Almost every combination of

the adjectives proper, latent,
characteristic, eigen and secular,
with the nouns root, number
and value, has been used in

the literature for what we call a
proper value.

—Paul R. Halmos

Finite Dimensional Vector Spaces
(2nd edition)

Van Nostrand, 1958, p. 102
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4.0 Introduction: A Dynamical System on Graphs

CAS

We saw in the last chapter that iterating matrix multiplication often produces inter-
esting results. Both Markov chains and the Leslie model of population growth exhibit
steady states in certain situations. One of the goals of this chapter is to help you
understand such behavior. First we will look at another iterative process, or dynami-
cal system, that uses matrices. (In the problems that follow, you will find it helpful
to use a CAS or a calculator with matrix capabilities to facilitate the computations.)

Our example involves graphs (see Section 3.7). A complete graph is any graph in
which every vertex is adjacent to every other vertex. If a complete graph has » verti-
ces, it is denoted by K .. For example, Figure 4.1 shows a representation of K,

Problem 1 Pick any vector x in R* with nonnegative entries and label the vertices
of K, with the components of x, so that v, is labeled with x;, and so on. Compute the
adjacency matrix A of K, and relabel the vertices of the graph with the corresponding
components of Ax. Try this for several vectors x and explain, in terms of the graph,
how the new labels can be determined from the old labels.

Problem 2 Now iterate the process in Problem 1. That is, for a given choice of x,
relabel the vertices as described above and then apply A again (and again, and again)
until a pattern emerges. Since components of the vectors themselves will get quite
large, we will scale them by dividing each vector by its largest component after each
iteration. Thus, if a computation results in the vector

— =N

we will replace it by

0.5
0.25
0.25

I
—_— = N
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£

Figure 4.2

)

Figure 4.3

Figure 4.4

The German adjective eigen means
“own” or “characteristic of” Eigen-
values and eigenvectors are charac-
teristic of a matrix in the sense that
they contain important informa-
tion about the nature of the
matrix. The letter A (lambda), the
Greek equivalent of the English
letter L, is used for eigenvalues
because at one time they were also
known as latent values. The prefix
eigen is pronounced “EYE-gun?”

Note that this process guarantees that the largest component of each vector will now
be 1. Do this for K}, then Kj and K. Use at least ten iterations and two-decimal-place
accuracy. What appears to be happening?

Problem 3 You should have noticed that, in each case, the labeling vector is
approaching a certain vector (a steady state label!). Label the vertices of the complete
graphs with this steady state vector and apply the adjacency matrix A one more time
(without scaling). What is the relationship between the new labels and the old ones?

Problem 4 Make a conjecture about the general case K,. What is the steady state
label? What happens if we label K, with the steady state vector and apply the adja-
cency matrix A without scaling?

Problem 5 The Petersen graph is shown in Figure 4.2. Repeat the process in
Problems 1 through 3 with this graph.

We will now explore the process with some other classes of graphs to see if they
behave the same way. The cycle C, is the graph with n vertices arranged in a cyclic
fashion. For example, Cs is the graph shown in Figure 4.3.

Problem 6 Repeat the process of Problems 1 through 3 with cycles C, for various
odd values of n and make a conjecture about the general case.

Problem 7 Repeat Problem 6 with even values of n. What happens?

A bipartite graph is a complete bipartite graph (see Exercises 74-78 in Sec-
tion 3.7) ifits vertices can be partitioned into sets U and V such that every vertex in U
is adjacent to every vertex in V, and vice versa. If U and V each have n vertices, then
the graph is denoted by K,, ,,. For example, K ; is the graph in Figure 4.4.

Problem 8 Repeat the process of Problems 1 through 3 with complete bipartite
graphs K, for various values of #. What happens?

By the end of this chapter, you will be in a position to explain the observations you
have made in this Introduction.

Introduction to Eigenvalues and Eigenvectors

In Chapter 3, we encountered the notion of a steady state vector in the context of
two applications: Markov chains and the Leslie model of population growth. For a
Markov chain with transition matrix P, a steady state vector x had the property that
Px = x; for a Leslie matrix L, a steady state vector was a population vector x satisfying
Lx = rx, where r represented the steady state growth rate. For example, we saw that

0 4 31|18 18

07 02|04 0.4
= and |05 0 0 6| =15 6

0.3 0.8]10.6 0.6
0 025 0 1 1

In this chapter, we investigate this phenomenon more generally. That is, for a square ma-
trix A, we ask whether there exist nonzero vectors x such that Ax is just a scalar multiple
of x. This is the eigenvalue problem, and it is one of the most central problems in linear
algebra. It has applications throughout mathematics and in many other fields as well.

Definition  Let Abeann X n matrix. A scalar A is called an eigenvalue of A if
there is a nonzero vector x such that Ax = Ax. Such a vector x is called an eigenvec-
tor of A corresponding to A.
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Example 4.1

1 3.1
Show that x = [1] is an eigenvector of A = [1 3} and find the corresponding

eigenvalue.

Solution  We compute

S HRRRHEE

from which it follows that x is an eigenvector of A corresponding to the eigenvalue 4.

Example 4.2

»

1 2
Show that 5 is an eigenvalue of A = [4 3} and determine all eigenvectors corre-
sponding to this eigenvalue.

Solution  We must show that there is a nonzero vector x such that Ax = 5x. But this
equation is equivalent to the equation (A — 5I)x = 0, so we need to compute the null
space of the matrix A — 5I. We find that

1 2 -
J [50]_[-4 2
4 3 0 5 4 =2
Since the columns of this matrix are clearly linearly dependent, the Fundamental
Theorem of Invertible Matrices implies that its null space is nonzero. Thus, Ax =

5x has a nontrivial solution, so 5 is an eigenvalue of A. We find its eigenvectors by
computing the null space:

—4 g _1
AR P H e PN
4 =210 0 010
X
Thus, if x = { 1} is an eigenvector corresponding to the eigenvalue 5, it satisfies
X3

1 1 .
X, — 3%, = 0,0r x; = 3Xx,, so these eigenvectors are of the form
1
2%
x —
X

1
That is, they are the nonzero multiples of [ﬂ (or, equivalently, the nonzero multiples

[:) A

The set of all eigenvectors corresponding to an eigenvalue A of an n X » matrix A
is just the set of nonzero vectors in the null space of A — AL It follows that this set of
eigenvectors, together with the zero vector in R", is the null space of A — Al
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Ileﬁnilinn_ Let A be an n X n matrix and let A be an eigenvalue of A. The
collection of all eigenvectors corresponding to A, together with the zero vector, is
called the eigenspace of A and is denoted by E,.

1
Therefore, in Example 4.2, E5 = {t[z} }

Example 4.3

7 1 =2
Show that A = 6 is an eigenvalue of A = | =3 3 6 | and find a basis for its
eigenspace. 2 2 2
Solution  As in Example 4.2, we compute the null space of A — 61. Row reduction
produces
1 1 =2 1 1 =2
A—-6l=|-3 -3 6| —> [0 O 0
2 2 —4 00 0

from which we see that the null space of A — 61 is nonzero. Hence, 6 is an eigenvalue
of A, and the eigenvectors corresponding to this eigenvalue satisfy x; + x, — 2x; = 0,
orx; = —x, + 2x;. It follows that

—x, + 2x; -1 2 -1
E; = X, =0x%| 1|+x0 = span 11,10
X3 0 1 0 1

In R?, we can give a geometric interpretation of the notion of an eigenvector. The
equation Ax = Ax says that the vectors Ax and x are parallel. Thus, x is an eigenvector
of A if and only if A transforms x into a parallel vector [or, equivalently, if and only
if T,(x) is parallel to x, where T, is the matrix transformation corresponding to A].

Example 4.4

\

0
Find the eigenvectors and eigenvalues of A = [ } geometrically.

Solution We recognize that A is the matrix of a reflection F in the x-axis (see
Example 3.56). The only vectors that Fmaps parallel to themselves are vectors parallel

0
to the y-axis (i.e., multiples of [ ]), which are reversed (eigenvalue —1), and vectors
parallel to the x-axis (i.e., multiples of [0} ), which are sent to themselves (eigenvalue 1)

(see Figure 4.5). Accordingly, A = —1 and A = 1 are the eigenvalues of A, and the
corresponding eigenspaces are

o) s =[]



The discussion is based on the
article “Eigenpictures: Pictur-
ing the Eigenvector Problem” by
Steven Schonefeld in The College
Mathematics Journal 26 (1996),
pp-316-319.
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y
A
3 —+
2T X
E(y) |
e A
f’j(e 1 ) =€ 1
{ { f P { —> x
-3 =2 -1 1 2 3
y F(Ez) = *62_
-2 F(x)
_3 —+
Figure 4.5
The eigenvectors of a reflection
B
A
4 —-+
3 =4
2+ Ay
y
l =+
Ax
X
f { f — X
1 2 3 4
Figure 4.6

Another way to think of eigenvectors geometrically is to draw x and Ax head-to-
tail. Then x will be an eigenvector of A if and only if xand Ax are aligned in a straight
line. In Figure 4.6, x is an eigenvector of A buty is not.

If x is an eigenvector of A corresponding to the eigenvalue A, then so is any non-
zero multiple of x. So, if we want to search for eigenvectors geometrically, we need
only consider the effect of A on unit vectors. Figure 4.7(a) shows what happens when

31
we transform unit vectors with the matrix A = { } of Example 4.1 and display

1/V2
the results head-to-tail, as in Figure 4.6. We can see that the vector x = [1; \ﬁ} isan
eigenvector, but we also notice that there appears to be an eigenvector in the second
-1/V2
quadrant. Indeed, this is the case, and it turns out to be the vector { lj \/ﬂ



258

Chapter 4 Eigenvalues and Eigenvectors
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In Figure 4.7(b), we see what happens when we use the matrix A = { ! 1}.
There are no eigenvectors at all! =L

We now know how to find eigenvectors once we have the corresponding eigenval-
ues, and we have a geometric interpretation of them—but one question remains: How
do we first find the eigenvalues of a given matrix? The key is the observation that A is
an eigenvalue of A if and only if the null space of A — Al is nontrivial.

d

the expression det A = ad — bc, and A is invertible if and only if det A is nonzero.
Furthermore, the Fundamental Theorem of Invertible Matrices guarantees that a ma-
trix has a nontrivial null space if and only if it is noninvertible—hence, if and only if
its determinant is zero. Putting these facts together, we see that (for 2 X 2 matrices at
least) A is an eigenvalue of A if and only if det(A — AI') = 0. This fact characterizes
eigenvalues, and we will soon generalize it to square matrices of arbitrary size. For the
moment, though, let’s see how to use it with 2 X 2 matrices.

a b
Recall from Section 3.3 that the determinant of a 2 X 2 matrix A = { } is
c

Example 4.5

»

Find all of the eigenvalues and corresponding eigenvectors of the matrix A =

3 1
[1 3] from Example 4.1.

Solution  The preceding remarks show that we must find all solutions A of the equa-
tion det(A — AI') = 0. Since

1

3-A
A— Al =
det( ) det[ ) 3_

}:(3—)\)(3—)\)—1=)\2—6A+8

we need to solve the quadratic equation A> — 6A + 8 = 0. The solutions to this equa-
tion are easily found to be A = 4 and A = 2. These are therefore the eigenvalues of A.
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To find the eigenvectors corresponding to the eigenvalue A = 4, we compute the
null space of A — 4I. We find

il 110 1 —-11]0
[A_“o]:{ 1 —1’0}%[0 0’0}

%
from which it follows that x = [ 1} is an eigenvector corresponding to A = 4 if and
X2

. . X 1
onlyif x; — x, = 0 or x, = x,. Hence, the eigenspace E, = {LC }} = {xz[ }} =

ol S

Similarly, for A = 2, we have

1 1]0] 1 110
[A—2[]0] = —
1 1]0) 0 010

soy = {y 1} is an eigenvector corresponding to A = 2 if and only if y, + y, = 0 or

V2

. -1 -1
y1 = —¥, Thus, the eigenspace E, = {[ ” } - {)’2|: 1}} - span([ J)
Y2 |

Figure 4.8 shows graphically how the eigenvectors of A are transformed when
multiplied by A: an eigenvector x in the eigenspace E, is transformed into 4x, and an
eigenvector y in the eigenspace E, is transformed into 2y. As Figure 4.7(a) shows, the
eigenvectors of A are the only vectors in R* that are transformed into scalar multiples
of themselves when multiplied by A.

y
A
4+ AXx = 4x
3__
2__
Ay = 2y
l__
y X
} } } 1 } t } —> X
-4 -3 -2 -1 1 2 3 4
_1__
_2__
_3__
_4__
Figure 4.8

How A transforms eigenvectors



260

Chapter 4 Eigenvalues and Eigenvectors

Remark You will recall that a polynomial equation with real coefficients (such as
the quadratic equation in Example 4.5) need not have real roots; it may have complex
roots. (See Appendix C.) It is also possible to compute eigenvalues and eigenvectors
when the entries of a matrix come from Z,, where p is prime. Thus, it is important to
specify the setting we intend to work in before we set out to compute the eigenvalues
of a matrix. However, unless otherwise specified, the eigenvalues of a matrix whose
entries are real numbers will be assumed to be real as well.

Example 4.6

Interpret the matrix in Example 4.5 as a matrix over Z; and find its eigenvalues in
that field.

Solution  The solution proceeds exactly as above, except we work modulo 3. Hence,
the quadratic equation A*> — 6A + 8 = 0 becomes A* + 2 = 0. This equation is the
sameas A = —2 = 1,giving A = 1and A = —1 = 2 as the eigenvalues in Z5. (Check
that the same answer would be obtained by first reducing A modulo 3 to obtain

4

0 1
[1 0} and then working with this matrix.)

T Exercises 4.1

Example 4.7

»
'

0 -1
Findtheeigenvaluesof A = { ) 0} (a) over Rand (b) over the complex numbers C.

Solution  We must solve the equation

—A 1
O=det(A—/\I)=det{1 }=/\2+1

(a) Over R, there are no solutions, so A has no real eigenvalues.
(b) Over C, the solutions are A = iand A = —i. (See Appendix C.)

g

In the next section, we will extend the notion of determinant from 2 X 2 to
n X n matrices, which in turn will allow us to find the eigenvalues of arbitrary square
matrices. (In fact, thisisn’t quite true—but we will at least be able to find a polynomial
equation that the eigenvalues of a given matrix must satisfy.)

1. A

2.A

3.A

.

In Exercises 1-6, show that v is an eigenvector of A and find
the corresponding eigenvalue.

V.=
13 0

sa=|t —2},_[4}
5 -7 2
[3 0 0] [ 2]
50A=(0 1 —-2|,v=]-1
1 0 1] L1
[0 1 -1 [ —2]
6.A=[11 1| v=]| 1
1 2 0] L1
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In Exercises 7-12, show that A is an eigenvalue of A and In Exercises 19-22, the unit vectors x in R* and their
find one eigenvector corresponding to this eigenvalue. images AX under the action of a 2 X 2 matrix A are drawn
) head-to-tail, as in Figure 4.7. Estimate the eigenvectors and
7 A= 2 2}, A=3 eigenvalues of A from each “eigenpicture.”
12 -1
- 19. y
2 3 A
8.A= }, A=-1
3 2 T
[0 4
9.A = ,A =
-1 5

[4 =2
10. A = },/\= -6

In Exercises 13-18, find the eigenvalues and eigenvectors of

A geometrically. T
(-1 0 o .
13. A = } (reflection in the y-axis)
0 1 20. y
0 1 Lo .
14. A = ) 0} (reflection in the line y = x) 6
1 0 - . |
15. A = a0 (projection onto the x-axis) 7
rle 12 i
16. A = E 2;} (projection onto the line through the A’
L25 25 4
origin with direction vector {i]) &\\\W//% :
=) T — N, 1
o ’ ~2 7N\ 2.
2 V
17. A = . 3} (stretching by a factor of 2 horizontally A',l
and a factor of 3 vertically)
_0 - 1 . .
18. A = . 0} (counterclockwise rotation of 90°
L -6

about the origin)
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21. y
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In Exercises 23-26, use the method of Example 4.5 to find
all of the eigenvalues of the matrix A. Give bases for each of
the corresponding eigenspaces. Illustrate the eigenspaces and
the effect of multiplying eigenvectors by A as in Figure 4.8.

4 -1 2 4
23.A = 24. A =

2 1 6 0

2 5 1 2
25. A = 26. A =

0 2 -2 3

In Exercises 27-30, find all of the eigenvalues of the matrix
A over the complex numbers C. Give bases for each of the

corresponding eigenspaces.
2 -3
28. A = { }

1 1
27. A = ]
-1 1 1 0

1 i
29. A = | | .
i1 1 —1 1

In Exercises 31-34, find all of the eigenvalues of the ma-
trix A over the indicated Z ,.

0 1+
30.A={ ]

1 0 2 1
31.A = { } over Z, 32.A= { } over Z,
1 2 1 2
31 1 4
33.A = L O] over Z 34.A = [4 0] over Z
35. (a) Show that the eigenvalues of the 2 X 2 matrix
. {a b]
c d

are the solutions of the quadratic equation
A — tr(A)A + det A = 0, where tr(A) is the trace
of A. (See page 162.)
(b) Show that the eigenvalues of the matrix A in
part (a) are

A=Ya+d=Via— d?+ 4bc)

(c) Show that the trace and determinant of the matrix A
in part (a) are given by

tr(A) = /\1 + AZ and detA = AIAZ

where A and A, are the eigenvalues of A.

36. Consider again the matrix A in Exercise 35. Give
conditions on a, b, ¢, and d such that A has

(@) two distinct real eigenvalues,
(b) one real eigenvalue, and
(c) no real eigenvalues.

37. Show that the eigenvalues of the upper triangular

matrix
= {a bJ
0 d
are A = aand A = d, and find the corresponding
eigenspaces.

/a+vi/38. Let a and b be real numbers. Find the eigenvalues and

corresponding eigenspaces of

=[]

over the complex numbers.
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Historically, determinants preceded matrices—a curious fact in light of the way linear
algebra is taught today, with matrices before determinants. Nevertheless, determi-
nants arose independently of matrices in the solution of many practical problems,
and the theory of determinants was well developed almost two centuries before
matrices were deemed worthy of study in and of themselves. A snapshot of the his-
tory of determinants is presented at the end of this section.

a, a
Recall that the determinant of the 2 X 2 matrix A = [ " 12} is
1 Ap
det A = allazz - a12a21
We first encountered this expression when we determined ways to compute the
inverse of a matrix. In particular, we found that

-1
{a” a12:| _ 1 { an _a12:|
dy Gy 1102, — Gz [ ~ay an
The determinant of a matrix A is sometimes also denoted by |A|, so for the 2 X 2
. _|an ap .
matrix A = we may also write
a1 An
i an
|A‘ = = Ay T Apay
az  Aan

Warning This notation for the determinant is reminiscent of absolute value no-

a, a
tation. It is easy to mistake | '

. . ay;;  ap
, the notation for determinant, for { ,
) Adp

a1 4
the notation for the matrix itself. Do not confuse these. Fortunately, it will usually
be clear from the context which is intended.

We define the determinant of a1 X 1 matrix A = [a] to be
detA=la|=a

(Note that we really have to be careful with notation here: |a| does not denote the
absolute value of a in this case.) How then should we define the determinant of a
3 X 3 matrix? If you ask your CAS for the inverse of

a b ¢
A=1|d e f
g h i

the answer will be equivalent to
ei —fh ch—bi bf—ce
A'=—|fg—di ai—cg cd— af
dh —eg bg—ah ae— bd
where A = aei — afh — bdi + bfg + cdh — ceg. Observe that
A = aei — afh — bdi + bfg + cdh — ceg
= alei — fh) — b(di — fg) + c(dh — eg)
e f d f d e
hoil b‘g i g h

=a

+c’
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and that each of the entries in the matrix portion of A~ ' appears to be the determi-
nant of a 2 X 2 submatrix of A. In fact, this is true, and it is the basis of the definition
of the determinant of a 3 X 3 matrix. The definition is recursive in the sense that the
determinant of a 3 X 3 matrix is defined in terms of determinants of 2 X 2 matrices.

an  dip a4
Definition LetA = |4y ay ay; |. Then the determinant of A is the scalar

ds ds  ds

det A = |A| = ay, g2 U

ds; Az

Notice that each of the 2 X 2 determinants is obtained by deleting the row and col-
umn of A that contain the entry the determinant is being multiplied by. For example,
the first summand is a,; multiplied by the determinant of the submatrix obtained by
deleting row 1 and column 1. Notice also that the plus and minus signs alternate in
Equation (1). If we denote by A;; the submatrix of a matrix A obtained by deleting row
i and column j, then we may abbreviate Equation (1) as

det A = a,; det A;; — a;, det A}, + a,; det A},

3
a 2(—1)”1'(11]. det Al]

j=1

For any square matrix A, det Aj; is called the (i, j)-minor of A.

Example 4.8

\

Compute the determinant of

5 =3 2
A=]1 0 2
2 —1 3

Solution We compute

I

det A =5

-1 3

‘02
2 -1

1 2 1 0
‘_(_3)‘2 3‘”‘ ‘
=50—-(-2) +33—4) +2(-1 - 0)
=502) +3(—1) +2(-1) =5

With a little practice, you should find that you can easily work out 2 X 2 determinants
in your head. Writing out the second line in the above solution is then unnecessary.

Another method for calculating the determinant of a 3 X 3 matrix is analogous
to the method for calculating the determinant of a 2 X 2 matrix. Copy the first two
columns of A to the right of the matrix and take the products of the elements on the six
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diagonals shown below. Attach plus signs to the products from the downward-sloping
diagonals and attach minus signs to the products from the upward-sloping diagonals.

This method gives
A1105033 T 41505303 t 41305103, = 3105013 — A30301 — 3305101,

In Exercise 19, you are asked to check that this result agrees with that from Equa-
tion (1) for a 3 X 3 determinant.

»
>

Example 4.9

Calculate the determinant of the matrix in Example 4.8 using the method shown in (2).

Solution We adjoin to A its first two columns and compute the six indicated
products:

Adding the three products at the bottom and subtracting the three products at the
top gives

detA=0+(—-12) + (=2) =0 —(-10) — (=9) =5

as before. I

Warning  We are about to define determinants for arbitrary square matrices.
However, there is 70 analogue of the method in Example 4.9 for larger matrices. It is
valid only for 3 X 3 matrices.

Determinants of n X n Matrices

The definition of the determinant of a 3 X 3 matrix extends naturally to arbitrary
square matrices.

Definition 1eta = [a;] be an n X n matrix, where n = 2. Then the deter-
minant of A is the scalar

det A =|A| = a, det A;, —ap, det A, + -+ + (—1)'""q,, det A,,

n . 3
= > (=1)""a,; det A, 3)

j=1
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It is convenient to combine a minor with its plus or minus sign. To this end, we define

the (i, j)-cofactor of A to be

CU = (—1)1+] det AI]

With this notation, definition (3) becomes

det A = Ealjclj
=1

(4)

Exercise 20 asks you to check that this definition correctly gives the formula for the

determinant of a 2 X 2 matrix when n = 2.

Definition (4) is often referred to as cofactor expansion along the first row. It is

an amazing fact that we get exactly the same result by expanding along any row

(or

even any column)! We summarize this fact as a theorem but defer the proof until the
end of this section (since it is somewhat lengthy and would interrupt our discussion

if we were to present it here).

Theorem 4.1

The Laplace Expansion Theorem
The determinant of an n X n matrix A = [a;], where n = 2, can be computed as

det A = a,C; + a,Cyp + -+ + a,C

in

& (5)
= za,»j Gy
j=1
(which is the cofactor expansion along the ith row) and also as
det A = a,,Cy; + a,Cy +---+ a,C,
(6)

n
= 2a;C;
i=1

(the cofactor expansion along the jth column).

Since C; = (—1)""/ det Ay,

each cofactor is plus or minus the corresponding minor,

with the correct sign given by the term (—1)""/. A quick way to determine whether

the sign is + or — is to remember that the signs form a “checkerboard” pattern:

+ - + -
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© CORBIS

Example 4.10 Compute the determinant of the matrix
5
A=11
2
by (a) cofactor expansion along the third row and (b) cofactor expansion along the
second column.

Solution
(a) We compute

det A = a31C31 + a32C32 + a33C33

-3 2 5 2 5 -3
= — (=1 +3

0 2 1 2 1 0
=2(—6) + 8 + 3(3)

=5

Pierre Simon Laplace (1749-1827)
was born in Normandy, France,
and was expected to become a
clergyman until his mathematical
talents were noticed at school.

(b) In this case, we have

det A = a,,Cy, + a,,Cy, + as,Cs,y

1 2 5 2 5 2

He made many important = —(-3) +0 ==l

- 208 2 3 1 2
contributions to calculus,
probability, and astronomy. He was =3(-1)+0+38
an examiner of the young Napoleon -5
Bonaparte at the Royal Artillery
Corps and later, when Napoleon was

in power, served briefly as Minister
of the Interior and then Chancellor
of the Senate. Laplace was granted

the title of Count of the Empire Notice that in part (b) of Example 4.10 we needed to do fewer calculations than
in 1806 and received the title of in part (a) because we were expanding along a column that contained a zero entry—
Marquis de Laplace in 1817. namely, a,,; therefore, we did not need to compute C,,. It follows that the Laplace

Expansion Theorem is most useful when the matrix contains a row or column with
lots of zeros, since, by choosing to expand along that row or column, we minimize the
number of cofactors we need to compute.

\/

Example 4.11 Compute the determinant of

2 =3 0 1
5 4 2 0
A =
1 -1 0 3
-2 1 0 0

Solution  First, notice that column 3 has only one nonzero entry; we should there-
fore expand along this column. Next, note that the +/— pattern assigns a minus sign
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to the entry a,; = 2. Thus, we have

det A = a;3Cy3 + apCp + a33Cy5 + a45C,;
0(Cy3) + 2Cy; + 0(Csy3) + 0(Cy3)

2 =31
=-21 -1 3
-2 1 0

We now continue by expanding along the third row of the determinant above
(the third column would also be a good choice) to get

=3 1 2 1
dn={-27 |- 1|
-1 3 1 3

= —2(-2(-8) — 5)
—2(11) = =22

(Note that the +/— pattern for the 3 X 3 minor is not that of the original matrix but

that of a 3 X 3 matrix in general.) I

The Laplace expansion is particularly useful when the matrix is (upper or lower)
triangular.

Example 4.12

\/

Compute the determinant of

2 =310 4

0 3 25 7
A=|0 01 6 0
0 005 2

0 00 0 -1

Solution  We expand along the first column to get

325 7

01 6 0

det A =2

005 2

00 0 -1

(We have omitted all cofactors corresponding to zero entries.) Now we expand along
the first column again:

1 6 0
det A =2-3|10 5 2
0 0 -1

Continuing to expand along the first column, we complete the calculation:

5 2
det A :2-3-1‘0 ‘=2-3-1-(5(—1)—2-0)=2-3-1-5-(—1)= -30

-
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Example 4.12 should convince you that the determinant of a triangular matrix is the
product of its diagonal entries. You are asked to give a proof of this fact in Exercise 21.
We record the result as a theorem.

Theorem 4.2

The determinant of a triangular matrix is the product of the entries on its main
diagonal. Specifically, if A = [a;] is an n X n triangular matrix, then

det A = ayja,,-a

nn

Note In general (that is, unless the matrix is triangular or has some other special
form), computing a determinant by cofactor expansion is not efficient. For example,
the determinant of a 3 X 3 matrix has 6 = 3! summands, each requiring two multipli-
cations, and then five additions and subtractions are needed to finish off the calcula-
tions. For an n X » matrix, there will be #n! summands, each with n — 1 multiplications,
and then n! —1 additions and subtractions. The total number of operations is thus

T(n) = m — Dn! + n! — 1> nl

Even the fastest of supercomputers cannot calculate the determinant of a mod-
erately large matrix using cofactor expansion. To illustrate: Suppose we needed to
calculate a 50 X 50 determinant. (Matrices much larger than 50 X 50 are used to store
the data from digital images such as those transmitted over the Internet or taken by a
digital camera.) To calculate the determinant directly would require, in general, more
than 50! operations, and 50! =~ 3 X 10°%. If we had a computer that could perform
a trillion (10'?) operations per second, it would take approximately 3 X 10°* sec-
onds, or almost 10* years, to finish the calculations. To put this in perspective, con-
sider that astronomers estimate the age of the universe to be at least 10 billion (10'°)
years. Thus, on even a very fast supercomputer, calculating a 50 X 50 determinant by
cofactor expansion would take more than 10*° times the age of the universe!

