... that sprightly Scot of Scots, Douglas,
that runs a-horseback up a hill
per pendicular—
—William Shakespeare
Henry IV, Part I
Act II, Scene IV

Figure 5.1
Shadows on a wall are projections

—
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In this chapter, we will extend the notion of orthogonal projection that we encoun-
tered first in Chapter 1 and then again in Chapter 3. Until now, we have discussed
only projection onto a single vector (or, equivalently, the one-dimensional subspace
spanned by that vector). In this section, we will see if we can find the analogous for-
mulas for projection onto a plane in R’. Figure 5.1 shows what happens, for example,
when parallel light rays create a shadow on a wall. A similar process occurs when a
three-dimensional object is displayed on a two-dimensional screen, such as a com-
puter monitor. Later in this chapter, we will consider these ideas in full generality.

To begin, let’s take another look at what we already know about projections. In
Section 3.6, we showed that, in R?, the standard matrix of a projection onto the line

d
through the origin with direction vector d = { dl] is
2

, 1 { d? dldz] ~ [ dH(d? +dD)  ddy)(d? + dg)}

TRt dldd, &) |ddd] +dD) dud + d)
Hence, the projection of the vector v onto this line is just Pv.

Problem 1 Show that P can be written in the equivalent form

{ cos?6 cosf sinﬂ}
cosf sinf sin®0

(What does 6 represent here?)
Problem 2 Show that P can also be written in the form P = uu’, where u is a unit

vector in the direction of d. 3
Problem 3 Using Problem 2, find P and then find the projection of v = { }

onto the lines with the following unit direction vectors: B

e[ ] 0+

Problem 4 Using the form P = uu’, show that (a) PT = P (ie., Pis symmetric)
and (b) P2 = P (i.e, Pis idempotent).

4
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Problem 5 Explain why, if P is a 2 X 2 projection matrix, the line onto which it
projects vectors is the column space of P.

Now we will move into R*> and consider projections onto planes through the
origin. We will explore several approaches.

Figure 5.2 shows one way to proceed. If 2 is a plane through the origin in R’ with
normal vector n and ifv is a vector in R’, then p = projy (v) is a vector in % such that
v — cn = p for some scalar c.

—cn

9P \%j;— cn

Figure 5.2
Projection onto a plane

Problem 6 Using the fact that n is orthogonal to every vector in %, solve
v — cn = p for ¢ to find an expression for p in terms of vand n.
Problem 7 Use the method of Problem 6 to find the projection of

v = 0
-2
onto the planes with the following equations:
@x+y+z=0 b)x—22=0 (c)2x—3y+z=0

Another approach to the problem of finding the projection of a vector onto a
plane is suggested by Figure 5.3. We can decompose the projection of v onto % into
the sum of its projections onto the direction vectors for %. This works only if the
direction vectors are orthogonal unit vectors. Accordingly, let u; and u, be direction
vectors for P with the property that

lwl = Ju,[ =1 and w,-u, =0

Figure 5.3
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By Problem 2, the projections of v onto u, and u, are
p: = wulv and p, = wulv

respectively. To show that p; + p, gives the projection of v onto &%, we need to show
that v — (p, + p,) is orthogonal to . It is enough to show that v — (p; + p,) is
orthogonal to both u; and u,. (Why?)

Problem 8 Show that u;- (v — (p; + p,)) =0and u,- (v — (p, + p,)) = 0. [Hint:
Use the alternative form of the dot product, x"y = x -y, together with the fact that u,
and u, are orthogonal unit vectors.]

It follows from Problem 8 and the comments preceding it that the matrix of the
projection onto the subspace % of R* spanned by orthogonal unit vectors u; and u, is

P =uu! + wul (1)

Problem 9 Repeat Problem 7, using the formula for P given by Equation (1).
Use the same v and use u; and u,, as indicated below. (First, verify that u, and u, are
orthogonal unit vectors in the given plane.)

-2/Ve6 0
(@ x+y+z=0withu, =| 1/V6 |andu,=| 1/V2
1/Ve -1/V2
2/\V5 0
(b) x — 2z =0 withu, = 0 |andu,=|1
1/V5 0
1/V3 2/Ve6
() 2x— 3y +z=0withu, = | —1/V3 |andu, = 1/Ve
1/V3 -1/Ve

Problem 10 Show that a projection matrix given by Equation (1) satisfies proper-
ties (a) and (b) of Problem 4.

Problem 11 Show that the matrix P of a projection onto a plane in R’ can be
expressed as

P =AAT
for some 3 X 2 matrix A. [Hint: Show that Equation (1) is an outer product expansion.]

Problem 12 Show that if P is the matrix of a projection onto a plane in R’ then
rank(P) = 2.

In this chapter, we will look at the concepts of orthogonality and orthogonal pro-
jection in greater detail. We will see that the ideas introduced in this section can be
generalized and that they have many important applications.

Orthogonality in R”

In this section, we will generalize the notion of orthogonality of vectors in R" from
two vectors to sets of vectors. In doing so, we will see that two properties make the
standard basis {e}, e,, . . ., e,} of R" easy to work with: First, any two distinct vectors in
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thesetare orthogonal. Second, each vector intheset is a unit vector. These two prop-
erties lead us to the notion of orthogonal bases and orthonormal bases—concepts that
we will be able to fruitfully apply to a variety of applications.

Orthogonal and Orthonormal Sets of Vectors

Definition A set of vectors {v,,v,, . .., v} in R" is called an orthogonal set if
all pairs of distinct vectors in the set are orthogonal—that is, if

v;*v;=0 whenever i#j forij=12...,k

The standard basis {e;, e,, .. ., e,} of R" is an orthogonal set, as is any subset of it. As
the first example illustrates, there are many other possibilities.

Example 5.1

Vg \}

Vi

Figure 5.4
An orthogonal set of vectors

\

Show that {v,, v,, v3} is an orthogonal set in R3if

2 0 1
v, = 1, =11, vs=|—1
-1 1 1

Solution We must show that every pair of vectors from this set is orthogonal. This
is true, since

viev, =2(0) +1(1) + (=1)(1) =0

v,r vy =0(1) + 1(=1) + (1)(1) =0

vicv;=2(1) + 1(=1) +(=D1) =0

Geometrically, the vectors in Example 5.1 are mutually perpendicular, as

Figure 5.4 shows. I

One of the main advantages of working with orthogonal sets of vectors is that
they are necessarily linearly independent, as Theorem 5.1 shows.

Theorem 5.1

If {v}, v, . .., v;} is an orthogonal set of nonzero vectors in R", then these vectors
are linearly independent.

Proof Ifcy,...,c arescalarssuch that c;v; + -+ + ¢vi = 0, then
v+ -+ gv)v,=0-v,=0
or, equivalently,
avi=v) + -+ ¢viev) + -+ glviev) =0 (1)

Since {v}, v,, ..., v{} is an orthogonal set, all of the dot products in Equation (1)
are zero, except v;- v;. Thus, Equation (1) reduces to

c(viev) =0
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Now, v; - v; # 0 because v; # 0 by hypothesis. So we must have ¢; = 0. The fact that

thisis true foralli = 1,..., kimplies that {v,, v,, ..., v;} is a linearly independent set.
|

Remark Thanks to Theorem 5.1, we know that if a set of vectors is orthogonal, it
is automatically linearly independent. For example, we can immediately deduce that
the three vectors in Example 5.1 are linearly independent. Contrast this approach
with the work needed to establish their linear independence directly!

Definition  An orthogonal basis for a subspace W of R" is a basis of W that is
an orthogonal set.

Example 5.2

\J

The vectors

2 0 1
v, = 1, v,=1|1|, vy=|—1
—1 1 1

from Example 5.1 are orthogonal and, hence, linearly independent. Since any three
linearly independent vectors in R® form a basis for R, by the Fundamental Theorem
of Invertible Matrices, it follows that {v;, v,, v3} is an orthogonal basis for R”. I

Remark In Example 5.2, suppose only the orthogonal vectors v, and v, were
given and you were asked to find a third vector v; to make {v,, v,, v3} an orthogonal
basis for R’. One way to do this is to remember that in R’, the cross product of two
vectors v, and v, is orthogonal to each of them. (See Exploration: The Cross Product
in Chapter 1.) Hence we may take

2 0 2
V=V, Xv, = 1 X]1|=|-2
-1 1 2

Note that the resulting vector is a multiple of the vector v; in Example 5.2, as it must be.

Example 5.3

A\

Find an orthogonal basis for the subspace W of R’ given by

x
W={9|ly|lix—y+2z2=0
z

Solution  Section 5.3 gives a general procedure for problems of this sort. For now,
we will find the orthogonal basis by brute force. The subspace W is a plane through
the origin in R’. From the equation of the plane, we have x = y — 2z, so W consists
of vectors of the form
y— 2z 1 =2
y =yl1|+2z O
z 0
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1 -2
It follows thatu = | 1 |andv = 0 | are a basis for W, but they are not orthogo-
0 1

nal. It suffices to find another nonzero vector in W that is orthogonal to either one of
these.
X
Supposew = | y | is avector in W that is orthogonal to u. Thenx — y + 2z = 0,
z
since w is in the plane W. Since u-w = 0, we also have x + y = 0. Solving the linear
system

x—y+2z2=0

x+y =0
we find that x = —z and y = z. (Check this.) Thus, any nonzero vector w of the form
-z
w= z
z
—1
will do. To be specific, we could take w = 1 |. It is easy to check that {u, w} is an
1

orthogonal set in W and, hence, an orthogonal basis for W, since dim W = 2. 1

Another advantage of working with an orthogonal basis is that the coordinates of
a vector with respect to such a basis are easy to compute. Indeed, there is a formula
for these coordinates, as the following theorem establishes.

Theorem 9.2

Let {v}, V5, ..., v} be an orthogonal basis for a subspace W of R" and let w be any
vector in W. Then the unique scalars ¢, . . ., ¢; such that
W=V, + o+ vy

are given by

we 1 .
¢ = fori=1,...,k
VeV,
Proof  Since {v}, v,, ..., v} is a basis for W, we know that there are unique scalars
1, - - - ¢ such that w = ¢v; + -+ + v (from Theorem 3.29). To establish the

formula for ¢;, we take the dot product of this linear combination with v; to obtain
wev, = (evy + -+ vy,
= Cl(Vl'Vz‘) 4+ .o+ Ci(vi'Vi) 4o+ Ck(Vk'Vi)
= ¢(v;* )

since v;-v; = 0 for j # i Since v; # 0, v;-v; # 0. Dividing by v; - v;, we obtain the

desired result. e
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Example 5.4

\/

1
Find the coordinates of w = | 2 | with respect to the orthogonal basis B = {v;, v,, v3}
of Examples 5.1 and 5.2. 3

Solution  Using Theorem 5.2, we compute

w*V, 2+2—3 1
c, = = = —
" virvy 44+1+1 6
_w'v, 0+2+3 5
2T v v, 04141 2

W* Vs 1—2+3 2
Cx = = = —
T viev; 14141 3

Thus,

_ —1 5 2
W = V] T 6V, + V3 = gV + 3V, + 3V,

(Check this.) With the notation introduced in Section 3.5, we can also write the above
equation as

(w]g =

W N[N O =

i

Compare the procedure in Example 5.4 with the work required to find these
coordinates directly and youshould start to appreciate the value of orthogonal bases.

As noted at the beginning of this section, the other property of the standard basis
in R" is that each standard basis vector is a unit vector. Combining this property with
orthogonality, we have the following definition.

Definition A set of vectors in R" is an orthonormal set if it is an orthogonal
set of unit vectors. An orthonormal basis for a subspace W of R" is a basis of W
that is an orthonormal set.

Remark If S = {qy,..., qi} is an orthonormal set of vectors, then q,- q; = 0 for
i # jand ||q;| = 1. The fact that each q; is a unit vector is equivalent to q; - q; = 1.
It follows that we can summarize the statement that S is orthonormal as

_{0 ifi # j
VY= =

\J

Show that S = {q,, q,} is an orthonormal set in R’ if

1/V3 1/Ve
q=|-1/V3| and q,=|2/V6
1/V3 1/Ve
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Solution We check that
=1//18 = 2/V18 + 1/V/18 =0

q:°q;
Q-q=1/3+1/3+1/3=1
GLq=1/6+4/6+1/6=1

.

If we have an orthogonal set, we can easily obtain an orthonormal set from it: We
simply normalize each vector.

\

Construct an orthonormal basis for R* from the vectors in Example 5.1.

Solution  Since we already know that v, v,, and v; are an orthogonal basis, we nor-
malize them to get

. X 2 2/V6
q1=—IIV ||V1=—6 1| = 1/Ve6

! | -1 -1/Ve6

K 0

1 1

2 B 1/V2

. . [ 1 1/V3
q3=mv3:% -1 = —l/\/g

3 L 1 1/V3

Then {q;, q,, q;} is an orthonormal basis for R’.

el

Since any orthonormal set of vectors is, in particular, orthogonal, it is linearly in-
dependent, by Theorem 5.1. If we have an orthonormal basis, Theorem 5.2 becomes
even simpler.

Theorem 5.3

Let {q;, q - - - » i} be an orthonormal basis for a subspace W of R" and let w be
any vector in W. Then

w=(w-q)q +(wW-q)g + -+ (w-qlq

and this representation is unique.

Proof  Apply Theorem 5.2 and use the factthatq,-q; = 1fori=1,..., k.

=

Orthogonal Matrices

Matrices whose columns form an orthonormal set arise frequently in applications, as
you will see in Section 5.5. Such matrices have several attractive properties, which we
now examine.



314 Chapter 5 Orthogonality

Theorem 5.4

Orthogonal matrix is an unfortu-
nate bit of terminology. “Ortho-
normal matrix” would clearly be a
better term, but it is not standard.
Moreover, there is no term for a
nonsquare matrix with orthonor-
mal columns.

The columns of an m X # matrix Q form an orthonormal set if and only if

Q OEHN

Proof We need to show that
0 ifi#j

T =
(QQ {l ifi =j

Let q; denote the ith column of Q (and, hence, the ith row of Q7). Since the (i,7)
entry of QQ is the dot product of the ith row of QT and the jth column of Q, it
follows that

(QTQ)ij =4q-°q ()

by the definition of matrix multiplication.

