The world was full of equations . . . .
There must be an answer for everything,
if only you knew how to set forth

the questions.

—Anne Tyler
The Accidental Tourist
Alfred A. Knopf, 1985, p. 235
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2.0 Introduction: Triviality

The word trivial is derived from the Latin root tri (“three”) and the Latin word via
(“road”). Thus, speaking literally, a triviality is a place where three roads meet. This
common meeting point gives rise to the other, more familiar meaning of trivial—
commonplace, ordinary, or insignificant. In medieval universities, the trivium con-
sisted of the three “common” subjects (grammar, rhetoric, and logic) that were taught
before the quadrivium (arithmetic, geometry, music, and astronomy). The “three
roads” that made up the trivium were the beginning of the liberal arts.

In this section, we begin to examine systems of linear equations. The same system
of equations can be viewed in three different, yet equally important, ways—these will
be our three roads, all leading to the same solution. You will need to get used to this
threefold way of viewing systems of linear equations, so that it becomes common-
place (trivial!) for you.

The system of equations we are going to consider is

2x+ y= 8
x—3y=-3

Problem 1 Draw the two lines represented by these equations. What is their point
of intersection?

2 1
Problem 2 Consider the vectorsu = [J andv = [ } . Draw the coordinate

grid determined by u and v. [Hint: Lightly draw the standard coordinate grid first and
use it as an aid in drawing the new one.]

-3
Problem 4 Another way to state Problem 3 is to ask for the coefficients x and y
for which xu + yv = w. Write out the two equations to which this vector equation is
equivalent (one for each component). What do you observe?
Problem 5 Return now to the lines you drew for Problem 1. We will refer to the
line whose equation is 2x + y = 8 as line 1 and the line whose equation is x — 3y = —3
as line 2. Plot the point (0, 0) on your graph from Problem 1 and label it P;. Draw a

8
Problem 3 On the u-v grid, find the coordinates of w = { } .
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Tahle 2.1

Point

X

0

horizontal line segment from P; to line 1 and label this new point P;. Next draw a
vertical line segment from P, to line 2 and label this point P,. Now draw a horizontal
line segment from P, to line 1, obtaining point P;. Continue in this fashion, drawing
vertical segments to line 2 followed by horizontal segments to line 1. What appears to

be happening?
Problem 6 Using a calculator with two-decimal-place accuracy, find the (approxi-
mate) coordinates of the points P, P,, P3, . . ., P (You will find it helpful to first

solve the first equation for x in terms of y and the second equation for y in terms
of x.) Record your results in Table 2.1, writing the x- and y-coordinates of each point
separately.

The results of these problems show that the task of “solving” a system of linear
equations may be viewed in several ways. Repeat the process described in the prob-
lems with the following systems of equations:

(a)dx—2y=0 (b)3x+2y= 9 ()x+y=5 (d) x+2y=4
x+2=5 x+3y=10 x—y=3 2x— y=3

Are all of your observations from Problems 1-6 still valid for these examples? Note
any similarities or differences. In this chapter, we will explore these ideas in more detail.

Introduction to Systems of Linear Equations

Recall that the general equation ofa line in R? is of the form
ax + by =—c¢
and that the general equation of a plane in R? is of the form
ax + byt cz=4d

Equations of this form are called linear equations.

Definition A linear equation in the n variables x;, x,, . . . , x, is an equation
that can be written in the form

ax, tax, +---+ax,=b
where the coefficients a,, a,, . . ., a, and the constant term b are constants.

\/

Example 2.1

The following equations are linear:
3x —4y=—1 r—%s—?t=9 X, + 5%, =3 — x; + 2x,

V2x + %y - (Sin%>z =1 32x — 0.0Lx, = 46

Observe that the third equation is linear because it can be rewritten in the form x, +
5x, + x3 — 2x4 = 3. Itis also important to note that, although in these examples (and
in most applications) the coefficients and constant terms are real numbers, in some
examples and applications they will be complex numbers or members of Z,, for some
prime number p.
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The following equations are not linear:

x
xy+2z=1 x-x=3 =+z=2
Y
T T
V2x + —y —sinl —z | =1 sinx, — 3x, + 2% =
1 5

Thus, linear equations do not contain products, reciprocals, or other functions of the
variables; the variables occur only to the first power and are multiplied only by con-
stants. Pay particular attention to the fourth example in each list: Why is it that the
fourth equation in the first list is linear but the fourth equation in the second list is not?

A solution of a linear equation ayx; + ayx, +---+ a,x, = b is a vector

[s1> 52, . - . » 5,] whose components satisfy the equation when we substitute x; = s,
Xy = SpeuisXy= Sy

Example 2.2 (a) [5, 4] isasolution of 3x — 4y = —1 because, when we substitute x = 5 and y = 4,
the equation is satisfied: 3(5) — 4(4) = —1. [1, 1] is another solution. In general, the

solutions simply correspond to the points on the line determined by the given equa-
tion. Thus, setting x = t and solving for y, we see that the complete set of solutions
can be written in the parametric form [t, 3 + 3t]. (We could also set y equal to some
parameter—say, s—and solve for x instead; the two parametric solutions would look
different but would be equivalent. Try this.)

(b) The linear equation x; — x, + 2x3 = 3 has [3, 0, 0], [0, 1, 2], and [6, 1, —1]
as specific solutions. The complete set of solutions corresponds to the set of points
in the plane determined by the given equation. If we set x, = s and x; = ¢, then a
parametric solution is given by [3 + s — 2t, 5, t]. (Which values of s and ¢ produce the

three specific solutions above?)

A system of linear equations is a finite set of linear equations, each with the same
variables. A solution of a system of linear equations is a vector that is simultaneously
a solution of each equation in the system. The solution set of a system of linear equa-
tions is the set of all solutions of the system. We will refer to the process of finding the
solution set of a system of linear equations as “solving the system.”

Example 2.3

\/

The system
2x— y=3
x+3y=>5

has [2, 1] as a solution, since it is a solution of both equations. On the other hand,
[1, —1] is not a solution of the system, since it satisfies only the first equation.

=

Example 2.4

Solve the following systems of linear equations:

(a)x—y=1 (b)) x— y=2 (Jx—y=1
x+y=3 2x — 2y =4 x—y=3
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Solution

(a) Adding the two equations together gives 2x = 4, so x = 2, from which we find
that y = 1. A quick check confirms that [2, 1] is indeed a solution of both equations.
That this is the only solution can be seen by observing that this solution corresponds
to the (unique) point of intersection (2, 1) of the lines with equations x — y = 1 and
x + y = 3, as shown in Figure 2.1(a). Thus, [2, 1] is a unique solution.

(b) The second equation in this system is just twice the first, so the solutions are the
solutions of the first equation alone—namely, the points on the line x — y = 2. These
can be represented parametrically as [2 + t, t]. Thus, this system has infinitely many
solutions [Figure 2.1(b)].

(c) Two numbers x and y cannot simultaneously have a difference of 1 and 3. Hence,
this system has no solutions. (A more algebraicapproach might be to subtract the second
equation from the first, yielding the absurd conclusion 0 = —2.) As Figure 2.1(c) shows,
the lines for the equations are parallel in this case.

Figure 2.1

A system of linear equations is called consistent if it has at least one solution. A sys-
tem with no solutions is called inconsistent. Even though they are small, the three sys-
tems in Example 2.4 illustrate the only three possibilities for the number of solutions of
a system of linear equations with real coefficients. We will prove later that these same
three possibilities hold for any system of linear equations over the real numbers.

A system of linear equations with real coefficients has either

(a) aunique solution (a consistent system) or
(b) infinitely many solutions (a consistent system) or
(c) no solutions (an inconsistent system).

Solving a System of Linear Equations

Two linear systems are called equivalent if they have the same solution sets. For
example,

x—y=1 and x-—y=1
x+y=3 y=1
Ww—>  are equivalent, since they both have the unique solution [2, 1]. (Check this.)



Section 2.1 Introduction to Systems of Linear Equations 61

Our approach to solving a system of linear equations is to transform the given
system into an equivalent one that is easier to solve. The triangular pattern of the
second example above (in which the second equation has one less variable than the
first) is what we will aim for.

Example 2.5

\/

Solve the system

X—y— z=
yt+3z=5
5z =10

Solution  Starting from the last equation and working backward, we find successively
thatz =2,y =5 —3(2) = —l,and x = 2 + (—1) + 2 = 3. So the unique solution is

(3, —1,2]. I

The procedure used to solve Example 2.5 is called back substitution.

We now turn to the general strategy for transforming a given system into an
equivalent one that can be solved easily by back substitution. This process will be
described in greater detail in the next section; for now, we will simply observe it in
action in a single example.

Example 2.6

The word matrix is derived from
the Latin word mater, meaning
“mother.” When the suffix -ix

is added, the meaning becomes
“womb.” Just as a womb surrounds
a fetus, the brackets of a matrix
surround its entries, and just as
the womb gives rise to a baby, a
matrix gives rise to certain types of
functions called linear transforma-
tions. A matrix with m rows and

n columns is called an m X n
matrix (pronounced “m by n”).
The plural of matrix is matrices,
not “matrixes.”

Y

Solve the system
X— y— z= 2
3x =3y + 2z2=16
2x— y+ z= 9
Solution To transform this system into one that exhibits the triangular structure
of Example 2.5, we first need to eliminate the variable x from Equations 2 and 3.
Observe that subtracting appropriate multiples of equation 1 from Equations 2 and
3 will do the trick. Next, observe that we are operating on the coefficients, not on

the variables, so we can save ourselves some writing if we record the coefficients and
constant terms in the matrix

1 -1 -1 2
3 -3 2116
28] 119

where the first three columns contain the coefficients of the variables in order, the final
column contains the constant terms, and the vertical bar serves to remind us of the
equal signs in the equations. This matrix is called the augmented matrix of the system.

There are various ways to convert the given system into one with the triangular
pattern we are after. The steps we will use here are closest in spirit to the more general
method described in the next section. We will perform the sequence of operations on
the given system and simultaneously on the corresponding augmented matrix. We
begin by eliminating x from Equations 2 and 3.

X — 9y zZi=2 1 -1 -1 2
3x — 3y +22=16 3 -3 216
2x— y+ z= 9 2 -1 119



62

Chapter 2 Systems of Linear Equations

Subtract 3 times the first equation
from the second equation:

xX—y— z= 2
52 =10
2x—y+ z= 9

Subtract 2 times the first equation
from the third equation:

Subtract 3 times the first row from the
second row:

1 -1 —-1] 2
0 0 5110
2 -1 119

Subtract 2 times the first row from the
third row:

xX—y— z= 2 1 -1 —-1] 2

5z2=10 0 0 510

y+3z=5 0 1 3 5
Interchange Equations 2 and 3: Interchange rows 2 and 3:

X—y= z= 2 1 -1 -1]|2

yt3z=>5 0 1 3|5

5z =10 0 0 5]10

This is the same system that we solved using back substitution in Example 2.5, where
we found that the solution was [3, — 1, 2]. This is therefore also the solution to the sys-
tem given in this example. Why? The calculations above show that any solution of the
given system is also a solution of the final one. But since the steps we just performed are
reversible, we could recover the original system, starting with the final system. (How?)
So any solution of the final system is also a solution of the given one. Thus, the systems
are equivalent (as are all of the ones obtained in the intermediate steps above). More-
over, we might just as well work with matrices instead of equations, since it is a simple
matter to reinsert the variables before proceeding with the back substitution. (Work-
ing with matrices is the subject of the next section.) 4

Remark Calculators with matrix capabilities and computer algebra systems can
facilitate solving systems of linear equations, particularly when the systems are large
or have coefficients that are not “nice,” as is often the case in real-life applications. As
always, though, you should do as many examples as you can with pencil and paper
until you are comfortable with the techniques. Even if a calculator or CAS is called
for, think about how you would do the calculations manually before doing anything.
After you have an answer, be sure to think about whether it is reasonable.

Do not be misled into thinking that technology will always give you the answer
faster or more easily than calculating by hand. Sometimes it may not give you the
answer at all! Roundoff errors associated with the floating-point arithmetic used by
calculators and computers can cause serious problems and lead to wildly wrong an-
swers to some problems. See Exploration: Lies My Computer Told Me for a glimpse
of the problem. (You've been warned!)
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Iixercises 2.1

In Exercises 1-6, determine which equations are linear
equations in the variables x, y, and z. If any equation is not
linear, explain why not.

l.x—ﬂ’y+\3/gz=0
_1 . 7T
3.x " + 7y +z=sin ry

4.2x —xy—5z=0
6. (cos3)x — 4y +z = V3

2xt+y'+22=1

5.3cosx—4y+z=\/§

In Exercises 7-10, find a linear equation that has the same
solution set as the given equation (possibly with some
restrictions on the variables).

x2 — y?
7.2x +y=7—3y &, — 1
xX—y
1 1 4
9, —+ —=— 10. loglox_loglo)/zz

x ¥y Xy

In Exercises 11-14, find the solution set of each equation.
11.3x — 6y =0 12. 2%, + 3x, = 5
13.x+2y+3z=4 14. 4x; + 3x, + 2x3 =1

In Exercises 15-18, draw graphs corresponding to the given
linear systems. Determine geometrically whether each sys-
tem has a unique solution, infinitely many solutions, or no
solution. Then solve each system algebraically to confirm
your answer.

15. x+y=0 16. x—2y=7
2x +y =3 Ix+ y=7

17. 3x -6y =3 18. 0.10x—0.05y = 0.20
—x+2y=1 —0.06x + 0.03y = —0.12

In Exercises 19-24, solve the given system by back
substitution.

19.x —2y=1 20. 2u —3v =5
y=3 2v=206
2l.x— y+ z= 0 22.x, +2x, + 3x5=0

2y— z= 1 —5x, +2x;=10
3z= -1 4x; =0
23.x,+x, —x3—x4=1 24 x—3y+ z= 5
x2+X3+X4:0 y_ZZ:_l
x3—x4=20
X4:1

\

The systems in Exercises 25 and 26 exhibit a “lower trian-
gular” pattern that makes them easy to solve by forward
substitution. (We will encounter forward substitution again
in Chapter 3.) Solve these systems.

25. x = 2 26. x =Rl
2x +y = -3 —%xl + X, = 5
—3x—4y+z=-10 2e,F 2, + k5= 7
Find the augmented matrices of the linear systems in
Exercises 27-30.
27. x—y=0 28. 2x; +3x, — x3=1
2x+y=3 X + x3=0
—x; + 2%, —2x3=10
29. x+5y=-1 30. a—2b + d=2
—x+ y=-5 —at+ b—c—-3d=1
2x t4y = 4

In Exercises 31 and 32, find a system of linear equations
that has the given matrix as its augmented matrix.

0 1 1|1
3l.]1 -1 011

12 -1 11

(1 —1 3 12
32/1 1 21 -114

L0 1 2 310

For Exercises 33-38, solve the linear systems in the given
exercises.

33. Exercise 27 34. Exercise 28

35. Exercise 29 36. Exercise 30
37. Exercise 31 38. Exercise 32

39. (a) Finda system of two linear equations in the vari-
ables x and y whose solution set is given by the
parametric equations x = tand y = 3 — 2t.

(b) Find another parametric solution to the system in
part (a) in which the parameteris sand y = s.

40. (a) Find a system of two linear equations in the vari-
ables xy, x,, and x5 whose solution set is given by
the parametric equations x; = t,x, = 1 + t,and
x3=2—t

(b) Find another parametric solution to the system in
part (a) in which the parameter is s and x; = s.
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In Exercises 41-44, the systems of equations are nonlinear. 42. x* +2y°=6
Find substitutions (changes of variables) that convert each = y*=3
system into a linear system and use this linear system to help 43 tan x — 2 sin y = 2
solve the given system. tanx — siny+cosz= 2
2 3 siny —cosz= —1
41. —+—=0 b
X oy 44. -2 +2(3) =1
3.4 329 — 439 =1
3.4 (29 - 4(3)
x oy

o . Direct Methods for Solving Linear Systems

In this section, we will look at a general, systematic procedure for solving a system
of linear equations. This procedure is based on the idea of reducing the augmented
matrix of the given system to a form that can then be solved by back substitution.
The method is direct in the sense that it leads directly to the solution (if one exists) in
a finite number of steps. In Section 2.5, we will consider some indirect methods that
work in a completely different way.

Matrices and Echelon Form

There are two important matrices associated with a linear system. The coefficient
matrix contains the coefficients of the variables, and the augmented matrix (which
we havealready encountered) is the coefficient matrix augmented by an extra column
containing the constant terms.

For the system

2x+ y— z=3
x + 5z =1
—x+3y—2z2=0
the coefficient matrix is
2 1 -1
1 0 5
-1 3 -2
and the augmented matrix is
2 1 -1
1 0 5
-1 3 =2

Note that if a variable is missing (as y is in the second equation), its coefficient 0 is
entered in the appropriate position in the matrix. If we denote the coefficient matrix
of a linear system by A and the column vector of constant terms by b, then the form
of the augmented matrix is [A | b].



The word echelon comes from
the Latin word scala, meaning
“ladder” or “stairs.” The French
word for “ladder,” échelle, is also
derived from this Latin base. A
matrix in echelon form exhibits
a staircase pattern.
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In solving a linear system, it will not always be possible to reduce the coefficient
matrix to triangular form, as we did in Example 2.6. However, we can always achieve
a staircase pattern in the nonzero entries of the final matrix.

Definition A matrix is in row echelon form if it satisfies the following
properties:

1. Anyrows consisting entirely of zeros are at the bottom.
2. In each nonzero row, the first nonzero entry (called the leading entry) is
in a column to the left of any leading entries below it.

Note that these properties guarantee that the leading entries form a staircase pat-
tern. In particular, in any column containing a leading entry, all entries below the
leading entry are zero, as the following examples illustrate.

\/

Example 2.1

The following matrices are in row echelon form:

02 01 -1 3
2 4 1) fro1) [t 21] |04 211 2 2
0 =1 2| [0 1 5| |00 13 |\ o o4 4o
o o0 o] Lo o4 Looo o] |, o of

-

If a matrix in row echelon form is actually the augmented matrix of a linear sys-
tem, the system is quite easy to solve by back substitution alone.

»

Example 2.8

B>

Assuming that each of the matrices in Example 2.7 is an augmented matrix, write out
the corresponding systems of linear equations and solve them.

Solution We first remind ourselves that the last column in an augmented matrix is
the vector of constant terms. The first matrix then corresponds to the system
2x + 4x, =1
—Xx, = 2
(Notice that we have dropped the last equation 0 = 0, or 0x; + 0x, = 0, which is
clearly satisfied for any values of x, and x,.) Back substitution gives x, = —2 and then
2x; = 1 — 4(—2) = 9,50 x; = 5. The solution is [3, —2].
The second matrix has the corresponding system
x =1
x, =5
0=4
The last equation represents 0x; + 0x, = 4, which clearly has no solutions. Therefore,

the system has no solutions. Similarly, the system corresponding to the fourth matrix
has no solutions. For the system corresponding to the third matrix, we have
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x tx,+2x3=1

X3 =3
sox; =1 — 2(3) — x, = —5 — x,. There are infinitely many solutions, since we may
assign x;, any value t to get the parametric solution [—5 — ¢, ¢, 3]. I

Elementary Row Operations

We now describe the procedure by which any matrix can be reduced to a matrix
in row echelon form. The allowable operations, called elementary row operations,
correspond to the operations that can be performed on a system of linear equations
to transform it into an equivalent system.