Fortunately, there are better methods—and we now turn to developing more
computationally effective means of finding determinants. First, we need to look at
some of the properties of determinants.

Properties of Determinants

The most efficient way to compute determinants is to use row reduction. However,
not every elementary row operation leaves the determinant of a matrix unchanged.
The next theorem summarizes the main properties you need to understand in order
to use row reduction effectively.

Theorem 4.3

Let A = [a;] be a square matrix.

a. If A has a zero row (column), then det A = 0.

b. If Bis obtained by interchanging two rows (columns) of A, then det B = —det A.

c. If A has two identical rows (columns), then det A = 0.

d. If Bis obtained by multiplying a row (column) of A by k, then det B = k det A.

e. If A, B, and C are identical except that the ith row (column) of Cis the sum of
the ith rows (columns) of A and B, then det C = det A + det B.

f. If B is obtained by adding a multiple of one row (column) of A to another row

(column), then det B = det A.
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Proof  We will prove (b) as Lemma 4.14 at the end of this section. The proofs of
properties (a) and (f) are left as exercises. We will prove the remaining properties in
terms of rows; the corresponding proofs for columns are analogous.

(c) If A has two identical rows, swap them to obtain the matrix B. Clearly, B = A, so
det B = det A. Onthe other hand, by (b), det B= —det A. Therefore, det A = —det A,
sodet A = 0.

(d) Supposerow iofA is multipliedbykto produce B; thatis, b; = ka;forj=1,...,n.
Since the cofactors Cj; of the elements in the ith rows of A and B are 1dent1cal (why?),
expanding along the i th row of B gives

detB = >'b;C; = > ka;C; = k >,a,C; = k detA
j=1 j=1 j=1

(e) As in (d), the cofactors Cj of the elements in the ith rows of A, B, and C are
identical. Moreover, ¢; = a; + b forj=1,..., n. We expand along the ith row of C
to obtain

detC =>¢,C; = 2 a; + by)C; Ea,,cq +2b,JC,J detA + detB
j=1 j=1
—

Notice that properties (b), (d), and (f) are related to elementary row operations.
Since the echelon form of a square matrix is necessarily upper triangular, we can
combine these properties with Theorem 2 to calculate determinants efficiently. (See
Exploration: Counting Operations in Chapter 2, which shows that row reduction of
ann X n matrix uses on the order of n’ operations, far fewer than the n! needed for
cofactor expansion.) The next examples illustrate the computation of determinants
using row reduction.

\/

Example 4.13

Compute det A if

2 3 -1
(a) A = 0 5 3
L—4 -6
o0 2 —4 5
3 0 —3 6
(b) A=
2 4 5 7
5 -1 -3 1
Solution

(a) Using property (f) and then property (a), we have

2 3 -1 3

R,+2R,
5 31=0
0

2
detA=| 0 5 31 = |0
-4 -6 2 0
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(b) We reduce A to echelon form as follows (there are other possible ways to do this):

0 2 —4 5 3 -3 6 1 0 -1 2
3 —3 6| ReR 0 2 —4 5|r/ 0 2 —4 5
det A = = — = —3
2 50, 2 4 5 7 2 4 5 7
5 -1 -3 1 5 — -3 1 5 —1 =3 1
R,—2R, 1 0 -1 2 1 0 - 2
RAle_ 0 2 —4 5 RZ‘:)RI B _3) 0 —1 —9
0 4 7 3 0
0 —1 2 -9 0 2 —4
Ry+4R, 1 0 -1 2

R+2R, [0 —1 2 -9
~Tlo 0 15 -33
0 0 0 -13

=3-1-(—1)-15-(—13) = 585

-

Remark By Theorem 4.3, we can also use elementary column operations in the
process of computing determinants, and we can “mix and match” elementary row and
column operations. For example, in Example 4.13(a), we could have started by adding
column 3 to column 1 to create a leading 1 in the upper left-hand corner. In fact, the
method we used was faster, but in other examples column operations may speed up
the calculations. Keep this in mind when you work determinants by hand.

Determinants of Elementary Matrices

Recall from Section 3.3 that an elementary matrix results from performing an ele-
mentary row operation on an identity matrix. Setting A = I, in Theorem 4.3 yields
the following theorem.

Theorem 4.4

The word lemima is derived from
the Greek verb lambanein, which
means “to grasp.” In mathematics,
alemma is a “helper theorem”
that we “grasp hold of” and use
to prove another, usually more
important, theorem.

Let E be an n X n elementary matrix.

a. If E results from interchanging two rows of I, then det E = —1.

b. If E results from multiplying one row of I, by k, then det E = k.

c. If E results from adding a multiple of one row of I, to another row, then
detE = 1.

Proof  Since det I, = 1, applying (b), (d), and (f) of Theorem 4.3 immediately gives
(a), (b), and (c), respectively, of Theorem 4.4. __am

Next, recall that multiplying a matrix B by an elementary matrix on the left per-
forms the corresponding elementary row operation on B. We can therefore rephrase
(b), (d), and (f) of Theorem 4.3 succinctly as the following lemma, the proof of which
is straightforward and is left as Exercise 43.
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Lemma 4.5

Let Bbean n X n matrix and let Ebe an n X n elementary matrix. Then

det(EB) = (det E)(det B)

We can use Lemma 4.5 to prove the main theorem of this section: a characteriza-
tion of invertibility in terms of determinants.

Theorem 4.6

A square matrix A is invertible if and only if det A # 0.

Proof Let A beann X n matrix and let R be the reduced row echelon form of A.
We will show first that det A # 0 ifand only if det R # 0. Let E|, E,, . . ., E, be the
elementary matrices corresponding to the elementary row operations that reduce
AtoR. Then

E,---E,ELJA =R
Taking determinants of both sides and repeatedly applying Lemma 4.5, we obtain

(detE,)- - -(detE,)(detE,)(detA) = detR

By Theorem 4.4, the determinants of all the elementary matrices are nonzero. We
conclude that det A # 0 if and only if det R # 0.

Nowsuppose that A is invertible. Then, bythe Fundamental Theorem of Invertible
Matrices, R = I,, so det R = 1 # 0. Hence, det A # 0 also. Conversely, if det A # 0,
then det R # 0, so R cannot contain a zero row, by Theorem 4.3(a). It follows that
R must be I, (why?), so A is invertible, by the Fundamental Theorem again.

|

Let’s now try to determine what relationship, if any, exists between determinants and
some of the basic matrix operations. Specifically, we would like to find formulas for
det(kA), det(A + B), det(AB), det(A™ "), and det(AT) in terms of det A and det B.
Theorem 4.3(d) does not say that det(kA) = k det A. The correct relationship
between scalar multiplication and determinants is given by the following theorem.

Theorem 4.7

If A is an n X »n matrix, then

det(kA) = k" det A

You are asked to give a proof of this theorem in Exercise 44.

Unfortunately, there is no simple formula for det(A + B), and in general,
det(A + B) # det A + det B. (Find two 2 X 2 matrices that verify this.) It therefore
comes as a pleasant surprise to find out that determinants are quite compatible with
matrix multiplication. Indeed, we have the following nice formula due to Cauchy.
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Augustin Louis Cauchy (1789-1857) was born in Paris and studied engineering but switched

to mathematics because of poor health. A brilliant and prolific mathematician, he published
over 700 papers, many on quite difficult problems. His name can be found on many theorems
and definitions in differential equations, infinite series, probability theory, algebra, and
physics. He is noted for introducing rigor into calculus, laying the foundation for the branch
of mathematics known as analysis. Politically conservative, Cauchy was a royalist, and in 1830
he followed Charles X into exile. He returned to France in 1838 but did not return to his post
at the Sorbonne until the university dropped its requirement that faculty swear an oath of
loyalty to the new king.

Theorem 4.8

If A and B are n X n matrices, then

det(AB) = (det A)(det B)

Proof We consider two cases: A invertible and A not invertible.
If A is invertible, then, by the Fundamental Theorem of Invertible Matrices, it can
be written as a product of elementary matrices—say,

A =EE, E
Then AB = E\E, -+ EiB, so k applications of Lemma 4.5 give
det(AB) = det(E,E,- - -EB) = (det E,)(det E,) - - - (det E;)(det B)
Continuing to apply Lemma 4.5, we obtain
det(AB) = det(E,\E,- - -E,)det B = (det A)(det B)

On the other hand, if A is not invertible, then neither is AB, by Exercise 47
in Section 3.3. Thus, by Theorem 4.6, det A = 0 and det(AB) = 0. Consequently,
det(AB) = (det A)(det B), since both sides are zero. i |

\

Example 4.14

2 1 5 1
Applying Theorem 4.8 to A = { > 3] and B = [2 J, we find that

e[

16 5

and that det A = 4, det B = 3, and det(AB) = 12 = 4 -3 = (det A)(det B), as claimed.

(Check these assertions!) 1

The next theorem gives a nice relationship between the determinant of an invertible
matrix and the determinant of its inverse.
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Theorem 4.9

If A is invertible, then
_ 1
det A

det(A™ 1)

Proof Since A is invertible, AA ! =1 so det(AA ') = det I = 1. Hence,
(det A)(det A™1) = 1, by Theorem 4.8, and since det A # 0 (why?), dividing by
det A yields the result. —  wem

Example 4.19

Verify Theorem 4.9 for the matrix A of Example 4.14.

Solution  We compute

SO

R

Remark The beauty of Theorem 4.9 is that sometimes we do not need to know
what the inverse of a matrix is, but only that it exists, or to know what its determinant
is. For the matrix A in the last two examples, once we know that det A = 4 # 0, we
immediately can deduce that A is invertible and that det A~ = } without actually
computing A~ .

We now relate the determinant of a matrix A to that of its transpose A”. Since the
rows of AT are just the columns of A, evaluating det A” by expanding along the first
row is identical to evaluating det A by expanding along its first column, which the
Laplace Expansion Theorem allows us to do. Thus, we have the following result.

Theorem 4.10

Gabriel Cramer (1704-1752) was
a Swiss mathematician. The rule
that bears his name was published
in 1750, in his treatise Introduction
to the Analysis of Algebraic Curves.
As early as 1730, however, special
cases of the formula were known
to other mathematicians, including
the Scotsman Colin Maclaurin
(1698-1746), perhaps the greatest
of the British mathematicians who
were the “successors of Newton.”

For any square matrix A,

det A = det AT

In this section, we derive two useful formulas relating determinants to the solution
of linear systems and the inverse of a matrix. The first of these, Cramer’s Rule, gives
a formula for describing the solution of certain systems of # linear equations in n
variables entirely in terms of determinants. While this result is of little practical use
beyond 2 X 2 systems, it is of great theoretical importance.

We will need some new notation for this result and its proof. For an n X »n ma-
trix A and a vector b in R", let A;(b) denote the matrix obtained by replacing the ith
column of A by b. That is,

Column i

\
A,b) = [a," b --a,]
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Theorem 1.11

Cramer’s Rule

Let A be an invertible # X # matrix and let b be a vector in R". Then the unique
solution x of the system Ax = b is given by
_ det(A,(b))

5% fori=1,...,n
det A

Proof  The columns of the identity matrix I = I, are the standard unit vectors e,
e, ...,e, If Ax = b, then

AL(x) = Ale;, -+ x -+ e,]=[Ae -+ Ax -+ Ae,]
=[a -+ b -+ a,]=Alb)
Therefore, by Theorem 4.8,
(detA)(detI(x)) = det(AI(x)) = det(A,(b))

Now
0 x 0 0
0 7 0 0
detI,-(x)= 0 0 X; 0 0 =xi
0 0 xn—l 1 O
0 0 x 0 1

as can be seen by expanding along the ith row. Thus, (det A)x; = det(4;(b)), and the

result follows by dividing by det A (which is nonzero, since A is invertible).
I

Example 4.16

\

Use Cramer’s Rule to solve the system

x, +2x, =2
—x, +4x, =1

Solution  We compute

detA = ‘_i i‘ =6, det(A;(b) = ‘f i’ =6, and det(A,(b) = ‘_1 ﬂ
=3
By Cramer’s Rule,
_ det(4,0)) 6 . det(A,(b)) 3 1

—s _——= d = e
o R 6 anc % det A 6 2 I
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Remark As noted previously, Cramer’s Rule is computationally inefficient for
all but small systems of linear equations because it involves the calculation of many
determinants. The effort expended to compute just one of these determinants, using
even the most efficient method, would be better spent using Gaussian elimination to
solve the system directly.

The final result of this section is a formula for the inverse of a matrix in terms of
determinants. This formula was hinted at by the formula for the inverse of a 3 X 3
matrix, which was given without proof at the beginning of this section. Thus, we have
come full circle.

Let’s discover the formula for ourselves. If A is an invertible n X n matrix, its
inverse is the (unique) matrix X that satisfies the equation AX = I. Solving for X one
column at a time, let x; be the jth column of X. That is,

X=X
xn]‘
Therefore, Ax; = e;, and by Cramer’s Rule,
det(A(e)))
X = ————
. det A
However,
ith column
-
all a12 %5 B 0 5 e aln
Ay Ayp 0 ay,
I I A R (PSR _
det(Al(ej)) - - - . 1 - o - ( 1)} det A]l — C]l
j1 j2 ‘jn
Ay Ayo e 0 Tt Ay

which is the (j, i)-cofactor of A.

It follows that x; = (1/det A)Cj;, so A= X = (1/det A) [Ci] = (1/det A) [Cij]T.
In words, the inverse of A is the transpose of the matrix of cofactors of A, divided by
the determinant of A.

The matrix
C11 C21 e Cnl
C C ... C
[Cil=[c)T=|"" = ™=
Cln CZn e Cnn

is called the adjoint (or adjugate) of A and is denoted by adj A. The result we have
just proved can be stated as follows.
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Theorem 4.12

Let A be an invertible n X »n matrix. Then

L 1 ,
A = detAadJA

\/

Example 4.17

Use the adjoint method to compute the inverse of

1 2 -1
A=12 2 4
1 3 -3
Solution  We compute det A = —2 and the nine cofactors
2 4 2 4 2 2
C11=+3 . = —18 C12=—1 4 =10 C13=+‘l 3‘=4
2 -1 1 -1 1 2
Cz1—_3 o =3 C22=+1 _3=—2 C23=—‘1 3’=—1
2 -1 1 -1 1 2
Co=t[, ,[=10 Ca=-|  1=-6 C33=+‘2 2‘=—2

The adjoint is the transpose of the matrix of cofactors—namely,

-18 10 4]" —-18 3 10

adjA = 3 =2 -1 =| 10 -2 -6

10 -6 -2 4 -1 -2

Then

| -8 310 9 -2 -

A7l = diaA=-=| 10 -2 -6|=|-5 1

det A% 2 .

4 -1 =2 -2 1

which is the same answer we obtained (with less work) in Example 3.30.

Proof of the Laplace Expansion Theorem

Unfortunately, there is no short, easy proof of the Laplace Expansion Theorem. The
proof we give has the merit of being relatively straightforward. We break it down into
several steps, the first of which is to prove that cofactor expansion along the first row
of a matrix is the same as cofactor expansion along the first column.

lemma 4.13

Let A be an n X n matrix. Then

a;,Cyy + aCpy + - + a,,Cy, = detA = a,,Cyy + a,,C + -+ a,,C,y (7)
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Proof  We prove this lemma by induction on n. For n = 1, the result is trivial. Now
assume that the result is true for (n — 1) X (n — 1) matrices; this is our induction
hypothesis. Note that, by the definition of cofactor (or minor), all of the terms con-
taining a,, are accounted for by the summand a,,C,,. We can therefore ignore terms
containing a,;.

The ith summand on the right-hand side of Equation (7) is a,,C;; = a;;(—1)""*
det A;;. Now we expand det A;, along the first row:

ap, as e ay; Ay
Ai—1, Qo3 0 Qo T Qi
i1y Giv1y 70 Qv T Qivan

%) a3 T aﬂj A,n

The jth term in this expansion of det A;, is alj(—l)Hj*1 det A);;, where the nota-
tion Ay, denotes the submatrix of A obtained by deleting rows k and [ and columns

r and s. Combining these, we see that the term containing a;a,; on the right-hand
side of Equation (7) is

ap(=1)™"a (=)' det Ay = (=17 g, a,; det A, 5
What is the term containing a;,a,; on the left-hand side of Equation (7)? The

factor a,; occurs in the jth summand, a,;C,; = alj(—l)lﬂ det Ay;. By the induction
hypothesis, we can expand det A,; along its first column:

ay o Gy G541 T Gy
as o G3-1 s T Qi
¥ e L
(2%} U an,j*l an,j+l e Ay

The ith term in this expansion of det Ay; is a;,(— )0+ det Ayj1j> so the term con-
taining a;,a,; on the left-hand side of Equation (7) is

alj(—1)”%11-1(—1)“’”+l det Ay;y; = (=17 ayay; det Ay

which establishes that the left- and right-hand sides of Equation (7) are equivalent.

Next, we prove property (b) of Theorem 4.3.

Llemma 4.14

Let A be an n X n matrix and let B be obtained by interchanging any two rows
(columns) of A. Then

det B = —det A
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Proof  Once again, the proof is by induction on #. The result can be easily checked
when n = 2, so assume that it is true for (n — 1) X (n — 1) matrices. We will prove
that the result is true for n X n matrices. First, we prove that it holds when two adja-
cent rows of A are interchanged—say, rows r and r + 1.

By Lemma 4.13, we can evaluate det B by cofactor expansion along its first col-
umn. The ith term in this expansion is (—1)'*'b;, det B;. If i # rand i # r + 1, then
b;y = a;; and B;; isan (n — 1) X (n — 1) submatrix that is identical to A;, except that
two adjacent rows have been interchanged.

an ap a.ln
a.il a.iz . a.in
ar-%.—l,l ar-*.—l,Z S P
arl ar2 e a.m
a;ll a;12 e a;m

Thus, by the induction hypothesis, det B;; = —det A;, ifi # rand i # r + 1.
Ifl == then bil == arH)l and Bil = Ar+1,l'

an ap i ayy
Rowi— |Grr11 Grt1z 77 Bt

arl arZ U arn

aul anZ e a:m

Therefore, the rth summand in det B is
(=1, detB,, = (—1)"la,,,  detA,.,, = (=1 Vg, detA,,,
Similarly, if i = r + 1, then b;; = a,, B;; = A,), and the (r + 1)st summand in det B is
(=D V*p, 1 det By, = (—1)a, det A, = —(—1)""1a,, det A,

In other words, the rth and (r + 1)st terms in the first column cofactor expansion of
det B are the negatives of the (r + 1)st and rth terms, respectively, in the first column
cofactor expansion of det A.
Substituting all of these results into det B and using Lemma 4.13 again, we obtain
n
E (_ 1)i+lbl‘1 det Bil

i=1

det B

n

> (=1)""'b, det By + (—=1)"'b,, det B, + (=1)""V* b, | det B,
i=1
iFrrtl

n

D> (=1 ay(—det Ay) — (— DIV g det A, — (1) a, det A,
i=1
iFrr+l

- E (_ 1)i+1a1‘1 det Ail
i=1

—det A
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A self-taught child prodigy,
Takakazu Seki Kowa (1642-1708)
was descended from a family of
samurai warriors. In addition

to discovering determinants,

he wrote about diophantine
equations, magic squares, and
Bernoulli numbers (before
Bernoulli) and quite likely made
discoveries in calculus.

This proves the result for n X »n matrices if adjacent rows are interchanged. To
see that it holds for arbitrary row interchanges, we need only note that, for example,
rows r and s, where r <'s, can be swapped by performing 2(s — r) — 1 interchanges of
adjacent rows (see Exercise 67). Since the number of interchanges is odd and each one
changes the sign of the determinant, the net effect is a change of sign, as desired.

The proof for column interchanges is analogous, except that we expand along
row 1 instead of along column 1. B |

We can now prove the Laplace Expansion Theorem.

Proof of Theorem 4.1  Let B be the matrix obtained by moving row i of A to the top,
using i — 1 interchanges of adjacent rows. By Lemma 4.14,det B = (—1)'~' det A. But
by = azand Bj; = Ajforj=1,...,n

ai ajj Ay

an "y A1n
det B= [Gi-1q " Qi1 77 Giopg
Aiv1n " Qg T Qivy

an anj Aun

Thus,

det A = (=1)"'det B = (=1)"" > (~1)""b,; det By
j=1

= (D)7 D(=1)"a; det Ay = D, (—1)ay det A,
im

j=1

which gives the formula for cofactor expansion along row i.
The proof for column expansion is similar, invoking Lemma 4.13 so that we can
use column expansion instead of row expansion (see Exercise 68). b |

A Brief History of Determinants

As noted at the beginning of this section, the history of determinants predates that of
matrices. Indeed, determinants were first introduced, independently, by Seki in 1683
and Leibniz in 1693. In 1748, determinants appeared in Maclaurin’s Treatise on Alge-
bra, which included a treatment of Cramer’s Rule up to the 4 X 4 case. In 1750, Cramer
himself proved the general case of his rule, applying it to curve fitting, and in 1772,
Laplace gave a proof of his expansion theorem.

The term determinant was not coined until 1801, when it was used by Gauss.
Cauchy made the first use of determinants in the modern sense in 1812. Cauchy, in
fact, was responsible for developing much of the early theory of determinants, in-
cluding several important results that we have mentioned: the product rule for de-
terminants, the characteristic polynomial, and the notion of a diagonalizable matrix.
Determinants did not become widely known until 1841, when Jacobi popularized
them, albeit in the context of functions of several variables, such as are encountered in
a multivariable calculus course. (These types of determinants were called “Jacobians”
by Sylvester around 1850, a term that is still used today.)
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Gottfried Wilhelm von Leibniz (1646-1716) was born in Leipzig and studied law,

theology, philosophy, and mathematics. He is probably best known for developing (with
Newton, independently) the main ideas of differential and integral calculus. However, his
contributions to other branches of mathematics are also impressive. He developed the notion
of a determinant, knew versions of Cramer’s Rule and the Laplace Expansion Theorem before
others were given credit for them, and laid the foundation for matrix theory through work he
did on quadratic forms. Leibniz also was the first to develop the binary system of arithmetic.
He believed in the importance of good notation and, along with the familiar notation for
derivatives and integrals, introduced a form of subscript notation for the coefficients of a
linear system that is essentially the notation we use today.

By the late 19th century, the theory of determinants had developed to the stage
that entire books were devoted to it, including Dodgson’s An Elementary Treatise on
Determinants in 1867 and Thomas Muir’s monumental five-volume work, which
appeared in the early 20th century. While their history is fascinating, today deter-
minants are of theoretical more than practical interest. Cramer’s Rule is a hopelessly
inefficient method for solving a system of linear equations, and numerical methods
have replaced any use of determinants in the computation of eigenvalues. Determi-
nants are used, however, to give students an initial understanding of the characteristic
polynomial (as in Sections 4.1 and 4.3).

TEXBI’GiSBS 4.2

\/

R

Compute the determinants in Exercises 1-6 using cofactor —4 1 3 cos @ sinf  tan0®
expansion along the first row and along the first column. 9.| 2 -2 4 10. 0 cosf —sinf
1 0 3 01 -1 1 -1 0 0 sinf®  cosf
1.5 1 1 2. 2 3 -2
01 2 -1 3 0 a b o 0 a 0
1 -1 0 1 0 11.[0 a b 12.1b ¢ d
3.-1 0 1 4.1 0 1 a 0 b 0 e 0
0 1 -1 0 1 1
2 5 2 6 1 2
5.2 3 1 6.4 5 6 13. 14.
1 4 2 1 2 1
Compute the determinants in Exercises 7-15 using cofactor
expansion along any row or column that seems convenient. S
a
2 2 1 1 -1
7 i 12 8.2 0 1 .0 00 e
) ) 0 d e f
300 3 -2 1 !
g h i
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In Exercises 16-18, compute the indicated 3 X 3 determi-
nants using the method of Example 4.9.

16. The determinant in Exercise 6
17. The determinant in Exercise 8
18. The determinant in Exercise 11

19. Verify that the method indicated in (2) agrees with
Equation (1) for a 3 X 3 determinant.

20. Verify that definition (4) agrees with the definition of a
2 X 2 determinant when n = 2.

21. Prove Theorem 4.2. [Hint: A proof by induction would
be appropriate here.]

In Exercises 22-25, evaluate the given determinant using
elementary row and/or column operations and Theorem 4.3
to reduce the matrix to row echelon form.

22. The determinant in Exercise 1
23. The determinant in Exercise 9
24. The determinant in Exercise 13

25. The determinant in Exercise 14

In Exercises 26-34, use properties of determinants to
evaluate the given determinant by inspection. Explain
your reasoning.

1 1 1 3 1
26.13 0 —2 27.10 =2
2 2 2 0 0
0 2 3 —4
28. |0 5 2 29.| 1 -3 =2
3 -1 -1 5 2
2 3 4 1 3
30.10 4 1 31.|-2 0 —2
6 4 5 4 1
1 0 0 O 0 2 0 0
12, 0 01 0 33, =3 0 0 O
01 0 0 0 0 4
0 0 0 1 01 0
1 01 0
34, 01 01
1 1 00
0 0 1 1

Find the determinants in Exercises 35-40, assuming that

a b ¢
d e f|l=4
g h i
2a 2b 2 2a b/3 —c
35.|d e f 36. 2d e/3 —f
g h i 2¢ h/3 i
d e f a—c¢ b ¢
37.la b ¢ 38.d—f e f
g h i g—i h i
2 b a
39.02f e d
2 h
a+2¢g b+2h c+2i
40.|3d +2g 3e+2h 3f+2i
g h i

41. Prove Theorem 4.3(a).

43, Prove Lemma 4.5.

42. Prove Theorem 4.3(f).
44. Prove Theorem 4.7.

In Exercises 45 and 46, use Theorem 4.6 to find all values of
k for which A is invertible.

=

kK —k 3
45 A =10 k+1 1
Lk -8 k-1
[k k 0
46. A=K 2 k
L0 k k

In Exercises 47-52, assume that A and B are n X n matrices
with det A = 3 and det B = — 2. Find the indicated
determinants.

47. det(AB)
50. det(24)

48. det(A?)
51. det(3B7)

49, det(B7'A)
52. det(AA7)

In Exercises 53-56, A and B are n X n matrices.

53. Prove that det(AB) = det(BA).

54. If B is invertible, prove that det(B 'AB) = det(A).

55.1f A is idempotent (that is, A? = A), find all possible
values of det(A).

56. A square matrix A is called nilpotentif A™ = O for
some m > 1. (The word nilpotent comes from the
Latin nil, meaning “nothing,” and potere, meaning
“to have power” A nilpotent matrix is thus one that



becomes “nothing”—that is, the zero matrix—when
raised to some power.) Find all possible values of
det(A) if A is nilpotent.

In Exercises 57-60, use Cramer’s Rule to solve the given
linear system.

57.x ty=1 58.2x — y= 5
x—y=2 x+3y=-1
59.2x + y + 3z =1 60. x+y—z=1
y+ z=1 x+tyt+tz=2

z=1 x—y =3

In Exercises 61-64, use Theorem 4.12 to compute the in-
verse of the coefficient matrix for the given exercise.

61. Exercise 57 62. Exercise 58
63. Exercise 59 64. Exercise 60

65. If A is an invertible n X n matrix, show that adj A is
also invertible and that

djA) = ——

(8dj &) det A

66. If A is an n X n matrix, prove that
det(adj A) = (det A)"~!

A =adj(4A™

67. Verify that if r <'s, then rows r and s of a matrix can
be interchanged by performing 2(s — r) — 1 inter-
changes of adjacent rows.

68. Prove that the Laplace Expansion Theorem holds for
column expansion along the jth column.

69. Let A be a square matrix that can be partitioned as
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where P and S are square matrices. Such a matrix is
said to be in block (upper) triangular form. Prove that

det A = (det P)(det S)

[Hint: Try a proof by induction on the number of rows
of P.]