Now the columns Q form an orthonormal set if and only if

3 {0 ifi # j

L TR
which, by Equation (2), holds if and only if
0 ifi#j

T Pra—

(@Q); {l ifi=j

This completes the proof.
—am

If the matrix Q in Theorem 5.4 is a square matrix, it has a special name.

Definition An n X » matrix Q whose columns form an orthonormal set is
called an orthogonal matrix.

The most important fact about orthogonal matrices is given by the next theorem.

Theorem 9.9

A square matrix Q is orthogonal if and only if Q™' = Q.

Proof By Theorem 5.4, Q is orthogonal if and only if QTQ = I This is true if and
only if Q is invertible and Q'=qQ% by Theorem 3.13. § |

Example 5.7

A\

Show that the following matrices are orthogonal and find their inverses:

01 0 0 _cing
A=|0 0 1| and B=|"" %
sin 0 cosf

1 0 0

Solution The columns of A are just the standard basis vectors for R®, which are
clearly orthonormal. Hence, A is orthogonal and
0 0 1

AT'=AT=|1 0 0

01 0



The word isometry literally means
“length preserving,” since it is

derived from the Greek roots isos
(“equal”) and metron (“measure”).
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For B, we check directly that

BB = cost) sinf |[cos® —sinf
—sin® cos O || sin @ cos 0
3 { cos’ 0 + sin? 0 —cos@sinG-FsinBcosB} B {1 0} g
—sin 0 cos 6 + cos 6 sin 6 sin?f + cos’ 6 01

Therefore, B is orthogonal, by Theorem 5.5, and

Bl =gl = { cos 6 sinG}
—sinf cos 0

.

Remark Matrix A in Example 5.7 is an example of a permutation matrix, a matrix
obtained by permuting the columns of an identity matrix. In general, any n X n per-
mutation matrix is orthogonal (see Exercise 25). Matrix B is the matrix of a rotation
through the angle 0 in R”. Any rotation has the property that it is a length-preserving
transformation (known as an isometry in geometry). The next theorem shows that
every orthogonal matrix transformation is an isometry. Orthogonal matrices also
preserve dot products. In fact, orthogonal matrices are characterized by either one of
these properties.

Theorem 5.6

Let Q be an n X n matrix. The following statements are equivalent:

a. Qis orthogonal.
b. |Qx|| = /x| for every x in R™.
¢ Qx-Qy=x-y foreveryxandyinR"

Proof  We will prove that (a) = (c) = (b) = (a). To do so, we will need to make use
of the fact that if x and y are (column) vectors in R, then x-y = x'y.

(a) = (c) Assume that Q is orthogonal. Then QTQ = I, and we have

Qx* Qy = (Qx)'Qy = x"QQy =x"Iy =x"y =x'y
(c) = (b) Assume that Qx - Qy = x -y for every x and y in R". Then, taking y = x,
we have Qx- Qx = x-x,50 || Qx| = VQx*Qx = Vx-x = []x|.

(b) = (a) Assume that property (b) holds and let q; denote the ith column of Q.
Using Exercise 63 in Section 1.2 and property (b), we have

xvy = i(lx + yl* =[x = y[)
=i(lQx + Y - lQx =y
= i(lox + Qyl* — lex — Qyl»
= Qx-Qy

for all x and y in R". [This shows that (b) = (c).]
Now ife;is the ith standard basis vector, then q; = Qe;. Consequently,

_ _ _Jo ifi#j

q;'q; = Qe;*Qe; = ¢;-¢; = {1 ifi=j

Thus, the columns of Q form an orthonormal set, so Q is an orthogonal matrix.
|
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Looking at the orthogonal matrices A and B in Example 5.7, you may notice that
not only do their columns form orthonormal sets—so do their rows. In fact, every
orthogonal matrix has this property, as the next theorem shows.

Theorem 5.1  If Qis an orthogonal matrix, then its rows form an orthonormal set.

Proof From Theorem 5.5, we know that Q ! = QT. Therefore,
(QT)*] — (Q—l)fl — Q — (QT)T

so Q" is an orthogonal matrix. Thus, the columns of Q"—which are just the rows of
Q—form an orthonormal set. __ m

The final theorem in this section lists some other properties of orthogonal
matrices.

Theorem 9.8  Let Q be an orthogonal matrix.

Q ' is orthogonal.
.detQ= =1
If A is an eigenvalue of Q, then |A| = 1.
. If Q, and Q, are orthogonal n X n matrices, then sois Q,Q,.

a0 o

Proof  We will prove property (c) and leave the proofs of the remaining properties
as exercises.

(c) Let A be an eigenvalue of Q with corresponding eigenvector v. Then Qv = Av,
and, using Theorem 5.6(b), we have

vl = lQvll = av] = [Al]v]

Since ||v|| # 0, this implies that [A| = 1. __ e
. .10 —1
Remark Property (c) holds even for complex eigenvalues. The matrix [1 0}

is orthogonal with eigenvalues i and —i, both of which have absolute value 1.

| Iixercises 5.1

\/

In Exercises 1-6, determine which sets of vectors are -2 —4
orthogonal. 3 1 -6
(=37 2] [ 1 [ 4] [-1][2] b=l 2
1. 1,141 —1 2. 2, 21,11 L 4] 0] [ 7]
L 2] L1J L 2 L—=5] 04 L2 1T7r—=17T7171r7 0
3] [-1][ 2 EN 1] [ 3] .| O 0 |1]]-1
3.0 1| 2[|=2| 4 |3]||-2|] 1 -1 1[|1]] 1
L—1J] [ 1] 4 L L 1) (—1] L 1] [ 2] [0 [ 1




In Exercises 7-10, show that the given vectors form an ortho-

gonal basis for R* or R*. Then use Theorem 5.2 to express

w as a linear combination of these basis vectors. Give the
coordinate vector [W]g of w with respect to the basis
B = {v,,v,} of R or B = v, v,, v; of R.

[ 4 1 1
7.v, = _2,v2= 2;w= 4
[1 -6 1
8.v, = 3,v2= 2;w= ]
(1 1] [ 1] (1]
9.v, = OLv,=12,vz=| -1 w=]1
L —1 1] L 1] L1]
B 1] 1 [1
10.v,=|1],v,=| —-1}|v;= 1|w=
L1 0 L —2 ] L3 ]

In Exercises 11-15, determine whether the given orthogo-

nal set of vectors is orthonormal. If it is not, normalize the

vectors to form an orthonormal set.

M3 _4 L 1
11. i}{ 2} 12. f}{ f}
L5. 5 L2 2
- 1 r 1
_ 1710 1
][ 3] 1 RERS R
13. |2, | =L | 2 14. | 23] ¢
—2| |3 5
j 0 —% i i _1
L 2 L3 6
r1/2 0 V3/27 0
5 1/2 Ve6/3 -V3/6 0
1 =1/2 1/Ve!|'| V3/6||1/V2
1/2 -1/Ve6 | | -V3/6] | 1/V2

In Exercises 16-21, determine whether the given matrix is

orthogonal. If it is, find its inverse.

6 0 -1 . { 1/V2 1/\/5}
1o l-1/V2 1/V2
111

3 2 5
0. 1 -l
oo
[cosfsin® —cosh —sin’ 0
19. cos’ 6 sin@  —cosfsinf
sin 0 0 cos 0
1 _1 1 1
2 2 2 2
1 1 1 _1
2 2 2 2
20. _1 1 1 1
2 2 2 2
1 1 _1 1
- 2 2 2 2

27.

28.

Section 5.1  Orthogonality in R" an
1 0 0 1/Ve
0 2/3 1/V2 1/V6
0 —2/3 1/V2 -1/Veé
0 1/3 0 1/V2
. Prove Theorem 5.8(a).

. Prove Theorem 5.8(b).
. Prove Theorem 5.8(d).
. Prove that every permutation matrix is orthogonal.

. If Q is an orthogonal matrix, prove thatany matrix

obtained by rearranging the rows of Q is also
orthogonal.

Let Q be an orthogonal 2 X 2 matrix and letx and y
be vectors in R2. If  is the angle between x and vy,
prove that the angle between Qx and Qy is also 6.
(This proves that the linear transformations defined by
orthogonal matrices are angle-preserving in R?, a fact
that is true in general.)

(a) Prove thatan orthogonal 2 X 2 matrix must have
the form

N .
or

b a b —a
a

where { b} is a unit vector.

(b) Using part (a), show that every orthogonal
2 X 2 matrix is of the form

{cos 0

—sin 0}
sin 6

{cos 0
cos 0

sin 6

sin 0}
—cos 0

where 0 = 0 < 277
(c) Show that every orthogonal 2 X 2 matrix corre-
sponds to either a rotation or a reflection in R,
(d) Show that an orthogonal 2 X 2 matrix Q cor-
responds to a rotation in R* if det Q = 1 and a
reflection in R? if det Q = —1.

In Exercises 29-32, use Exercise 28 to determine whether
the given orthogonal matrix represents a rotation or a
reflection. If it is a rotation, give the angle of rotation; if it is
a reflection, give the line of reflection.

29.

31.

VRV I I
-1/2 V3/2 -5 -
{\/5/2 1/2J 32 {—% J
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33. Let A and B be n X n orthogonal matrices.

(a) Prove that A(AT + B")B= A + B.
(b) Use part (a) to prove that, if det A + det B = 0,
then A + B is not invertible.

34. Let x be a unit vector in R". Partition x as

X1
HAD
X —_ . =
: Yy
xn
Let
T
Ll I y
Q 1

Prove that Q is orthogonal. (This procedure gives a

quick method for finding an orthonormal basis for R"

with a prescribed first vector x, a construction that is
frequently useful in applications.)

35. Prove that if an upper triangular matrix is orthogonal,

then it must be a diagonal matrix.

36. Prove that if n > m, then there is no m X n matrix A

such that |Ax| = |x|| forall xin R".

37.Let B = {v,,...,v,} be an orthonormal basis for R".

(a) Prove that, for any x and y in R”,
x'y = (xv)ly vy + (xv)(y:v,) +---
+ (x*v,)(y*v,)
(This identity is called Parseval’s Identity.)

(b) What does Parseval’s Identity imply about the
relationship between the dot products xy and

(x]5- [Y]B?

Orthogonal Gomplements and
Orthogonal Projections

W+ is pronounced “W perp.’

Figure 5.5
¢=Wwhtand W= ¢!

In this section, we generalize two concepts that we encountered in Chapter 1. The no-
tion of a normal vector to a plane will be extended to orthogonal complements, and
the projection of one vector onto another will give rise to the concept of orthogonal
projection onto a subspace.

A normal vector n to a plane is orthogonal to every vector in that plane. If the plane
passes through the origin, then it is a subspace W of R’, as is span(n). Hence, we have
two subspaces of R with the property that every vector of one is orthogonal to every
vector of the other. This is the idea behind the following definition.

Definition Let W be a subspace of R". We say that a vector vin R" is orthogo-
nal to W if v is orthogonal to every vector in W. The set of all vectors that are
orthogonal to W is called the orthogonal complement of W, denoted W That is,

Wt ={vinR":v-w=0 forallwin W}

If W is a plane through the origin in R’ and € is the line through the origin perpen-
dicular to W (i.e., parallel to the normal vector to W), then every vector v on ¢ is
orthogonal to every vector w in W; hence, ¢ = W*. Moreover, W consists precisely
of those vectors w that are orthogonal to every v on {; hence, we also have W = ¢+

Figure 5.5 illustrates this situation. J
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In Example 5.8, the orthogonal complement of a subspace turned out to be an-
other subspace. Also, the complement of the complement of a subspace was the origi-
nal subspace. These properties are true in general and are proved as properties (a) and
(b) of Theorem 5.9. Properties (c) and (d) will also be useful. (Recall that the intersec-
tion A M B of sets A and B consists of their common elements. See Appendix A.)

Theorem 5.9

Let W be a subspace of R".

W is a subspace of R".

(W =w

wN w = {0}

If W = span(wy, . . ., wy), then v is in W" if and only if v - w; = 0 for all
i=1,...,k

a0 o

Proof (a) Since 0-w = 0 for all win W, 0 isin W*. Let u and v be in W* and let
¢ be a scalar. Then

uw=v-w=0 foralwinW
Therefore,

u+v)'w=uwtvw=0+0=0

sou + visin Wt
We also have

(cu)*w=cluw) =¢c(0) =0
from which we see that cu is in W=, It follows that W is a subspace of R".

(b) We will prove this property as Corollary 5.12.
(c) You are asked to prove this property in Exercise 23.
(d) You are asked to prove this property in Exercise 24. — ==

We can now express some fundamental relationships involving the subspaces
associated with an m X n matrix.

Theorem 5.10

Let A be an m X n matrix. Then the orthogonal complement of the row space of
A is the null space of A, and the orthogonal complement of the column space of A
is the null space of A™:

(row(A))* = null(A) and (col(A))* = null(A7)

Proof Ifxisa vector in R, then x is in (row(A))* if and only if x is orthogonal to
every row of A. But this is true if and only if Ax = 0, which is equivalent to x being
in null(A), so we have established the first identity. To prove the second identity, we
simply replace A by AT and use the fact that row(A”) = col(A). b |

Thus, an m X n matrix has four subspaces: row(A), null(A), col(A), and null(AT).
The first two are orthogonal complements in R", and the last two are orthogonal
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null(4) null(AT)

row(A) col(A)

R” R

Figure 5.6
The four fundamental subspaces

complements in R™ The m X n matrix A defines a linear transformation from R”
into R™ whose range is col(A). Moreover, this transformation sends null(A) to 0 in
R™. Figure 5.6 illustrates these ideas schematically. These four subspaces are called
the fundamental subspaces of the m X n matrix A.

Example 5.9 Find bases for the four fundamental subspaces of

1 1 3 1 6
2 -1 0 1 -1
A=
=3 2 1 =2 1
4 1 6 1 3

and verify Theorem 5.10.