Definition The following elementary row operations can be performed on a
matrix:

1. Interchange two rows.
2. Multiply a row by a nonzero constant.
3. Add a multiple of a row to another row.

Observe that dividing a row by a nonzero constant is implied in the above
definition, since, for example, dividing a row by 2 is the same as multiplying it by ;.
Similarly, subtracting a multiple of one row from another row is the same as adding a
negative multiple of one row to another row.

We will use the following shorthand notation for the three elementary row
operations:

1. R; <> R;means interchange rowsi and j.
2. kR; means multiply row i by k.
3. R; + kR;means add k times row j to row i (and replace row i with the result).

The process of applying elementary row operations to bring a matrix into row
echelon form, called row reduction, is used to reduce a matrix to echelon form.

\

Example 2.9

Reduce the following matrix to echelon form:

—4 —4

\S}
— W N

o

o

-1

Solution  We work column by column, from left to right and from top to bottom.
The strategy is to create a leading entry in a column and then use it to create zeros
below it. The entry chosen to become a leading entry is called a pivot, and this phase
of the process is called pivoting. Although not strictly necessary, it is of ten convenient
to use the second elementary row operation to make each leading entry a 1.
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We begin by introducing zeros into the first column below the leading 1 in the
first row:

1 2 -4 —4 5(R-2R[1 2 —4 —4 5
R, — 2R,

24 0 02|, 0 0 8 8 -8

23 2 15[—>]0 -1 10 9 -5

-1'1 3 65 0 3 -1 2 10

The first columnis nowaswe want it, so the next thing to doisto create a leading entry
in the second row, aiming for the staircase pattern of echelon form. In this case, we do
this by interchanging rows. (We could also add row 3 or row 4 to row 2.)

1 2 —4 —4 5
ReR 10 =1 10 9 =5
—

0 0 8 8 —8

0 3 -1 2 10

The pivot this time was —1. We now create a zero at the bottom of column 2, using
the leading entry —1 in row 2:

2 —4 —4 5
-1 10 9 =5
0 8 8 —8
0 29 29 -5

R,+3R,

O O O =

Column 2 is now done. Noting that we already have a leading entry in column 3,
we just pivot on the 8 to introduce a zero below it. This is easiest if we first divide
row 3 by 8:

1 2 —4 —4 5

iRs 0 -1 10 9 =5
—

0 0 1 1 -1

0 0 29 29 -5

Now we use the leading 1 in row 3 to create a zero below it:

1 2 —4 -4 5
R-2R Q0 —1 10 9 —5
—
0o 0 1 1 -1
0 0 0 0 24

With this final step, we have reduced our matrix to echelon form. I

Remarks
® Therow echelon form of a matrix is not unique. (Find a different row echelon
form for the matrix in Example 2.9.)
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* The leading entry in each row is used to create the zeros below it.

* The pivots are not necessarily the entries that are originally in the posi-
tions eventually occupied by the leading entries. In Example 2.9, the pivots were
1, —1, 8, and 24. The original matrix had 1, 4, 2, and 5 in those positions on the
“staircase.”

® Once we have pivoted and introduced zeros below the leading entry in a
column, that column does not change. In other words, the row echelon form emerges
from left to right, top to bottom.

Elementary row operations are reversible—that is, they can be “undone” Thus,
if some elementary row operation converts A into B, there is also an elementary row
operation that converts B into A. (See Exercises 15 and 16.)

Definition Matrices A and B are row equivalent if there is a sequence of
elementary row operations that converts A into B.

The matrices in Example 2.9,

1 2 —4 —4 5 1 2 —4 —4 5

2 4 0 0 2 0 -1 10 9 -5
and

2 3 2 1 5 0 0 1 TR

-1 1 3 6 5 0 0 0 0 24

are row equivalent. In general, though, how can we tell whether two matrices are row
equivalent?

Theorem 2.1

Matrices A and B are row equivalent if and only if they can be reduced to the same
row echelon form.

Proof If A and B are row equivalent, then further row operations will reduce B (and
therefore A) to the (same) row echelon form.

Conversely, if A and B have the same row echelon form R, then, via elementary
row operations, we can convert A into R and B into R. Reversing the latter sequence of
operations, we can convert R into B, and therefore the sequence A — R — B achieves
the desired effect. .

Remark In practice, Theorem 2.1 is easiest to use if R is the reduced row echelon
form of A and B, as defined on page 73. See Exercises 17 and 18.

When row reduction is applied to the augmented matrix of a system of linear
equations, we create an equivalent system that can be solved by back substitution.
The entire process is known as Gaussian elimination.
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4

\

1. Write the augmented matrix of the system of linear equations.

2. Use elementary row operations to reduce the augmented matrix to row
echelon form.

3. Using back substitution, solve the equivalent system that corresponds to the
row-reduced matrix.

-

Remark When performed by hand, step 2 of Gaussian elimination allows quite a
bit of choice. Here are some useful guidelines:

(a) Locate the leftmost column that is not all zeros.

(b) Create a leading entry at the top of this column. (It will usually be easiest if you
make this a leading 1. See Exercise 22.)
(c) Use the leading entry to create zeros below it.

(d) Coveruptherow containing the leading entry,and go back to step (a) to repeat the pro-
cedure on the remaining submatrix. Stop when the entire matrix is in row echelon form.

Bettmann/CORBIS

Example 2.10

\}

Solve the system

2x, + 3x; = 8
2, +3x, + x3= 5

X, — X, — 2% = -5

Solution The augmented matrix is

1 -1 —=2|-5

We proceed to reduce this matrix to row echelon form, following the guidelines given
for step 2 of the process. The first nonzero column is column 1. We begin by creating

Carl Friedrich Gauss (1777-1855) is generally considered to be one of the three greatest
mathematicians of all time, along with Archimedes and Newton. He is often called the “prince of
mathematicians,” a nickname that he richly deserves. A child prodigy, Gauss reportedly could do
arithmetic before he could talk. At the age of 3, he corrected an error in his father’s calculations for
the company payroll, and as a young student, he found the formula n(n + 1)/2 for the sum of the
first n natural numbers. When he was 19, he proved that a 17-sided polygon could be constructed
using only a straightedge and a compass, and at the age of 21, he proved, in his doctoral
dissertation, that every polynomial of degree n with real or complex coefficients has exactly

n zeros, counting multiple zeros—the Fundamental Theorem of Algebra.

Gauss’s 1801 publication Disquisitiones Arithmeticae is generally considered to be the
foundation of modern number theory, but he made contributions to nearly every branch of
mathematics as well as to statistics, physics, astronomy, and surveying. Gauss did not publish
all of his findings, probably because he was too critical of his own work. He also did not like
to teach and was often critical of other mathematicians, perhaps because he discovered—but
did not publish—their results before they did.

The method called Gaussian elimination was known to the Chinese in the third century B.c.
and was well known by Gauss’s time. The method bears Gauss’s name because of hisuse ofitin a
paper in which he solved a system oflinear equations to describe the orbit of an asteroid.
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a leading entry at the top of this column; interchanging rows 1 and 3 is the best way
to achieve this.

0o 2 3| 8 1 -1 =—2|-5
2 3 1] 5|2l 3 1] s
1 -1 -2/-5 o 2 3| 8

We now create a second zero in the first column, using the leading 1:

1 -1 —2|-5
— |0 5 5|15
0 2 31 8
We now cover up the first row and repeat the procedure. The second column is

the first nonzero column of the submatrix. Multiplying row 2 by % will create a
leading 1.

1 -1 -2|-s5]  [1 -1 -2|-5
0 5 50150 —> |0 1 1| 3
) 3] 8 ) 3| 8

We now need another zero at the bottom of column 2:

) 1 -1 —-2|-5

R, —2R,

—> |0 1 1 3
0 0 1 2

The augmented matrix is now in row echelon form, and we move to step 3. The cor-
responding system is

X; — Xy, — 2x3 = —5
X, + x3= 3
X3 = 2
and back substitution gives x; =2, then x,=3 —x; =3 —-2=1 and
finally x, = =5 + x, + 2x; = =5 + 1 + 4 = 0. We write the solution in vector
form as
0
1
2

(We are going to write the vector solutions of linear systems as column vectors from
now on. The reason for this will become clear in Chapter 3.) I

Example 2.11

Solve the system
w— x—y+2z= 1
2w —2x —y + 3z =
-w+ x—y =3
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Solution  The augmented matrix is
1 -1 -1 2 1
2 =2 -1 3 3
-1 1 =1 0]-3

which can be row reduced as follows:

1 -1 —1 2 1| R=28 (1 —1 -1 2 1

Ry +R,
2 -2 —1 3 31— 10 0 1 —1 1
-1 1 -1 0| -3 0 0 -2 2| -2
R,+2R -1 -1 2|1
—> 0 1 —-1]1
0 0 0 010

The associated system is now
w—x—y+2z=1
y— z

Il
—

which has infinitely many solutions. There is more than one way to assign param-
eters, but we will proceed to use back substitution, writing the variables correspond-
ing to the leading entries (the leading variables) in terms of the other variables (the
free variables).

In this case, the leading variables are w and y, and the free variables are x and z.
Thus, y = 1 + z, and from this we obtain

w=1+x+y—2z
1+x+ (10 +2 -2z
=24+ x—z

If we assign parameters x = s and z = f, the solution can be written in vector
form as

w 2+s—t 2 1 —1
X s 0 1 0
= = +s +t
y 1+t 1 0 1
z t 0 0 1

Example 2.11 highlights a very important property: In a consistent system, the
free variables are just the variables that are not leading variables. Since the number
of leading variables is the number of nonzero rows in the row echelon form of the
coefficient matrix, we can predict the number of free variables (parameters) before
we find the explicit solution using back substitution. In Chapter 3, we will prove that,
although the row echelon form of a matrix is not unique, the number of nonzero rows
is the same in all row echelon forms of a given matrix. Thus, it makes sense to give a
name to this number.
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Definition The rank of a matrix is the number of nonzero rows in its row
echelon form.

We will denote the rank of a matrix A by rank(A). In Example 2.10, the rank of
the coefficient matrix is 3, and in Example 2.11, the rank of the coefficient matrix is
2. The observations we have just made justify the following theorem, which we will
prove in more generality in Chapters 3 and 6.

Theorem 2.2

The Rank Theorem

Let A be the coefficient matrix of a system of linear equations with # variables. If
the system is consistent, then

number of free variables = n — rank(A)

Thus, in Example 2.10, we have 3 — 3 = 0 free variables (in other words, a unique
solution), and in Example 2.11, we have 4 — 2 = 2 free variables, as we found.

\/

Example 2.12

Wilhelm Jordan (1842-1899) was
a German professor of geodesy
whose contribution to solving
linear systems was a systematic
method of back substitution
closely related to the method
described here.

Solve the system

X, — X+ 2= 3
X+ 2x, — x3= -3
2x2 - 2X3 == 1

Solution 'When we row reduce the augmented matrix, we have

1 -1 2] 3], [t -1 2|3
1 2 -1|-3|—1]0 3 -3|-6
0 2 -2| 1 0 2 -2| 1

iR

R,— 2R,

leading to the impossible equation 0 = 5. (We could also have performed R; — 3R, as the
second elementary row operation, which would have given us the same contradiction
but a different row echelon form.) Thus, the system has no solutions—it is inconsistent.

Gauss-Jordan Elimination 4

A modification of Gaussian elimination greatly simplifies the back substitution phase
and is particularly helpful when calculations are being done by hand on a system with



For a short proof that the reduced
row echelon form of a matrix is
unique, see the article by Thomas
Yuster, “The Reduced Row Echelon
Form of a Matrix Is Unique: A
Simple Proof,” in the March 1984
issue of Mathematics Magazine
(vol. 57, no. 2, pp. 93-94).
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infinitely many solutions. This variant, known as Gauss-Jordan elimination, relies
on reducing the augmented matrix even further.

Definition A matrixisin reduced row echelon form ifit satisfies the following
properties:

L. It is in row echelon form.
2. The leading entry in each nonzero row is a 1 (called a leading 1).
3. Each column containing a leading 1 has zeros everywhere else.

The following matrix is in reduced row echelon form:

1 2 0 0 =3 1 0
0 01 0 4 -1 0
0 0 01 3 =20
0 0 0 O 0 0 1
0 0 0 O 0 0 0

For 2 X 2 matrices, the possible reduced row echelon forms are

1 0 1 % 0 1 0 0
) , , and
0 1 0 0 0 0 0 0
where * can be any number.

It is clear that after a matrix has been reduced to echelon form, further elementary
row operations will bring it to reduced row echelon form. What is not clear (although
intuition may suggest it) is that, unlike the row echelon form, the reduced row ech-
elon form of a matrix is unique.

In Gauss-Jordan elimination, we proceed as in Gaussian elimination but reduce
the augmented matrix to reduced row echelon form.

\

1. Write the augmented matrix of the system of linear equations.

2. Use elementary row operations to reduce the augmented matrix to reduced
row echelon form.

3. If the resulting system is consistent, solve for the leading variables in terms
of any remaining free variables.

ol

Example 2.13

=

Solve the system in Example 2.11 by Gauss-Jordan elimination.

Solution  The reduction proceeds as it did in Example 2.11 until we reach the echelon form:
-1 -1 2|1
0 1 —-1f1
0 0 0 0f0
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We now must create a zero above the leading 1 in the second row, third column. We
do this by adding row 2 to row 1 to obtain

The system has now been reduced to

w— X +z=2
y—z

I
i

It is now much easier to solve for the leading variables:
w=2+x—2z and y=1+z

If we assign parameters x = sand z = t as before, the solution can be written in vector
form as

2+ s—t
s
1+¢
¢

ISTER S

.

Remark From a computational point of view, it is more efficient (in the sense
that it requires fewer calculations) to first reduce the matrix to row echelon form
and then, working from right to left, make each leading entry a 1 and create zeros
above these leading 1s. However, for manual calculation, you will find it easier to
just work from left to right and create the leading 1s and the zeros in their columns
as you go.

Let’s return to the geometry that brought us to this point. Just as systems of linear
equations in two variables correspond to lines in R?, so linear equations in three vari-
ables correspond to planes in R’. In fact, many questions about lines and planes can
be answered by solving an appropriate linear system.

\

Example 2.14

Find the line of intersection of the planes x + 2y — z = 3and 2x + 3y + z = L.

Solution  First, observe that there will be a line of intersection, since the normal
vectors of the two planes—[1, 2, —1] and [2, 3, 1]—are not parallel. The points that
lie in the intersection of the two planes correspond to the points in the solution set
of the system

x+2y—z=3
2x + 3y + z

I
o=

Gauss-Jordan elimination applied to the augmented matrix yields
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1 2 —1‘3 R, ZR.{I 2 —1‘ 3
—>

2 3 1|1 0 -1 3|-5
R, + 2R,
“r (10 5‘—7}
—lo 1 -3| 5

Replacing variables, we have
X +5z= -7
y—3z= 5

We set the free variable z equal to a parameter t and thus obtain the parametric equa-
tions of the line of intersection of the two planes:

x=—7—>5t
y= 5+t3t
z= t
In vector form, the equation is
x -7 =5
y| = 5(+¢t 3
z 0 1
Figure 2.2
The intersection of two planes See Figure 2.2. 1
Example 2.15 1 0 1 3
Letp = 0,gq=1|2|,u=|1]|,andv = | —1 |. Determine whether the lines
-1 1 1 -1

x = p + tuand x = q + tvintersect and, if so, find their point of intersection.

Solution We need to be careful here. Although t has been used as the parameter
in the equations of both lines, the lines are independent and therefore so are their
parameters. Let’s use a different parameter—say, s—for the first line, so its equation
x
becomes x = p + su. If the lines intersect, then we want to find an x = | y | that

z
satisfies both equations simultaneously. That is, we wantx = p + su = q + tv or
su—tv=q—p.

Substituting the given p, q, u, and v, we obtain the equations

s—3=-1
s+ t= 2
s+ t=

whose solution is easily found to be s = 2, t = ;. The point of intersection is therefore
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Figure 2.3

Two intersecting lines

N R
I

_— O
+
E15]

—
I

FNERTNIE RNV

See Figure 2.3. (Check that substituting ¢ = ; in the other equation gives the same

point.) 1

Remark In R’ itis possible for two lines to intersect in a point, to be parallel, or
to do neither. Nonparallel lines that do not intersect are called skew lines.

We have seen that every system of linear equations has either no solution, a unique
solution, or infinitely many solutions. However, there is one type of system that
always has at least one solution.

Definition A system of linear equations is called homogeneous if the constant
term in each equation is zero.

In other words, a homogeneous system has an augmented matrix of the form
[A | 0]. The following system is homogeneous:

2x+3y— z=0
—x+5y+2z2=0

Since a homogeneous system cannot have no solution (forgive the double negative!),
it will have either a unique solution (namely, the zero, or trivial, solution) or infinitely
many solutions. The next theorem says that the latter case must occur if the number
of variables is greater than the number of equations.

Theorem 2.3

If [A | 0] is a homogeneous system of m linear equations with n variables, where
m < n, then the system has infinitely many solutions.

Proof Since the system has at least the zero solution, it is consistent. Also,
rank(A) = m (why?). By the Rank Theorem, we have

number of free variables = n — rank(4) =n — m >0

So there is at least one free variable and, hence, there are infinitely many solutions.
|

Note Theorem 2.3 says nothing about the case where m = n. Exercise 44 asks
you to give examples to show that, in this case, there can be either a unique solution
or infinitely many solutions.



R and Z,, are examples of fields.
The set of rational numbers @ and
the set of complex numbers C are
other examples. Fields are covered
in detail in courses in abstract
algebra.
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Linear Systems over Z,,

Thus far, all of the linear systems we have encountered have involved real numbers,
and the solutions have accordingly been vectors in some R". We have seen how other
number systems arise—notably, Z,. When p is a prime number, Z, behaves in many
respects like R; in particular, we can add, subtract, multiply, and divide (by nonzero
numbers). Thus, we can also solve systems of linear equations when the variables and
coefficients belong to some Z,,. In such instances, we refer to solving a system over Z,,.

For example, the linear equation x; + x, + x; = 1, when viewed as an equation
over Z,, has exactly four solutions:

X 1 X 0 X 0 X 1
X | =10, |x|=|1],|x%|=]0], and |x, | = |1
X3 0 X3 0 X3 1 X3 1

(where the last solution arises because 1 + 1+ 1 = 1in Z,).
X1
When we view the equation x, + x, + x; = 1 over Z, the solutions | x, | are

X3

0 0 1 0 2 2 2 1 1

(Check these.)
But we need not use trial-and-error methods; row reduction of augmented matri-
ces works just as well over Z,, as over R.