70. (a) Give an example to show that if A can be
partitioned as

where P, Q, R, and § are all square, then it is not
necessarily true that

det A = (det P)(det S) — (det Q)(det R)

(b) Assume that A is partitioned as in part (a) and
that P is invertible. Let

Compute det (BA) using Exercise 69 and use the
result to show that

det A = det P det(S — RPT'Q)

[The matrix S — RP™'Q is called the Schur com-
plement of P in A, after Issai Schur (1875-1941),
who was born in Belarus but spent most of his
life in Germany. He is known mainly for his fun-
damental work on the representation theory of
groups, but he also worked in number theory,
analysis, and other areas.]

(c) Assume that A is partitioned as in part (a), that
Pis invertible, and that PR = RP. Prove that

detA = det(PS — RQ)

Writing Project

Which Came First: The Matrix or the Determinant?

The way in which matrices and determinants are taught today—matrices before
determinants—bears little resemblance to the way these topics developed histori-
cally. There is a brief history of determinants at the end of Section 4.2.

Write a report on the history of matrices and determinants. How did the nota-
tions used for each evolve over time? Who were some of the key mathematicians
involved and what were their contributions?

1. Florian Cajori, A History of Mathematical Notations (New York: Dover, 1993).

2. Howard Eves, An Introduction to the History of Mathematics (Sixth Edition)
(Philadelphia: Saunders College Publishing, 1990).

3. Victor J. Katz, A History of Mathematics: An Introduction (Third Edition)
(Reading, MA: Addison Wesley Longman, 2008).

4. Eberhard Knobloch, Determinants, in Ivor Grattan-Guinness, ed., Compan-
ion Encyclopedia of the History and Philosophy of the Mathematical Sciences
(London: Routledge, 2013).
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Vignette g

Lewis Carroll’s Condensation Method

In 1866, Charles Dodgson—better known by his pseudonym Lewis Carroll—
published his only mathematical research paper. In it, he described a “new and brief
method” for computing determinants, which he called “condensation” Although not
well known today and rendered obsolete by numerical methods for evaluating determi-
nants, the condensation method is very useful for hand calculation. When calculators or
computer algebra systems are not available, many students find condensation to be their
method of choice. It requires only the ability to compute 2 X 2 determinants.
We require the following terminology.

Definition  1fAisann X n matrix with n = 3, the interior of A, denoted
int(A), is the (n — 2) X (n — 2) matrix obtained by deleting the first row, last
row, first column, and last column of A.

We will illustrate the condensation method for the 5 X 5 matrix

2 3 -1 2 0
1 2 31 —4
A= 2 -1 21 1
3 1 -1 2 =2

—4 1 0 1 2

Begin by setting A equal to the 6 X 6 matrix all of whose entries are 1. Then, we set
A, = A.Itis useful to imagine A, as the base of a pyramid with A, centered on top of
A,. We are going to add successively smaller and smaller layers to the pyramid until
we reach a 1 X 1 matrix at the top—this will contain det A. (Figure 4.9)

Figure 4.9



Next, we “condense” A, into a 4 X 4 matrix A’ whose entries are the determinants of
all 2 X 2 submatrices of A;:

2 31 3 —1||-1 2712 O

2] 2 3 11 -4 1 1 -7 -8
ar— |2 -l it 1ff_|-5 7 1 5
5 -1 5 -4
-1l |-1 2| 2 1 1 S o1 e
il =1l -1 22 -2

31| 1 —=1]|—-1 2{1|2 =2
-4 1| 1 O O 1[]1 2

Now we divide each entry of A’ by the corresponding entry of int(4,) to get matrix
A,. Since A is all 1s, this means A, = AJ.

We repeat the procedure, constructing A ; from the 2 X 2 submatrices of A, and then
dividing each entry of A by the corresponding entry of int(A,), and so on. We obtain:

_‘ 1 11] | 11 —7’ -7 -8
-5 7 7 1 1
-5 71| 7 1|] 1 5 62 60 —27
Al = ‘5 Y SH 5 _4||=|-30 36 -29]
12 —4 26
‘ 5 —1] |—-1 SH 5 —4
7 1 1 —-1] -1 6
62/2 60/3 —27/1 (31 20 -27
A, =1|-30/—-1 36/2  —29/1| =30 18 —29|,
12/1 —4/—-1 26/2 112 4 13
‘31 20‘ ’20 —27‘
N 30 18| [18 —29 {_42 _94}
4: = 5>
30 18H18 —29’ —96 350
12 4|4 13
—42/7 —94/1 } [—6 —94
Ay, = =
-96/(—1) 350/5 96 70
, -6 —9%
Al = = [8604],
96 70

A = [8604/18] = [478]

As can be checked by other methods, det A = 478. In general, for an n X n matrix A,
the condensation method will produce a 1 X 1 matrix A, containing det A.

Clearly, the method breaks down if the interior of any of the A s contains a zero,
since we would then be trying to divide by zero to construct A;, . However, careful
use of elementary row and column operations can be used to eliminate the zeros so

that we can proceed.
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Exploration

Geometric Applications of Determinants

This exploration will reveal some of the amazing applications of determinants to
geometry. In particular, we will see that determinants are closely related to area and
volume formulas and can be used to produce the equations of lines, planes, and
certain other curves. Most of these ideas arose when the theory of determinants was
being developed as a subject in its own right.

The Cross Product

Recall from Exploration: The Cross Product in Chapter 1 that the cross product

U Y1
ofu=|u, |andv = | v, | is the vector u X v defined by
Us V3
UpVs — UzV,
uXv=|uyy — U,
UV, — Uy

If we write this cross product as (u,v; — uzvy)e; — (uyvs — uzvi)e, + (uyv, — uyvy)es,
where ey, e,, and e; are the standard basis vectors, then we see that the form of this
formula is

€ Uy M
uXv=detle, u v
€ U3 V3

if we expand along the first column. (This is not a proper determinant, of course,
since e}, e,, and e; are vectors, not scalars; however, it gives a useful way of remem-
bering the somewhat awkward cross product formula. It also lets us use properties of
determinants to verify some of the properties of the cross product.)

Now let’s revisit some of the exercises from Chapter 1.



1. Use the determinant version of the cross product to compute u X v.

0 3 3 0
(@Qu=|1|,v=]—1 bu=|-1|,v=|1
L1 2 L 2 1
(-1 2 [1 1
(c)u= 2Lv=]—-4| (Qu=|1|,v=]2
L 3 —6 L1 3
2 Ifu=|u|,v=|v,|,andw = | w, |, show that
U, vy W,
U vy

u-(vxw =det|luy, v, w

3. Use properties of determinants (and Problem 2 above, if necessary) to prove
the given property of the cross product.

(@ vXu=—(uxvw) b)) ux0=0

() uXu= (d) u X kv =k(u X v)
@uX+w=uXv+uXw f)u(uXv)=0andv-(uXxXv)=0
(g) u-(vxX w) = (uXv)-w (the triple scalar product identity)

We can now give a geometric interpretation of the determinants of 2 X 2 and 3 X 3
matrices. Recall that if u and v are vectors in R’, then the area A of the parallelogram

determined by these vectors is given by A = |[u X v|. (See Exploration: The Cross
Product in Chapter 1.)

4. Letu= {ul] and v = [Vl}. Show that the area A of the parallelogram
U,

V2
y determined by u and v is given by
A
u, v
b+d A= det{ ! 1}
U, v
7. dy -
(a, b) . g
[Hint: Writewand vas | u, | and | v, |.]
0 0]
X
a a C 5

Derive the area formula in Problem 4 geometrically, using Figure 4.10 as a
Figure 4.10 guide. [Hint: Subtract areas from the large rectangle until the parallelogram remains.]
) Where does the absolute value sign come from in this case?
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Figure 4.12
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A4

Figure 4.1

6. Find the area of the parallelogram determined by u and v.

e =[] we- =[]

Generalizing from Problems 4-6, consider a parallelepiped, a three-dimensional
solid resembling a “slanted” brick, whose six faces are all parallelograms with oppo-
site faces parallel and congruent (Figure 4.11). Its volume is given by the area of its
base times its height.

7. Prove that the volume V of the parallelepiped determined by u, v, and w is
given by the absolute value of the determinant of the 3 X 3 matrix [u v w] withu,
v, and w as its columns. [Hint: From Figure 4.11 you can see that the height h can be
expressed as h = |lu/|cos 6, where  is the angle between u and v X w. Use this fact to
show that V = |u- (v X w)| and apply the result of Problem 2.]

8. Show that the volume V of the tetrahedron determined by u, v, and w
(Figure 4.12) is given by

V=1lu(vxXw)

[Hint: From geometry, we know that the volume of such a solid is V = j (area of the
base) (height).]

Now let’s view these geometric interpretations from a transformational point of
view. Let A bea 2 X 2 matrix and let P be the parallelogram determined by the vectors
u and v. We will consider the effect of the matrix transformation T, on the area of P.
Let T,(P) denote the parallelogram determined by T4(u) = Auand T,(v) = Av.

9. Prove that the area of T,(P) is given by |det A| (area of P).

10. Let A be a3 X 3 matrix and let P be the parallelepiped determined by the
vectors u, v, and w. Let T,,(P) denote the parallelepiped determined by T,(u) = Au,
T4(v) = Av, and T,(w) = Aw. Prove that the volume of T,(P) is given by |det A|
(volume of P).

The preceding problems illustrate that the determinant of a matrix captures what
the corresponding matrix transformation does to the area or volume of figures upon
which the transformation acts. (Although we have considered only certain types of fig-
ures, the result is perfectly general and can be made rigorous. We will not do so here.)



Lines and Planes

Suppose we are given two distinct points (xy, y;) and (x,, ¥,) in the plane. There is a
unique line passing through these points, and its equation is of the form

ax +by+c=0

Since the two given points are on this line, their coordinates satisfy this equation.
Thus,

ax; + by, + c=0

ax, + by, + c=10
The three equations together can be viewed as a system of linear equations in the vari-

ables a, b, and c. Since there is a nontrivial solution (i.e., the line exists), the coefficient
matrix

x y 1
xon 1
X ¥ 1

cannot be invertible, by the Fundamental Theorem of Invertible Matrices. Conse-
quently, its determinant must be zero, by Theorem 4.6. Expanding this determinant
gives the equation of the line.

The equation of the line through the points (xy, ¥,) and (x,, y,) is given by
x y 1
o oy 1=0
X, Y, 1

11.  Use the method described above to find the equation of the line through the
given points.

(a) (2,3)and (—=1,0)  (b)(1,2) and (4, 3)

12.  Prove that the three points (x,, ¥,), (X5, ¥,), and (x3, y3) are collinear (lie on
the same line) if and only if

x 01
X Yy, 1=0
X3 y; 1

13.  Show that the equation of the plane through the three noncollinear points
(x1, Y1 21)s (X3, ¥2, 2,), and (x5, ¥3, 23) is given by

x y z 1
o oz 1 -0
X, v, 2z 1
X3 y; z3 1

What happens if the three points are collinear? [Hint: Explain what happens when

row reduction is used to evaluate the determinant.]
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14. Prove thatthefour points (x1, y1, 21), (%3, Y2, 25)» (X3, ¥3, 23), and (x4, ¥y, z4) are
coplanar (lie in the same plane) if and only if

x1 n oz 1
X Y oz 1 -0
X3 Y3 z3 1
Xy Yy 24 1

When data arising from experimentation take the form of points (x, y) that can be
plotted in the plane, itis often of interest to find a relationship between the variables x
and y. Ideally, we would like to find a function whose graph passes through all of the
points. Sometimes all we want is an approximation (see Section 7.3), but exact results
are also possible in certain situations.

15. From Figure 4.13 it appears as though we may be able to find a parabola
passing through the points A(—1, 10), B(0, 5), and C(3, 2). The equation of such a
parabola is of the form y = a + bx + cx’. By substituting the given points into this
equation, set up a system of three linear equations in the variables a, b, and c. Without
solving the system, use Theorem 4.6 to argue that it must have a unique solution. Then
solve the system to find the equation of the parabola in Figure 4.13.

16. Use the method of Problem 15 to find the polynomials of degree at most 2
that pass through the following sets of points.

(a) A(1, —1), B(2,4),C(3,3) (b) A(—1, —3),B(1, —1),C(3,1)

17.  Generalizing from Problems 15 and 16, suppose a,, a,, and a; are distinct
real numbers. For any real numbers by, b,, and b;, we want to show that there is a
unique quadratic with equation of the form y = a + bx + cx* passing through the
points (a,, b,), (a,, b,), and (as, b;). Do this by demonstrating that the coefficient
matrix of the associated linear system has the determinant

1 a, a|=(a,— a)la; — a)la; — a,)

which is necessarily nonzero. (Why?)
18. Let ay, a,, as, and a, be distinct real numbers. Show that

1 a a a
1 a, & a
, ol = (a, —a)la; — a)la, — a)la; — a)la, — a,)(a, — a3) # 0
1 a3 a; a;
1 a, a a

For any real numbers b,, b,, b3, and b,, use this result to prove that there is a unique
cubic with equation y = a + bx + cx* + dx’ passing through the four points (a;, b,),
(ay, by), (as, bs), and (ay, by). (Do not actually solve for a, b, ¢, and d.)



19. Letay, a,, ..., a,benreal numbers. Prove that

1 a a ay!

1 a, a ay !
2 1| —

1 a; a3 ai = ]I (aj—a,-)
. 1=i<j=n

1 a, a ar!

where [T, -, j=n (@j — a;) means the product of all terms of the form (a; — a,), where
i <jandbothiand j are between 1 and n. [ The determinant of a matrix of this form
(or its transpose) is called a Vandermonde determinant, named after the French
mathematician A. T. Vandermonde (1735-1796).]

Deduce that for any n points in the plane whose x-coordinates are all distinct,
there is a unique polynomial of degree n — 1 whose graph passes through the given

points.
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Chapter 4 Eigenvalues and Eigenvectors

me
— —

det(A — AI) =

Eigenvalues and Eigenvectors of n x n Matrices

Now that we have defined the determinant of an n X n matrix, we can continue our
discussion of eigenvalues and eigenvectors in a general context. Recall from Section 4.1
that A is an eigenvalue of A if and only if A — Al is noninvertible. By Theorem 4.6, this
is true if and only if det(A — AI') = 0. To summarize:

The eigenvalues of a square matrix A are precisely the solutions A of the equation

det(A — AI) =0

When we expand det(A — AI), we get a polynomial in A, called the characteristic
polynomial of A. The equation det(A — AI') = 0 is called the characteristic equation

: a bl - .
of A. For example, if A = [ d} its characteristic polynomial is
c

a— A b
c d— A

’=(a—/\)(d—)\)—bc=)\2—(a-i—d))\-f—(ad—bc)

If A is n X n, its characteristic polynomial will be of degree n. According to the Fun-
damental Theorem of Algebra (see Appendix D), a polynomial of degree n with real
or complex coefficients has at most # distinct roots. Applying this fact to the charac-
teristic polynomial, we see that an n X n matrix with real or complex entries has at
most n distinct eigenvalues.

Let’'s summarize the procedure we will follow (for now) to find the eigenvalues
and eigenvectors (eigenspaces) of a matrix.

Let A be an n X n matrix.

1. Compute the characteristic polynomial det(A — AI) of A.

2. Find the eigenvalues of A bysolving the characteristicequationdet(A — AI) =0
for A.

3. For each eigenvalue A, find the null space of the matrix A — Al This is
the eigenspace E,, the nonzero vectors of which are the eigenvectors of A
corresponding to A.

4. Find a basis for each eigenspace.

Example 4.18

\/

Find the eigenvalues and the corresponding eigenspaces of
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Solution  We follow the procedure outlined previously. The characteristic polynomial is

—A 1 0
det(A—AD=| 0 —-A 1
2 =5 4-A
-1 0 1
R PR R PR
=5 4-A 24—

= AN —4A +5) — (-2)
=N +43 -5\ +2

To find the eigenvalues, we need to solve the characteristic equation det(A — AI) =0
for A. The characteristic polynomial factors as —(A — 1)*(A — 2). (The Factor
Theorem is helpful here; see Appendix D.) Thus, the characteristic equation is
—(A = 1)*AX — 2) = 0, which clearly has solutions A = 1 and A = 2. Since A = 1 is
a multiple root and A = 2 is a simple root, let us label them A, = A, = 1 and A; = 2.

To find the eigenvectors corresponding to A} = A, = 1, we find the null space of

-1 1 0 -1 1 0]
A-1= 0 -1 1 = 0 -1 1
2 =5 4-1 2 =5 3]
Row reduction produces
-1 1 0|0 1 0 —1(0
[A-TIl0)J=| 0 -1 1l0|—>]0 1 ~-1/0
2 =5 310 0 0 010
X
(We knew in advance that we must get at least one zero row. Why?) Thus,x = | x, |is

X3
in the eigenspace E, if and only if x; — x3 = 0 and x, — x; = 0. Setting the free variable
x3 = t, we see that x; = tand x, = ¢, from which it follows that

t 1 1
E, = tlp=¢t1 = span| | 1
t 1 1

To find the eigenvectors corresponding to A; = 2, we find the null space of A — 21
byrow reduction:

-2 1 0]0 1 0 —3ifo
(A-2Il0]=| 0 -2 10— |0 1 —1|0
2 =5 2]0 0 0 olo
X
Sox = | x, | is in the eigenspace E, if and only if x; = §x; and x, = 3x;. Setting the
X3
free variable x; = t, we have
it i i
E,={|3t]|; =1(t|3 = span| | 3 = span| | 2
t 1 1 4



294

Chapter 4 Eigenvalues and Eigenvectors

where we have cleared denominators in the basis by multiplying through by the least
common denominator 4. (Why is this permissible?) i

Remark Notice that in Example 4.18, A is a 3 X 3 matrix but has only two distinct
eigenvalues. However, if we count multiplicities, A has exactly three eigenvalues (A = 1
twice and A = 2 once). This is what the Fundamental Theorem of Algebra guarantees.
Let us define the algebraic multiplicity of an eigenvalue to be its multiplicity as a root
of the characteristic equation. Thus, A = 1 has algebraic multiplicity 2 and A = 2 has
algebraic multiplicity 1.

Next notice that each eigenspace has a basis consisting of just one vector. In other
words, dim E, = dim E, = 1. Let us define the geometric multiplicity of an eigenvalue
A to be dim E,, the dimension of its corresponding eigenspace. As you will see in
Section 4.4, a comparison of these two notions of multiplicity is important.

Example 4.19

\

Find the eigenvalues and the corresponding eigenspaces of

-1 0 1
A= 3 0 -3
1 0 -1

Solution  The characteristic equation is

—1-A 0 1
O=dettd—AD=| 3 -a -3 |=-a'7* :
. N - 1 —1-A
1 0 —-1-A
= —AA* +2)0) = —A*(A + 2)
Hence, the eigenvalues are A, = A, = 0 and A; = —2. Thus, the eigenvalue 0 has alge-

braic multiplicity 2 and the eigenvalue —2 has algebraic multiplicity 1.
For A; = A, = 0, we compute

-1 0 110 1 0 —-110
[A—o0Il0] =[A|l0]=] 3 0 —-3/0|—> |0 0 0]0
1 0 —1/0 0 0 0f0
X1
from which it follows that an eigenvector x = | x, | in E, satisfies x, = x5. Therefore,
X3

both x, and x; are free. Setting x, = s and x; = t, we have

t 0 1 0
E, = s =9q4s|1|+¢0 =span| | 1,|0
t 0 1 0] L1
For A; = —2,
1 0 110 1 0 1]0
[A—(=2I0]=[A+210]=1]3 2 =3|/0|— |0 1 -=3|0
1 0 10 0 0 0]0
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so x; = tis freeand x; = —x3 = —tand x, = 3x; = 3t. Consequently,
—t -1 -1
E,= 3t =1t 3 = span 3
t 1

It follows that A} = A, = 0 has geometric multiplicity 2 and A; = —2 has geometric
multiplicity 1. (Note that the algebraic multiplicity equals the geometric multiplicity

for each eigenvalue.) I

In some situations, the eigenvalues of a matrix are very easy to find. If A is a
triangular matrix, then so is A — AI, and Theorem 4.2 says that det(A — AI) is just
the product of the diagonal entries. This implies that the characteristic equation of
a triangular matrix is

(all - )\)(azz - A '(a,m -2 =0

from which it follows immediately that the eigenvalues are A, = a;;, A, = a5, .. .,

A, = a,,. We summarize this result as a theorem and illustrate it with an example.

Theorem 4.15

The eigenvalues of a triangular matrix are the entries on its main diagonal.

Y

Example 4.20

The eigenvalues of

2 00 0
-1 1 0 0
A=
3 0 3 0
5 7 4 =2

are A\, = 2, A, = 1, A; = 3,and A, = —2, by Theorem 4.15. Indeed, the characteristic
polynomial is just (2 — A)(1 — A)(3 — A)(—2 — A). I

Note that diagonal matrices are a special case of Theorem 4.15. In fact, a diagonal
matrix is both upper and lower triangular.

Eigenvalues capture much important information about the behavior of a matrix.
Once we know the eigenvalues of a matrix, we can deduce a great many things without
doing any more work. The next theorem is one of the most important in this regard.

Theorem 4.16

A square matrix A is invertible if and only if 0 is not an eigenvalue of A.

Proof Let A be a square matrix. By Theorem 4.6, A is invertible if and only if
det A # 0. Butdet A # 01is equivalent to det(A — 0I) # 0, which says that 0 is nota
root of the characteristic equation of A (i.e., 0 is not an eigenvalueof A).

We can now extend the Fundamental Theorem of Invertible Matrices to include
results we have proved in this chapter.
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Theorem 4.11

The Fundamental Theorem of Invertible Matrices: Version 3

Let A be an n X n matrix. The following statements are equivalent:

a. A is invertible.
. Ax = b has a unique solution for every b in R".
Ax = 0 has only the trivial solution.
. The reduced row echelon form of A is I,,.
A is a product of elementary matrices.
rank(A) = n
nullity(A) =0
. The column vectors of A are linearly independent.
The column vectors of A span R".
The column vectors of A form a basis for R".
. The row vectors of A are linearly independent.
1. The row vectors of A span R".
m. The row vectors of A form a basis for R".
n detA #0
o. 0is not an eigenvalue of A.

FTrog e a0 o

Proof  The equivalence (a) < (n) is Theorem 4.6, and we just proved (a) < (o) in
Theorem 4.16. - =m

There are nice formulas for the eigenvalues of the powers and inverses of a matrix.

Theorem 4.18

Let A be a square matrix with eigenvalue A and corresponding eigenvector x.

a. For any positive integer n, A" is an eigenvalue of A" with corresponding
eigenvector x.

b. IfAisinvertible, then 1/A is an eigenvalue of A~ with corresponding eigenvector x.

c. If A is invertible, then for any integer n, A" is an eigenvalue of A" with corre-
sponding eigenvector x.

Proof Weare given that Ax = Ax.

(a) We proceed by induction on #. For n = 1, the result is just what has been given.
Assume the result is true for n = k. That is, assume that, for some positive integer k,
Afx = A\*x. We must now prove the result for n = k + 1. But

Ax = A(A%) = A(MY)
by the induction hypothesis. Using property (d) of Theorem 3.3, we have
A(%) = AMAx) = A"(Ax) = A x

Thus, A*"'x = A*"x, as required. By induction, the result is true for all integers
n=1.
(b) You are asked to prove this property in Exercise 13.

(c) You are asked to prove this property in Exercise 14. u

The next example shows one application of this theorem.
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Example 4.21

\

Compute .
2 1 |1

0 1 5
Solution 1Iet A = {2 1] and x = [J; then what we want to find is A'°x. The
1
eigenvalues of A are A\, = —1 and A, = 2, with corresponding eigenvectors v, = { B J
1
and v, = [2} That is,
Av, = —v; and Av, = 2v,

(Check this.) Since {v;, v,} forms a basis for R* (why?), we can write x as a linear com-
bination of v, and v,. Indeed, as is easily checked, x = 3v, + 2v,.
Therefore, using Theorem 4.18(a), we have

A% = A3y, + 2v,) = 3(A"%) + 2(A",)

3(A0v, + 2(A)°)v,
1

el w[1] _ 3+2“} _ [2051}
D [—1} 20 )M {—3 + 212 4093

This is certainly a lot easier than computing A' first; in fact, there are no matrix

multiplications at all! I

When it can be used, the method of Example 4.21 is quite general. We summarize
it as the following theorem, which you are asked to prove in Exercise 42.

Il

Theorem 4.19

Suppose the n X n matrix A has eigenvectors vy, v, . . ., V,,, with corresponding
eigenvalues A}, A,, ..., A,,. If x is a vector in R" that can be expressed as a linear
combination of these eigenvectors—say,

X=c¢v,togv,+ - +c,v,

then, for any integer k,

Arx = cl)\’fv1 + CZA§v2 + o+ cm/\',‘;1vm

Warning  The catch here is the “if” in the second sentence. There is absolutely
no guarantee that such a linear combination is possible. The best possible situation
would be if there were a basis of R" consisting of eigenvectors of A; we will explore
this possibility further in the next section. As a step in that direction, however, we
have the following theorem, which states that eigenvectors corresponding to distinct
eigenvalues are linearly independent.

Theorem 4.20

Let Abean n X nmatrixandlet A}, A, ..., A, bedistinct eigenvalues of A with cor-
responding eigenvectors vi, v,, . .., V,,. Then v}, v,, ..., v, are linearly independent.
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Proof  The proof is indirect. We will assume that v;, v, . .., v, are linearly dependent
and show that this assumption leads to a contradiction.

If vy, vy, ..., V,, are linearly dependent, then one of these vectors must be express-
ible as a linear combination of the previous ones. Let v, | be the first of the vectors v;
that can be so expressed. In other words, v, v,, . . . , v} are linearly independent, but
there are scalars ¢y, ¢,, . . . , ¢, such that

Vi =Vt 6oV, o gy (1)

Multiplying both sides of Equation (1) by A from the left and using the fact that Av; =
A;v; for each i, we have

MiVier = Aviy = Alevy + vy + -0+ + v

AV, + AV, + - + AV, (2)
= AV, T ALY, o AV
Now we multiply both sides of Equation (1) by A, ; to get
Mer1Vir = AV T QA vy o GV (3)
When we subtract Equation (3) from Equation (2), we obtain
0=rc(A, — A )Dvy + (A, — A )Dvy + -+ A — M) v
The linear independence of v, v,, . . ., v, implies that
ay = A) = Ay = M) = - = qh = Agy) = 0
Since the eigenvalues A; are all distinct, the terms in parentheses (A; — Ax.y),
i=1,...,k areall nonzero. Hence, ¢, = ¢, = - - - = ¢, = 0. This implies that
Viep =Vt v, + s+ v =0v +0v, + -+ 0vp =0

which is impossible, since the eigenvector v, ; cannot be zero. Thus, we have a
contradiction, which means that our assumption that v, v,, . . ., v, are linearly
dependent is false. It follows that v}, v;,..., v, must be linearly independent.

|
Tixerclses 4.3 i
In Exercises 1-12, compute (a) the characteristic polynomial [ 4 0 1 1 -1 -1
of A, (b) the eigenvalues of A, (c) a basis for each eigenspace 7 A = 2 3 2 8. A= 0 2 0
of A, and (d) the algebraic and geometric multiplicity of 1 0 2 1 -1 1
each eigenvalue. } _ _
o T 3 2 1 31 0 0 2 1 10
A= -1 1 0 0 01 4 5
_26 0 PA= g0 1 4l AT 0 003
1 0 1 0 1
34 X 011 L0011 0 0 0 2]
L1 1 0 1 0 0 0 (4 0 1 07
[ i 01 0 0 0 4 1 1
20 I 1.4 = 12. A=
5A=|-1 -1 1| 6.A=|3 -1 3 113 0 001 2
) 1 1 |2 0 1 L1—2 1 2 -1 L0 0 3 0]
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13. Prove Theorem 4.18(b).

14. Prove Theorem 4.18(c). [Hint: Combine the proofs of
parts (a) and (b) and see the fourth Remark following
Theorem 3.9 (page 169).]

