
Exercise 13. Thus, & is a vector space.

y y
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Figure 6.1

The graphs of (a) f, g, and f + g, (b) £, 2f, and —3f, and (c) fand —f
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In Example 6.4, we could also have considered only those functions defined on
some closed interval [a, b] of the real line. This approach also produces a vector space,
denoted by ¥ [a, b].

The set Z of integers with the usual operations is not a vector space. To demon-
strate this, it is enough to find that one of the ten axioms fails and to give a specific
instance in which it fails (a counterexample). In this case, we find that we do not have
closure under scalar multiplication. For example, the multiple of the integer 2 by the
scalar % is (%)(2) = %, which is not an integer. Thus, it is not true that cx is in Z for
every x in Z and every scalar c (i.e., axiom 6 fails). 4

»

Let V = R* with the usual definition of addition but the following definition of scalar
multiplication:
N
C =
y 0

2 2 2
Then, for example, 1{ } = { } # { }
3 0 3

so axiom 10 fails. [In fact, the other nine axioms are all true (check this), but we do
not need to look into them, because V has already failed to be a vector space. This
example shows the value of looking ahead, rather than working through the list of
axioms in the order in which they have been given.] 4_1»

»

Example 6.7

Let C* denote the set of all ordered pairs of complex numbers. Define addition and
scalar multiplication as in R’ except here the scalars are complex numbers. For

example,
{l+i}+{—3+2z}_ [—2—#31}
2—3i 4 6 — 3i
1+ (1—i)(1+i)} { 2 J
d 1—i = =
an ( ’){2 - 31'J {(1 — )2 — 3i) —1 — 5§
Using properties of the complex numbers, it is straightforward to check that all ten
axioms hold. Therefore, C* is a complex vector space. I

In general, C" is a complex vector space for all n = 1.

>

If p is prime, the set Z; (with the usual definitions of addition and multiplication by
scalars from Z,) is a vector space over Z,, for alln = 1. I
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Before we consider further examples, we state a theorem that contains some use-
ful properties of vector spaces. It is important to note that, by proving this theorem
for vector spaces in general, we are actually proving it for every specific vector space.

Theorem 6.1

Let V be a vector space, u a vector in V, and c a scalar.

a. Ou=0
b. c0=0
¢ (—l)u= —u

d. Ifcu=0,thenc=00ru=20.

Proof  We prove properties (b) and (d) and leave the proofs of the remaining proper-
ties as exercises.

(b) We have
c0=c(0+0) =c0+ c0
by vector space axioms 4 and 7. Adding the negative of c0 to both sides produces
c0 + (—c0) = (c0 + ¢c0) + (—c0)
which implies

0=c0+ (c0 + (—c0)) by axioms 5 and 3
=c0+0 by axiom 5

=c0 by axiom 4

(d) Suppose cu = 0. To show that either ¢ = 0 or u = 0, let’s assume that ¢ # 0. (If
¢ = 0, there is nothing to prove.) Then, since ¢ # 0, its reciprocal 1/c is defined, and

u=lu by axiom 10

Il
VRS
o | =

o
\_/

=

(cu) by axiom 9

=0 by property (b) s

We will write u — v for u + (—v), thereby defining subtraction of vectors. We will
also exploit the associativity property of addition to unambiguously writeu + v + w
for the sum of three vectors and, more generally,

qu; +cu, + -+ cu,

for a linear combination of vectors.

Subspaces

We have seen that, in R", it is possible for one vector space to sit inside another one,
giving rise to the notion of a subspace. For example, a plane through the origin is a
subspace of R’. We now extend this concept to general vector spaces.
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Definition A subset W of a vector space V is called a subspace of V if W is
itself a vector space with the same scalars, addition, and scalar multiplication as V.

As in R", checking to see whether a subset W of a vector space V is a subspace of
V involves testing only two of the ten vector space axioms. We prove this observation
as a theorem.

Theorem 6.2

Let V be a vector space and let W be a nonempty subset of V. Then W is a sub-
space of V if and only if the following conditions hold:

a. Ifuandvarein W,thenu + visin W.
b. Ifuisin W and cis a scalar, then cu is in W.

Proof  Assume that W is a subspace of V. Then W satisfies vector space axioms 1 to
10. In particular, axiom 1 is condition (a) and axiom 6 is condition (b).

Conversely, assume that W is a subset of a vector space V, satisfying condi-
tions (a) and (b). By hypothesis, axioms 1 and 6 hold. Axioms 2, 3, 7, 8,9, and 10 hold
in W because they are true for all vectors in V and thus are true in particular for those
vectors in W. (We say that W inherits these properties from V.) This leaves axioms 4
and 5 to be checked.

Since W is nonempty, it contains at least one vector u. Then condition (b) and
Theorem 6.1(a) imply that Ou = 0 is also in W. This is axiom 4.

Ifuisin V, then, by taking ¢ = —1 in condition (b), we have that —u = (—Du is
also in W, using Theorem 6.1(c). — wam

Remark Since Theorem 6.2 generalizes the notion of a subspace from the con-
text of R" to general vector spaces, all of the subspaces of R" that we encountered in
Chapter 3 are subspaces of R" in the current context. In particular, lines and planes
through the origin are subspaces of R’.

»

Example 6.9

We have already shown that the set %, of all polynomials with degree at most # is a
vector space. Hence, %, is a subspace of the vector space % of all polynomials.

Example 6.10

\/

Let W be the set of symmetric n X #n matrices. Show that W is a subspace of M, ..

Solution  Clearly, W is nonempty, so we need only check conditions (a) and (b) in
Theorem 6.2. Let A and B be in W and let ¢ be a scalar. Then A" = A and B = B,
from which it follows that

(A+B"=A"+B"=A+B
Therefore, A + B is symmetric and, hence, is in W. Similarly,
(cA)T = cAT = ¢cA

so cA is symmetric and, thus, is in W. We have shown that W is closed under addition
and scalar multiplication. Therefore, it is a subspace of M,,,, by Theorem 6.2. I
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»

ry

Example 6.11

Let 6 be the set of all continuous real-valued functions defined on R and let & be
the set of all differentiable real-valued functions defined on R. Show that ‘6 and & are
subspaces of &, the vector space of all real-valued functions defined on R.

Solution  From calculus, we know that if f and g are continuous functions and cis a
scalar, then f + g and cf are also continuous. Hence, € is closed under addition and
scalar multiplication and so is a subspace of %. If fand g are differentiable, then so are
f + gand cf. Indeed,

(f+g' =f +g and (cf) = c(f)

So 9 is also closed under addition and scalar multiplication, making it a subspace

of %. 1

It is a theorem of calculus that every differentiable function is continuous. Conse-
quently, & is contained in ¢ (denoted by % C ), making & a subspace of 6. It is also
the case that every polynomial function is differentiable, so % C &, and thus P is a
subspace of 9. We therefore have a hierarchy of subspaces of %, one inside the other:

PCOGCECCTF

This hierarchy is depicted in Figure 6.2.

«

Figure 6.2
The hierarchy of subspaces of

There are other subspaces of # that can be placed into this hierarchy. Some of
these are explored in the exercises.

In the preceding discussion, we could have restricted our attention to functions
defined on a closed interval [a, b]. Then the corresponding subspaces of % [a, b]
would be € [a, b], D [a, b], and P [a, b].

Example 6.12

Y

Let S be the set of all functions that satisfy the differential equation
fftf=0 (1)

That is, S is the solution set of Equation (1). Show that S is a subspace of F.



436 Chapter 6  Vector Spaces

In the words of Yogi Berra, “It’s
déja vu all over again”

Solution S is nonempty, since the zero function clearly satisfies Equation (1). Let
fand g be in S and let ¢ be a scalar. Then

f+re" +(f+t=0U"+g") +(f+g
=(f"+H+E" +9

=0+0
=0
which shows that f + gis in S. Similarly,

(cf) +cf=cf +¢f
= (f" 4P
=c0
=0

so cfisalsoin S.
Therefore, S is closed under addition and scalar multiplication and is a subspace

of %. 1

The differential Equation (1) is an example of a homogeneous linear differential
equation. The solution sets of such equations are always subspaces of &. Note that in
Example 6.12 we did not actually solve Equation (1) (i.e., we did not find any specific
solutions, other than the zero function). We will discuss techniques for finding solu-
tions to this type of equation in Section 6.7.

Asyou gain experience working with vector spaces and subspaces, you will notice
that certain examples tend to resemble one another. For example, consider the vector
spaces R*, P, and M,,. Typical elements of these vector spaces are, respectively,

, p(x) =a+ bx + cx? + dx®, and A={a Z}
c

QU o ST

Any calculations involving the vector space operations of addition and scalar multi-
plication are essentially the same in all three settings. To highlight the similarities, in
the next example we will perform the necessary steps in the three vector spaces side
by side.

Example 6.13

\

(a) Show that the set W of all vectors of the form

is a subspace of R*.

(b) Show that the set W of all polynomials of the form a + bx — bx®> + ax’is a

subspace of P .
b
(c) Show that the set W of all matrices of the form [ Z } is a subspace of M,,.
b a



Solution

(a) W is nonempty because it con-
tains the zero vector 0. (Takea = b =
0.) Let u and v be in W—say,

a c
b d
u= b and v = 4
a c
Then
[ a+c¢
v b+d
u+v= b —d
L atc
a+c
_ b+d
—(b + d)
L a+tc
so u + vis also in W (because it has
the right form).
Similarly, if k is a scalar, then
ka
kb
k ]
T -k
ka

so kuisin W.

Thus, W is a nonempty subset of
R* that is closed under addition and
scalar multiplication. Therefore, W is
a subspace of R*, by Theorem 6.2.

Section 6.1

(b) W is nonempty because it con-
tains the zero polynomial. (Take a =
b =0.)Letp(x)and g(x) be in W—say,

p(x) = a+ bx — b + ax’
and
g(x) = ¢ + dx — dx* + cx*
Then
plx) + glx) = (@ + ¢)
+ (b + d)x
—(b+ d)x?

+ (a + o)«

so p(x) + q(x) is also in W (because it
has the right form).
Similarly, if k is a scalar, then

kp(x) = ka + kbx — kbx* + kax’

so kp(x) is in W.

Thus, W is a nonempty subset of
%5 that is closed under addition and
scalar multiplication. Therefore, W is
a subspace of ?; by Theorem 6.2.
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(c) W is nonempty because it con-
tains the zero matrix O. (Take a =
b =0.) Let A and B be in W—say,

A—{ a b]
-b a
c d
d B =
an {_d J
Then
A+B—{ a+ec b+d}
-+ d a+c

so A + Bis also in W (because it has

the right form).
Similarly, if k is a scalar, then
ka kb
kA =
{ —kb ka}
so kA isin W.

Thus, W is a nonempty subset of
M,, that is closed under addition and
scalar multiplication. Therefore, W is

a subspace of M,,, by Theorem 6.2. 1

Example 6.13 shows that it is often possible to relate examples that, on the surface,

appear to have nothing in common. Consequently, we can apply our knowledge of
R" to polynomials, matrices, and other examples. We will encounter this idea several
times in this chapter and will make it precise in Section 6.5.

»

Example 6.14

=

If V is a vector space, then V is clearly a subspace of itself. The set {0}, consisting of

only the zero vector, is also a subspace of V, called the zero subs pace. To show this, we
simply note that the two closure conditions of Theorem 6.2 are satisfied:

The subspaces {0} and V are called the trivial subspaces of V.

0+0=0 and

c0 = 0 forany scalarc

.
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An examination of the proof of Theorem 6.2 reveals the following useful fact:

If W is a subspace of a vector space V, then W contains the zero vector 0 of V.

This fact is consistent with, and analogous to, the fact that lines and planes are sub-
spaces of R® ifand only if they contain the origin. The requirement that every subspace
must contain 0 is sometimes useful in showing that a set is not a subspace.

Example 6.15

\/

Let W be the set of all 2 X 2 matrices of the form
{a a+ 1}
0 b

Solution  Each matrix in W has the property that its (1, 2) entry is one more than its
(1, 1) entry. Since the zero matrix
o ol
0=
0 0

does not have this property, it is not in W. Hence, W is not a subspace of M,,.

Is W a subspace of M,,?

.

Example 6.16

Let W be the set of all 2 X 2 matrices with determinant equal to 0. Is W a subspace

of M,,? (Since det O = 0, the zero matrix is in W, so the method of Example 6.15 is
of no use to us.)

Solution Let

1 0 0 0
Az{ ] and B=[ }
0 0 0 1

Then det A = det B = 0, so A and B are in W. But

1 0
A+B={ }
0 1

so det(A + B) = 1 # 0, and therefore A + Bis not in W. Thus, W is not closed under
addition and so is not a subspace of M,,. 1

The notion of a spanning set of vectors carries over easily from R" to general vector
spaces.

Definition 1fs= {vi, v, ..., v} is a set of vectors in a vector space V, then
the set of all linear combinations of v, v, . . ., v, is called the span of v;, v,, .. ., v
and is denoted by span(vy, v,, . . ., v;) or span(S). If V = span(S), then S is called
a spanning set for V and V is said to be spanned by S.
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\

Example 6.11

Show that the polynomials 1, x,and x* span ,.

Solution By its very definition, a polynomial p (x) = a + bx + cx* is a linear combi-
nation of 1, x, and x*. Therefore, P, = span(1, x, x2). I

Example 6.17 can clearly be generalized to show that %, = span(l, x, 2.,
x"). However, no finite set of polynomials can possibly span %, the vector space of
all polynomials. (See Exercise 44 in Section 6.2.) But, if we allow a spanning set
to be infinite, then clearly the set of all nonnegative powers of x will do. That is,
% = span(l, x, x,.00).

Example 6.18

\/

Show that M,3; = span(E,}, E1y, Ey3, E), Esp, Ea3), where

E_100E7010E 0 0 1
"lo oo o] ® oo ol P oo o0
e o]0 00 . _[oo 0] 00 0
201 0 0] 2 o1 o] P |oo 1

(That is, E;is the matrix with a 1 in row i, column j and zeros elsewhere.)

Solution We need only observe that

{a“ ap,  Aap

= apEy + anE, t apE;s + ayEy + apnky t+ ayEs;
dyy Ay Oy

Extending this example, we see that, in general, M,,, is spanned by the mn matri-

ces Ej, wherei=1,...,mandj=1,...,n.

\/

Example 6.19

In %, determine whether r(x) = 1 — 4x + 6x*isin span(p(x), q(x)), where
px) =1—x+x* and gq(x) =2 + x — 3x*
Solution  We are looking for scalars ¢ and d such that cp(x) + dg(x) = r(x). This
means that
ol —x+x?) +d2+x—3x) =1~ 4x + 6x7
Regrouping according powers of x, we have
(c+2d) + (—c+ dx+ (c — 3d)x* =1 — 4x + 6x2
Equating the coefficients of like powers of x gives

c+2d= 1
—c+ d=—4
c—3d= 6
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which is easily solved to give ¢ = 3 and d = —1. Therefore, r(x) = 3p(x) — q(x), so
r(x) is in span(p(x), g(x)). (Check this.)

Example 6.20

In %, determine whether sin 2x is in span(sin x, cos x).

Solution  We set ¢ sin x + d cos x = sin 2x and try to determine ¢ and d so that this
equation is true. Since these are functions, the equation must be true for all values of
x. Setting x = 0, we have

csin0 + dcos0 =sin0 or c(0) +d(1) =0
from which we see that d = 0. Setting x = /2, we get
csin(w/2) + dcos(w/2) = sin(w) or c(1) +d(0) =0

giving ¢ = 0. But this implies that sin 2x = 0(sin x) + 0(cos x) = 0 for all x, which
is absurd, since sin 2x is not the zero function. We conclude that sin 2x is not in

span(sin x, cos x). I

Remark It is true that sin 2x can be written in terms of sin x and cos x. For
example, we have the double angle formula sin 2x = 2 sin x cos x. However, this is not
a linear combination.

Example 6.21

\/

1 1 1 0 0 1
In M,,, describe the span of A = [ } B = { } and C = { }
1 0 0 1 1 0

Solution  Every linear combination of A, B, and C is of the form

1 1 0 1
cA-i—dB-I—eCzc[1 }-Fd{l }-Fe{o }

0 0 1 1 0
_{c%—d c+e}
c+e d

This matrix is symmetric, so span(A, B, C) is contained within the subspace of sym-
metric 2 X 2 matrices. In fact, we have equality; that is, every symmetric 2 X 2 matrix is

X

in span(4, B, C). To show this, we let { y } be a symmetric 2 X 2 matrix. Setting

y z
[x y}_{c+d c+e}
y z cte d

and solving for ¢ and d, we find thatc = x — z,d = z,and e = —x + y + z. Therefore,

[x }’}:(x_z)[l 1}4_2[1 0}+(—x+y+z)(1) (1)}

y z 1 0 0 1
(Check this.) It follows that span(A, B, C) is the subspace of symmetric 2 X 2 matrices.

-
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Aswasthecasein R", the span of a set of vectors is always a subspace of the vector
space that contains them. The next theorem makes this result precise. It generalizes

Theorem 3.19.

Theorem 6.3  Letv,v,,...,v,bevectorsin avector space V.

a span(vy, V,, ..., Vy) is a subspace of V.
b. span(vy, v, ..., V) is the smallest subspace of V that contains v;, v, . .., V;.

Proof (a) The proof of property (a) is identical to the proof of Theorem 3.19, with

R" replaced by V.

(b) To establish property (b), we need to show that any subspace of V that contains
Vi, Vy, ..., Vi also contains span(vy, vy, . . ., Vi). Accordingly, let W be a subspace of V

that contains v, v,, . .

., V. Then, since W is closed under addition and scalar multi-

plication, it contains every linear combination ¢,v; + ¢,v; + - + v of v, vy, . . .,
V. Therefore, span(vy, v, . .

TEXEI‘GiSBS 6.1

., Vy) is contained in W.

In Exercises 1-11, determine whether the given set, together
with the specified operations of addition and scalar multi-

plication, is a vector space. If it is not, list all of the axioms
that fail to hold.

1. The set of all vectors in R? of the form {x] with the
x

usual vector addition and scalar multiplication

2. The set of all vectors [x
Y.

the first quadrant), with the usual vector addition and
scalar multiplication

} in R?withx =0,y =0 (i.e.,

3. The set ofallvectors [x} in R*withxy = 0 (i.e., the
y

union of the first and third quadrants), with the usual
vector addition and scalar multiplication

4. The set of all vectors {x
Y

usual vector addition and scalar multiplication

} in R* with x = y, with the

5. R?, with the usual addition but scalar multiplication
defined by

10.

12.

13.

\

. R?, with the usual scalar multiplication but addition

defined by

{xl} N {xz] B {xl + x, + 1}
! Y2 ntytl

. The set of all positive real numbers, with addition @

defined by x @ y = xy and scalar multiplication ©
defined by ¢ © x = x°

. Theset of all rational numbers, with the usual addition

and multiplication

. The set of all upper triangular 2 X 2 matrices, with the

usual matrix addition and scalar multiplication

The set of all 2 X 2 matrices of the form [a Z},
c

where ad = 0, with the usual matrix addition and
scalar multiplication

. The set of all skew-symmetric # X #n matrices, with the

usual matrix addition and scalar multiplication
(see page 162).

Finish verifying that %, is a vector space

(see Example 6.3).

Finish verifying that & is a vector space
(see Example 6.4).
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a+¥/ In Exercises 14-17, determine whether the given set, together

with the specified operations of addition and scalar multi-
plication, is a complex vector space. If it is not, list all of
the axioms that fail to hold.

14. The set of all vectors in C? of the form {f}, with the
z

usual vector addition and scalar multiplication

15. The set M,,,,,(C) of all m X n complex matrices, with
the usual matrix addition and scalar multiplication

16. The set C?, with the usual vector addition but scalar

multiplication defined by c[ } = [Ezl}
2 €z,

17. R", with the usual vector addition and scalar multiplication

In Exercises 18-21, determine whether the given set, together
with the specified operations of addition and scalar multipli-
cation, is a vector space over the indicated Z,,. If it is not, list
all of the axioms that fail to hold.

18. The set of all vectors in Z% with an even number of
Ls, over Z, with the usual vector addition and scalar
multiplication

19. The set of all vectors in Z} with an odd number of
1s, over Z, with the usual vector addition and scalar
multiplication

20. The set M,,,,(Z,) of all m X n matrices with entries
from Zp, over Zp with the usual matrix addition and
scalar multiplication

21. Z, over Z5 with the usual addition and multiplication
(Think this one through carefully!)

22. Prove Theorem 6.1(a).
23. Prove Theorem 6.1(c).

In Exercises 24-45, use Theorem 6.2 to determine whether
W is a subspace of V.

Pa a
24. V=R, W=¢(|0 25. V=R W= —a
La 2a
[ a
26.V=RW= b
a+b+1
Fa
27. V=R W = b
L|al

B 43.
B 44

45 V=%

v
v
1%

& 2v=%
v
1%

b
29.V=M22,W={[a }:adzbc}
c d

30.V=M,,W={AinM,,:detA = 1}
31. V.= M,,, W is the set of diagonal n X n matrices
32. V.= M,,, W is the set of idempotent n X n matrices

33.V=M,,W={AinM,,: AB = BA}, where Bisa
given (fixed) matrix

34. V=, W= {bx + cx*}

3. V=P, W={a+bx+cx*:a+b+c=0}

36. V=2, W={a+ bx + cx*:abc = 0}

37.V = @, W is the set of all polynomials of degree 3

38.V=%F W= {fin@;f(— =f(x)}

39.V = FW = {finF5/(—2) = ~f()}

40.V = ={fin% 0) =1}

41. f 0) = 0}

W is the set of all 1ntegrable functions
W={finD:f'(x) =0 forall x}
= F, W = €2, the set of all functions with
continuous second derivatives
={fin¥: = hmfx) = o}
46. Let V be a vector space with subspaces Uand W. Prove
that U N W is a subspace of V.

47. Let V be a vector space with subspaces U and W. Give
an example with V = R” to show that U U W need not
be a subspace of V.

F,

@
=FW={finF

F,

)

48. Let V be a vector space with subspaces U and W.
Define the sum of Uand W to be

U+ W={u+w:uisin U,wisin W}
(a) If V=R’ Uis the x-axis, and W is the y-axis,
whatis U + W?

(b) If U and W are subspaces of a vector space V,
prove that U + W is a subspace of V.

49. If U and V are vector spaces, define the Cartesian
product of U and V to be

UX V=/{,

Prove that U X V is a vector space.

v):uisin Uandvisin V}

50. Let W be a subspace of a vector space V. Prove that

A = {(w,w):wisin W}isasubspaceof VX V.
. 1 1
In Exercises 51 and 52, let A = = and

1 -1
B = { O]' Determine whether C is in span(A, B).

1
3 =5
nceff 7

1 2
sc-[ 7
3 4 5 —1



In Exercises 53 and 54, let p(x) = 1 — 2x, q(x) = x — x%,
and r(x) = —2 + 3x + x°. Determine whether s(x) is in
span(p(x), q(x), r(x)).

53.5(x) =3 —5x— x> 54 s(x) =1+ x + x*

In Exercises 55-58, let f(x) = sin*x and glx) = cos’x.
Determine whether h(x) is in span(f(x), g(x)).

55.h(x) =1 56. h(x) = cos 2x
57. h(x) = sin 2x 58. h(x) = sin x

1 1](0 1 1 00 -1
59. Is M,, spanned by 11 oll1 1Pl1 0?