Example 2.16

\

Solve the following system of linear equations over Z3:

x +2x,+ x=0
X + x3=2
X, +2x; =1

Solution  The first thing to note in examples like this one is that subtraction and
division are not needed; we can accomplish the same effects using addition and mul-
tiplication. (This, however, requires that we be working over Z,, where p is a prime;
see Exercise 60 at the end of this section and Exercise 57 in Section 1.1.)

We row reduce the augmented matrix of the system, using calculations modulo 3.

=

1 2 10 2 0
R, +2R,

1 0 1|12 — 1 2

0 1 21 0 1 2]1

R,+ 2R,
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Rk 10 0|1
2R,
o lo o1 0|2

0 0 1I]1

Thus, the solutionisx, = 1,x, = 2, x; = 1.

Y

Example 2.17

Solve the following system of linear equations over Z,:

X+t x +tx;+x, =1
1

X+ x =
X, + x3 =0
X3 T x4 =
X +x,=1
Solution  The row reduction proceeds as follows:
1 1 1 1|1 1 1
1 1 0 0|1 R*R% 10 0
Rs+R,
0 1. 1 o0 __, |0 1
0 0 1 1(0 0 0
1 0 0 1]1 0 1
(1 0
R, & R,
R +R, |0 1
R+R |0 0
—
0 0
0 0
[1 0
R+R |0 1
R+ Ry
0 0
0 0
0 0
Therefore, we have
X +x,=1
X, +x,=0

X3 +x,=0

Setting the free variable x, = t yields

S = = = O — o e

o O = O O

[ I = O = O =

O O = =

SO O O O = ===

o O O O
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X 1+¢ 1 1
X, t 0 1
= = +t
X3 t 0 1
X4 t 0 1

Since t can take on the two values 0 and 1, there are exactly two solutions:

and

S O O =
—_— - O

-

Remark For linear systems over Z,, there can never be infinitely many

#—>  solutions. (Why not?) Rather, when there is more than one solution, the number

of solutions is finite and is a function of the number of free variables and p. (See
Exercise 59.)

i Iixercises 2.2

\

In Exercises 1-8, determine whether the given matrix is in 0 1 _
row echelon form. If it is, state whether it is also in reduced 9010 1 1 10. B 3}
row echelon form. 11 12 1
[1 0 1 (7 0 10 i
1.|0 0 3 210 1 -1 4 M3 5
(2 —4 -2 6
L0 1.0 LOR O 0N 1. |5 -2 12. }
] 00 0 4 R D
01 3 0 S
3 4.0 0 O
0 0 0 1 0 0 o
) - - (3 -2 -1 (-2 -4 7
L B U 13./2 -1 -1 4. -3 -6 10
500 0 0 0 6.[0 1 0 4 -3 - 1 2 3
L0 1 5 L1 0 0]
M 2 3 (2 1 3 5
. 1 00 8 0 01 -1 15. Reverse the elementary row operations used in
o1 1 ‘10 0 0 3 Example 2.9 to show that we can convert
0 0 1 000 O e
-1 10 9 =5 T

In Exercises 9-14, use elementary row operations to reduce
the given matrix to (a) row echelon form and (b) reduced

1
0
0 0 1 1 -1
row echelon form. 0

0 0 0 24
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1 2 -4 -4 5 In Exercises 25-34, solve the given system of equations using

2 4 0 0 2 either Gaussian or Gauss-Jordan elimination.

23 2 15 25. x +2x, —3%=9 26 x— y+ z=0

-1 1 3 6 5 2, — x, + x3; =0 —x+3y+ z=5
dx, — x5+ x3=4 3x+ y+7z=2

16. In general, what is the elementary row operation that

“undoes” each of the three elementary row operations 27. x =3 — 2% =0 282w+t 3x—ytdz=1

R,‘ d R], kR,‘, and R,‘ + kR]? _xl + 2x2 + X3 = 0 w— x t+ z=1
2x; + 4x, + 6x; =0 w—dx+y— z=2
In Exercises 17 and 18, show that the given matrices are row 2 2r+ s= 3
equivalent and find a sequence of elementary row operations dr+ s= 7
that will convert A into B. r +5 = —1
M 2 3 —1] 30 —x; +3x, —2x; +4x,= O
17.4 = 13 4}’32 L 0] 2%, —6x, + x3 — 2x, = —3
= X, — 3% +4x; —8x, = 2
2 0 -1 301 -1 o
18A=| 1 1 0 B=[3 5 1 Shax + = X - 64 = 2
R 2 2 o0 e+ 3%, — 3%, + x5 = —1
1%, — 2x3 —4x;= 8
19. What is wrong with the following “proof” that every ’
matrix with at least two rows is row equivalent to a 32.V2x+y+  2z= 1
matrix with a zero row? \/fy — 3= —-\2
-y + V2z = 1
Perform R, + R, and R; + R,. Now rows 1 and 2
are identical. Now perform R, — R, to obtain a Bwrxt2ytz= 1
row of zeros in the second row. wox— ytz=
x+ y Skl
20. What is the net effect of performing the following wtx tz=
sequence of elementary row operations on a matrix Mqa+ b+ c+ d= 4
(with at least two rows)? a+ 2%+ 3+ 4d =10
R, + R,R, — R, R, + R, —R, a+3b+ 6c+ 10d =20
a+4b + 10c + 20d = 35
21. Students frequently perform the following type of cal-
culation to introduce a zero into a matrix: In Exercises 35-38, determine by inspection (i.e., without
s 1lsm-m[3 1 performing any calculations) whether a linear system with
{ } — { } the given augmented matrix has a unique solution, infinitely
2 4 0 10 many solutions, or no solution. Justify your answers.
However, 3R, — 2R, is not an elementary row opera- [0 0 1]2 (3 —2 0 1| 1
tion. Why not? Show how to achieve the same result 35.10 1 3|1 36. | 1 2 =3 1|-1
using elementary row operations. L1 0 1)1 |2 4 —6 2| o0
3 2 [ i
22. Consider the matrix A = { }Showthat any of SR (0 1234516
1 4 37./15 6 7 8]0 38.|6 5 4 3 2|1
the three types of elementary row operations can be 9 10 11 12]0 7 7 7 7 707

used to create a leading 1 at the top of the first column.
Which do you prefer and why? 39. Show that if ad — bc # 0, then the system

23. What is the rank of each of the matrices in Exercises 1-8? ax + by =r

24. What are the possible reduced row echelon forms of xt+dy=s

3 X 3 matrices? has a unique solution.



In Exercises 40-43, for what value(s) of k, if any, will the
systems have (a) no solution, (b) a unique solution, and
(¢) infinitely many solutions?

40.kx +2y= 3
2x — 4y = —6
42. x — 2y +3z=2

41. x + ky =1
kx + y=1
43. x+ y+kz= 1
x+ y+ z=k x+kyt z= 1
2x— y+4z =K kx + y+ z= -2
44. Give examples of homogeneous systems of m linear
equations in n variables with m = nand withm > »n

that have (a) infinitely many solutions and (b) a
unique solution.

In Exercises 45 and 46, find the line of intersection of the
given planes.

45.3x +2y+z=—-1 and 2x—y+4z=5
46.4x +y+z=0 and 2x—y+3z=2

47. (a) Give an example of three planes that have a com-

mon line of intersection (Figure 2.4).

Figure 2.4

(b) Give an example of three planes that intersect in
pairs but have no common point of intersection
(Figure 2.5).

Figure 2.5
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(c) Give an example of three planes, exactly two of
which are parallel (Figure 2.6).

Figure 2.6

(d) Give an example of three planes that intersectin a
single point (Figure 2.7).

Figure 2.1

In Exercises 48 and 49, determine whether the lines
x = p + suand x = q + tvintersect and, if they do, find
their point of intersection.

[ -1 2 [ 1 -1
48.p = 2, q=|2|,u= 2, v= 1
L 1 0 L—1 0
3] -1 (1 2
9.p=|1{,q=| 1lu=|0[,v=|3
10 -1 L1 1
B! 1 2
50.letp=|2|,u= 1 [,and v = |1 [. Describe
3 -1 0

all points Q = (a, b, ¢) such that the line through
Q with direction vector v intersects the line with
equationx = p + su.

51. Recall that the cross product of vectorsu and vis a
vector u X v that is orthogonal to both u and v. (See
Exploration: The Cross Product in Chapter 1.) If

U, Vi
and v=|v,

Us V3
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show that there are infinitely many vectors 55.x +y =1 over Z,
% y+z=0
x +z=1
X = |x
. 56. 3x + 2y = 1 over Z;
3 x+4y=1
that simultaneously satisfyu-x = 0andv-x =0 57. 3x + 2y = 1 over Z,
and that all are multiples of x+4y=1
UpVaiss UsVy 58. x, + 4x, = 1 over Z,
u X v=|uy — uv, X + 2x, + 4dx; =%
Luv, — UV, 2x; + 2x, + x,=1
- X, + 3x; =2
! 0 2 0 59. Prove the following corollary to the Rank Theorem:
52.Letp=|1)q=| lLu=|=3)andv=| 6] Let A be an m X n matrix with entries in Z,. Any
0 —1] 1 —-1 consistent system of linear equations with coefficient
Show that the lines x = p + suand x = q + tvare matrix A has exactly p”ﬂ'a“k(A) solutions over Z,.
skew lines. Find vector equations of a pair of parallel 60. When p is not prime, extra care is needed in solving
planes, one containing each line. a linear system (or, indeed, any equation) over Z,,.

Using Gaussian elimination, solve the following system

In Exercises 53-58, solve the systems of linear equations over Z,, What complications arise?

over the indicated 7 o

53.x + 2y = 1 over Z, 2x + 3y =4
54.x +y =1 over Z,
y+z=20
x +z=1

Writing Project A History of Gaussian Elimination

As noted in the biographical sketch of Gauss in this section, Gauss did not actually
“invent” the method known as Gaussian elimination. It was known in some form as
early as the third century B.c. and appears in the mathematical writings of cultures
throughout Europe and Asia.

Write a report on the history of elimination methods for solving systems of
linear equations. What role did Gauss actually play in this history, and why is his
name attached to the method?

1. S. Athloen and R. McLaughlin, Gauss-Jordan reduction: A brief history,
American Mathematical Monthly 94 (1987), pp. 130-142.

2. Joseph F. Grcar, Mathematicians of Gaussian Elimination, Notices of the AMS,
Vol 58, No. 6 (2011), pp. 782-792. (Available online at http://www.ams.org/
notices/201106/index.html)

3. Roger Hart, The Chinese Roots of Linear Algebra (Baltimore: Johns Hopkins
University Press, 2011).

4. Victor J. Katz, A History of Mathematics: An Introduction (Third Edition)
(Reading, MA: Addison Wesley Longman, 2008).




CAS

Explorations by

Lies My Computer Told Me

Computers and calculators store real numbers in floating-point form. For example,
2001 is stored as 0.2001 X 10* and —0.00063 is stored as —0.63 X 10~°>. In general,
the floating-point form of a number is +M X 10%, where k is an integer and the
mantissa M is a (decimal) real number that satisfies 0.1 = M < 1.

The maximum number of decimal places that can be stored in the mantissa depends
on the computer, calculator, or computer algebra system. If the maximum number of
decimal places that can be stored is d, we say that there are d significant digits. Many
calculators store 8 or 12 significant digits; computers can store more but still are subject
to a limit. Any digits that are not stored are either omitted (in which case we say that the
number has been truncated) or used to round the number to d significant digits.

For example,;m =~ 3.141592654, and its floating-point form is 0.3141592654 X 10".
In a computer that truncates to five significant digits, = would be stored as 0.31415 X
10" (and displayed as 3.1415); a computer that rounds to five significant digits would
store 77 as 0.31416 X 10" (and display 3.1416). When the dropped digit is a solitary
5, the last remaining digit is rounded so that it becomes even. Thus, rounded to two
significant digits, 0.735 becomes 0.74 while 0.725 becomes 0.72.

Whenever truncation or rounding occurs, a roundoff error is introduced, which
can have a dramatic effect on the calculations. The more operations that are per-
formed, the more the error accumulates. Sometimes, unfortunately, there is nothing
we can do about this. This exploration illustrates this phenomenon with very simple
systems of linear equations.

1. Solve the following system of linear equations exactly (that is, work with
rational numbers throughout the calculations).

x+ y=0
x+ 5y =1

2. Asadecimal, 55 = 1.00125, so, rounded to five significant digits, the system
becomes
x + y=20
x + 1.0012y = 1

Using your calculator or CAS, solve this system, rounding the result of every calcula-

tion to five significant digits.
83



3. Solve the system two more times, rounding first to four significant digits and
then to three significant digits. What happens?

4. Clearly, a very small roundoff error (less than or equal to 0.00125) can re-
sult in very large errors in the solution. Explain why geometrically. (Think about the
graphs of the various linear systems you solved in Problems 1-3.)

Systems such as the one you just worked with are called ill-conditioned. They
are extremely sensitive to roundoff errors, and there is not much we can do about it.
We will encounter ill-conditioned systems again in Chapters 3 and 7. Here is another
example to experiment with:

4.552x + 7.083y = 1.931
1.731x + 2.693y = 2.001

Play around with various numbers of significant digits to see what happens, starting
with eight significant digits (if you can).
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Partial Pivoting

In Exploration: Lies My Computer Told Me, we saw that ill-conditioned linear sys-
tems can cause trouble when roundoff error occurs. In this exploration, you will dis-
cover another way in whichlinear systems are sensitive to roundoff error and see that
very small changes in the coefficients can lead to huge inaccuracies in the solution.
Fortunately, there is something that can be done to minimize or even eliminate this
problem (unlike the problem with ill-conditioned systems).

1. (a) Solve the single linear equation 0.00021x = 1 for x.

(b) Suppose your calculator can carry only four decimal places. The equa-
tion will be rounded to 0.0002x = 1. Solve this equation.
The difference between the answers in parts (a) and (b) can be thought of as the
effect of an error of 0.00001 on the solution of the given equation.

2. Now extend this idea to a system of linear equations.
(a) With Gaussian elimination, solve the linear system

0.400x + 99.6y = 100
753x — 453y = 30.0

using three significant digits. Begin by pivoting on 0.400 and take each
calculation to three significant digits. You should obtain the “solution” x =
—1.00, y = 1.01. Check that the actual solution is x = 1.00, y = 1.00. This is a
huge error—200% in the x value! Can you discover what caused it?

(b) Solve the system in part (a) again, this time interchanging the two equa-
tions (or, equivalently, the two rows of its augmented matrix) and pivoting
on 75.3. Again, take each calculation to three significant digits. What is the
solution this time?

The moral of the story is that, when using Gaussian or Gauss-Jordan elimination
to obtain a numerical solution to a system of linear equations (i.e., a decimal approxi-
mation), you should choose the pivots with care. Specifically, at each pivoting step,
choose from among all possible pivots in a column the entry with the largest absolute
value. Use row interchanges to bring this element into the correct position and use it to
create zeros where needed in the column. This strategy is known as partial pivoting.



3. Solve the following systems by Gaussian elimination, first without and then
with partial pivoting. Take each calculation to three significant digits. (The exact
solutions are given.)

(a) 0.001x + 0995y = 1.00 (b) 10x — 7y =7
—10.2x + 1.00y = —50.0 —3x + 2.09y + 6z = 3.91

5x — y+5z2=6

x 0.00
) x 5.00 .
Exact solut10n:{ ] = { } Exact solution: | y | = | —1.00
y 1.00

z 1.00

Abu Ja’far Muhammad ibn Musa
al-Khwarizmi (c. 780-850) was

a Persian mathematician whose
book Hisab al- jabr wal muqabalah
(c. 825) described the use of Hindu-
Arabic numerals and the rules

of basic arithmetic. The second
word of the book’s title gives rise
to the English word algebra, and
the word algorithm is derived from
al-Khwarizmi’s name.

© Thomas Bryson

Counting Operations: An Introduction
to the Analysis of Algorithms

Gaussian and Gauss-Jordan elimination are examples of algorithms: systematic pro-
cedures designed to implement a particular task—in this case, the row reduction of
the augmented matrix of a system of linear equations. Algorithms are particularly well
suited to computer implementation, but not all algorithms are created equal. Apart
from the speed, memory, and other attributes of the computer system on which they
are running, some algorithms are faster than others. One measure of the so-called com-
plexity of an algorithm (a measure of its efficiency, or ability to perform its task in a
reasonable number of steps) is the number of basic operations it performs as a func-
tion of the number of variables that are input.

Let’s examine this proposition in the case of the two algorithms we have for
solving a linear system: Gaussian and Gauss-Jordan elimination. For our pur-
poses, the basic operations are multiplication and division; we will assume that
all other operations are performed much more rapidly and can be ignored. (This
is a reasonable assumption, but we will not attempt to justify it.) We will consider
only systems of equations with square coefficient matrices, so, if the coefficient
matrix is # X n, the number of input variables is n. Thus, our task is to find the
number of operations performed by Gaussian and Gauss-Jordan elimination as
a function of n. Furthermore, we will not worry about special cases that may
arise, but rather establish the worst case that can arise—when the algorithm takes
as long as possible. Since this will give us an estimate of the time it will take a
computer to perform the algorithm (if we know how long it takes a computer to
perform a single operation), we will denote the number of operations performed
by an algorithm by T'(n). We will typically be interested in T'(n) for large values of
n, so comparing this function for different algorithms will allow us to determine
which will take less time to execute.

1. Consider the augmented matrix

2 4 6|8
[Alb]=] 3 9 6|12
-1 1 -1|1

85



Count the number of operations required to bring [A | b] to the row echelon
form

(By “operation” we mean a multiplication or a division.) Now count the number
of operations needed to complete the back substitution phase of Gaussian elimi-
nation. Record the total number of operations.

2. Count the number of operations needed to perform Gauss-Jordan
elimination—that is, to reduce [A | b] to its reduced row echelon form

0]—1
0] 1
11 1

O O =

0
1
0

(where the zeros are introduced into each column immediately after the leading 1 is
created in that column). What do your answers suggest about the relative efficiency
of the two algorithms?

We will now attempt to analyze the algorithms in a general, systematic way. Sup-
pose the augmented matrix [A | b] arises from a linear system with n equations and
n variables; thus, [A |b]isn X (n + 1):

ay ap o ay|b
21 9n ay, | by

[A|b] = .
(2 anZ U arm bn

We will assume that row interchanges are never needed—that we can always create a
leading 1 from a pivot by dividing by the pivot.
3. (a) Show that n operations are needed to create the first leading I:

a, G, o agy, bl 1 * o v * &
Ay Ay vt Ay | by Ay Gy Ay | by
an (%) Ut Oup bn amn (%) T G bn

(Why don’t we need to count an operation for the creation of the leading 1?) Now
show that n operations are needed to obtain the first zero in column 1:

an (%) T Oy bn



(Why don’t we need to count an operation for the creation of the zero itself?) When
the first column has been “swept out,” we have the matrix

0 * * | ok
0 * * | ok

Show that the total number of operations needed up to this pointisn + (n — 1) n.