In Exercises 15 and 16, A is a 2 X 2 matrix with eigenvec-

1 1 . ,
tors v, = . and v, = : corresponding to eigenvalues

5
A, = sand A, = 2, respectively, and x = L}

15. Find A"x.
16. Find A*x. What happens as k becomes large (i.e., k — 00)?

In Exercises 17 and 18, A is a 3 X 3 matrix with eigenvectors

1 1 1
vi=|0]|,v,= |1 |,andvs; = | 1 |corresponding to
0 0 1
eigenvalues A, = —3, \, = 3, and A5 = 1, respectively, and
2
x=|1
2

17. Find A”x.
18. Find A*x. What happens as k becomes large (i.e., k — 00)?
19. (a) Show that, for any square matrix A, A" and A have
the same characteristic polynomial and hence the
same eigenvalues.
(b) Give an example of a 2 X 2 matrix A for which AT
and A have different eigenspaces.
20. Let A be a nilpotent matrix (that is, A" = O for some
m > 1). Show that A = 0 is the only eigenvalue of A.
21. Let A be an idempotent matrix (that is, A% = A).Showthat
A =0and A = 1 are the only possible eigenvalues of A.
22. If vis an eigenvector of A with corresponding eigen-
value A and c is a scalar, show that v is an eigenvector
of A — cI'with corresponding eigenvalue A — c.

23. (a) Find the eigenvalues and eigenspaces of

Hy
A =
50
(b) Using Theorem 4.18 and Exercise 22, find the eigen-
values and eigenspaces of A™', A — 2I,and A + 2I.
24. Let A and B be n X n matrices with eigenvalues A and
W, respectively.
(a) Give an example to show that A + w need not be
an eigenvalue of A + B.

(b) Give an example to show that Ay need not be an
eigenvalue of AB.

(c) Suppose A and p correspond to the same eigen-
vector X. Show that, in this case, A + w is an eigen-
value of A + B and Ap is an eigenvalue of AB.

25. If A and B are two row equivalent matrices, do they
necessarily have the same eigenvalues? Either prove
that they do or give a counterexample.

Let p(x) be the polynomial

px) =x"+a, x '+ +ax+a

The companion matrix of p(x) is the n X n matrix

B 4 T4
1 0 0 0
Clp) = 0 1 (4)
0 0 0
0 0

26. Find the companion matrix of p(x) = x* — 7x + 12 and
then find the characteristic polynomial of C( p).

27. Find the companion matrix of p(x) = x>+ 3% —
4x + 12 and then find the characteristic polynomial
of C(p).
28. (a) Show that the companion matrix C(p) of p(x) =
x* + ax + b has characteristic polynomial
A+ aA + b,
(b) Show that if A is an eigenvalue of the companion

matrix C(p) in part (a), then is an eigenvector

of C(p) corresponding to A.

29. (a) Show that the companion matrix C(p) of p(x) =
x* + ax* + bx + ¢ has characteristic polynomial
—(A3+ ar’ + bA + o).

(b) Show that if A is an eigenvalue of the companion
A2
matrix C(p) in part (a), then | A
of C(p) correspondingto A. |

isan eigenvector

30. Construct a nontriangular 2 X 2 matrix with eigen-
values 2 and 5. [Hint: Use Exercise 28.]

31. Construct a nontriangular 3 X 3 matrix with eigen-
values —2, 1, and 3. [Hint: Use Exercise 29.]

32. (a) Use mathematical induction to prove that, for
n = 2, the companion matrix C(p) of p(x) = x" +
a,x" '+ -+ + a,x + a, has characteristic
polynomial (—1)"p(A). [Hint: Expand by cofactors
along the last column. You may find it helpful to
introduce the polynomial g (x) = (p(x) — ay)/x.]
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(b) Show that if A is an eigenvalue of the companion
matrix C(p) in Equation (4), then an eigenvector
corresponding to A is given by

AT 1
AT 2
A
1
Ifp(x) =x"+a, x" '+ - +ax+ayandAisa
square matrix, we can define a square matrix p(A) by
pA) =A"+a, A"+ -+ aA + al
An important theorem in advanced linear algebra says that
if c4(A) is the characteristic polynomial of the matrix A,
then c,(A) = O (in words, every matrix satisfies its charac-
teristic equation). This is the celebrated Cayley-Hamilton
Theorem, named after Arthur Cayley (1821-1895),
pictured below, and Sir William Rowan Hamilton (see
page 2). Cayley proved this theorem in 1858. Hamilton

discovered it, independently, in his work on quaternions, a
generalization of the complex numbers.

Bettmann/ CORBIS

1 -1
33. Verify the Cayley-Hamilton Theorem for A = {2 } .

3

That is, find the characteristic polynomial c,(A) of A
and show that c,(A) = O.

34. Verify the Cayley-Hamilton Theorem for

1 10
A=1]1 0 1
0 1 1

The Cayley-Hamilton Theorem can be used to calculate
powers and inverses of matrices. For example, if Aisa 2 X 2
matrix with characteristic polynomial c4(A) = A* + a\ + b,
then A> + aA + bl = O, so

A’ = —aA — bl

and A® = AA? = A(—aA — bl)
= —gA’ — bA
= —a(—aA — bl) — bA
= (a®> — b)A + abl

It is easy to see that by continuing in this fashion we can
express any positive power of A as a linear combina-
tion of I and A. From A’ + aA + bl = O, we also obtain
A(A +al) = —bl, so

A—l —_ _lA — EI
b b

provided b # 0.

35. For the matrix A in Exercise 33, use the Cayley-
Hamilton Theorem to compute A%, A%, and A* by
expressing each as a linear combination of I and A.

36. For the matrix A in Exercise 34, use the Cayley-
Hamilton Theorem to compute A* and A* by express-
ing each as a linear combination of I, A, and A”.

37. For the matrix A in Exercise 33, use the Cayley-
Hamilton Theorem to compute A~ ' and A~ by
expressing each as a linear combination of I and A.

38. For the matrix A in Exercise 34, use the Cayley-
Hamilton Theorem to compute A~' and A~? by
expressing each as a linear combination of I, 4, and A%,

39. Show that if the square matrix A can be partitioned as

where P and S are square matrices, then the character-
istic polynomial of A is c4(A) = cp(A)cs(A). [Hint: Use
Exercise 69 in Section 4.2.]

40.Let A}, Ay, ..., A, be a complete set of eigenvalues (rep-
etitions included) of the n X n matrix A. Prove that
det(A) = A A, -+, and
tr(A) = A, + Ay + - + A,

[Hint: The characteristic polynomial of A factors as
det(A — AD = (=D)"A = A)(A =24y --(A=A,)

Find the constant term and the coefficient of A" ! on
the left and right sides of this equation.]

41. Let A and B be n X n matrices. Prove that the sum of all
the eigenvalues of A + B is the sum of all the eigenval-
ues of A and B individually. Prove that the product of all
the eigenvalues of AB is the product of all the eigenval-
ues of A and B individually. (Compare this exercise with
Exercise 24.)

42. Prove Theorem 4.19.
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The History of Eigenvalues

Like much of linear algebra, the way the topic of eigenvalues is taught today does not
correspond to its historical development. Eigenvalues arose out of problems in sys-
tems of differential equations before the concept of a matrix was even formulated.

Write a report on the historical development of eigenvalues. Describe the types
of mathematical problems in which they originally arose. Who were some of the
key mathematicians involved with these problems? How did the terminology for
eigenvalues change over time?

1. Thomas Hawkins, Cauchy and the Spectral Theory of Matrices, Historia Math-
ematica 2 (1975), pp. 1-29.

2. Victor J. Katz, A History of Mathematics: An Introduction (Third Edition) (Read-
ing, MA: Addison Wesley Longman, 2008).

3. Morris Kline, Mathematical Thought from Ancient to Modern Times (Oxford:
Oxford University Press, 1972).

Similarity and Diagonalization

As you saw in the last section, triangular and diagonal matrices are nice in the sense
that their eigenvalues are transparently displayed. It would be pleasant if we could
relate a given square matrix to a triangular or diagonal one in such a way that they
had exactly the same eigenvalues. Of course, we already know one procedure for con-
verting a square matrix into triangular form—namely, Gaussian elimination. Unfor-
tunately, this process does not preserve the eigenvalues of the matrix. In this section,
we consider a different sort of transformation of a matrix that does behave well with
respect to eigenvalues.

Similar Matrices

Definition  Let A and B be n X n matrices. We say that A is similar to B if
there is an invertible # X #n matrix P such that P !AP = B. If A is similar to B,
we write A ~ B.

Remarks

e IfA ~ B, we can write, equivalently, that A = PBP~! or AP = PB.

® Similarity is a relation on square matrices in the same sense that “less than or
equal to” is a relation on the integers. Note that there is a direction (or order) implicit
in the definition. Just as a = b does not necessarily imply b < a, we should not assume
that A ~ B implies B ~ A. (In fact, this is true, as we will prove in the next theorem,
but it does not follow immediately from the definition.)

® The matrix P dependson A and B. Itis not unique for a given pair of similar ma-
trices A and B. To see this, simply take A = B = I, in which case I ~ I, since P~ 'IP = I
for any invertible matrix P.
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|
Example 4.22

\

2 1 0
} and B = {_2 _J.ThenA~B,since

{1 2[1 —1_{3 1_[1 —1{1 0
0 —1][1 1 -1 -1 1 1j][—2 -1

. 1 -1 .. -1
Thus, AP = PB with P = ) Ll (Note that it is not necessary to compute P~ .
See the first Remark before Example 4.22.)

Theorem 4.21 Let A, B, and C be n X »n matrices.

a A~A
b. If A~ B, then B ~ A.
c¢. fA~BandB~ C,then A ~ C.

Proof (a) This property follows from the fact that I Al = A.

(b) If A ~ B, then P 'AP = B for some invertible matrix P. As noted in the first
Remark on the previous page, this is equivalent to PBP ' = A. Setting Q = P!, we
have Q"'BQ = (P™!)"!BP ! = PBP ! = A. Therefore, by definition, B ~ A.

(c) You are asked to prove property (c) in Exercise 30. s

Remark Any relation satisfying the three properties of Theorem 4.21 is called
an equivalence relation. Equivalence relations arise frequently in mathematics, and
objects that are related via an equivalence relation usually share important properties.
We are about to see that this is true of similar matrices.

Theorem 4.22 Let A and B be n X n matriceswith A ~ B. Then

det A = detB

A is invertible if and only if B is invertible.

A and B have the same rank.

. A and B have the same characteristic polynomial.
A and B have the same eigenvalues.

A™ ~ B" forall integers m = 0.

If A is invertible, then A™ ~ B™ for all integers m.

g M a0 o

Proof  We prove (a) and (d) and leave the remaining properties as exercises. If A ~ B,
then P "'AP = B for some invertible matrix P.

(a) Taking determinants of both sides, we have

det B = det(P"'AP) = (det P~ ')(det A)(det P)

= (;)(det A)(det P) = det A

det P
(d) The characteristic polynomial of B is
det(B — AI) = det(P7'AP — Al

det(P~'AP — AP'IP)
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= det(P'AP — P '(AD)P)
= det(P"1(A — A)P) = det(A — AI)

with the last step following as in (a). Thus, det(B — AI) = det(A — AI); that is, the
characteristic polynomials of B and A are the same. —eam

Remark Two matrices may have properties (a) through (e) (and more) in common

1 0 1 1
and yet still not be similar. For example, A = [0 J and B = L) J both have de-

terminant 1 and rank 2, are invertible, and have characteristic polynomial (1 — A)?
and eigenvalues A; = A, = 1. But A is not similar to B, since P"'AP = P"'IP =
I # B for any invertible matrix P.

Theorem 4.22 is most useful in showing that two matrices are not similar, since
A and B cannot be similar if any of properties (a) through (e) fails.

»
g

Example 4.23

1 2 2 1
(a) A = {2 J and B = L 2} are not similar, since det A = —3 but det B = 3.

1 3 1 1
(b) A = [2 2} and B = L _1] are not similar, since the characteristic polyno-

mial of A is A> — 3A — 4 while that of B is A*> — 4. (Check this.) Note that A and B do
have the same determinant and rank, however. I

The best possible situation is when a square matrix is similar to a diagonal matrix.
As you are about to see, whether a matrix is diagonalizable is closely related to the
eigenvalues and eigenvectors of the matrix.

Definition  Ann X n matrix A is diagonalizable if there is a diagonal matrix
D such that A is similar to D —that is, if there is an invertible # X # matrix P such
that P"'AP = D.

Example 4.24

»
B>

13 1 3 4 0
A= [ } is diagonalizable since, if P= [ } and D= [ }, then
2 2 1 =2 0 —1

P 'AP = D, as can be easily checked. (Actually, it is faster to check the equivalent
statement AP = PD, since it does not require finding P~'.) I

Example 4.24 begs the question of where matrices P and D came from. Observe
that the diagonal entries 4 and —1 of D are the eigenvalues of A, since they are the
roots of its characteristic polynomial, which we found in Example 4.23(b). The origin
of matrix P is less obvious, but, as we are about to demonstrate, its entries are obtained
from the eigenvectors of A. Theorem 4.23 makes this connection precise.
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Theorem 4.23

Let Abean n X n matrix. Then A is diagonalizable if and only if A has # linearly
independent eigenvectors.

More precisely, there exist an invertible matrix P and a diagonal matrix D such
that P 'AP = D if and only if the columns of P are # linearly independent eigen-
vectors of A and the diagonal entries of D are the eigenvalues of A corresponding
to the eigenvectors in P in the same order.

Proof Suppose first that A is similar to the diagonal matrix D via P 'AP = D or,
equivalently, AP = PD. Let the columns of P be p;, p,, . . . , p, and let the diagonal
entries of D be Ay, A,, ..., A, Then

A, 0 -+ 0
A b o pd=Ip op ool (1)
0 0 oA,
or [Ap, Ap, -+ Ap,) = [AP1 APy o Ap,] 2)

where the right-hand side is just the column-row representation of the product PD.
Equating columns, we have

Ap, = AP, AP, = APa - -5 APy = APy

which proves that the column vectors of P are eigenvectors of A whose corresponding
eigenvalues are the diagonal entries of D in the same order. Since P is invertible, its col-
umns are linearly independent, by the Fundamental Theorem of Invertible Matrices.

Conversely, if A has n linearly independent eigenvectors py, p,, - - . » P, With cor-
responding eigenvalues A}, A, . . ., A, respectively, then

AP1 = )\lpl’ APZ = Azpz’ cee APn = /\npn

This implies Equation (2) above, which is equivalent to Equation (1). Consequently,
if we take P to be the n X n matrix with columns py, p,, . . . , p,, then Equation (1)
becomes AP = PD. Since the columns of P are linearly independent, the Fundamental

Theorem of Invertible Matrices implies that P is invertible, so P"'AP = D; that is, A
is diagonalizable. — =

\/

Example 4.25

If possible, find a matrix P that diagonalizes

0 1 0
A=10 01
2 —5 4

Solution We studied this matrix in Example 4.18, where we discovered that it has
eigenvalues A, = A, = 1 and A; = 2. The eigenspaces have the following bases:

1
For A, = A, = 1, E, hasbasis | 1
1

1

For A; = 2, E, has basis | 2 |.
4
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Since all other eigenvectors are just multiples of one of these two basis vectors, there
cannot be three linearly independent eigenvectors. By Theorem 4.23, therefore, A is

not diagonalizable. I

Example 4.26

»
>

If possible, find a matrix P that diagonalizes

-1 0 1
A= 3 0 -3
1 0 —1

Solution  This is the matrix of Example 4.19. There, we found that the eigenvalues of
Aare Ay = A, = 0and A; = —2, with the following bases for the eigenspaces:

0 1
ForA, = A, = 0, Eghasbasisp, = |1 [andp, = | O |.

0 1
For A; = —2, E_, has basis p; = 3.

It is straightforward to check that these three vectors are linearly independent. Thus,
if we take

01 -
P=[p p, P3]=|1 0 3
0 1
then P is invertible. Furthermore,
0 0 0
PIAP=1|0 0 0|=D
0 0 -2

as can be easily checked. (If you are checking by hand, it is much easier to check the

equivalent equation AP = PD.) I

Remarks

®  When there are enough eigenvectors, they can be placed into the columns of P
in any order. However, the eigenvalues will come up on the diagonal of D in the same
order as their corresponding eigenvectors in P. For example, if we had chosen

0 —1 1
P=1p, ps pl=|1 3 0
0
then we would have found
0 0 0
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e In Example 4.26, you were asked to check that the eigenvectors p;, p,, and p;
were linearly independent. Was it necessary to check this? We knew that {p,, p,} was
linearly independent, since it was a basis for the eigenspace E,;. We also knew that the
sets { p;, ps} and { p,, ps} were linearly independent, by Theorem 4.20. But we could not
conclude from this information that {p,, p,, ps} was linearly independent. The next
theorem, however, guarantees that linear independence is preserved when the bases of
different eigenspaces are combined.

Theorem 4.24

Let Abean n X n matrix and let A}, A, . .., A be distinct eigenvalues of A. If B; is
a basis for the eigenspace E, , then B = B, U B,U - - - UB (i.e., the total collection
of basis vectors for all of the eigenspaces) is linearly independent.

Proof LetB; = {vj, v;p, ..., v} fori=1,..., k. We have to show that
B = Vit Viz oo s Vigp Van Vazs o« o> Voo o+ o Vis Vigs « 5 Vigy }

is linearly independent. Suppose some nontrivial linear combination of these vectors
is the zero vector—say,

(cpvi + -+ C1n1V1nl) + (521V21 R CZnZVZnZ) +oF legv 0+ Cknkvknk) =0
3)

Denoting the sums in parentheses by x, x,, . . . X, we can write Equation (3) as
x+tx+---+x,=0 (4)

Now each x; is in E, (why?) and so either is an eigenvector corresponding to A; or
is 0. But, since the eigenvalues A, are distinct, if any of the factors x; is an eigenvector,
they are linearly independent, by Theorem 4.20. Yet Equation (4) is a linear depen-
dence relationship; this is a contradiction. We conclude that Equation (3) must be
trivial; that is, all of its coefficients are zero. Hence, B is linearly independent.

s

There is one case in which diagonalizability is automatic: an # X # matrix with

n distinct eigenvalues.

Theorem 4.25

If A isan n X n matrix with # distinct eigenvalues, then A is diagonalizable.

Proof Letv,v,,...,V,be eigenvectors corresponding to the n distinct eigenvalues

»— of A (Why could there not be more than n such eigenvectors?) By Theorem 4.20,
Vi, Vy, .. ., V, are linearly independent, so, by Theorem 4.23, A is diagonalizable.
s
Example 4.21 The matrix

2 =3 7
A=10 5 1
0 0 -1

has eigenvalues A; = 2, A, = 5, and A; = —1, by Theorem 4.15. Since these are three

distinct eigenvalues fora 3 X 3 matrix, A is diagonalizable, by Theorem 4.25. (If we actu-
ally require a matrix P such that P 'AP is diagonal, we must still compute bases for the
eigenspaces, as in Example 4.19 and Example 4.26 above.) I
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The final theorem of this section isan important result that characterizes diagonaliz-
able matrices in terms of the two notions of multiplicity that were introduced following
Example 4.18. It gives precise conditions under which an n X # matrix can be diago-
nalized, even when it has fewer than » eigenvalues, as in Example 4.26. We first prove a
lemma that holds whether or not a matrix is diagonalizable.

lemma 4.26

If A is an n X n matrix, then the geometric multiplicity of each eigenvalue is less
than or equal to its algebraic multiplicity.

Proof  Suppose A; is an eigenvalue of A with geometric multiplicity p; that is,
dim E, = p. Specifically, let E, have basis B, = {v,,v,,...,v,}. Let Q be any invertible
n X n matrix having vy, vy, . . ., v, as its first p columns — say,

or, as a partitioned matrix,

Let

where Cisp X n.
Since the columns of U are eigenvectors corresponding to A}, AU = A, U. We
also have

I, O - C ,
T =L == |G wive= [
01, D DU: DV
from which we obtain CU = I, CV = O, DU = O, and DV = I, . Therefore,

D DAU: DAV MDU: DAV i

By Exercise 69 in Section 4.2, it follows that
det(Q7'AQ — AI) = (A, — A)P det(DAV — Al (5)

But det(Q 'AQ — AI) is the characteristic polynomial of Q 'AQ, which is the same
as the characteristic polynomial of A, by Theorem 4.22(d). Thus, Equation (5) implies
that the algebraic multiplicity of A, is at least p, its geometric multiplicity.

Theorem 4.21

The Diagonalization Theorem

Let A bean n X n matrix whose distinct eigenvalues are A, A, . . ., A;. The following
statements are equivalent:

a. A is diagonalizable.

b. The union B of the bases of the eigenspaces of A (as in Theorem 4.24) contains
1 vectors.

c. The algebraic multiplicity of each eigenvalue equals its geometric multiplicity.
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Proof (a)= (b) If A is diagonalizable, then it has # linearly independent eigenvec-
tors, by Theorem 4.23. If n; of these eigenvectors correspond to the eigenvalue A;,
then B; contains at least #; vectors. (We already know that these n; vectors are linearly
independent; the only thing that might prevent them from being a basis for E, is that
they might not span it.) Thus, B contains at least n vectors. But, by Theorem 4.24,
B is a linearly independent set in R"; hence, it contains exactly n vectors.

(b)=(c) Let the geometric multiplicity of A;be d; = dim E, and let the algebraic
multiplicity of A; be m;. By Lemma 4.26, d; = m,; fori = 1, . . ., k. Now assume that
property (b) holds. Then we also have

n=d +d,+ - td=m+m+- -+ m

But m; + m, +--- + m; = n, since the sum of the algebraic multiplicities of the
eigenvalues of A is just the degree of the characteristic polynomial of A—namely, n.
It follows that d;, + d, +- -+ + d, = m; + m, + - - + my, which implies that

(my—d)+my—d)+---+m—4d)=0 (6)
Using Lemma 4.26 again, we know that m; — d; = 0fori = 1, ..., k, from which we
can deduce that each summand in Equation (6) is zero; that is, m; = d;fori =1, ..., k.

(c) = (a) If the algebraic multiplicity m; and the geometric multiplicity d; are
equal for each eigenvalue A; of A, then Bhasd, + d, + - +d, =m; + my, + -
+ my = n vectors, which are linearly independent, by Theorem 4.24. Thus, these are
n linearly independent eigenvectors of A, and A is diagonalizable, by Theorem 4.23.

s

Example 4.28 0 10
(a) The matrix A = |0 0 1 | from Example 4.18 has two distinct eigenvalues,

2 =5 4

A = A, = 1 and A; = 2 Since the eigenvalue A; = A, = 1 has algebraic multiplicity
2 but geometric multiplicity 1, A is not diagonalizable, by the Diagonalization Theo-
rem. (See also Example 4.25.)

-1 0 1

(b) The matrix A = 3 0 —3|from Example 4.19 also has two distinct eigen-
1 0 —1

values, A} = A, = 0 and A; = —2. The eigenvalue 0 has algebraic and geometric mul-

tiplicity 2, and the eigenvalue —2 has algebraic and geometric multiplicity 1. Thus,
this matrix is diagonalizable, by the Diagonalization Theorem. (This agrees with our

findings in Example 4.26.) I

We conclude this section with an application of diagonalization to the computa-
tion of the powers of a matrix.

Example 4.29

\/

0 1
Compute AV if A = {2 J.

Solution In Example 4.21, we found that this matrix has eigenvalues A, = —1

1 1
and A, = 2, with corresponding eigenvectors v, = [_J and v, = {2} It follows
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(from any one of a number of theorems in this section) that A is diagonalizable and
P 'AP = D, where

P= v Vz]z{_i ﬂ and Dz{_(l) (2)}

Solving for A, we have A = PDP ' and, by Theorem 4.22(f), A" = PD"P~! for all
n=l.
Since

we have

ro2(—1)" + 27 (—1)**1 4 on

B 3 3
2(_1)n+1 + 271+1 (_1)n+2 + 2n+1
3 3

-

Since we were only asked for A", this is more than we needed. But now we can simply
set n = 10 to find

2(_1)10 + 210 (_1)11 + 210

A0 = 3 3 _[342 341
2=D"+ 2" (=1 + 2" 682 683
3 3 I
TEXEI’BISBS 4.4 -
In Exercises 1-4, show that A and B are not similar matrices. ~ In Exercises 5-7, a diagonalization of the matrix A is given
4 1 1 0 in the form P~ 'AP = D. List the eigenvalues of A and bases
LA= [3 1} = [0 1} for the corresponding eigenspaces.
2 1 3 —1 2 —1(|5 —-1(1 1 4 0
2.A = ,B = 5. [ M =
-4 6 = 7 -1 1](2 211 2 0 3
(2 1 4 1 0 0 ¢t Hfr 113 1 o0
330A=(0 2 3\,B=|-1 4 0 6.5 —3 —51l0 0 1{|l1 -1 1
L0 0 4 3 4 Vobo=2lr 1 ool 0 -1
(1 2 o0 2 1 1 2.0 0
4 A=|0 1 -1|,B=]0 1 0 =10 0 0
L0 —1 1 2 01 0 0 -1
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s 5 s1l[1 3 313 o
7—},?,—},]202210
2 -3 313 3 1][3 -1 -1
6 0 0
=[0 -2 0
0 0 -2

In Exercises 8-15, determine whether A is diagonalizable
and, if so, find an invertible matrix P and a diagonal
matrix D such that P"'AP = D.

(5 2 -3 4
8. A= 9. A=

12 5 -1 1

(3 1 0] (1 0 1
10.A=1(0 3 1 11.A=|0 1 1

L0 0 3] 1 1 0

(1 0 0] 1 2 1
122A=1(2 2 1 13.A=|-1 0 1

13 0 1] L 1 10

2 0 0 2 2 0 0 4

0 3 2 1 02 0 0
14. A = 15. A =

00 3 0 00 -2 0

L0 0 0 1 L0 0 0 -

In Exercises 16-23, use the method of Example 4.29 to
compute the indicated power of the matrix.

[—4 6| (-1 6]
16. 17.

-3 5 L 1 0

[ 4 -3]°¢ [0 37k
18. 19.

-1 2 1 2

(2 1 2% (1 1 11201
20.12 1 2 2.0 -1 O

L2 1 2] L0 0 —1

(2 0 1% B 1 k
22.01 1 23. |2 -2 2

L1 0 2] L0 1 1

In Exercises 24-29, find all (real) values of k for which A is

diagonalizable.
{1 1} {1 k}
24. A = 25. A =
0 k 0 1
1 0 k
k 1
26. A = 1 o 27Z2A=10 1 O
0 0 1

1 kK 0 1 1 k
288A=|0 2 O 2. A=|1 1 k
0 0 1 1 1 k

30. Prove Theorem 4.21(c).
31. Prove Theorem 4.22(b).
32. Prove Theorem 4.22(c).
33. Prove Theorem 4.22(e).
34. Prove Theorem 4.22(f).
35. Prove Theorem 4.22(g).

36. If A and B are invertible matrices, show that AB and
BA are similar.

37. Prove that if A and B are similar matrices, then
tr(A) = tr(B). [Hint: Find a way to use Exercise 45
from Section 3.2.]

In general, it is difficult to show that two matrices are simi-
lar. However, if two similar matrices are diagonalizable, the
task becomes easier. In Exercises 38-41, show that A and

B are similar by showing that they are similar to the same
diagonal matrix. Then find an invertible matrix P such that
P~'AP = B.

(3 1 1 2
38. A = ,B =
0 -1 2 1
(5 =3 -1 1
39.A = ,B =
14 —2 -6 4
(2 1 0] (3 2 -5
40.A=|0 -2 1|,B=1|1 2 -1
L0 0 1 2 2 -4
1 0 2] (-3 -2 0
41.A=|1 -1 1|,B=| 6 5 0
2 0 1] L 4 4 -1

42. Prove that if A is similar to B, then AT is similar to BT.
43. Prove that if A is diagonalizable, so is A”.

44. Let A be an invertible matrix. Prove that if A is diago-
nalizable, so is A~

45. Prove that if A is a diagonalizable matrix with only one
eigenvalue A, then A is of the form A = Al (Such a
matrix is called a scalar matrix.)

46. Let A and B be n X n matrices, each with # distinct
eigenvalues. Prove that A and B have the same eigen-
vectors if and only if AB = BA.

47. Let A and B be similar matrices. Prove that the alge-
braic multiplicities of the eigenvalues of A and B are
the same.



48.Let A and B be similar matrices. Prove that the geo-
metric multiplicities of the eigenvalues of A and B are
the same. [Hint: Show that, if B = P"'AP, then every
eigenvector of B is of the form P ~'v for some eigen-
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(a) Prove thatitis not possible to find three linearly
independent vectors vy, v,, v3 in R® such that
Av, = v}, Av, = v,, and Av; = v;.

(b) If A is diagonalizable, what are the dimensions of

vector v of A.]