0 1
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60.

61.
62.

63.

443

1 0|1l 1|1 1{]0 —1
Istzspannedby[1 0},[1 0},{1 J’[l 0]?

Is %, spanned by 1 + x, x + x>, 1 + x*?

Is %, spanned by 1 + x + 2x% 2 + x + 2x7,
-1+ x+ 2x%?

Prove that every vector space has a unique zero
vector.

. Prove that for every vector v in a vector space V,

there is a unique v' in V such thatv + v’ = 0.

The Rise of Vector Spaces

As noted in the sidebar on page 429, in the late 19th century, the mathematicians
Hermann Grassmann and Giuseppe Peano were instrumental in introducing the
idea of a vector space and the vector space axioms that we use today. Grassmann’s
work had its origins in barycentric coordinates, a technique invented in 1827 by
August Ferdinand Mobius (of Mobius strip fame). However, widespread acceptance
of the vector space concept did not come until the early 20th century.

Write a report on the history of vector spaces. Discuss the origins of the notion of
a vector space and the contributions of Grassmann and Peano. Why was the math-
ematical community slow to adopt these ideas, and how did acceptance come about?

1. Carl B. Boyer and Uta C. Merzbach, A History of Mathematics (Third Edition)
(Hoboken, NJ: Wiley, 2011).

2. Jean-Luc, Dorier (1995), A General Outline of the Genesis of Vector Space
Theory, Historia Mathematica 22 (1995), pp. 227-261.

3. Victor J. Katz, A History of Mathematics: An Introduction (Third Edition) (Read-
ing, MA: Addison Wesley Longman, 2008).

Linear Independence, Basis, and Dimension

In this section, we extend the notions of linear independence, basis, and dimension
to general vector spaces, generalizing the results of Sections 2.3 and 3.5. In most cases,
the proofs of the theorems carry over; we simply replace R" by the vector space V.

Linear Independence

Definition A set of vectors {v}, v, . . .

pendent if there are scalars ¢y, ¢,, . .

, Vi} in a vector space V is linearly de-
.» Cio at least one of which is not zero, such that

vyt o, + -+ g =0

A set of vectors that is not linearly dependent is said to be linearly independent.
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Asin R", {v}, v,, ..., v{} is linearly independent in a vector space V if and only if
ovi T vy, o+ v =0 implies ¢, =0,6,=0,...,¢,=0

We also have the following useful alternative formulation of linear dependence.

Theorem 6.4

A set of vectors {v,, v,, ..., V;} in a vector space Vis linearly dependent if and only
if at least one of the vectors can be expressed as a linear combination of the others.

Proof  The proofis identical to that of Theorem 2.5. — wem

As a special case of Theorem 6.4, note that a set of two vectors is linearly depen-
dent if and only if one is a scalar multiple of the other.

Example 6.22

InP,, the set {1 +x + x% 1 — x + 3x% 1+ 3x — x%} is linearly dependent, since

-

20+ x+x) — (1 —x+3x) =1+ 3x — x2

Example 6.23

[
e

In M,,, let

P P A

Then A + B = C, so the set {A, B, C} is linearly dependent. I

\/

Example 6.24

In %, the set {sin’x, cos’x, cos 2x} is linearly dependent, since

cos 2x = cos’x — sin’x I

Example 6.25

Show that the set {1, x, x%, ..., x"} is linearly independent in %,

Solution 1 Suppose that ¢y, ¢}, . . ., ¢, are scalars such that
G l+tex+ox’+--+cx"=0

Then the polynomial p (x) = ¢y + ¢,x + ¢x* + -+ + ¢, x" is zero for all values of x. But
a polynomial of degree at most n cannot have more than n zeros (see Appendix D).
So p(x) must be the zero polynomial, meaning that ¢, = ¢, = ¢, == = ¢, = 0.
Therefore, {1, x, x*, . .., x"} is linearly independent.

Solution 2 We begin, as in the first solution, by assuming that
pl) =ctext+ x4+ - +cx"=0
Since this is true for all x, we can substitute x = 0 to obtain ¢, = 0. This leaves

ox +oxt+ - e x" =
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Taking derivatives, we obtain
0+ 20x + 3’ + -+ e =0

and setting x = 0, we see that ¢; = 0. Differentiating 2c,x + 3c;x> + -+ + nc,x" ' = 0
and setting x = 0, we find that 2¢, = 0, so ¢, = 0. Continuing in this fashion, we
find that k!¢, = 0 fork = 0, ..., n. Therefore, ¢y, = ¢, =¢, = =¢, = 0,and {1, x,

X%, x"} s linearly independent. i

Example 6.26

In %P,, determine whether the set {1 + x, x + x°, 1 + x°} is linearly independent.
Solution Let ¢, ¢,, and ¢5 be scalars such that

gl +x) +ox+x) + (1 +x)=0
Then

(c,+c)+(,+e)x+(c+c)x?>=0

This implies that

G+ ;=20
(S Y =0
¢, te3=0

the solution to which is ¢; = ¢, = ¢; = 0. It follows that {1 + x, x + x% 1 + x?} is

linearly independent. I

Remark Compare Example 6.26 with Example 2.23(b). The system of equations
that arises is exactly the same. This is because of the correspondence between %, and
R’ that relates

1 0 1
l+x o |1, x+x*o 1], 1+x*< |0
0 1 1

and produces the columns of the coefficient matrix of the linear system that we have
to solve. Thus, showing that {1 + x, x + x?, 1 + x?} is linearly independent is equiva-
lent to showing that

1 0 1
1,110
0 1 1

is linearly independent. This can be done simply by establishing that the matrix
1 01
1 1 0
01 1

has rank 3, by the Fundamental Theorem of Invertible Matrices.
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Example 6.21

In &, determine whether the set {sin x, cos x} is linearly independent.

Solution The functions f(x) = sin x and g(x) = cos x are linearly dependent if and
only if one of them is a scalar multiple of the other. But it is clear from their graphs
that this is not the case, since, for example, any nonzero multiple of f(x) = sin x has
the same zeros, none of which are zeros of g(x) = cos x.

This approach may not always be appropriate to use, so we offer the following
direct, more computational method. Suppose ¢ and d are scalars such that

csinx + dcosx =0

Setting x = 0, we obtain d = 0, and setting x = /2, we obtain ¢ = 0. Therefore, the

set {sin x, cos x} is linearly independent. 1

Although the definitions of linear dependence and independence are phrased
in terms of finite sets of vectors, we can extend the concepts to infinite sets as
follows:

A set S of vectors in a vector space V is linearly dependent if it contains finitely
many linearly dependent vectors. A set of vectors that is not linearly dependent is
said to be linearly independent.

Note that for finite sets of vectors, this is just the original definition. Following is an
example of an infinite set of linearly independent vectors.

Example 6.28

Y

In %, show that S = {1, x, x%, .. .} is linearly independent.

Solution  Suppose there is a finite subset T of S that is linearly dependent. Let x™ be
the highest power of x in T and let x" be the lowest power of x in T. Then there are
scalars ¢, €111 - - - » €, DOt all zero, such that

X"+ X"+ e, X =0

But, by an argument similar to that used in Example 6.25, this implies that ¢, =

Chs1 =" = ¢, = 0, which is a contradiction. Hence, S cannot contain finitely many
linearly dependent vectors, so it is linearly independent. I
Bases

The important concept of a basis now can be extended easily to arbitrary vector
spaces.

Iletinilinnr A subset B of a vector space V is a basis for V if

1. Bspans Vand
2. Bislinearly independent.
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»

'

Example 6.29 If ;is theith column of the n X 1 identity matrix, then {e, e,, . . ., €,} is a basis for R",
called the standard basis for R".

: -

Example 6.30 {1, x, x% ..., x"} is a basis for P,,, called the standard basis for P,,.

»

Example 6.31 The set £ = {Eyy,..., E;p Eats ..oy Egyy Epts - - - » ) s a basis for M,,,, where the
matrices E;; are as defined in Example 6.18. £ is called the standard basis for M,,,.

We have already seen that £ spans M,,,,. It is easy to show that £ is linearly inde-
W—=V  pendent. (Verify this!) Hence, £ is a basis for M,,,,,. 4

-
=

Example 6.32 Show that B = {1 + x, x + x% 1 + x%} is a basis for P,.

Solution We have already shown that B is linearly independent, in Example 6.26. To
show that BB spans %,, let a + bx + cx” be an arbitrary polynomial in %,. We must
show that there are scalars ¢, ¢,, and c; such that

o1+ x) + o(x + x2) + c;(1 + x?) =a + bx + cx?
or, equivalently,
(6 + )+ (; + x4 (6 + c)x*=a + bx + cx?

Equating coefficients of like powers of x, we obtain the linear system

q + ;= a
ot =b
G te=c
1 0 1
which has a solution, since the coefficient matrix | 1 1 0 | has rank 3 and, hence,
0 1 1
is invertible. (We do not need to know what the solution is; we only need to know that
it exists.) Therefore, B is a basis for %,. I
1 0 1
Remark Observe that the matrix | 1 1 0 | is the key to Example 6.32. We can
01 1

immediately obtain it using the correspondence between %, and R?, as indicated in
the Remark following Example 6.26.
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= 5.33\

Y

Show that B = {1, x, x% ...} is a basis for %.

Solution In Example 6.28, we saw that B3 is linearly independent. It also spans %,
since clearly every polynomial is a linear combination of (finitely many) powers of x.

Example 6.34

(a) Since
a 1 0
b 0 1
= +b
—b| %o —1
a 1 0

1 0

— o O
[
[

Since {u, v} is clearly linearly in-

dependent, it is also a basis for W,.

Find bases for the three vector spaces in Example 6.13:

a
(a) W, = b b) W, ={a+ bx — bx> + ax’} (c) W, = {{ ¢ b}}
=b b a
a

Solution  Once again, we will work the three examples side by side to highlight the
similarities among them. In a strong sense, they are all the same example, but it will
take us until Section 6.5 to make this idea perfectly precise.

(b) Since

a + bx — bx? + ax®
=a(l + x%) + blx — x?

(c) Since

I AN

we have W, = span(u(x), v(x)),
where

we have W3 = span(U, V'), where

{1 0] { 0 1}
and V =
0 1 -1 0

U:
ulx) =1+ %3

and v(x) = x — x?
Since {u(x), v(x)} is clearly lin-
early independent, it is also a basis
for W,.

Since {U, V} is clearly linearly in-
dependent, it is also a basis for Wj.

i

Section 3.5 introduced the idea of the coordinates of a vector with respect to a basis
for subspaces of R". We now extend this concept to arbitrary vector spaces.

Theorem 6.5

Let V be a vector space and let BB be a basis for V. For every vector vin V, there is
exactly one way to write v as a linear combination of the basis vectors in B.

Proof  The proofisthe same as the proof of Theorem 3.29. It works even if the basis B is
infinite, since linear combinations are, by definition, finite.
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The converse of Theorem 6.5 is also true. That is, if B is a set of vectors in a vector
space V with the property that every vector in V can be written uniquely as a linear
combination of the vectors in B, then B is a basis for V (see Exercise 30). In this sense,
the unique representation property characterizes a basis.

Since representation of avector with respectto a basis is unique, the next definition
makes sense.

Definition Let B = {v,,v,...,v,} be a basis for a vector space V. Let v be a
vector in V, and write v = ¢;v; + ¢,v, + -+ + ¢,v,. Then ¢y, ¢5, . . ., ¢, are called the
coordinates of v with respect to I3, and the column vector

is called the coordinate vector of v with respect to 3.

Observe that if the basis 3 of V has n vectors, then [v]zis a (column) vector in R".

Example 6.35

Find the coordinate vector [p(x)]zof p(x) =2 — 3x + 5x2 with respect to the stan-
dard basis B = {1, x, x*} of 2,.
Solution  The polynomial p(x) is already a linear combination of 1, x,and x*, so

2
[p()]s=| -3

5 <—L
This is the correspondence between %, and R® that we remarked on after

Example 6.26, and it can easily be generalized to show that the coordinate vector of a
polynomial

px) =ay+ax+ax*+ -+ ax" inP,

with respect to the standard basis B = {1, x, x% ..., x"} is just the vector

Remark The order in which the basis vectors appear in B affects the order of
the entries in a coordinate vector. For example, in Example 6.35, assume that the
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standard basis vectors are ordered as B’ = {x2, x, 1}. Then the coordinate vector of
p(x) =2 — 3x + 5x* with respect to B’ is
5

[p()]s = | =3
2

Example 6.36

2 1
Find the coordinate vector [A]zof A = L 3} with respect to the standard basis

B = {E,}, E,,, E,;, E,,} of M,,.
Solution Since
2 -1 1 0 0 1 0 0 0 0
A= =2 - +4 +3
4 3 0 0 0 0 1 0 0 1
= 2E,, — E,, + 4E,, + 3E,,

2

we have [Alg =

This is the correspondence between M,, and R* that we noted before the intro-
duction to Example 6.13. It too can easily be generalized to give a correspondence

between M,,, and R™. I

»

Example 6.317

Find the coordinate vector [p(x)]zof p(x) =1 + 2x — x? with respect to the basis
C={1+xx+x%1+x*ofP,.
Solution  We need to find ¢y, ¢,, and ¢; such that
ol +x) + e+ x2) + (1 +x2) =1+ 2x — x?
or, equivalently,
(te)+ (@ to)x+(c+a)x?=1+2x— x?

As in Example 6.32, this means we need to solve the system

¢ + ;= 1
gt =
c, T ¢c3=—1
whose solution is found to be ¢; = 2, ¢, = 0, ¢; = — 1. Therefore,
2

[p)]c=1| 0
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[Since this result says that p(x) = 2(1 + x) — (1 + x?), it is easy to check that it is
Y p y

correct.] I

The next theorem shows that the process of forming coordinate vectors is com-
patible with the vector space operations of addition and scalar multiplication.

Theorem 6.6

Let B = {v;,v,, ..., V,} be a basis for a vector space V. Let u and v be vectors in
V and let ¢ be a scalar. Then

a. [u+tv]z=[u]g+ [v]s
b. [cu]z = c[u]p

Proof  We begin by writing uand v in terms of the basis vectors—say, as
u=¢v,+tev,+ - +c¢yv, and v=dyv, + dv, + -+ dyv,
Then, using vector space properties, we have

utv=_( +d)vy+(,+d)v, + -+ (c, +d)v,

and cu = (cc))vy + (ccp)v, + - + (ec,)v,
S0
¢ +d, Y d,
¢, + d, C; d,
[u+v]g= . =| 1t =gt [vls
CH + d” Cn dn
cc, &
cc c
and [culz = .2 =c _2 = clu]p
cc, o -

An easy corollary to Theorem 6.6 states that coordinate vectors preserve linear
combinations:

[ow + -+ gl = ¢ [w]g + - + [wls (1)

You are asked to prove this corollary in Exercise 31.

The most useful aspect of coordinate vectors is that they allow us to transfer
information from a general vector space to R”, where we have the tools of Chapters 1
to 3 at our disposal. We will explore this idea in some detail in Sections 6.3 and 6.6.
For now, we have the following useful theorem.
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Theorem 6.1

Let B = {vl, v, ...,vn} be a basis for a vector space V and let u,,..., u;
be vectors in V. Then {u,, . . ., w} is linearly independent in V if and only if
{lw]g ..., [u]g} is linearly independent in R".

Proof  Assume that {u,, ..., u;} is linearly independent in V'and let
alwmlgt -+ glulz =0
in R". But then we have
[Clul + .-+ Ckuk]B =0
using Equation (1), so the coordinates of the vector c,u; + -+~ + c,uy with respect to
B are all zero. That is,
aqu + -+ gu=0v, +0v, +---+0v, =0
The linear independence of {u,,..., w} now forces ¢, = ¢, = - = ¢ = 0, so

{lw1s ..., [u]g} is linearly independent.
The converse implication, which uses similar ideas, is left as Exercise 32.

Observe that, in the special case where u; = v;, we have

v, =0-v,++ 1oy, + -+ 0-v,

so [v;]z = e;and {[v,]p ..., [V,]5} = {e,,...,e,} is the standard basis in R".

The definition of dimension is the same for a vector space as for a subspace of R"—the

number of vectors in a basis for the space. Since a vector space can have more than one

basis, we need to show that this definition makes sense; that is, we need to establish

that different bases for the same vector space contain the same number of vectors.
Part (a) of the next theorem generalizes Theorem 2.8.

Theorem 6.8

Let B = {v,, v, ..., V,} be abasis for a vector space V.

a. Any set of more than # vectors in V must be linearly dependent.
b. Any set of fewer than #n vectors in V cannot span V.

Proof (a) Let {u;,...,u,} be aset of vectors in V, with m > n. Then {[w,]5, ...,
[u, ]z} is a set of more than n vectors in R" and, hence, is linearly dependent,
by Theorem 2.8. This means that {u,,..., u,} is linearly dependent as well, by
Theorem 6.7.

(b) Let{u,,...,u,}beasetofvectorsin V,withm < n.ThenS = {[u,]p ..., [u,]s}
is a set of fewer than n vectors in R". Now span(u,, ..., w,) = V if and only if
span(S) = R" (see Exercise 33). But span(S) is just the column space of the n X m
matrix

A= [[w]s - [w,l]s]

so dim(span(S)) = dim(col(A)) = m < n. Hence, S cannot span R", so {u,, ..., u,}
does not span V.

Now we extend Theorem 3.23. b |
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Theorem 6.9

The Basis Theorem

If a vector space V has a basis with # vectors, then every basis for V has exactly n
vectors.

The proof of Theorem 3.23 also works here, virtually word for word. However, it
is easier to make use of Theorem 6.8.

Proof Let Bbe a basis for V with 1 vectors and let B’ be another basis for V with m
vectors. By Theorem 6.8, m = n; otherwise, B’ would be linearly dependent.

Now use Theorem 6.8 with the roles of B and B’ interchanged. Since B’ is a
basis of V with m vectors, Theorem 6.8 implies that any set of more than m vectors
in V'is linearly dependent. Hence, n = m, since B is a basis and is, therefore, linearly
independent.

Since n = m and m = n, we must have n = m, as required. — ==

The following definition now makes sense, since the number of vectors in a
(finite) basis does not depend on the choice of basis.

Definition A vector space V is called finite-dimensional if it has a basis con-
sisting of finitely many vectors. The dimension of V,denoted by dim V, is the num-
ber of vectors in a basis for V. The dimension of the zero vector space {0} is defined
to be zero. A vector space that has no finite basis is called infinite-dimensional.

»

Example 6.38

I

Since the standard basis for R" has 7 vectors, dim R"” = 7. In the case of R’, a one-
dimensional subspace is just the span of a single nonzero vector and thus is a line
through the origin. A two-dimensional subspace is spanned by its basis of two
linearly independent (i.e., nonparallel) vectors and therefore is a plane through the
origin. Any three linearly independent vectors must span R’, by the Fundamental
Theorem. The subspaces of R’ are now completely classified according to dimension,
as shown in Table 6.1.

Table 6.1
dim V \
3 R®
2 Plane through the origin
1 Line through the origin
0 {0}

Example 6.39

The standard basis for P, contains n + 1 vectors (see Example 6.30), so dim P,
n+ 1.
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»

Example 6.40

>

The standard basis for M, contains mn vectors (see Example 6.31), so

dim M,,,, = mn.

>

Example 6.41

Both & and % are infinite-dimensional, since they each contain the infinite linearly

independent set {1, x, x%, ...} (see Exercise 44). I

>

Example 6.42

Find the dimension of the vector space W of symmetric 2 X 2 matrices (see
Example 6.10).

Solution A symmetric 2 X 2 matrix is of the form

FMECHH AL HHET N

so W is spanned by the set

N ARIRRI

If S is linearly independent, then it will be a basis for W. Setting
1 0 0 1 0 0 0 0
oo #od o o =000
0 0 1 0 0 1 0 0
{a b} _ {O O}
b ¢ 0 0

from which it immediately follows that a = b = ¢ = 0. Hence, S is linearly indepen-
dentand is, therefore, a basis for W. We conclude that dim W = 3. I

we obtain

The dimension of a vector space is its “magic number” Knowing the dimension
of a vector space V provides us with much information about V and can greatly sim-
plify the work needed in certain types of calculations, as the next few theorems and
examples illustrate.

Theorem 6.10

Let V be avector space with dim V = n. Then:

a. Any linearly independent set in V contains at most #n vectors.

b. Any spanning set for V contains at least 1 vectors.

c. Any linearly independent set of exactly #n vectors in V is a basis for V.
d. Any spanning set for V consisting of exactly n vectors is a basis for V.
e. Any linearly independent set in V can be extended to a basis for V.

f. Any spanning set for V' can be reduced to a basis for V.
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Proof The proofs of properties (a) and (b) follow from parts (a) and (b) of Theo-
rem 6.8, respectively.

(c) Let S be a linearly independent set of exactly n vectors in V. If S does not span V,
then there is some vector v in V that is not a linear combination of the vectors in S.
Inserting vinto S produces a set S’ with n + 1 vectors that is still linearly independent
(see Exercise 54). But this is impossible, by Theorem 6.8(a). We conclude that S must
span V and therefore be a basis for V.

(d) Let S be a spanning set for V consisting of exactly n vectors. If S is linearly
dependent, then some vector vin S is a linear combination of the others. Throwing v
away leaves a set S with n — 1 vectors that still spans V (see Exercise 55). But this is
impossible, by Theorem 6.8(b). We conclude that S must be linearly independent and
therefore be a basis for V.

(e) Let S be a linearly independent set of vectors in V. If S spans V, it is a basis for
V and so consists of exactly n vectors, by the Basis Theorem. If S does not span V,
then, as in the proof of property (c), there is some vector v in V that is not a linear
combination of the vectors in S. Inserting vinto S produces a set S’ that is still linearly
independent. If §’ still does not span V, we can repeat the process and expand it into
a larger, linearly independent set. Eventually, this process must stop, since no linearly
independent set in V can contain more than 7 vectors, by Theorem 6.8(a). When the
process stops, we have a linearly independent set S* that contains S and also spans V.
Therefore, S* is a basis for V that extends S.

(f) Youare asked to prove this property in Exercise 56. — -
You should view Theorem 6.10 as, in part, a labor-saving device. In many

instances, it can dramatically decrease the amount of work needed to check that a set
of vectors is linearly independent, a spanning set, or a basis.

Example 6.43

\}

In each case, determine whether S is a basis for V.

@ V=P, 8S={14+x2—x+x%3x—2x% -1+ 3x + x%}

1 0 0 -1 1 1
(b)V=M”’S:{L IHI OHO —1”

) V=P, S={1+xx+x%1+ x%}

Solution (a) Since dim(%,) = 3 and § contains four vectors, S is linearly depen-
dent, by Theorem 6.10(a). Hence, S is not a basis for %,.

(b) Since dim(M,,) = 4 and S contains three vectors, S cannot span M,,, by Theo-
rem 6.10(b). Hence, S is not a basis for M,,.

(c) Since dim(%,) = 3 and S contains three vectors, S will be a basis for %, if it is lin-
early independent or if it spans %,, by Theorem 6.10(c) or (d). It is easier to show that
S is linearly independent; we did this in Example 6.26. Therefore, S is a basis for ,.
(This is the same problem as in Example 6.32—but see how much easier it becomes

using Theorem 6.10!) I

.

Example 6.44

»—k

Extend {1 + x,1 — x}to a basis for P,.