(b) Show that the total number of operations needed to reach the row
echelon form

* # | %
0 1 e
0 0 10]1

is

(n+m—Dn]l+[n—-1)+m-2)n-1D]+[(n-2+0-3)H-2)]
+eot[24+12] 41

which simplifies to

n4+ = 1) 4+ 28+ 1

(c) Show that the number of operations needed to complete the back substi-
tution phase is

1+2+-4+Mm—-1

(d) Using summation formulas for the sums in parts (b) and (c) (see
Exercises 51 and 52 in Section 2.4 and Appendix B), show that the total number of
operations, T'(n), performed by Gaussian elimination is

T(n) = 3n* + n* — in

Since every polynomial function is dominated by its leading term for large values of
the variable, we see that T(n) =~ 1n’ for large values of n.

4. Show that Gauss-Jordan elimination has T(n) = %ns total operations if we
create zeros above and below the leading 1s as we go. (This shows that, for large
systems of linear equations, Gaussian elimination is faster than this version of Gauss-
Jordan elimination.)
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Spanning Sets and Linear Independence

The second of the three roads in our “trivium” is concerned with linear combina-
tions of vectors. We have seen that we can view solving a system of linear equations
as asking whether a certain vector is a linear combination of certain other vectors.
We explore this idea in more detail in this section. It leads to some very important
concepts, which we will encounter repeatedly in later chapters.

Spanning Sets of Vectors

We can now easily answer the question raised in Section 1.1: When is a given vector
a linear combination of other given vectors?

Example 2.18

L

1 1 -1
(a) Is the vector | 2 | a linear combination of the vectors | 0 | and 12
3 3 -3
2 1 -1
(b) Is | 3 | alinear combination of the vectors | 0 | and 12
4 3 -3

Solution
(a) We want to find scalars x and y such that

1 -1 1
x{0|+yl 1]|=]|2
3 -3 3
Expanding, we obtain the system
x— y=1
y=2
3x—=3y=3
whose augmented matrix is
I =11
0 12
3 =33

(Observe that the columns of the augmented matrix are just the given vectors; notice
the order of the vectors—in particular, which vector is the constant vector.)
The reduced echelon form of this matrix is

1 0|3
0 12
0 0]0

(Verify this.) So the solution is x = 3, y = 2, and the corresponding linear
combination is



Section 2.3 Spanning Sets and Linear Independence 89

(b) Utilizing our observation in part (a), we obtain a linear system whose augmented
matrix is

—1]2]
1|3
L3 —314.
which reduces to
1o -
1
L0 0]—2
2
revealing that the system has no solution. Thus, in this case, | 3 | is not a linear com-
1 -1 4

bination of | 0 | and 1

3 —3. 4

The notion of a spanning set is intimately connected with the solution of linear
systems. Look back at Example 2.18. There we saw that a system with augmented
matrix [A | b] has a solution precisely when b is a linear combination of the columns
of A. This is a general fact, summarized in the next theorem.

Theorem 2.4

A system of linear equations with augmented matrix [A | b] is consistent if and
only if b is a linear combination of the columns of A.

Let’s revisit Example 2.4, interpreting it in light of Theorem 2.4.
(a) The system
x—y=1
x+y=3

has the unique solution x = 2, y = 1. Thus,

L]+ 0]

See Figure 2.8(a).

(b) The system
x— y=2
2x — 2y =4

has infinitely many solutions of the form x = 2 + ¢, y = ¢t. This implies that

S HA A

-1
=2
so all lie along the same line through the origin [see Figure 2.8(b)].

1 2
for all values of t. Geometrically, the vectors {2}, [ }, and L} are all parallel and
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y y y
A A A
57 5 54
4 4+ 4+
3T 3+ 34
2T 2+ 2T
1+ 1+ 1T
} } } 1 —>x i | f } —>x i } f f —> X
=2l 1 2 3 -2 -1 1 2 3 -2 -1 1 2 3
-1 1+ —1T
=2 —2+ -2
=3 =3 =37
(@) (b) (©)
Figure 2.8
(c) The system
x—y=1
x—y=3

has no solutions, so there are no values of x and y that satisfy
x —
1 -] T s

1 1
} are parallel, but L} does not lie along the same line

1
In this case, L] and [

through the origin [see Figure 2.8(c)].

We will often be interested in the collection of all linear combinations of a given
set of vectors.

Definition 1fS = {v), v, ..., vy is a set of vectors in R”, then the set of all

linear combinations of v, v, . . ., v, is called the span of v, v,, . . ., v; and is de-
noted by span(vy, vy, . . ., Vi) or span(S). If span(S) = R”, then S is called a span-
ning set for R".

-

Examnie Show that R* = span({_?- B})

- . a . .
Solution We need to show that an arbitrary vector { } can be written as a linear

2 [1 2
combination of {_ } and 3]; that is, we must show that the equation x{ _J +
X L
yL} = [Z] can always be solved for x and y (in terms of a and b), regardless of the

values of a and b.
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2 1
The augmented matrix is [_ . ’ b}’ and row reduction produces

{ 2 1 a} R, <R, {_1 3 b:| R,+2R, {_1 3
— —>
-1 3[b 2 1la 0 7

at which point it is clear that the system has a (unique) solution. (Why?) If we con-
tinue, we obtain

IR, {—1 3 b } R —3R, [—1 0
—) H
0 1|(a+2b)/7 0 1

from which we see that x = (3a — b)/7 and y = (a + 2b)/7. Thus, for any choice of

a and b, we have
<3a - b){ 2} <a + 2b>m H
+ =
7 —1 7 3 b
(Check this.) I

Remark It is also true that R? = span({_ﬂ, E}, [ﬂ) If, given {ﬂ, we can

'
a+ 2b

(b — 3a)/7}
(a + 2b)/7

2 1 2 1
find x and y such that x[_l} -+ y{g} = [[ﬂ, then we also have x[_l] + y[3}+

5 a
0 {7} = [ b} In fact, any set of vectors that contains a spanning set for R* will also be
a spanning set for R? (see Exercise 20).

The next example is an important (easy) case of a spanning set. We will encounter
versions of this example many times.

Example 2.20

\

X
Let e,, e,, and e, be the standard unit vectors in R>. Then for any vector y |, we have

x 1 0 0
y| | =x/0|+y|1|+2z 0] =xe + ye, + ze,
z 0 0 1

Thus, R* = span(e,, e,, e;).
You should have no difficulty seeing that, in general, R" = span(e,, e,, ..., e,). I

When the span of a set of vectors in R" is not all of R", it is reasonable to ask for a
description of the vectors’” span.

Example 2.21

\/

1 -1
Find the spanof | 0 | and | 1 |. (See Example 2.18.)
3 -3
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Figure 2.9
Two nonparallel vectors span a
plane

Solution Thinking geometrically, we can see that the set of all linear combinations of

1 -1 1 -1
0 |and| 1 |isjustthe plane throughtheoriginwith | 0 |and| 1 |asdirection
3 -3 3 -3
X 1 -1
vectors (Figure 2.9). The vector equation of this planeis | y | =s| 0| + ¢ 1|,
z 3 -3
x 1 -1
which is just another way of saying that | y | isinthespanof | 0 [and | 1 |.
z 3 -3

Suppose we want to obtain the general equation of this plane. There are several
ways to proceed. One is to use the fact that the equation ax + by + cz = 0 must be
satisfied by the points (1, 0, 3) and (—1, 1, —3) determined by the direction vectors.
Substitution then leads to a system of equations in g, b, and c. (See Exercise 17.)

Another method is to use the system of equations arising from the vector equation:

s— t=xXx
t=y
3s —3t=z

If we row reduce the augmented matrix, we obtain

I UE 2 B B
0 1|y|— |0 1 y
3 3]z 0 0lz—3x
[x 1
Now we know that this system is consistent, since | y | is in the span of | 0 | and
-1 Lz 3

1 | by assumption. So we must have z — 3x = 0 (or 3x — z = 0, in more standard
-3
form), giving us the general equation we seek. 1

Remark A normal vector to the plane in this example is also given by the cross
product

1 -1 -3
0] X 1| = 0
3 -3 1
Linear Independence
1 -1 1
In Example 2.18, we found that 3| 0 | + 2| 1| = | 2 |. Let’s abbreviate this equa-
3 -3 3

tion as 3u + 2v = w. The vector w “depends” on u and v in the sense that it is a
linear combination of them. We say that a set of vectors is linearly dependent if one
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of them can be written as a linear combination of the others. Note that we also have
u=—%v+iwand v = —3u + iw. To get around the question of which vector to
express in terms of the rest, the formal definition is stated as follows:

Definition A set of vectors vy, vy, . . . , V¢ is linearly dependent if there are
scalars ¢, ¢,, . . ., ¢, at least one of which is not zero, such that

vyt oyt v =0

A set of vectors that is not linearly dependent is called linearly independent.

Remarks
* Inthe definition oflinear dependence, the requirement that at least one of the
scalars ¢y, ¢,, . . ., ¢, must be nonzero allows for the possibility that some may be zero.

In the example above, u, v, and w are linearly dependent, since 3u + 2v — w = 0 and,
in fact, all of the scalars are nonzero. On the other hand,

HREHELHEH

211 4
o) { 6} {3}, and [J are linearly dependent, since at least one (in fact, two) of the

three scalars 1, —2, and 0 is nonzero. (Note that the actual dependence arises simply
from the fact that the first two vectors are multiples.) (See Exercise 44.)

e Since Ov, + Ov, + ... + Ov, = O for any vectors vy, v,, . . . , V}, linear de-
pendence essentially says that the zero vector can be expressed as a nontrivial linear
combination of vi, v, . . ., Vi. Thus, linear independence means that the zero vector
can be expressed as a linear combination of v}, v,, . . ., v; only in the trivial way: c;v,
teont -+ gvi=0onlyifc,=0,¢,=0,...,¢,=0.

The relationship between the intuitive notion of dependence and the formal defi-
nition is given in the next theorem. Happily, the two notions are equivalent!

Theorem 2.5

Vectors vy, Vs, ..., V, in R" are linearly dependent if and only if at least one of the
vectors can be expressed as a linear combination of the others.

Proof If one of the vectors—say, v;—is a linear combination of the others, then

there are scalars c,, . . ., ¢, such that v; = ¢,v, + . .. + ¢, v,,. Rearranging, we obtain
V) — GV, — - — ¢, V,, = 0, which implies that v, v, . . ., v,, are linearly dependent,
since at least one of the scalars (namely, the coefficient 1 of v,) is nonzero.
Conversely, suppose that v|, v,, ..., v,, are linearly dependent. Then there are
scalars ¢y, ¢,, . . ., ¢, DOt all zero, such that ¢;v; + ¢,v, + - - - + ¢,,V,, = 0. Suppose
¢; # 0. Then
OV = =GV, — " = iV,

and we may multiply both sides by 1/¢, to obtain v, as a linear combination of the

other vectors:
C2 Cm
vi=—(—Jv,— - —|—)v
1 Cl 2 Cl m
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Note It may appear as if we are cheating a bit in this proof. After all, we cannot
be sure that v, is a linear combination of the other vectors, nor that ¢, is nonzero.
However, the argument is analogous for some other vector v; or for a different scalar
¢;- Alternatively, we can just relabel things so that they work out as in the above proof.
In a situation like this, a mathematician might begin by saying, “without loss of gen-
erality, we may assume that v, is a linear combination of the other vectors” and then
proceed as above.

»

Example 2.22

=

Any set of vectors containing the zero vector is linearly dependent. For if 0, v,, . . ., v,,
are in R", then we can find a nontrivial combination of the form ¢,0 + ¢,v; + ... +

CmVym = 0bysettinge, =landc;, =¢c3 = ... =¢, =0. I

\

Example 2.23

Determine whether the following sets of vectors are linearly independent:

'l . 1] [o 1
(a) } and [ (b) |1|,|1|,and |0
4 2
- . L0 L1 1
[ 1 0] S 1] [ 1 1
() | —1]|,| 1|,and| O (d |2, 1| and|4
L o] L-1. 1 Lol [ -1 2
Solution In answering any question of this type, it is a good idea to see if you can

determine by inspection whether one vector is a linear combination of the others. A
little thought may save a lot of computation!

(a) The only way two vectors can be linearly dependent is if one is a multiple of
the other. (Why?) These two vectors are clearly not multiples, so they are linearly
independent.

(b) There is no obvious dependence relation here, so we try to find scalars c,, ¢, ¢3
such that

1 0 1 0
1]+l +el0]=10
0 1 1 0

The corresponding linear system is

C) i ;=0
G t+e
¢+ =
and the augmented matrix is
1 0 10
1 1 0(0
01 1]0

Once again, we make the fundamental observation that the columns of the coefficient
matrix are just the vectors in question!
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The reduced row echelon form is

1 0 0]0
01 00
0 0 110

(check this), so ¢; = 0, ¢, = 0, c; = 0. Thus, the given vectors are linearly independent.

(c) Alittle reflection reveals that

1 0 -1 0
—1|+| 1|+] o|=]0
0 -1 1 0

so the three vectors are linearly dependent. [Set up a linear system as in part (b) to
check this algebraically.]

(d) Once again, we observe no obvious dependence, so we proceed directly to reduce
a homogeneous linear system whose augmented matrix has as its columns the given
vectors:

1 1 1/0 1 1 1|0]®%"®T1 0 3]0
R,— 2R, R;— R,

2 1 4{0|—— |0 -1 2f0|—> [0 1 =2]0

0 -1 2/o0 0 -1 2]o0 Lo o o]0

If we let the scalars be ¢y, ¢,, and c;, we have
o+ 3¢c;=0
¢, —2¢;=0

from which we see that the system has infinitely many solutions. In particular, there
must be a nonzero solution, so the given vectors are linearly dependent.

If we continue, we can describe these solutions exactly: ¢, = —3¢; and ¢, = 2¢;.
Thus, for any nonzero value of c;, we have the linear dependence relation
1 1 1 0
—3¢3| 2|+ 2¢ 1| +c5l4]|=10
0 -1 2 0
(Once again, check that this is correct.) 4

We summarize this procedure for testing for linear independence as a theorem.

Theorem 2.6

Let vj, vy, ..., Vv, be (column) vectors in R" and let A be the n X m matrix
[v; v, - --Vv,] with these vectors as its columns. Then v, v, . . . , V,, are linearly
dependent if and only if the homogeneous linear system with augmented matrix
[A | 0] has a nontrivial solution.

Proof v,v,,...,v,arelinearly dependentifandonlyiftherearescalarsci,c,, ..., ¢,
not all zero, such that ¢,v; + ¢,v, + - - . + ¢,,V,, = 0. By Theorem 2.4, this is equivalent
G

¢
to saying that the nonzero vector | | is a solution of the system whose augmented
matrix is [v; v, - - . v, | 0].

Em _ e
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Example 2.24

The standard unit vectors e}, e,, and e; are linearly independent in R, since the sys-
tem with augmented matrix [e; e, e; | 0] is already in the reduced row echelon form

o O

0 00
1 0]0
0 110
and so clearly has only the trivial solution. In general, we see that e}, e,, ..., e, will be

linearly independent in R". I

Performing elementary row operations on a matrix constructs linear combina-
tions of the rows. We can use this fact to come up with another way to test vectors for
linear independence.

\

Example 2.25

Consider the three vectors of Example 2.23(d) as row vectors:
[1,2,0], [1,1,—1], and [1,4,2]

We construct a matrix with these vectors as its rows and proceed to reduceitto eche-
lon form. Each time a row changes, we denote the new row by adding a prime symbol:

1 2 0l , 1 2 o . |1 2 0
R,=R,—R, RI=R,+2R,

1 1 —1 —> 0 -1 -1 —> 0 —1 -1
Ry=R,—R,

1 4 2 0 2 2 0 0 0

From this we see that
0=R;=R,+2R,=(R; — R, + 2(R, — R;) = —3R; + 2R, + R,
or, in terms of the original vectors,
—3[1,2,0] +2[1,1,—1] + [1,4,2] = [0,0,0]

[Notice that this approach corresponds to taking c; = 1 in the solution to

Example 2.23(d).] l

Thus, the rows of a matrix will be linearly dependent if elementary row opera-
tions can be used to create a zero row. We summarize this finding as follows:

Theorem 2.7

Vi

A\
Let v}, vy, . .., V,, be (row) vectors in R”" and let A be the mXn matrix | ~ | with
Vm

these vectors as its rows. Then vy, v,, . . ., v,, are linearly dependent if and only if
rank(A) < m.

Proof Assume that v, v,, . . ., v,, are linearly dependent. Then, by Theorem 2.2,
at least one of the vectors can be written as a linear combination of the others.
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We relabel the vectors, if necessary, so that we can write v,, = ¢;v; + ¢;v, +- -+ +
Cn-1Vm—1. Then the elementary row operations R,, — ¢R, R,, — Ry . . .,
R, — ¢,,—1R,,— applied to A will create a zero row in row m. Thus, rank(A) < m.
Conversely, assume that rank(A) < m. Then there is some sequence of row opera-
tions that will create a zero row. A successive substitution argument analogous to that
used in Example 2.25 can be used to show that 0 is a nontrivial linear combination of
Vi, Vy, ..., V. Thus, vy, vy, . . ., v, are linearly dependent. __m

In some situations, we can deduce that a set of vectors is linearly dependent with-
out doing any work. One such situation is when the zero vector is in the set (as in
Example 2.22). Another is when thereare “too many” vectors to be independent. The
following theorem summarizes this case. (We will see a sharper version of this result
in Chapter 6.)

Theorem 2.8

Any set of m vectors in R" is linearly dependent if m > n.

Proof Letv,, v, ...,V, be (column) vectors in R" and let A be the n X m matrix
[v1V,- - - v,,] with these vectors as its columns. By Theorem 2.6, vy, V,, . . ., v,, are lin-
early dependent if and only if the homogeneous linear system with augmented matrix
[A | 0] has a nontrivial solution. But, according to Theorem 2.6, this will always be the
case if A has more columns than rows; it is the case here, since number of columns m
is greater than number of rows 7. |

Example 2.26

»»)—L

\}

1] ]2 3
The vectors [3], L] ,and L} are linearly dependent, since there cannot be more

than two linearly independent vectors in R (Note that if we want to find the ac-
tual dependence relation among these three vectors, we must solve the homogeneous
system whose coefficient matrix has the given vectors as columns. Do this!) I

In Exercises 1-6, determine if the vector v is a linear combi-

IEXBI’I}iSES 2.3

nation of the remaining vectors.

1.v

\

1 1 0
S5v=|2|,yu=|1},u,=|1]
3 0 1
1
u; = [O
} 1
32 1.0 3.4
s 6. v = 20 [,u, = |04 |,u, = 14 |,
—2.6 4.8 —6.4
—1.2
u; = 0.2
—1.0
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In Exercises 7 and 8, determine if the vector b is in the span
of the columns of the matrix A.

ra=[l o]

13 4 L6
(1 2 3] [ 4
8A=|5 6 7|,b=] 8
9 10 11 12

L J -

9. Show that R* = span

10. Show that R* = span

12. Show that R* = span

1] 1] [o
11. Show that R* = span| |0 |,| 1|, | 1
0

In Exercises 13-16, describe the span of the given vectors
(a) geometrically and (b) algebraically.