Solution In Examples 3.45, 3.47, and 3.48, we computed bases for the row space,
column space, and null space of A. We found that row(A) = span(u,, u,, us), where

w=I[1010 -1, uw=[0 1 2 0 3], uu,=[0 0 0 1 4]

Also, null(A) = span(x, x;), where

-1 1
-2 -3
x=| 1, x,=| 0
0 —4
0 1

To show that (row(A))" = null(A), it is enough to show that every u, is orthogonal to
W—>  each x;, which is an easy exercise. (Why is this sufficient?)
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The column space of A is col(A) = span(a,, a,, a3), where

1 1 1
2 —1 1
L I L Y (B
4 1 1

We still need to compute the null space of A”. Row reduction produces

1 2 -3 4]0 1 0 0 1/0
1 -1 2 1]0 01 0 6[0
[ATlo]=[3 0 1 6l0|—> |0 0 1 3|0
1 1 -2 1]0 0 0 0 0[0
6 —1 1 3|0 0 0 0 0[]0

So, if y is in the null space of A, then y, = —y,, y, = —6y, and y; = —3y,
It follows that

V4 -1
—6 —6
null(A”) = e Y = span
=3y, =3
Va 1
and it is easy to check that this vector is orthogonal to a,, a,, and as. I

The method of Example 5.9 is easily adapted to other situations.

\

Example 5.10 Let W be the subspace of R’ spanned by

1 -1 0

/ -3 1 -1
w, = , W, = 2|, wy; = 4

—2 -1

5 3 5

Find a basis for W=.

Solution The subspace W spanned by wy, w,, and wj; is the same as the column

space of
1 -1 0
=3 1 -1
A= 5 2 4
0 -2 -1
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R

=
projy( V) Xy

Figure 5.1

v = projy(v) + perpy(v)

perpy(v)

Therefore, by Theorem 5.10, W* = (col(A))* = null(AT), and we may proceed as in
the previous example. We compute

1 -3 5 0 5[0 1 0 0 3 4
[ATlo]=|-1 1 2 -2 3lo|l— |0 1 0 1 3]0
0 -1 4 -1 s5lo 0010 2

Hence, y is in W* ifand only if y; = —3y, — 45, ¥, = —y4 — 3ys,and y; = —2y5. It

follows that

~3y, — 4y, -37] [ -4
Vs~ 35 —1]] -3
Wt = —2y; = span 0| -2
Y4 1 0
Vs 0

and these two vectors form a basis for W+.

.

Recall that, in R?, the projection of a vector v onto a nonzero vector u is given by

) =
proj,(v au"
Furthermore, the vector perp,(v) = v — proj,(v) is orthogonal to proj,(v), and we
can decompose v as

Orthogonal Projections

v = proj,(v) + perp,(v)

as shown in Figure 5.7.

Ifwelet W = span(u), then w = proj,(v) isin Wand w* = perp,(v) isin W*. We
therefore have a way of “decomposing” v into the sum of two vectors, one from W and
the other orthogonal to W—namely, v = w + w". We now generalize this idea to R".

Definition Let W be a subspace of R" and let {u,, . . ., u} be an orthogonal
basis for W. For any vector v in R", the orthogonal projection of v onto W is

defined as
) u v u,v
— dl goe db )
proju) = (G o+ (G

The component of v orthogonal to W is the vector

perpy (v) = v — projy (v)

Each summand in the definition of projy,(v) is also a projection onto a single vec-
tor (or, equivalently, the one-dimensional subspace spanned by it—in our previous
sense). Therefore, with the notation of the preceding definition, we can write

projy(v) = proj, (v) + -+ - + proj, (v)
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Figure 5.8
P=pP1t P

Since the vectors u; are orthogonal, the orthogonal projection of v onto W is the sum
of its projections onto one-dimensional subspaces that are mutually orthogonal. Fig-
ure 5.8 illustrates this situation with W = span(u,, u,), p = projy (v), p; = proj, (v),
and p, = proj, (v).

As a special case of the definition of projy,(v), we now also have a nice geometric
interpretation of Theorem 5.2. In terms of our present notation and terminology,
that theorem states that if w is in the subspace W of R", which has orthogonal basis

{vi, vy ..., Vi), then
W Vv, n n WV,
— v P V.
Vv, ! Vi Vi k

= proj, (w) + - -+ + proj, (w)

Thus, w is decomposed into a sum of orthogonal projections onto mutually orthogo-
nal one-dimensional subspaces of W.

The definition above seems to depend on the choice of orthogonal basis; that is,
a different basis {uy, ..., uy} for W would appear to give a “different” proj(v) and
perpw (v). Fortunately, this is not the case, as we will soon prove. For now, let’s be
content with an example.

Example 35.11

\/

3
Let W be the plane in R® with equation x — y + 2z = 0,and letv = | —1 |. Find the

2
orthogonal projection of v onto W and the component of v orthogonal to W.

Solution In Example 5.3, we found an orthogonal basis for W. Taking

1 -1

w=|1| and wu, = 1

0 1

we have wv=2 wev=—2

Uy =2 ww =
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Therefore,
a u1 Y u2 Vv
S +
projy (v) (ul - u1>u1 (uz : u2>u2
1 [—1 3
0 L 1 -2
3] 2 4
and perpy(v) = v — projy(v) = | -1 | —| 3|=|-%
2 -2 $

It is easy to see that projy (v) is in W, since it satisfies the equation of the plane. It
is equally easy to see that perpy,(v) is orthogonal to W, since it is a scalar multiple of
1

the normal vector | —1 | to W. (See Figure 5.9.)
2

?»
perpw (v)

Figure 5.9

v = projy (v) + perpy (v) I

The next theorem shows that we can always find a decomposition of a vector with
respect to a subspace and its orthogonal complement.

Theorem 5.11 The Orthogonal Decomposition Theorem

Let W be a subspace of R" and let v be a vector in R". Then there are unique
vectors win W and w* in W+ such that

vV=w+ w

Proof  We need to show two things: that such a decomposition exists and that it is
unique.

To show existence, we choose an orthogonal basis {u;, . . ., w} for W. Let
w = projy(v) and let w* = perpy,(v). Then

w + w' = proju(v) + perpy(v) = proji,(v) + (v = projy(v)) = v
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Clearly, w = projy (v) is in W, since it is a linear combination of the basis vectors
u,, ..., u To show that w" is in W, it is enough to show that w' is orthogonal to

each of the basis vectors u;, by Theorem 5.9(d). We compute
u; wh = u; perpy (v)

= u;* (v — projy(v))
(- G )
=u-(v-— A u,
ul'ul uk'uk
u v u;-v
=ll,-'V—< ! )(ul.ul)_..._< )(ui.ui)_
u - u; - uy

—(uk.v>(ui'uk)
u - uy

=ui-v—0—---—(uiiv>(ui-ui) =556 =)

=w'v—uw-v=_0

since u;-u; = 0 for j # i This proves that w* is in W* and completes the existence
part of the proof.

To show the uniqueness of this decomposition, let’s suppose we have another de-
compositionv=w; + wi,wherew, isin Wandw; isin W*. Thenw + w" = w, + w;,s0
W= W, =W — W
But since w — w, is in W and wi — w™ is in W™ (because these are subspaces), we

know that this common vector is in W N W = {0} [using Theorem 5.9(c)]. Thus,

wW—w,=wi —w- =0
sow; = wand wi” = w,. __ e
Example 5.11 illustrated the Orthogonal Decomposition Theorem. When W is

the subspace of R’ given by the plane with equation x — y + 2z = 0, the orthogonal
3

decomposition of v = | —1 | with respect to Wisv = w + w*, where
2

w = projy(v) = and w* = perpy(v) =

W W= W
W[CO W W[

The uniqueness of the orthogonal decomposition guarantees that the definitions
of proj, (v) and perpy (v) do not depend on the choice of orthogonal basis. The
Orthogonal Decomposition Theorem also allows us to prove property (b) of Theo-
rem 5.9. We state that property here as a corollary to the Orthogonal Decomposition
Theorem.

Corollary 5.12

If W is a subspace of R", then
wWht=w
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Proof Ifwisin Wand xisin W™, then w-x = 0. But this now implies that w is in
(WH)*. Hence, W C (W"')*. Nowlet vbe in (W*)". By Theorem 5.11, we can write
v =w + w' for (unique) vectors win Wand w* in W*. But now

_ 1 _
O=vw=(w+tw)w =ww: +wewl=0+w--wt=w--wt

sow® = 0. Therefore,v=w + w' = w, and thus vis in W. This shows that (W>)* C W
and, since the reverse inclusion is also true, we conclude that (W*)* = W, as required.

____ e
There is also a nice relationship between the dimensions of W and W™, expressed in
Theorem 5.13.

Theorem 5.13

If W is a subspace of R", then
dim W+ dimW*' =n

Proof Let {u,,..., u} be an orthogonal basis for W and let {v,, ..., vj} be an orthog-
onal basis for W*. Then dim W = kanddim W* =L LetB={u,,...,u,v,,..., v}
We claim that B is an orthogonal basis for R".

We first note that, since each u; is in W and each v; is in wt,

u;'v; =0 fori= I,...,kandj=1,...,1

Thus, B is an orthogonal set and, hence, is linearly independent, by Theorem 5.1.
Next, if v is a vector in R", the Orthogonal Decomposition Theorem tells us that v =
w + w' for some win Wand w" in W*. Since w can be written as a linear combina-
tion of the vectors u; and w* can be written as a linear combination of the vectors Vi,V
can be written as a linear combination of the vectors in B. Therefore, B3 spans R" also
and so is a basis for R". It follows that k + [ = dim R", or

dim W + dim W+ = #n __emm

As a lovely bonus, when we apply this result to the fundamental subspaces of a
matrix, we get a quick proof of the Rank Theorem (Theorem 3.26), restated here as
Corollary 5.14.

Coroliary 5.14

The Rank Theorem

If A isan m X n matrix, then

rank(4) + nullity(4) = n

Proof In Theorem 5.13, take W = row(A). Then W+ = null(A), by Theorem 5.10,
so dim W = rank(A) and dim W+ = nullity(A). The result follows. a

Note that we get a counterpart identity by taking W = col(A) [and therefore
Wt = null(47)]:

rank(A) + nullity(A") = m
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Sections 5.1 and 5.2 have illustrated some of the advantages of working with
orthogonal bases. However, we have not established that every subspace has an or-
thogonal basis, nor have we given a method for constructing such a basis (except in
particular examples, such as Example 5.3). These issues are the subject of the next
section.

\

IEKBI’GiSBS 9.2

In Exercises 1-6, find the orthogonal complement W of W
and give a basis for W™.

In Exercises 11-14, let W be the subspace spanned by the
given vectors. Find a basis for W™.

% [ 2] 4
1. W= 2x—y =20
Y 11.w1: 1 »y Wy = 0
X L —2 ] L1
2. W= B3x+4y=0 - .
y 1 0
[ x] -1 1
* 12.w, = W, =
3‘W: // ;x—i—y—z:() 3 -2
L z ] | —2 | L 1]
x| 27 17 M2
4 W=1{|y|:2x—y+3z2=0 -1 2 5
Lz Bwi= g™ = 3™~ |6
E3 L 3] | —2 ] 1
5W=\|y|:x=ty=—tz=23t T4 T 1] T,
i 6 2 2
x 1 1 14.W1: -1 » Wy = 0 » W3 = 2
6. W= y :x=5t,y=—5t,z=2t 1 1 -1
Lz ] | — 1| L —3] L 2

In Exercises 7 and 8, find bases for the row space and null
space of A. Verify that every vector in row(A) is orthogonal
to every vector in null(A).

In Exercises 15-18, find the orthogonal projection of v onto
the subspace W spanned by the vectors w; (You may assume
that the vectors w; are orthogonal.)

r 1 -1 3
5 2 1 [ 7 1
7.A = LV = ,u, =
0 1 -2 B.v=1 —4} W M
-1 -1 1 3 1] 1]
! 1 -1 0 2 16.v = lg=|1|,u=|-1
Aol 0 244 -2 1 0]
s 2 2 -2 0 1 1 2] —1]
-3 -1 3 4 5 172v=12 [w=| -2 u=| 1
1] 4 |
In Exercises 9 and 10, find bases for the column space of _ _
A and the null space of AT for the given exercise. Verify ¢ 1 : .y
fhat everyTvector in col(A) is orthogonal to every vector 18.V = -2 uy = 1 u, = —1 u, = 0
in null(A"). 4 0 -1 ; 1
9. Exercise 7 10. Exercise 8 -3 0] 1 1
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In Exercises 19-22, find the orthogonal decomposition of that v = w + w’. [s it necessarily true that w’ is in W*?
v with respect to W. Either prove that it is true or find a counterexample.
_ [ 2 T 1 26. Let {v,, ..., v,} be an orthogonal basis for R" and let

LD -2 iy W = span(vy, ..., v). Is it necessarily true that W =

o o span(vg,y, . . ., v,,)? Either prove that it is true or find a

1 counterexample.
20.v = 2 |,W = span| |1
1 1 In Exercises 27-29, let W be a subspace of R", and let x be
c T T a vector in R".
4 1 1 27. Prove that x is in W if and only if proj,(x) = x.

2l.v=|—-2|,W=span| | 2],| —1 28. Prove that x is orthogonal to W if and only if

L 3] L1 1 projy(x) = 0.

ro90 1 1 29. Prove that projy (projy (x)) = projy(x).

- 1 0 30.Let S = {v,,..., v} bean orthonormal setin R", and
22.v= 5| W = span 101 =1 let x be a vector in R".
6 0 1 (@) Prove that
23. Prove Theorem 5.9(c). [xlI? = [x-wi + feewol? + -+ xewif?
24. Prove Theorem 5.9(d). (This inequality is called Bessel’s Inequality.)
25. Let W be a subspace of R” and v a vector in R". Suppose (b) Prove that Bessel’s Inequality is an equality if and
that wand w’ are orthogonal vectors with w in W and only if x is in span($).

and the 0R Factorization

m f The Gram-Schmidt Process

In this section, we present a simple method for constructing an orthogonal (or or-
thonormal) basis for any subspace of R”". This method will then lead us to one of the
most useful of all matrix factorizations.

The Gram-Schmidt Process
We would like to be able to find an orthogonal basis for a subspace W of R". The idea

is to begin with an arbitrary basis {x,, . . . , x;} for W and to “orthogonalize” it one
vector at a time. We will illustrate the basic construction with the subspace W from
Example 5.3.

Example 5.12 Let W = span(xy, x,), where

1 -2
x,=|1]| and x, = 0
0

Construct an orthogonal basis for W.

Solution  Starting with x,, we get a second vector that is orthogonal to it by taking
the component of x, orthogonal to x; (Figure 5.10).