Solution  First note that {1 + x, 1 — «} is linearly independent. (Why?) Since dim
(,) = 3, we need a third vector—one that is not linearly dependent on the first two.
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We could proceed, as in the proof of Theorem 6.10(e), to find such a vector using trial
and error. However, it is easier in practice to proceed in a different way.

We enlarge the given set of vectors by throwing in the entire standard basis for %,.
This gives

S={l4+x1-x1,xx%

Now § is linearly dependent, by Theorem 6.10(a), so we need to throw away some
vectors—in this case, two. Which ones? We use Theorem 6.10(f), starting with the
first vector that was added, 1. Since 1 = 3(1 + x) + (1 — x), the set {1 + x, 1 — x, 1}
is linearly dependent, so we throw away 1. Similarly, x = 3(1 + x) — 3(1 — x), so
{l +x,1 — x, x} is linearly dependent also. Finally, we check that {1 + x, 1 — x, x°}
is linearly independent. (Can you see a quick way to tell this?) Therefore, {1 + x,

1 — x, x*} is a basis for %, that extends {1 + x, 1 — x}. 1

In Example 6.42, the vector space W of symmetric 2 X 2 matrices is a subspace of
the vector space M,, of all 2 X 2 matrices. As we showed, dim W = 3 = 4 = dim M,,.
This is an example of a general result, as the final theorem of this section shows.

Theorem 6.11

Let W be a subspace of a finite-dimensional vector space V. Then:

a. W is finite-dimensional and dim W = dim V.
b. dim W =dim Vifandonlyif W = V.

Proof (a) Let dim V = n. If W = {0}, then dim(W) = 0 = n = dim V. If W is
nonzero, then any basis 3 for V (containing » vectors) certainly spans W, since W is
contained in V. But BB can be reduced to a basis B’ for W (containing at most 7 vec-
tors), by Theorem 6.10(f). Hence, W is finite-dimensional and dim(W) = n = dim V.
(b) If W =V, then certainly dim W = dim V. On the other hand, if dim W = dim
V' = n, then any basis B for W consists of exactly n vectors. But these are then # lin-

early independent vectors in V and, hence, a basis for V, by Theorem 6.10(c). There-
fore, V = span(B) = W. s

In Exercises 1-4, test the sets of matrices for linear indepen-
dence in My,. For those that are linearly dependent, express

I Exercises 6.2

\/

S I

one of the matrices as a linear combination of the others.

(1 111 —1][1 0
0o —1/[1 o_’L 2”
(2 =311 —-1][-1 3
14 23 3_’{ 1 5
(=1 173 o] 0 2
-2 2]'|1 1}’_——3 1}’[

}

In Exercises 5-9, test the sets of polynomials for linear inde-
pendence. For those that are linearly dependent, express one
of the polynomials as a linear combination of the others.

5.{x, 1+ x}in P,
6.{1+x1+x%1—x+x*}in®P,
7. {x 2x — x%,3x + 2x%} in P,

)



8 {2x,x —x51+x%2—x*+ x%in P,
9. {1—2x3x+x>—x%1+x%+2x%3+2x+3x%in P,
In Exercises 10-14, test the sets of functions for linear in-

dependence in F. For those that are linearly dependent,
express one of the functions as a linear combination of the

others.
10. {1, sin x, cos x} 11. {1, sin’x, cos’x}
12. {e*, e ¥} 13. {1, 1n(2x), In(x?)}

14. {sin x, sin 2x, sin 3x}

Jﬁ 15. If fand g are in 6""), the vector space of all functions
with continuous derivatives, then the determinant

fx) gl
fx) g'x)

is called the Wronskian of fand g [named after the
Polish-French mathematician J6sef Maria Hoéné-
Wronski (1776-1853), who worked on the theory of
determinants and the philosophy of mathematics].
Show that fand g are linearly independent if their
Wronskian is not identically zero (that is, if there is
some x such that W(x) # 0).

[N 16. In general, the Wronskian of f,, .. ., f, in €~V is the

W(x) =

Y

determinant
fi(x) Lx) - £
W(X) — fll(x) fZ’(x) Pt fn,(x)
fl(n~.1)(x) f2(n~.1)(x) . n(nf.l)(x)

andfi, ..., f, are linearly independent, provided W(x)
is not identically zero. Repeat Exercises 10-14 using
the Wronskian test.

17. Let {u, v, w} be a linearly independent set of vectors in

a vector space V.

(@) Is{u + v,v + w,u + w} linearly independent?
Either prove that it is or give a counterexample
to show that it is not.

(b) Is {u — v, v — w, u — w} linearly independent?
Either prove that it is or give a counterexample
to show that it is not.

In Exercises 18-25, determine whether the set BB is a basis
for the vector space V.

wv-ma= {3 L[ L L )
o= ={lo 1L i <)
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20.

21.

22.
23.
24.
25.

26.

27.

28.

29.

30.

31.

32.

33.

V:Mzz,

5= o thI o lo iHi )
0 1/ [1 00 1] [1 1

V=M,,

-0 L L )

V=®,8B={x1+xx— x%
V=®,B={1-x1-x%x— x%
V==o,8B={1,1+2x+ 3x%}
V=2®,B={1,2-x3—x%x+ 2x%}

1 2
Find the coordinate vector of A = L 4} with

respect to the basis B = {E,,, E,,, Ey5, Ey } of M.

1 2
Find the coordinate vector of A = [3 4} with respect

tothebasisB={{1 0},[1 1},{1 1},{1 1}}
0 0 0 0 1 0 1 1

of M,,.

Find the coordinate vectorof p(x) = 1 + 2x + 3x2
with respect to the basis B = {1 + x, 1 — x, x*} of P,.

Find the coordinate vector of p(x) =2 — x + 3x? with
respect to the basis B = {1,1 + x, =1 + x2} of P,.

Let B be a set of vectors in a vector space V with

the property that every vector in V can be written
uniquely as a linear combination of the vectors in B.
Prove that B is a basis for V.

Let B be a basis for a vector space V,letu,, ..., u

be vectors in V, and let ¢, . . ., ¢, be scalars. Show that
e + -+ awlz = alwmlg + - + g luls
Finish the proof of Theorem 6.7 by showing that if
{[w;]5, ..., [u]g} is linearly independent in R" then
{u,, ..., w} is linearly independent in V.

Let {u,,...,u,} be aset of vectors in an
n-dimensional vector space V and let BB be a basis for V.
LetS = {[w]p ..., [u,]s} be the set of coordinate
vectors of {u,, ..., u,,} with respect to B. Prove that
span(uy, ..., u,) = Vifand only if span(S) = R".

In Exercises 34-39, find the dimension of the vector space V
and give a basis for V.

34.
35.

|& 36.

V= {p(x)inP,:p(0) = 0}
V = {p(x)inP,:p(1) = 0}
V= {p(x)inP,:xp'(x) = p(x)}
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37.
38.

39.

40.

41.

42,

43.

44.

45.

46.

47.

48.

49.
50.

51.

52.

53.
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V = {Ain M,, : A is upper triangular}
V = {Ain M,,: A is skew-symmetric}

. 11
V = {Ain M,,: AB = BA}, where B = {0 J

Find a formula for the dimension of the vector space
of symmetric n X n matrices.

Find a formula for the dimension of the vector space
of skew-symmetric #n X n matrices.

Let Uand W be subspaces of a finite-dimensional
vector space V. Prove Grassmann’s Identit y:

dim(U + W) = dimU + dimW — dim(U N W)

[Hint: The subspace U + W is defined in Exercise 48
of Section 6.1. Let B = {v,, ..., v} be a basis for

U N W.Extend B to a basis C of U and a basis D of W.
Prove that C U D is a basis for U + W.]

Let U and V be finite-dimensional vector spaces.

(a) Find a formula for dim(U X V) in terms of dim U
and dim V. (See Exercise 49 in Section 6.1.)
(b) If W is a subspace of V, show that dim A =
dim W, where A = {(w, w) : wisin W}.
Prove that the vector space % is infinite-dimensional.
[Hint: Suppose it has a finite basis. Show that there is
some polynomial that is not a linear combination of
this basis.]

Extend {1 + x,1 + x + x*} to a basis for P,.

[0 171 1
Extend { , to a basis for M,,.
10 1] (0 1]
(1 o] [o 1] [0 -1
Extend , , to a basis for M,,.
0 1)1 o][1 o
(1 0] [0 1] .
Extend N to a basis for the vector

space of symmetric 2 X 2 matrices.

Find a basis for span(1, 1 + x, 2x) in %P,.

Find a basis for span(1 — 2x, 2x — x%,1 — x*, 1 + x?)
in P,.

Find a basis for span(1 — x, x — x*, 1 — x*, 1 — 2x +
x%) in P,.

1 0 0 1 -1 1
Find a basis for span([ }, [ }, [ },
0 1 1 0 1 -1

1 —11\.
o 1 in M,,.

Find a basis for span(sinzx, cos®x, cos 2x) in F.

54.LetS = {v,,...,v,} bealinearly independent set in
a vector space V. Show that if vis a vector in V that is
not in span(S), then S’ = {v,, ..., v,, v} is still linearly
independent.

55. Let S = {v,, ..., V,} be a spanning set for a vector
space V. Show that if v, is in span(v,, ..., v,_), then
S ={vy,...,v, }isstill a spanning set for V.

56. Prove Theorem 6.10(f).

57. Let {v,, ..., v,} be a basis for a vector space V
and let ¢}, ..., ¢, be nonzero scalars. Prove that
{e;vis ..., c,v,} is also a basis for V.

58. Let {v,, ..., V,} be a basis for a vector space V. Prove
that

{V],VI +V2,V1 +V2+V3,...,V1 +"’+Vn}

is also a basis for V.

Letay, ay, ..., a, be n + 1 distinct real numbers. Define
polynomials py(x), p(x), ..., p,(x) by

ai+l) t ’(X - an)
ai+1)' ’ '(az' - an)

(x = a;_)(x —

a;-1)(a; —

(x — ao)..

(a, — ag)- - (a; —

pi(x) =

These are called the Lagrange polynomials associated

with ag, ay, . . ., a,. [Joseph-Louis Lagrange (1736-1813)
was born in Italy but spent most of his life in Germany and
France. He made important contributions to such fields as
number theory, algebra, astronomy, mechanics, and the
calculus of variations. In 1773, Lagrange was the first to give
the volume interpretation of a determinant (see Chapter 4).]

59. (a) Compute the Lagrange polynomials associated
withay, = 1,a, = 2,a, = 3.
(b) Show, in general, that
{o ifi #
1 ifi=j

60. (a) Prove that the set B = {py(x), p;(x), ..., p,(x)}
of Lagrange polynomials is linearly independent
in P, [Hint: Set copo(x) + - -+ + ¢,p,(x) = 0and
use Exercise 59(b).]

(b) Deduce that B is a basis for P,,.

61. If g(x) is an arbitrary polynomial in %, it follows from
Exercise 60(b) that
q(x) = copo(x) + -+ + ¢,p,(x) (1)
for some scalars ¢y, . . ., C,.
(a) Show that ¢; = g(a;) fori = 0, ..., n, and deduce
that g(x) = qlag)pe(x) + - - - + gla,)p,(x) is the

unique representation of g(x) with respect to the
basis B.



(b) Show that for any # + 1 points (ay, ¢o), (a1, ¢1)s - - . »

(c)

(a,, c,) with distinct first components, the func-
tion g(x) defined by Equation (1) is the unique
polynomial of degree at most # that passes
through all of the points. This formula is known
as the Lagrange interpolation formula. (Com-
pare this formula with Problem 19 in Explora-
tion: Geometric Applications of Determinants in
Chapter 4.)

Use the Lagrange interpolation formula to find
the polynomial of degree at most 2 that passes
through the points
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62.

63.

(i) (1,6), (2, —1),and (3, —2)

(i) (—1,10), (0,5), and (3, 2)

Use the Lagrange interpolation formula to show that
if a polynomial in %, has n + 1 zeros, then it must be
the zero polynomial.

Find a formula for the number of invertible matrices
in M,,,(Z,). [Hint: This is the same as determining the
number of different bases for Zj. (Why?) Count the
number of ways to construct a basis for Z}, one vector
at a time.]
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Exploration

Magic Squares

The engraving shown on page 461 is Albrecht Diirer’s Melancholia I (1514). Among
the many mathematical artifacts in this engraving is the chart of numbers that hangs
on the wall in the upper right-hand corner. (It is enlarged in the detail shown.) Such
an array of numbers is known as a magic square. We can think of it as a 4 X 4 matrix

16 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1

Observe that the numbers in each row, in each column, and in both diagonals have
the same sum: 34. Observe further that the entries are the integers 1, 2, .. ., 16. (Note
that Diirer cleverly placed the 15 and 14 adjacent to each other in the last row, giving
the date of the engraving.) These observations lead to the following definition.

Definition  An n X » matrix M is called a magic square if the sum of the
entries is the same in each row, each column, and both diagonals. This common
sum is called the weight of M, denoted wt(M). If M is an n X n magic square that
contains each of the entries 1, 2, . . ., n* exactly once, then M is called a classical
magic square.

1. If Misaclassical n X n magic square, show that

n(n* + 1)

wt(M) = 2

[Hint: Use Exercise 51 in Section 2.4.]

2. Find a classical 3 X 3 magic square. Find a different one. Are your two ex-
amples related in any way?
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3. Clearly, the 3 X 3 matrix with all entries equal to 5 is a magic square with
weight 1. Using your answer to Problem 2, find a 3 X 3 magic square with weight 1,
all of whose entries are different. Describe a method for constructing a 3 X 3 magic
square with distinct entries and weight w for any real number w.

Let Mag, denote the set of all n X n magic squares, and let Mag, denote the set of all
n X n magic squares of weight 0.

4. (a) Prove that Mags is a subspace of Ms;.
(b) Prove that Mag) is a subspace of Mags.

5. Use Problems 3 and 4 to show that if M isa 3 X 3 magic square with weight
w, then we can write M as

M=M,+k

where M, is a 3 X 3 magic square of weight 0, ] is the 3 X 3 matrix consisting entirely
of ones, and k is a scalar. What must k be? [Hint: Show that M — kJis in Magg for an
appropriate value of k.]

Let’s tryto find a way of describing all 3 X 3 magic squares. Let

a b ¢
M=\|d e f
g h i

be a magic square with weight 0. The conditions on the rows, columns, and diag-

onals give rise to a system of eight homogeneous linear equations in the variables a,
b,..., i

6. Write out this system of equations and solve it. [Note: Using a CAS will
facilitate the calculations.]

461



7. Findthe dimension of Mag}. Hint: By doing a substitution, if necessary, use
your solution to Problem 6 to show that M can be written in the form

s S It t
M=|—s+t 0 s— t
—t s+t —s

8. Findthe dimension of Mag;. [Hint: Combine the results of Problems 5and 7.]

9. Canyou find a direct way of showing that the (2, 2) entry of a 3 X 3 magic
square with weight w must be w/3? [Hint: Add and subtract certain rows, columns,
and diagonals to leave a multiple of the central entry.]

10. Let M be a 3 X 3 magic square of weight 0, obtained from a classical 3 X 3
magic square as in Problem 5. If M has the form given in Problem 7, write out an
equation for the sum of the squares of the entries of M. Show that this is the equation
of a circle in the variables s and ¢, and carefully plot it. Show that there are exactly
eight points (s, t) on this circle with both s and ¢ integers. Using Problem 8, show that
these eight points give rise to eight classical 3 X 3 magic squares. How are these magic
squares related to one another?

462
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In many applications, a problem described using one coordinate system may be
solved more easily by switching to a new coordinate system. This switch is usually
accomplished by performing a change of variables, a process that you have prob-
ably encountered in other mathematics courses. In linear algebra, a basis provides
us with a coordinate system for a vector space, via the notion of coordinate vectors.
Choosing the right basis will often greatly simplify a particular problem. For example,
consider the molecular structure of zinc, shown in Figure 6.3(a). A scientist studying
zinc might wish to measure the lengths of the bonds between the atoms, the angles
between these bonds, and so on. Such an analysis will be greatly facilitated by intro-
ducing coordinates and making use of the tools of linear algebra. The standard basis
and the associated standard xyz coordinate axes are not always the best choice. As
Figure 6.3(b) shows, in this case {u, v, w} is probably a better choice of basis for R3
than the standard basis, since these vectors align nicely with the bonds between the
atoms of zinc.

9V Vi v V]

@@//W @@% K/
//\é@/@g é“@“@ S/

(a) (b)
Figure 6.3

Change-of-Basis Matrices

Figure 6.4 shows two different coordinate systems for R?, each arising from a different
basis. Figure 6.4(a) shows the coordinate system related to the basis B = {u,, u,},
while Figure 6.4(b) arises from the basis C = {v;, v,}, where

=} w= [} e} e[}

The same vector x is shown relative to each coordinate system. It is clear from the
diagrams that the coordinate vectors of x with respect to 5 and C are

[x]s=[;] and [X]cz[_ﬂ

respectively. It turns out that there is a direct connection between the two coordinate
vectors. One way to find the relationship is to use [x] 5 to calculate

emwv = oo ][]
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y y
A A
2+ 2+
up Vo
- - 6
g o
: > L R T e
-2 6 -2 4 6
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N 3u2 I
—4 4+ —4 +
(@) (b)
Figure 6.4

Then we can find [x]. by writing x as a linear combination of v, and v,. However,
there is a better way to proceed—one that will provide us with a general mechanism
for such problems. We illustrate this approach in the next example.

1
Example 6.45 Using the bases BB and C above, find [x], given that [x]z = {3J

Solution  Since x = u; + 3u,, writing u, and u, in terms of v; and v, will give us the
required coordinates of x with respect to C. We find that

=Sl 1 1
u1={ }=—3 + 2 = —3v, + 2v,
2 0 1
1

TN R

)
X =1u + 3u,
= (=3v, + 2v,) + 3(3v; — V)
=6V, —V,
This gives

in agreement with Figure 6.4(b). I

This method may not look any easier than the one suggested prior to Example 6.45,
but it has one big advantage: We can now find [y]. from [y]z for any vector y in R?
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with very little additional work. Let’s look at the calculations in Example 6.45 from a
different point of view. From x = u, + 3u,, we have

(x]e = [w + 3w]e = [u]e + 3[uw,]¢
by Theorem 6.6. Thus,

(x]e = [[w;]c[wy]c] {1}

(21

[x]s

where P is the matrix whose columns are [u, ] and [u,]. This procedure generalizes
very nicely.

Definition LetB={u,...,u,}and C = {v,,...,v,} be bases for a vector
space V. The n X #n matrix whose columns are the coordinate vectors [u,] ¢, . . .,
[u,]¢ of the vectors in B with respect to C is denoted by Pe. 5 and is called the
change-of-basis matrix from B to C. That is,

Peey = [Tw]clm]e -+ [w,]c]

Think of B as the “old” basis and C as the “new” basis. Then the columns of Pp.
are just the coordinate vectors obtained by writing the old basis vectors in terms of
the new ones. Theorem 6.12 shows that Example 6.45 is a special case of a general
result.

Theorem 6.12

Let B={u,,...,u,}and C = {v,, ..., v,} be bases for a vector space V and let
P, be the change-of-basis matrix from B to C. Then

a. Poglx]p = [x]¢ forallxin V.
b. Pcpis the unique matrix P with the property that P[x]z = [x]¢ for all xin V.
. Popis invertible and (Pp. 5) ™! = Pge .

Proof (a) Letxbein Vandlet

O]
(x]g =] :
Cl’l
That is, x = cju; + -+ + ¢,u,. Then
[x]e = [eu, + -+ cu,]e
=cqlwmle + -+ ¢ lu,le
8}
= [[wle - [u,lel] -
c

= Peeplx]3



466

Chapter 6 Vector Spaces

(b) Suppose that P is an n X n matrix with the property that P[x] 3 = [x]. for all x
in V. Taking x = wu,, the ith basis vector in BB, we see that [x] 3 = [w;] 5 = e; so the ith
column of P is

p; = Pe; = Plu]z = [u]
which is the ith column of P.. 5, by definition. It follows that P = Py p.
(c) Since{u,,...,u,}islinearly independent in V, the set {[u,]¢, ..., [u,]c} is linearly
independent in R", by Theorem 6.7. Hence, Pz = [[w;]¢ ---  [u] is invert-

ible, by the Fundamental Theorem.
Forall x in V, we have Pe3[x]5 = [x]¢. Solving for [x] 3, we find that

[x]s = (Pcep) ' [x]c

for all xin V. Therefore, (Py 5)~!is a matrix that changes bases from C to B. Thus, by
the uniqueness property (b), we must have (Ppc3) ™' = Pgec. -

Remarks

* Youmay find it helpful to think of change of basis as a transformation (indeed,
it is a linear transformation) from R” to itself that simply switches from one coordi-
nate system to another. The transformation corresponding to p,_ . accepts [x], as
ir.lput and returr.ls [x]cas out}?ut; (Po)™! = Py does just the opposite. Figure 6.5
gives a schematic representation of the process.

[

%

\[ 15

Multiplication \
by Pe-p

e Il
Rn _— Rn

Figure 6.5 Multiplication

= -1
Change of basis by Pp-¢c = (Pc-p)

® The columns of P are the coordinate vectors of one basis with respect to
the other basis. To remember which basis is which, think of the notation C <— B as
saying “Bin terms of C” It is also helpful to remember that Po. 5[ x] 5 is a linear com-
bination of the columns of Pp. 5. But since the result of this combination is [x]¢, the
columns of P,._ 3 must themselves be coordinate vectors with respect to C.

»

Example 6.46

Find the change-of-basis matrices Py zand Pz for the bases B = {1, x, x*} andC =
{1+xx+x%1+ x% ofP,. Then find the coordinate vector of p(x) =1+ 2x — x2
with respect to C.

Solution  Changing to a standard basis is easy, so we find Pz first. Observe that the
coordinate vectors for C in terms of 5 are

—

1 0
[1+X]B: 1 B [x+x2]B= 1 _ [1+x2]B=
0 1 1

o
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(Look back at the Remark following Example 6.26.) It follows that

1 0 1
PB‘-C = 1 1 0
0 1 1

To find P, 5, we could express each vector in B as a linear combination of the vec-

tors in C (do this), but it is much easier to use the fact that Poe 3 = (Pge¢)”!, by
Theorem 6.12(c). We find that

= N]—

Pc<—3 = (P[g(—c)_l =1 -

2 2 2
T _ 1 1
2 2
It now follows that
[P(x)]c = PceB[P(x)]B
r 1 1 _1
2 2 2
A
1 _1 1 _
L 2 2 2
[ 2
= 0
L —1

which agrees with Example 6.37.

-

Remark If we donotneed Pq. s explicitly, we can find [p(x) ] from [p(x)]zand
Py ¢ using Gaussian elimination. Row reduction produces

[Paecl[p()]5] — [I|(Pge) ' [p(0)]15] = [I|Pecplp()]s] = [][p(x)]]

(See the next section on using Gauss-Jordan elimination.)

It is worth repeating the observation in Example 6.46: Changing to a standard
basis is easy. If £ is the standard basis for a vector space V and B is any other basis,
then the columns of P¢. are the coordinate vectors of B with respect to &, and these
are usually “visible” We make use of this observation again in the next example.