B 1 R H

1 3 [ 1] [ -1 0
15|21, 2 16.| o, | 1] -1
o] [—1 | -1 0 1

L L

17. The general equation of the plane that contains the
points (1, 0, 3), (—1, 1, —3), and the origin is of the
form ax + by + cz = 0. Solve for g, b, and c.

18. Prove that u, v, and w are all in span(u, v, w).

19. Prove that u, v, and ware all in span(u, u + v,u +

v+ w).
20. (a) Provethatifu,...,u,, are vectorsin R", S =
fu,uy,...,wland T={u,,...,u,wyy, ...,

u,,}, then span(S) C span(T). [Hint: Rephrase this
question in terms of linear combinations.]

(b) Deduce thatif R" = span(S), then R" = span(T)
also.

21. (@) Suppose that vector w is a linear combination
of vectors uy, . . ., u; and that each u; is a linear
combination of vectors v, . . ., v,,,. Prove that w is
a linear combination of v, . . ., v,, and therefore
span(uy, ..., ) C span(vy, ..., V).

(b) In part (a), suppose in addition that each v; is also
a linear combination of uy, . . ., u;. Prove that
span(u,, ..., ) = span(vy,. .., V,,).

(c) Use the result of part (b) to prove that

1 1 1
R*=span| [0 [,|1] |1
0 0 1

[Hint: We know that R® = span(ey, e,, €3).]

Use the method of Example 2.23 and Theorem 2.6 to deter-
mine if the sets of vectors in Exercises 22-31 are linearly in-
dependent. If, for any of these, the answer can be determined
by inspection (i.e., without calculation), state why. For any
sets that are linearly dependent, find a dependence relation-
ship among the vectors.

1
J
1

= - ————

27 -1 111 1
2. -1, 2 23. 1], 21,] =1
B 3 L1] 3] L 2
(27 [3 1 (0] [27] [2]
24.12|,|11,| =5 25. (1 ,]1[,]0
L1] [2 2 L2 3] L1
(=217 4735 (37 [6] [0]
2. 3[,|-1]|1], 27. 14, ]71[,]0
L 7] L 5] L3] L5] [ 8] L0
=11 73710 27
1|2 3
28. , ,
202 1
1] 4] [ -1}
17 [—17 1 0
-1 1 0 1
29. , , ,
1 0 1] -1
L o) | 1] [—1 1
rol ro) rojyr4
ollo|[3]]3
30- > b >
ol'[21121]2
L1]) (1] 1] |1
r 317 7-11[1] -1
-1 3 (1] | -1
31. , , ,
1 1113 1
L ) [-1] [1 3

In Exercises 32-41, determine if the sets of vectors in the
given exercise are linearly independent by converting the
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vectors to row vectors and using the method of Example 2.25 (b) Ifvectors u,v,and w are linearly independent, will
and Theorem 2.7. For any sets that are linearly dependent, u —v,v— w,and u — w also be linearly indepen-
find a dependence relationship among the vectors. dent? Justify your answer.
32. Exercise 22 33. Exercise 23 44. Prove that two vectors are linearly dependent if
34, Exercise 24 35, Exercise 25 and only if one is a scalar multiple of the other.
36. Exercise 26 37. Exercise 27 [Hint: S'eparately consider the case where one of the

_ . vectors is 0.]
i Exerc?se 28 2 Exerc?se & 45. Give a “row vector proof” of Theorem 2.8.
40 Exercise 50 dlfEserche 46. Prove that every subset of a linearly independent set is
42. (a) If the columns of an nXn matrix A are linearly in- linearly independent.

43

dependent as vectors in R", what is the rank of A?

Explain.

(b) If the rows of an nXn matrix A are linearly inde-
pendent as vectors in R”, what is the rank of A?

Explain.

. (a) Ifvectors u, v, and w are linearly independent, will
u +v,v+ w,and u + walso be linearly indepen-

dent? Justify your answer.

47. Suppose that S = {v,, ..., v, v} is a set of vectors in
some R" and that v is a linear combination of vy, . . .,
vi. If ' = {v,..., v}, prove that span(S) = span(S’).
[Hint: Exercise 21(b) is helpful here.]

48.Let {vy, ..., v;} bealinearly independent set of vec-
tors in R",andletvbe a vector in R". Suppose that
v=cv,+ v, t -+ ¢ v with ¢; # 0. Prove that
{v, vy, ..., v} is linearly independent.

f
m @
% == £

There are too many applications of systems of linear equations to do them justice in a
single section. This section will introduce a few applications, to illustrate the diverse
settings in which they arise.

Allocation of Resources

A great many applications of systems of linear equations involve allocating limited
resources subject to a set of constraints.

»

Example 2.21

A biologist has placed three strains of bacteria (denoted I, II, and III) in a test tube,
where they will feed on three different food sources (A, B, and C). Each day 2300 units
of A, 800 units of B, and 1500 units of C are placed in the test tube, and each bacte-
rium consumes a certain number of units of each food per day, as shown in Table 2.2.
How many bacteria of each strain can coexist in the test tube and consume all of the
food?

Tahle 2.2
Bacteria Bacteria Bacteria
Strain I Strain II Strain III
Food A 2 2 4
Food B 1 2 0

Food C 1 3 1
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Solution Let x;, x,, and x; be the numbers of bacteria of strains I, II, and III,
respectively. Since each of the x, bacteria of strain I consumes 2 units of A per day,
strain I consumes a total of 2x; units per day. Similarly, strains II and III consume a
total of 2xx, and 4x; units of food A daily. Since we want to use up all of the 2300 units
of A, we have the equation

2x; + 2x, + 4x, = 2300

Likewise, we obtain equations corresponding to the consumption of Band C:
x; + 2x, = 800
X, T 3x, + x3 = 1500

Thus, we have a system of three linear equations in three variables. Row reduction of
the corresponding augmented matrix gives

2 2 4]2300 1 0 0]100
1 2 0] 800 — |0 1 0]350
1 3 111500 0 0 11350

Therefore, x, = 100, x, = 350, and x; = 350. The biologist should place 100 bacteria
of strain I and 350 of each of strains II and III in the test tube if she wants all the food

to be consumed. I

»

Example 2.28

>

Repeat Example 2.27, using the data on daily consumption of food (units per day)
shown in Table 2.3. Assume this time that 1500 units of A, 3000 units of B, and 4500
units of C are placed in the test tube each day.

Tahle 2.3
Bacteria Bacteria Bacteria
Strain I Strain II Strain III
Food A 1 1 1
Food B 1 2 3
Food C 1 3 5

Solution  Let x), x,, and x; again be the numbers of bacteria of each type. The aug-
mented matrix for the resulting linear system and the corresponding reduced echelon
form are

1 1 1]1500 1 0 -1 0
1 2 3{3000| —> |0 1 211500
1 3 5[4500 0 0 0 0

We see that in this case we have more than one solution, given by

X, - X3 = 0
x, + 2x; = 1500

Il

Letting x5 = ¢, we obtain x; = ¢, x, = 1500 — 2t,and x; = . In any applied problem,
we must be careful to interpret solutions properly. Certainly the number of bacteria
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cannot be negative. Therefore, t = 0 and 1500 — 2t = 0. The latter inequality implies
that t = 750, so we have 0 = t = 750. Presumably the number of bacteria must be a
whole number, so there are exactly 751 values of ¢ that satisfy the inequality. Thus, our
751 solutions are of the form

b t 0 1
X, | = | 1500 — 2¢ | = | 1500 | + ¢| —2
X3 t 0 1

one for each integer value of ¢ such that 0 = t = 750. (So, although mathematically
this system has infinitely many solutions, physically there are only finitely many.)

Balancing Chemical Equations

When a chemical reaction occurs, certain molecules (the reactants) combine to form
new molecules (the products). A balanced chemical equation is an algebraic equation
that gives the relative numbers of reactants and products in the reaction and has the
same number of atoms of each type on the left- and right-hand sides. The equation is
usually written with the reactants on the left, the products on the right, and an arrow
in between to show the direction of the reaction.

For example, for the reaction in which hydrogen gas (H,) and oxygen (O,) com-
bine to form water (H,0), a balanced chemical equation is

2H, + 0, —> 2H,0

indicating that two molecules of hydrogen combine with one molecule of oxygen to
form two molecules of water. Observe that the equation is balanced, since there are
four hydrogen atoms and two oxygen atoms on each side. Note that there will never
be a unique balanced equation for a reaction, since any positive integer multiple of
a balanced equation will also be balanced. For example, 6H, + 30, — 6H,0 is also
balanced. Therefore, we usually look for the simplest balanced equation for a given
reaction.

While trial and error will of ten work in simple examples, the process of balancing
chemical equations really involves solving a homogeneous system of linear equations,
so we can use the techniques we have developed to remove the guesswork.

>

Example 2.29

The combustion of ammonia (NHj3) in oxygen produces nitrogen (N,) and water.
Find a balanced chemical equation for this reaction.

Solution  If we denote the numbers of molecules of ammonia, oxygen, nitrogen, and
water by w, x, y, and z, respectively, then we are seeking an equation of the form

wNH; + xO, — yN, + zH,0

Comparing the numbers of nitrogen, hydrogen, and oxygen atoms in the reactants
and products, we obtain three linear equations:

Nitrogen: w = 2y

Hydrogen: 3w = 2z

Oxygen: 2x =z
Rewriting these equations in standard form gives us a homogeneous system of three
linear equations in four variables. [Notice that Theorem 2.3 guarantees that such a
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Tzo

l30

Figure 2.10
Flow at a node: f, + f, = 50

system will have (infinitely many) nontrivial solutions.] We reduce the corresponding
augmented matrix by Gauss-Jordan elimination.

w -2 =0 1 0 -2 0]0 1 0 0 _§0
3w —2z=0—>>[3 0 0 =210—>10 1 0 —3|0
2x —z=0 0 2 0 -—-110 00 1 —ilo

Thus, w = 3z, x = 3z, and y = }z. The smallest positive value of z that will produce
integer values for all four variables is the least common denominator of the fractions

2 1 and }—namely, 6—which gives w = 4, x = 3, y = 2, and z = 6. Therefore, the

balanced chemical equation is

Network Analysis

Many practical situations give rise to networks: transportation networks, communi-
cations networks, and economic networks, to name a few. Of particular interest are
the possible flows through networks. For example, vehicles flow through a network
of roads, information flows through a data network, and goods and services flow
through an economic network.

For us, a network will consist of a finite number of nodes (also called junctions
or vertices) connected by a series of directed edges known as branches or arcs. Each
branch will be labeled with a flow that represents the amount of some commodity
that can flow along or through that branch in the indicated direction. (Think of cars

traveling along a network of one-way streets.) The fundamental rule governing flow
through a network is conservation of flow:

4NH, + 30, — 2N, + 6H,0

At each node, the flow in equals the flow out.

Figure 2.10 shows a portion of a network, with two branches entering a node and two
leaving. The conservation of flow rule implies that the total incoming flow, f; + f,
units, must match the total outgoing flow, 20 + 30 units. Thus, we have the linear
equation f; + f, = 50 corresponding to this node.

We can analyze the flow through an entire network by constructing such equa-
tions and solving the resulting system of linear equations.

Example 2.30

=

Describe the possible flows through the network of water pipes shown in Figure 2.11,
where flow is measured in liters per minute.

Solution At each node, we write out the equation that represents the conservation
of flow there. We then rewrite each equation with the variables on the left and the
constant on the right, to get a linear system in standard form.

Node A: 15 = f, + f, f +f,=15
NodeB: f, =f, + 10 hH—£f =10
NodeC: f, +f; +5 =30 L+ f =25

Node D: f, +20 = f; L= fi=20
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Figure 2.11

Using Gauss-Jordan elimination, we reduce the augmented matrix:

1 0 0 15 1 0 0 1(15

1 =1 0 0|10 01 0 1|5
—

0 1 1 0]25 0 01 —1|20

0 01 —-1/20 0 0 0 0] 0

(Check this.) We see that there is one free variable, f;, so we have infinitely many
solutions. Setting f, = t and expressing the leading variables in terms of f,, we obtain

fi= 15—t
L= 5—1t
fi=20+¢
fi= t

These equations describe all possible flows and allow us to analyze the network. For
example, we see that if we control the flow on branch AD so that t = 5 L/min, then
the other flows are f, = 10, f, = 0, and f; = 25.

We can do even better: We can find the minimum and maximum possible flows
on each branch. Each of the flows must be nonnegative. Examining the first and sec-
ond equations in turn, we see that t = 15 (otherwise f; would be negative) and t = 5
(otherwise f, would be negative). The second of these inequalities is more restrictive
than the first, so we must use it. The third equation contributes no further restrictions
on our parameter f, so we have deduced that 0 = t = 5. Combining this result with
the four equations, we see that

10=<f =15
0<f=<5
20 < f, <25
0<f,=<5

We now have a complete description of the possible flows through this network. I
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Electrical Networks

Electrical networks are a specialized type of network providing information about
power sources, such as batteries, and devices powered by these sources, such as light
bulbs or motors. A power source “forces” a current of electrons to flow through the
network, where it encounters various resistors, each of which requires that a certain
amount of force be applied in order for the current to flow through it.

The fundamental law of electricity is Ohm’s law, which states exactly how much
force E is needed to drive a current I through a resistor with resistance R.

\/

Ohm’s Law

force = resistance X current

or E =RI I

Force is measured in volts, resistance in ohms, and current in amperes (or amps, for
short). Thus, in terms of these units, Ohm’s law becomes “volts = ohms X amps,” and
it tells us what the “voltage drop” is when a current passes through a resistor—that is,
how much voltage is used up.

Current flows out of the positive terminal of a battery and flows back into the
negative terminal, traveling around one or more closed circuits in the process. In
a diagram of an electrical network, batteries are represented by ~|I— (where the
positive terminal is the longer vertical bar) and resistors are represented by “VV\v—.
The following two laws, whose discovery we owe to Kirchhoff, govern electrical net-
works. The first is a “conservation of flow” law at each node; the second is a “balancing
of voltage” law around each circuit.

Kirchhoff’s Laws

\

Current Law (nodes)
The sum of the currents flowing into any node is equal to the sum of the currents
tlowing out of that node.

Voltage Law (circuits)
The sum of the voltage drops around any circuit is equal to the total voltage around

the circuit (provided by the batteries). I

Figure 2.12 illustrates Kirchhoff’s laws. In part (a), the current law gives I, = I, + I;
(or I, — I, — I; = 0, as we will write it); part (b) gives 41 = 10, where we have used
Ohm’s law to compute the voltage drop 4I at the resistor. Using Kirchhoff’s laws, we
can set up a system of linear equations that will allow us to determine the currents in
an electrical network.

>»
>

Example 2.31

Determine the currents I}, I,, and I5 in the electrical network shown in Figure 2.13.

Solution  This network has two batteries and four resistors. Current I, flows through
the top branch BCA, current I, flows across the middle branch AB, and current I;
flows through the bottom branch BDA.
At node A, the current law gives I} + I; = L, or
L-L+IL=0

(Observe that we get the same equation at node B.)
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Figure 2.13

Next we apply the voltage law for each circuit. For the circuit CABC, the voltage
drops at the resistors are 21}, I,, and 2I;. Thus, we have the equation

AL +1,=8
Similarly, for the circuit DABD, we obtain
I, + 4L, = 16

(Notice that thereisactually a third circuit, CADBC, if we “go against the flow.” In this
case, we must treat the voltages and resistances on the “reversed” paths as negative.
Doing so gives 21, + 2I; — 4I; = 8 — 16 = —8 or 4I, — 4I; = —8, which we observe
is just the difference of the voltage equations for the other two circuits. Thus, we can
omit this equation, as it contributes no new information. On the other hand, includ-
ing it does no harm.)

We now have a system of three linear equations in three variables:

L-L+ L= 0

4, + 1, = 8
L +4; =16
Gauss-Jordan elimination produces
1 -1 1|0 1 0 01
4 1 0| 8| —> |0 1 0|4
0 1 4116 0 0113
Hence, the currents are I, = 1 amp, [, = 4 amps, and I; = 3 amps. i

Remark Insome electrical networks, the currents may have fractional values or may
even be negative. A negative value simply means that the current in the correspond-
ing branch flows in the direction opposite that shown on the network diagram.

»

CAS

Example 2.32

The network shown in Figure 2.14 has a single power source A and five resistors. Find
the currents I, I, . . ., Is. This is an example of what is known in electrical engineering
as a Wheatstone bridge circuit.
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Figure 2.14
A bridge circuit

Solution  Kirchhoff’s current law gives the following equations at the four
nodes:

NodeB: I -1, —-1,=0

NodeC: I, -, —I;,=10

NodeD: I—L —L =0

NodeE: I+I,—I,=0
For the three basic circuits, the voltage law gives

Circuit ABEDA: I, + 2I, = 10

Circuit BCEB: 2, + 2I, — I, = 0

Circuit CDEC: I, — 2I, — 2, = 0
(Observe that branch DAB has no resistor and therefore no voltage drop; thus, there
is no I term in the equation for circuit ABEDA. Note also that we had to change signs
three times because we went “against the current” This poses no problem, since we

will let the sign of the answer determine the direction of current flow.)
We now have a system of seven equations in six variables. Row reduction gives

1 -1 0 0 -1 0] 0] 1 0 0 0 0 O 77
0 1 -1 -1 0 0]0 01 00 00
1 0 -1 0 0 -1/0 001 00 0
0 0 0 1 -1 0|— |0 0 0 1 0 0|—
0 0 0 1 2]10 000 0 1 0
0 2 0 2 -1 o0]o0 000 0 01
Lo 0 1 -2 0 —-21 0J Lo 000 0 0l g

(Use your calculator or CAS to check this.) Thus, the solution (in amps)isI = 7,1, =
I; =3I, =1, =4, and I; = —1. The significance of the negative value here is that
the current through branch CE is flowing in the direction opposite that marked on

the diagram.

Remark There is only one power source in this example, so the single 10-volt bat-
tery sends a current of 7 amps through the network. If we substitute these values into
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Ohm’s law, E = RI,weget10 = 7Ror R = 9 Thus, the entire network behaves as if
there were a single _ohm resistor. This value is called the effective resistance (Re) of
the network.

Linear Economic Models

An economy is a very complex system with many interrelationships among the vari-
ous sectors of the economy and the goods and services they produce and consume.
Determining optimal prices and levels of production subject to desired economic
goals requires sophisticated mathematical models. Linear algebra has proven to be a
powerful tool in developing and analyzing such economic models.

In this section, we introduce two models based on the work of Harvard econo-
mist Wassily Leontief in the 1930s. His methods, often referred to as input-output
analysis, are now standard tools in mathematical economics and are used by cities,
corporations, and entire countries for economic planning and forecasting.

We begin with a simple example.

Example 2.33

Wassily Leontief (1906-1999) was
born in St. Petersburg, Russia. He
studied at the University of Lenin-
grad and received his Ph.D. from the
University of Berlin. He emigrated
to the United States in 1931, teach-
ing at Harvard University and later
at New York University. In 1932,
Leontiefbegan compiling data for the
monumental task of conducting an
input-output analysis of the United
States economy, the results of which
were published in 1941. He was also
an early user of computers, which he
needed to solve the large-scale linear
systems in his models. For his pio-
neering work, Leontief was awarded

the Nobel Prize in Economics in 1973.