Section 5.3 The Gram-Schmidt Process and the QR Factorization 389
- X2
PRl - S
= N
. N
prO_]xl(Xz) / ,
w
X]

Figure 5.10
Constructing v, orthogonal to x,

Algebraically, we set v; = xj, so

v, = perp, (x,) = x, — projxl(xz)

Il
o
|
Y
N]I
[\
N———
O =
Il
—

Then {v,, v,} is an orthogonal set of vectors in W. Hence, {v,, v,} is a linearly indepen-
dent set and therefore a basis for W, since dim W = 2. i

Remark Observe that this method depends on the order of the original basis

-2 1
vectors. In Example 5.12, if we had takenx;, = 0 |andx, = | 1 |, wewould have
1 0

obtained a different orthogonal basis for W. (Verify this.)

The generalization of this method to more than two vectors begins as in
Example 5.12. Then the process is to iteratively construct the components of subse-
quent vectors orthogonal to all of the vectors that have already been constructed. The
method is known as the Gram-Schmidt Process.

Theorem 5.15

Then foreachi=1,...,k {v,...

The Gram-Schmidt Process

Let {xy, ..., X} be a basis for a subspace W of R" and define the following:
Vi = Xq, W, = span(x,)
V)X
V, =X = <v1 _V2>V1, W, = span(x;, x,)
1 1
VitXs VX3
V3 = X3 — <V1 Vl )Vl - <V2 .V2>V2, W3 = Span(Xl, XZ, X3)

V-1 X
= (7 Vi 1> W, = span(x,, ..., X)
Vi—1°Vk-1

, V;} is an orthogonal basis for W;. In particular,
{v1,..., v} is an orthogonal basis for W.
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Jorgen Pedersen Gram
(1850-1916) was a Danish actuary
(insurance statistician) who was
interested in the science of mea-
surement. He first published the
process that bears his name in

an 1883 paper on least squares.
Erhard Schmidt (1876-1959) was
a German mathematician who
studied under the great David
Hilbert and is considered one

of the founders of the branch of
mathematics known as functional
analysis. His contribution to the
Gram-Schmidt Process came in a
1907 paper on integral equations,
in which he wrote out the details
of the method more explicitly than
Gram had done.

Stated succinctly, Theorem 5.15 says that every subspace of R" has an orthogonal
basis, and it gives an algorithm for constructing such a basis.

Proof  We will prove by induction that, for eachi =1, ..., k, {v,,...,v;} isan or-
thogonal basis for W,.

Since v, = x,, clearly {v,} is an (orthogonal) basis for W, = span(x,;). Now assume
that, for some i <k, {v}, ..., v;} is an orthogonal basis for W;. Then

O (Vl i Xi+1>v (Vz : Xi+1> (Vz' : xi+l>v
i+1 — X+ T\ T A U A 6 T (R A 4
Vi' vy V2 'V, VitV;
By the induction hypothesis, {v,, ..., Vv;} is an orthogonal basis for span(x,, ..., x;) =
W,. Hence,
Vier = X1 T prOjW,(Xi+1) = Peer,-(xiﬂ)

So, by the Orthogonal Decomposition Theorem, v;;, is orthogonal to W, By

definition, vy, . . ., v; are linear combinations of x;, . . ., X; and, hence, are in W,.
Therefore, {v,, ..., v;.,} is an orthogonal set of vectors in W, .

Moreover, v, # 0, since otherwise X;; = projy (x;.,), which in turn implies
that x;, , is in W;. But this is impossible, since W; = span(x,, ..., x;) and {x,, ..., X;4}
is linearly independent. (Why?) We conclude that {v,, ..., v;; } isa set of i + 1 lin-
early independent vectors in W, ,. Consequently, {v,, ..., v,.,} is a basis for W, ,
since dim W;,, = i + 1. This completes the proof. ]

If we require an orthonormal basis for W, we simply need to normalize the
orthogonal vectors produced by the Gram-Schmidt Process. That is, for each i, we
replace v; by the unit vector q; = (1/]|v;|))v,.

.

Example 5.13

Apply the Gram-Schmidt Process to construct an orthonormal basis for the subspace
W = span(x, X,, x3) of R?, where

1 2 2

—1 1 2

A R L Y R
1 1 2

Solution  First we note that {x,, X,, X3} is a linearly independent set, so it forms a basis
for W. We begin by setting v; = x;. Next, we compute the component of x, orthogo-
nal to W, = span(v,):

V] = X2
v, = PerPWI(Xz) =X ( . >V1

D= = NW RW = O = N
—
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Forhand calculations, itis a good idea to “scale” v, at this point to eliminate fractions.
When weare finished, we can rescale the orthogonal set we are constructing to obtain
an orthonormal set; thus, we can replace each v; by any convenient scalar multiple
without affecting the final result. Accordingly, we replace v, by

3

—_— = W

We now find the component of x; orthogonal to
W, = span(x,, x,) = span(v;,v,) = span(vy, v})

using the orthogonal basis {v,, v;}:

’
_ ( ) _ _ Vit Xy _ V) X3 ,
Vs = Perpy,(Xs) = X3 — Vi Vv V2

2 1 3
2 -1 3
=19 o |~ ®|,
|2 1 1
r—1
2
0
|1
2
!
-1
. , 0
Again, we rescale and use v; = 2v; =
2

We now have an orthogonal basis {v,, v;, vi} for W. (Check to make sure that
these vectors are orthogonal.) To obtain an orthonormal basis, we normalize each
vector:

1 1/2

(1 (| -1 | -1/2
ql‘(ﬂvln)“‘(E) ~1] " | -2
1 1/2

3 3/2V5 3V5/10

(1N, (1 \[3]_|32V5|_|3V5/10
q2_<||v;||>“‘(ﬁ> 1| |1/2v5| | V5/10
1 1/2V5 V5/10

-1 -1/Ve6 -V6/6

(1N, (1 0| 0 B 0
q3_(Hv§H>V3_<W> 1| /Ve| | Ve/e
2 2/\Ve V6/3

Then {qy, q,, q3} is an orthonormal basis for W. i
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One of the important uses of the Gram-Schmidt Process is to construct an orthogo-
nal basis that contains a specified vector. The next example illustrates this application.

Example 5.14

\/

Find an orthogonal basis for R’ that contains the vector
1
v, =12
3

Solution  We first find any basis for R® containing v,. If we take

0 0
x,=|1| and x,=10
0 1

then {v,, X,, X;} is clearly a basis for R’. (Why?) We now apply the Gram-Schmidt
Process to this basis to obtain

. 0 1 -1 -1
_—
V2:X2_ 1.2V1: 1 _(%)2 = %, vé: 5
n 0 3 3 -3
L 7
and finally
V' X V) X 0] ! -1 I_g
vV, =X, — (¥>v1 - (%)vé =0 -@|2|-@)| 5= ,
vi'vy ACRAS) 1 3 -3 L
_ 10
-3
v, = 0
1

Then {v,, v}, v}} is an orthogonal basis for R’ that contains v,. I

Similarly, given a unit vector, we can find an orthonormal basis that contains it by
using the preceding method and then normalizing the resulting orthogonal vectors.

Remark When the Gram-Schmidt Process is implemented on a computer, there
is almost always some roundoff error, leading to a loss of orthogonality in the vec-
tors q;. To avoid this loss of orthogonality, some modifications are usually made. The
vectors v; are normalized as soon as they are computed, rather than at the end, to
give the vectors q;, and as each q; is computed, the remaining vectors x; are modified
to be orthogonal to q;. This procedure is known as the Modified Gram-Schmidt
Process. In practice, however, a version of the QR factorization is used to compute

orthonormal bases.

The QR Factorization

If A isan m X »n matrix with linearly independent columns (requiring that m = n),
then applying the Gram-Schmidt Process to these columns yields a very useful fac-
torization of A into the product of a matrix Q with orthonormal columns and an
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upper triangular matrix R. This is the QR factorization, and it has applications to the
numerical approximation of eigenvalues, which we explore at the end of this section,
and to the problem of least squares approximation, which we discuss in Chapter 7.

To see how the QR factorization arises, let a,, .. ., a, be the (linearly independent)
columns of A and letq, . .., q, be the orthonormal vectors obtained by applying the
Gram-Schmidt Process to A with normalizations. From Theorem 5.15, we know that,
foreachi=1,...,n,

W, = span(a,, ..., a;) = span(q,...,q)

Therefore, there are scalars ry;, 15, . . . , t; such that
a, =r;q tryqt+ -+ r;q fori=1,...,n
That is,
a = mq

a, = 1pq; + 1q,

a, = "uqa + nq2 +t TnnQn

which can be written in matrix form as

'y T "7 Ty

0 1y 0 1y
A=1Tla, a, -+ a,]=[q q " q,l . . .| = QR

0O 0 - r

nn

Clearly, the matrix Q has orthonormal columns. It is also the case that the diago-
nal entries of R are all nonzero. To see this, observe that if r; = 0, then a, is a linear

combination ofq,, ..., q;_; and, hence, is in W,_,. But then a, would be a linear com-
bination of a, ..., a;_;, which is impossible, since a,, . . . , a; are linearly independent.
We conclude thatr;; = 0fori=1,..., n Since R is upper triangular, it follows that it

must be invertible. (See Exercise 23.)
We have proved the following theorem.

Theorem 5.16

The QR Factorization

Let A be an m X »n matrix with linearly independent columns. Then A can be fac-
tored as A = QR, where Q is an m X n matrix with orthonormal columns and R is
an invertible upper triangular matrix.

Remarks

*  We can also arrange for the diagonal entries of R to be positive. If any r;; < 0,
simply replace q;by —q;and r; by —r;;.

¢ The requirement that A have linearly independent columns is a necessary one.
To prove this, suppose that A is an m X n matrix that has a QR factorization, as in The-
orem 5.16. Then, since R is invertible, we have Q = AR . Hence, rank(Q) = rank(A),
by Exercise 61 in Section 3.5. But rank(Q) = n, since its columns are orthonormal and,
therefore, linearly independent. So rank(A) = n too, and consequently the columns of
A are linearly independent, by the Fundamental Theorem.
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° The QR factorization can be extended to arbitrary matrices in a slightly
modified form. If A is m X #, it is possible to find a sequence of orthogonal matrices
Qp...,Q,_suchthat Q,_, - Q,Q,A is an upper triangular m X n matrix R. Then
A = QR,where Q = (Q,,_; - Q,Q,) 'isan orthogonal matrix. We will examine this
approach in Exploration: The Modified QR Factorization.

Example 5.1 Find a QR factorization of

1 2 2
-1 1 2
A:
-1 0 1
1 1 2

Solution  The columns of A are just the vectors from Example 5.13. The orthonormal
basis for col(A) produced by the Gram-Schmidt Process was

1/2 3V5/10 -Ve6/6

| -1)/2 _|3V5/10 3 0
V= T ol BT Vs
1/2 V5/10 V6/3

SO
1/2 3V5/10 —V6/6
-1/2 3V5/10 0
-1/2  V5/10 V6/6
1/2  V5/10  Ve/3

From Theorem 5.16, A = QR for some upper triangular matrix R. To find R, we
use the fact that Q has orthonormal columns and, hence, Q7Q = I. Therefore,

QA = Q'QR = IR = R

Q=[q 9 q]=

We compute

12 2
1/2 -2 -2 12 ) L,
R=QA =|3V5/10 3V5/10 V5/10 V5/10 |
L —Ve/6 0 Ve/6  V6/3 A

(2 1 1/2

=0 V5 3V5)2

L0 0 Ve/2 4

T Exercises 9.3

\

In Exercises 1-4, the given vectors form a basis for R* or R’. [ 3 3
Apply the Gram-Schmidt Process to obtain an orthogonal CobsiES 3pPXT
basis. Then normalize this basis to obtain an orthonormal i
basis. 1 0 3
1.X1:[1} Xzz[l} 3% = | 1% =13 ,% =2
1 2 -1 3 4
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1 1 1
4.x,=|1|,x,=|1]|,x3=|0
1 0 0

In Exercises 5 and 6, the given vectors form a basis for a
subspace W of R® or R*. Apply the Gram-Schmidt Process
to obtain an orthogonal basis for W.

1 3
5x,=|1[,x,=1]4
L0 2

-2 3 1

e -

CXZ g PeT ] o™ T

2 4 1

In Exercises 7 and 8, find the orthogonal decomposition of v
with respect to the subspace W.

In Exercises 13 and 14, fill in the missing entries of Q
to make Q an orthogonal matrix.

[ 1/V2 1/V3

13.Q = 0 1/V3 *
L-1/V2 1/V3 *

ri/2 2/V1i  * #
RV VAV
14.Q = 1/2 0 £k
[1/2 —3/V14 * *

In Exercises 15 and 16, find a QR factorization of the
matrix in the given exercise.

15. Exercise 9 16. Exercise 10

In Exercises 17 and 18, the columns of Q were obtained by
applying the Gram-Schmidt Process to the columns of A.
Find the upper triangular matrix R such that A = QR.

4
7.v = | —4 |, Was in Exercise 5 2 8 2 A
L3 17.4=| 1 7 -1|,0q=] 1 2z =2
r1 -2 -2 1 2z 1
4 r
8.v= 0 , W as in Exercise 6 1 3 1/Vée 1/\V3
2 4 2/Ve 0

2 18. A = ,Q = /
) -1 -1 -1/V6 1/V3
L 0 1 0 1/V3

Use the Gram-Schmidt Process to find an orthogonal basis
for the column spaces of the matrices in Exercises 9 and 10.

1 1 1
01 1
1 -1 2
911 0 1 10
-1 1 0
1 1 0
1 51

11. Find an orthogonal basis for R’ that contains the

3
vector | 1
5
12. Find an orthogonal basis for R* that contains the
vectors
1
2 0
and
-1 1
0 3

19. If A is an orthogonal matrix, find a QR factorization
of A.

20. Prove that A is invertible if and only if A = QR, where
Q is orthogonal and R is upper triangular with nonzero
entries on its diagonal.

In Exercises 21 and 22, use the method suggested by
Exercise 20 to compute A~ for the matrix A in the given
exercise.

22. Exercise 15

23. Let Abe an m X n matrix with linearly independent
columns. Give an alternative proof that the upper
triangular matrix R in a QR factorization of A must
be invertible, using property (c) of the Fundamental
Theorem.