Example 6.41

»
B>

In M,,, let B be the basis {E,;, E,,, E15, E,,} and let C be the basis {A, B, C, D}, where

1 0 1 1 1 1 1 1
a=loob 2= lo o o= o 2=
0 0 0 0 1 0 1 1
Find the change-of-basis matrix P 5 and verify that [X], = Poep[X]p for X =

BN
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Solution 1 To solve this problem directly, we must find the coordinate vectors of B
with respect to C. This involves solving four linear combination problems of the form
X =aA + bB + ¢C + dD, where X is in B and we must find a, b, ¢, and d. However,
here we are lucky, since we can find the required coefficients by inspection.

Clearly, E;, = A,E,, = —B+ C,E;; = —A + B,and E,, = —C + D. Thus,

1 0 —1] 0
0 -1 1
[Enle = ol [Enlc = 11 [Enle = ol [Exlc =
0 0 1
1 0 -1 0
0 -1 1 0
SO Poe s = [[E E E E =
ces = lEule [Eale [Eule [Enld=|, | o _,
0 0 1
1 2
IfX={ },then
3 4
1
3
(X]s = )
4
1 0 -1 0r1 -1
0 -1 1 013 -1
d x[X]g = =
- PeesXls =11 o 1|2 =
0 0 0 1[4 4

This is the coordinate vector with respect to C of the matrix

1 0 1 1 1 1 1 1
- - — +4

0 0 0 0 1 0 1 1

3

—A—-—B—-C+4D

I

as it should be.

Solution 2 We can compute Pep in a different way, as follows. As you will be
asked to prove in Exercise 21, if £ is another basis for M,,, then Po._ 3 = PpgPe g =
(Peco) 'Pecp. 1f Eis the standard basis, then Pg s and Pe¢ can be found by inspec-
tion. We have

Pé‘(—B = and Pf,‘(—C =

o O O =
O = O O
O O = O
— o O O
oS O O =
S O = -
(e B
—
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#—> (Do you see why?) Therefore,

Poeg = (Pecg) 'Peep

M 1 1 1 1 0 0 0
10 1 1 1 0 0 1 0
“lo o1 1] o100

L0 00 1] Lo 0 0 1

-1 0 07f1 0 0 0
10 1 -1 0|0 0 1 0
o 0o 1 -1{l0o 1 0 0

L0 0o o0 1]Jlo 0 0 1

M1 0 -1 07
oo -1 10
“lo 1 0 -1

o o o 1]

which agrees with the first solution. 4

Remark The second method has the advantage of not requiring the computa-
tion of any linear combinations. It has the disadvantage of requiring that we find a
matrix inverse. However, using a CAS will facilitate finding a matrix inverse, so in
general the second method is preferable to the first. For certain problems, though,
the first method may be just as easy to use. In any event, we are about to describe yet
a third approach, which you may find best of all.

The Gauss-Jordan Method for Computing a Change-of-Basis Matrix

Finding the change-of-basis matrix to a standard basis is easy and can be done
by inspection. Finding the change-of-basis matrix from a standard basis is almost
as easy, but requires the calculation of a matrix inverse, as in Example 6.46. If we do
it by hand, then (except for the 2 X 2 case) we will usually find the necessary inverse
by Gauss-Jordan elimination. We now look at a modification of the Gauss-Jordan
method that can be used to find the change-of-basis matrix between two nonstandard
bases, as in Example 6.47.

Suppose B = {u,,...,u,} and C = {v,,...,v,} are bases for a vector space V
and P, s is the change-of-basis matrix from B to C. The ith column of P is
Pli
[ui]c =
Pni

sou; = pyv; +- - + p,v,. If £is any basis for V, then

(wle = [p1vi + -+ puivule = prilvile + - + pulvale
This can be rewritten in matrix form as
Pii
[[vile - (vl @ | = [wle

pni
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which we can solve by applying Gauss-Jordan elimination to the augmented matrix

(e - [valel Twle]

There are n such systems of equations to be solved, one for each column of P, p,
but the coefficient matrix [[v,]¢ -+ [v,]¢] is the same in each case. Hence, we can
solve all the systems simultaneously by row reducing the n X 2n augmented matrix

[vile -+ [vlellwle -+ [w,]¢] = [C|B]

Since {v,, ..., V,} is linearly independent, so is { [v,]s . .., [v,]¢}, by Theorem 6.7.
Therefore, the matrix C whose columns are [v,]g, ..., [v,]chasthe n X n identity
matrix I for its reduced row echelon form, by the Fundamental Theorem. It follows
that Gauss-Jordan elimination will necessarily produce

[C|B] — [I|P]

Where P = PC‘*B'
We have proved the following theorem.

Theorem 6.13

Let B={u;,...,u,} and C = {v, ..., v,} be bases for a vector space V. Let
B=[lu]e -+ [uw,l]¢] and C = [[v]¢...[V,]¢], where £ is any basis for V.
Then row reduction applied to the # X 21 augmented matrix [C |B] produces

[C|B] = [I|Pecp]

If £1s a standard basis, this method is particularly easy to use, since in that case
B = Pec g and C = Pg . We illustrate this method by reworking the problem in
Example 6.47.

Example 6.48

\/

Rework Example 6.47 using the Gauss-Jordan method.

Solution  Taking £ to be the standard basis for M,,, we see that

1 0 0 O 1 1 1 1
0 0 1 0 01 1 1
B = Pecp= 010 0 and C = Pec ¢ = o ol
0 0 0 1 0 0 0 1
Row reduction produces
1 1 1 1{1 0 0 O 1 0 0 0f1 0 -1 0
01 1 1{]0 0 1 O 01 0 00 —1 0
[C|B] = —
0 01 1|10 1 0 O 0 0 1 0f0 0 -1
0 0 0 110 0 0 1 0 0 0 1|0 0 0 1

(Verify this row reduction.) It follows that

1 0 -1 0
Pocy = 0 -1 1 0
0 0 -1
0 0 0 1

as we found before. "
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.

In Exercises 1-4:

(a) Find the coordinate vectors [x]z and [x]q of x with
respect to the bases I3 and C, respectively.

(b) Find the change-of-basis matrix Ppc i from B to C.

(c) Use your answer to part (b) to compute [x]¢, and
compare your answer with the one found in part (a).

(d) Find the change-of-basis matrix Pg . from C to B.

(e) Use your answers to parts (c) and (d) to compute [x]p,
and compare your answer with the one found in part (a).

oo (o= {010

e={

1 1] o] [o
3.x—{ 0],8— [0, 1,101,
-1 0] Lo

1707 [0
C—{l], 1,/]0];inR?

1] L1] [1

3 fo] [o] [1
4.x{l],8 1(,]0], 5

5 Lo L1

1707 (17
C=<(|1[]1],]0]|;inR?

o) L1] 1]

In Exercises 5-8, follow the instructions for Exercises 1-4
using p(x) instead of x.

5.p(x) =2 —x,B={1,x},C={x, 1 + x}in?P,

6.p(x) =1+ 3x,B={1+x,1-x},
C={2x,4in®P,

7.p(x) =1+ x3B={1 + x + x3x + x%x%,
C={l,x,x%}in®,

8px)=4—-2x—x32B={x1+x4x+ x%,
C={1,1 4+ x,x%}in®,

In Exercises 9 and 10, follow the instructions for
Exercises 1-4 using A instead of x.

4 2
. _1}, B = the standard basis,

o= lo I oblo b SLymee

one]

5={lo S}3 oo o} 3 ol
o= {lo bl of L THE il e

In Exercises 11 and 12, follow the instructions for
Exercises 1-4 using f(x) instead of x.

11. f(x) = 2sin x — 3 cosx, B = {sinx + cos x, cos x},
C = {sinx + cosx, sinx — cosx} in span(sin x, cos x)

12. f(x) = sin x, B= {sinx + cos x, cos x},
C = {cos x — sin x, sin x + cos x} in span(sin x, cos x)

13. Rotate the xy-axes in the plane counterclockwise
through an angle 6 = 60° to obtain new x’y’-axes.
Use the methods of this section to find (a) the
x'y'-coordinates of the point whose xy-coordinates
are (3, 2) and (b) the xy-coordinates of the point
whose x'y’ -coordinates are (4, —4).

14. Repeat Exercise 13 with 6 = 135°.

1 2
15. Let B and C be bases for R%. If C = {[2}, L}} and

the change-of-basis matrix from B to C is

ﬁnd B.

16. Let Band C be bases for P,. If B= {x,1 + x,
1 — x + x*} and the change-of-basis matrix
from Bto Cis

Pecp =

=
=N O
=)

find C.
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In calculus, you learn that a Taylor polynomial of degree n
about a is a polynomial of the form

plx) =ap+alx —a) + ax —a?+ -+ a,lx — a)"

where a,, + 0. In other words, it is a polynomial that has
been expanded in terms of powers of x — a instead of pow-
ers of x. Taylor polynomials are very useful for approximat-
ing functions that are “well behaved” near x = a.

The set B={1,x — a,(x — a)% ..., (x — a)"} is a basis
for P, for any real number a. (Do you see a quick way to
show this? Try using Theorem 6.7.) This fact allows us to use
the techniques of this section to rewrite a polynomial as a
Taylor polynomial about a given a.

17. Express p(x) = 1 + 2x — 5x” as a Taylor polynomial
about a = 1.

m L]
: 3 -~~~ -

18.

19.
20.

21.

22.

Express p(x) = 1 + 2x — 5x as a Taylor polynomial
about a = —2.

Express p(x) = x° as a Taylor polynomial abouta = —1.
Express p(x) = x° as a Taylor polynomial about a = 3.

Let BB, C, and D be bases for a finite-dimensional vec-
tor space V. Prove that

PpecPeep = Ppep

Let V be an n-dimensional vector space with basis

B = {v,,...,v,}. Let Pbe an invertible n X n matrix
and set

w=pvit oot puv,
fori=1,...,n Provethat C = {u,,...,u,} is a basis

for V and show that P = Py .

Linear Transformations

We encountered linear transformations in Section 3.6 in the context of matrix trans-
formations from R" to R™. In this section, we extend this concept to linear transfor-
mations between arbitrary vector spaces.

Definition A linear transformation from a vector space V to a vector space
W is a mapping T : V. — W such that, for all u and vin V and for all scalars c,

L. Tlu+v)=T()+ T(v)

2. T(cu) = cT(u)

It is straightforward to show that this definition is equivalent to the requirement
that T preserve all linear combinations. That is,

T:V — W is alinear transformation if and only if

T(cvy + vy + -+ + ¢vy) = ¢;T(vy) + ¢,T(v,) + - -+ + ¢, T(v})

forall v, ..

., Vi in Vand scalars ¢, . . ., ¢.

>»

Example 6.49

Every matrix transformation is a linear transformation. That is, if A isan m X n

matrix, then the transformation T, : R” — R™ defined by

is a linear transformation. This is a restatement of Theorem 3.30.

Ty(x) = Ax forxin R"

4
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\

Define T: M,,, »> M,,, by T(A4) = AT, Show that T is a linear transformation.

Solution  We check that, for A and B in M,,,, and scalars c,
T(A+ B) =(A+ BT =A"T+ B"=T(4) + T(B)

and T(cA) = (cA)T = cAT = ¢T(A)
Therefore, T is a linear transformation.

»

B

Example 6.51

>

Let D be the differential operator D : & — & defined by D(f) = f'. Show that D isa
linear transformation.

Solution Let f and g be differentiable functions and let ¢ be a scalar. Then, from
calculus, we know that

D(f+g=(+g =f +¢g =D() + D

and D(cf) = (cf) = ¢f" = cD(f)
Hence, D is a linear transformation. I

In calculus, you learn that every continuous function on [a, b] is integrable. The
next example shows that integration is a linear transformation.

>

Example 6.52

Define S:€[a, b] — Rby S(f) = fff(x) dx. Show that S is a linear transformation.

Solution Letfandgbein €[, b]. Then

b
S(f+ ¢ = J (f + 9x)dx

a

b
= J (f(x) + g(x))dx

a
b b

= | f(x)dx + {g(x)dx

a a

= S(f) + S(g

b
and S(ef) = J (¢f)(x)dx

a

fbcf (x)dx

a

¢ J bf(x) dx

a

= cS(f)

It follows that S is linear. I
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Example 6.53

Show that none of the following transformations is linear:
(a) T:M,,— R defined by T(A) = det A

(b) T:R — R defined by T(x) = 2*

(¢) T:R— Rdefinedby T(x) = x + 1

Solution In each case, we give a specific counterexample to show that one of the
properties of a linear transformation fails to hold.

1 0 0 0 1 0
(a) LetA={ }and3=[ }.ThenA-l—B:{ },so
0 0 0 1

0 1
T(A+B)=det(A+B)=’(1) ?‘:1
But
T(A)+T(B)=detA+detB=‘(l) g‘+’8 (1)‘:0+0:0

so T(A + B) # T(A) + T(B) and T is not linear.
(b) Letx =1andy = 2. Then

Tx+y) =TB)=2=8#6=2"+22=Tk + T

so T is not linear.
(c) Letx = 1land y = 2. Then

Tx+y)=TB)=3+1=4#5=01+1)+Q2+1) =Tk + TQ)

Therefore, T is not linear.

Remark Example 6.53(c) shows that you need to be careful when you encounter
the word “linear” As a function, T(x) = x + 1 is linear, since its graph is a straight
line. However, it is not a linear transformation from the vector space R to itself, since
it fails to satisfy the definition. (Which linear functions from R to R will also be linear
transformations?)

There are two special linear transformations that deserve to be singled out.

»

Example 6.54

(@) For any vector spaces V and W, the transformation T, : V — W that maps every
vector in V to the zero vector in W is called the zero transformation. That is,

T,(v) =0 forallvinV

(b) For any vector space V, the transformation I': V— V that maps every vector in V
to itself is called the identity transformation. That is,

Iv) =v forallvinV

(If it is important to identify the vector space V, we may write I for clarity.) The
proofs that the zero and identity transformations are linear are left as easy exercises.

-
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Properties of Linear Transformations

In Chapter 3, all linear transformations were matrix transformations, and their
properties were directly related to properties of the matrices involved. The fol-
lowing theorem is easy to prove for matrix transformations. (Do it!) The full
proof for linear transformations in general takes a bit more care, but it is still
straightforward.

Theorem 6.14

Let T: V— Wbea linear transformation. Then:
a. T(0)=0

b. T(=v) = —=T(v) forallvin V.
¢ Twu—v)=T(u) —T(v) foralluandvinV.

Proof  We prove properties (a) and (c) and leave the proof of property (b) for
Exercise 21.

(a) Letvbe any vectorin V. Then T(0) = T(0v) = 0T (v) = 0, as required. (Can you
give a reason for each step?)

(c) Tw—v) =T+ (—1)v) = T(u) + (-1)T(v) = T(u) — T(v) s

Remark Property (a) can be useful in showing that certain transformations are
not linear. As an illustration, consider Example 6.53(b). If T(x) = 2%, then T(0) = 2° =
1 # 0, so Tis not linear, by Theorem 6.14(a). Be warned, however, that there are lots
of transformations that do map the zero vector to the zero vector but that are still not
linear. Example 6.53(a) is a case in point: The zero vector is the 2 X 2 zero matrix O,
so T(O) = det O = 0, but we have seen that T(A) = det A is not linear.

The most important property of a linear transformation T: V — W is that T is
completely determined by its effect on a basis for V. The next example shows what
this means.

\

Suppose T is a linear transformation from R* to %, such that

1 2
T{1]=2—3x+x2 and T{J:l—xz

Find T{_IJ and TH.
2 b

Solution Since B = {{ }, { } is a basis for R? (why?), every vector in R? is in

SHEEHEN

span(B). Solving




416

Chapter 6

Vector Spaces

we find that ¢, = —7 and ¢, = 3. Therefore,
MR CGHEEH)
2 1 3
1 2
—]}] + o1?]
1 3

-7(2 — 3x + x?) + 3(1 — x?)
—11 + 21x — 10x?

Similarly, we discover that

7] - 2]!] -]

r{ta -], + 6o,
)

=Ba—-2b)2 —-3x+x)+ (b —-a)1 - x?)
= (5a — 3b) + (— 9a+6b)x+(4a—3b)

SO

~
—
< Q
[
Il

[\

(3a—2b)T{ :|+ b—aT

-1
®»—>  (Note that by settinga = —1 and b = 2, we recover the solution T{ 2} =—-11 +

21x — 10x2) I

The proof of the general theorem is quite straightforward.

Theorem 6.19  Let T: V— W be alinear transformation and let B = {v,, ..., v,} be a spanning

set for V. Then T(B) = {T(v,),..., T(v,)} spans the range of T.

Proof  The range of T is the set of all vectors in W that are of the form T(v), where
visin V. Let T(v) be in the range of T. Since 3 spans V, there are scalars cy, . . ., ¢,
such that

V=Vt oy,
Applying T and using the fact that it is a linear transformation, we see that
T(v) = T(e,v, + -+ + ¢,v,) = T(vy) + - -+ + ¢, T(v,)

In other words, T(v) is in span(T(B)), as required. e

Theorem 6.15 applies, in particular, when B is a basis for V. You might guess that,
in this case, T(3) would then be a basis for the range of T. Unfortunately, this is not
always the case. We will address this issue in Section 6.5.

Composition of Linear Transformations

In Section 3.6, we defined the composition of matrix transformations. The definition
extends to general linear transformations in an obvious way.
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Definition IfT:U— Vand S: V— W are linear transformations, then the
composition of S with T is the mapping S © T, defined by

(§°T)(w) = S(T(u))

whereuisin U.

Observe that S © T is a mapping from U to W (see Figure 6.6). Notice also that for
the definition to make sense, the range of T'must be contained in the domain of S.

SoT
v . B W
. — T(u) > S(T(m)) = (Se° T)(u)

Composition of linear transformations

\

Let T:R* = P, and S: P, — P, be the linear transformations defined by

T{Z} =a+(a+bx and Spkx) = xp(x)

. 3 a
Find (S T){_Z] and (S T)[b}

Solution  We compute
(SOT){_z] = S(T[_ﬂ) =S3+(B—=2)x)=83+x) =x(3+x)
= 3x + x2

and

(So T)m s<Tm> = S(a + (a + b)x) = x(a + (@ + b)x)

ax + (a + b)x? I

Chapter 3 showed that the composition of two matrix transformations was
another matrix transformation. In general, we have the following theorem.

Il

Theorem 6.16

IfT:U— Vand S: V— W are linear transformations, then Se T: U — Wis a
linear transformation.
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Proof Letuandvbein Uandletcbe a scalar. Then
(SeT(u + v) = S(T(u + v))
= S(T(u) + T(v)) since T is linear
= S(T(u)) + S(T(v)) since S is linear
= (SoT)(w) + (S°T)(v)

and (SeT)cu) = S(T(cu))
= S(cT(w)) since T is linear
= ¢S(T(uw)) since S is linear
=c(SeT)(w)
Therefore, S o T is a linear transformation. b |

The algebraic properties of linear transformations mirror those of matrix trans-
formations, which, in turn, are related to the algebraic properties of matrices. For
example, composition of linear transformations is associative. That is, if R, S, and T
are linear transformations, then

Ro(SoT) =(Re8)oT

provided these compositions make sense. The proof of this property is identical to
that given in Section 3.6.

The next example gives another useful (but not surprising) property of linear
transformations.

»

Example 6.51

Let S: U— Vand T: V— W be linear transformations and let I: V — V be the iden-
tity transformation. Then for every vin V, we have

(ToD) = TUKW) = T(v)

Since T oI and T have the same value at every v in their domain, it follows that

ToI=T.Similarly,I°S=S. I

Remark The method of Example 6.57 is worth noting. Suppose we want to show
that two linear transformations T, and T, (both from Vto W) are equal. It suffices to
show that T\ (v) = T,(v) forevery vin V.

Further properties of linear transformations are explored in the exercises.

Inverses of Linear Transformations

Definition A linear transformation T: V — W is invertible if there is a linear
transformation T’ : W — V such that

T'oT=1, and ToT' =1,

In this case, T’ is called an inverse for T.
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Remarks

® The domain V and codomain W of T do not have to be the same, as they do in
the case of invertible matrix transformations. However, we will see in the next section
that V.and W must be very closely related.

e Therequirementthat T’ belinear could have been omitted from this definition.
For, as we will see in Theorem 6.24, if T’ is any mapping from W to V such that
T oT=1I,and To T' = I, then T" is forced to be linear as well.

e If T' is an inverse for T, then the definition implies that T is an inverse for T'.
Hence, T’ is invertible too.

\

Example 6.58

Verify that the mappings T': R* — P, and T’ : P, — R* defined by
a c

T{ }:a+(a+b)x and T'(c+dx)=[ }

b d—c

are inverses.

Solution  We compute

and

(ToT")c + dx) = T(T'(c + dx)) = T{d ¢ } =c+(c+d—-0)x=c+dx
—c

Hence, T'°T = Iz and T o T’ = Iy . Therefore, T and T’ are inverses of each

other. I

As was the case for invertible matrices, inverses of linear transformations are
unique if they exist. The following theorem is the analogue of Theorem 3.6.

Theorem 6.17

If T is an invertible linear transformation, then its inverse is unique.

Proof  The proof is the same as that of Theorem 3.6, with products of matrices re-
placed by compositions of linear transformations. (You are asked to complete this

proof in Exercise 31.) b |

Thanks to Theorem 6.17, if T is invertible, we can refer to the inverse of T. It will
be denoted by TR (pronounced “T inverse”). In the next two sections, we will ad-
dress the issue of determining when a given linear transformation is invertible and
finding its inverse when it exists.
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Y

I Exercises 6.4

In Exercises 1-12, determine whether T is a linear 16. Let T: PP, — P, be a linear transformation for which
lanjormation: T(1) =3 — 2x, T(x) = 4x — x%, and T(x?) = 2 + 2x*
1. T: M,, = M,, defined by
Find T(6 + x — 4x%) and T(a + bx + cx?).
¢ bl _fatb 0 17. Let T : P, — P, be a linear transformation for which
c d 0 c+d

TA+x) =1+ x4 T+ x?) =x— x%

2. T: M,, = M,, defined by T Y

woox| 1 w—z
4 y o z] lx-y 1 Find T(4 — x + 3x%) and T(a + bx + cx?).
3. T: M, — M,, defined by T(4) = AB, where Bisa 18. Let T': M,, — R be a linear transformation for which
fixed n X n matrix Tl 0 _, Tl 1 _,
4. T:M,, — M,, defined by T(A) = AB — BA, where B oo 7 “loo 7
is a fixed n X n matrix 15 -
5. T: M,, — R defined by T(A) = tr(A) TL 0} =3, TL J =
6. T: M,, — R defined by T(A) = aya,," - -a,, 8 5,
a
7.T:M,, — R defined by T(A) = rank(A) Find TL 2} and T[C d}
8. T:%P,— P,definedby T(a + bx + cx*) =(a + 1) +
b+ Dx+ (c+ 1)x? 19. Let T: M,, — R be a linear transformation. Show that

5 there are scalars a, b, ¢, and d such that
9. T: %, — P, definedby T(a + bx + cx*) =a +

b(x + 1) + b(x +1)?
10. T: F — F defined by T(f) = f(x?)
11. T: F — F defined by T(f) = (f(x))?
12. T: % — R defined by T(f) = f(c), where c is a fixed

T[W ﬂzaw—f—bx-i—cy+dz

T: y
e for all {W x} in M,,.
y z

scalar 20. Show that there is no linear transformation T: R*> — %,
13. Show that the transformations S and T in Exam- such that
ple 6.56 are both linear. 5 3
14. Let T': R* — R’ be a linear transformation for which >
TI1|=1+x, T|0|=2—x+ x5,
1 3
1 0 . 2
T = 2| and T =10
0 1 0
-1 4
T| 6|=—-2+2x
-8
5 a
Find T[ } and T{ }
2 b 21. Prove Theorem 6.14(b).
15. Let T: R* — P, be a linear transformation for which 22. Let {v, ..., v,.} be a basis for a vector space V and

let T : V— V be a linear transformation. Prove that if
T(v)=v, T(v)) =V, . T(v) = v,, then T is the

1 3 i
T{J L T[_J R identity transformation on V.