The economy of a region consists of three industries, or sectors: service, electricity,
and oil production. For simplicity, we assume that each industry produces a single
commodity (goods or services) in a given year and that income (output) is gener-
ated from the sale of this commodity. Each industry purchases commodities from the
other industries, including itself, in order to generate its output. No commodities are
purchased from outside the region and no output is sold outside the region. Further-
more, for each industry, we assume that production exactly equals consumption (out-
put equals input, income equals expenditure). In this sense, this is a closed economy
that is in equilibrium. Table 2.4 summarizes how much of each industry’s output is
consumed by each industry.

Tahle 2.4
Produced by (output)
Service Electricity Oil
Service 1/4 1/3 1/2
(C,"“S‘t‘)med Y Blectricity 1/4 1/3 1/4
S oil 1/2 1/3 1/4

From the first column of the table, we see that the service industry consumes 1/4
of its own output, electricity consumes another 1/4, and the oil industry uses 1/2 of
the service industry’s output. The other two columns have similar interpretations.
Notice that the sum of each column is 1, indicating that all of the output of each
industry is consumed.

Let xy, x,, and x; denote the annual output (income) of the service, electricity,
and oil industries, respectively, in millions of dollars. Since consumption corresponds
to expenditure, the service industry spends j x; on its own commodity, 1x, on elec-
tricity, and 3 x; on oil. This means that the service industry’s total annual expendi-
ture is  x, + L+ 3 x3. Since the economy is in equilibrium, the service industry’s
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expenditure must equal its annual income x,. This gives the first of the following
equations; the other two equations are obtained by analyzing the expenditures of the
electricity and oil industries.

Service: 1% + %xz-l- 1x = x,

Electricity:  jx+1x,+ 523 = x,

Oil: %x1+%x2+ix3=x3
Rearranging each equation, we obtain a homogeneous system of linear equations,
which we then solve. (Check this!)

3 1

Tintlotix=0 -2 1 o 1 0 -1
1 _ _1 — 1 2 1 3
1% %xz ix3=0 —> A 7/0] —> [0 1 —3|0
1 3 _ 1 1 _3

5x1+%x2_ZX3—0 5) 3 4 0 0 0 0 0

Setting x; = t, we find that x; = t and x, = 3 t. Thus, we see that the relative outputs of
the service, electricity, and oil industries need to be in the ratios x;: x,: x3 =4:3: 4

for the economy to be in equilibrium. 1

Remarks

* The last example illustrates what is commonly called the Leontief closed model.

* Since output corresponds to income, we can also think of x,, x,, and x; as the
prices of the three commodities.

We now modify the model in Example 2.33 to accommodate an open economy, one
in which there is an external as well as an internal demand for the commodities that
are produced. Not surprisingly, this version is called the Leontief open model.

Example 2.34

Consider the three industries of Example 2.33 but with consumption given by
Table 2.5. We see that, of the commodities produced by the service industry, 20% are
consumed by the service industry, 40% by the electricity industry, and 10% by the oil
industry. Thus, only 70% of the service industry’s output is consumed by this econ-
omy. The implication of this calculation is that there is an excess of output (income)
over input (expenditure) for the service industry. We say that the service industry is
productive. Likewise, the oil industry is productive but the electricity industry is non-
productive. (This is reflected in the fact that the sums of the first and third columns
are less than 1 but the sum of the second column is equal to 1). The excess output may
be applied to satisfy an external demand.

Tahle 2.5
Produced by (output)
Service Electricity Oil
C db Service 0.20 0.50 0.10
CONSUMEEDY  Electricity ~ 0.40 0.20 0.20
(input)

Oil 0.10 0.30 0.30
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For example, suppose there is an annual external demand (in millions of dollars)
for 10, 10, and 30 from the service, electricity, and oil industries, respectively. Then,
equating expenditures (internal demand and external demand) with income (out-
put), we obtain the following equations:

output internal demand external demand
Service X = 0.2x; + 0.5x, + 0.1x; + 10
Electricity X, = 0.4x; + 0.2x, + 0.2x5 + 10
il X3 =0.1x; + 0.3x, + 0.3x3 + 30

Rearranging, we obtain the following linear system and augmented matrix:

0.8x, — 0.5x, — 0.1x, = 10 08 =05 —0.1] 10
—04x, + 0.8x, — 02x, =10 — | —04 08 —02| 10
—0.1x; — 0.3x, + 0.7x; = 30 -01 -03 07/ 30
Row reduction yields
1 0 0| 6174
0 1 63.04
0 0 78.70

from which we see that the service, electricity, and oil industries must have an an-
nual production of $61.74, $63.04, and $78.70 (million), respectively, in order to meet
both the internal and external demand for their commodities.

We will revisit these models in Section 3.7.

Finite Linear Games

There are many situations in which we must consider a physical system that has only a
finite number of states. Sometimes these states can be altered by applying certain pro-
cesses, each of which produces finitely many outcomes. For example, a light bulb can be
on or off and a switch can change the state of the light bulb from on to offand vice versa.
Digital systems that arise in computer science are often of this type. More frivolously, many
computer games feature puzzles in which a certain device must be manipulated by various
switches to produce a desired outcome. The finiteness of such situations is perfectly suited
to analysis using modular arithmetic, and often linear systems over some Z, play a role.
Problems involving this type of situation are often called finite linear games.

Example 2.35

A row of five lights is controlled by five switches. Each switch changes the state (on or
off) of the light directly above it and the states of the lights immediately adjacent to
the left and right. For example, if the firstand third lights are on, as in Figure 2.15(a),
then pushing switch A changes the state of the system to that shown in Figure 2.15(b).
If we next push switch C, then the result is the state shown in Figure 2.15(c).
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Suppose that initially all the lights are off. Can we push the switches in some order
so that only the first, third, and fifth lights will be on? Can we push the switches in

some order so that only the first light will be on?

Solution  The on/off nature of this problem suggests that binary notation will be helpful
and that we should work with Z,. Accordingly, we represent the states of the five lights by
a vector in Z3, where 0 represents off and 1 represents on. Thus, for example, the vector

corresponds to Figure 2.15(b).

© O = = O

We may also use vectors in Z; to represent the action of each switch. If a switch
changes the state of a light, the corresponding component is a 1; otherwise, it is 0.
With this convention, the actions of the five switches are given by

The situation depicted in Figure 2.15(a) co

followed by

O O O = =
O O = =

0

1
1
1
L 0

S O = O =

O O O = =

0

, €

— - O
I
—_— -0 O O

rresponds to the initial state
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It is the vector sum (in Z3)

s t+a=

S O = = O

Observe that this result agrees with Figure 2.15(b).

Starting with any initial configuration s, suppose we push the switches in the order
A, C,D, A, C, B. This corresponds to the vectorsums +a + c+d + a+ ¢+ b. But
in Z5, addition is commutative, so we have

s+tat+c+d+a+c+b=s+2a+b+2c+d
=s+b+d

where we have used the fact that 2 = 0 in Z,. Thus, we would achieve the same result
by pushing only B and D—and the order does not matter. (Check that this is correct.)
Hence, in this example, we do not need to push any switch more than once.

So, to see if we can achieve a target configuration t starting from an initial
configuration s, we need to determine whether there are scalars x,, . . ., x5 in Z, such that

stxat+txbt+---txe=t

In other words, we need to solve (if possible) the linear system over Z, that corre-
sponds to the vector equation

xatxb+ - -txe=t—s=t+s

In this case, s = 0 and our first target configuration is

-
I
—_— O = O

The augmented matrix of this system has the given vectors as columns:

1100 0/
1 110 0fg
01 1 1 0]
001 1 1]
00 0 1 1|1

We reduce it over Z, to obtain
1000 1|9
0100 1]
0010 0]
00 0 1 1|7
00 00 0]



112 Chapter 2 Systems of Linear Equations

Thus, xs is a free variable. Hence, there are exactly two solutions (corresponding to
x5 = 0 and x5 = 1). Solving for the other variables in terms of x5, we obtain

X = X5
X, =1+ x5
x3=1

Xy =1+ x5

So, when x; = 0 and x; = 1, we have the solutions

X 0 X 1
X, 1 X, 0
X0 =1 and |x|=]1
Xy 1 Xy 0
X5 0 X5 1
w—>  respectively. (Check that these both work.)
Similarly, in the second case, we have
T
0
t=10
0
0—
The augmented matrix reduces as follows:
1 100 0f; 1000 1fo
1 11 0 0]g 01 00 I
01 11 0jg|—|0 010 0/
0 0 1 1 1]g 000 1 I
00 01 1]p L0 0 0 0 0]

showing that there is no solution in this case; that is, it is impossible to start with all
of the lights off and turn only the first light on.

Example 2.35 shows the power of linear algebra. Even though we might have
found out by trial and error that there was no solution, checking all possible ways to
push the switches would have been extremely tedious. We might also have missed the
fact that no switch need ever be pushed more than once.

‘ >

Example 2.36 Consider a row with only three lights, each of which can be off, light blue, or dark blue.
Below the lights are three switches, A, B, and C, each of which changes the states of
particular lights to the next state, in the order shown in Figure 2.16. Switch A changes

! the states of the first two lights, switch B all three lights, and switch C the last two




Off

Dark blue Light blue

N

Figure 2.16

Section 2.4  Applications 13

1l ! B o ¥ L st ¥ ! 8
A B C A B Cc

Figure 2.17

lights. If all three lights are initially off, is it possible to push the switches in some order
so that the lights are off, light blue, and dark blue, in that order (as in Figure 2.17)?

Solution Whereas Example 2.35 involved Z,, this one clearly (is it clear?) involves
Z5. Accordingly, the switches correspond to the vectors

1 1 0
a=|1,b=]1],c=]1
0 1 1
0
in Z3, and the final configuration we are aiming forist = | 1 |. (Offis 0, light blueis 1,
2

and dark blue is2.) We wish to find scalars x;, x,, x;in Z; such that
xatxb+xc=t

(where x; represents the number of times the ith switch is pushed). This equation
gives rise to the augmented matrix [a b ¢ | t], which reduces over Z; as follows:

1 1 0]0 1 0 0]2
1 1 1|1|—> |0 1 0]1
0 1 112 0 0 11

Hence, there is a unique solution: x; = 2, x, = 1, x; = 1. In other words, we must push

»—=  switch A twice and the other two switches once each. (Check this.) 1
TEXBI’GISES 2.4 _
Allocation of Resources Tahle 2.6
1. Suppose that, in Example 2.27, 400 units of food A, Bacteria  Bacteria Bacteria
600 units of B, and 600 units of C are placed in the test Strain I Strain II Strain III
tube each day and the data on daily food consump-
tion by the bacteria (in units per day) are as shown Food A 1 2 g
in Table 2.6. How many bacteria of each strain can Food B 2 ! !
Food C 1 1 2

coexist in the test tube and consume all of the food?

2. Suppose that in Example 2.27, 400 units of food A,
500 units of B, and 600 units of C are placed in consumption by the bacteria (in units per day) are
the test tube each day and the data on daily food as shown in Table 2.7. How many bacteria of each
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Table 2.1
Bacteria Bacteria Bacteria
Strain I Strain II Strain III
Food A 1 2 0
Food B 2 1 3
Food C 1 1 1

strain can coexist in the test tube and consume all
of the food?

. A florist offers three sizes of flower arrangements

containing roses, daisies, and chrysanthemums. Each
small arrangement contains one rose, three daisies,
and three chrysanthemums. Each medium arrange-
ment contains two roses, four daisies, and six chry-
santhemums. Each large arrangement contains four
roses, eight daisies, and six chrysanthemums. One
day, the florist noted that she used a total of 24 roses,
50 daisies, and 48 chrysanthemums in filling orders
for these three types of arrangements. How many
arrangements of each type did she make?

. (@) Inyour pocket you have some nickels, dimes, and

quarters. There are 20 coins altogether and exactly
twice as many dimes as nickels. The total value of the
coins is $3.00. Find the number of coins of each type.
(b) Find all possible combinations of 20 coins (nickels,
dimes, and quarters) that will make exactly $3.00.

. A coffee merchant sells three blends of coffee. A bag

of the house blend contains 300 grams of Colombian
beans and 200 grams of French roast beans. A bag of the
special blend contains 200 grams of Colombian beans,
200 grams of Kenyan beans, and 100 grams of French
roast beans. A bag of the gourmet blend contains

100 grams of Colombian beans, 200 grams of Kenyan
beans, and 200 grams of French roast beans. The mer-
chant has on hand 30 kilograms of Colombian beans,
15 kilograms of Kenyan beans, and 25 kilograms of French
roast beans. If he wishes to use up all of the beans, how
many bags of each type of blend can be made?

. Redo Exercise 5, assuming that the house blend contains

300 grams of Colombian beans, 50 grams of Kenyan
beans, and 150 grams of French roast beans and the
gourmet blend contains 100 grams of Colombian beans,
350 grams of Kenyan beans, and 50 grams of French roast
beans. This time the merchant has on hand 30 kilograms of
Colombian beans, 15 kilograms of Kenyan beans, and

15 kilograms of French roast beans. Suppose one bag of
the house blend produces a profit of $0.50, one bag of

the special blend produces a profit of $1.50, and one bag
of the gourmet blend produces a profit of $2.00. How
many bags of each type should the merchant prepare

if he wants to use up all of the beans and maximize his
profit? What is the maximum profit?

Balancing Chemical Equations

In Exercises 7-14, balance the chemical equation for each
reaction.

7. FeS, + O, — Fe,0; + SO,

8. CO, + H,0 —> C4H,04 + O, (This reaction takes
place when a green plant converts carbon dioxide and
water to glucose and oxygen during photosynthesis.)

9. C,H,, + O,— CO, + H,0 (This reaction occurs
when butane, C,H,, burns in the presence of oxygen
to form carbon dioxide and water.)

10. C,H,0, + O,—> H,0 + CO,

11. C;H,,0OH + O, — H,0 + CO, (This equation rep-
resents the combustion of amyl alcohol.)

12. HClO4 + P4010 — H3PO4 + C1207
13. Na,CO, + C + N,—> NaCN + CO

CAS 14. C2H2C14 + Ca(OH)2 — CzHC13 + CaC12 + Hzo

Network Analysis

15. Figure 2.18 shows a network of water pipes with flows
measured in liters per minute.

(a) Setup and solve a system of linear equations to find
the possible flows.

(b) If the flowthrough AB is restricted to 5 L/min, what
will the flows through the other two branches be?

(c) What are the minimum and maximum possible
tlows through each branch?

(d) We have been assuming that flow is always posi-
tive. What would negative flow mean, assum-
ing we allowed it? Give an illustration for this

example.
g 30
le —
C
1o, f3
B
Figure 2.18



16. The downtown core of Gotham City consists of

one-way streets, and the traffic flow has been
measured at each intersection. For the city block
shown in Figure 2.19, the numbers represent the
average numbers of vehicles per minute entering and
leaving intersections A, B, C, and D during business
hours.

(a) Setup and solve asystem of linear equations to find
the possible flows f,, . . ., fa.

(b) If traffic is regulated on CD so that f, = 10 vehi-
cles per minute, what will the average flows on the
other streets be?

(c) What are the minimum and maximum possible
flows on each street?

(d) How would the solution change if all of the direc-
tions were reversed?

1ol 20T
1o, i 5,

A B

le f3

s | L | s

D c

ml IST

Figure 2.19

17. A network of irrigation ditches is shown in Figure 2.20,

with flows measured in thousands of liters per day.

Figure 2.20
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(a) Setupandsolve a system of linear equations to find
the possible flows f}, . . ., fs.

(b) Suppose DC is closed. What range of flow will need
to be maintained through DB?

(c) From Figure 2.20 it is clear that DB cannot be
closed. (Why not?) How does your solution in part
(a) show this?

(d) From your solution in part (a), determine the mini-

mum and maximum flows through DB.

18. (a) Setup and solve a system of linear equations to

find the possible flows in the network shown in
Figure 2.21.

(b) Isit possible for f; = 100 and fy = 150? [Answer
this question first with reference to your solution
in part (a) and then directly from Figure 2.21.]

(c) Iff, = 0, what will the range of flow be on each of
the other branches?

10()T 150 l
200 fi

=l

| Al Al

200 Je J

100T 100 l 100T

Figure 2.21

200T
f2

Electrical Networks

For Exercises 19 and 20, determine the currents for the
given electrical networks.

— |y
II
8 volts
§ 1 ohm
L L
—_— —_—
A WA B
1 ohm
4 ohms §
I D I
¢ |1 ¢
II
13 volts
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20. iy C i
i — [ S
I I
S volts
§ 1 ohm
I I
— —_—
A MV B
2 ohms
4 ohms §
i D i
«— «—

21. (a) Find the currentsI, I}, ..
in Figure 2.22.
(b) Find the effective resistance of this network.
(c) Can you change the resistance in branch BC (but
leave everything else unchanged) so that the cur-
rent through branch CE becomes 0?

.» Is in the bridge circuit

1 ohm c 2 ohms
A% WAA%
IJT § 1 ohm I
1y ]31 Is
— —
B WA A D
2 ohms E 1 ohm
A
N
«— I! -—
Y 14 volts Y
Figure 2.22

22. The networks in parts (a) and (b) of Figure 2.23
show two resistors coupled in series and in parallel,
respectively. We wish to find a general formula for the
effective resistance of each network—that is, find R4
such that E = R .

(a) Show that the effective resistance R.¢ of a network
with two resistors coupled in series [Figure 2.23(a)]
is given by

Rg =R, + R,
(b) Show that the effective resistance R of a net-

work with two resistors coupled in parallel
[Figure 2.23(b)] is given by

1
Reff =
E . =
R, R,
R, R,
NNV NNV
i
|
II
E
(a)
]l Rl
MV
]2 R2 b
—_
A%
il
[y
II
E
(b)
Figure 2.23

Resistors in series and in parallel

Linear Economic Models

23. Consider a simple economy with just two industries:
farming and manufacturing. Farming consumes 1/2 of
the food and 1/3 of the manufactured goods. Manufac-
turing consumes 1/2 of the food and 2/3 of the manu-
factured goods. Assuming the economy is closed and
in equilibrium, find the relative outputs of the farming
and manufacturing industries.

24. Suppose the coal and steel industries form a closed
economy. Every $1 produced by the coal industry
requires $0.30 of coal and $0.70 of steel. Every $1
produced by steel requires $0.80 of coal and $0.20 of
steel. Find the annual production (output) of coal and
steel if the total annual production is $20 million.

25. A painter, a plumber, and an electrician enter into a
cooperative arrangement in which each of them agrees
to work for himself/herself and the other two for a
total of 10 hours per week according to the schedule
shown in Table 2.8. For tax purposes, each person must
establish a value for his/her services. They agree to do
this so that they each come out even—that is, so that the



total amount paid out by each person equals the amount
he/she receives. What hourly rate should each person
charge if the rates are all whole numbers between $30
and $60 per hour?