21. Exercise 9

24. Let A be an m X n matrix with linearly independent
columns and let A = QR be a QR factorization of A.
Show that A and Q have the same column space.



Figure 5.11

The Modified QR Factorization

When the matrix A does not have linearly independent columns, the Gram-Schmidt
Process as we have stated it does not work and so cannot be used to develop a gen-
eralized QR factorization of A. There is a modification of the Gram-Schmidt Process
that can be used, but instead we will explore a method that converts A into upper
triangular form one column at a time, using a sequence of orthogonal matrices. The
method is analogous to that of LU factorization, in which the matrix L is formed
using a sequence of elementary matrices.

The first thing we need is the “orthogonal analogue” of an elementary matrix;
that is, we need to know how to construct an orthogonal matrix Q that will trans-
form a given column of A—call it x—into the corresponding column of R—call it y.
By Theorem 5.6, it will be necessary that ||x|| = |Qx| = |y|. Figure 5.11 suggests a
way to proceed: We can reflect x in a line perpendicular to x — y. If

1 d,
u= (rrx - yu>"‘ V= M

d,

is the unit vector in the direction of x — y, then u* = [ J ] is orthogonal to u, and

1
we can use Exercise 26 in Section 3.6 to find the standard matrix Q of the reflection

in the line through the origin in the direction of u*.

1-2d? —24,d,

1. Show that Q =
SHE {—Zdldz 1 — 2d2

} =1 - 2uu’.

2. Compute Q for

(a) u= E] (b) x = [ﬂ,y= [;}

We can generalize the definition of Q as follows. If u is any unit vector in R", we
define an n X n matrix Q as

Q=1-2uu’



Courtesy Oak Ridge National Lab

Alston Householder (1904-1993)
wasone of the pioneers in the field
of numerical linear algebra. He
was the first to present a systematic
treatment of algorithms for solving
problems involving linear systems.
In addition to introducing the
widely used Householder trans-
formations that bear his name, he
was one of the first to advocate the
systematic use of norms in linear
algebra. His 1964 book The Theory
of Matrices in Numerical Analysis is
considered a classic.

Such a matrix is called a Householder matrix (or an elementary reflector).

3. Prove that every Householder matrix Q satisfies the following properties:
(b) Qis orthogonal. () Q=1

4. Prove that if Q is a Householder matrix corresponding to the unit vector
u, then

(a) Q is symmetric.

{ —v ifvisin span(u)
Qv = .
v ifv.-u=0

1
5 Compute Qforu = | —1
2

and verify Problems 3 and 4.

6. Letx # y with ||x| = [|y| and set u = (1/|x — y|)(x — y). Prove that the
corresponding Householder matrix Q satisfies Qx = y. [Hint: Apply Exercise 57 in
Section 1.2 to the result in Problem 4.]

7. Find Q and verify Problem 6 for

1 3
2| and y=1|0
2 0

X =

We are now ready to perform the triangularization of an m X n matrix A, column
by column.

8. Let x be the first column of A and let
]
0
Y= .
0
Show that if Q, is the Householder matrix given by Problem 6, then Q,A is a matrix
with the block form
k%
QA = { }

0 A

where A, is (m — 1)X(n — 1).

If we repeat Problem 8 on the matrix A, we use a Householder matrix P, such that

* ES
P.A, =
w {o Aj

where A, is (m — 2)X(n — 2).

1 0
9. SetQ, = [0 P ] Show that Q, is an orthogonal matrix and that
2
kS b *
Q,QA=1]0 =* *
0 0 A,

391



10. Show that we can continue in this fashion to find a sequence of orthogonal
matrices Qy, . .., Q,,_, such that Q,,_, --- Q,Q,A = R is an upper triangular m X n
matrix (e, r;; = 0ifi > j).

11. Deduce that A = QR with Q = Q,Q, - Q,,_, orthogonal.

12.  Use the method of this exploration to find a QR factorization of

1 3 3 2
} b)A=1]2 -4 1 1
2 -5 —1 =2

39 1

(a)A=[_4 >

See G. H. Golub and C. F. Van
Loan, Matrix Computations
(Baltimore: Johns Hopkins
University Press, 1983).
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Approximating Eigenvalues
with the QR Algorithm

One of the best (and most widely used) methods for numerically approximating the
eigenvalues of a matrix makes use of the QR factorization. The purpose of this ex-
ploration is to introduce this method, the QR algorithm, and to show it at work in a
few examples. For a more complete treatment of this topic, consult any good text on
numerical linear algebra. (You will find it helpful to use a CAS to perform the calcula-
tions in the problems below.)

Given a square matrix A, the first step is to factoritas A = QR (using whichever
method is appropriate). Then we define A; = RQ.

1. First prove that A, is similar to A. Then prove that A, has the same eigen-
values as A.

1 0
2. IfA = {1 3], find A, and verify that it has the same eigenvalues as A.

Continuing the algorithm, we factor A} as A} = Q;R, and set A, = R;Q,. Then we
factor A, = Q,R, and set A; = R,Q,, and so on. That is, for k = 1, we compute A; =
QiR; and then set A, = R Q.

3. Provethat A issimilarto A forallk = 1.

4. Continuing Problem 2, compute A,, A;, A,, and As, using two-decimal-place
accuracy. What do you notice?

It can be shown that if the eigenvalues of A are all real and have distinct absolute
values, then the matrices A; approach an upper triangular matrix U.

5. What will be true of the diagonal entries of this matrix U?

6. Approximate the eigenvalues of the following matrices by applying the QR
algorithm. Use two-decimal-place accuracy and perform at least five iterations.

2 3 1 1
(a) P (b) B J
[ 1 Sl 11 -1
@ 1 1l @] o2 o0
L—4 1 L—2 4 2
7. Apply the QR algorithm to the matrix A = [_f _ﬂ What happens?

Why?



8  Shift the eigenvalues of the matrix in Problem 7 by replacing A with
B = A + 0.91I. Apply the QR algorithm to B and then shift back by subtracting 0.9
from the (approximate) eigenvalues of B. Verify that this method approximates the
eigenvalues of A.

9. LetQ, = Qand R, = R. First show that

QoQ: - Q1 Ax = AQYQ; " - - Q4
for all k = 1. Then show that
(Qle' : ’Qk)(Rk' ’ ’RlRo) = A(Qle' : .Qk—l)(kal. ) 'RlRo)

[Hint: Repeatedly use the same approach used for the first equation, working from
the “inside out”] Finally, deduce that (Q,Q; - Qx)(Ri - RiR,) is the QR factorization
of AF*1,
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Orthogonal Diagonalization of Symmetric Matrices

We saw in Chapter 4 that a square matrix with real entries will not necessarily have real

0 1
eigenvalues. Indeed, the matrix [1 0} has complex eigenvalues i and —i. We also

discovered that not all square matrices are diagonalizable. The situation changes
dramatically if we restrict our attention to real symmetric matrices. As we will show
in this section, all of the eigenvalues of a real symmetric matrix are real, and such a
matrix is always diagonalizable.

Recall that a symmetric matrix is one that equals its own transpose. Let’s begin by
studying the diagonalization process for a symmetric 2 X 2 matrix.

\/

Example 5.16

1 2
If possible, diagonalize the matrix A = [2 B 2}.

Solution  The characteristic polynomial of A is AM+A—6=(A+3)A—2),from
which we see that A has eigenvalues A} = —3 and A, = 2. Solving for the correspond-
ing eigenvectors, we find

e[ e[}

respectively. So A is diagonalizable, and if we set P = [v, v,], then we know that

PT'AP = [_3 0} =D
0o 2] 7

However, we can do better. Observe that v, and v, are orthogonal. So, if we nor-
malize them to get the unit eigenvectors

3 { 1/\/5} P B {2/\/5}
N YAV B A B VAV
and then take
o= ]_[ 1/V5 2/\@}
I R B YA R VAV
we have Q 'AQ = D also. But now Q is an orthogonal matrix, since {u,;, u,} is an

orthonormal set of vectors. Therefore, Q! = Q7, and we have QTAQ = D. (Note that
checking is easy, since computing Q" only involves taking a transpose!) I

The situation in Example 5.16 is the one that interests us. It is important enough
to warrant a new definition.

Definition A square matrix A is orthogonally diagonalizable if there exists an
orthogonal matrix Q and a diagonal matrix D such that Q"AQ = D.

We are interested in finding conditions under which a matrix is orthogonally
diagonalizable. Theorem 5.17 shows us where to look.
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Theorem 5.11

If A is orthogonally diagonalizable, then A is symmetric.

Proof If A is orthogonally diagonalizable, then there exists an orthogonal ma-
trix Q and a diagonal matrix D such that QTAQ = D. Since Q"' = QF, wehave QTQ =
I=QQ7% so
QDQ" = QQ'AQQ" = IAI = A
But then
AT — (QDQT)T — (QT)TDTQT — QDQT = A

since every diagonal matrix is symmetric. Hence, A is symmetric. —aaem

Remark Theorem 5.17 shows that the orthogonally diagonalizable matrices are
all to be found among the symmetric matrices. It does not say that every symmetric
matrix must be orthogonally diagonalizable. However, it is a remarkable fact that this

indeed is true! Finding a proof for this amazing result will occupy us for much of the
rest of this section.

We next prove that we don’t need to worry about complex eigenvalues when work-
ing with symmetric matrices with real entries.

Theorem 5.18

If A is a real symmetric matrix, then the eigenvalues of A are real.

Recall that the complex conjugate of a complex number z = a + bi is the number
z = a — bi (see Appendix C). To show that z is real, we need to show that b = 0. One
way to do this is to show that z = z, for then bi = —bi (or 2bi = 0), from which it
follows that b = 0.

We can also extend the notion of complex conjugate to vectors and matrices by,
for example, defining A to be the matrix whose entries are the complex conjugates of
the entries of A; thatis, if A = [a;], then A= [a;;]. The rules for complex conjugation
extend easily to matrices; in particular, we have AB = AB for compatible matrices
A and B.

Proof Suppose that A is an eigenvalue of A with corresponding eigenvector v. Then
Av = Av, and, taking complex conjugates, we have Av = Av. But then

AV=AV=Av=Av= AV
since A is real. Taking transposes and using the fact that A is symmetric, we have
VA =VAT= (4" = (W) = W'
Therefore,
AFTY) = V() = ¥vI(Av) = F"A)v = WD)y = AGTY)

or (A — A)FV) = 0.
a, + byi a, — by
Now ifv = e ,thenv = : , SO
a, + b, a, — b,i

viv=(al +b}) + -+ @+ b)) #0
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since v # 0 (because it is an eigenvector). We conclude that A — A=00rA=A
Hence, A is real. b |

Theorem 4.20 showed that, for any square matrix, eigenvectors corresponding
to distinct eigenvalues are linearly independent. For symmetric matrices, something
stronger is true: Such eigenvectors are orthogonal.

Theorem 5.19

If A is a symmetric matrix, then any two eigenvectors corresponding to distinct
eigenvalues of A are orthogonal.

Proof Let v, and v, be eigenvectors corresponding to the distinct eigenvalues
A, # A, sothat Av; = A;v, and Av, = A,v,. Using A” = A and the fact that x-y = xy
for any two vectors x and y in R", we have

Mvevy) = (A v) v, = Avycv, = (Av)Ty,
= (vIAT)v, = (vA)v, = vi(4v,)
=vilAv,) = LV = A(v o vy)

Hence, (A; — A,)(vy+v,) = 0. But A, — A, # 0, s0 v; -V, = 0, as we wished to show.
|

>»
I>

Example 5.17

Verify the result of Theorem 5.19 for

2 1
A=1]1 2
1 1

N = =

Solution  The characteristic polynomial of A is AN+ —9r+4=—(A—4)-
(A — 1)?, from which it follows that the eigenvalues of A are A; = 4 and A, = 1. The
corresponding eigenspaces are

1 -1 -1
E, = span| | 1 and E; = span 01,
1 1 0

(Check this.) We easily verify that

1 —1 1 —1
1]- 0|=0 and 1 1{=0
1 1 1 0

from which it follows that every vector in E, is orthogonal to every vector in E,.

(Why?) i

-1] [-1
Remark Notethat| 0 |+| 1| = L Thus, eigenvectors corresponding to the
1 0

same eigenvalue need not be orthogonal.



Section 5.4 Orthogonal Diagonalization of Symmetric Matrices 403

We can now prove the main result of this section. It is called the Spectral Theo-
rem, since the set of eigenvalues of a matrix is sometimes called the spectrum of the
matrix. (Technically, we should call Theorem 5.20 the Real Spectral Theorem, since
there is a corresponding result for matrices with complex entries.)

Theorem 5.20

Spectrum is a Latin word meaning
“image” When atoms vibrate, they
emit light. And when light passes
f[hrough a prism, it spreads out »—
into a spectrum—a band of
rainbow colors. Vibration
frequencies correspond to the
eigenvalues of a certain operator
and are visible as bright lines in the
spectrum of light that is emitted
from a prism. Thus, we can liter-
ally see the eigenvalues of the atom
in its spectrum, and for this rea-
son, it is appropriate that the word
spectrum has come to be applied

to the set of all eigenvalues of a
matrix (or operator).

X
==
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o
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B
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The Spectral Theorem

Let A bean n X n real matrix. Then A is symmetric if and only if it is orthogonally
diagonalizable.

Proof Wehave already proved the “if” part as Theorem 5.17. To prove the “only if”
implication, we proceed by induction on #. For n = 1, there is nothing to do, since a
1 X 1 matrix is already in diagonal form. Now assume that every k X k real symmet-
ric matrix with real eigenvalues is orthogonally diagonalizable. Let n = k + 1 and let
A bean n X n real symmetric matrix with real eigenvalues.

Let A, be one of the eigenvalues of A and let v, be a corresponding eigenvector.
Then v, is a real vector (why?) and we can assume that v, is a unit vector, since
otherwise we can normalize it and we will still have an eigenvector corresponding
to A;. Using the Gram-Schmidt Process, we can extend v; to an orthonormal basis

{v, vy ..., v,} of R". Now we form the matrix
Ql = [Vl VZH'Vn]
Then Q is orthogonal, and
i
. v, v,
QAQ, = Al vy v, = S| [Av, Av, - Av,]
Lv; | v,
Fvi]
T
= v:z [Av; Av, -+ Av,]
Lv,
(A
= | 2L =B
LO

In a lecture he delivered at the University of Géttingen in 1905, the German mathematician
David Hilbert (1862-1943) considered linear operators acting on certain infinite-dimensional
vector spaces. Out of this lecture arose the notion of a quadratic form in infinitely many
variables, and it was in this context that Hilbert first used the term spectrum to mean a
complete set of eigenvalues. The spaces in question are now called Hilbert spaces.