&23. Let T: %P, — P, be a linear transformation such that
Find T[_q e T[a]' T(x*) = kx* " fork = 0,1,..., n. Show that T must
b be the differential operator D.
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25.

26.

& 27.
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., V, be vectors in a vector space V and let
T:V — W be a linear transformation.
(a) If{T(v)), ..., T(v,)} is linearly independent in W,
show that {v;, ..., v,} is linearly independent in V.
(b) Show that the converse of part (a) is false.
That s, it is not necessarily true that if
{vi,...,v,} is linearly independent in V, then
{T(v)),..., T(v,)} is linearly independent in W.
Ilustrate this with an example T : R* = R>.

Define linear transformations S : R* — M,, and
T:R* > R? by

a a+b b c 2c+d
A A MR
Compute (S © T)[ﬂ and (So T) [ﬂ Can you

x
compute (T © S) [y]? If so, compute it.

Define linear transformations S : ; — %, and
TZ @2 — Qpl by

Sla + bx) = a+ (a + b)x + 2bx?

and T(a + bx + ¢cx?) = b + 2cx

Compute (S ° T)(3 + 2x — x?) and
(Se T)(a + bx + cx?). Can you compute
(T > S)(a + bx)? If so, compute it.

Define linear transformations S: ?, — P, and
T:®,— %, by

Spx) =plx + 1) and T(p(x)) = p'(x)

Find (S ° T)(p(x)) and (T ° S)(p(x)). [Hint: Remember
the Chain Rule.]

. Define linear transformations S: %, — %, and

T:?,—>P, by
S(p(x)) = p(x + 1) and T(p(x)) = xp’(x)
Find (S ° T)(p(x)) and (T ° S)(p(x)).

B
m -
o =

In Exercises 29 and 30, verify that S and T are inverses.

4x +
29.S:R2—>R2deﬁnedby8[x} :[ * y} and T: R* > R?
y 3x+y

defined by T[x} = [ S
y —3x + 4y
30.S: P, — P, defined by S(a + bx) =
(—4a + b) + 2ax and T: P, — P, defined by
T(a + bx) = b/2 + (a + 2b)x
31. Prove Theorem 6.17.
32.Let T: V — V be alinear transformation such that
TeT=1
(a) Show that {v, T(v)} is linearly dependent if and
only if T(v) = *v.
(b) Give an example of such a linear transformation
with V = R2
33. Let T: V— V be a linear transformation such that
ToT=T.
(a) Show that {v, T(v)} is linearly dependent if and
onlyif T(v) = vor T(v) = 0.
(b) Give an example of such a linear transformation
with V = R2

The set of all linear transformations from a vector space V
to a vector space W is denoted by £(V, W). If S and T are
in £(V, W), we can define the sum S + T of S and T by

(§+ Dv) = S(v) + T(v)
for all vin V. If ¢ is a scalar, we define the scalar multiple
cT of Tby c to be

(cT)(v) = cT(v)

forall vin V. Then S + T and cT are both transformations
from Vto W.
34. Prove that S + T and (T are linear transformations.

35. Prove that £(V, W) is a vector space with this addi-
tion and scalar multiplication.

36. Let R, S, and T be linear transformations such that the
following operations make sense. Prove that:
(@) Ro(S+ T)=RoS+RoT
(b) c(RoS) = (cR) S = R ° (cS) for any scalar ¢

The Kernel and Range of a Linear Transformation

The null space and column space are two of the fundamental subspaces associated
with a matrix. In this section, we extend these notions to the kernel and range of a

linear transformation.
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The word kernel is derived from
the Old English word cyrnel, a
form of the word corn, meaning
“seed” or “grain.” Like a kernel of
corn, the kernel of a linear trans-
formation is its “core” or “seed” in
the sense that it carries informa-
tion about many of the important
properties of the transformation.

Definition  Let T: V— Whbealinear transformation. The kernel of T, denoted
ker(T), is the set of all vectors in V that are mapped by T'to 0 in W. That is,

ker(T) = {vin V: T(v) = 0}

The range of T, denoted range(T), is the set of all vectors in W that are images of
vectors in V under T. That is,

range(T) = {T(v) : vin V}

= {win W:w = T(v) for some vin V}

Let A be an m X n matrix and let T = T, be the corresponding matrix transformation
from R" to R™ defined by T(v) = Av. Then, as we saw in Chapter 3, the range of T is
the column space of A.
The kernel of T'is
ker(T) = {vin R": T(v) = 0}
{vinR": Av = 0}
null(A)

In words, the kernel of a matrix transformation is just the null space of the corre-

sponding matrix. I

»

®

Find the kernel and range of the differential operator D : P; — %, defined by
D(p(x)) = p'(x).

Solution Since D(a + bx + cx? + dx®) = b + 2¢cx + 3dx?, we have

ker(D) = {a + bx + cx* + dx*: D(a + bx + cx* + dx*) = 0}

={a + bx + cx*+dx>: b+ 2cx + 3dx* = 0}

But b + 2cx + 3dx* = 0 if and only if b = 2c = 3d = 0, which implies that b = ¢ =
d = 0. Therefore,

ker(D) ={a + bx + x> + dx*:b=c=d = 0}
={a:ain R}

In other words, the kernel of D is the set of constant polynomials.
The range of D is all of ,, since every polynomial in %, is the image under D (i.e.,
the derivative) of some polynomial in %. To be specific, if a + bx + cx”isin P,, then

a+ bx + cx?= D<ax + (g)ﬁ + <§>x3>
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j—k}\ Example 6.61

y
A
b |
.
} » X
1 1
2
_b
2
Figure 6.7
b
Ify = — + bx,
y=— tbx

1
thenJydxz 0
0

\

LetS: %, = R be the linear transformation defined by

1
S(p(x) = f p(x)dx
0
Find the kernel and range of S.

Solution In detail, we have

1
Sla + bx) = f (a + bx)dx
0

b 1

=[ax+—x2}

2
(0+5)-0ma"3
=lat+-)]—-0=a+ -
2 2

Therefore, ker(S) = {a + bx:S(a + bx) = 0}

= {a+bx:a+b=0}
2
= {a—l—bx:a= —b}
2
b
= {——~I—bx}
2

Geometrically, ker(S) consists of all those linear polynomials whose graphs have the
property that the area between the line and the x-axis is equally distributed above and
below the axis on the interval [0, 1] (see Figure 6.7).

The range of S is R, since every real number can be obtained as the image under
S of some polynomial in %,. For example, if a is an arbitrary real number, then

1
Jadx=[ax](l)=a—0=a
0

so a = S(a). 1

>»

Example 6.62

Let T : M,, —» M,, be the linear transformation defined by taking transposes:
T(A) = AT. Find the kernel and range of T.

Solution We see that
ker(T) = {Ain M,,: T(A) = O}
={AinM,,: AT = 0O}

Butif AT = O,then A = (AT)T = OT = 0. It follows that ker(T) = {O}.
Since, for any matrix A in M,,, we have A = AT = 1(AT) (and AT is in M,,),

we deduce that range(T) = M,,.

In all of these examples, the kernel and range of a linear transformation are sub-
spaces of the domain and codomain, respectively, of the transformation. Since we are
generalizing the null space and column space of a matrix, this is perhaps not surpris-
ing. Nevertheless, we should not take anything for granted, so we need to prove that
it is not a coincidence.
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Theorem 6.18

Let T: V— Whbea linear transformation. Then:

a. The kernel of T is a subspace of V.
b. The range of T is a subspace of W.

Proof (a) Since T(0) = 0, the zero vector of V is in ker(T), so ker(T) is nonempty.
Let u and v be in ker(T') and let ¢ be a scalar. Then T(u) = T'(v) = 0, so

Tu+v)=Tu) + T(v) =0+0=0
and T(cu) = cT(u) =c0=0

Therefore, u + v and cu are in ker(T), and ker(T) is a subspace of V.

(b) Since 0 = T(0), the zero vector of W is in range(T), so range(T) is nonempty.
Let T(u) and T(v) be in the range of T and let ¢ be a scalar. Then T(u) + T(v) =
T(u + v) is the image of the vector u + v. Since u and v are in V, so is u + v, and
hence T(u) + T(v) is in range (T'). Similarly, ¢cT(u) = T(cu). Since uisin V, so is cu,
and hence ¢T(u) is in range(T'). Therefore, range(T') is a nonempty subset of W that is
closed under addition and scalar multiplication, and thus it is a subspace of W.
=

Figure 6.8 gives a schematic representation of the kernel and range of a linear
transformation.

ker(T
D) range(T)

Figure 6.8
The kernel and range of T: V— W

In Chapter 3, we defined the rank of a matrix to be the dimension of its column
space and the nullity of a matrix to be the dimension of its null space. We now extend
these definitions to linear transformations.

Definition Let T: vV — W be a linear transformation. The rank of T is the
dimension of the range of T and is denoted by rank(T). The nullity of T is
the dimension of the kernel of T and is denoted by nullity(T).

»

B

If Aisa matrix and T = T, is the matrix transformation defined by T'(v) = Av, then
the range and kernel of T are the column space and the null space of A, respectively,
by Example 6.59. Hence, from Section 3.5, we have

rank(T) = rank(A) and nullity(T) = nullity(A)
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>,

Example 6.64

Find the rank and the nullity of the linear transformation D : ; — %, defined by
D(p(x)) = p'(x).

Solution  In Example 6.60, we computed range (D) = P,, so
rank(D) = dim®, = 3

The kernel of D is the set of all constant polynomials: ker(D) = {a:ainR} ={a - 1:a
in R}. Hence, {1} is a basis for ker(D), so

nullity(D) = dim(ker(D)) = 1 I

»
>

Find the rank and the nullity of the linear transformation S: %, — R defined by

S(p(x)) = J p(x)dx
0

Solution  From Example 6.61, range(S) = R and rank(S) = dim R = 1. Also,
b
ker(S) = {—5 + bx:bin IRE}

= {b(~L1 + x):bin R}
span(—3 + x)

Il

s0 {—3 + x} is a basis for ker(S). Therefore, nullity(S) = dim(ker(S)) = 1.

-

>

Example 6.66

Find the rank and the nullity of the linear transformation T : M,, — M,, defined by
T(A) = A"

Solution In Example 6.62, we found that range(T) = M,, and ker(T) = {O}. Hence,

rank(T) = dimM,, = 4 and nullity(T) = dim{O} = 0 I

In Chapter 3, we saw that the rank and nullity of an m X » matrix A are related
by the formula rank(A) + nullity(A) = n. This is the Rank Theorem (Theorem 3.26).
Since the matrix transformation T = T, has R" as its domain, we could rewrite the
relationship as

rank(A) + nullity(A) = dim R”

This version of the Rank Theorem extends very nicely to general linear transforma-
tions, as you can see from the last three examples:

rank(D) + nullity(D) = 3 + 1 = 4 = dim P, Example 6.64

rank(S) + nullity(S) =1+ 1=2=dimP, Example 6.65
rank(T) + nullity(T)

4+ 0=4=dimM,, Example 6.66
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Theorem 6.19

The Rank Theorem

Let T: V— W be a linear transformation from a finite-dimensional vector space
V into a vector space W. Then

rank(T) + nullity(T) = dim V

In the next section, you will see how to adapt the proof of Theorem 3.26 to prove
this version of the result. For now, we give an alternative proof that does not use
matrices.

Proof Let dim V = n and let {v,, ..., v;} be a basis for ker(T)[so that nullity(T) =

dim(ker(T)) = k]. Since {vy, . .., v;} is a linearly independent set, it can be extended
to a basis for V, by Theorem 6.28. Let B = {vy,..., v, Vii 1, ..., V,} be such a basis.
If we can show that the set C = {T'(vi.,), ..., T(v,)} is a basis for range(T'), then we

will have rank(T) = dim(range(T)) = n — k and thus
rank(T) + nullity(T) = k + (n — k) = n = dim V

as required.

Certainly C is contained in the range of T. To show that C spans the range of T, let
T(v) be a vector in the range of T. Then v is in V, and since B is a basis for V, we can
find scalars ¢y, . . ., ¢, such that

v=ovyt+ ot ogvi g Ve T vy,
Since vy, ..., Vi are in the kernel of T, we have T(v;) = --- = T(v}) = 0, so
T(W) = T(e,v, + -+ + Vi + Go1Visr T -+ ¢,v,)

oTtv) + -+ Tv) + ¢ T(viy) + - + ¢, T(v,)
=i Tvie) + -+ ¢, T(v,)

This shows that the range of T is spanned by C.
To show that C is linearly independent, suppose that there are scalars ¢+, ..., ¢,
such that

Ck+1T(Vk+1) + -+ CnT(Vn) =0

Then T(ciy Vi + - + ¢,v,) = 0, which means that ¢, ,vi.; + -+ + ¢,v, is in the
kernel of T and is, hence, expressible as a linear combination of the basis vectors
Vi, ..., Vi of ker(T)—say,

G Vi TV, = vy T+ v
But now vt T GV T G Ve — T Y, = 0
and the linear independence of B forces ¢, = --- = ¢, = 0. In particular, ¢, =+ =

¢, = 0, which means C is linearly independent.
Wehave shown that C is a basis for the range of T, so, by our comments above, the
proof is complete. — e

We have verified the Rank Theorem for Examples 6.64, 6.65, and 6.66. In practice,
this theorem allows us to find the rank and nullity of a linear transformation with
only half the work. The following examples illustrate the process.
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-

Example 6.67
»—

Find the rank and nullity of the linear transformation T : P, — %; defined by
T(p(x)) = xp(x). (Check that T really is linear.)

Solution In detail, we have

T(a + bx + cx?) = ax + bx? + cx3
It follows that

ker(T) = {a + bx + cx?: T(a + bx + cx?) = 0}
={a+ bx + cx?:ax + bx? + x> = 0}
={a+bx+cxt:a=b=c=0}
= {0}
so we have nullity(T) = dim(ker(T)) = 0. The Rank Theorem implies that
rank(T) = dim ?, — nullity(T) =3 — 0 = 3

-

Remark In Example 6.67, it would be just as easy to find the rank of T first, since
{x, x*, x’} is easily seen to be a basis for the range of T. Usually, though, one of the two
(the rank or the nullity of a linear transformation) will be easier to compute; the Rank
Theorem can then be used to find the other. With practice, you will become better at
knowing which way to proceed.

»

Let W be the vector space of all symmetric 2 X 2 matrices. Define a linear transfor-
mation T : W — P, by

T[a b]Z(a—b)+(b—c)x+(c—a)x2
b ¢
(Check that T is linear.) Find the rank and nullity of T.

Solution  The nullity of T is easier to compute directly than the rank, so we proceed

as follows:
[ ] a b
wir= {[2 .1 %)<}

b ¢
:(a—b)+(b—c)x+(c—a)x2=0}

Il
= 0 S o

Il
— = =
Q“Q‘

. :(a—b)=(b—c)=(c—a)=0}

: Yo
IR

1 1
Therefore, { L J } is a basis for the kernel of T, so nullity(T) = dim(ker(T)) = 1.

The Rank Theorem and Example 6.42 tell us that rank(T) = dim W — nullity(T) =
3—-1=2.
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One-to-One and Onto Linear Transformations

We now investigate criteria for a linear transformation to be invertible. The keys to
the discussion are the very important properties one-to-one and onto.

Definition A linear transformation T: V — W is called one-to-one if T maps
distinct vectors in V to distinct vectors in W. If range(T) = W, then T'is called onto.

Remarks
® The definition of one-to-one may be written more formally as follows:

T:V — W is one-to-one if, for all u and vin V,

u # vimplies that T(u) # T(v)

The above statement is equivalent to the following:

T:V — W is one-to-one if, forallu and vin V,

T(u) = T(v) implies thatu = v

Figure 6.9 illustrates these two statements.

) (T

w
(a) T is one-to-one (b) T is not one-to-one
Figure 6.9

Vv

* Another way to write the definition of onto is as follows:

T:V — W is onto if, for all w in W, there is at least one vin V such that

w=T(v)

In other words, given w in W, does there exist some v in V such that w = T(v)? If,
for an arbitrary w, we can solve this equation for v, then T is onto (see Figure 6.10).
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range(T) \ ran'ge(T)

\% w \% w
(a) T is onto (b) T is not onto

Figure 6.10

\

Which of the following linear transformations are one-to-one? onto?
2x
(a) T:R?— R’ defined by TH = x—y
Y 0
(b) D:%;— P, defined by D(p(x)) = p'(x)
() T:M,,— M,,defined by T(A) = AT

Solution (a) Let T{xl] = T[xz}.Then

N1 Y2
2x, 2x,
X1 =N | = | %~ 0N
0 0
so 2x; = 2x, and x; — y; = x, — ¥,. Solving these equations, we see that x; = x, and
X1 X .
¥, = ¥,. Hence, = ,s0 T is one-to-one.
N1 V2
T is not onto, since its range is not all of R’. To be specific, there is no vector
0
2l I X
[ } in R* such that T[ } = {0 |. Why not?)
y Y 1

(b) In Example 6.60, we showed that range(D) = %,, so D is onto. D is not one-
to-one, since distinct polynomials in %5 can have the same derivative. For example,
x® # x>+ 1,but D(x*) = 3x* = D(x* + 1).

(c) Let A and B be in M,,, with T(A) = T(B). Then AT = BT, s0 A = (AT)T =
(BT)T = B. Hence, T'is one-to-one. In Example 6.62, we showed that range(T) = M,,.

Hence, T is onto. 1

It turns out that there is a very simple criterion for determining whether a linear
transformation is one-to-one.

Theorem 6.20

A linear transformation T': V — W is one-to-one if and only if ker(T') = {0}.
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Proof Assume that T is one-to-one. If v is in the kernel of T, then T(v) = 0. But
we also know that T(0) = 0, so T(v) = T(0). Since T is one-to-one, this implies that
v = 0, so the only vector in the kernel of T is the zero vector.

Conversely, assume that ker(T') = {0}. To show that T is one-to-one, let uand vbe
in Vwith T(u) = T(v). Then T(u —v) = T(u) — T(v) = 0, which implies thatu — v
is in the kernel of T. But ker(T') = {0}, so we must have u — v = 0 or, equivalently,
u = v. This proves that T is one-to-one. — em

\/

Example 6.70

Show that the linear transformation T': R* — %, defined by

T{Z} =a+ (a + b)x

is one-to-one and onto.

Solution If {ﬂ is in the kernel of T, then

a

-

]=a+(a+b)x

0
It follows that a = 0 and a + b = 0. Hence, b = 0, and therefore [Z} = {0} Conse-

0
quently, ker(T) = { [0} }, and T is one-to-one, by Theorem 6.20.
Bythe Rank Theorem,
rank(T) = dim R?* — nullity(T) =2 — 0 = 2

Therefore, the range of T is a two-dimensional subspace of R’ and hence

range(T) = R? It follows that T is onto. 1

For linear transformations between two n-dimensional vector spaces, the proper-
ties of one-to-one and onto are closely related. Observe first that for a linear trans-
formation T: V — W, ker(T) = {0} if and only if nullity(T) = 0, and T is onto if and
only if rank(T) = dim W. (Why?) The proof of the next theorem essentially uses the
method of Example 6.70.

Theorem 6.21

Let dim V = dim W = ». Then a linear transformation T: V — W is one-to-one
if and only if it is onto.

Proof  Assume that T is one-to-one. Then nullity(T) = 0 by Theorem 6.20 and the
remark preceding Theorem 6.21. The Rank Theorem implies that

rank(T) = dim V — nullity(T) = n — 0 =n

Therefore, T is onto.
Conversely, assume that T is onto. Then rank(T) = dim W = n. By the Rank
Theorem,
nullity(T) = dim V — rank(T) = n —n =0

Hence, ker(T) = {0}, and T is one-to-one. e
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In Section 6.4, we pointed out that if T: V —> W is a linear transformation, then
the image of a basis for V under T need not be a basis for the range of T. We can now
give a condition that ensures that a basis for V will be mapped by T to a basis for W.

Theorem 6.22

Let T: V— W be a one-to-one linear transformation. If S = {v;, ..., v;} is a lin-
early independent set in V, then T(S) = {T(v,), ..., T(v})} is a linearly indepen-
dent set in W.

Proof Letcy,...,c;bescalars such that
CIT(VI) + -4 CkT(Vk) =0

Then T(c;v; +- -+ + ¢vy) = 0, which implies that ¢;v; + - - - + ¢,vy is in the kernel of
T. But, since T is one-to-one, ker(T') = {0}, by Theorem 6.20. Hence,

vy + -+ v, =0

But, since {v, ..., v{} is linearly independent, all of the scalars ¢; must be 0. Therefore,
{T(v), ..., T(vp)}is linearly independent. e

Corollary 6.23

Let dim V = dim W = n. Then a one-to-one linear transformation T: V — W
maps a basis for V to a basis for W.

Proof Let B = {v,,...,v,} be abasis for V. By Theorem 6.22, T(B) = {T(v)), ...,
T(v,)} is a linearly independent set in W, so we need only show that T(5) spans
W. But, by Theorem 6.15, T(B) spans the range of T. Moreover, T is onto, by Theo-
rem 6.21, so range(T) = W. Therefore, T(B) spans W, which completes the proof.
T

>»

Example 6.71

Let T: R* — P, be the linear transformation from Example 6.70, defined by
a
TLJ =a+ (a+ bx

Then, by Corollary 6.23, the standard basis £ = {e,, e,} for R* is mapped to a basis
T(E) = {T(e,), T(e,)} of P,. We find that

T(e,) = T[(IJ =1+x and T(e) = T{ﬂ =x

It follows that {1 + x, x} is a basis for P,.

-

We can now determine which linear transformations T: V —> W are invertible.

Theorem 6.24

A linear transformation T : V --> W is invertible if and only if it is one-to-one
and onto.
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Proof  Assume that T is invertible. Then there exists a linear transformation T ! :
W — V such that

T'eT=1, and ToT '=1,
To show that T is one-to-one, let v be in the kernel of T. Then T(v) = 0. Therefore,

TU(T(WV) =T H0)= (T '=T)v) =0
=Iv)=0
=v=0

which establishes that ker(T) = {0}. Therefore, T is one-to-one, by Theorem 6.20.
To show that T is onto, let wbe in W and let v = T '(w). Then

T(v) = T(T X(w))
=(ToT )(w)
= I(w)
=w

which shows that w is the image of vunder T. Since vis in V, this shows that T'is onto.

Conversely, assume that T is one-to-one and onto. This means that nullity(T) = 0
and rank(T) = dim W. We need to show that there exists a linear transformation
T":W— Vsuchthat T" e T=I,and To T" = Iy.

Let wbe in W. Since T is onto, there exists some vector v in V such that T(v) = w.
There is only one such vector v, since, if v’ is another vector in Vsuch that T(v') = w,
then T(v) = T(v'); the fact that T is one-to-one then implies that v = v'. It therefore
makes sense to define a mapping T’ : W — V by setting T'(w) = v.