49. Prove that if A is a diagonalizable matrix such that
every eigenvalue of A is either 0 or 1, then A is idem-

potent (that is, A> = A).

50. Let A be a nilpotent matrix (that is, A™ = O for some
m > 1). Prove that if A is diagonalizable, then A must

be the zero matrix.

51. Suppose that A is a 6 X 6 matrix with characteristic
polynomial c,(A) = (1 + A)(1 — A)*(2 — A)%.

the eigenspaces E_}, E;, and E,?

52. Let A [a b}
. Le = .
c d

(a) Prove that A is diagonalizable if (a — d)* +
4bc > 0 and is not diagonalizable if (a — d)* +
4bc < 0.

(b) Find two examples to demonstrate that if
(a — d)* + 4bc = 0, then A may or may not be
diagonalizable.

Iterative Methods for Gomputing Eigenvalues

In 1824, the Norwegian math-
ematician Niels Henrik Abel
(1802-1829) proved that a general
fifth-degree (quintic) polynomial
equation is not solvable by radicals;
that is, there is no formula for its
roots in terms of its coefficients
that uses only the operations of
addition, subtraction, multipli-
cation, division, and taking nth
roots. In a paper written in 1830
and published posthumously in
1846, the French mathematician
Evariste Galois (1811-1832) gave

a more complete theory that estab-
lished conditions under which an
arbitrary polynomial equation can
be solved by radicals. Galois’s work
was instrumental in establishing
the branch of algebra called group
theory; his approach to polynomial
equations is now known as Galois
theory.

At this point, the only method we have for computing the eigenvalues of a matrix is
to solve the characteristic equation. However, there are several problems with this
method that render it impractical in all but small examples. The first problem is that
it depends on the computation of a determinant, which is a very time-consuming
process for large matrices. The second problem is that the characteristic equation is
a polynomial equation, and there are no formulas for solving polynomial equations
of degree higher than 4 (polynomials of degrees 2, 3, and 4 can be solved using the
quadratic formula and its analogues). Thus, we are forced to approximate eigenvalues
in most practical problems. Unfortunately, methods for approximating the roots of a
polynomial are quite sensitive to roundoff error and are therefore unreliable.

Instead, we bypass the characteristic polynomial altogether and take a different
approach, approximating an eigenvector first and then using this eigenvector to find
the corresponding eigenvalue. In this section, we will explore several variations on
one such method that is based on a simple iterative technique.

The Power Method

The power method applies to an #n X #n matrix that has a dominant eigenvalue A, —
that is, an eigenvalue that is larger in absolute value than all of the other eigenvalues.
For example, if a matrix has eigenvalues —4, —3, 1, and 3, then —4 is the dominant
eigenvalue, since 4 = |—4| > [—3] = [3| = |1]. On the other hand, a matrix with
eigenvalues —4, —3, 3, and 4 has no dominant eigenvalue.

The power method proceeds iteratively to produce a sequence of scalars that con-
verges to A; and a sequence of vectors that converges to the corresponding eigenvec-
tor v,, the dominant eigenvector. For simplicity, we will assume that the matrix A is
diagonalizable. The following theorem is the basis for the power method.
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Theorem 4.28

Let A be an n X n diagonalizable matrix with dominant eigenvalue A;. Then there
exists a nonzero vector x, such that the sequence of vectors x; defined by

X, = AXp, X, = AX, X3 = AXy, .., X = AX g,

approaches a dominant eigenvector of A.

Proof  We may assume that the eigenvalues of A have been labeled so that
(M > A = (4] = - = (4]

Let vy, v, ..., v, be the corresponding eigenvectors. Since vy, v, . . ., v, are linearly
independent (why?), they form a basis for R". Consequently, we can write x, as a
linear combination of these eigenvectors—say,

Xg = vy vy, + 000 + ¢,
Now x; = AXy, X, = Ax; = A(AX,) = A*X, X3 = AX, = A(A’x,) = A’X,, and, generally,
x, = A*x, fork=1
As we saw in Example 4.21,

A"x0 = cl)tﬁ'v1 + cz)\’gvz + .-+ c,,/\',;'v,,

. A\ A \F (1)
A c1v1+c2A— v2+---+an— v,
1 1

where we have used the fact that A, # 0.
The fact that A; is the dominant eigenvalue means that each of the fractions
Ay /Ay, As/Ay, ..., A, /Ay, s less than 1 in absolute value. Thus,

G)-Go)- ()
AN TN

all go to zero as k — co. It follows that

x, = Afxy > Aoy, ask o » (2)

Now, since A; # 0 and v; # 0, x; is approaching a nonzero multiple of v, (that is, an
eigenvector corresponding to A;) provided ¢, # 0. (This is the required condition
on the initial vector x,: It must have a nonzero component ¢, in the direction of the
dominant eigenvector v;.) |

=

Example 4.30

11
Approximate the dominant eigenvector of A =[ } using the method of
Theorem 4.28. 2

1
Solution  We will take x, = {0} asthe initial vector. Then

N HEH
N HEH

We continue in this fashion to obtain the values of x; in Table 4.1.
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Tahle 4.1

k 0 1 2 3 4 5 6 7 8
1 1 3 5 11 21 43 85 171

o I A Y o i1

o — 050 150 083 110 095 102 099 L0l

L — 100 300 167 220 191 205 198 20l

Figure 4.14

Figure 4.14 shows what is happening geometrically. We know that the eigenspace
for the dominant eigenvector will have dimension 1. (Why? See Exercise 46.) There-
fore, it is a line through the origin in R®. The first few iterates x; are shown along with
the directions they determine. It appears as though the iterates are converging on the

1
line whose direction vector is L] To confirm that this is the dominant eigenvector

we seek, we need only observe that the ratio r; of the first to the second component
of x; gets very close to 1 as k increases. The second line in the body of Table 4.1 gives
these values, and you can see clearly that r; is indeed approaching 1. We deduce that a

. . |1
dominant eigenvector of A is :

Once we have found a dominant eigenvector, how can we find the corresponding
dominant eigenvalue? One approach is to observe that if an x; is approximately a
dominant eigenvector of A for the dominant eigenvalue A, then

X = AXp = AXg

It follows that the ratio I, of the first component of x;, ; to that of x; will approach A,
as k increases. Table 4.1 gives the values of i, and you can see that they are approach-

ing 2, which is the dominant eigenvalue. I
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There is a drawback to the method of Example 4.30: The components of the iter-
ates x; get very large very quickly and can cause significant roundoff errors. To avoid
this drawback, we can multiply each iterate by some scalar that reduces the magni-
tude of its components. Since scalar multiples of the iterates x; will still converge to a
dominant eigenvector, this approach is acceptable. There are various ways to accom-
plish it. One is to normalize each x; by dividing it by ||x.|| (i.e., to make each iterate
a unit vector). An easier method—and the one we will use—is to divide each x, by
the component with the maximum absolute value, so that the largest component is
now 1. This method is called scaling. Thus, if m; denotes the component of x; with
the maximum absolute value, we will replace x; by y, = (1/m)x;.

Weillustrate this approach with the calculations from Example 4.30. For x,, there
is nothing to do, since m, = 1. Hence,

1
Yo = X = { 0}

1
We then compute x; = {2} as before, but now we scale with m; = 2 to get

SOSORRH

Now the calculations change. We take

sy o)[F) - 1]
= (i) ] oo

The next few calculations are summarized in Table 4.2.

and scale to get

1
You can now see clearly that the sequence of vectors y; is converging to L}, a

dominant eigenvector. Moreover, the sequence of scalars m; converges to the corre-
sponding dominant eigenvalue A; = 2.

Tahle 4.2

AR
il A g B o B

my, 1 2 1.5 2 1.83 2 1.95 2 1.99
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This method, called the power method, is summarized below.

The Power Method

¥

Let A be a diagonalizable n X n matrix with a corresponding dominant eigen-
value A,.

1. Let xy =y, be any initial vector in R" whose largest component is 1.
2. Repeat the following steps fork = 1,2, .. .:
(a) Compute x; = Ay;_;.
(b) Let m,; be the component of x; with the largest absolute value.
(©) Setyx = (1/my)x;.
For most choices of x;, m; converges to the dominant eigenvalue A, and y; con-
verges to a dominant eigenvector.

»

Example 4.31

>

Use the power method to approximate the dominant eigenvalue and a dominant
eigenvector of

0 5 —6
A=|—-4 12 -12
-2 =2 10
Solution Taking as our initial vector
1
X, =11
1
we compute the entries in Table 4.3.
0.50
You can see that the vectors yj are approaching | 1 and the scalars m, are
—0.50

approaching 16. This suggests that they are, respectively, a dominant eigenvector and
the dominant eigenvalue of A. 1
Remarks

e If the initial vector x,, has a zero component in the direction of the dominant
eigenvector v| (i.e., if ¢ = 0 in the proof of Theorem 4.28), then the power method

Tahle 4.3

kK o 1 2 3 4 5 6 7
(1] [ -1 -9.33 8.62] 8.12] 8.03] [ 8.01] 8.00 |

X |1 —4 —19.33 17.31 16.25 16.05 16.01 16.00
L 1] 6 11.67 ] [ —9.00 | [ —820) [ —8.04] L—8.01] | —8.00]
(1] [ —0.17 0481 [ 050] [ 050][ 050 [ 050] [ 0.50]

ye | 1] | —067 1 1 1 1 1 1
1] 1 -0.60] [ —-052] [ -050] | —050] |L—0.50] [ —0.50 |

m, 1 6 -19.33 17.31 16.25 16.05 16.01 16.00
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John William Strutt (1842-1919),
Baron Rayleigh, was a British
physicist who made major contribu-
tions to the fields of acoustics and
optics. In 1871, he gave the first
correct explanation of why the sky is
blue, and in 1895, he discovered the
inert gas argon, for which discovery
he received the Nobel Prize in 1904.
Rayleigh was president of the Royal
Society from 1905 to 1908 and
became chancellor of Cambridge
University in 1908. He used
Rayleigh quotients in an 1873 paper
on vibrating systems and later in his
book The Theory of Sound.

will not converge to a dominant eigenvector. However, it is quite likely that during the
calculation of the subsequent iterates, at some point roundoff error will produce an x;
with a nonzero component in the direction of v,. The power method will then start to
converge to a multiple of v,. (This is one instance where roundoff errors actually help!)

e The power method still works when there is a repeated dominant eigenvalue,
or even when the matrix is not diagonalizable, under certain conditions. Details may
be found in most modern textbooks on numerical analysis. (See Exercises 21-24.)

e For some matrices the power method converges rapidly to a dominant eigen-
vector, while for others the convergence may be quite slow. A careful look at the proof
of Theorem 4.28 reveals why. Since [A, /A, = [A;/A)l = -+ = A, /AL AF 1A, /A s
close to zero, then (A,/A;)%, ..., (A, /A;) ¥ will all approach zero rapidly. Equation (2)
then shows that x, = AFx, will approach Afc,v, rapidly too.

As an illustration, consider Example 4.31. The eigenvalues are 16, 4, and 2, so
Ay/A; = 4/16 = 0.25. Since 0.25” = 0.00006, by the seventh iteration we should have
close to four-decimal-place accuracy. This is exactly what we saw.

® There is an alternative way to estimate the dominant eigenvalue A, of a ma-
trix A in conjunction with the power method. First, observe that if Ax = A,x, then

(Ax)'x  (Ax)-x  Afx-x) I
- - Al

X*X X*X X*X

The expression R (x) = ((Ax) *x)/(x * x) is called a Rayleigh quotient. As we compute
the iterates x;, the successive Rayleigh quotients R (x;) should approach A,. In fact, for
symmetric matrices, the Rayleigh quotient method is about twice as fast as the scaling
factor method. (See Exercises 17-20.)

The Shifted Power Method and the Inverse Power Method

The power method can help us approximate the dominant eigenvalue of a matrix, but
what should we do if we want the other eigenvalues? Fortunately, there are several
variations of the power method that can be applied.

The shifted power method uses the observation that, if A is an eigenvalue of A,
then A — « is an eigenvalue of A — I for any scalar o (Exercise 22 in Section 4.3).
Thus, if A, is the dominant eigenvalue of A, the eigenvalues of A — A, will be 0,
Ay — A A3 — A, ..., A, — A We can then apply the power method to compute
A, — Ay, and from this value we can find A,. Repeating this process will allow us to
compute all of the eigenvalues.

Example 4.32

»

Use the shifted power method to compute the second eigenvalue of the matrix A =

1 1
{2 0} from Example 4.30.

Solution In Example 4.30, we found that A; = 2. To find A,, we apply the power

method to
—1 1
A — 2= [ }
2 =2

1
We take x, = {0}, but other choices will also work. The calculations are summarized

in Table 4.4.
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Tahle 4.4
k 0 1 2 3 4

Our choice of x, has produced the eigenvalue —3 after only two iterations. There-
fore, A, — A; = —3,50 A, = A, — 3 =2 — 3 = —1 is the second eigenvalue of A. I

Recall from property (b) of Theorem 4.18 that if A is invertible with eigenvalue
A, then A™" has eigenvalue 1/A. Therefore, if we apply the power method to A, its
dominant eigenvalue will be the reciprocal of the smallest (in magnitude) eigenvalue
of A. To use this inverse power method, we follow the same steps as in the power
method, except that in step 2(a) we compute x, = A~' y,_,. (In practice, we don’t
actually compute A~ explicitly; instead, we solve the equivalent equation Ax; = y,_;
for x; using Gaussian elimination. This turns out to be faster.)

Y

Example 4.33

Use the inverse power method to compute the second eigenvalue of the matrix A

1 1
{ } from Example 4.30.
2 0

1
Solution We start, as in Example 4.30, with x, = y, = {0} To solve Ax, = vy,,

I
0 11

0 0
Thus, x;, = [J,so Y, = {J.Thenwe get x, from Ax, = y;:
Aly] = 1 1’0} {1 0’ 0.5}
. 0 1]-05

2 0|1
0.5 . 1 _
Hence, x, = [_0 5}, and, by scaling, we get y, = [_J. Continuing, we get the

we use row reduction:

Al ]_{1 1‘1}_}
Yo I =15 0lo

values shown in Table 4.5, where the values m, are converging to —1. Thus, the
smallest eigenvalue of A is the reciprocal of —1 (which is also —1). This agrees with
our previous finding in Example 4.32.
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Table 4.9

3 4 5 6 7 8 9

| L] Lol

|
|

] B e e B o B o B I B B

=

1.5 —0.83 —1:1 —0.95 —1.02 —0.99 —1.01

.

The most versatile of the variants of the power method is one that combines the two
just mentioned. It can be used to find an approximation for any eigenvalue, provided
we have a close approximation to that eigenvalue. In other words, if a scalar « is given,
the shifted inverse power method will find the eigenvalue A of A that is closest to c.

If A is an eigenvalue of A and @ # A, then A — ol is invertible if & is not an
eigenvalue of A and 1/(A — ) is an eigenvalue of (A — al )" L. (See Exercise 45.) If
is close to A, then 1/(A — @) will be a dominant eigenvalue of (A — al )71 In fact, if
a is very close to A, then 1/(A — «) will be much bigger in magnitude than the next
eigenvalue, so (as noted in the third Remark following Example 4.31) the conver-
gence will be very rapid.

\/

Example 4.34

Use the shifted inverse power method to approximate the eigenvalue of

0 5 —6
A=|—-4 12 -—-12
=20 =2 10
that is closest to 5.
Solution  Shifting, we have
-5 5 —6
A—5I=|—-4 7 —12
=i =) 5

Now we apply the inverse power method with

1
X =Y = |1
1
We solve (A — 5I)x, =y, for x;:
-5 5 —6]|1 1 0 0|-0.6l
[A=5Iy)=|—-4 7 —-12{1|—> [0 1 0[—0.88

-2 =2 5[1 0 0 1[-039
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Table 4.6
k 0 1 2 3 4 5 6 7
(1] —0.61 | —0.41 | —0.47 | —0.49 | —0.50 | —0.50 | —0.50 |
X 1 —0.88 —0.69 —0.89 —0.95 —0.98 —0.99 —1.00
L1 —0.39 | —0.35 ] —0.44 | —0.48 | —0.49 | —0.50 J —0.50 J
1] 0.69 | 0.59 | 0.53] 0.51 0.50 | 0.50 | 0.50 |
Y 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00
L1] 0.45 | 0.51 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 |
my 1 —0.88 —0.69 —0.89 —0.95 —0.98 —0.99 —1.00
This gives
—0.61 ] I —0.61 0.69
x, =|—088|, m =-088 and y,=—x,=—-——-|—-088| =1
m; 0.88
—0.39 —0.39 0.45

ia+bi;

We owe this theorem to the

Russian mathematician

S. Gerschgorin (1901-1933), who
stated it in 1931. It did not receive
much attention until 1949, when it
was resurrected by Olga Taussky-
Todd in a note she published in the
American Mathematical Monthly.

We continue in this fashion to obtain the values in Table 4.6, from which we deduce
that the eigenvalue of A closest to 5 is approximately 5 + 1/m; =5 + 1/(—1) = 4,

which, in fact, is exact. I

The power method and its variants represent only one approach to the computa-
tion of eigenvalues. In Chapter 5, we will discuss another method based on the QR
factorization of a matrix. For a more complete treatment of this topic, you can consult
almost any textbook on numerical methods.

Gerschgorin’s Theorem

In this section, we have discussed several variations on the power method for ap-
proximating the eigenvalues of a matrix. All of these methods are iterative, and the
speed with which they converge depends on the choice of initial vector. If only we had
some “inside information” about the location of the eigenvalues of a given matrix,
then we could make a judicious choice of the initial vector and perhaps speed up the
convergence of the iterative process.

Fortunately, there is a way to estimate the location of the eigenvalues of any
matrix. Gerschgorin’s Disk Theorem states that the eigenvalues of a (real or complex)
n X n matrix all lie inside the union of # circular disks in the complex plane.

Definition 1etA = [a,-j] be a (real or complex) n X n matrix, and let r; denote
the sum of the absolute values of the off-diagonal entries in the ith row of A; that

is, r; = E |a;.| The ith Gerschgorin disk is the circular disk D; in the complex
jFi
plane with center a;; and radius r;. That is,

D; = {zinC:|z — ay| = r}
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Olga Taussky-Todd (1906-1995) was born in Olmiitz in the Austro-Hungarian Empire
(now Olmuac in the Czech Republic). She received her doctorate in number theory from the
University of Vienna in 1930. During World War 11, she worked for the National Physical
Laboratory in London, where she investigated the problem of flutter in the wings of super-
sonic aircraft. Although the problem involved differential equations, the stability of an aircraft
depended on the eigenvalues of a related matrix. Taussky-Todd remembered Gerschgorin’s
Theorem from her graduate studies in Vienna and was able to use it to simplify the otherwise
laborious computations needed to determine the eigenvaluesrelevant to the flutter problem.
Taussky-Todd moved to the United States in 1947, and ten years later she became the first
woman appointed to the California Institute of Technology. In her career, she produced over
200 publications and received numerous awards. She was instrumental in the development of
the branch of mathematics now known as matrix theory.

\

Example 4.35

Sketch the Gerschgorin disks and the eigenvalues for the following matrices:

21 1 -3
(a)Az[z —3] (b)A:[z 3]

Solution (a) The two Gerschgorin disks are centered at 2 and —3 with radii 1 and 2,
respectively. The characteristic polynomial of A is A*> + A — 8, so the eigenvalues are

A=(—-1%*V1> - 4(-8))/2 = 2.37, —3.37

Figure 4.15 shows that the eigenvalues are contained within the two Gerschgorin
disks.

(b) The two Gerschgorin disks are centered at 1 and 3 with radii [-3| = 3 and 2,
respectively. The characteristic polynomial of A is A> — 4A + 9, so the eigenvalues are

A= +=V(=4?—409)/2=2+iV5=~2+ 2232 — 223

Figure 4.16 plots the location of the eigenvalues relative to the Gerschgorin disks.

Figure 4.15
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As Example 4.35 suggests, the eigenvalues of a matrix are contained within its
Gerschgorin disks. The next theorem verifies that this is so.

Theorem 4.29

Gerschgorin’s Disk Theorem

Let Abean n X n (real or complex) matrix. Then every eigenvalue of A is contained
within a Gerschgorin disk.

Proof Let A be an eigenvalue of A with corresponding eigenvector x. Let x; be
the entry of x with the largest absolute value—and hence nonzero. (Why?) Then
Ax = Ax, the ith row of which is

X1

X

n
la;, ap -+ a) = Ax; or Eajjxj = Ax;
j=1

Rearranging, we have

(A — a,)x; = Ea,-jxj or A —a;=

jFi

because x; # 0. Taking absolute values and using properties of absolute value (see
Appendix C), we obtain

> aiX

j#Fi

Zauxj

j#i

Xi |x,—|

> laggl X layllx]
jFi jFi
< =

A = a;l = = 2|aij| =

|x,-| |x,-| j#i

because |x;| = |x,] forj # i.
This establishes that the eigenvalue A is contained within the Gerschgorin disk
centered at a; with radius ;. s
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Remarks

* There is a corresponding version of the preceding theorem for Gerschgorin
disks whose radii are the sum of the off-diagonal entries in the ith column of A.

e It can be shown that if k of the Gerschgorin disks are disjoint from the other
disks, then exactly k eigenvalues are contained within the union of these k disks. In
particular, if a single disk is disjoint from the other disks, then it must contain exactly
one eigenvalue of the matrix. Example 4.35(a) illustrates this.

* Note that in Example 4.35(a), 0 is not contained in a Gerschgorin disk; that is,
0 is not an eigenvalue of A. Hence, without any further computation, we can deduce
that the matrix A is invertible by Theorem 4.16. This observation is particularly use-
ful when applied to larger matrices, because the Gerschgorin disks can be determined
directly from the entries of the matrix.

Example 4.36

Y

NS}

1 0

Consider the matrix A = 6 3 |. Gerschgorin’s Theorem tells us that the eigen-

o=

2 0
values of A are contained within three disks centered at 2, 6, and 8 with radii 1, 1,

and 2, respectively. See Figure 4.17(a). Because the first disk is disjoint from the
other two, it must contain exactly one eigenvalue, by the second Remark after Theo-
rem 4.29. Because the characteristic polynomial of A has real coefficients, if it has
complex roots (i.e., eigenvalues of A), they must occur in conjugate pairs. (See Ap-
pendix D.) Hence there is a unique real eigenvalue between 1 and 3, and the union
of the other two disks contains two (possibly complex) eigenvalues whose real parts
lie between 5 and 10.

On the other hand, the first Remark after Theorem 4.29 tells us that the same
three eigenvalues of A are contained in disks centered at 2, 6, and 8 with radii 3, 1,
and 3, respectively. See Figure 4.17(b). These disks are mutually disjoint, so each con-
tains a single (and hence real) eigenvalue. Combining these results, we deduce that
A has three real eigenvalues, one in each of the intervals [1, 3], [5, 7], and [7.5, 8.5].
(Compute the actual eigenvalues of A to verify this.)

oe]

Figure 4.17

(a) (b)
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Iixercises 4.5

In Exercises 1-4, a matrix A is given along with an iterate
Xs, produced as in Example 4.30.

(a) Use these data to approximate a dominant eigenvector
whose first component is 1 and a corresponding dominant
eigenvalue. (Use three-decimal-place accuracy.)

(b) Compare your approximate eigenvalue in part (a) with
the actual dominant eigenvalue.

(1 2 4443
1.A= , X5 =

5 4 11109

[ 7 4 7811
2.A = , X5 =

-3 -1 —3904

(2 1 144
3. A == ,X5 £

|1 1} [ 89}

(1.5 0.5 60.625
4. A = , X5 =

2.0 3.0 239.500

In Exercises 5-8, a matrix A is given along with an iterate
x;., produced using the power method, as in Example 4.31.
(a) Approximate the dominant eigenvalue and eigenvector
by computing the corresponding my and yy. (b) Verify that
you have approximated an eigenvalue and an eigenvector

of A by comparing Ay, with m;yy.

[ 2 -3 —3.667
5.A = , X5 =
-3 10 11.001
(5 2 5.530
6. A= , X0 =
12 -2 1.470
4 0 6 10.000
7.A=|-1 3 1|,x,=1 0.001
6 0 4 10.000
1 2 =2 3.415
8.A=|1 1 —3|,x0=| 2914
L0 —1 1 —1.207

In Exercises 9-14, use the power method to approximate
the dominant eigenvalue and eigenvector of A. Use the given
initial vector X, the specified number of iterations k, and
three-decimal-place accuracy.

9A_[M 12} _Hk_5
AT s ap™ ’

w0a=|% 4 —Hk—é
: g —2™ S

\/

_[7 2} _H 3
11. A = , Xo k=6
2 3 0
(35 1.5 1
e [ —0.5}”‘0 - M’k -
9 4 8 1
13.A=[4 15 —4|,x,=|1|,k=5
18 -4 9 1
(3 1 0 1
14A=|1 3 1|,x,=|1,k=6
L0 1 3 1

In Exercises 15 and 16, use the power method to approxi-
mate the dominant eigenvalue and eigenvector of A to
two-decimal-place accuracy. Choose any initial vector you
like (but keep the first Remark after Example 4.31 in mind!)
and apply the method until the digit in the second decimal
place of the iterates stops changing.

4 1 3 12 6 —6
15A=10 2 0 16. A = 2 0 =2
1 1 2 -6 6 12

Rayleigh quotients are described on page 316. In Exer-

cises 17-20, to see how the Rayleigh quotient method ap-
proximates the dominant eigenvalue more rapidly than the
ordinary power method, compute the successive Rayleigh
quotients R(x;) fori = 1, ..., k for the matrix A in the given
exercise.

17. Exercise 11
19. Exercise 13

18. Exercise 12
20. Exercise 14

The matrices in Exercises 21-24 either are not diagonaliz-
able or do not have a dominant eigenvalue (or both). Apply
the power method anyway with the given initial vector X,
performing eight iterations in each case. Compute the exact
eigenvalues and eigenvectors and explain what is happening.

P S HE TS I S
21.A = ,Xg = 22, A = »Xo =
L0 4 1 -1 1 1
(4 0 1] 1]
23.A=10 4 0|,x,=|1
L0 0 1] 1]
[0 0 0] [1
24.A=10 5 1|,x,=1|1
L0 0 5] 1 1]
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In Exercises 25-28, the power method does not converge to
the dominant eigenvalue and eigenvector. Verify this, using
the given initial vector x,. Compute the exact eigenvalues
and eigenvectors and explain what is happening.

(-1 2] [t
5.4 Jon ]
S N

-2 5 1
[-5 1 7 1
272A=| 0 4 0[x=|1
7 1 =5 1
[1 -1 1
286A=|1 1 0|x=]|1
L1 -1 1 1

In Exercises 29-32, apply the shifted power method to
approximate the second eigenvalue of the matrix A in the
given exercise. Use the given initial vector X, k iterations,
and three-decimal-place accuracy.

29. Exercise 9 30. Exercise 10

31. Exercise 13 32. Exercise 14
In Exercises 33-36, apply the inverse power method to
approximate, for the matrix A in the given exercise, the ei-

genvalue that is smallest in magnitude. Use the given initial
vector X, k iterations, and three-decimal-place accuracy.

33. Exercise 9 34. Exercise 10

35. Exercise 7, x, =

36. Exercise 14

In Exercises 37-40, use the shifted inverse power method
to approximate, for the matrix A in the given exercise, the
eigenvalue closest to .

37. Exercise 9, = 0

39. Exercise 7, = 5

38. Exercise 12, = 0
40. Exercise 13, = —2

Exercise 32 in Section 4.3 demonstrates that every poly-
nomial is (plus or minus) the characteristic polynomial of
its own companion matrix. Therefore, the roots of a poly-
nomial p are the eigenvalues of C( p). Hence, we can use
the methods of this section to approximate the roots of any
polynomial when exact results are not readily available. In
Exercises 41-44, apply the shifted inverse power method to
the companion matrix C(p) of p to approximate the root of
p closest to « to three decimal places.

4L.p(x) =x*+2x—2,a =0

Q2px)=x*—x—-3a=2

43.p(x) =x’—2x*+ 1,a=0

4.p(x)=x>—-5x*+x+1L,a=5

45. Let A be an eigenvalue of A with corresponding
eigenvector x. If « # A and « is not an eigenvalue of
A, show that 1/(A — @) is an eigenvalue of (A — aI)~!
with corresponding eigenvector x. (Why must A — al
be invertible?)