Hilbert made major contributions to many areas of mathematics, among them integral
equations, number theory, geometry, and the foundations of mathematics. In 1900, at the
Second International Congress of Mathematicians in Paris, Hilbert gave an address entitled
“The Problems of Mathematics” In it, he challenged mathematicians to solve 23 problems
of fundamental importance during the coming century. Many of the problems have been
solved—some were proved true, others false—and some may never be solved. Nevertheless,
Hilbert’s speech energized the mathematical community and is often regarded as the most
influential speech ever given about mathematics.
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since vj(Av;) = A(vly,) = A(vy-vy) = Apand vi(Ayvy) = M(vlv) = M(viev) =0
for i # 1, because {vy, v,,...,V,}is an orthonormal set.
But

B" = (QfAQ)" = Q{AT(Q])" = QAQ, = B

so B is symmetric. Therefore, B has the block form

and A, is symmetric. Furthermore, B is similar to A (why?), so the characteristic poly-
nomial of B is equal to the characteristic polynomial of A, by Theorem 4.22. By
Exercise 39 in Section 4.3, the characteristic polynomial of A, divides the character-
istic polynomial of A. It follows that the eigenvalues of A, are also eigenvalues of A
and, hence, are real. We also see that A, has real entries. (Why?) Thus, A, isa k X k
real symmetric matrix with real eigenvalues, so the induction hypothesis applies to it.
Hence, there is an orthogonal matrix P, such that PJA,P, is a diagonal matrix—say,
D,. Now let

Then Q, is an orthogonal (k + 1)X(k + 1) matrix, and therefore so is Q = Q,Q,.
Consequently,

QTAQ = (Qle)jiA(Qle) = (QgQ?)A(Q1Q2) = Qg(QlTAQJQz = QgBQz

_ 10} FO} {10}
10 Pflo 4]0P,
_ (M0 }
0 : PIA.P,
A o}
0 | D,

which is a diagonal matrix. This completes the induction step, and we conclude that,
forall n = 1, an n X n real symmetric matrix with real eigenvalues is orthogonally
diagonalizable. — wem

Example 5.18

\

Orthogonally diagonalize the matrix

2 1
A=11 2 1
1 2

Solution  This is the matrix from Example 5.17. We have already found that the
eigenspaces of A are
1 -1 -1
E, = span| | 1 and E, = span 01, 1
1 1 0
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Weneed three orthonormal eigenvectors. First, weapplythe Gram-Schmidt Process to

S 1
0| and 1
L 1] L 0
SR =
to obtain 0| and 1
IRV Y
-1
The new vector, which has been constructed to be orthogonalto | 0 |,isstill in E;
1
1
(why?) and so is orthogonal to | 1 |. Thus, we have three mutually orthogonal
1

vectors, and all we need to do is normalize them and construct a matrix Q with these
vectors as its columns. We find that

1/V3 —-1/V2 -1/Ve
Q=|1/V3 0 2/\Ve6
1/V3  1/V2 -1/Ve

and it is straightforward to verify that
4 0 0
QTAQ=10 1 0
0 0 1

.

The Spectral Theorem allows us to write a real symmetric matrix A in the form
A = QDQ', where Q is orthogonal and D is diagonal. The diagonal entries of D
are just the eigenvalues of A, and if the columns of Q are the orthonormal vectors

qu> - - - » q,» then, using the column-row representation of the product, we have
Mool
A=QDQ"=[q, ‘- q,]| ¢ . :
0 - A, qZ
ar
= [ - Al
a9

= Mquqf + Aqq) + o+ A,q,q

This is called the spectral decomposition of A. Each of the terms A;q;q; is a rank 1
matrix, by Exercise 62 in Section 3.5, and q,q; is actually the matrix of the projec-
tion onto the subspace spanned by q;. (See Exercise 25.) For this reason, the spectral
decomposition

A=)Mqq] + 2,99 + 0+ 2,44

is sometimes referred to as the projection form of the Spectral Theorem.
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‘ >

Example 5.19 Find the spectral decomposition of the matrix A from Example 5.18.

Solution  From Example 5.18, we have:

A =4 A =1 A =1
1/V3 -1/V2 -1/Ve6
qQ=1/V3|, q= 0 |, @s=]| 2/V6
1/V3 1/V2 -1/V6
Therefore,
[1/V3 1/3 1/3 1/3
qqi = | 1/V3|[1/V3 1/V3 1/V3]=|1/3 1/3 1/3
L1/V3 1/3 1/3 1/3
[—1/V2] 12 0 —-1/2
9 = 0 |[-1/V2 0 1/V2] = 0 0 0
L 1/Vv2 | -1/2 0 1/2
[—1/V6] 1/6 —-1/3 1/6
@ql = | 2/Ve|[-1/Ve 2/V6 —1/Vel=|-1/3 2/3 -1/3
| —1/V6 ] 1/6 —1/3 1/6
SO

A= 0qq T 99 + A:q:95

111 1oy -1 11 1
3 3 3 2 2 6 3 6
_q4l1 11 12 1
=43 3 3|+ 0 0 01|+ 3 5 3
1011 1 g 1 11 1
3 3 3 2 2 6 3 6

which can be easily verified.
In this example, A, = A3, so we could combine the last two terms A,q,q3 + A3qsq;
to get

W W= W=

|
W= W= W

W= W[ W=

The rank 2 matrix q,q} + q;q? is the matrix of a projection onto the two-dimensional
subspace (i.e., the plane) spanned by q, and q;. (See Exercise 26.) I

Observe that the spectral decomposition expresses a symmetric matrix A explic-
itly in terms of its eigenvalues and eigenvectors. This gives us a way of constructing a
matrix with given eigenvalues and (orthonormal) eigenvectors.

>

Example 5.20 Finda2 X 2 matrixwith eigenvalues A, = 3and A, = —2and corresponding eigenvectors

o[} o[
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Solution  We begin by normalizing the vectors to obtain an orthonormal basis

{q:, q,}, with
3 _4
el oo ae [
5 5

Now, we compute the matrix A whose spectral decomposition is

A= Mqq + A,q,q)

Il
—
C

IS e
wie 9IS
[

w—>  Itis easy to check that A has the desired properties. (Do this.) I

\

Iixercises 9.4

Orthogonally diagonalize the matrices in Exercises 1-10 ) ) (a b
by finding an orthogonal matrix Q and a diagonal 11.1fb # 0, orthogonally diagonalize A = T
matrix D such that QTAQ = D. )
) ) a 0
1A= 4 1} 2 A= -1 3} 12. If b # 0, orthogonally diagonalize A = | 0 0.
11 4 L 3 -1 Lb 0 a
4= 1 V2 = [ 9 -2 13. Let A and B be orthogonally diagonalizable n X n
A= | V2 0 S | —2 6 matrices and let ¢ be a scalar. Use the Spectral
Theorem to prove that the following matrices are
(5 0 0 (2 3 0] orthogonally diagonalizable:
5A={0 1 3 6.A=|3 2 4 (@) A+B (b) cA (c) A?
L0 3 1 L0 4 2] 14. If A is an invertible matrix that is orthogonally diago-
nalizable, show that A™! is orthogonally diagonalizable.
1 0 - 1 2 2] 15. If A and B are orthogonally diagonalizable and AB =
7 A= 0 1 0 8. A=12 1 BA, show that AB is orthogonally diagonalizable.
L—1 0 1 12 2 ] 16. If A is a symmetric matrix, show that every eigenvalue
_ _ of A is nonnegative if and only if A = B? for some
1 1 00 2 0 0 1 . .
symmetric matrix B.
1 1 00 0 1 0 O
A% 10 0 1 1| 4T 0 0 1 o
In Exercises 17-20, find a spectral decomposition of the
(00 1 1 L1 0 0 2 matrix in the given exercise.
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18. Exercise 2
20. Exercise 8

17. Exercise 1

19. Exercise 5

In Exercises 21 and 22, find a symmetric 2 X 2 matrix with

eigenvalues A, and A, and corresponding orthogonal
eigenvectors v, and v,.

1 1
21. Al == _1,/\2 = 2,V1 = |: :|yV2 = |:_l:|

1
1 -2
2.0 =30="3v=| V=]

In Exercises 23 and 24, find a symmetric 3 X 3 matrix with

eigenvalues Ay, Ay, and A3 and corresponding orthogonal
eigenvectors vy, v,, and v;.

1 1
2. =LA=2,A=3vy=|1|v,=]| -1},
0 1
-1
V3 = 1
2
4 -1
240 = 1L,A, = =4, A, = —4,v, = 50Lv,= 1
-1 1
2
v, = | —1
3

o Applications

25. Let q be a unit vector in R" and let W be the subspace

spanned by q. Show that the orthogonal projection of a
vector v onto W (as defined in Sections 1.2 and 5.2) is
given by

projy (v) = (qq")v
and that the matrix of this projection is thus qq”.
[Hint: Remember that, for x and y in R", x-y = xy.]

. Let {qy, . . ., q;} be an orthonormal set of vectors in R"

and let W be the subspace spanned by this set.

(a) Show that the matrix of the orthogonal projection
onto W is given by

P = qq +  +qq

(b) Show that the projection matrix P in part (a) is
symmetric and satisfies P> = P.

(c) Let Q = [q, qx] be the n X k matrix whose
columns are the orthonormal basis vectors of W.
Show that P = QQT and deduce that rank(P) = k.

. Let A be an n X n real matrix, all of whose eigenvalues

are real. Prove that there exist an orthogonal matrix Q
and an upper triangular matrix T such that Q"AQ = T.
This very useful result is known as Schur’s Triangular-
ization Theorem. [Hint: Adapt the proof of the Spec-
tral Theorem.]

. Let A be a nilpotent matrix (see Exercise 56 in Sec-

tion 4.2). Prove that there is an orthogonal matrix Q
such that QT AQ is upper triangular with zeros on its
diagonal. [Hint: Use Exercise 27.]

Quadratic Forms

An expression of the form

ax® + by* + cxy

is called a quadratic form in x and y. Similarly,

ax® + by? + cz* + dxy + exz + fyz

is a quadratic form in x, y, and z. In words, a quadratic form is a sum of terms, each of
which has total degree two in the variables. Therefore, 5x* — 3y* + 2xy is a quadratic

form, but x? + y? + x is not.

We can represent quadratic forms using matrices as follows:

ax* + by* + cxy = [x )/]L;l2 Cf“ﬂ
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and
a d/2 e/2||x
ax> + by’ +czP+dxytexz+fyz=1[x y zl|d/2 b fl2]||y
e/2 f/2 ¢ z

(Verify these.) Each has the form x! Ax, where the matrix A is symmetric. This obser-
vation leads us to the following general definition.

Definition A quadratic form in n variables is a function f: R" — R of the
form

f(x) = x"Ax

where A is a symmetric # X »n matrix and x is in R". We refer to A as the matrix
associated with f.

Y

Example 95.21

2 =3
What is the quadratic form with associated matrix A = {_ : 5}?

Solution Ifx = {le,then

X2

X1

fx) = x"Ax = [x, x2]{_2 _3M } = 2x% + 5x2 — 6xx,

3 5|1x,

-

Observe that the off-diagonal entries a,, = a,, = —3 of A are combined to give
the coefficient —6 of x,x,. This is true generally. We can expand a quadratic form in
n variables x”Ax as follows:

i 2 2 5 o 2
XAX = a;x; + apx; + + a,x, + E2a,—jx,-xj
i<j

Thus, if i # j, the coefficient of x;x; is 2a;;.

Y

Example 5.22

Find the matrix associated with the quadratic form

f Gy, g 2a)l = 2%7 — x5 T 5% F 6% % — 3%

Solution  The coefficients of the squared terms x; go on the diagonal as a;;, and the
coefficients of the cross-product terms x;x; are split between a;; and aj;. This gives

2 3 3
A=| 3 -1 0
-2 0 5
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2 3 _% xl
o fnxx) =[x x x]| 3 -1 0| x
-2 0 5]lx

as you can easily check. I

In the case of a quadratic form f(x, y) in two variables, the graph of z = f(x, y) is
a surface in R’. Some examples are shown in Figure 5.12.

Observe that the effect of holding x or y constant is to take a cross section of
the graph parallel to the yz or xz planes, respectively. For the graphs in Figure 5.12,
all of these cross sections are easy to identify. For example, in Figure 5.12(a), the
cross sections we get by holding x or y constant are all parabolas opening upward,
so f(x, y) = 0 for all values of x and y. In Figure 5.12(c), holding x constant gives
parabolas opening downward and holding y constant gives parabolas opening upward,
producing a saddle point.

A5
2R N
A7 SN

/I’II’O0’.Q“\\\\{\\§\,

) XK
sy
GRS

(@) z =227 + 3y? (b) z= —2x% = 3)?

T,
I
RN 111 iy, /]
N N iniga IRy L]
\\\‘:\1\:\‘@&\\\\\\&\\%\\}&@"’"1%
DR AR NN LT T
TR 77
‘\\Q}‘}g“}\}*\\\\\‘\\u‘i’,}:{’%

e "‘“‘““\“«Q‘

Figure 5.12
Graphs of quadratic forms f(x, y)
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What makes this type of analysis quite easy is the fact that these quadratic forms
have no cross-product terms. The matrix associated with such a quadratic form is a
diagonal matrix. For example,

2 0|x
2wyl y][o —JM

In general, the matrix of a quadratic form is a symmetric matrix, and we saw in Sec-
tion 5.4 that such matrices can always be diagonalized. We will now use this fact to
show that, for every quadratic form, we can eliminate the cross-product terms by
means of a suitable change of variable.