It follows that

(T">T)v) = T(TW) =T'(w) =v
and (TeTw) = T(T'(w)) = T(v) =w
It then follows that T" o T = I,and T° T' = I},. Now we must show that T" is a linear
transformation.

To this end, let w; and w, be in W and let ¢; and ¢, be scalars. As above, let
T(v;) = w, and T(v,) = w,. Thenv; = T'(w,;) and v, = T'(w,) and

T'(c,w, + ow,) = T'(¢,T(v;) + ¢,T(v,))
= T'(T(c,v, + c,v,))
= I(c;vy + ¢,v)

= v, T v,

c,T'(wy) + ¢, T'(w,)

Consequently, T’ is linear, so, by Theorem 6.17, T" = T .. |
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Isomorphisms of UVector Spaces

We now are in a position to describe, in concrete terms, what it means for two vector
spaces to be “essentially the same.”

Definition A linear transformation T: V — W is called an isomorphism if it
is one-to-one and onto. If V and W are two vector spaces such that there is an iso-
morphism from Vto W, then we say that V is isomorphic to W and write V= W.

Example 6.72

\}

Show that %, _, and R" are isomorphic.

Solution  The process of forming the coordinate vector of a polynomial provides us
with one possible isomorphism (as we observed already in Section 6.2, although we did
not use the term isomorphism there). Specifically, define T: %, _;, = R" by T(p(x)) =
[p(x) ], where £ = {1,x,...,x" '} is the standard basis for , ;. That is,

ay

~ a
T(ay + ax + -+ a, x" 1) = !

an—

Theorem 6.6 shows that T is a linear transformation. If p(x) = ay + a;x +--- +
a,_,x""'is in the kernel of T, then

ay 0
=Tl +ax+- - +a,_x"")=]:
Ay 0
Hence, ag = a; = = a,_; = 0, so p(x) = 0. Therefore, ker(T') = {0}, and T is one-
to-one. Since dim ®,_; = dim R” = n, T is also onto, by Theorem 6.21. Thus, T is

an isomorphism, and #,_, = R". I

Example 6.13

Show that M,,, and R™ are isomorphic.

Solution  Once again, the coordinate mapping from M,,,, to R™" (as in Example 6.36)
is an isomorphism. The details of the proof are left as an exercise.

In fact, the easiest way to tell if two vector spaces are isomorphic is simply to
check their dimensions, as the next theorem shows.
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Theorem 6.25

Let Vand Wbe two finite-dimensional vector spaces (over the same field of scalars).
Then V is isomorphic to Wifand onlyif dim V = dim W.

Proof Let n = dim V. If V is isomorphic to W, then there is an isomorphism
T:V — W. Since T is one-to-one, nullity(T) = 0. The Rank Theorem then implies
that

rank(T) = dim V — nullity(T) = n — 0 =n

Therefore, the range of T is an n-dimensional subspace of W. But, since T is onto,
W = range(T), so dim W = #, as we wished to show.

Conversely, assume that Vand W have the same dimension, n. Let B= {vy, ..., v,}
be a basis for V and let C = {w,, ..., w,} be a basis for W. We will define a linear
transformation T: V—> W and then show that T'is one-to-one and onto. An arbitrary
vector v in V can be written uniquely as a linear combination of the vectors in the
basis B—say,

v=oqvt+ -t oy,
We define T by

T(W) = cw; + -+ + ¢, W,

It is straightforward to check that T is linear. (Do so.) To see that T is one-to-one,
suppose v is in the kernel of T. Then

cw, + -+ cew,=TW) =0
and the linear independence of C forces ¢, = - - - = ¢,, = 0. But then
v=¢v;t+---+¢v, =0

so ker(T) = {0}, meaning that T is one-to-one. Since dim V = dim W, T is also onto,
by Theorem 6.21. Therefore, T is an isomorphism, and V = W. |

mm.,.es.m\

>»
>

Show that R" and %, are not isomorphic.

Solution Sincedim R" =n # »n + 1 = dim ®,, R” and %, are not isomorphic, by

Theorem 6.25. I

»

Example 6.75

Let W be the vector space of all symmetric 2 X 2 matrices. Show that W is isomorphic
to R’.

Solution In Example 6.42, we showed that dim W = 3. Hence, dim W = dim R3,
so W = R’ by Theorem 6.25. (There is an obvious candidate for an isomorphism

T: W —>R3 What is it?) 1



Section 6.5 The Kernel and Range of a Linear Transformation 495

Remark Our examples have all been real vector spaces, but the theorems we
have proved are true for vector spaces over the complex numbers C or Z,,, where p is
prime. For example, the vector space M,,(Z,) of all 2 X 2 matrices with entries from
Z, has dimension 4 as a vector space over Z,, and hence M,,(Z,) = Z5.

»
>

Tixercises 6.9
v

1. Let T: M,, — M,, be the linear transformation Jﬁ 4. Let T: P, —> P, be the linear transformation defined by

defined by T(p(x)) = xp’(x).

(a) Which, if any, of the following polynomials are in
T{a b} B {a 0} ker(T)?
¢c d o 4 @1 G)x @)

(b) Which, if any, of the polynomials in part (a) are in

(a) Which, if any, of the following matrices are in range(T)?

ker(T)? (c) Describe ker(T) and range(T).

1 2 0 4 3 0
(1) {_1 3} (i) {2 0} (iii) {0 _3} In Exercises 5-8, find bases for the kernel and range of the
linear transformations T in the indicated exercises. In each

(b) Which, if any, of the matrices in part (a) are in case, state the nullity and rank of T and verify the Rank
range(T)? Theorem.
(c) Describe ker(T) and range(T). 5. Exercise 1 6. Exercise 2
2. Let T: M,, = R be the linear transformation defined 7. Exercise 3 8. Exercise 4

by T(A) = tr(A).

(a) Which, if any, of the following matrices are in ) ) )
ker(T)? In Exercises 9-14, find either the nullity or the rank of T

1 2 0 4 1 . and then use the Rank Theorem to find the other.
W {—1 3} ) [2 0} G {o —1} 9. T: My, — R? defined by T{“ b] _ [“ - b}
c

d c—d
(b) Which, if any, of the following scalars are in 0
ran e(T)? y g 10. T: @2 - RZ deﬁned by T(P(X)) = |:p( ):|
gell) B p(1)
G) 0 Gi) 2 (i) V2/2
(c) Describe ker(T') and range(T). 11. T: M, = My, defined by T(A) = AB, where
3. Let T: %, — R? be the linear transformation B= [ b 1}
defined by R
a—b 12. T: M,, = M,, defined by T(A) = AB — BA, where
T(a+bx+cx2)=L?+ }
c

1 1
Sl
(a) Which, if any, of the following polynomials are in 01
ker(T)? Jﬁ 13. T: P, = R defined by T(p(x)) = p'(0)
1 1+ x (i) x — x2 (i) 1+ x — x?

) — 4 _ 4T
(b) Which, if any, of the following vectors are in L e G St g A ISR S

range(T)?
In Exercises 15-20, determine whether the linear transfor-
(i) [0} (i) {1} (i) {0} mation T is (a) one-to-one and (b) onto.
L 1 x 2x —y
15.T:R2—>R2deﬁnedbyT{ } = { }
(c) Describe ker(T) and range(T). Y x+ 2
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16. T: R* = @, defined by
T{Z} =(a—2b)+ Ba+ bx + (a + bx’

17. T: P, — R defined by

2a — b
T(a+bx+cx®)=|a+b—3c
c—a

18. T: P, — R* defined by T(p(x)) = {

a
19. T: R* — M, defined by T| b
c

a
20. T: R’ — W definedby T| b | =

c
a+b+c

b— 2c

b— 2c

}, where W is the vector space of
a—c

all symmetric 2 X 2 matrices

In Exercises 21-26, determine whether V and W are
isomorphic. If they are, give an explicit isomorphism
T:V-—>W.

21. V = D, (diagonal 3 X 3 matrices), W = R*

22. V = §; (symmetric 3 X 3 matrices), W = U; (upper
triangular 3 X 3 matrices)

23. V = §; (symmetric 3 X 3 matrices), W = S; (skew-
symmetric 3 X 3 matrices)

24.V =P, W = {p(x) inP,:p(0) = 0}
25.V=C, W =R?
26. V={AinM,,:tr(4) = 0}, W = R?

|%. 27. Show that T: ®, — P, defined by T(p(x)) = p(x) +

p'(x) is an isomorphism.

28. Show that T: P, — P, defined by T(p(x)) = p(x — 2)
is an isomorphism.

1
29. Show that T: P, — P, defined by T(p(x)) = x”p(;)

is an isomorphism.

30. (a) Show that € [0, 1] = “€(2, 3]. [Hint: Define T':
€10, 1] —> €2, 3] by letting T(f) be the function
whose value at x is (T(f))(x) = f(x — 2) for x in
(2,3]]

(b) Show that 6[0,1] =%€[a,a + 1] forall a.

31. Show that 6[0,1] = “€[0,2].
32. Show that €[ a, b] G[c,d] foralla < bandc < d.
33. Let S: V— Wand T: U— V be linear transformations.

I

(a) Prove thatif S and T are both one-to-one, so is
SeT.
(b) Prove that if S and T are both onto, so isSo T.

34, Let S: V— Wand T: U— V be linear
transformations.

(a) Prove that if S o T is one-to-one, so is T.
(b) Prove thatif S o T is onto, so is S.

35.Let T: V— W be a linear transformation between two
finite-dimensional vector spaces.
(a) Prove that if dim V < dim W, then T cannot be
onto.
(b) Prove that if dim V > dim W, then T cannot be
one-to-one.

36. Letay, a,...,a,ben + 1 distinct real numbers.
Define T: ?, — R""' by

plag)
T(p() = | P4
pla,)

Prove that T is an isomorphism.

37. If Vis a finite-dimensional vector spaceand T: V — V'is
a linear transformation such that rank(T) = rank(T?),
prove that range(T)N ker(T) = {0}. [Hint: T? denotes
T o T. Use the Rank Theorem to help show that the
kernels of T and T? are the same.]

38. Let Uand W be subspaces of a finite-dimensional
vector space V. Define T: U X W — Vby T(u, w) =
u-—w.

(a) Prove that T is a linear transformation.

(b) Show that range(T) = U + W.

(c) Showthatker(T)= U N W. [Hint: See Exercise 50
in Section 6.1.]

(d) Prove Grassmann’s Identity:

dim(U + W) = dimU + dimW — dim(U N W)

[Hint: Apply the Rank Theorem, using results
(a) and (b) and Exercise 43(b) in Section 6.2.]
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The Matrix of a Linear Transformation

Theorem 6.15 showed that a linear transformation T: V — W is completely deter-
mined by its effect on a spanning set for V. In particular, if we know how T acts on a
basis for V, then we can compute T'(v) for any vector vin V. Example 6.55 illustrated
the process. We implicitly used this important property of linear transformations
in Theorem 3.31 to help us compute the standard matrix of a linear transformation
T:R" — R™ In this section, we will show that every linear transformation between
finite-dimensional vector spaces can be represented as a matrix transformation.

Suppose that V is an #-dimensional vector space, W is an m-dimensional vector
space, and T: V — W is a linear transformation. Let 3 and C be bases for V and W,
respectively. Then the coordinate vector mapping R(v) = [v]z defines an isomor-
phism R: V— R". At the same time, we have an isomorphism S : W — R™ given by
S(w) = [w], which allows us to associate the image T(v) with the vector [T (v)]¢ in
R™. Figure 6.11 illustrates the relationships.

\% |4 T T(v) w
e —_—) o
Rl ( lR Js
Rn Rnl
VIgSeT°R™T [T
Figure 6.11

Since R is an isomorphism, it is invertible, so we may form the composite mapping
SeToR":R"—> R"

which maps [v]z to [T(v)]c. Since this mapping goes from R" to R™, we know
from Chapter 3 that it is a matrix transformation. What, then, is the standard
matrix of SoToR™'? We would like to find the m X # matrix A such that A[v],; =
(§oToR™([v]y).Or,since (SeToR ) ([v]g) = [T(v)]s we require

Alvlg = [TV ]c

It turns out to be surprisingly easy to find. The basic idea is that of Theorem 3.31. The
columns of A are the images of the standard basis vectors for R” under Se To R™",
But, if B = {v,,...,V,} is a basis for V, then

R(Vi) = [vils
0

Il
e

« ith entry
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so R™'(e;) = v; Therefore, the ith column of the matrix A we seek is given by
(SeToR N(e) = S(T(R '(e))
= S(T(v)
[T(Vi) ]C

which is the coordinate vector of T(v;) with respect to the basis C of W.
We summarize this discussion as a theorem.

Theorem 6.26

Let V and W be two finite-dimensional vector spaces with bases B and C, respec-

tively, where B = {v,,...,v,}. If T: V— W is a linear transformation, then the
m X n matrix A defined by

A= [[TW)]e | [TW)]e |-+ T ITHW)]c]
satisfies

Alvlg= [TV ],

for every vector vin V.

The matrix A in Theorem 6.26 is called the matrix of T with respect to the bases B
and C. The relationship is illustrated below. (Recall that T, denotes multiplication
by A.)

v ; T(v)

' !
(Vls — Alv]s = [TW]e

Remarks

® The matrix of a linear transformation T with respect to bases 3 and C is some-
times denoted by [ T]¢p. Note the direction of the arrow: right-to-left (not left-to-
right, as for T: V— W). With this notation, the final equation in Theorem 6.26 becomes

[T]eesplvls = [T(V)]c

Observe that the Bs in the subscripts appear side by side and appear to “cancel” each
other. In words, this equation says, “The matrix for T times the coordinate vector for
v gives the coordinate vector for T(v)”

In the special case where V.= W and B = C, we write [ T] s (instead of [ T] g—p).
Theorem 6.26 then states that

[Tglvlg= [T(V)]s

* The matrix of a linear transformation with respect to given bases is unique.
That is, for every vector vin V, there is only one matrix A with the property specified
by Theorem 6.26—namely,

Alvls = [TMW]e

(You are asked to prove this in Exercise 39.)
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® The diagram that follows Theorem 6.26 is sometimes called a commutative
diagram because we can start in the upper left-hand corner with the vector v and get
to [T (v)]¢ in the lower right-hand corner in two different, but equivalent, ways. If, as
before, we denote the coordinate mappings that map vto [v]z and w to [w]c by R and
S, respectively, then we can summarize this “commutativity” by

SeT=T,oR

The reason for the term commutative becomes clearer when V= W and B = C, for
then R = S too, and we have

RoeT=T,°R

suggesting that the coordinate mapping R commutes with the linear transformation T
(provided we use the matrix version of T—namely, T'y = Ty ,—where it is required).

e The matrix [T]..p depends on the order of the vectors in the bases I3 and
C. Rearranging the vectors within either basis will affect the matrix [T]c . [See
Example 6.77(b).]

\

Example 6.16

Let T: R’ — R’ be the linear transformation defined by

-2

x

7 [ y}
x+y—3z

and let B = {e,, e,, e;} and C = {e,, e,} be bases for R* and R?, respectively. Find the
1

matrix of T with respect to B and C and verify Theorem 6.26 for v = 3.
-2

Solution  First, we compute

1 -2 0
T“*l’:H’ T(ez):{ 1}’ T(%):{—J

Next, we need their coordinate vectors with respect to C. Since

1 -2 0
] =e, + e, i = e, — 2e, _3 = —3e, + Og

[T(e)]c = E} [T(e)]e = [_ﬂ [T(ey)]c = {_3}

we have

0

Therefore, the matrix of T with respect to B and C is

A= [Tlecy=[[T(e)]c [T(e))]e [T(es)]c]

_{1 1 —3}
1 -2 0
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To verify Theorem 6.26 for v, we first compute

T(v) =T = Eﬂ
1
Then vlg = 3
-2

and [TW]e = [_13} = {_1(5)}
c

(Check these.)
Using all of these facts, we confirm that

1
Alvlg = [1 . _3} 3| = [_12} = [TV ],

1 -2 0
—9 4

Example 6.71

Let D : P, — P, be the differential operator D(p(x)) = p'(x). Let B = {1, x, x*, x°}
and C = {1, x, x*} be bases for %, and P,, respectively.

(a) Find the matrix A of D with respect to B and C.

(b) Find the matrix A" of D with respect to B" and C, where B’ = {x?, x?, x, 1}.

(c) Using part (a), compute D(5 — x + 2x°) and D(a + bx + cx? + dx’) to verify
Theorem 6.26.

Solution Firstnotethat D(a + bx + cx® + dx®) = b + 2cx + 3dx>. (See Example 6.60.)

(a) Sincetheimages of the basis B under D are D(1) = 0, D(x) = 1, D(x?) = 2x,and
D(x*) = 3x?, their coordinate vectors with respect to C are

0 1 0 0
[DMW)]e= 0], [D&)]c=]0], [D&H]c=]|2]| [D&xH)]c=|0
0 0 0 3
Consequently,
A= [Dle = [[DW)]c | [D&)]c [ [DEA)]e | [D(F)]c]

01 0 O

=0 0 2 0

0 0 0 3

(b) Since the basis B’ is just B in the reverse order, we see that

A" = [Dleen = [[DGA)]e | [DED]e | [DX)]e | [D(1)]e]

Il
w o o
o N o
I e
o o o —
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(This shows that the order of the vectors in the bases 3 and C affects the matrix of a
transformation with respect to these bases.)

(c) First we compute D(5 — x + 2x%) = —1 + 6x? directly, getting the coordinate
vector
-1
[DG5 —x+2x)]e=[-1+6x*]c=| O
6
On the other hand,
5
(5—x+2]5=|
0
2
SO
01 0 0 > =1
A5 —x+2x*]3=10 0 2 0 _é =| 0|=[DG-x+2x%]
0 0 0 3 6
2

which agrees with Theorem 6.26. We leave proof of the general case as an exercise.

i

Since the linear transformation in Example 6.77 is easy to use directly, there is re-
ally no advantage to using the matrix of this transformation to do calculations. How-
ever, in other examples—especially large ones—the matrix approach may be simpler,
as it is very well-suited to computer implementation. Example 6.78 illustrates the
basic idea behind this indirect approach.

Example 6.78

\

Let T: P, — P, be the linear transformation defined by
T(p(x) =p2x — 1)
(a) Find the matrix of T with respect to & = {1, x, x*}.
(b) Compute T(3 + 2x — x?) indirectly, using part (a).
Solution (a) We see that
T =1, T =2x—-1, Tx»)=(2x—1)*=1— 4x + 4x*

so the coordinate vectors are

1 -1 1
[TM]g={0], [TWle=| 2| [TG&A)]e=|—4
0 0 4

Therefore,
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(b) We apply Theorem 6.26 as follows: The coordinate vector of p(x) = 3 + 2x — x
with respect to £ is

[p)]e=] 2

Therefore, by Theorem 6.26,
[T+ 2x — x7)]e = [T(p(x)]¢
[

= [TlelpM)]e
1 -1 1 0
=0 2 -4 =| 8
0 0 4]L-1 —4

W—> It follows that T(3 + 2x — x?) = 0-1 + 8-x — 4-x2 = 8x — 4x>. [Verify this by
computing T(3 + 2x — x%) = 3 + 2(2x — 1) — (2x — 1) directly.] I

The matrix of a linear transformation can sometimes be used in surprising ways.
Example 6.79 shows its application to a traditional calculus problem.

‘ »

%\ Example 6.19 Let & be the vector space of all differentiable functions. Consider the subspace W of
“ 9% given by W = span(e™, xe™, x2e%*). Since the set B = {e*, xe**, x%e*} is linearly
independent (why?), it is a basis for W.

T

(a) Show that the differential operator D maps W into itself.
(b) Find the matrix of D with respect to B.

(c) Compute the derivative of 5¢** + 2xe®* — x’e* indirectly, using Theorem 6.26,
and verify it using part (a).
Solution (a) Applying D to a general element of W, we see that

D(ae™ + bxe*™ + cx’e™) = (3a + b)e*™ + (3b + 20)xe™ + 3cxle™

w—>  (check this), which is again in W.
(b) Using the formula in part (a), we see that

D(e¥) = 3e*, D(xe*) = e* + 3xe*, D(x%*) = 2xe™ + 3x%*

S0
3 1 0
[D(e™)]g=|0| [Dxe?M)]g=|3| [Dx%)]z=|2
0 0
It follows that
31 0
[D]s = [[D(e™)]5![D(xe™)]5! [D(x**)]5] = [0 3 2
0
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(c) Forf(x) = 5¢™ + 2xe™ — x’e”, we see by inspection that

5
Uls=1] 2
-1
Hence, by Theorem 6.26, we have
310 5 17
[D(f(x)]s = [D]slfx)lg=]0 3 2 = 4
0 0 3]L-1 =

which, in turn, implies that f'(x) = D(f(x)) = 17e¥ + 4xe® — 3x%3*, in agreement

with the formula in part (a). I

femark The point of Example 6.79 is not that this method is easier than direct
differentiation. Indeed, once the formula in part (a) has been established, there is
little to do. What is significant is that matrix methods can be used at all in what
appears, on the surface, to be a calculus problem. We will explore this idea further in
Example 6.83.

»,

Let V be an n-dimensional vector space and let I be the identity transformation on
V. What is the matrix of I with respect to bases B and C of V if B = C (including the
order of the basis vectors)? What if B # C?

Solution Let B = {v,,...,v,}. ThenI(v}) = v,,...,I(v,) =V, s0

0
)l = |0 | = e U= | = ..h U= || =,
0 0 1
and,if B=2_C,
s = )]s )| | [1%)]5)
= el el el

=1

n

the n X n identity matrix. (This is what you expected, isn't it?)
Inthecase B # C,we have

[Iv)]e = le - [IW)]e = [vle
S0
Hees = [ilei - ilvle]
= Pees
the change-of-basis matrix from B to C. 4

Matrices of Composite and Inverse Linear Transformations

We now generalize Theorems 3.32 and 3.33 to get a theorem that will allow us to
easily find the inverse of a linear transformation between finite-dimensional vector
spaces (if it exists).



904

Chapter 6 Vector Spaces

Theorem 6.21

Let U, V, and W be finite-dimensional vector spaces with bases B, C, and D,
respectively. Let T: U — Vand S: V— W be linear transformations. Then

[SeTlpep = [SlpeclTlees

Remarks

* In words, this theorem says, “The matrix of the composite is the product of
the matrices”

* Notice how the “inner subscripts” C must match and appear to cancel each
other out, leaving the “outer subscripts” in the form D « B.

Proof  We will show that corresponding columns of the matrices [S e T]pp and
[S]p—clT]cep are the same. Let v; be the ith basis vector in 5. Then the ith column
of [S c T]’D&B is

[(Se DV)]p = [S(T(V)]p

=[S
[S]D<—c ( T(Vz) le
=

SlpeclTleeplvils
by two applications of Theorem 6.26. But [v;] 3 = e; (why?), so
[SlpeclTleeplvilg = [Slpec[Tlcege:

is the ith column of the matrix [S]p—¢[T]cep Therefore, the ith columns of
[Se T]pepand [S]pec[T]ceare the same, as we wished to prove. u

Example 6.81

>
>

a
Use matrix methods to compute (S © T)[ } for the linear transformations S and T of

b
Example 6.56.