Tahle 2.8
Supplier
Painter Plumber Electrician
Painter 2 1 5
Consumer Plumber 4 5 1
Electrician 4 4 4

26. Four neighbors, each with a vegetable garden, agree to
share their produce. One will grow beans (B), one will
grow lettuce (L), one will grow tomatoes (T), and one
will grow zucchini (Z). Table 2.9 shows what fraction
of each crop each neighbor will receive. What prices
should the neighbors charge for their crops if each
person is to break even and the lowest-priced crop has
avalue of $50?

Tahle 2.9
Producer
B L T Z
B 0 1/4 1/8 1/6
Consumer L 1/2 1/4 1/4 1/6
T 1/4 1/4 1/2 1/3
Z 1/4 1/4 1/8 1/3

27. Suppose the coal and steel industries form an open
economy. Every $1 produced by the coal industry
requires $0.15 of coal and $0.20 of steel. Every $1
produced by steel requires $0.25 of coal and $0.10 of
steel. Suppose that there is an annual outside demand
for $45 million of coal and $124 million of steel.

(a) How much should each industry produce to satisfy
the demands?

(b) If the demand for coal decreases by $5 million
per year while the demand for steel increases by
$6 million per year, how should the coal and steel
industries adjust their production?

28. In Gotham City, the departments of Administra-
tion (A), Health (H), and Transportation (T) are
interdependent. For every dollar’s worth of services
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they produce, each department uses a certain amount
of the services produced by the other departments
and itself, as shown in Table 2.10. Suppose that, dur-
ing the year, other city departments require $1 million
in Administrative services, $1.2 million in Health
services, and $0.8 million in Transportation services.
What does the annual dollar value of the services
produced by each department need to be in order to
meet the demands?

Table 2.10
Department
A H T
A $0.20 0.10 0.20
Buy H 0.10 0.10 0.20
T 0.20 0.40 0.30

Finite Linear Games

29.(a) In Example 2.35, suppose all the lights are initially
off. Can we push the switches in some order so
that only the second and fourth lights will be on?

(b) Can we push the switches in some order so that
only the second light will be on?

30. (a) In Example 2.35, suppose the fourth light is
initially on and the other four lights are off. Can
we push the switches in some order so that only
the second and fourth lights will be on?

(b) Can we push the switches in some order so that
only the second light will be on?

31. In Example 2.35, describe all possible configurations
of lights that can be obtained if we start with all the
lights off.

32. (a) InExample2.36, suppose that all of the lights

are initially off. Show that it is possible to
push the switches in some order so that the
lights are off, dark blue, and light blue, in that order.

(b) Show that it is possible to push the switches in
some order so that the lights are light blue, off,
and light blue, in that order.

(c) Prove that any configuration of the three lights
can be achieved.

33. Suppose the lights in Example 2.35 can be off, light
blue, or dark blue and the switches work as described
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in Example 2.36. (That is, the switches control the same
lights as in Example 2.35 but cycle through the colors as
in Example 2.36.) Show that it is possible to start with
all of the lights off and push the switches in some order
so that the lights are dark blue, light blue, dark blue,
light blue, and dark blue, in that order.

34. For Exercise 33, describe all possible configurations
of lights that can be obtained, starting with all the

lights off.

“%° 35. Nine squares, each one either black or white, are ar-

ranged in a 3X3 grid. Figure 2.24 shows one possible

Figure 2.24

The nine squares
puzzle

arrangement. When touched, each square changes
its own state and the states of some of its neighbors
(black — white and white — black). Figure 2.25 shows

@ | 3 1| 2

4 1516 4156 41516
¥ * s *

71819 708 |9 71819

1|23 1|23 1|23
@|s5 |6 4 13| 6 415 |®
* 3 * 1 *

71819 70819 701819
# * *

1] 2|3 1|23 1|23

415 |6 415 |6 415 |6
S & S
@1 8|9 71® |9 7|8 |©®

ES £ ES F 3 E * %

Figure 2.25

State changes for the nine squares puzzle

how the state changes work. (Touching the square
whose number is circled causes the states of the
squares marked * to change.) The object of the game
is to turn all nine squares black. [Exercises 35 and 36
are adapted from puzzles that can be found in

the interactive CD-ROM game The Seventh Guest
(Trilobyte Software/Virgin Games, 1992).]

(a) Ifthe initial configuration is the one shown in
Figure 2.24, show that the game can be won and
describe a winning sequence of moves.

(b) Prove that the game can always be won, no matter
what the initial configuration.

36. Consider a variation on the nine squares puzzle. The
game is the same as that described in Exercise 35
except that there are three possible states for each
square: white, gray, or black. The squares change as
shown in Figure 2.25, but now the state changes follow
the cycle white — gray — black — white. Show how
the winning all-black configuration can be achieved

from the initial configuration shown in Figure 2.26.

Figure 2.26
The nine squares puzzle
with more states

Miscellaneous Prohlems

In Exercises 37-53, set up and solve an appropriate system
of linear equations to answer the questions.

37. Grace is three times as old as Hans, but in 5 years she
will be twice as old as Hans is then. How old are they
now?

38. The sum of Annie’s, Bert’s, and Chris’s ages is 60.
Annie is older than Bert by the same number of years
that Bert is older than Chris. When Bert is as old as
Annie is now, Annie will be three times as old as Chris
is now. What are their ages?

The preceding two problems are typical of those found in
popular books of mathematical puzzles. However, they have
their origins in antiquity. A Babylonian clay tablet that sur-
vives from about 300 B.C. contains the following problem.



39. There are two fields whose total area is 1800 square
yards. One field produces grain at the rate of 3 bushel
per square yard; the other field produces grain at the
rate of 3 bushel per square yard. If the total yield is
1100 bushels, what is the size of each field?

Over 2000 years ago, the Chinese developed methods for
solving systems of linear equations, including a version of
Gaussian elimination that did not become well known in
Europe until the 19th century. (There is no evidence that
Gauss was aware of the Chinese methods when he devel-
oped what we now call Gaussian elimination. However, it is
clear that the Chinese knew the essence of the method, even
though they did not justify its use.) The following problem
is taken from the Chinese text Jiuzhang suanshu (Nine
Chapters in the Mathematical Art), written during the early
Han Dynasty, about 200 B.C.

40. There are three types of corn. Three bundles of the
first type, two of the second, and one of the third
make 39 measures. Two bundles of the first type, three
of the second, and one of the third make 34 measures.
And one bundle of the first type, two of the second,
and three of the third make 26 measures. How many
measures of corn are contained in one bundle of
each type?

41. Describe all possible values of a, b, ¢, and d that
will make each of the following a valid addition
table. [Problems 41-44 are based on the article
“An Application of Matrix Theory” by Paul Glaister in

The Mathematics Teacher, 85 (1992), pp. 220-223.]

(a) b (b) b
6
5

+ |a + |a
2 3 c |3
4 5 d |4

QU o

42. What conditions on w, x, y, and z will guarantee that
we can find g, b, ¢, and d so that the following is a valid

addition table?

+
[ = S N

a
w
y

& o

43. Describe all possible values of a, b, ¢, d, e, and f
that will make each of the following a valid addition

table.

(a) (b)
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44. Generalizing Exercise 42, find conditions on the en-
tries of a 3X3 addition table that will guarantee that
we can solve for a, b, ¢, d, e, and f as previously.

45. From elementary geometry we know that there

is a unique straight line through any two points

in a plane. Less well known is the fact that there is a
unique parabola through any three noncollinear
points in a plane. For each set of points below, find
a parabola with an equation of the form y = ax* +
bx + c that passes through the given points. (Sketch
the resulting parabola to check the validity of your

answer.)

(@ (0,1),(—1,4),and (2,1)
(b) (—3,1),(—2,2),and (—1,5)

Through any three noncollinear points there also
passes a unique circle. Find the circles (whose general
equations are of the form x* + y* + ax + by + ¢ = 0)
that pass through the sets of points in Exercise 45. (To
check the validity of your answer, find the center and
radius of each circle and draw a sketch.)

46.

The process of adding rational functions (ratios of polyno-
mials) by placing them over a common denominator is
the analogue of adding rational numbers. The reverse
process of taking a rational function apart by writing it as
a sum of simpler rational functions is useful in several
areas of mathematics; for example, it arises in calculus
when we need to integrate a rational function and in dis-
crete mathematics when we use generating functions to
solve recurrence relations. The decomposition of a rational
function as a sum of partial fractions leads to a system of
linear equations. In Exercises 47-50, find the partial
fraction decomposition of the given form. (The capital
letters denote constants.)

3x + 1 A B
47. — =
x“+2x—3 x — 1 x+3
¥ =3x+3 A B C
48— =— .
X*+2x*+x x x+1 ((x+1)
5 49 x—1
C .
(x + D%+ Dx* + 4)
A Bx+ C Dx+E
x+1 x*+1 x2+ 4
50 X+ x+1 A+ B
CAS . = —
x(x— D+ x+Dx2+1)° x x—1
Cx+ D Ex+F Gx+H Ix + ]
X+x+1 P+ 1 0 (P+1)P P+
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Following are two useful formulas for the sums of powers of
consecutive natural numbers:
nn+ 1)

2

1+2+ - +n=

and
nn +1)2n + 1)
6

P+ 224+ P =

The validity of these formulas for all values of n = 1 (or
even n = 0) can be established using mathematical induc-
tion (see Appendix B). One way to make an educated guess
as to what the formulas are, though, is to observe that we
can rewrite the two formulas above as

1.2 L34 1.2 41
sh? + 5 and sn° + an + gn

[

respectively. This leads to the conjecture that the sum of pth
powers of the first n natural numbers is a polynomial of
degree p + 1 in the variable n.

51. Assuming that 1 + 2 +---+ n = an® + bn + ¢,
find a, b, and ¢ by substituting three values for n and

thereby obtaining a system of linear equations in a,
b, and c.

52, Assumethat 12+ 22+ -+ n> = an® + bn* + cn + d.
Find a, b, ¢, and d. [Hint: It is legitimate to use n = 0.
What is the left-hand side in that case?]

53.Show that 1> + 2° + - -+ + n> = (n(n + 1)/2)%.
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Vignette

The Global Positioning System

The Global Positioning System (GPS) is used in a variety of situations for determin-
ing geographical locations. The military, surveyors, airlines, shipping companies,
and hikers all make use of it. GPS technology is becoming so commonplace that
some automobiles, cellular phones, and various handheld devices are now equipped
with it.

The basic idea of GPS is a variant on three-dimensional triangulation: A point
on Earth’s surface is uniquely determined by knowing its distances from three other
points. Here the point we wish to determine is the location of the GPS receiver, the
other points are satellites, and the distances are computed using the travel times of
radio signals from the satellites to the receiver.

We will assume that Earth is a sphere on which we impose an xyz-coordinate
system with Earth centered at the origin and with the positive z-axis running through
the north pole and fixed relative to Earth.

For simplicity, let’s take one unit to be equal to the radius of Earth. Thus Earth’s
surface becomes the unit sphere with equation x* + y*> + z* = 1. Time will be
measured in hundredths of a second. GPS finds distances by knowing how long it
takes a radio signal to get from one point to another. For this we need to know the
speed of light, which is approximately equal to 0.47 (Earth radii per hundredths of
a second).

Let’s imagine that you are a hiker lost in the woods at point (x, y, z) at some time
t. You dort know where you are, and furthermore, you have no watch, so you don’t
know what time it is. However, you have your GPS device, and it receives simultaneous
signals from four satellites, giving their positions and times as shown in Table 2.11.
(Distances are measured in Earth radii and time in hundredths of a second past
midnight.)

Table 2.11 Satellite Data

Satellite Position Time
1 (1.11, 2.55, 2.14) 1.29
2 (2.87, 0.00, 1.43) 1.31
3 (0.00, 1.08, 2.29) 2.75
4 (1.54, 1.01, 1.23) 4.06
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Let (x, y, z) be your position, and let ¢ be the time when the signals arrive. The
goal is to solve for x, y, z, and t. Your distance from Satellite 1 can be computed as
follows. The signal, traveling at a speed of 0.47 Earth radii/10 * sec, was sent at time
1.29 and arrived at time ¢, so it took ¢ — 1.29 hundredths of a second to reach you.
Distance equals velocity multiplied by (elapsed) time, so

d=0.47(t — 1.29)

We can also express d in terms of (x, y, z) and the satellite’s position (1.11, 2.55, 2.14)
using the distance formula:

d=V(x — 111 + (y — 2557 + (z — 2.14)?
Combining these results leads to the equation
(x = L11)* + (y — 2.55)% + (z — 2.14)* = 0.47%(t — 1.29)* (1)
Expanding, simplifying, and rearranging, we find that Equation (1) becomes
2.22x + 5.10y + 4.28z — 0.57t = x* + y* + z° — 0.22t> + 11.95

Similarly, we can derive a corresponding equation for each of the other three satel-
lites. We end up with a system of four equations in x, y, z, and t:

2.22x + 5.10y + 4.28z — 0.57t = x* + y* + 22 — 0.22¢* + 11.95

5.74x +2.86z — 0.58t = x* + y* + 2> — 0.22t> + 9.90

2.16y +4.58z — 1.21t = x* + y* + 2> — 022t + 4.74

3.08x +2.02y + 246z — 1.79t = x* + y* + 22 — 0.22¢° + 1.26
Thesearenotlinear equations, butthe nonlinear termsarethesame in each equation.

If we subtract the first equation from each of the other three equations, we obtain a
linear system:

3.52x — 5.10y — 1.42z — 0.0t = 2.05
—222x— 294y + 030z — 0.64t = 721
0.86x — 3.08y — 1.82z — 1.22t = —10.69

The augmented matrix row reduces as

352 =510 —142 —0.01 | —2.05 1 0 0 036|297
=222 —294 030 —-064| —-721| —> |0 1 0 0.03]0.81
086 —3.08 —1.82 —1.22|-10.69 0 0 1 079]5.91



from which we see that
x =297 — 0.36¢
y = 0.81 — 0.03¢ (2)
z=591 —0.79¢

with t free. Substituting these equations into (1), we obtain

(2.97 — 0.36t — 1.11)* + (0.81 — 0.03¢ — 2.55)*
+ (5.91 — 0.79¢ — 2.14)* = 0.47%(t — 1.29)*

which simplifies to the quadratic equation
0.54t> — 6.65t + 2032 =0

There are two solutions:
t=674 and t=5.60

Substituting into (2), we find that the first solution corresponds to (x, y, z) = (0.55,
0.61,0.56) and the second solution to (x, y, z) = (0.96,0.65, 1.46). The second solution
is clearly not on the unit sphere (Earth), so we reject it. The first solution produces
x>+ y* + 27 = 0.99, so we are satisfied that, within acceptable roundoff error, we
have located your coordinates as (0.55, 0.61, 0.56).

In practice, GPS takes significantly more factors into account, such as the fact
that Earth’s surface is not exactly spherical, so additional refinements are needed in-
volving such techniques as least squares approximation (see Chapter 7). In addition,
the results of the GPS calculation are converted from rectangular (Cartesian) coor-
dinates into latitude and longitude, an interesting exercise in itself and one involving
yet other branches of mathematics.
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Chapter 2 Systems of Linear Equations

Iterative Methods for Solving Linear Systems

The direct methods for solving linear systems, using elementary row operations, lead
to exact solutions in many cases but are subject to errors due to roundoff and other
factors, as we have seen. The third road in our “trivium” takes us down quite a different
path indeed. In this section, we explore methods that proceed iteratively by succes-
sively generating sequences of vectors that approach a solution to a linear system. In
many instances (such as when the coefficient matrix is sparse—that is, contains many
zero entries), iterative methods can be faster and more accurate than direct methods.
Also, iterative methods can be stopped whenever the approximate solution they gen-
erate is sufficiently accurate. In addition, iterative methods often benefit from inac-
curacy: Roundoff error can actually accelerate their convergence toward a solution.

We will explore two iterative methods for solving linear systems: Jacobi’s method
and a refinement of it, the Gauss-Seidel method. In all examples, we will be consid-
ering linear systems with the same number of variables as equations, and we will
assume that there is a unique solution. Our interest is in finding this solution using
iterative methods.

Example 2.31

Carl Gustav Jacobi (1804-1851) was
a German mathematician who made
important contributions to many
fields of mathematics and physics,
including geometry, number theory,
analysis, mechanics, and fluid
dynamics. Although much of his
work was in applied mathematics,
Jacobi believed in the importance of
doing mathematics for its own sake.
A fine teacher, he held positions

at the Universities of Berlin and
Konigsberg and was one of the most
famous mathematicians in Europe.

\j

Consider the system
7%, — x,= 5
3x, — 5x, = —7

Jacobi’s method begins with solving the first equation for x; and the second equation
for x,, to obtain

5+ Xy
xl ==
7 (1)
7 + 3x,
X, =
5

We now need an initial approximation to the solution. It turns out that it does not
matter what this initial approximation is, so we might as well take x; = 0, x, = 0. We
use these values in Equations (1) to get new values of x, and x:

5+0 5
X, = =2 ~0.714
7 7
7+ 3-0 7
X, = ——— =< = 1.400
5 5
Now we substitute these values into (1) to get
5+ 14
x =———= 0914
7433
X, = ——— ~ 1829

(written to three decimal places). We repeat this process (using the old values of x,
and x, to get the new values of x; and x,), producing the sequence of approximations
given in Table 2.12.



The Gauss-Seidel method is named
after C. F. Gauss and Philipp Ludwig
von Seidel (1821-1896). Seidel
worked in analysis, probability
theory, astronomy, and optics.
Unfortunately, he suffered from
eyeproblemsand retired at a young
age. The paper in which he described
the method now known as Gauss-
Seidel was published in 1874. Gauss,
it seems, was unaware of the
method!
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Tahle 2.12
n 0 1 2 3 4 5 6
Xy 0 0.714 0.914 0.976 0.993 0.998 0.999
%y 0 1.400 1.829 1.949 1.985 1.996 1.999

. X1 .
The successive vectors [ } are called iterates, so, for example, when n = 4,
2

0.993
the fourth iterate is [ ] We can see that the iterates in this example are

1.985

1
approaching {2], which is the exact solution of the given system. (Check this.)
We say in this case that Jacobi’s method converges. I

Jacobi’s method calculates the successive iterates in a two-variable system accord-
ing to the crisscross pattern shown in Table 2.13.

Table 2.13
n 0 1 2 3

X1 - T~ 7
X, — ~—— T~

Before we consider Jacobi’s method in the general case, we will look at a
modification of it that often converges faster to the solution. The Gauss-Seidel method
is the same as the Jacobi method except that we use each new value as soon as we can.
So in our example, we begin by calculating x, = (5 + 0)/7 = 3 =~ 0.714 as before, but
we now use this value of x, to get the next value of x,:

7+3:35
X, = ————~ 1829
5

We then use this value of x, to recalculate x,, and so on. The iterates this time are
shown in Table 2.14.

We observe that the Gauss-Seidel method has converged faster to the solu-

tion. The iterates this time are calculated according to the zigzag pattern shown in
Table 2.15.