Let f(x) = x"Ax be a quadratic form in # variables, with A a symmetric #n X n
matrix. By the Spectral Theorem, there is an orthogonal matrix Q that diagonalizes A;
that is, Q"TAQ = D, where D is a diagonal matrix displaying the eigenvalues of A. We
now set

x = Qy or, equivalently, y=Q 'x = Q'x
Substitution into the quadratic form yields

x'Ax = (Qy)"A(Qy)

- YTQTAQY
= yDy
which is a quadratic form without cross-product terms, since D is diagonal. Further-
more, if the eigenvalues of A are A}, . . ., A,,, then Q can be chosen so that
A] o e 0
D=|: "
0 N /\l’l
Ify= [y, -+ ,]7% then, with respect to these new variables, the quadratic form
becomes

yTDyz /\1)’12 +-F /\nynz

This process is called diagonalizing a quadratic form. We have just proved the fol-
lowing theorem, known as the Principal Axes Theorem. (The reason for this name
will become clear in the next subsection.)

Theorem 5.21

The Principal Axes Theorem

Every quadratic form can be diagonalized. Specifically, if A is the # X #n symmet-
ric matrix associated with the quadratic form x’Ax and if Q is an orthogonal
matrix such that QTAQ = D is a diagonal matrix, then the change of variable
x = Qy transforms the quadratic form x’Ax into the quadratic form y'Dy,
which has no cross-product terms. If the eigenvalues of A are Aj,..., A, and

Y= [yl )’;,]T»then
x'Ax = yDy = Ayt + -+ A
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Example 5.23

Find a change of variable that transforms the quadratic form
f(xla xz) = 5X12 + 4x,x, + 2x§

into one with no cross-product terms.

5 2
A =
2.0,
with eigenvalues A; = 6 and A, = 1. Corresponding unit eigenvectors are

_{2/\@} P _[ 1/\@}
q = 1/\V5 and  q, = —2/\/5

Solution  The matrix of fis

(Check this.) If we set
2
0= [ /\V5 1/\/5] R {6 0}
1/V5 —=2/V5 0 1
then QTAQ = D. The change of variable x = Qy, where

ol
X Va

6 0
foy) = fly, ) = [y }’2]{0 Hﬂ =6y; +

- 4

The original quadratic form x”Ax and the new one y’ Dy (referred to in the Princi-
pal Axes Theorem) are equal in the following sense. In Example 5.23, suppose we want

converts f into

1
to evaluate f(x) = x’Axatx = [ 3}. We have

f(=1,3) = 5(=1)* + 4(-1)(3) + 2(3)* = 11

In terms of the new variables,
{yl] —y=Qx= [2/\@ 1/\@“—1} _ { 1/\/5}

¥ 1/V5 —2/VE) 3] L-7/v5
so

fOny2) =6yt + 3 = 6(1/V5) + (=7/V5)* = 55/5 = 11
exactly as before.
The Principal Axes Theorem has some interesting and important consequences.

We will consider two of these. The first relates to the possible values that a quadratic
form can take on.

Definition A quadratic form f(x) = x"Ax is classified as one of the following;

L. positive definite if f(x) > 0 forallx # 0
2. positive semidefinite if f(x) = 0 for all x
3. negative definite if f(x) < 0 for allx # 0
4. negative semidefinite if f(x) = 0 for all x
5. indefinite if f(x) takes on both positive and negative values
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A symmetric matrix A is called positive definite, positive semidefinite, nega-
tive definite, negative semidefinite, or indefinite if the associated quadratic form
f(x) = x"Ax has the corresponding property.

The quadratic forms in parts (a), (b), (¢), and (d) of Figure 5.12 are positive definite,
negative definite, indefinite, and positive semidefinite, respectively. The Principal Axes
Theorem makes it easy to tell if a quadratic form has one of these properties.

Theorem 5.22 Let A be an # X n symmetric matrix. The quadratic form f(x) = x"Ax is

positive definite if and only if all of the eigenvalues of A are positive.

positive semidefinite if and only if all of the eigenvalues of A are nonnegative.
negative definite if and only if all of the eigenvalues of A are negative.

. negative semidefinite if and only if all of the eigenvalues of A are nonpositive.
indefinite if and only if A has both positive and negative eigenvalues.

0PAn op

You are asked to prove Theorem 5.22 in Exercise 27.

‘ >
>

Example 5.24 Classify f(x, y, z) = 3x* + 3y* + 32> — 2xy — 2xz — 2yzas positive definite, negative
definite, indefinite, or none of these.

7 Solution The matrix associated with f is

3 -1 -1
-1 3 -1
-1 -1 3
w—>  which has eigenvalues 1, 4, and 4. (Verify this.) Since all of these eigenvalues are posi-
tive, f is a positive definite quadratic form. 4

If a quadratic form f(x) = x"Ax is positive definite, then, since f(0) = 0, the
minimum value of f(x) is 0 and it occurs at the origin. Similarly, a negative definite
quadratic form has a maximum at the origin. Thus, Theorem 5.22 allows us to solve
certain types of maxima/minima problems easily, without resorting to calculus. A type
of problem that falls into this category is the constrained optimization problem.

It is often important to know the maximum or minimum values of a quadratic
form subject to certain constraints. (Such problems arise not only in mathematics
but also in statistics, physics, engineering, and economics.) We will be interested in
finding the extreme values of f(x) = x"Ax subject to the constraint that |x| = 1.
In the case of a quadratic form in two variables, we can visualize what the problem
means. The graph of z = f(x, y) is a surface in R’, and the constraint ||x| = 1 restricts
the point (x, y) to the unit circle in the xy-plane. Thus, we are considering those
points that lie simultaneously on the surface and on the unit cylinder perpendicular
to the xy plane. These points form a curve lying on the surface, and we want the high-
est and lowest points on this curve. Figure 5.13 shows this situation for the quadratic
form and corresponding surface in Figure 5.12(c).
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Theorem 5.23

)

N O
N
LR
R

RN

Figure 5.13
The intersection of z = 2x* — 3)* with the
cylinder x* + y* =1

In this case, the maximum and minimum values of f(x, y) = 2x* — 3y? (the high-
est and lowest points on the curve of intersection) are 2 and —3, respectively, which
are just the eigenvalues of the associated matrix. Theorem 5.23 shows that this is
always the case.

Let f(x) = x"Ax be a quadratic form with associated n X # symmetric matrix A.
Let the eigenvalues of A be A; = A, =--- = A,,. Then the following are true, subject
to the constraint | x|| = 1:

a. A =f(x) = A,

b. The maximum value of f(x) is A;, and it occurs when x is a unit eigenvector
corresponding to A;.

c. The minimum value of f(x) is A,, and it occurs when x is a unit eigenvector
corresponding to A,

Proof  Asusual, we begin by orthogonally diagonalizing A. Accordingly, let Q be an
orthogonal matrix such that QTAQ is the diagonal matrix

Then, by the Principal Axes Theorem, the change of variable x = Qy gives x' Ax =
y'Dy. Now note that y = Q"x implies that

vy = (Q'(Q"%) = x"(Q"N'Q'x = x'QQ"x = x'x
since Q" = Q™. Hence, using x - x = x'x, we see that ||y|| = Vy'y = Vx'x =

[x| = 1. Thus, if x is a unit vector, so is the corresponding y, and the values of x”Ax
and y’'Dy are the same.
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(a) To prove property (a), we observe thatify = [y, -+ y,]7, then
f(x)

xAx = yTDy
= Ayi + Ay o Ay
= /\1)’12 + /\1)/22 aERa0e Alyrf
=007 +y ety
= Allyl?
= A
Thus, f(x) = A, for all x such that |[x| = 1. The proof that f(x) = A, is similar.
(See Exercise 37.)
(b) Ifq is a unit eigenvector corresponding to A}, then Aq, = A,q; and

f(‘h) = (I1TA(I1 = ‘hT/\lql = )\1(‘11TQ1) =\

This shows that the quadratic form actually takes on the value A, and so, by prop-
erty (a), it is the maximum value of f(x) and it occurs when x = q;.

(c) You are asked to prove this property in Exercise 38. —am

»

Example 5.25

Find the maximum and minimum values of the quadratic form f(x,, x,) = 5x] +
4x,x, + 2x3 subject to the constraint x; + x; = 1, and determine values of x; and x,
for which each of these occurs.

Solution  In Example 5.23, we found that f has the associated eigenvalues A, = 6 and
A, = 1, with corresponding unit eigenvectors

NN
L PPV B - YAV 3

Therefore, the maximum value of fis 6 when x; = 2/ V5 and x, = 1/V/5. The mini-
mum value of fis I when x;, = 1/V/5 and x, = —2/V/5. (Observe that these extreme
values occur twice—in opposite directions—since —q; and —q, are also unit eigen-

vectors for A, and A,, respectively.) I

Graphing Quadratic Equations

The general form of a quadratic equation in two variables x and y is
ax* + by* + exy +dx+ey+f=0

where at least one of a, b, and c is nonzero. The graphs of such quadratic equations are
called conic sections (or conics), since they can be obtained by taking cross sections
of a (double) cone (i.e., slicing it with a plane). The most important of the conic sec-
tionsare the ellipses (with circles as a special case), hyperbolas, and parabolas. These
are called the nondegenerate conics. Figure 5.14 shows how they arise.

It is also possible for a cross section of a cone to result in a single point, a straight
line, or a pair of lines. These are called degenerate conics. (See Exercises 59-64.)

The graph of a nondegenerate conic is said to be in standard position relative to
the coordinate axes if its equation can be expressed in one of the forms in Figure 5.15.
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bbb

Circle Ellipse Parabola Hyperbola
Figure 5.14
The nondegenerate conics
PETS
Ellipse or Circle: — + P L;a,b>0
a
y y
A b
b
—4 };ﬂ X - L > X
=b
-b
a>b a<b
Hyperbola
y y
A
b
—d a
X » X
—b
2 2 2 2
2=l ab>0 3= ab>0
Parabola
y y y y
A A A A
» X » X » X
y=ax% a>0 y=ax? a<0 x=ay? a>0 x=ay% a<0

Figure 5.15
Nondegenerate conics in standard position



Section 5.5 Applications a1

Example 5.26

If possible, write each of the following quadratic equations in the form of a conic in
standard position and identify the resulting graph.

(a) 4x* +9y* =36 (b) 4x? -9y +1=0 (c) x> —9y=0

Solution (a) The equation 4x* 4+ 9y* = 36 can be written in the form

2 2
= v
9 4

so its graph is an ellipse intersecting the x-axis at (£3, 0) and the y-axis at (0, *2).
(b) Theequation 4x> — 9y* + 1 = 0 can be written in the form
2

2
X

2 —T =1
4

~o|»—-|

so its graph is a hyperbola, opening up and down, intersecting the y-axis at (0, =3).
(c) The equation 4x* — 9y = 0 can be written in the form

4,
)’_9"

so its graph is a parabola opening upward. 1

If a quadratic equation contains too many terms to be written in one of the forms
in Figure 5.15, then its graph is not in standard position. When there are additional
terms but no xy term, the graph of the conic has been translated out of standard
position.

Example 5.21

Y

Identify and graph the conic whose equation is

x2+2y'—6x+8y+9=0

Solution  We begin by grouping the x and y terms separately to get
(x* = 6x) + (2y* + 8y) = —9

or
(x* —6x) +2(y* + 4y) = -9
Next, we complete the squares on the two expressions in parentheses to obtain
(x*—6x+9) +20)° +4y+4)=-9+9+8
or

(x—32+20y+272=38

We now make the substitutions ' = x — 3 and ' = y + 2, turning the above equa-
tion into

(x)*+2(p)?=8 or
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This is the equation of an ellipse in standard position in the x’y’ coordinate system,
intersecting the x’-axis at (+2V/2, 0) and the y’-axis at (0, +2). The origin in the x'y’
coordinate system is at x = 3, ¥ = —2, so the ellipse has been translated out of stan-
dard position 3 units to the right and 2 units down. Its graph is shown in Figure 5.16.

Figure 5.16

A translated ellipse I

If a quadratic equation contains a cross-product term, then it represents a conic
that has been rotated.

Example 5.28

\

Identify and graph the conic whose equation is

5x* 4+ dxy + 22 =6

Solution  The left-hand side of the equation is a quadratic form, so we can write it in
matrix form as x’ Ax = 6, where
5 2
A=
2 2

In Example 5.23, we found that the eigenvalues of A are 6 and 1, and a matrix Q that
orthogonally diagonalizes A is

0= [2/\/5 1/V5 }
1/ V5 =2/
Observe that det Q = —1. In this example, we will interchange the columns of this

matrix to make the determinant equal to + 1. Then Q will be the matrix of a rotation,
by Exercise 28 in Section 5.1. It is always possible to rearrange the columns of an
orthogonal matrix Q to make its determinant equal to + 1. (Why?) We set

o= | s il

instead, so that



Figure 5.17
A rotated ellipse

Section 5.5 Applications 419

The change of variable x = Qx’ converts the given equation intotheform (x')'Dx’ = 6

’

!

X
by means of a rotation. If X' = { }, then this equation is just

(x")?
6

which represents an ellipse in the xy’ coordinate system.

(x')* +6() =6 or + () =1

1
To graph this ellipse, we need to know which vectors play the roles of e; = [0}

0
and e} = L] in the new coordinate system. (These two vectors locate the positions

of the x" and y’ axes.) But, from x = Qx’, we have

2= | v vllo) = -arval

and

SN A RV

These are just the columns q, and q, of Q, which are the eigenvectors of A! The fact
that these are orthonormal vectors agrees perfectly with the fact that the change of
variable is just a rotation. The graph is shown in Figure 5.17. I

You can now see why the Principal Axes Theorem is so named. If a real symmet-
ric matrix A arises as the coefficient matrix of a quadratic equation, the eigenvectors
of A give the directions of the principal axes of the corresponding graph.

It is possible for the graph of a conic to be both rotated and translated out of stan-
dard position, as illustrated in Example 5.29.