Solution Recall that T: R* = P, and S: , — P, are defined by
T[:j =a+(a+bx and Sa + bx) = ax + bx?

Choosing the standard bases £, £’, and £” for R?, &, and P,, respectively, we see that
0 0
1 0
[Tlgee = [1 J and [Slgee=|1 0
0 1

(Verify these.) By Theorem 6.27, the matrix of S o T with respect to £ and £” is

[((SoD]gee= [Slgee[Tleee
0 0

0 1
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Thus, by Theorem 6.26,

SR

I
=
o5
o
3
3
3
8¢
1
AN
| S
tn

Il
—_— = O
— o O
1
S
| IS
Il
IS

Consequently, (S ° T)[Z] = ax + (a + b)x?, which agrees with the solution to

Example 6.56.

In Theorem 6.24, we proved that a linear transformation is invertible if and only
if it is one-to-one and onto (i.e., if it is an isomorphism). When the vector spaces in-
volved are finite-dimensional, we can use the matrix methods we have developed to
find the inverse of such a linear transformation.

Theorem 6.28

Let T: V— W be a linear transformation between #-dimensional vector spaces V'
and W and let B and C be bases for V and W, respectively. Then T is invertible if
and only if the matrix [ T]¢. is invertible. In this case,

([Tleep) ™' = [T 'pee

Proof Observe that the matrices of T and T ! (if T is invertible) are n X n. If T is
invertible, then T~' e T = I.. Applying Theorem 6.27, we have

In = [IV]B = [T71 e T]B’
= [T 'peclTlces
This shows that [T],_pis invertible and that ([T]ccp) ™! = [T ']gc.
Conversely, assume that A = [T ] is invertible. To show that T is invertible, it

is enough to show that ker(T) = {0}. (Why?) To this end, let v be in the kernel of T.
Then T(v) =0, so

Alvlg = [Tleeplvls = [T(W)]c = [0]c =0

which means that [v] zis in the null space of the invertible matrix A. By the Fundamen-
tal Theorem, this implies that [v] 5 = 0, which, in turn, implies that v = 0, as required.
s

»

Example 6.82

In Example 6.70, the linear transformation T: R* — %, defined by

T[Ij =a+ (a+ b)x

was shown to be one-to-one and onto and hence invertible. Find T~ '.
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Solution In Example 6.81, we found the matrix of T with respect to the standard
bases £ and &’ for R? and %, respectively, to be

[Tlgee = E ﬂ

By Theorem 6.28, it follows that the matrix of T ' with respect to £’ and £ is

1 01! 1 0
[Tﬂ]&—g:([ﬂgw—s)‘l:{l J 3{_1 1]

By Theorem 6.26,

[T Ya+ bx)]e= [T Yecela + bxlg

-3
- L : a}

Tl(a+bx)=ae1+(b—a)e2=[ ¢ }
b—a

This means that

(Note that the choice of the standard basis makes this last calculation virtually

irrelevant.) I

The next example, a continuation of Example 6.79, shows that matrices can be
used in certain integration problems in calculus. The specific integral we consider is
usually evaluated in a calculus course by means of two applications of integration by
parts. Contrast this approach with our method.

Example 6.83

>
>

Show that the differential operator, restricted to the subspace W = span(e™, xe’™,

x%e*) of @, is invertible, and use this fact to find the integral
fxze“ dx
Solution In Example 6.79, we found the matrix of D with respect to the basis

B = {e*, xe™, x%*} of W to be

3
[Dlg=1{0
0

S W =

0
2
3

By Theorem 6.28, therefore, D is invertible on W, and the matrix of D lis
l

31 0
[D'l;=([D]lp'=|0 3 2| =
00 3

O O W=
O wi= o~
NS

W= O
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Since integration is antidifferentiation, this is the matrix corresponding to integration
on W. We want to integrate the function x’e** whose coordinate vector is

0
[x%™]5 = | 0
1

Consequently, by Theorem 6.26,
|:Jx2€3xdx:| = [Dfl(xze3x)]B
B

= [D ']g[x’e™]g

1 _1 2 2

3 9 27 0 27

_ 1 _2 - | 2
- 0 3 9 0 - 9
1 1

o o i1 l

It follows that
sze"”‘ dx = £e* — 2xe™ + 1x%e™

(To be fully correct, we need to add a constant of integration. It does not show up here
because we are working with linear transformations, which must send zero vectors to
zero vectors, forcing the constant of integration to be zero as well.) I

Warning  In general, differentiation is not an invertible transformation. (See
Exercise 22.) What the preceding example shows is that, suitably restricted, it some-
times is. Exercises 27-30 explore this idea further.

Change of Basis and Similarity

Suppose T': V— Vis a linear transformation and 3 and C are two different bases for
V.1t is natural to wonder how; if at all, the matrices [T ]z and [T ] are related. It turns
out that the answer to this question is quite satisfying and relates to some questions
we first considered in Chapter 4.

Figure 6.12 suggests one way to address this problem. Chasing the arrows around
the diagram from the upper left-hand corner to the lower right-hand corner in two
different, but equivalent, ways shows that I = T = T o I, something we already knew,
since both are equal to T. However, if the “upper” version of T is with respect to the

% %
L Lbasis (&
oV .T(V) J
2 V!
|4 T v
— Lbasis B
oV .T(V) J

Figure 6.12
IeT=Tel
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basis C and the “lower” version is with respect to 3, then T = I° T = T o [ is with
respect to C in its domain and with respect to B in its codomain. Thus, the matrix of
T in this case is [ T] ¢ But

[T]B<—C = [I» T]B<—c = [I]&—c[T]a—c
and
[Tlgeec = [TelIlgee = [T]lgeplllzec

Therefore, [I]B<—C [ T]CFC == [ T] B<B [I]B<—C'
From Example 6.80, we know that [I]z.c = Pgc the (invertible) change-of-
basis matrix from C to B. If we denote this matrix by P, then we also have

pl= (PB<—C)_1 = Peep
With this notation,
P[T]a—c = [T]B<—5P

S0 (Tleee = P '[T]gepP or [T]o= P '[T]gP

Thus, the matrices [T]zand [T] are similar, in the terminology of Section 4.4.
We summarize the foregoing discussion as a theorem.

Theorem 6.29

Let V be a finite-dimensional vector space with bases Band C and let T: V— V
be a linear transformation. Then

[Tl =P '[T]sP

where P is the change-of-basis matrix from C to B.

Remark As an aid in remembering that P must be the change-of-basis matrix
from C to B, and not B to C, it is instructive to look at what Theorem 6.29 says when
written in full detail. As shown below, the “inner subscripts” must be the same (all Bs)
and must appear to cancel, leaving the “outer subscripts,” which are both Cs.

[Tle—e = FoplTs—shs—c
I y o ol T

Same  Same

Same

Theorem 6.29 is often used when we are trying to find a basis with respect to
which the matrix of a linear transformation is particularly simple. For example, we
can ask whether there is a basis C of V such that the matrix [T],of T: V— Visa
diagonal matrix. Example 6.84 illustrates this application.

Example 6.84

\J

Let T: R* — R? be defined by
{ } { y}
% 2x + 2y

If possible, find a basis C for R* such that the matrix of T with respect to C is diagonal.
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Solution The matrix of T with respect to the standard basis £ is

1 3
[T]g={2 2}

This matrix is diagonalizable, as we saw in Example 4.24. Indeed, if

1
P= [ 3} and D = {4 0}
1 -2 0 -1

then P![T] P = D.If we let C be the basis of R? consisting of the columns of P, then
P is the change-of-basis matrix Pg. . from C to £. By Theorem 6.29,

[T]e =P '[T]eP =D

1 3
so the matrix of T with respect to the basis C = { [J, {_2} } is diagonal.

Remarks

® Itiseasy to check that the solution above is correct by computing [T ] directly.
We find that

] = = i) ol ) e o= [l - L

Thus, the coordinate vectors that form the columns of [T ] are

LlL=[o) = -]

in agreement with our solution above.

® The general procedure for a problem like Example 6.84 is to take the stan-
dard matrix [ T], and determine whether it is diagonalizable by finding bases for its
eigenspaces, as in Chapter 4. The solution then proceeds exactly as in the preceding
example.

Example 6.84 motivates the following definition.

Definition Let V be a finite-dimensional vector space and let T: V —> V be a
linear transformation. Then T is called diagonalizable if there is a basis C for V
such that the matrix [T'] is a diagonal matrix.

It is not hard to show that if 3 is any basis for V, then T is diagonalizable if and
only if the matrix [ T] 5 is diagonalizable. This is essentially what we did, for a special
case, in the last example. You are asked to prove this result in general in Exercise 42.

Sometimes it is easiest to write down the matrix of a linear transformation with
respect to a “nonstandard” basis. We can then reverse the process of Example 6.84
to find the standard matrix. We illustrate this idea by revisiting Example 3.59.

>
>

Example 6.85

d
Let ¢ be the line through the origin in R? with direction vector d = { dl}' Find the
2

standard matrix of the projection onto ¢.
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Solution Let T denote the projection. There is no harm in assuming that d is
a unit vector (i.e., di + d5 = 1), since any nonzero multiple of d can serve as a

—d
direction vector for ¢. Let d’ = { J 2} so that d and d’ are orthogonal. Since
1

d’ is also a unit vector, the set D = {d,d’} is an orthonormal basis for R’
As Figure 6.13 shows, T(d) = dand T(d’) = 0. Therefore,

[T(d)]p = [(IJ and [T(d)]p = [O}

0
y
A
X\
\
\
\
\
\_¢
T(y) T(x)
> X
—
\
\
\
\
vy
Figure 6.13
Projection onto £
1 0
SO Tlp =
o=} )
The change-of-basis matrix from D to the standard basis £ is
d] _d2:|
Pee p =
P Liz d

so the change-of-basis matrix from £ to D is

d —d,|! d d
by [ }:{ }
pee (ED) {dz d, —d, d,

By Theorem 6.29, then, the standard matrix of T is
[T]lg = Pep[T]lpPpes
B [dl —dZHI oH d, dz}
dz dl O O _dz d]
B { di dldz}
dd, d;
which agrees with part (b) of Example 3.59. I
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\/

Let T: P, — P, be the linear transformation defined by
T(p(x) = p(2x — 1)

(a) Find the matrix of T with respect to the basis B = {1 + x,1 — x, x*} of P,.

(b) Show that T is diagonalizable and find a basis C for %, such that [T'] - is a diago-
nal matrix.

Solution (a) In Example 6.78, we found that the matrix of T with respect to the
standard basis £ = {1, x, x2} is

1 -1 1
0 0 4
The change-of-basis matrix from B to £ is
1 1 0
P = P5<—B £ 1 —1 0
0 0 1

It follows that the matrix of T with respect to B is
[T]g = P'[T]P

(3 3 o)1 -1 11 1
=1 -3 oo 2 —4]|l1 -1 0
Lo o 1Jlo o 4]Jlo 0 1
(1 0 -2
=|-1 2 3
L 0 0 4

(Check this.)

(b) The eigenvalues of [T]¢ are 1, 2, and 4 (why?), so we know from Theorem 4.25
that [T]¢ is diagonalizable. Eigenvectors corresponding to these eigenvalues are

1 -1 1
01, 1], | —2
0 1
respectively. Therefore, setting
1 -1 1 1 0 0
P=10 1 —=2| and D=0 2 0
0 0 1 0 0 4

we have P™'[T]¢P = D. Furthermore, P is the change-of-basis matrix from a basis
Cto &, and the columns of P are thus the coordinate vectors of C in terms of &£. It
follows that

C={1,-1+x1-2x+ x%

and [T]C =D.
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The preceding ideas can be generalized to relate the matrices [T ] and
[T]eep of alinear transformation T: V— W, where 5 and 3’ are bases for V and C
and C' are bases for W. (See Exercise 44.)

We conclude this section by revisiting the Fundamental Theorem of Invertible
Matrices and incorporating some results from this chapter.

Theorem 6.30

The Fundamental Theorem of Invertible Matrices: Version 4

Let A be an n X »n matrix and let T: V — W be a linear transformation whose
matrix [ T]. 5 with respect to bases 3 and C of V and W, respectively, is A. The
following statements are equivalent:

A is invertible.
Ax = b has a unique solution for every b in R".
Ax = 0 has only the trivial solution.
. The reduced row echelon form of A is I,,.
A is a product of elementary matrices.
rank(A) = n
nullity(A) =0
. The column vectors of A are linearly independent.
The column vectors of A span R".
The column vectors of A form a basis for R".
. The row vectors of A are linearly independent.
The row vectors of A span R".
. The row vectors of A form a basis for R".
detA # 0
0 is not an eigenvalue of A.
. Tis invertible.
. T'is one-to-one.
T is onto.
ker(T) = {0}
range(T) = W

"L og o T ETSSE S AN o

Proof  The equivalence (q) < (s) is Theorem 6.20, and (r) <> (t) is the definition of
onto. Since A is n X 1, we must have dim V = dim W = n. From Theorems 6.21 and
6.24, we get (p) <> (q) <> (r). Finally, we connect the last five statements to the others
by Theorem 6.28, which implies that (a) < (p). |

\/

Tixercises 6.6
!

In Exercises 1-12, find the matrix [T
transformation T : V. — W with respect to the bases B and C

of V.and W, respectively. Verify Theorem 6.26 for the vector v
by computing T(v) directly and using the theorem.
1.T:%,—> P, definedby T(a + bx) = b — ax,
B=C={l,x},v=pkx) =4+ 2x

- of the linear 2.T:P, — P, definedby T(a + bx) = b — ax,
B={1+x1—-x}),C={l,xLv=p) =4+ 2
3. T: %, — P, defined by T(p(x)) = p(x + 2),
B={Lxx*C={l,x+ 2 (x + 2)*},
v=px) =a+ bx + cx’



4. T:%,— P, defined by T(p(x)) = p(x + 2),
B={1,x+2x+2C={,xx%,
v=px) =a+bx+ cx

5. T: %, — R?defined by T(p(x)) = [P(O)})

p(1)
B=1{1,xx}C={eye)},

v=>p(k) =a+ bx+ cx?

6. T: P, = R*defined by T(p(x)) = EEO)}

seiewne- {11}

v =plx) =a + bx + cx*
7. T:R* = R’ defined by

a+2b i 3
a
=] e | {LHE
—1
b b 2
1 1 .
C = oOL{1,]1]7, v=[ }
7
0 0 1

8. Repeat Exercise 7 with v = Lﬂ

9. T: M,, — M,, defined by T(A) = AT, B=C =

d

10. Repeat Exercise 9 with B = {E,,, E,,, E 5, E1;} and
C=A{Ei» Es En, En}-
11. T: M,, — M,, defined by T(A) = AB — BA, where

a b
{E1y, Ey E21»E22})V S A= L }

-1 1

_A_{a b}
voarT c d

12. T: M,, — M,, defined by T(A) = A — AT, B =

1 -1
B = { }, B=C= {E11>E12» E21’E22}’

d

% 13. Consider the subspace W of %, given by
W = span(sin x, cos x).

a b
c= {EII’EIZ) Ezl, Ezz},v =A= |:C :|

(a) Show that the differential operator D maps W into

itself.
(b) Find the matrix of D with respect to
B = {sin x, cos x}.

(c) Compute the derivative of f(x) = 3 sin x — 5 cos x

indirectly, using Theorem 6.26, and verify that it
agrees with f’(x) as computed directly.
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&14. Consider the subspace W of 9, given by

W = span(e*, e ).

(a) Show that the differential operator D maps W into
itself.

(b) Find the matrix of D with respectto B = {e**, e ¥},

(c) Compute the derivative of f(x) = e* — 3¢~
indirectly, using Theorem 6.26, and verify that it
agrees with f'(x) as computed directly.

% 15. Consider the subspace W of @, given by W = span(e?,

e cos x, e2* sin x).

(a) Find the matrix of D with respect to B = {e*,
e cos x, e** sin x}.

(b) Compute the derivative of f(x) = 3e* — e*cosx +
2e* sin x indirectly, using Theorem 6.26, and
verify that it agrees with f'(x) as computed directly.

% 16. Consider the subspace W of 9, given by

W = span(cos x, sin x, X cos x, x sin x).

(a) Find the matrix of D with respect to B = {cos x,
sin x, X cos X, x sin x}.

(b) Compute the derivative of f(x) = cos x + 2x cos x
indirectly, using Theorem 6.26, and verify that it
agrees with f'(x) as computed directly.

In Exercises 17 and 18, T: U— Vand S : V— W are linear
transformations and B, C, and D are bases for U, V, and

W, respectively. Compute [S ° T]ppin two ways: (a) by
finding S o T directly and then computing its matrix and

(b) by finding the matrices of S and T se parately and using
Theorem 6.27.

p(0)

17.T: % R? defined by T =[
= efined by T(p(x)) (1)

},S:RZ—HRZ

a a—2b
deﬁnedbyS{b} = [Za B b},B = {1, x},
C=D={e,e}
18. T: P, — P, defined by T'(p(x)) = p(x + 1),

S: %P, —> P, defined by S(p(x)) = p(x + 1),
B={L,x},C=D={1,xx*}

In Exercises 19-26, determine whether the linear transfor-
mation T is invertible by considering its matrix with respect
to the standard bases. If T is invertible, use Theorem 6.28
and the method of Example 6.82 to find T™".

19. T in Exercise 1 20. T in Exercise 5
21. T in Exercise 3

22. T: %, — P, defined by T(p(x)) = p'(x)

&23. T: %P, — P, defined by T(p(x)) = p(x) + p’(x)
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24. T: M,, — M,, defined by T(A) = AB, where

-7 ]

25. T in Exercise 11 26. T in Exercise 12

&:\In Exercises 27-30, use the method of Example 6.83
to evaluate the given integral.

27. [ (sin x — 3 cos x) dx. (See Exercise 13.)
28. [ 5¢ % dx. (See Exercise 14.)
29. [ (¥ cos x — 2¢** sin x)dx. (See Exercise 15.)

30. [ (x cos x + x sin x) dx. (See Exercise 16.)

In Exercises 31-36, a linear transformation T: V — V is
given. If possible, find a basis C for V such that the matrix
[T]c of T with respect to C is diagonal.

—4b
31. T: R? — R? defined by Tm - { }

a+ 5b
32.T:R? = R defined by 7| * | = | 7 ¥
b a+b

33.T:P, > P, defined by T(a + bx) = (4a + 2b) +

(a +3b)x
34. T: P, — P, defined by T(p(x)) = p(x + 1)
% 35. T: P, — P, defined by T(p(x)) = p(x) + xp’(x)

36. T: P, — P, defined by T(p(x)) = p(3x + 2)

37. Let £ be the line through the origin in R? with direction

d,
d,

find the standard matrix of a reflection in <.

vectord = [ } Use the method of Example 6.85 to

38. Let W be the plane in R® with equation x — y +
2z = 0. Use the method of Example 6.85 to find
the standard matrix of an orthogonal projection
onto W. Verify that your answer is correct by using

it to compute the orthogonal projection of v onto W,
where

3
v=|—1
2

Compare your answer with Example 5.11.

[Hint: Find an orthogonal decomposition of R’ as
R* = W + W™ using an orthogonal basis for W. See
Example 5.3.]

39.Let T: V— W be a linear transformation between
finite-dimensional vector spaces and let B and C be
bases for V. and W, respectively. Show that the matrix
of T with respect to B and C is unique. That is, if A is a
matrix such that A[v]z = [T(v)]. for all vin V, then
A = [T]ccp. [Hint: Find values of v that will show
this, one column at a time.]

In Exercises 40-45, let T: V— W be a linear transforma-
tion between finite-dimensional vector spaces V and W.
Let B and C be bases for V and W, respectively, and let

A = [Tleep

40. Show that nullity(T) = nullity(A).

41. Show that rank(T) = rank(A).

42.1f V= Wand B = C, show that T is diagonalizable if
and only if A is diagonalizable.

43. Use the results of this section to give a matrix-
based proof of the Rank Theorem (Theorem 6.19).

44.1f B’ and C’ are also bases for V and W, respectively,
what is the relationship between [T]cgand [T]ep?
Prove your assertion.

45.If dim V = nand dim W = m, provethat £(V, W) =
M, (See the exercises for Section 6.4.) [Hint: Let B
and C be bases for V and W, respectively. Show that the
mapping ¢(T) = [T]cep, for T in £(V, W), defines
a linear transformation ¢ : £(V, W) — M,,,, that is an
isomorphism.]

46. If V is a vector space, then the dual space of V is
the vector space V* = £(V, R). Prove that if V is
finite-dimensional, then V* = V.



Exploration

Tilings, Lattices, and the
Crystallographic Restriction

Repeating patterns are frequently found in nature and in art. The molecular struc-
ture of crystals often exhibits repetition, as do the tilings and mosaics found in the
artwork of many cultures. Tiling (or tessellation) is covering of a plane by shapes that
do not overlap and leave no gaps. The Dutch artist M. C. Escher (1898-1972) pro-
duced many works in which he explored the possibility of tiling a plane using fanciful
shapes (Figure 6.14).

-The Netherlands.

M.C. Escher's “Symmetry Drawing E103"” @ 2013 The M.C. Escher Company:

All rights reserved. www.mcescher.com

Figure 6.14
M. C. Escher’s “Symmetry Drawing E103”
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A lattice

In this exploration, we will be interested in patterns such as those in Figure 6.14,
which we assume to be infinite and repeating in all directions of the plane. Such a
pattern has the property that it can be shifted (or translated) in at least two directions
(corresponding to two linearly independent vectors) so that it appears not to have
been moved at all. We say that the pattern is invariant under translations and has
translational symmetry in these directions. For example, the pattern in Figure 6.14
has translational symmetry in the directions shown in Figure 6.15.

If a pattern has translational symmetry in two directions, it has translational sym-
metry in infinitely many directions.

1. Let the two vectors shown in Figure 6.15 be denoted by u and v. Show that the
pattern in Figure 6.14 is invariant under translation by any integer linear combination
of u and v—that is, by any vector of the form au + bv, where a and b are integers.

For any two linearly independent vectors u and v in R? the set of points deter-
mined by all integer linear combinations of u and v is called a lattice. Figure 6.16
shows an example of a lattice.

2. Draw the lattice corresponding to the vectors u and v of Figure 6.15.

Figure 6.14 also exhibits rotational symmetry. That is, it is possible to rotate
the entire pattern about some point and have it appear unchanged. We say that it is
invariant under such a rotation. For example, the pattern of Figure 6.14 is invariant
under a rotation of 120° about the point O, as shown in Figure 6.17. We call O a center
of rotational symmetry (or a rotation center).

Note that if a pattern is based on an underlying lattice, then any symmetries of the
pattern must also be possessed by the lattice.



3. Explain why, if a point O is a rotation center through an angle 6, then it is
a rotation center through every integer multiple of 6. Deduce that if 0 < 6 = 360°,
then 360/6 must be an integer. (If 360/6 = n, we say the pattern or lattice has n-fold
rotational symmetry.)

4. What is the smallest positive angle of rotational symmetry for the lattice in
Problem 2? Does the pattern in Figure 6.14 also have rotational symmetry through
this angle?

5. Take various values of 6 such that 0 < 8 =< 360° and 360/6 is an integer. Try
to draw a lattice that has rotational symmetry through the angle 6. In particular, can
you draw a lattice with eight-fold rotational symmetry?