46. If A has a dominant eigenvalue A;, prove that the ei-
genspace E, is one-dimensional.

a+vi/ In Exercises 47-50, draw the Gerschgorin disks for the given

matrix.
(1 1 0 2 —i 0
47. |3 4 3 48. (1 2i 1+
(1 0 5 0 1 —2i
[4 — 3i i 2 -2
19, i -1+i 0 0
1+ i —i 5+ 6i 2i
| 1 —2i 2i =5 —5i
2 3 0 0
1 1
so. 05 T
6 6
L0 0 § 8

51. A square matrix is strictly diagonally dominant if the
absolute value of each diagonal entry is greater than
the sum of the absolute values of the remaining entries
in that row. (See Section 2.5.) Use Gerschgorin’s Disk
Theorem to prove that a strictly diagonally dominant
matrix must be invertible. [ Hint: See the third Remark
after Theorem 4.29.]

52. If Aisan n X »n matrix, let || A || denote the maximum of
the sums of the absolute values of the rows of A; that is,
lAll = max ( 2 |aij| ) (See Section 7.2.) Prove that
1=i=n j=1
if A is an eigenvalue of A, then Al = Al

53. Let A be an eigenvalue of a stochastic matrix A
(see Section 3.7). Prove that |A| < 1. [Hint: Apply
Exercise 52 to AT.]

N O

0
i 0
54. Prove that the eigenvalues of A = are

S U1

N[ —

o=
wiw W O O

o

0

all real, and locate each of these eigenvalues within a
closed interval on the real line.

~N
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Applications and the Perron-Frohenius Theorem

In this section, we will explore several applications of eigenvalues and eigenvectors.
We begin by revisiting some applications from previous chapters.

Markov Chains

Section 3.7 introduced Markov chains and made several observations about the tran-
sition (stochastic) matrices associated with them. In particular, we observed that if
P is the transition matrix of a Markov chain, then P has a steady state vector x. That
is, there is a vector x such that Px = x. This is equivalent to saying that P has 1 as an
eigenvalue. We are now in a position to prove this fact.

Theorem 4.30

If Pis the n X n transition matrix of a Markov chain, then 1 is an eigenvalue of P.

Proof Recall that every transition matrix is stochastic; hence, each of its columns
sums to 1. Therefore, if j is a row vector consisting of # s, then jP = j. (See Exer-
cise 13 in Section 3.7.) Taking transposes, we have

PTjT — (jP)T — jT

which implies that j” is an eigenvector of PT with corresponding eigenvalue 1. By
Exercise 19 in Section 4.3, P and P” have the same eigenvalues, so 1 is also an eigen-
value of P. b |

In fact, much more is true. For most transition matrices, every eigenvalue A sat-
isfies |A| = 1 and the eigenvalue 1 is dominant; that is, if A # 1, then |A| < 1. We need
the following two definitions: A matrix is called positive if all of its entries are posi-
tive, and a square matrix is called regular if some power of it is positive. For example,

3.1 3 1
A= {2 2} is positive but B = [2 0} is not. However, B is regular, since B> =

11 3. .
{ } is positive.
6 2

Theorem 4.31

Let Pbe an n X n transition matrix with eigenvalue A.

a. Al =1
b. If Pisregular and A # 1, then |A| < 1.

Proof  Asin Theorem 4.30, the trick to proving this theorem is to use the fact that P
has the same eigenvalues as P.

(a) Let x be an eigenvector of P” corresponding to A and let x; be the component of x
with the largest absolute value m. Then x| = |x;| = m fori =1, 2, ..., n. Comparing
the kth components of the equation P'x = Ax, we have

plk'xl + P2kx2 +- pnkxn = Axk
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(Remember that the rows of P are the columns of P.) Taking absolute values, we obtain

[Alm = |Al|x ] = [Ax| = |pux, + oy + - + Pl

‘Plkx1| + |P2kx2| +ot |pnkxn‘

= pulxl + puls| + -+ pulx,l (1)
= pum t pym + -+ pym

= (pu + pu + -+ pdm=m

IA

The first inequality follows from the Triangle Inequality in R, and the last equality
comes from the fact that the rows of P” sum to 1. Thus, [Ajm = m. After dividing by
m, we have |A| = 1, as desired.

(b) We will prove the equivalent implication: If |A| = I, then A = 1. First, we show
that it is true when P (and therefore P") is a positive matrix. If |\| = 1, then all of the
inequalities in Equations (1) are actually equalities. In particular,

pulxl + pulal + -+ pulx,| = pum + pum + -+ + pym
Equivalently,
pulm = xi|) + pulm = [x,]) + -+ + pulm — [x,]) = 0 (2)

Now, since P is positive, py. > 0fori=1,2,...,n Also,m — [x} =0fori=1,2,...,n.
Therefore, each summand in Equation (2) must be zero, and this can happen only if
|x =mfori=1,2,...,n Furthermore, we get equality in the Triangle Inequality in
R if and only if all of the summands are positive or all are negative; in other words,
the p;x;’s all have the same sign. This implies that

m —m
m —m

X = =mj’ or x=| |=-mj"
m —m

where j is a row vector of n 1s, as in Theorem 4.30. Thus, in either case, the eigenspace
of PT corresponding to A is E, = span(j”).
But, using the proof of Theorem 4.30, we see that j* = PTjT = Aj’, and, compar-
ing components, we find that A = 1. This handles the case where P is positive.
If P is regular, then some power of P is positive—say, P*. It follows that P*"! must
w—  also be positive. (Why?) Since A* and A**! are eigenvalues of P¥ and P¥*?, respectively,
by Theorem 4.18, we have just proved that A¥ = A**! = 1. Therefore, A*(A — 1) = 0,
which implies that A = 1, since A = 0 is impossible if |A| = 1.
|
We can now explain some of the behavior of Markov chains that we observed in
Chapter 3. In Example 3.64, we saw that for the transition matrix

0.7 0.2
p=
03 038
o 0.6
and initial state vector x, = 0al the state vectors x; converge to the vector x =

0.4 A A
el steady state vector for P (i.e., Px = x). We are going to prove that for regular
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Markov chains, this always happens. Indeed, we will prove much more. Recall that
the state vectors x, satisfy x, = P*x,. Let’s investigate what happens to the powers P
as P becomes large.

Example 4.31

\

0.7 0.2
The transition matrix P = {0 o 8} has characteristic equation
0.7 — A 0.2
0 = det(P — Al) = =AM —-150+05=(—-1)(A-05
et( ) ‘ 03 08— )\‘ (@A = 1) )

so its eigenvalues are A, = 1 and A, = 0.5. (Note that, thanks to Theorems 4.30 and
4.31, we knew in advance that 1 would be an eigenvalue and the other eigenvalue
would be less than 1 in absolute value. However, we still needed to compute A,.) The

eigenspaces are
2 1
E, = span([J) and Eys = span({_J)

1 0

2 1
So, taking Q = L’ _J,we know that Q"!'PQ = {0 e

} = D. From the method

used in Example 4.29 in Section 4.4, we have

oot |2 110 Mz 1}‘1
P = QD'Q {3 —1”0 05k13 -1

Now, as k — 00, (0.5)F = 0, so
L 10 . [2 1]f1 o]f2 1]7" [04 04
D" — and P"— =
0 0 3 —1]J10 0J[3 -1 0.6 0.6
(Observe that the columns of this “limit matrix” are identical and each is a steady

state vector for P.) Now let x, = [ZJ be any initial probability vector (i.e.,a + b =1).
Then

ohe s {0.4 04][a 0.4a + o.4b} [0.4}

X, = = =

7% loe 06llb]  06a+o06b] |06

Not only does this explain what we saw in Example 3.64, it also tells us that the state

0.4
vectors x; will converge to the steady state vector x = [0 6} for any choice of x;!

-

There is nothing special about Example 4.37. The next theorem shows that this
type of behavior always occurs with regular transition matrices. Before we can present
the theorem, we need the following lemma.

lemma 4.32

Let P be a regular n X n transition matrix. If P is diagonalizable, then the dominant
eigenvalue A, = 1 has algebraic multiplicity 1.
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Proof  The eigenvalues of Pand P are the same. From the proof of Theorem 4.31(b),
A, = 1 has geometric multiplicity 1 asan eigenvalue of P, Since P is diagonalizable,
so is P, by Exercise 41 in Section 4.4. Therefore, the eigenvalue A; = 1 has algebraic
multiplicity 1, by the Diagonalization Theorem. b |

Theorem 4.33

See Finite Markov Chains by J. G.
Kemeny and J. L. Snell (New York:
Springer-Verlag, 1976).

We are taking some liberties with
the notion of a limit. Nevertheless,
these steps should be intuitively
clear. Rigorous proofs follow from
the properties of limits, which you
may have encountered in a calcu-
lus course. Rather than get side-
tracked with a discussion of matrix
limits, we will omit the proofs.

Let P be a regular # X n transition matrix. Then as k — oo, P¥ approaches an
n X n matrix L whose columns are identical, each equal to the same vector x.
This vector x is a steady state probability vector for P.

Proof  To simplify the proof, we will consider only the case where P is diagonaliz-
able. The theorem is true, however, without this assumption.
We diagonalize P as Q 'PQ=Dor, equivalently, P = QDQ !, where

A0 e 0
0 A -0 0
D= . S .
0O 0 --- A

n

From Theorems 4.30 and 4.31, we know that each eigenvalue A; either is 1 or satisfies
I\i| < 1. Hence, as k — oo, A} approaches 1 or 0 for i = 1, ..., n. It follows that DF ap-
proaches a diagonal matrix—say, D*—each of whose diagonal entries is 1 or 0. Thus,
Pk =QDQ™! approaches L = QD*Q™'. We write

lim P* =L

k—>oc
Observe that
PL = P lim P* = lim PP* = lim P*"' = L
k—>c k—> o k—> o
Therefore, each column of L is an eigenvector of P corresponding to A; = 1. To see
that each of these columns is a probability vector (ie., L is a stochastic matrix), we
need only observe that, if j is the row vector with # 1s, then
jL = j lim P* = lim jP* = lim j = j
k—w k— k=

since P¥ is a stochastic matrix, by Exercise 14 in Section 3.7. Exercise 13 in Section 3.7
now implies that L is stochastic.

We need only show that the columns of L are identical. The ith column of L is
just Le;, where e; is the ith standard basis vector. Let v, v,, . . . , v, be eigenvectors of
P forming a basis of R", with v, corresponding to A; = 1. Write

e =

=0V Ty, T+ oy,

for scalars ¢, ¢,, . . . , ¢,. Then, by Theorem 4.19,

Pre; =

: olfv, + oAbv, + -+ c,,)\ﬁv,,

By Lemma 4.32, A; # 1 for j # 1, so, by Theorem 4.31(b), |A;/ < 1 for j # 1. Hence,
/\J'-‘ — 0ask — oo, forj # 1.Itfollows that

Le, = lim P*e, = v,
k=
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In other words, column i of L is an eigenvector corresponding to A; = 1. But we have
shown that the columns of L are probability vectors, so Le; is the unique multiple x of
v; whose components sum to 1. Since this is true for each column of L, it implies that
all of the columns of L are identical, each equal to this vector x. s

Remark Since L is a stochastic matrix, we can interpret it as the long range tran-
sition matrix of the Markov chain. That is, L; represents the probability of being in
state 7, having started from state j, if the transitions were to continue indefinitely. The
fact that the columns of L are identical says that the starting state does not matter, as
the next example illustrates.

Example 4.38

\ /

Recall the rat in a box from Example 3.65. The transition matrix was

L1

0 3 3

|1 2

P=13 0 3
12

2 3 0

We determined that the steady state probability vector was

ol
Il
00w oW W =

Hence, the powers of P approach

0.250 0.250 0.250
= 10375 0375 0.375
0.375 0.375 0.375

=~
®|W COlW W =
W 00|y W =
®|W GOl W =

from which we can see that the rat will eventually spend 25% of its time in compart-
ment 1 and 37.5% of its time in each of the other two compartments. I

We conclude our discussion of regular Markov chains by proving that the steady
state vector x is independent of the initial state. The proof is easily adapted to cover
the case of state vectors whose components sum to an arbitrary constant—say, s. In
the exercises, you are asked to prove some other properties of regular Markov chains.

Theorem 4.34

Let Pbe aregular n X n transition matrix, with x the steady state probability vector
for P, as in Theorem 4.33. Then, for any initial probability vector x,, the sequence
of iterates x; approaches x.

Proof Let
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where x; + x, + -+ + x,, = 1. Since x, = P*x,, we must show that lim P*x, = x. Now,
k=

by Theorem 4.33, the long range transition matrixis L = [x x - -- x] and lim P* = L.
k—>oc
Therefore,
lim P*x, = (lim PY)x, = Lx,
k= k—>o
X1
X
=[x x - x| .2
xl’l
= XX+ XX+ XX

=@ +tx,+ - +tx)x=x

Population Growth

We return to the Leslie model of population growth, which we first explored in
Section 3.7. In Example 3.67 in that section, we saw that for the Leslie matrix

0 4 3
L=]105 0 0
0 025 0
iterates of the population vectors began to approach a multiple of the vector
18
X = 6
1

In other words, the three age classes of this population eventually ended up in the
ratio 18:6:1. Moreover, once this state is reached, it is stable, since the ratios for the
following year are given by

0 4 31118 27
Lx=105 0 0 6|=1]9 = 1.5x
0 025 0 1 1.5

and the components are still in the ratio 27:9:1.5 = 18:6:1. Observe that 1.5 repre-
sents the growth rate of this population when it has reached its steady state.

We can now recognize that x is an eigenvector of L corresponding to the eigen-
value A = 1.5. Thus, the steady state growth rate is a positive eigenvalue of L, and an
eigenvector corresponding to this eigenvalue represents the relative sizes of the age
classes when the steady state has been reached. We can compute these directly, with-
out having to iterate as we did before.

»

Example 4.39

Find the steady state growth rate and the corresponding ratios between the age classes
for the Leslie matrix L above.

Solution  We need to find all positive eigenvalues and corresponding eigenvectors of
L. The characteristic polynomial of L is
—A 4 3
det(L — AI) =| 05 —A 0= —A+2A+ 0375
0 025 —A
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so we must solve —A> + 2\ + 0.375 = 0 or, equivalently, 8> — 16A — 3 = 0. Factor-
ing, we have

2A = 3)dXA + 61 +1)=0

(See Appendix D.) Since the second factor has only the roots (—3 + V/5)/4 =~ —0.19
and (—3 — V/5)/4 =~ —1.31, the only positive root of this equation is A = 3 = 1.5.
The corresponding eigenvectors are in the null space of L — 1.5I, which we find by
row reduction:

—1.5 4 3 10 1 0 —18|0
[L —15I0] =] 05 —1.5 0olof— |0 1 —6]|p
0 025 —=1.5/0 0 0 0lo
X
Thus, if x = | x, | is an eigenvector corresponding to A = 1.5, it satisfies x; = 18x3
X3

and x, = 6x5. That is,

18x; 18
E ;= 6x; = span 6
X3 1

Hence, the steady state growth rate is 1.5, and when this rate has been reached, the age
classes are in the ratio 18:6:1, as we saw before. I

In Example 4.39, there was only one candidate for the steady state growth rate: the
unique positive eigenvalue of L. But what would we have done if L had had more than
one positive eigenvalue or none? We were also apparently fortunate that there was a
corresponding eigenvector all of whose components were positive, which allowed us
to relate these components to the size of the population. We can prove that this situ-
ation is not accidental; that is, every Leslie matrix has exactly one positive eigenvalue
and a corresponding eigenvector with positive components.

Recall that the form of a Leslie matrix is

bl bZ b3 M bn—l bn
ss 0.0 - 0 0
0 s, 0 --- 0 0
L= : (3)
0 s 0 0
Lo 0 0 -+ s,., 0.

Since the entries s; represent survival probabilities, we will assume that they are all
nonzero (otherwise, the population would rapidly die out). We will also assume that
at least one of the birth parameters b; is nonzero (otherwise, there would be no births
and, again, the population would die out). With these standing assumptions, we can
now prove the assertion we made above as a theorem.

Theorem 4.35

Every Leslie matrix has a unique positive eigenvalue and a corresponding eigen-
vector with positive components.
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Oskar Perron (1880-1975) was a
German mathematician who did
work in many fields of mathemat-
ics, including analysis, differential
equations, algebra, geometry, and
number theory. Perron’s Theorem
was published in 1907 in a paper
on continued fractions.

Proof Let L be as in Equation (3). The characteristic polynomial of L is

c,(A) = det(L — AD
= (—1D)"A" = byA" " — bys; A" — bysys,A" == bsisy s, y)
= (=1)"f(A)

(You are asked to prove this in Exercise 16.) The eigenvalues of L are therefore the
roots of f(A). Since at least one of the birth parameters b; is positive and all of the
survival probabilities s; are positive, the coefficients of f(A) change sign exactly once.
By Descartes’s Rule of Signs (Appendix D), therefore, f(A) has exactly one positive
root. Let us call it A;.

By direct calculation, we can check that an eigenvector corresponding to A, is

1
si/A
$15:/A7
518583/ 03

) n—1
L S15253 7" sy /AT

(You are asked to prove this in Exercise 18.) Clearly, all of the components of x; are
positive. — ==

In fact, more is true. With the additional requirement that two consecutive birth
parameters b; and b, are positive, it turns out that the unique positive eigenvalue
A, of L is dominant; that is, every other (real or complex) eigenvalue A of L satisfies
|A| < A;. (It is beyond the scope of this book to prove this result, but a partial proof is
outlined in Exercise 27 for readers who are familiar with the algebra of complex num-
bers.) This explains why we get convergence to a steady state vector when we iterate
the population vectors: It is just the power method working for us!

The Perron-Frohenius Theorem

In the previous two applications, Markov chains and Leslie matrices, we saw that the
eigenvalue of interest was positive and dominant. Moreover, there was a correspond-
ing eigenvector with positive components. It turns out that a remarkable theorem
guarantees that this will be the case for a large class of matrices, including many of
the ones we have been considering. The first version of this theorem is for positive
matrices.

First, we need some terminology and notation. Let’s agree to refer to a vector as
positive if all of its components are positive. For two m X n matrices A = [a;] and
B = [b;], we will write A = B if a; = b;; for all i and j. (Similar definitions will apply
for A > B, A = B, and so on.) Thus, a positive vector x satisfies x > 0. Let us define
|A| = [|a;|] to be the matrix of the absolute values of the entries of A.
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Theorem 4.36

Perron’s Theorem

Let A be a positive n X n matrix. Then A has a real eigenvalue A, with the following
properties:

a. A >0
b. A, has a corresponding positive eigenvector.
c. If Aisanyother eigenvalue of A, then |A| = A,.

Intuitively, we can see why the first two statements should be true. Consider the case
of a2 X 2 positive matrix A. The corresponding matrix transformation maps the first
quadrant of the plane properly into itself, since all components are positive. If we re-
peatedly allow A to act on the images we get, they necessarily converge toward some
ray in the first quadrant (Figure 4.18). A direction vector for this ray will be a positive
vector x, which must be mapped into some positive multiple of itself (say, A,), since A
leaves the ray fixed. In other words, Ax = A x, with x and A, both positive.

Proof For some nonzero vectors x, Ax = Ax for some scalar A. When this happens,
then A(kx) = A(kx) for all k > 0; thus, we need only consider unit vectors x. In
Chapter 7, we will see that A maps the set of all unit vectors in R" (the unit sphere)
into a “generalized ellipsoid”” So, as x ranges over the nonnegative vectors on this unit
sphere, there will be a maximum value of A such that Ax = Ax. (See Figure 4.19.)
Denote this number by A, and the corresponding unit vector by x;.

y y y y

>

A A

>
»
>

Figure 4.18

» <

B )
NI

Figure 4.19



334

Chapter 4 Eigenvalues and Eigenvectors

We now show that Ax; = A;x;. If not, then Ax; > A;x,, and, applying A again, we
obtain

A(Ax) > A(Ax,) = A (Ax)

where the inequality is preserved, since A is positive. (See Exercise 40 and Section 3.7
Exercise 36.) But then y = (1/||Ax|[) Ax;, is a unit vector that satisfies Ay > Ay, so
there will be some A, > A, such that Ay = A,y. This contradicts the fact that A, was
the maximum value with this property. Consequently, it must be the case that Ax; =
Ax; that is, A, is an eigenvalue of A.

Now A is positive and x, is positive, so A;x; = Ax; > 0. This means that A, > 0
and x; > 0, which completes the proof of (a) and (b).

To prove (c), suppose A is any other (real or complex) eigenvalue of A with cor-
responding eigenvector z. Then Az = Az, and, taking absolute values, we have

Alz| = |Allz] = |Az] = Dz = ][] (4)

where the middle inequality follows from the Triangle Inequality. (See Exercise 40.)
Since |z| > 0, the unit vector u in the direction of |z| is also positive and satisfies
Au = |A|u. By the maximality of A, from the first part of this proof, we musthave|A| = A,.

— am

In fact, moreis true. It turns out that A, is dominant, so |A| < A, for any eigenvalue
A # Ay It is also the case that A, has algebraic, and hence geometric, multiplicity 1.
We will not prove these facts.

Perron’s Theorem can be generalized from positive to certain nonnegative matri-
ces. Frobenius did so in 1912. The result requires a technical condition on the matrix.
A square matrix A is called reducible if, subject to some permutation of the rows and
the same permutation of the columns, A can be written in block form as

{B C

O D

where B and D are square. Equivalently, A is reducible if there is some permutation
matrix P such that

. B C
PAP" =
O D
(See page 187.) For example, the matrix

2 0 0 1 3
4 2 1 5 5
A=]1 2 7 3 ¢
6 0 0 2 1
1 0 0 7 2

is reducible, since interchanging rows 1 and 3 and then columns 1 and 3 produces
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(This is just PAPT, where
]

001 0O
01 0 0 O
P=11 0 0 0 O
00 01 0
0 0 0 01

Check this!)

A square matrix A that is not reducible is called irreducible. If A* > O for some
k, then A is called primitive. For example, every regular Markov chain has a primitive
transition matrix, by definition. It is not hard to show that every primitive matrix is
irreducible. (Do you see why? Try showing the contrapositive of this.)

Theorem 4.31

See Matrix Analysis by R. A. Horn
and C. R. Johnson (Cambridge,
England: Cambridge University
Press, 1985).

The Perron-Frobenius Theorem

Let A be anirreducible nonnegative n X n matrix. Then A has a real eigenvalue A,
with the following properties:

a A >0

b. A, has a corresponding positive eigenvector.

c. If A is any other eigenvalue of A, then |A] = A,. If A is primitive, then this
inequality is strict.

d. If A is an eigenvalue of A such that [A| = A), then A is a (complex) root of the
equation A" — A = 0.

e. A; has algebraic multiplicity 1.

The interested reader can find a proof of the Perron-Frobenius Theorem in many
texts on nonnegative matrices or matrix analysis. The eigenvalue A, is often called the
Perron root of A, and a corresponding probability eigenvector (which is necessarily
unique) is called the Perron eigenvector of A.

Linear Recurrence Relations

The Fibonacci numbers are the numbers in the sequence 0, 1, 1, 2,3,5,8,13, 21, ...,
where, after the first two terms, each new term is obtained by summing the two terms
preceding it. If we denote the nth Fibonacci number by f,, then this sequence is com-
pletely defined by the equations f, = 0, f; = 1, and, forn = 2,

fn = fn—l + fn—Z

This last equation is an example of a linear recurrence relation. We will return to the
Fibonacci numbers, but first we will consider linear recurrence relations somewhat
more generally.
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Leonardo of Pisa (1170-1250), pictured left, is better known by his nickname, Fibonacci,
which means “son of Bonaccio” He wrote a number of important books, many of which have
survived, including Liber abaci and Liber quadratorum. The Fibonacci sequence appears

as the solution to a problem in Liber abaci: “A certain man put a pair of rabbits in a place
surrounded on all sides by a wall. How many pairs of rabbits can be produced from that

pair in a year if it is supposed that every month each pair begets a new pair which from the
second month on becomes productive?” The name Fibonacci numbers was given to the terms
of this sequence by the French mathematician Edouard Lucas (1842-1891).

Iletinilinn, Let (x,) = (xp, X1, X5, . . .) be a sequence of numbers that is defined

as follows:
l.xy = ap %, = ay,..., X%, = a,_;, where ag, a,, ..., a,_, are scalars.
2. Foralln = k,x, = ¢;x,_; + ¢, , + -+ + ¢x,_, wherecy, ¢,, . .., ¢, are
scalars.

If ¢, # 0, the equation in (2) is called a linear recurrence relation of order k. The
equations in (1) are referred to as the initial conditions of the recurrence.

Thus, the Fibonacci numbers satisfy a linear recurrence relation of order 2.

Remarks

e If, in order to define the nth term in a recurrence relation, we require the
(n — k)th term but no term before it, then the recurrence relation has order k.

® The number of initial conditions is the order of the recurrence relation.

e It is not necessary that the first term of the sequence be called x,. We could
start at x; or anywhere else.

e Ttis possible to have even more general linear recurrence relations by allowing
the coefficients ; to be functions rather than scalars and by allowing an extra, isolated
coefficient, which may also be a function. An example would be the recurrence

1
X, = 2%, — N X,_y + —X,_5+ 1
n

We will not consider such recurrences here.

»

Example 4.40

o

Consider the sequence (x,) defined by the initial conditions x;, = 1, x, = 5 and the
recurrence relation x,, = 5x,_; — 6x,_, for n = 2. Write out the first five terms of this
sequence.

Solution We are given the first two terms. We use the recurrence relation to calcu-
late the next three terms. We have

X3 =5x —6x,=55—6-1=19

Xy =5x3 —6x, =519 —6:5 =65

Xy = 5%, — 6x3 = 565 — 6+19 = 211

so the sequence begins 1,5, 19, 65, 211, . . .. 1
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Clearly, if we were interested in, say, the 100th term of the sequence in Exam-
ple 4.40, then the approach used there would be rather tedious, since we would have
to apply the recurrence relation 98 times. It would be nice if we could find an explicit
formula for x, as a function of #n. We refer to finding such a formula as solving the re-
currence relation. We will illustrate the process with the sequence from Example 4.40.

To begin, we rewrite the recurrence relation as a matrix equation. Let

ol

5
and introduce vectors x,, = [ . } for n = 2. Thus, x, = {xz} = { }, X; = {xﬂ =

n—1 X1 1 X2

19 X 65
[ 5}, X, = [ 4} = [19}, and so on. Now observe that, for n = 2, we have
X3

A 5 —6 Xy—1 l:sxn-] - 6xn-2 l: X
x _ — == — p—y X
" 1 0 Xn—2 Xn—1 Xn—1 !

Notice that this is the same type of equation we encountered with Markov chains and
Leslie matrices. As in those cases, we can write

X, = Axl’l*l = A2Xﬂ*2 =t = A”72x2

We now use the technique of Example 4.29 to compute the powers of A.
The characteristic equation of A is

A=51+6=0

from which we find that the eigenvalues are A; = 3 and A, = 2. (Notice that the form
of the characteristic equation follows that of the recurrence relation. If we write the
recurrence as x,, — 5x,_; + 6x,_, = 0, it is apparent that the coefficients are exactly
the same!) The corresponding eigenspaces are

S PR,

3 2 30
Setting P = [1 1},we know that P"'"AP = D = {0 2}.ThenA = PDP 'and

r k -1
a4 HH
11 1J[0 2[[1 1

3 2][3 OH )

1 1J[0 2¥[[-1 3

—3k+1 _2k+1 _2(3k+1) + 3(2k+1)
| 3k — 2k —2(3k)+3(2k)}

It now follows that

{ % } = = A {3"“ -2t 23T+ 3(2"“)}[5} _[ 3 — 2 }
N e e A L I -0 | N A

n
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from which we read off the solution x,, = 3" — 2". (To check our work, we could plug
inn=1,2,...,5 to verify that this formula gives the same terms that we calculated
using the recurrence relation. Try it!)