Example 5.29

\

Identify and graph the conic whose equation is
5x% 4 dxy + 2 z—ﬁx—iwﬂ:o
YTYTNET TV

Solution  The strategy is to eliminate the cross-product term first. In matrix form,
the equation is x’Ax + Bx + 4 = 0, where

N {5 2} . [ 28 4 }
= an =|-— —-——F
2 2 Vs V5
The cross-product term comes from the quadratic form x” Ax, which we diagonalize
as in Example 5.28 by setting x = Qx', where
0 = { 1/V5 2/ \@}
—-2/V5 1/V5
Then, as in Example 5.28,
x'Ax = (x')'Dx" = (x')* + 6(y')°
But now we also have
28 4 1/V5 2/V5 '
Bx:BQx’:[ H /V5 /\/H"

IRV | EYAV ARV y’}=_4x,_12y’
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Figure 5.18

Thus, in terms of x" and y’, the given equation becomes
() +6(y)—dx — 12y’ +4=0

To bring the conic represented by this equation into standard position, we need
to translate the x'y" axes. We do so by completing the squares, as in Example 5.27.
We have

() —dx" +4) +6((y) -2y +1)=—4+4+6=6
or (x' =2 +6( —17%=6

This gives us the translation equations

”

x"=x"—2 and y" =y —1

In the x"y” coordinate system, the equation is simply
(xn)Z + 6()//7)2 =6
which is the equation of an ellipse (as in Example 5.28). We can sketch this ellipse by
first rotating and then translating. The resulting graph is shown in Figure 5.18. I
The general form of a quadratic equation in three variables x, y, and z is

ax*+ by’ +cz? +dxy+exz+ fyz+gx+hy+iz+j=0

where at least one of @, b, . . ., f is nonzero. The graph of such a quadratic equation
is called a quadric surface (or quadric). Once again, to recognize a quadric we need
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to put it into standard position. Some quadrics in standard position are shown in
Figure 5.19; others are obtained by permuting the variables.

Example 5.30

\/

Identify the quadric surface whose equation is

5x2 + 11y* + 222 + 16xy + 20xz — 4yz = 36

Solution The equation can be written in matrix form as x’Ax = 36, where

5 8 10
A= 8 11 =2
10 =2 2

We find the eigenvalues of A to be 18, 9, and —9, with corresponding orthogonal
eigenvectors

2 1 2
2, —2 |, and -1
2 -2

respectively. We normalize them to obtain

2 1 2
3 3 3
— |2 2 = | =1
G =5 @ 3|, and ¢q; = 3
1 2 2
3 3 3
and form the orthogonal matrix
2 1 2
3 3 3
— -2 -2 _1
RQ=la 9@ @]=|3 3 3
1 2 2
3 3 8

Note that in order for Q to be the matrix of a rotation, we require det Q = 1, which
is true in this case. (Otherwise, det Q = —1, and swapping two columns changes the
sign of the determinant.) Therefore,

18 0 0
QAQ=D=|0 9 0
-9

and, with the change of variable x = Qx’, we get x'Ax = (x')Dx’ = 36, so

7L O @Y
2 4 4

18(x")* + 9(y')* — 9(z')* = 36 or =1

From Figure 5.19, we recognize this equation as the equation of a hyperboloid of one
sheet. The x', y’, and z’ axes are in the directions of the eigenvectors q,, q,, and qs,
respectively. The graph is shown in Figure 5.20.
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Figure 5.20
A hyperboloid of one sheet in

nonstandard position I

We can also identify and graph quadrics that have been translated out of standard
position using the “complete-the-squares method” of Examples 5.27 and 5.29. You
will be asked to do so in the exercises.

IEKEI‘CiSES 9.9

Quadratic Forms

In Exercises 1-6, evaluate the quadratic form f(x) = x"Ax

for the given A and x.

(2 3 X
1.A = X =
13 4 y
(5 1 X
2. A = , X =
_1 _1 xZ
[ 3 =2 {1
3.A = X =
| -2 4} 6
- . _
4, A = 2 1],x=
L—=3 1 3] L
1 0 -3] i
5.A = 0 2 1,x=
-3 1 3] L
(2 2 0
6.A=12 0 1|,x=
L0 1 1

\

In Exercises 7-12, find the symmetric matrix A associated
with the given quadratic form.

7. xt + 2x7 + 6x,x,

8. x,x,

9.3x* — 3xy — »*

10. x2 — x2 + 8x,x, — 6x,x;

11. 5x2 — x2 + 2x? + 2x,%, — 4xx3 + 4%,%3

12.2x% — 3y* + 22 — dxz

Diagonalize the quadratic forms in Exercises 13-18 by
finding an orthogonal matrix Q such that the change of
variable x = Qy transforms the given form into one with no
cross-product terms. Give Q and the new quadratic form.

13. 2x} + 5x3 — 4x)x,

14. x> + 8xy + y?

15.7x] + x5 + x2 + 8x,x, + 8x,03 — 16X,%;3
16. x2 + x2 + 3x2 — 4xx,

17.x% + 2% — 2xy + 2yz

18. 2xy + 2xz + 2yz



424 Chapter 5 Orthogonality

Classify each of the quadratic forms in Exercises 19-26 as
positive definite, positive semidefinite, negative definite,
negative semidefinite, or indefinite.

19. x? + 2x7 20. x2 + x — 2x,x,

21 —2x* — 2y + 2xy  22.x* 4+ y* + 4xy
23.2x% + 2x2 + 2x? + 2x,x, + 2x,5 + 2%,x,

24. x2 + x2 + x3 + 2x%5 25. xF + x5 — x5 + dxyx,
26, —x2 — y* — 2z — 2xy — 2xz — 2yz

27. Prove Theorem 5.22.

b
28.LetA = {Z d} be a symmetric 2 X 2 matrix. Prove

that A is positive definite if and only if a > 0 and
det A > 0. [Hint: ax® + 2bxy + dy* =

b 2 bz
a(x + Ey) + (d = 7)}/2,]

29. Let B be an invertible matrix. Show that A = BB is
positive definite.

30. Let A be a positive definite symmetric matrix. Show
that there exists an invertible matrix B such that A =
BTB. [Hint: Use the Spectral Theorem to write A =
QDQT. Then show that D can be factored as C'C for
some invertible matrix C.]

31. Let A and B be positive definite symmetric n X n
matrices and let ¢ be a positive scalar. Show that the
following matrices are positive definite.

(a) cA (b) A2 (c) A+B
(d) A™! (First show that A is necessarily invertible.)

32. Let A be a positive definite symmetric matrix. Show
that there is a positive definite symmetric matrix B
such that A = B% (Such a matrix B is called a square
root of A.)

In Exercises 33-36, find the maximum and minimum val-
ues of the quadratic form f(x) in the given exercise, subject
to the constraint ||x|| = 1, and determine the values of x for
which these occur.

33. Exercise 20 34. Exercise 22
35. Exercise 23 36. Exercise 24
37. Finish the proof of Theorem 5.23(a).
38. Prove Theorem 5.23(c).

Graphing Quadratic Equations

In Exercises 39-44, identify the graph of the given equation.
39.x2 + 592 = 25 40.x2—y?—4=0

41.x° —y—1=0 42.2x*+y*—8=0
43.3x* = y* — 1 44. x = —2y?

In Exercises 45-50, use a translation of axes to put the conic
in standard position. Identify the graph, give its equation in
the translated coordinate system, and sketch the curve.

45. x> + y? —4x —4y+ 4 =0

46.4x* +2y? —8x + 12y + 6 =0

47.9x* — 4y* — 4y = 37 48. x> + 10x — 3y = —13
49.2y* +4x + 8y =0

50.2y% — 3x* — 18x — 20y + 11 =0

In Exercises 51-54, use a rotation of axes to put the conic in
standard position. Identify the graph, giveits equation in the
rotated coordinate system, and sketch the curve.

5L.x> +xy+y2 =6 52.4x” + 10xy + 4y =9
53.4x> 4+ 6xy — 4y* =5 54.3x — 2xy + 32 =8

In Exercises 55-58, identify the conic with the given equa-
tion and give its equation in standard form.

55.3x2 — dxy + 3y2 — 28V2x + 22V2y + 84 =0
56. 6x> — 4xy + 9y> — 20x — 10y — 5 =0
57.2xy +2V2x —1=0

58.x2 —2xy + y* + 4V2x — 4 =0

Sometimes the graph of a quadratic equation is a straight
line, a pair of straight lines, or a single point. We refer to
such a graph as a degenerate conic. It is also possible that
the equation is not satisfied for any values of the variables,
in which case there is no graph at all and we refer to the
conic as an imaginary conic. In Exercises 59-64, identify
the conic with the given equation as either degenerate or
imaginary and, where possible, sketch the graph.

59.x2 —y?2 =0 60. x> +2y*+2=0
61.3x* + y* =0 62. x> +2xy+y*=0
63.x2 — 2y + y* +2V2x — 2V2y =0

64.2x> + 2xy + 22+ 2V2x — 2V2y + 6 = 0

65. Let A be a symmetric 2 X 2 matrix and let k be a
scalar. Prove that the graph of the quadratic equation
x"Ax = kis
(a) ahyperbolaifk # 0 and detA <0
(b) an ellipse, circle, or imaginary conic if k # 0 and
detA>0

(c) a pair of straight lines or an imaginary conic if
k# 0anddetA=0

(d) a pair of straight lines or a single point if k = 0
and detA # 0

(e) astraightlineifk = 0 and det A =0
[Hint: Use the Principal Axes Theorem.]



In Exercises 66-73, identify the quadric with the given
equation and give its equation in standard form.

66.4x% + 4y* + 4z° + 4xy + dxz + 4yz =8

67.x + y 4+ 2z —4yz=1

68. —x> — y* — z% + 4xy + 4dxz + 4yz = 12

69.2xy +z=0

70. 16x* + 100y* + 9z° — 24xz — 60x — 80z = 0

TLx*+y? =222 +dxy— 2z +2yz—x+y+2z=0

72.10x> + 25y + 1022 — 40xz + 20V2x + 50y +
20V2z = 15

73.11x% + 11y? + 142° + 2xy + 8xz — 8yz — 12x +
12y + 122 =6

Key Definitions and Concents

fundamental subspaces

of a matrix, 380
Gram-Schmidt Process, 389
orthogonal basis, 370
orthogonal complement

of a subspace, 378
orthogonal matrix, 374

Theorem, 384

matrix, 400

Review Questions
1. Mark each of the following statements true or false:

(a) Every orthonormal set of vectors is linearly
independent.

(b) Every nonzero subspace of R" has an orthogonal
basis.

(c) If A is a square matrix with orthonormal rows,
then A is an orthogonal matrix.

(d) Every orthogonal matrix is invertible.

(e) If A is a matrix with det A = 1, then A is an
orthogonal matrix.

(f) If A isan m X n matrix such that (row(A))* = R,
then A must be the zero matrix.

(g) If Wis a subspace of R” and v is a vector in R" such
that projy(v) = 0, then v must be the zero vector.

(h) If A isa symmetric, orthogonal matrix, then A’=1T.

(i) Every orthogonally diagonalizable matrix is invertible.

orthogonal projection, 382
orthogonal set of vectors, 369
Orthogonal Decomposition

orthogonally diagonalizable

orthonormal basis,
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74.Let A beareal 2 X 2 matrix with complex eigenvalues
A = a =* bisuchthatb # 0and |A| = 1. Prove that
every trajectory of the dynamical system x; ., = Ax;
lies on an ellipse. [Hint: Theorem 4.43 shows that if v
is an eigenvector corresponding to A = a — bi, then
the matrix P = [Rev Im v] is invertible and

-b
Z ]P“. Set B = (PPT) L. Show that the
a

quadraticx’Bx = k defines an ellipse for all k > 0,
and prove that if x lies on this ellipse, so does Ax.]

A=

orthonormal set of vectors, 372
properties of orthogonal
matrices, 374-376

QR factorization, 393

Rank Theorem, 386

spectral decomposition, 405
372 Spectral Theorem, 403

(j) Given any n real numbers Ay, . .., A, there exists
a symmetric #n X n matrix with A, ..., A, as its
eigenvalues.

2. Find all values of a and b such that

1 4 a
2 |, 1|,| b | is an orthogonal set of vectors.
3 =2 3
7
3. Find the coordinate vector [v]zof v = | —3 | with
respect to the orthogonal basis 2
1 1 —1
B={|0]|| 1],| 2];ofR?
1 —1
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The coordinate vector of a vector v with respect to an

-3
orthonormal basis B = {v,, v,} of R?is [v]; = {1/2}

3/5
Ifv, = { / },ﬁnd all possible vectors v.
4/5
6/7 2/7 3/7
. Show that | —1/V/5 0 2/V/5 |isan
4/7V5  —15/7V5 2/7\V5

orthogonal matrix.

1/2
CIf { 1/7 a] is an orthogonal matrix, find all possible
c
values of a, b, and c.
. If Qs an orthogonal n X n matrix and {vy, ..., v} is
an orthonormal set in R”, prove that {Qv,, ..., Qv.}

is an orthonormal set.

. If Qisan n X n matrix such that the angles

£(Qx, Qy) and £ (x,y) are equal for all vectors x and
y in R", prove that Q is an orthogonal matrix.

In Questions 9-12, find a basis for W*.

9.

10.

11.

12.

13.

14.

W is the line in R? with general equation
2x—5y=0

W is the line in R® with parametric equations
x=1

y =2t
z= —t
1 0]
W = span{| —1 |, 1
4 -3
1 17)
_ 1 -1
W = span L {
1 2

Find bases for each of the four fundamental subspaces of
1 -1 2 1 3

-1 2 =2 1 =2
A =
2 1 4 8 9
3 =5 6 -1 7
Find the orthogonal decomposition of
1
0
V =
-1

15.

16.

17.

18.

19.

If{v, vy, ..

with respect to

0 1 3
1 0 1
W = span 3 )

1 1 —2

1 -1 1
(a) Apply the Gram-Schmidt Process to
1 1 0
1 1 1
X, = 1 »y Xy = 1 > X3 = 1
1 0 1

to find an orthogonal basis for W = span{x,, x,, x;}.
(b) Use the result of part (a) to find a QR factorization

1 1 07
of A = bl .
1 1 1
1 0 1)
Find an orthogonal basis for R* that contains the
1 07
vectors and !
2 1
2 -1
Find an orthogonal basis for the subspace
X
W= jzz cx, +x, + x5+ x, =0 of R*
3
X4
21 -1
LetA = 1 2 1.
-1 1 2

(a) Orthogonally diagonalize A.

(b) Give the spectral decomposition of A.

Find a symmetric matrix with eigenvalues A, = A, = 1,
A; = —2 and eigenspaces

1 1 1
E, = span 1{,[1]],E-, =span -1
0 1 0

., V,} is an orthonormal basis for R" and

A=cvivi+ vVl + 4 vV

prove that A is a symmetric matrix with eigenval-
ues ¢y, ¢y, . - . » ¢, and corresponding eigenvectors
Vi Vay oo oy Ve