We will show that values of 6 that are possible angles of rotational symmetry for a
lattice are severely restricted. The technique we will use is to consider rotation trans-
formations in terms of different bases. Accordingly, let Ry denote a rotation about the
origin through an angle 6 and let & be the standard basis for R Then the standard
matrix of Ry is

cosf —sinf }
sin O cos 0

[Ryle = [

6. Referring to Problems 2 and 4, take the origin to be atthe tails of uandv.
(@) What is the actual (i.e., numerical) value of [R,]¢ in this case?
(b) Let B be the basis {u, v}. Compute the matrix [R,]z.
7. In general, let u and v be any two linearly independent vectors in R* and
suppose that the lattice determined by u and v is invariant under a rotation through
an angle 6. If B = {u, v}, show that the matrix of R, with respect to B must have the

form
b
[Ryls = [i d}

where a, b, ¢, and d are integers.

8. In the terminology and notation of Problem 7, show that 2 cos 6 must be an
integer. [Hint: Use Exercise 35 in Section 4.4 and Theorem 6.29.]

9. Using Problem 8, make a list of all possible values of 6, with 0 < 6 = 360°,
that can be angles of rotational symmetry of a lattice. Record the corresponding val-
ues of n, where n = 360/6, to show that a lattice can have n-fold rotational symmetry
ifand onlyifn = 1, 2, 3, 4, or 6. This result, known as the crystallographic restriction,
was first proved by W. Barlow in 1894.

10. In the library or on the Internet, see whether you can find an Escher tiling
for each of the five possible types of rotational symmetry—that is, where the smallest
angle of rotational symmetry of the pattern is one of those specified by the crystal-
lographic restriction.

a1
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Homogeneous Linear Differential Equations

In Exercises 69-72 in Section 4.6, we showed that if y = y(¢) is a twice-differentiable
function that satisfies the differential equation

y'+ay +by=0 (1)
then y is of the form

y = ceM + c,eM

if A, and A, are distinct roots of the associated characteristic equation A*> + aA +
b = 0. (The case where A, = A, was left unresolved.) Example 6.12 and Exercise 20
in this section show that the set of solutions to Equation (1) forms a subspace of %,
the vector space of functions. In this section, we pursue these ideas further, paying
particular attention to the role played by vector spaces, bases, and dimension.

To set the stage, we consider a simpler class of examples. A differential equation
of the form

y tay=20 (2)

is called a first-order, homogeneous, linear differential equation. (“First-order”
refers to the fact that the highest derivative that is involved is a first derivative, and
“homogeneous” means that the right-hand side is zero. Do you see why the equa-
tion is “linear”?) A solution to Equation (2) is a differentiable function y = y(¢) that
satisfies Equation (2) for all values of t.

It is easy to check that one solution to Equation (2) is y = e~ “. (Do it.) However,
we would like to describe all solutions—and this is where vector spaces come in. We
have the following theorem.

—at

Theorem 6.31

The set S of all solutions to y* + ay = 0 is a subspace of F.

Proof Since the zero function certainly satisfies Equation (2), S is nonempty. Let x
and y be two differentiable functions of ¢ that are in S and let ¢ be a scalar. Then

X +ax=0 and y +ay=20
so, using rules for differentiation, we have
x+y) +tax+ty)=x"+y tax+ay=(x"tax)+ (' +ay)=0+0=0
and
(ep) +aley) =cy' +clay) =c(y’ +ay) =c-0=0
Hence, x + y and cy are also in S, so S is a subspace of . B |

Now we will show that S is a one-dimensional subspace of ¥ and that {e”“} is a
basis. To this end, let x = x(¢) be in S. Then, for all ¢,

x'"(t) +ax(t) =0 or x'(t) = —ax(t)
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Define a new function z (t) = x(t)e”. Then, by the Chain Rule for differentiation,

Z'(t) = x(ae™ + x'(t)e™
= ax(t)e® — ax(t)e™
=0

Since z’ is identically zero, z must be a constant function—say, z(t) = k. But this
means that

x(H)e" =z(t) =k forallt

so x(t) = ke . Therefore, all solutions to Equation (2) are scalar multiples of the
single solution y = e~ . We have proved the following theorem.

Theorem 6.32

If S is the solution space of ¥ + ay = 0, then dim S = 1 and {e” “} is a basis for S.

One model for population growth assumes that the growth rate of the popula-
tion is proportional to the size of the population. This model works well if there are
few restrictions (such as limited space, food, or the like) on growth. If the size of the
population at time t is p(t), then the growth rate, or rate of change of the population,
is its derivative p’(t). Our assumption that the growth rate of the population is pro-
portional to its size can be written as

p'(t) = kp(t)

where k is the proportionality constant. Thus, p satisfies the differential equation
p' — kp = 0, so, by Theorem 6.32,
kt

p(t) = ce

for some scalar c. The constants ¢ and k are determined using experimental data.

»

Example 6.81

E. coli is mentioned in Michael
Crichton’s novel The Andromeda
Strain (New York: Dell, 1969),
although the “villain” in that novel
was supposedly an alien virus. In
real life, E. coli contaminated the
town water supply of Walkerton,
Ontario, in 2000, resulting in seven
deaths and causing hundreds of
people to become seriously ill.

P>

The bacterium Escherichia coli (or E. coli, for short) is commonly found in the
intestines of humans and other mammals. It poses severe health risks if it escapes
into the environment. Under laboratory conditions, each cell of the bacterium divides
into two every 20 minutes. If we start with a single E. coli cell, how many will there
be after 1 day?

Solution We do not need to use differential equations to solve this problem, but we
will, in order to illustrate the basic method.

To determine c and k, we use the data given in the statement of the problem. If
we take 1 unit of time to be 20 minutes, then we are given that p(0) = 1 and p(1) = 2.
Therefore,

c=c-1=ce*=1 and 2=ce!'=¢
It follows that k = In 2, so
P(t) = pth2 = e]nZ‘ =t

After 1 day, t = 72, so the number of bacteria cells will be p(72) = 2% =~ 4.72 X 10*'
(see Figure 6.18).
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Figure 6.18
Exponential growth

i

Radioactive substances decay by emitting radiation. If m(t) denotes the mass of
the substance at time ¢, then the rate of decay is m'(t). Physicists have found that the
rate of decay of a substance is proportional to its mass; that is,

m'(t) = km(t) or m'—km=20
where k is a negative constant. Applying Theorem 6.32, we have
m(t) = ce

for some constant ¢. The time required for half of a radioactive substance to decay is
called its half-life.

\j

After 5.5 days, a 100 mg sample of radon-222 decayed to 37 mg.

(a) Find a formula for m(t), the mass remaining after ¢ days.
(b) What is the half-life of radon-222?

(c) When will only 10 mg remain?

k

Solution (a) From m(t) = ce®', we have

100 = m(0) = ce*®=c¢c-1=¢

so m(t) = 100e™

With time measured in days, we are given that m(5.5) = 37. Therefore,
100e°°* = 37

$0 e =037

Solving for k, we find
5.5k = In(0.37)

_ In(0.37)
5.5

) k ~ —(0.18

Therefore, m(t) = 100e "%



See Linear Algebra by S. H.
Friedberg, A.]. Insel, and L. E.
Spence (Englewood Cliffs, NJ:
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Figure 6.19

Radioactive decay

(b) To find the half-life of radon-222, we need the value of t for which m(t) = 50.
Solving this equation, we find

100e” "% = 50
S0 e %18 = 0.50
Hence,
—0.18t = In(}) = —In2
and t = (l)n_lz ~ 3.85

Thus, radon-222 has a half-life of approximately 3.85 days. (See Figure 6.19.)

(c) We need to determine the value of t such that m(t) = 10. That is, we must solve
the equation

100e™ % =10 or e ¥ =901
Taking the natural logarithm ofboth sides yields —0.18¢ = In 0.1. Thus,

In 0.1
= =~ 12.79
—0.18
so0 10 mg of the sample will remain after approximately 12.79 days. I

The solution set S of the second-order differential equation y” + ay’ + by = 0
is also a subspace of & (Exercise 20), and it turns out that the dimension of § is 2.
Part (a) of Theorem 6.33, which extends Theorem 6.32, is implied by Theorem 4.40.
Our approach here is to use the power of vector spaces; doing so allows us to obtain
part (b) of Theorem 6.33 as well, a result that we could not obtain with our previous
methods.
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Theorem 6.33

Figure 6.20

Let S be the solution space of
y" tay +by=0
and let A, and A, be the roots of the characteristic equation A* + a\ + b = 0.

a. IfA; = A,, then {e™, e™'} is a basis for S.
b. If A, = A,, then {e™, te™'} is a basis for S.

Remarks
® Observe that what the theorem says, in other words, is that the solutions of
y" + ay’ + by = 0 are of the form

y = ceM + e
in the first case and
y = cieM + cyteM

in the second case.

e Compare Theorem 6.33 with Theorem 4.38. Linear differential equations
and linear recurrence relations have much in common. Although the former belong to
continuous mathematics and the latter to discrete mathematics, there are many parallels.

Proof (a) We first show that {e™’, e} is contained in S. Let A be any root of the
characteristic equation and let f(¢) = . Then

f'(t) = AeM and f(t) = A%eM
from which it follows that
f" + af’ + bf = A%eM + are + beM
= (A + ak + b)e"
=0-eM=0

Therefore, fis in S. But, since A; and A, are roots of the characteristic equation, this
means that e and e are in S.
The set {e™, e*'} is also linearly independent, since if

ceM + ce™ =0
then, setting t = 0, we have
cteg=0 o ¢ =—¢q
Next, we set t = 1 to obtain
et — e =0 or cleM—eM) =0

But eM — e™ # 0, since e — e™ = 0 implies that e™ = e’, which is clearly im-
possible if A, = A,. (See Figure 6.20.) We deduce that ¢, = 0 and, hence, ¢, = 0, so
{e, e*'} is linearly independent.

Since dim S = 2, {e™, e™'} must be a basis for S.

(b) You are asked to prove this property in Exercise 21. — wem
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\

Find all solutions of y"" — 5y" + 6y = 0.

Solution The characteristic equation is A —=51+6=(A—2)(A—3)=0. Thus,
the roots are 2 and 3, so {e?, e*'} is a basis for the solution space. It follows that the
solutions to the given equation are of the form

— 3t
y = e’ + ce I

The constants ¢; and c, can be determined if additional equations, called bound-
ary conditions, are specified.

Example 6.90

Y

Find the solution of y” + 6y" + 9y = 0 that satisfies ¥(0) = 1, y'(0) = 0.

Solution The characteristic equation is MA+e6r+9=(\+ 3)2=10,s0 —3isa
repeated root. Therefore, {e >, te >’} is a basis for the solution space, and the general
solution is of the form

y = e+ cte
The first boundary condition gives
1=y0)=ce’"+0=¢
soy = e ' + cte . Differentiating, we have
y'= =3 + ¢,(=3te + )
so the second boundary condition gives
0=y'00)= 37"+ 0+’ =3+
or =3

Therefore, the required solution is

y=e "+ 3te™ = (1 + 3t)e™™ 1

Theorem 6.33 includes the case in which the roots of the characteristic equation
are complex. If A = p + gi is a complex root of the equation A + aX + b = 0, then so is
its conjugate A = p — gi. (See Appendices C and D.) By Theorem 6.33(a), the solution
space S of the differential equation y” + ay’ + by = 0 has {¢", "'} as a basis. Now

eM = e(Pralt = oPleil@) = ¢Pl(cos gt + isin qt)
and eM = P4t = P!~ = ¢P(cos gt — isin qt)
e/\! + e)\! e/\t _ e)\!

$0 e’ cos gt = ——— and e sin gt = T
i

Tt follows that {e?' cos qt, e sin gt} is contained in span(e™, e!') = S. Since e?' cos gt
and e”’ sin qt are linearly independent (see Exercise 22) and dim S = 2, {e? cos qt,
e sin gt} is also a basis for S. Thus, when its characteristic equation has a complex
root p + gi, the differential equation y” + ay’ + by = 0 has solutions of the form

y = e cos qt + c,e sin gt
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Example 6.91

\J

Find all solutions of y” — 2y’ + 4 = 0.

Solution  The characteristic equation is A* — 2A + 4 = 0 with roots 1 = /3. The fore-
going discussion tells us that the general solution to the given differential equation is

-

s

y = e’ cos V3t + cye' sin V3t

H/ /\/\/\/{

Figure 6.21

Example 6.92

H—\/\/\/\/\/+

A mass is attached to the end of a vertical spring (Figure 6.21). If the mass is pulled
downward and released, it will oscillate up and down. Two laws of physics govern this
situation. The first, Hooke’s law, states that if the spring is stretched (or compressed)
x units, the force F needed to restore it to its original position is proportional to x:

F= —kx

where k is a positive constant (called the spring constant). Newton’s Second Law of
Motion states that force equals mass times acceleration. Since x = x(t) represents
distance, or displacement, of the spring at time ¢, x" gives its velocity and x" its ac-
celeration. Thus, we have

k
mx" = —kx or x" + (—)x =0
m

Since both k and m are positive, so is K = k/m, and our differential equation has the
form x” + Kx = 0, where K is positive.

The characteristic equation is A + K = 0 with roots +i\V/K. Therefore, the gen-
eral solution to the differential equation of the oscillating spring is

x = ¢, cos VKt + ¢, sin VKt

Suppose the spring is at rest (x = 0) at time ¢ = 0 seconds and is stretched as far
as possible, to a length of 20 cm, before it is released. Then

0 =x(0) =c¢;cos0 + ¢,8in0 = ¢,

X
A .
x = 20 sin |Kt
20+
1 T 2w
10 \s“,E \s? /\
: /: : /: : —t—> 1
T 3
T 2K 2K
_10__
_20_._

Figure 6.22
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s0 x = ¢, sin VK. Since the maximum value of the sine function is 1, we must have
¢, = 20 (occurring for the first time when t =7 /2V/K), giving us the solution

x = 20 sin VKt

(See Figure 6.22.)

Of course, this is an idealized solution, since it neglects any form of resistance
and predicts that the spring will oscillate forever. It is possible to take damping effects
(such as friction) into account, but this simple model has served to introduce an im-
portant application of differential equations and the techniques we have developed.

-

Tixercises 6.7

\/

Jﬁ Homogeneous Linear Differential Enuations (b) Repeat part (a), but use the data for the years 1970
and 1980 to solve for p(¢). Does this approach give
In Exercises 1-12, find the solution of the differential equa- a better approximation for the year 2000?
tion that satisfies the given boundary condition(s). (c) What canyou conclude about U.S. population
1.y’ =3y =0,y(1) =2 growth?
2x +x=0x(1)=1
4.x" + x' — 12x = 0,x(0) = 0, x'(0) = 1 Population
5 " —f —f=0,f(0)=0,f(1) =1 Year (in millions)
6.8" —2¢=100) =1g1) =0 1900 76
7.9" =2y +y=0y0) =y(1) =1 1910 92
8. x" + 4x’ + 4x = 0,x(0) = 1,x'(0) = 1 gig i(z)g
"o 12, — = v/ =
9.y k’y = 0,k # 0,y(0) = y'(0) = 1 1940 131
10. y" — 2ky’ + kP = 0,k # 0,y(0) = 1,y(1) = 0 1950 150
11. f" — 2f + 5= 0,f(0) = 1,f(7/4) = 0 1960 179
12.h" — 4k’ + 5h = 0,h(0) = 0,h'(0) = —1 e 203
. : : 1980 227
13. A strain of bacteria has a growth rate that is propor- 1990 250
tional to the size of the population. Initially, there are
. 2000 281
100 bacteria; after 3 hours, there are 1600.
(a) If p(¢) denotes the number of bacteria after Source: U.S. Bureau of the Census

t hours, find a formula for p(#).
(b) How long does it take for the population to double?  15. The half-life of radium-226 is 1590 years. Suppose we

(c) When will the population reach one million? start with a sample of radium-226 whose mass is 50 mg.
©° 14. Table 6.2 gives the population of the United States at (a) Find a formula for the mass m(t) remaining after
10-year intervals for the years 1900-2000. tyears and use this formula to predict the mass
(a) Assuming an exponential growth model, use the remaining after 1000 years.
data for 1900 and 1910 to find a formula for p(t), (b) When will only 10 mg remain?
the population in year t. [Hint: Let t = 0 be 1900 16. Radiocarbon dating is a method used by scientists
andletf = 1be 1910.] How accurately does your to estimate the age of ancient objects that were once

formula calculate the U.S. population in 2000? living matter, such as bone, leather, wood, or paper.
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All of these contain carbon, a proportion of which is
carbon-14, a radioactive isotope that is continuously

being formed in the upper atmosphere. Since liv- 0\ I /
ing organisms take up radioactive carbon along with /
other carbon atoms, the ratio between the two forms : P
remains constant. However, when an organism dies, AN 1

- -

the carbon-14 in its cells decays and is not replaced.
Carbon-14 has a known half-life of 5730 years, so
by measuring the concentration of carbon-14 in an
object, scientists can determine its approximate age.
One of the most successful applications of radio-
carbon dating has been to determine the age of the
Stonehenge monument in England (Figure 6.23).
Samples taken from the remains of wooden posts
were found to have a concentration of carbon-14 that
was 45% of that found in living material. What is the
estimated age of these posts?

=
S
[
=
S
2
|
B
s
2
et
=
=

Figure 6.23
Stonehenge

A mass is attached to a spring, as in Example 6.92. At
time t = 0 second, the spring is stretched to a length of
10 cm below its position at rest. The spring is released,
and itslength 10 seconds later is observed to be 5 cm.
Find a formula for the length of the spring at time

t seconds.

A 50 g mass is attached to a spring, as in Exam-
ple 6.92. If the period of oscillation is 10 seconds,
find the spring constant.

A pendulum consists of a mass, called a bob, that

is affixed to the end of a string of length L (see
Figure 6.24). When the bob is moved from its rest
position and released, it swings back and forth. The
time it takes the pendulum to swing from its farthest

Figure 6.24

Let 6 = 6(t) be the angle of the pendulum from
the vertical. It can be shown that if there is no resis-
tance, then when 6 is small it satisfies the differential
equation

0"+ 29 -0
L

where g is the constant of acceleration due to gravity,
approximately 9.7 m/s>. Suppose that L = 1 m and
that the pendulum is at rest (i.e., # = 0) at time

t = 0 second. The bob is then drawn to the right at
an angle of 6, radians and released.

(a) Find the period of the pendulum.

(b) Does the period depend on the angle 6, at which
the pendulum is released? This question was
posed and answered by Galileo in 1638. [Galileo
Galilei (1564-1642) studied medicine as a student
at the University of Pisa, but his real interest was
always mathematics. In 1592, Galileo was ap-
pointed professor of mathematics at the Univer-
sity of Padua in Venice, where he taught primarily
geometry and astronomy. He was the first to use
a telescope to look at the stars and planets, and in
so doing, he produced experimental data in sup-
port of the Copernican view that the planets re-
volve around the sun and not the earth. For this,
Galileo was summoned before the Inquisition,
placed under house arrest, and forbidden to pub-
lish his results. While under house arrest, he was
able to write up his research on falling objects and
pendulums. His notes were smuggled out of Italy
and published as Discourses on Two New Sciences
in 1638.]

20. Show that the solution set S of the second-order

differential equation y” + ay’ + by = 0 is a subspace
of F.

21. Prove Theorem 6.33(b).

22. Show that efcosqt and ef'sin gt are linearly
independent.

right position to its farthest left position and back to
its next farthest right position is called the period of
the pendulum.
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basis, 446

Basis Theorem, 453
change-of-basis matrix, 465
composition of linear
transformations, 477
coordinate vector, 449
diagonalizable linear
transformation, 509
dimension, 453

Fundamental Theorem of Invertible

isomorphism,

443, 446

443, 446

Matrices, 512 transformation,
identity transformation, 474 nullity of a linear
invertible linear transformation,

transformation, 478

Review Questions
1. Mark each of the following statements true or false:

(a) If V= span(v,,...,V,), then every spanning set
for V contains at least n vectors.

(b) If {u, v, w} is a linearly independent set of vectors,
thensois{u+v,v+ w,u+ wh

(c) M,, has a basis consisting of invertible matrices.

(d) M,, has a basis consisting of matrices whose trace

is zero.
(e) The transformation T: R" - R defined by
T(x) = |x| is a linear transformation.

(f) If T: V-— W is alinear transformation and dim
V # dim W, then T cannot be both one-to-one
and onto.

(g) If T: V- W isalinear transformation and
ker(T) = V,then W = {0}.

(h) If T: M5; — P, is a linear transformation and
nullity(T) = 4, then T is onto.

(i) The vector space V = {p(x) in P,: p(1) = 0} is
isomorphic to .

(j) IfI:V — Vistheidentity transformation, then
the matrix [I]c_g is the identity matrix for any
bases Band C of V.

In Questions 2-5, determine whether W is a subspace of V.

2V =R,W= {H;x“wyz:o}
y

kernel of a linear

transformation,
linear combination of vectors, 433
linear transformation, 472
linearly dependent vectors,

linearly independent vectors,

matrix of a linear

one-to-one, 488

onto, 488
range of a linear

482 transformation, 482

rank of a linear
transformation, 484

Rank Theorem, 486

span of a set of vectors, 438

standard basis, 447

subspace, 434

trivial subspace, 437

498 vector, 429
vector space, 429
484 zero subspace, 437

zero transformation, 474

4.V =P, W= {px)inPy: x’p(1/x) = p(x)}
5 V=% W={finF:flx + ) = flx) for all x}

6. Determine whether {1, cos 2x, 3 sin®x} is linearly
dependent or independent.

7. Let A and B be nonzero n X n matrices such that A is
symmetric and B is skew-symmetric. Prove that {A, B}
is linearly independent.

In Questions 8 and 9, find a basis for W and state the
dimension of W.

8.W={{a b}:aﬂ—d:b—f—c}
c d

9. W= {p(x) in P5: p(—x) = p(x)}
10. Find the change-of-basis matrices Py and P, . with
respect to the bases B={1,1+ x,1 + x + x%} and
C={1+xx+x%1+x*ofP,.

In Questions 11-13, determine whether T is a linear
transformation.

1
11. T: R* — R’ defined by T(x) = yx'y, wherey = [2}
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12. T: M,, = M,, defined by T(4) = ATA
13. T: P, — P, defined by T(p(x)) = p(2x — 1)

14. If T: PP, — M,, is a linear transformation such that

1 0 1 1
T(1) = [0 1],T(l + x) = {0 1} and

0

1

15. Find the nullity of the linear transformation
T: M,,— R defined by T(A) = tr(A).

16. Let W be the vector space of upper triangular 2 X 2
matrices.

=1
T + x + x?) = [ 0}, find TG — 3x + 2x%).

(@) Find a linear transformation T': M,, — M,, such
that ker(T) = W.

(b) Find a linear transformation T : M,, — M,, such
that range(T) = W.

17. Find the matrix [T]_p of the linear transformation
T in Question 14 with respect to the standard bases
B = {1, x, x*} of , and C = {E;}, E1, Eay, Ezp} of M,.

18. Let S = {v,,...,V,} be a set of vectors in a vector
space V with the property that every vector in V can
be written as a linear combination of v, . . ., v, in ex-
actly one way. Prove that S is a basis for V.

19.fT:U— Vand S: V— W are linear transforma-
tions such that range(T) C ker(S), what can be
deduced about S° T?

20. Let T: V — V bealinear transformation, and let

{v,,...,v,} bea basis for V such that {T(v,), ...,
T(v,)}is also a basis for V. Prove that T is invertible.