Observe that x, is a linear combination of powers of the eigenvalues. This is nec-
essarily the case aslong as the eigenvalues are distinct [as Theorem 4.38(a) will make
explicit]. Using this observation, we can save ourselves some work. Once we have
computed the eigenvalues A; = 3 and A, = 2, we can immediately write

x, = ;3" + 2"
where ¢, and c, are to be determined. Using the initial conditions, we have
1=1x=¢3"+¢2' =3¢, + 2,
when n = 1 and
5=1x=¢3"+ 22 =9 + 4c

when n = 2. We now solve the system

3C1 + 2C2 =1
9, + 4¢c, =5
for ¢, and ¢, to obtain ¢, = 1 and ¢, = —1. Thus, x,, = 3" — 2", as before.

This is the method we will use in practice. We now illustrate its use to find an
explicit formula for the Fibonacci numbers.

Example 4.41

Jacques Binet (1786-1856) made
contributions to matrix theory,
number theory, physics, and as-
tronomy. He discovered the rule
for matrix multiplication in 1812.
Binet’s formula for the Fibonacci
numbers is actually due to Euler,
who published it in 1765; how-
ever, it was forgotten until Binet
published his version in 1843.
Like Cauchy, Binet was a royalist,
and he lost his university posi-
tion when Charles X abdicated in
1830. He received many honors
for his work, including his elec-
tion, in 1843, to the Académie des
Sciences.

\/

Solve the Fibonaccirecurrence fy = 0, f, = 1, and f, = f,_, + f,—, forn = 2.

Solution  Writing the recurrence asf, — f,—; — f,—» = 0, we see that the characteris-
tic equation is A> — A — 1 = 0, so the eigenvalues are

_1+V5

A
! 2

1-V5
and AZ:T

It follows from the discussion above that the solution to the recurrence relation has

the form
1+ V5)\" 1 - V5\"
PRI (KL% S (E1)

for some scalars ¢, and c,.
Using the initial conditions, we find

0=/fy=cA)+ A=
1+ V5 1-V5
and l=fi=cAl + A = CI<T> + C2<T>

Solving for ¢, and c,, we obtain ¢, = 1/V/5 and ¢, = —1/V/5. Hence, an explicit
formula for the nth Fibonacci number is

f = L(M) _ 1(&) 5)

V5\ 2 V5N 2
g

G tc
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Formula (5) is a remarkable formula, because it is defined in terms of the irra-
tional number V/5 yet the Fibonacci numbers are all integers! Try plugging in a few
values for 71 to see how the V/'5 terms cancel out to leave the integer values f,. Formula
(5) is known as Binet’s formula.

The method we have just outlined works for any second order linear recur-
rence relation whose associated eigenvalues are all distinct. When there is a repeated
eigenvalue, the technique must be modified, since the diagonalization method we
used may no longer work. The next theorem summarizes both situations.

Theorem 4.38

Let x,, = ax,_, + bx,_, be a recurrence relation that is satisfied by a sequence (x,,).
Let A, and A, be the eigenvalues of the associated characteristic equation A* —
ak —b=0.

a. If A} # Ay, then x,, = ¢;A] + ¢,A] for some scalars ¢; and c,.
b. If A, = A, = A, then x,, = ¢;A" + ¢,nA" for some scalars ¢, and c,.

In either case, ¢, and ¢, can be determined using the initial conditions.

Proof (a) Generalizing our discussion above, we can write the recurrence as x,, =

Ax,_,, where
b
x,,:{x”} and A=[a }
S 1 0

Since A has distinct eigenvalues, it can be diagonalized. The rest of the details are left
for Exercise 53.

(b) We will show thatx, = ¢ /\” (e f’l)\" satisfies the recurrence relation x,, = ax,_, +
n 1 2 n n—1
bx,,_2 or, equivalently,

X, — ax, , — bx, , =0 (6)
if A> — aA — b = 0. Since

X,y = A"+ on — DAY and x, ., = A"+ p(n — 2)A"?

n

substitution into Equation (6) yields

X, — ax,_; — bx,_, = (A" + ¢;uA") — alc A" + o,(n — DA™Y
— b, A2+ o(n — 2)A"?)

= (A" — aA" !t = bA"?) + o,(nA" — a(n — D)A!
—b(n — 2)A"?)

=, A2 — ak —b) + ,nA"2(N — ak — b) + ¢,A" %) + 2b)
= A" 2(0) + ;nA""40) + c,A"%(aA + 2b)
A" 2(aA + 2b)

But, since A is a double root of A> — aA — b = 0, we must have a*> + 4b = 0 and A =
a/2, using the quadratic formula. Consequently, aA + 2b = a*/2 + 2b = —4b/2 +
2b =0, 0

X, — ax,_; — bx,_, = ;A" *(aA + 2b) = c,A""%0) =0
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Suppose the initial conditions are x, = rand x; = 5. Then, in either (a) or (b) there
is a unique solution for ¢, and c,. (See Exercise 54.) ]

Example 4.42

Solve the recurrence relation x, = 1, x; = 6, and x,, = 6x,,_, — 9x,,_, for n = 2.

Solution The characteristic equation is A> — 6A + 9 = 0, which has A = 3 asa
double root. By Theorem 4.38(b), we must have x,, = ¢,3" + ¢,n3" = (¢; + c,n)3"
Since 1 = x, = ¢; and 6 = x; = (¢; + ¢;)3, we find that ¢, = 1, so

x, = (1 + n)3" I

The techniques outlined in Theorem 4.38 can be extended to higher order recurrence
relations. We state, without proof, the general result.

Theorem 4.39

Letx, = a,,—1X,—1 + a,, 2%, , T -+ + agx,_,, be a recurrence relation of order
m that is satisfied by a sequence (x,). Suppose the associated characteristic
polynomial
A" — @, A" —a, A" — - — g
factors as (A — A)™(A — A,)™- - (A — A)™, where m; + my, + -+ + m = m.
Then x,, has the form
%, = (Al + cppnA] + Al + - + ¢ n™ A + -
+ (A} + cndl + ca®A] + -+ ¢, WA

Systems of Linear Differential Equations

In calculus, you learn that if x = x(#) is a differentiable function satisfying a differ-
ential equation of the form x” = kx, where k is a constant, then the general solution
is x = Ce™, where C is a constant. If an initial condition x(0) = X, is specified, then,
by substituting ¢ = 0 in the general solution, we find that C = x,. Hence, the unique
solution to the differential equation that satisfies the initial condition is

kt

X = Xge
Suppose we have n differentiable functions of t—say, xy, x5, . . . , x,—that satisfy a
system of differential equations
x; =apx tapx, ¥+ ax,
x; = anX; tapX, + -+ ayx,
X, = a.,ﬂxl +a,,x, + -+ a,,x,

We can write this system in matrix form as x’ = Ax, where

x,(1) x; (1) an 4 T 4y

x,(8) x3(t) a,, Gy ‘°° a
x(t) = 2. , x(t) = 2_ , and A = .21 2 =

xn(t) xV’l(t) anl Ay T Ay

Now we can use matrix methods to help us find the solution.
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First, we make a useful observation. Suppose we want to solve the following sys-
tem of differential equations:

x, = 2x,
x, = 5x,
Each equation can be solved separately, as above, to give
x, = Ce?
x, = Cpe™

where C, and C, are constants. Notice that, in matrix form, our equation x’ = Ax has
a diagonal coefficient matrix
2 0
A =
0 5

and the eigenvalues 2 and 5 occur in the exponentials e* and e of the solution. This
suggests that, for an arbitrary system, we should start by diagonalizing the coefficient
matrix, if possible.

Y

Example 4.43

Solve the following system of differential equations:
x| = x + 2x,

x; = 3x, + 2x,

1 2
Solution  Here the coefficient matrixis A = { }, and we find that the eigenvalues
-1
are A} = 4 and A, = —1, with corresponding eigenvectors v, = {3} and v, = { J,
respectively. Therefore, A is diagonalizable, and the matrix P that does the job is

-1
P=1[vy v]= {i J

We know that

. 4 0
PTIAP = =D
0 -1

Let x = Py (so that x" = Py’) and substitute these results into the original equation
x' = Axto get Py’ = APy or, equivalently,
y' = P"'APy = Dy

This is just the system

= 4n
V2= "0
whose general solution is
nw=Ce [Cle‘“}
y, = Che’! ¥ Cre!
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»—k

To find x, we just compute

P [2 —1} { Cle‘“} {ZCle‘*’ - Czet}
X = = —
S 1 Cye! 3Ce* + Che™!

s0 x; = 2C,e* — C,e "and x, = 3Ce* + C,e”". (Check that these values satisfy the

given system.) I

Remark Observe that we could also express the solution in Example 4.43 as

2 1
X = Cle‘”[J + Cze{ J = Cie''v; + Cpe'v,

This technique generalizes easily to n X n systems where the coefficient matrix is
diagonalizable. The next theorem, whose proof is left as an exercise, summarizes the
situation.

Theorem 4.40

Let A be an n X n diagonalizable matrixandletP = [v; v, --- v,] be such that
A, 0 -0 0
. 0 A, -+ 0
P AP = . . . .

n

Then the general solution to the system x' = Ax is

x = CieMtvy + CreMv, + -+ + CeMy,

The next example involves a biological model in which two species live in the
same ecosystem. It is reasonable to assume that the growth rate of each species de-
pends on the sizes of both populations. (Of course, there are other factors that govern
growth, but we will keep our model simple by ignoring these.)

If x,(¢) and x, (¢) denote the sizes of the two populations at time ¢, then x{(¢) and
x;(t) are their rates of growth at time t. Our model is of the form

x/(8) = ax;(t) + bx,(1)
X%, () = cx, (1) + dx,(t)

where the coefficients 4, b, ¢, and d depend on the conditions.

»

Example 4.44

Raccoons and squirrels inhabit the same ecosystem and compete with each other for
food, water, and space. Let the raccoon and squirrel populations at time ¢ years be
given by r(t) and s(t), respectively. In the absence of squirrels, the raccoon growth
rate is r'(t) = 2.5r(t), but when squirrels are present, the competition slows the rac-
coon growth rate to r'(t) = 2.5r(¢) — s(t). The squirrel population is similarly affected
by the raccoons. In the absence of raccoons, the growth rate of the squirrel population
is s'(#) = 2.5s(t), and the population growth rate for squirrels when they are sharing
the ecosystem with raccoons is s'(f) = —0.25r(f) + 2.5s(¢). Suppose that initially
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there are 60 raccoons and 60 squirrels in the ecosystem. Determine what happens to
these two populations.

Solution  Our system is X’ = Ax, where

=[] e a2 7Y

The eigenvalues of A are A; = 3 and A, = 2, with corresponding eigenvectors v, =

=2 2
{ J and v, = L} By Theorem 4.40, the general solution to our system is

-2 2
x(t) = Cie'v, + Cpe?v, = Cle”[ 1] + Czez{l} (7)
. . . r(0) 60 _ _
The initial population vector is x(0) = ©0) = leol*® setting t = 0 in Equa-
s

tion (7), we have

I RC HE

Solving this equation, we find C; = 15 and C, = 45. Hence,

x(t) = 15e3'[_2} + 45e2‘H
1 ]

from which we find r(t) = —30e* + 90e* and s(t) = 15¢* + 45¢*'. Figure 4.20 shows
the graphs of these two functions, and you can see clearly that the raccoon population
dies out after a little more than 1 year. (Can you determine exactly when it dies out?)

A

We now consider a similar example, in which one species is a source of food for
the other. Such a model is called a predator-prey model. Once again, our model will
be drastically oversimplified in order to illustrate its main features.

3000 +
4 s(1)

2000 1+

1000 +

02 04 06 08 1

—1000 +

Figure 4.20
Raccoon and squirrel populations
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»

Example 4.45

Robins and worms cohabit an ecosystem. The robins eat the worms, which are their
only source of food. The robin and worm populations at time ¢ years are denoted by
r(t) and w(t), respectively, and the equations governing the growth of the two popula-
tions are

r'(t) = w(t) — 12

W) = —r() + 10 (8)

If initially 6 robins and 20 worms occupy the ecosystem, determine the behavior of
the two populations over time.

Solution The first thing we notice about this example is the presence of the extra
constants, —12 and 10, in the two equations. Fortunately, we can get rid of them
with a simple change of variables. If we let r(¢) = x(¢) + 10 and w(t) = y(t) + 12, then
r'(t) = x'(t) and w'(t) = y'(t). Substituting into Equations (8), we have

x'(t) = y(t) ©
y'() = —x(1)

which is easier to work with. Equations (9) have the form x’ = Ax, where A =

0
{_1 0}. Our new initial conditions are

x(0) =r(0) —10=6 —10=—4 and y(0) =w(0) —12=20—-12=8

so x(0) = {_3]

Proceeding as in the last example, we find the eigenvalues and eigenvectors of A.
The characteristic polynomial is A*> + 1, which has no real roots. What should we do?
We have no choice but to use the complex roots, whichare A, = i and A, = —i. The

1 1
corresponding eigenvectors are also complex—namely, v, = [ } andv, = [_ } By
Theorem 4.40, our solution has the form ! !

) . |1 1
x(t) = Ce''vy + Che v, = Cle’{ } + Cze_”[ }
i —i

—4
From x(0) = [ 8},we get

ali)rel2)= [

whose solution is C; = —2 — 4iand C, = —2 + 4i. So the solution to system (9) is
Nl -l
x(t) = (=2 — 4i)e”| | + (=2 + 4i)e ,
i —i

What are we to make of this solution? Robins and worms inhabit a real world—
yet our solution involves complex numbers! Fearlessly proceeding, we apply Euler’s
formula

e = cost + isint
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GONE TO
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F

CALVIN AND HOBBES © 1988 Watterson. Reprinted with permission o f UNIVERSAL PRESS SYNDICATE. All rights reserved

(Appendix C) to get e "= cos(—t) +isin(—t) = cos t — isin t. Substituting, we have

x(t) = (=2 — 4i)(cost + isin t)u} + (=2 + 4i)(cost — isint) 1,]

L1

B {(—2 cost + 4sint) + i(—4cost — 2 sin t)}
(4cost + 2sint) + i(—2cost + 4sint)

{(—2 cost + 4sint) + i(4cost + 2sin t)J
(4cost+ 2sint) +i(2cost — 4sint)

—4cost + 8sint
8cost+ 4sint

This gives x(t) = —4 cost + 8 sin t and y(¢) = 8 cos t + 4 sin t. Putting everything in
terms of our original variables, we conclude that

r(t) = x() + 10 = —4cost + 8sint + 10

and

w(t) = y(t) + 12 =8cost + 4sint + 12

r(t)

10-
w(r)
5_
—~——————————+——+—+—+—> ¢
0] "2 4 6 8 10 12 14 16
Figure 4.21 Figure 4.22

Robin and worm populations
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So our solution is real after all! The graphs of r(¢) and w(t) in Figure 4.21 show that
the two populations oscillate periodically. As the robin population increases, the
worm population starts to decrease, but as the robins’ only food source diminishes,
their numbers start to decline as well. As the predators disappear, the worm popula-
tion begins to recover. As its food supply increases, so does the robin population,
and the cycle repeats itself. This oscillation is typical of examples in which the eigen-
values are complex.

Plotting robins, worms, and time on separate axes, as in Figure 4.22, clearly
reveals the cyclic nature of the two populations. 4

We conclude this section by looking at what we have done from a different point
of view. If x = x(t) is a differentiable function of ¢, then the general solution of the
ordinary differential equation x’ = ax is x = ce®, where c is a scalar. The systems of
linear differential equations we have been considering have the form x" = Ax, so if
we simply plowed ahead without thinking, we might be tempted to deduce that the
solution would be x = ce”, where c is a vector. But what on earth could this mean?
On the right-hand side, we have the number e raised to the power of a matrix. This
appears to be nonsense, yet you will see that there is a way to make sense of it.

Let’s start by considering the expression e”. In calculus, you learn that the func-
tion e* has a power series expansion

2 x3

x L2 AR
e=1+x+_—-+_—-+
2t 3!

that converges for every real number x. By analogy, let us define

2 8

e = T £ ARSI = - - -
21 3

The right-hand side is just defined in terms of powers of A, and it can be shown that
it converges for any real matrix A. So now e” is a matrix, called the exponential of A.
Buthow can we compute e* or e*? For diagonal matrices, it is easy.

Example 4.46

\/

4 0
Compute e for D = {0 _J.

Solution From the definition, we have

e” =1+ Dt + Dty + (D)
2! 3!
v o] 4 0] [ o0 } L{(4t)3 0 }
o 1}+[0 —t}h![ o (=) T¥ o (—1)? i
1+ 4D+ 5D+ 5+ 0 }
| 0 14+ (=8 + 5(—1)* + H(-0* +
B ”e4t 0:|
Lo et

.

The matrix exponential is also nice if A is diagonalizable.
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\

Example 4.41

1 2
Compute e” for A = [ ]
3 2

Solution In Example 4.43, we found the eigenvalues of Atobe A} = 4and A, = —1,

2
with corresponding eigenvectors v, = [3} and v, = { : }, respectively. Hence, with

-1 ., 4 0] .
,wehave P'AP = D = - .Since A = PDP ", we

2
P = [V] Vz] = |:3 1

have A¥ = PD*P 1, 50

2 3

A=T+A+—+—+--
21 3

©
Il

_ 1 1
PIP™!' + PDP ! + ;PDZP’I + ;JPDﬁD—1 ST
D? D3
=P<I+D+—+——+~->P‘1
2! 3!
PePp!

[2 —1“& 012 —-11"
3 1/{o e '3 1
1[2¢" + 3¢ 2¢* — 2¢!
5(3¢* — 3¢l 3e* + 2¢7!

-

We are now in a position to show that our bold (and seemingly foolish) guess at
an “exponential” solution of X' = Ax was not so far off after all!

Theorem 4.41

Let A be an n X n diagonalizable matrix with eigenvalues A}, A, . .., A,. Then the
general solution to the system x’ = Ax is x = e“'c, where c is an arbitrary constant
vector. If an initial condition x(0) is specified, then ¢ = x(0).

Proof Let P diagonalize A. Then A = PDP !, and, as in Example 4.47,
eAt — PeDtP—l

Hence, we need to check that x’ = Ax is satisfied by x = Pe™P ~'c. Now, everything
is constant except for e, so

’ _E_i Dtp—1 — i Dtyp—1
X' = n= (PP = P (PP e (10)
0 A 0
If D= y
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For example, see Linear Algebra
by S. H. Friedberg, A. J. Insel, and
L. E. Spence (Englewood Cliffs,

NJ: Prentice-Hall, 1979).

/a+l7i;

e 0 0
0 e 0
then el = e:
0 0 et
Taking derivatives, we have
rd _
—(eM 0 [ 0
dt( )
d
0 (oMt % = i 0
d (o T
—\e = . A .
dt :
d
0 0 cee —(eMt
I )
(e 0 0
0 A
L O 0 Aqett
(A, 0 07[eM 0
0 A 0]l 0 e 0
L0 0 AJLO 0 et
= DeDt

Substituting this result into Equation (10), we obtain
X' = PDe”P"'c = PDP™'Pe”'P"'c = (PDP™")(Pe”P™")c = Ae™'c = Ax

as required.
The last statement follows easily from the fact that if x = x(t) = ec, then

x(0) = e2% = Pc = Ic = ¢

since e = . (Why?) —

In fact, Theorem 4.41 is true even if A is not diagonalizable, but we will not prove
this. Computation of matrix exponentials for nondiagonalizable matrices requires the
Jordan normal form of a matrix, a topic that may be found in more advanced linear
algebra texts.

Ideally, this short digression has served to illustrate the power of mathematics to
generalize and the value of creative thinking. Matrix exponentials turn out to be very
important tools in many applications of linear algebra, both theoretical and applied.

Discrete Linear Dynamical Systems

We conclude this chapter as we began it—by looking at dynamical systems. Markov
chains and the Leslie model of population growth are examples of discrete linear
dynamical systems. Each can be described by a matrix equation of the form

X1 = AXg
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where the vector x; records the state of the system at “time” k and A is a square matrix.
As we have seen, the long-term behavior of these systems is related to the eigenval-
ues and eigenvectors of the matrix A. The power method exploits the iterative nature
of such dynamical systems to approximate eigenvalues and eigenvectors, and the
Perron-Frobenius Theorem gives specialized information about the long-term behavior
of a discrete linear dynamical system whose coefficient matrix A is nonnegative.

When A is a 2 X 2 matrix, we can describe the evolution of a dynamical system
geometrically. The equation x,, = Ax, is really an infinite collection of equations.
Beginning with an initial vector x;, we have:

x, = Ax,
x, = Ax,

X; = AXZ

The set {x,, X, X,, . . .} is called a trajectory of the system. (For graphical purposes, we
will identify each vector in a trajectory with its head so that we can plot it as a point.)
Note that x, = A¥x,.

Example 4.48

»

0.5

0
in the trajectories with the following initial vectors:

(a)x0=ﬂ (b)xo={°} <c>Xo=H <d>"o:{_2}

Let A = [ . 8} For the dynamical system x;., = Ax, plot the first five points

0 =5 4 4

- 2.5 1.25
Solution (a) We compute x, = Ax, = { ], X, = Ax, = {0 }, X; = Ax, =
{0.625

0
connected to highlight the trajectory. Similar calculations produce the trajectories
marked (b), (¢), and (d) in Figure 4.23.

0.3125
, Xy = AX; = . These are plotted in Figure 4.23, and the points are
0

Figure 4.23

g



330

Chapter 4 Eigenvalues and Eigenvectors

In Example 4.48, every trajectory converges to 0. The origin is called an attractor
in this case. We can understand why this is so from Theorem 4.19. The matrix A in

_ 1 0 o
Example 4.48 has eigenvectors {0} and L} corresponding to its eigenvalues 0.5 and

0.8, respectively. (Check this.) Accordingly, for any initial vector

ool

we have
_ ake — k1 k0
x, = A*, = ¢,(0.5) 5 + ¢,(0.8) i

Because both (0.5)F and (0.8)* approach zero as k gets large, x; approaches 0 for any
choice of x,,. In addition, we know from Theorem 4.28 that because 0.8 is the domi-
nant eigenvalue of A, x; will approach a multiple of the corresponding eigenvector

0 0
L} as long as ¢, # 0 (the coefficient of x, corresponding to [J). In other words,

all trajectories except those that begin on the x-axis (where ¢, = 0) will approach the
y-axis, as Figure 4.23 shows.

»

Example 4.49

Discuss the behavior of the dynamical system x;., = Ax, corresponding to the
0.65 —0.15}

matrix A =
—0.15 0.65

1
Solution The eigenvalues of A are 0.5 and 0.8 with corresponding eigenvectors [J

-1
+ Ll

and {

we have

1
) } , respectively. (Check this.) Hence for an initial vector x;, = ¢, )

x, = Afx, = cl(o.s)km + c2(0.8)’{_”

Once again the origin is an attractor, because x; approaches 0 for any choice of x,. If
¢, # 0, the trajectory will approach the line through the origin with direction vector
-1
{ J. Several such trajectories are shown in Figure 4.24. The vectors x, where ¢, = 0
1
are on the line through the origin with direction vector L}, and the correspond-

ing trajectory in this case follows this line into the origin.
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Figure 4.24 I

»

Example 4.50

Discuss the behavior of the dynamical systems x;., = Ax; corresponding to the
following matrices:

41 1 05
(a)A:L 4] (b)A:{o.s 1}

1
Solution (a) The eigenvalues of A are 5 and 3 with corresponding eigenvectors [ }

and {

1 -1
1], respectively. Hence for an initial vector x, = ¢, [ J + cz{ J, we have

] |1 | —1
X, = A"x0 = 615"[1} + c23’{ J

As k becomes large, so do both 5* and 3*. Hence, x; tends away from the origin.
1
Because the dominant eigenvalue of 5 has corresponding eigenvector b all trajec-

toriesforwhich¢, # 0 will eventually end up in the first or the third quadrant. Trajec-

tories with ¢, = 0 start and stay on the line y = —x whose direction vector is [_ }
See Figure 4.25(a). 1

(b) In this example, the eigenvalues are 1.5 and 0.5 with corresponding eigenvectors

1 -1 .
[J and [ 1], respectively. Hence,

1 -1 1 -1
X, = c1(1‘5)km + 62(0,5)1{ J if x,= clm + cz[ J
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T 1171

Figure 4.25

- 20— (a)

1 T T 1171

=1l 0
If ¢, = 0, thenx, = cz(O.S)k[ J — [0} as k = o, Butifc, # 0, then

X, = 61(1.5)k[1:| + 62(0.5)k[_1:| ~ cl(l.S)k{” as k— x

and such trajectories asymptotically approach the line y = x. See Figure 4.25(b).

In Example 4.50(a), all points that start out near the origin become increasingly
large in magnitude because |A| > 1 for both eigenvalues; 0 is called a repeller. In
Example 4.50(b), 0 is called a saddle point because the origin attracts points in some
directions and repels points in other directions. In this case, A\l < 1and|A,| > 1.

The next example shows what can happen when the eigenvalues of a real 2 X 2
matrix are complex (and hence conjugates of one another).

Example 4.51

4
Plot the trajectory beginning with x, = [4} for the dynamical systems x;., = Ax;
corresponding to the following matrices:

(@) A < {o.s —0.5} (b) A = {0.2 —1.2J
05 0.5 0.6 14

Solution  The trajectories are shown in Figure 4.26(a) and (b), respectively. Note that
(a) is a trajectory spiraling into the origin, whereas (b) appears to follow an elliptical
orbit.
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A

L L L

— 1 7T T T 1 11

Figure 4.26 G

(b)

The following theorem explains the spiral behavior of the trajectory in
Example 4.51(a).

Theorem 4.42 a —b

Let A = . The eigenvalues of A are A = a = bi, and if a and b are not
a

both zero, then A can be factored as
[a —b} [r 0} {cos@ —sine}
A — — .
b a 0 r]|sinf cosf

where r = [A| = Va? + b*and 6 is the principal argument of a + bi.

Proof  The eigenvalues of A are
A=10a = Va(=t?») = {20 + 2V -1) = a = |bli = a = bi
by Exercise 35(b) in Section 4.1. Figure 4.27 displays a + bi, r, and 6. It follows that
e {a —b] B {a/r —b/r} B {r OMCOSO —sine}
b a g b/r a/r 0 r][sinf cosf
|
-b
Remark Geometrically, Theorem 4.42 implies that when A = {Z } # 0,
a
A the linear transformation T(x) = Ax is the composition of a rotation R =
a+ bi cosf —sinf . r 0] .
through the angle 0 followed by a scaling S = i with fac-

sinf cosf 0
tor r (Figure 4.28). In Example 4.51(a), the eigenvalues are A = 0.5 * 0.5i so

r r = [A| = V2/2 = 0.707 < 1, and hence the trajectories all spiral inward toward 0.

The next theorem shows that, in general, when a real 2 X 2 matrix has complex

. T . a
0 eigenvalues, it is similar to a matrix of the form [ } For a complex vector
a

b

e=[2)= s -1+ )
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>
»

Scaling / Ax = SRx
Rx

Rotation

Figure 4.28
A rotation followed by a scaling

» X

we define the real part, Re x, and the imaginary part, Im x, of x to be

S {a} B [Rez} T [c} B {Imz}
ex= b Rew d Imw

Theorem 4.43

Let A be a real 2 X 2 matrix with a complex eigenvalue A = a — bi (where b # 0)

and corresponding eigenvector x. Then the matrix P = [Rex Im x] is invertible
and
A,—'P{a _b}Pl
b a

Proof Letx = u + visothat Rex = uandIm x = v. From Ax = Ax, we have
Au + Avi = Ax = Ax = (a — bi)(u + vi)
=au + avi — bui + bv = (au + bv) + (—bu + av)i
Equating real and imaginary parts, we obtain
Au=qau+ bv and Av= —bu + av

Now P = [u|v], so
P{a —b} - [l ]{a —b}
b al L b a

To show that P is invertible, it is enough to show that uand vare linearly indepen-
dent. If u and v were not linearly independent, then it would follow that v = ku for
some (nonzero complex) scalar k, because neither u nor vis 0. Thus,

[au + bv|—bu + av] = [Au\Av] =A[u\v]

= AP

x=u+vi=u-+ kui = (1 + ki)u
Now, because A is real, Ax = Ax implies that
AX = AX = Ax = Ax = AX

S0 X = u — vi is an eigenvector corresponding to the other eigenvalue A = a + bi.
But

x= (1 + kiju=(1— ki)u
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because u is a real vector. Hence, the eigenvectors x and x of A are both nonzero
multiples of u and therefore are multiples of one another. This is impossible because
eigenvectors corresponding to distinct eigenvalues must be linearly independent by
Theorem 4.20. (This theorem is valid over the complex numbers as well as the real
numbers.)