Table 2.14
n 0 1 2 3 4 5
%) 0 0.714 0.976 0.998 1.000 1.000

X 0 1.829 1.985 1.999 2.000 2.000
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Tahle 2.15

n 0 1 2 3
X _—7| _—7| _—7|
X, +/ +/

The Gauss-Seidel method also has a nice geometric interpretation in the case of
two variables. We can think of x; and x, as the coordinates of points in the plane. Our
starting point is the point corresponding to our initial approximation, (0, 0). Our first
calculation gives x; = 2 so we move to the point (2,0) = (0.714, 0). Then we compute
X, = % =~ 1.829, which moves us to the point (%, %) =~ (0.714, 1.829). Continuing in
this fashion, our calculations from the Gauss-Seidel method give rise to a sequence
of points, each one differing from the preceding point in exactly one coordinate. If
we plot the lines 7x; — x, = 5 and 3x; — 5x, = —7 corresponding to the two given
equations, we find that the points calculated above fall alternately on the two lines,
as shown in Figure 2.27. Moreover, they approach the point of intersection of the
lines, which corresponds to the solution of the system of equations. This is what

convergence means!

X2
A
2__
1.5_/
—1
1__
0.5+
T B o e e e e e e
02 04 06/ 038 1 1.2
=051
_1__
Figure 2.21

Converging iterates

The general cases of the two methods are analogous. Given a system of n linear
equations in # variables,

apx, +apx, +0+ ax, = b

Ay + apx, +-+ ayx, = b, (2)

anx; + apx, +---+ a,x, = b,

we solve the first equation for x,, the second for x,, and so on. Then, beginning
with an initial approximation, we use these new equations to iteratively update each
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variable. Jacobi’s method uses all of the values at the kth iteration to compute the
(k + 1)st iterate, whereas the Gauss-Seidel method always uses the most recent value
of each variable in every calculation. Example 2.39 later illustrates the Gauss-Seidel
method in a three-variable problem.

At this point, you should have some questions and concerns about these iterative
methods. (Do you?) Several come to mind: Must these methods converge? If not,
when do they converge? If they converge, must they converge to the solution? The
answer to the first question is no, as Example 2.38 illustrates.

Example 2.38

Apply the Gauss-Seidel method to the system
X, — X = 1

2, + x, =5
with initial approximation [0}
Solution We rearrange the equations to get

x=1+x,

X, = 5 — 2x

®—>  The first few iterates are given in Table 2.16. (Check these.)
x 2
The actual solution to the given system is [ 1} = [J Clearly, the iterates in
X
Table 2.16 are not approaching this point, as Figure 2.28 makes graphically clear in an
example of divergence.
X2
A
2 =+
L : N —x
—4 —2 2 4
Table 2.16 T
n 0 1 2 3 4 5 —4+
x, 0 1 4 -2 10 -14 1
N o b 3 Figure 2.28

Diverging iterates I
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So when do these iterative methods converge? Unfortunately, the answer to this
question is rather tricky. We will answer it completely in Chapter 7, but for now we
will give a partial answer, without proof.

Let A be the n X n matrix

ap  ap ayp
A= ann 0‘22 rn
(2%} anZ e Ay

We say that A is strictly diagonally dominant if

|a11‘ > |a12‘ + |a13‘ +-+ |a1n|

|‘122‘ > |a21‘ + |a23‘ +o |a2n|
|ann| > |an1| + ‘anz‘ +oeet |an,n—1‘

That is, the absolute value of each diagonal entry a,,, a,,, . . ., a,, is greater than the
sum of the absolute values of the remaining entries in that row.

Theorem 2.9

If a system of # linear equations in n variables has a strictly diagonally domi-
nant coefficient matrix, then it has a unique solution and both the Jacobi and the
Gauss-Seidel method converge to it.

Remark Be warned! This theorem is a one-way implication. The fact that a
system is not strictly diagonally dominant does not mean that the iterative meth-
ods diverge. They may or may not converge. (See Exercises 15-19.) Indeed, there are
examples in which one of the methods converges and the other diverges. However, if
either of these methods converges, then it must converge to the solution—it cannot
converge to some other point.

Theorem 2.10

If the Jacobi or the Gauss-Seidel method converges for a system of n linear
equations in n variables, then it must converge to the solution of the system.

Proof  We will illustrate the idea behind the proof by sketching it out for the case of
Jacobi’s method, using the system of equations in Example 2.37. The general proof
is similar.

Convergence means that “as iterations increase, the values of the iterates get
closer and closer to a limiting value” This means that x; and x, converge to r and s,
respectively, as shown in Table 2.17.

x r
We must prove that [ 1} = { } is the solution of the system of equations. In
%, s

other words, at the (k + 1)st iteration, the values of x; and x, must stay the same as at
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Tahle 2.11

n k k+1 k+2
X r r r
Xy s s s

the kth iteration. But the calculations give x;, = (5 + x,)/7 = (5 + 5)/7 and x, =

(7 + 3x,)/5 = (7 + 3r)/5. Therefore,

5+s 7+ 3r
=r and =s
7
Rearranging, we see that
r— s= 5
3r — 5 = =7

Thus, x; = r, x, = s satisfy the original equations, as required. b |

By now you may be wondering; If iterative methods don’t always converge to the
solution, what good are they? Why don’t we just use Gaussian elimination? First, we
have seen that Gaussian elimination is sensitive to roundoff errors, and this sensitiv-
ity can lead to inaccurate or even wildly wrong answers. Also, even if Gaussian elimi-
nation does not go astray, we cannot improve on a solution once we have found it. For
example, if we use Gaussian elimination to calculate a solution to two decimal places,
there is no way to obtain the solution to four decimal places except to start over again
and work with increased accuracy.

In contrast, we can achieve additional accuracy with iterative methods simply by
doing more iterations. For large systems, particularly those with sparse coefficient
matrices, iterative methods are much faster than direct methods when implemented
on a computer. In many applications, the systems that arise are strictly diagonally
dominant, and thus iterative methods are guaranteed to converge. The next example
illustrates one such application.

»
»

Example 2.39

Suppose we heat each edge of a metal plate to a constant temperature, as shown in
Figure 2.29.

5o 100

Figure 2.29
A heated metal plate 0°




130 Chapter 2 Systems of Linear Equations

Eventually the temperature at the interior points will reach equilibrium, where the
following property can be shown to hold:

A4

The temperature at each interior point P on a plate is the average of the tempera-
tures on the circumference ofanycircle centered at Pinside the plate (Figure 2.30).

To apply this property in an actual example requires techniques from calculus. As
an alternative, we can approximate the situation by overlaying the plate with a grid,
or mesh, that has a finite number of interior points, as shown in Figure 2.31.

100°
1
50° 100°
50° 100°
1 1
Figure 2.31
The discrete version of the heated
plate problem 0° 0°

The discrete analogue of the averaging property governing equilibrium tempera-
tures is stated as follows:

The temperature at each interior point P is the average of the temperatures at the
points adjacent to P.

For the example shown in Figure 2.31, there are three interior points, and each is
adjacent to four other points. Let the equilibrium temperatures of the interior points
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be t,, t,, and t3, as shown. Then, by the temperature-averaging property, we have

100 + 100 + ¢, + 50

t, = 1
tz:t1+t3+0+50 )
4

100 + 100 + 0 + ¢t

t; = 2
or 44 — 4 = 250
—t,+4t,— t,= 50
- t, +4t; = 200

Notice that this system is strictly diagonally dominant. Notice also that Equa-
tions (3) are in the form required for Jacobi or Gauss-Seidel iteration. With an initial
approximation of t; = 0, £, = 0, t; = 0, the Gauss-Seidel method gives the following
iterates.

100 + 100 + 0 + 50

Iteration 1: 4 p = 625
625+ 0+ 0+ 50
t, = = 28.125
4
100 + 100 + 0 + 28.125
t, = = 57.031
4
) 100 + 100 + 28.125 + 50
Iteration 2: t = g = 69.531
69.531 + 57.031 + 0 + 50
t, = = 44.141
4
100 + 100 + 0 + 44.141
t, = i = 61.035

Continuing, we find the iterates listed in Table 2.18. We work with five-significant-
digit accuracy and stop when two successive iterates agree within 0.001 in all
variables.

Thus, the equilibrium temperatures at the interior points are (to an accuracy of
0.001) ¢, = 74.108, t, = 46.430, and t; = 61.607. (Check these calculations.)

By using a finer grid (with more interior points), we can get as precise informa-
tion as we like about the equilibrium temperatures at various points on the plate.

Tahle 2.18
n 0 1 2 3 e 7 8
t 0 62.500 69.531 73.535 ce 74.107  74.107
t, 0 28.125 44.141 46.143 ce 46.429  46.429
t3 0 57.031 61.035 61.536 e 61.607  61.607
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Tixercises 2.9

Y

B |
In Exercises 1-6, apply Jacobi’s method to the given system.
Take the zero vector as the initial approximation and work
with four-significant-digit accuracy until two successive
iterates agree within 0.001 in each variable. In each case,
compare your answer with the exact solution found using
any direct method you like.
1. 76— x,= 6

x; — 5x, = —4
3. 45x — 05x, = 1

xl - 3.5)62 = _1

4. 20x, + x, — x3 =17

x; — 10x, +  x; =13

2.2, +x,=5
Xp T Xy =

I
—

—x; +  x, + 10x; = 18
5. 3%, + x,
X t4x, + x3=1
X, +3x3 =1
6. 3x; — X, =1
—x; +3x, — X3 =0
=X, T 3x; — x4 =1
—x3; +3x, =1

In Exercises 7-12, repeat the given exercise using the Gauss-
Seidel method. Take the zero vector as the initial approxi-
mation and work with four-significant-digit accuracy until
two successive iterates agree within 0.001 in each variable.
Compare the number of iterations required by the Jacobi
and Gauss-Seidel methods to reach such an approximate

solution.
7. Exercise 1 8. Exercise 2
9. Exercise 3 10. Exercise 4

11. Exercise 5 12. Exercise 6

In Exercises 13 and 14, draw diagrams to illustrate the con-
vergence of the Gauss-Seidel method with the given system.

13. The system in Exercise 1

14. The system in Exercise 2

In Exercises 15 and 16, compute the first four iterates,
using the zero vector as the initial approximation, to show
that the Gauss-Seidel method diverges. Then show that

the equations can be rearranged to give a strictly diagonally
dominant coefficient matrix, and apply the Gauss-Seidel

method to obtain an approximate solution that is accurate
to within 0.001.

15. x;, —2x, =3 16. x; — 4x, + 2x; = 2
3x, + 2x, = 2%, +4x; =1
6x;, — x, —2x; =1

17. Draw a diagram to illustrate the divergence of the
Gauss-Seidel method in Exercise 15.

In Exercises 18 and 19, the coefficient matrix is not strictly
diagonally dominant, nor can the equations be rearranged
to make it so. However, both the Jacobi and the Gauss-Seidel
method converge anyway. Demonstrate that this is true of
the Gauss-Seidel method, starting with the zero vector as
the initial approximation and obtaining a solution that is
accurate to within 0.01.

18. —4x, + 5x, = 14
x;, — 3x, = =7
19. 5%, — 2x, + 3x; = —8
x; +4x, — 4x; = 102
—2x; — 2x, + 4x; = —90
20. Continue performing iterations in Exercise 18 to
obtain a solution that is accurate to within 0.001.

21. Continue performing iterations in Exercise 19 to
obtain a solution that is accurate to within 0.001.

In Exercises 22-24, the metal plate has the constant tem-
peratures shown on its boundaries. Find the equilibrium
temperature at each of the indicated interior points by
setting up a system of linear equations and applying either
the Jacobi or the Gauss-Seidel method. Obtain a solution
that is accurate to within 0.001.

22.

40°

I
0° 40°

0° 40°
L} I3

5° 5°



23. 0° 0°
I I
0° 0°
100° 100°
I3 Iy
100°  100°
24. 0° 20°
I %)
0° 20°
40° 100°
i) Iy
40° 100°

In Exercises 25 and 26, we refine the grids used in Exer-
cises 22 and 24 to obtain more accurate information about

the equilibrium temperatures at interior points of the plates.

Obtain solutions that are accurate to within 0.001, using
either the Jacobi or the Gauss-Seidel method.

25.
40°
04— 40°
0 bl 13 40°
o Iy 5 Ie 40°
5° Shi 5°
26. 0° 0° 200 20°
0° 1) Iy I3 Iy 20°
. s t 17 Ig -
40° Lol ho| | 2 100°
A0° 3| ha| hs| le 100°

40° 40° 100° 100°
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Exercises 27 and 28 demonstrate that sometimes, if we are
lucky, the form of an iterative problem may allow us to use a
little insight to obtain an exact solution.

27.

28.

A narrow strip of paper 1 unitlong is placed along a
number line so that its ends are at 0 and 1. The paper
is folded in half, right end over left, so that its ends

are now at 0 and 3. Next, it is folded in half again, this
time left end over right, so that its ends are at + and .
Figure 2.32 shows this process. We continue folding
the paper in half, alternating right-over-left and left-
over-right. If we could continue indefinitely, it is clear
that the ends of the paper would converge to a point. It
is this point that we want to find.

(a) Let x, correspond to the left-hand end of the paper
and x, to the right-hand end. Make a table with the
first six values of [x), x,] and plot the correspond-
ing points on x,, x, coordinate axes.

(b) Find two linear equations of the form x, = ax; + b
and x; = cx, + d that determine the new values
of the endpoints at each iteration. Draw the corre-
sponding lines on your coordinate axes and show
that this diagram would result from applying the
Gauss-Seidel method to the system of linear equa-
tions you have found. (Your diagram should resem-
ble Figure 2.27 on page 126.)

(c) Switching to decimal representation, continue
applying the Gauss-Seidel method to approximate
the point to which the ends of the paper are con-
verging to within 0.001 accuracy.

(d) Solve the system of equations exactly and compare
your answers.

An ant is standing on a number line at point A. It
walks halfway to point B and turns around. Then it
walks halfway back to point A, turns around again,
and walks halfway to point B. It continues to do this
indefinitely. Let point A be at 0 and point B be at 1.
The ant’s walk is made up of a sequence of overlap-
ping line segments. Let x, record the positions of
the left-hand endpoints of these segments and x,
their right-hand endpoints. (Thus, we begin with
x, = 0 and x, = . Then we have x; = Tand x, = 3,
and so on.) Figure 2.33 shows the start of the ant’s
walk.

(a) Make a table with the first six values of [x,, x,] and
plot the corresponding points on x;, x, coordinate
axes.

(b) Find two linear equations of the form x, = ax; + b
and x, = cx, + d that determine the new values of the
endpointsat each iteration. Draw the corresponding
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Folding a strip of paper The ant’s walk

Key Definitions and Concepts

L]

lines on your coordinate axes and show that this dia-
gram would result from applying the Gauss-Seidel
method to the system of linear equations you have
found. (Your diagram should resemble Figure 2.27
on page 126.)

Switching to decimal representation, continue
applying the Gauss-Seidel method to approximate
the values to which x; and x, are converging to
within 0.001 accuracy.

(d) Solve the system of equations exactly and compare

your answers. Interpret your results.

augmented matrix, 61, 64 Gaussian elimination, 68-69 pivot, 66
back substitution, 61 homogeneous system, 76 rank of a matrix, 72
coefficient matrix, 64 inconsistent system, 60 Rank Theorem, 72

consistent system, 60 iterate, 125 reduced row echelon form, 73
convergence, 125-126 Jacobi’s method, 124 row echelon form, 65
divergence, 127 leading variable (leading 1), 71-73 row equivalent matrices, 68
elementary row operations, 66 linear equation, 58 span of a set of vectors, 90
free variable, 71 linearly dependent vectors, 93 spanning set, 90
Gauss-Jordan elimination, 73 linearly independent system of linear
Gauss-Seidel method, 124 vectors, 93 equations, 59
Review Questions

1. Mark each of the following statements true or false: (e) Determining whether b is in span(a,, ..., a,)is

(a) Every system of linear equations has a solution.

(b) Every homogeneous system of linear equations
has a solution.

(c) If a system of linear equations has more vari-
ables than equations, then it has infinitely many
solutions.

(d) If a system of linear equations has more equations
than variables, then it has no solution.

equivalent to determining whether the system
[A | b] is consistent, where A = [a,. . . a,].
(f) InR? span(u,v) isalwaysa plane through the origin.
(g) In R’ if nonzero vectors u and v are not parallel,
then they are linearly independent.
(h) In R?, if a set of vectors can be drawn head to tail,
one after the other so that a closed path (polygon)
is formed, then the vectors are linearly dependent.



(i) Ifa set of vectors has the property that no
two vectors in the set are scalar multiples of
one another, then the set of vectors is linearly
independent.

(j) If there are more vectors in a set of vectors than
the number of entries in each vector, then the set
of vectors is linearly dependent.

1 -2 0 2
' . -1 1 4
2. Find the rank of the matrix .
3 2 =3 2
0 -5 -1 6 2

3. Solve the linear system
x+ y—2z=4
x+3y— z=7
2x+ y—5z2=7
4. Solve the linear system
3w+ 8x — 18y + z =35
w+2x — 4y =11
w+3x— 7y+z=10
5. Solve the linear system
2x+3y=4
x+2y=3
over Z,.
6. Solve the linear system
3x+2y=1
x+4y=2

over Zs.

7. For what value(s) of k is the linear system with

1
} inconsistent?

2k|1

8. Find parametric equations for the line of intersection
of the planes x + 2y + 3z = 4and 5x + 6y + 7z = 8.

9. Find the point of intersection of the following lines, if

|k
augmented matrix ]

it exists.
x 1 1 x 5 -1
yl=12|+s—1| and |y|=]|—-2|+¢ 1
z 3 2 z —4 1
3 1
10. Determine whether | 5 | isin the span of | 1
-1 3
and | 2 |.

-2
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11. Find the general equation of the plane spanned by

1 3
1 |and| 2 |.
1 1
2 1 3
12. Determine whether | 1 [,| —1{,| 9 |arelinearly
independent. —3 =0 =

13. Determine whether R®> = span(u, v, w) if:

1 1 0
@u=|1|,v=|0[,w=|1
L0 1 1
[ 1 -1 0
b)u=|-1|v= 0,w=|—1
L O 1 1

14. Let aj, a,, a; be linearly independent vectors in R?, and
let A = [a; a, a;]. Which of the following statements
are true?

(a) The reduced row echelon form of A is I;.

(b) The rank of A is 3.

(c) The system [A | b] has a unique solution for any
vector b in R®.

(d) (a), (b), and (c) are all true.

(e) (a) and (b) are both true, but not (c).

15. Let a,, a,, a; be linearly dependent vectors in R?, not
all zero, and let A = [a, a, a;]. What are the possible
values of the rank of A?

16. What is the maximum rank ofa 5 X 3 matrix? What is
the minimum rank of a 5 X 3 matrix?

17. Show that if u and v are linearly independent vectors,
thensoareu + vandu — v.

18. Show that span(u, v) = span(u, u + v) for any vectors
uandv.

19. In order for a linear system with augmented matrix
[A | b] to be consistent, what must be true about the
ranks of A and [A | b]?

1 1 1 1 0 -1
20. Are the matrices 2 3 —1|and |1 1 1
-1 4 1 0 1 3

row equivalent? Why or why not?