This contradiction implies that u and v are linearly independent and hence P is
invertible. It now follows that

[a —b} .
A=P P
a

b _ oeem

Theorem 4.43 serves to explain Example 4.51(b). The eigenvalues of

02 -—12
A= { 1 4} are 0.8 = 0.6i. For A = 0.8 — 0.6i, a corresponding eigenvector is

N R

-1 -1 0.8 —0.6
From Theorem 4.43, it follows that for P = [ 1 0} and C = { }, we
have )

A=PCP' and P'AP=C
For the given dynamical system x;., = Ax,, we perform a change of variable. Let
x; = Py, (or, equivalently, y, = P 'x})
Then
Pypi1 = Xy = AX = APy,
S0
Yii1 = X1 = Ax, = P 'APy, = Cy;

Now C has the same eigenvalues as A (why?) and [0.8 + 0.6i| = 1. Thus, the dynami-
cal system y;.; = Cy; simply rotates the points in every trajectory in a circle about
the origin by Theorem 4.42.

To determine a trajectory of the dynamical system in Example 4.51(b), we it-
eratively apply the linear transformation T(x) = Ax = PCP™'x. The transformation
can be thought of as the composition of a change of variable (x to y), followed by the
rotation determined by C, followed by the reverse change of variable (y back to x). We
will encounter this idea again in the application to graphing quadratic equations in
Section 5.5 and, more generally, as “change of basis” in Section 6.3. In Exercise 74 of
Section 5.5, you will show that the trajectory in Example 4.51(b) is indeed an ellipse,
as it appears to be from Figure 4.26(b).

To summarize then: Ifareal 2 X 2 matrix A hascomplex eigenvaluesA = a = bi,
then the trajectories of the dynamical system x;,, = Ax, spiral inward if Al <1
(0 is a spiral attractor), spiral outward if [A| > 1 (0 is a spiral repeller), and lie on a
closed orbit if |\| = 1 (0 is an orbital center).
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Vignette

Ranking Sports Teams and Searching
the Internet

In any competitive sports league, it is not necessarily a straightforward process to
rank the players or teams. Counting wins and losses alone overlooks the possibility
that one team may accumulate a large number of victories against weak teams, while
another team may have fewer victories but all of them against strong teams. Which
of these teams is better? How should we compare two teams that never play one
another? Should points scored be taken into account? Points against?

Despite these complexities, the ranking of athletes and sports teams has become
a commonplace and much-anticipated feature in the media. For example, there are
various annual rankings of U.S. college football and basketball teams, and golfers and
tennis players are also ranked internationally. There are many copyrighted schemes
used to produce such rankings, but we can gain some insight into how to approach
the problem by using the ideas from this chapter.

To establish the basic idea, let’s revisit Example 3.69. Five tennis players play one
another in a round-robin tournament. Wins and losses are recorded in the form of
a digraph in which a directed edge from i to j indicates that player i defeats player j.
The corresponding adjacency matrix A therefore has a; = 1 if player i defeats player
jand has a; = 0 otherwise.

1

S
Il
o O = O O
S O O O ==
- o O = O
O O = =
O = O =

We would like to associate a ranking r; with player i in such a way that
r; > r; indicates that player i is ranked more highly than player j. For this



purpose, let’s require that the r;’s be probabilities (that is, 0 = r; = 1 for all i, and
ry + r, + ry + ry + r; = 1) and then organize the rankings in a ranking vector

Furthermore, let’s insist that player i’s ranking should be proportional to the sum of
the rankings of the players defeated by player i. For example, player 1 defeated players
2, 4, and 5, so we want

ro=calr, +r, +r5)

where « is the constant of proportionality. Writing out similar equations for the other
players produces the following system:

rn=aln,+r,+r)
r, =alry + r, + r5)
ry = alr, + r,)

ry = ars

Vs = ary

Observe that we can write this system in matrix form as

r 01 0 1 1]]|n
r 00 1 1 1(|n
r3=af1l 0 0 1 0f]|r or r = aAr
Ty 00 0 0 1]|n
rs 0 0 1 0 0frs

Equivalently, we see that the ranking vector r must satisfy Ar = l—r In other words,
r is an eigenvector corresponding to the matrix A!

Furthermore, A is a primitive nonnegative matrix, so the Perron-Frobenius Theo-
rem guarantees that there is a unique ranking vector r. In this example, the ranking
vector turns out to be

0.29
0.27
r=1022
0.08
0.14

so we would rank the players in the order 1, 2, 3, 5, 4.
By modifying the matrix A, it is possible to take into account many of the com-
plexities mentioned in the opening paragraph. However, this simple example has

served to indicate one useful approach to the problem of ranking teams.
3917
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The same idea can be used to understand how an Internet search engine such as
Google works. Older search engines used to return the results of a search unordered.
Useful sites would often be buried among irrelevant ones. Much scrolling was often
needed to uncover what you were looking for. By contrast, Google returns search re-
sults ordered according to their likely relevance. Thus, a method for ranking websites
is needed.

Instead of teams playing one another, we now have websites linking to one an-
other. We can once again use a digraph to model the situation, only now an edge from
i to j indicates that website ilinks to (or refers to) website j. So whereas for the sports
team digraph, incoming directed edges are bad (they indicate losses), for the Internet
digraph, incoming directed edges are good (they indicate links from other sites). In
this setting, we want the ranking of website i to be proportional to sum of the rank-
ings of all the websites that link to i.

Using the digraph on page 356 to represent just five websites, we have

re=oalr, +r,+r)
for example. It is easy to see that we now want to use the transpose of the adjacency

matrix of the digraph. Therefore, the ranking vector r must satisfy A'r = P and will
thus be the Perron eigenvector of A”. In this example, we obtain

001 00 0.14
1 00 0 O 0.08
AT=10 1 0 0 1 and r=|022
1 11 0 0 0.27
1 101 0 0.29

so a search that turns up these five sites would list them in the order 5, 4, 3, 1, 2.
Google actually uses a variant of the method described here and computes the rank-
ing vector via an iterative method very similar to the power method (Section 4.5).
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J Iixercises 1.6

Markov Chains

\/

17. If all of the survival rates s; are nonzero, let

Which of the stochastic matrices in Exercises 1-6 are regular?

1 0o 0 .- 0
[ i 1
L1 0 L0 3 P=10 0 ss, -°- 0
£ —% 0 1 o ” N :
53 0} 4|} 0 0 00 0 oses
- L0 1 0 :
~ _ Compute P 'LP and use it to find the characteris-
01 0 05 05 1 0 tic polynomial of L. [Hint: Refer to Exercise 32 in
5105 1 0 6.[05 0 1 Section 4.3.]
L04 0 0.5 Lo 0 0 18. Verify that an eigenvector of L corresponding to A, is
In Exercises 7-9, P is the transition matrix of a regular i 1 7
Markov chain. Find the long range transition matrix L of P. /A
1 1
o1 A . = 515,/ A3
7.P=1; § 8.P=|5 5 3 ‘ 515583/ M
L3 6 11 :
) 0 5 2 : B
02 03 04 L1883 5,0/ A
9.P=[06 01 04 , " e -
102 06 02 [Hint: Combine Exercise 17 above with Exercise 32 in

Section 4.3 and Exercise 46 in Section 4.4.]
10. Prove that the steady state probability vector of a

regular Markov chain is unique. [Hint: Use Theo-

cas In Exercises 19-21, compute the steady state growth rate of
rem 4.33 or Theorem 4.34.]

the population with the Leslie matrix L from the given
exercise. Then use Exercise 18 to help find the corresponding

Population Growth distribution of the age classes.

In Exercises 11-14, calculate the positive eigenvalue and a 19. Exercise 39 in Section 3.7
corresponding positive eigenvector of the Leslie matrix L. 20, Exercise 40 ini Section 3.7
0 2 1 1.5 21. Exercise 44 in Section 3.7
11.L = 12.L =
05 0 05 0 cas 22. Many species of seal have suffered from commercial
0 7 4 1 5 3 hunting. They have been killed for their skin, blubber,
B.IL=l05 0 o L= 0 o and meat. The fur trade, in partlcu!ar, ¥educed some
5 seal populations to the point of extinction. Today, the
0 05 0 0 %o

greatest threats to seal populations are decline of fish
stocks due to overfishing, pollution, disturbance of
habitat, entanglement in marine debris, and culling

15. If a Leslie matrix has a unique positive eigenvalue A,,
what is the significance for the population if A, > 1?

AM<12A =17
16. Verify that the characteristic polynomial of the Leslie
matrix L in Equation (3) is
c(A) = (=1)"(A" = byA"™h = bys ) A" T2 = bysis,A"
= b8y Syy)

[Hint: Use mathematical induction and expand
det(L — AI) along the last column.]

by fishery owners. Some seals have been declared
endangered species; other species are carefully
managed. Table 4.7 gives the birth and survival rates
for the northern fur seal, divided into 2-year age
classes. [The data are based on A. E. York and J. R.
Hartley, “Pup Production Following Harvest of Female
Northern Fur Seals,” Canadian Journal of Fisheries and
Aquatic Science, 38 (1981), pp. 84-90.]
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Tahle 4.1
Age (years) Birth Rate Survival Rate
0-2 0.00 0.91
2-4 0.02 0.88
4-6 0.70 0.85
6-8 1.53 0.80
8-10 1.67 0.74
10-12 1.65 0.67
12-14 1.56 0.59
14-16 1.45 0.49
16-18 1.22 0.38
18-20 0.91 0.27
20-22 0.70 0.17
22-24 0.22 0.15
24-26 0.00 0.00

(a) Construct the Leslie matrix L for these data and
compute the positive eigenvalue and a corre-
sponding positive eigenvector.

(b) In the long run, what percentage of seals will be in
each age class and what will the growth rate be?

Exercise 23 shows that the long-run behavior of a popula-
tion can be determined directly from the entries of its Leslie
matrix.

23. The net reproduction rate of a population is defined as

r=>b, + bysy + bys;s, + 0+ bysisy s,

where the b; are the birth rates and the s; are the
survival rates for the population.

(a) Explain why r can be interpreted as the average
number of daughters born to a single female over
her lifetime.

CAS

a+bi

(b) Show that r = 1 if and only if A, = 1. (This repre-
sents zero population growth.) [Hint: Let

by by | bisis, bysisa " Su-
A)=—+—"F+—— L —
g( ) A )\2 /\3 A"
Show that A is an eigenvalue of L if and only if
g =1]

(c) Assuming that there is a unique positive eigen-
value A}, show that r < 1 if and only if the popu-
lation is decreasing and r > 1 if and only if the
population is increasing.

A sustainable harvesting policy is a procedure that allows a
certain fraction of a population (represented by a population
distribution vector x) to be harvested so that the population
returns to X after one time interval (where a time interval

is the length of one age class). If h is the fraction of each

age class that is harvested, then we can express the harvest-
ing procedure mathematically as follows: If we start with

a population vector X, after one time interval we have Lx;
harvesting removes hLx, leaving

Lx — hix = (1 — h)Lx

Sustainability requires that

1-hLx=x

24. If A, is the unique positive eigenvalue of a Leslie
matrix L and h is the sustainable harvest ratio, prove
thath=1—1/A,.

(a) Find the sustainable harvest ratio for the wood-
land caribou in Exercise 44 in Section 3.7.

(b) Using the data in Exercise 44 in Section 3.7,
reduce the caribou herd according to your answer
to part (a). Verify that the population returns to its
original level after one time interval.

25.

Find the sustainable harvest ratio for the seal in
Exercise 22. (Conservationists have had to harvest
seal populations when overfishing has reduced the
available food supply to the point where the seals are
in danger of starvation.)

26.

27. Let L be a Leslie matrix with a unique positive eigen-
value A,. Show that if A is any other (real or com-

plex) eigenvalue of L, then |A| = A,. [Hint: Write A =
r(cos 6 + isin 6) and substitute it into the equation
£(A) = 1, as in part (b) of Exercise 23. Use De Moivre’s
Theorem and then take the real part of both sides. The

Triangle Inequality should prove useful ]
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The Perron-Frohenius Theorem

In Exercises 28-31, find the Perron root and the correspond-
ing Perron eigenvector of A.

2 0 1 3
28. A = 29. A =

1 1 2 0

01 1 2 1 1
300A=|1 0 1 3lLA=1]1 1 0

1 1 0 1 0 1

It can be shown that a nonnegative n X n matrix is irreduc-
ible if and only if (I + A)"~' > O. In Exercises 32-35, use
this criterion to determine whether the matrix A is irreduc-
ible. If A is reducible, find a permutation of its rows and
columns that puts A into the block form

BiC
o
0 01 0 0 01 0
32.A = 0.0 01 33.A = 0 0 11
01 0 0 1 0 0 O
1 0 0 O 1 1 00
01 0 0 O 01 0 0 O
0 01 01 0 0 0 01
34.A=|1 0 1 0 1|35A=|1 0 0 0 1
0 01 1 0 0 01 0O
1 0 0 0 O 0 0 0 1 1

36. (a) If A is the adjacency matrix of a graph G, show
that A is irreducible if and only if G is connected.
(A graph is connected if there is a path between
every pair of vertices.)

(b) Which of the graphs in Section 4.0 have an
irreducible adjacency matrix? Which have a
primitive adjacency matrix?

37. Let G be a bipartite graph with adjacency matrix A.

(a) Show that A is not primitive.

(b) Show that if A is an eigenvalue of A, so is —A.
[Hint: Use Exercise 80 in Section 3.7 and partition
an eigenvector for A so that it is compatible with
this partitioning of A. Use this partitioning to find
an eigenvector for —A.]

38. A graph is called k-regular if k edges meet at each ver-

tex. Let G be a k-regular graph. a+bi

(a) Show that the adjacency matrix A of G
has A = k as an eigenvalue. [Hint: Adapt
Theorem 4.30.]

(b) Show that if A is primitive, then the other eigen-
values are all less than k in absolute value. [Hint:
Adapt Theorem 4.31.]

39. Explain the results of your exploration in Section 4.0
in light of Exercises 36-38 and Section 4.5.

In Exercise 40, the absolute value of a matrix A = [a,-j] is
defined to be the matrix |A| = [|ag|].

ij
40. Let A and B be n X n matrices, x a vector in R", and ¢
a scalar. Prove the following matrix inequalities:

(a) lea| = || [A] () |A + Bl = |A] + |B]
(c) |ax| = |A][x| ) |AB| = |A|[B|

ap; A, .
is reducible
ay;  Ap

41. Prove that a2 X 2 matrix A =

ifand only if a;, = O or a,; = 0.

42. Let A be a nonnegative, irreducible matrix such
that I — A isinvertibleand (I — A)™! = O. Let
A, and v, be the Perron root and Perron eigenvector
of A.
(a) Prove that 0 < A, < 1. [Hint: Apply Exercise 22
in Section 4.3 and Theorem 4.18(b).]

(b) Deduce from (a) that v; > Av,.

Linear Recurrence Relations

In Exercises 43-46, write out the first six terms of the
sequence defined by the recurrence relation with the given
initial conditions.

43.xy = 1, x, = 2x,_, forn =1
44.a, = 128,a, = a,_,/2 forn =2
45. 90 =0,y = L, Y, = Yyu1 — Yu—p forn =2

46. b, = 1,b, =1,b, =2b, , + b,_, forn = 2

In Exercises 47-52, solve the recurrence relation with the
given initial conditions.

47.x, = 0,x, = 5,x, = 3x,_; + 4x,_, forn = 2
48.xy = 0,x, = L,x, =
9.y =Ly, =6y, =

50.ay = 4,a, = 1l,a,=a

4%, — 3x,_, forn =2
4y, | — 4y, , forn=3
wo1 — A,_5/4 forn =2
51.b,=0,b, = 1,b, = 2b, |, + 2b, , forn =2

52. The recurrence relation in Exercise 45. Show that your
solution agrees with the answerto Exercise 45.

53. Complete the proof of Theorem 4.38(a) by showing
that if the recurrence relation x,, = ax,_, + bx,_, has
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distinct eigenvalues A; # A,, then the solution will be

of the form
X, = O] + A |/|

[Hint: Show that the method of Example 4.40 works in

general.]
54. (a) Show that for any choice of initial conditions (b)
x, = rand x; = s, the scalars ¢; and ¢, can be Figure 4.29
found, as stated in Theorem 4.38(a) and (b).
(b) .If .t}.le eigem.ra.lues A and A, are distinct and the The area of the square is 64 square units, but the
initial conditions are X, = 0, %, = 1, show that rectangle’s area is 65 square units! Where did the
x, = ( 1 >( AT — AT) extra square come from? [Hint: What does this
A=A ? have to do with the Fibonacci sequence?]
55. The Fibonacci recurrence f, = f,—1 + f,- has the 56. You have a supply of three kinds of tiles: two kinds
associated matrix equation x,, = Ax,_;, where of 1 X 2 tiles and one kind of 1 X 1 tile, as shown in
Figure 4.30.
1 1
X, = f"}andA={ }
n—1 1 0
(@) With f, = 0 and f; = 1, use mathematical induc- -
tion to prove that Figure 4.30
A = f"+1 fn
o fuo Let t, be the number of different ways to cover a
foralln=1 1 X n rectangle with these tiles. For example,
(b) Using part (a), prove that Figure 4.31 shows that t; = 5.
fn+1fn71 _fn2 - (_1)11 (a) Find tl""’tS'

B—>  (Does t, make any sense? If so, what is it?)
(b) Set up a second order recurrence relation for ,,.
(c) Usingt, and t, as the initial conditions, solve the
recurrence relation in part (b). Check your answer
against the data in part (a).

for all n = 1. [This is called Cassini’s Identity,
after the astronomer Giovanni Domenico Cas-
sini (1625-1712). Cassini was born in Italy but,
on the invitation of Louis XIV, moved in 1669
to France, where he became director of the Paris
Observatory. He became a French citizen and
adopted the French version of his name: Jean-
Dominique Cassini. Mathematics was one of his / \
many interests other than astronomy. Cassini’s
Identity was published in 1680 in a paper sub-
mitted to the Royal Academy of Sciences in Paris.]

(c) An8 X 8 checkerboard can be dissected as shown
in Figure 4.29(a) and the pieces reassembled -
to form the 5 X 13 rectangle in Figure 4.29(b).

v

Figure 4.31
/ The five ways to tilea 1 X 3 rectangle

57. You have a supply of 1 X 2 dominoes with which
to cover a 2 X n rectangle. Let d,, be the number of
different ways to cover the rectangle. For example,
Figure 4.32 shows that d; = 3.

/

(a)
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SN

Figure 4.32
The three ways to cover a 2 X 3 rectangle with 1 X 2
dominoes

(a) Findd,,...,d;.

W»—>  (Does d, make any sense? If so, what is it?)

(b) Setup a second order recurrence relation for d,,.

(c) Using d, and d, as the initial conditions, solve the
recurrence relation in part (b). Check your answer
against the data in part (a).

58. In Example 4.41, find eigenvectors v, and v, corre-

1+ V5 1- V5

sponding to A, = and A, = . With

X, = Lf" }, verify formula (2) in Section 4.5. That is,
k-1

show that, for some scalar c;,

Systems of Linear Differential Equations

In Exercises 59-64, find the general solution to the given
system of differential equations. Then find the specific
solution that satisfies t he initial conditions. (Consider
all functions to be functions of t.)

59. x' = x+ 3y, x(0)=0
y' =2x+2, y(0) =5
60. x' = 2x — y, x(0) =1
-x+2y, y(0) =1
6l. x; = x, + x5, x,(0) =
% = %) — B X

=
I

62. yi =y — y»
=n "ty 20
63. x' = y—z x(0)= 1

y =x+ z, y(0)= 0
zZ =xty

64. x' = x + 3z, x(0)=2
y'=x—-2y+ z y0) =3
Z =3x + z, z(0) =4

65. A scientist places two strains of bacteria, X and Y, in
a petri dish. Initially, there are 400 of X and 500 of Y.
The two bacteria compete for food and space but do
not feed on each other. If x = x(t) and y = y(¢) are
the numbers of the strains at time ¢ days, the growth
rates of the two populations are given by the system

’

x'= 12x — 02y
y' = —02x + L5y
(a) Determine what happens to these two popu-
lations by solving the system of differential
equations.
(b) Explore the effect of changing the initial populations
by letting x(0) = aand y(0) = b. Describe what hap-
pens to the populationsinterms ofaand b.

66. Two species, X and Y, live in a symbiotic relationship.
That is, neither species can survive on its own and each
depends on the other for its survival. Initially, there
are 15of X and 10 of Y. If x = x(#) and y = y(¢) are the
sizes of the populations at time ¢ months, the growth
rates of the two populations are given by the system

x" = —0.8x + 04y
y' = 04x — 0.2y

Determine what happens to these two populations.

In Exercises 67 and 68, species X preys on species Y. The
sizes of the populations are represented by x = x(t) and

y = y(t). The growth rate of each population is governed
by the system of differential equations x’ = Ax + b, where

X
x= and b is a constant vector. Determine what happens

to the two populations for the given A and b and initial
conditions x(0). (First show that there are constants a and b
such that the substitutions x = u + aandy = v + b convert
the system into an equivalent one with no constant terms.)

67.A = [ ! 1},b = {_30},::(0) = [20}
-1 1 ~10 30

68. A = [_1 1},1) = [ 0},x(o) — {10}
-1 -1 40 30

69. Let x = x(t) be a twice-differentiable function and
consider the second order differential equation

x" +ax" +bx =0 (11)

(a) Show that the change of variables y = x" and
z = x allows Equation (11) to be written as a sys-
tem of two linear differential equations in y and z.
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(b) Show that the characteristic equation of the
system in part (a) is A* + aA + b = 0.

70. Show that there is a change of variables that converts
the nth order differential equation

X +a x4 gx =0

into a system of # linear differential equations whose
coefficient matrix is the companion matrix C(p) of the
polynomial p(A) = A" + a, A" '+ 4+ a)A + a,
[The notation x© denotes the kth derivative of x. See
Exercises 26-32 in Section 4.3 for the definition of a
companion matrix.]

In Exercises 71 and 72, use Exercise 69 to find the general
solution of the given equation.

7. x" — 5x" + 6x =0 72.x" +4x" +3x =0

In Exercises 73-76, solve the system of differential equations
in the given exercise using Theorem 4.41.

73. Exercise 59 74. Exercise 60

75. Exercise 63 76. Exercise 64

Discrete Linear Dynamical Systems

In Exercises 77-84, consider the dynamical system
X1 = AXp

1
(a) Compute and plot Xy, X;, X,, X5 for x, = { J.

1
(b) Compute and plot Xy, X, X,, X; for x; = [0}

(c) Using eigenvalues and eigenvectors, classify the origin as
an attractor, repeller, saddle point, or none of these.
(d) Sketch several typical trajectories of the system.

2 1 05 =05
pa- |2 |

78. A =
0 3 0 0.5

Key Definitions and Concepts

adjoint of a matrix, 276

algebraic multiplicity of an
eigenvalue, 294

characteristic equation, 292

7

A /
Chapter Review s
L]

diagonalizable matrix, 303
eigenvalue, 254
eigenvector, 254
eigenspace, 256

[ 2 -1 [—4 2
79. A = } 80. A = }

| —1 2 | 1 -3

(15 -1 [0.1 0.9
81. A = 82. A =

| —1 0 0.5 0.5

02 04 [0 -—15

83.A = 84. A =

| —0.2 0.8] 1.2 3.6}

In Exercises 85-88, the given matrix is of the form
a

A=
;
product of a scaling matrix and a rotation matrix. Find

the scaling factor r and the angle 0 of rotation. Sketch the
first four points of the trajectory for the dynamical system

-b
J. In each case, A can be factored as the
a

X; 1 = Ax withxy = and classify the origin as a spi-

ral attractor, spiral repeller, or orbital center.

-1 0 0.5
| sean] o]
1 =05 0

87A_{ 1 \@] 88A_{—\@/2 —1/2]
' V3 1 ' 12 —\V3p
In Exercises 89-92, find an invertible matrix P and a ma-
a
trix C of the form C = [ ] such that A = PCP ™.
a

b
Sketch the first six points of the trajectory for the dynamical

1
oa-]
1

system X, = Ax,withx, = and classify the origin as

a spiral attractot, spiral repeller, or orbital center.

2 1
90. A = { }
-2 0

wa-[ 7]

Gerschgorin disk, 319
Gerschgorin’s Disk Theorem, 321
Laplace Expansion Theorem, 266
power method (and its

characteristic polynomial, 292 Fundamental Theorem of Invertible variants), 311-319
cofactor expansion, 266 Matrices, 296 properties of determinants,
Cramer’s Rule, 274-275 geometric multiplicity of an 269-274

determinant, 263-265 eigenvalue, 294 similar matrices, 301



1. Mark each of the following statements true or false:

(a) For all square matrices A, det(—A) = —det A.

(b) If A and B are n X n matrices, then det(AB) =
det (BA).

(c) If A and B are n X n matrices whose columns
are the same but in different orders, then
det B = —det A.

(d) If A is invertible, then det(A ') = det AT.

(e) If 0 is the only eigenvalue of a square matrix A,
then A is the zero matrix.

(f) Two eigenvectors corresponding to the same
eigenvalue must be linearly dependent.

(g) Ifan n X n matrix has n distinct eigenvalues, then
it must be diagonalizable.

(h) Ifan n X »n matrix is diagonalizable, then it must
have n distinct eigenvalues.

(i) Similar matrices have the same eigenvectors.

(j) If A and Baretwon X n matrices with the same
reduced row echelon form, then A is similar to B.

1 3 5
2.LetA=|3 5 7|
7 9 11

(a) Compute det A by cofactor expansion along any
row or column.
(b) Compute det A by first reducing A to triangular

form.

a b ¢ 3d 2e—4f f
3If|d e fl=3find3a 2b— 4c |

g h i 3g 2h —4i i

4. Let A and B be 4 X 4 matrices with det A = 2 and
det B = —3. Find det C for the indicated matrix C:

(a) C=(AB)™! (b) C = A’B(3AT)

5. If A is a skew-symmetric # X » matrix and # is odd,
prove that det A = 0.

L -1 2
6. Find all values of k for which |1 1 k|l=0.
2 4 K

In Questions 7 and 8, show that x is an eigenvector of A and
find the corresponding eigenvalue.

(1 3 1
7.x = JA =
12 4 3
[ 3 13 —60 —45
8.x=|-1[,A=|-5 18 15
) 10 —40 —32

10.

11.

12.
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-5 —6 3
.LetA = 3 4 =3
0 0 -2

(a) Find the characteristic polynomial of A.

(b) Find all of the eigenvalues of A.

(c) Find a basis for each of the eigenspaces of A.

(d) Determine whether A is diagonalizable. If A is
not diagonalizable, explain why not. If A is diago-
nalizable, find an invertible matrix P and a diago-
nal matrix D suchthatP 'AP = D.

If Ais a3 X 3 diagonalizable matrix with eigenvalues
—2, 3, and 4, find det A.
IfAisa2 X 2 matrix with eigenvalues A, = 3, A, = —1,

1 1
and corresponding eigenvectors v, = { J, v, = [_ J,
find A™° [ ’ J .
7

If A is a diagonalizable matrix and all of its eigenvalues
satisfy |A| < 1, prove that A" approaches the zero ma-
trix as n gets large.

In Questions 13-15, determine, with reasons, whether A is
similar to B. If A ~ B, give an invertible matrix P such that

P-l

13.

14.

15.

16.

17.
18.

19.

20.

AP = B.
(4 2 2 2
A= ,B =
13 1 3 2
(2 0 30
A= ,B =
0 3 0 2
(1 1 0 110
A=10 1 1[,B=]0 1 0
L0 0 1 0 0 1

Let A = ﬁ ﬂ Find all values of k for which:

(a) A has eigenvalues 3 and —1.
(b) A has an eigenvalue with algebraic multiplicity 2.
(c) A has no real eigenvalues.

If A’ = A, what are the possible eigenvalues of A?

If a square matrix A has two equal rows, why must A
have 0 as one of its eigenvalues?

If x is an eigenvector of A with eigenvalue A = 3, show
that x is also an eigenvector of A> — 54 + 2I. What is
the corresponding eigenvalue?

If A is similar to B with P 'AP = B and x is an eigen-
vector of A, show that P~ 'x is an eigenvector of B.



