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Herethey come pouring out of thebive. 4 ) |ntroduction: The Racetrack Game

Little arrows for me and for you.

—Albert Hammond and L
Mike Hazelwood ~ Many measurable quantities, such as length, area, volume, mass, and temperature,

Little Arrows  can be completely described by specifying their magnitude. Other quantities, such
Dutchess Music/BMI, 1968 as velocity, force, and acceleration, require both a magnitude and a direction for
their description. These quantities are vectors. For example, wind velocity is a vector
consisting of wind speed and direction, such as 10 km/h southwest. Geometrically,
vectors are often represented as arrows or directed line segments.

Although the idea of a vector was introduced in the 19th century, its usefulness
in applications, particularly those in the physical sciences, was not realized until the
20th century. More recently, vectors have found applications in computer science,
statistics, economics, and the life and social sciences. We will consider some of these
many applications throughout this book.

This chapter introduces vectors and begins to consider some of their geometric
and algebraic properties. We begin, though, with a simple game that introduces some
of the key ideas. [You may even wish to play it with a friend during those (very rare!)
dull moments in linear algebra class.]

The game is played on graph paper. A track, with a starting line and a finish line,
is drawn on the paper. The track can be of any length and shape, so long as it is wide
enough to accommodate all of the players. For this example, we will have two players
(let’s call them Ann and Bert) who use different colored pens to represent their cars
or bicycles or whatever they are going to race around the track. (Let’s think of Ann
and Bert as cyclists.)

Ann and Bert each begin by drawing a dot on the starting line at a grid point on
the graph paper. They take turns moving to a new grid point, subject to the following
rules:

1. Each new grid point and the line segment connecting it to the previous grid point
must lie entirely within the track.

2. No two players may occupy the same grid point on the same turn. (This is the
“no collisions” rule.)

3. Each new move is related to the previous move as follows: If a player moves
a units horizontally and & units vertically on one move, then on the next move
he or she must move between a — 1 and a + 1 units horizontally and between
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The Irish mathematician William

Rowan Hamilton (1805-1865)
used vector concepts in his study
of complex numbers and their
generalization, the quaternions.

b — 1 and b + 1 units vertically. In other words, if the second move is ¢ units
horizontally and d units vertically, then |a — ¢| = 1 and |[b — d| < 1. (This is the
“acceleration/deceleration” rule.) Note that this rule forces the first move to be
1 unit vertically and/or 1 unit horizontally.

A player who collides with another player or leaves the track is eliminated. The
winner is the first player to cross the finish line. If more than one player crosses
the finish line on the same turn, the one who goes farthest past the finish line is the
winner.

In the sample game shown in Figure 1.1, Ann was the winner. Bert accelerated too
quickly and had difficulty negotiating the turn at the top of the track.

To understand rule 3, consider Ann’s third and fourth moves. On her third move,
she went 1 unit horizontally and 3 units vertically. On her fourth move, her options
were to move 0 to 2 units horizontally and 2 to 4 units vertically. (Notice that some
of these combinations would have placed her outside the track.) She chose to move
2 units in each direction.

Start i Finish

Figure 1.1
A sample game of racetrack

Problem 1 Play a few games of racetrack.

Prohlem 2 Is it possible for Bert to win this race by choosing a different sequence
of moves?

Problem 3 Use the notation [a, b] to denote a move that is a units horizontally
and b units vertically. (Either a or b or both may be negative.) If move [3, 4] has just
been made, draw on graph paper all the grid points that could possibly be reached
on the next move.

Problem 4 What is the net effect of two successive moves? In other words, if you
move [a, b] and then [c, d], how far horizontally and vertically will you have moved
altogether?
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Problem 5 Write out Ann’s sequence of moves using the [a, b] notation. Suppose
she begins at the origin (0, 0) on the coordinate axes. Explain how you can find the
coordinates of the grid point corresponding to each of her moves without looking at
the graph paper. If the axes were drawn differently, so that Ann’s starting point was
not the origin but the point (2, 3), what would the coordinates of her final point be?

Although simple, this game introduces several ideas that will be useful in our
study of vectors. The next three sections consider vectors from geometric and alge-
braic viewpoints, beginning, as in the racetrack game, in the plane.

The Geometry and Algehra of Vectors

The Cartesian plane is named
after the French philosopher and
mathematician René Descartes
(1596-1650), whose introduction
of coordinates allowed geometric
problems to be handled using
algebraic techniques.

The word vector comesfrom the
Latin root meaning “to carry.” A
vector is formed when a point is
displaced—or “carried off”—a given
distance in a given direction. Viewed
another way, vectors “carry” two
pieces of information: their length
and their direction.

When writing vectors by hand,
it is difficult to indicate boldface.
Some people prefer to write v for
the vector denoted in print by v,
but in most cases it is fine to use an
ordinary lowercase v. It will usu-
ally be clear from the context when
the letter denotes a vector.

The word component is derived
from the Latin words co, meaning
“together with,” and ponere, mean-
ing “to put” Thus, a vector is “put
together” out of its components.

Vectors in the Plane

We begin by considering the Cartesian plane with the familiar x- and y-axes.
A vector is a directed line segment that corresponds to a displacement from one point
A to another point B; see Figure 1.2.

The vector from A to B is denoted by AB; the point A is called its initial point,
or tail, and the point B is called its terminal point, or head. Often, a vector is simply
denoted by a single boldface, lowercase letter such as v.

The set of all points in the plane corresponds to the set of all vectors whose tails

are at the origin O. To each point A, there corresponds the vector a = OA; to each
vector a with tail at O, there corresponds its head A. (Vectors of this form are some-
times called position vectors.)

It is natural to represent such vectors using coordinates. For example, in

Figure 1.3, A = (3, 2) and we write the vectora = OA = [3,2] using square brackets.
Similarly, the other vectors in Figure 1.3 are

b=[—-1,3] and c= [2,—1]

The individual coordinates (3 and 2 in the case of a) are called the components of the
vector. A vector is sometimes said to be an ordered pair of real numbers. The order is
important since, for example, [3, 2] # [2, 3]. In general, two vectors are equal if and
only if their corresponding components are equal. Thus, [x, y] = [1, 5] implies that
x=1landy=>5.

It is frequently convenient to use column vectors instead of (or in addition to)

3
row vectors. Another representation of [3, 2] is [2} (The important point is that the

>
>

>
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Figure 1.2 Figure 1.3
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R? is pronounced “r two.”

When vectors are referred to by
their coordinates, they are being
considered analytically.

components are ordered.) In later chapters, you will see that column vectors are some-
what better from a computational point of view; for now, try to get used to both
representations. o

It may occur to you that we cannot really draw the vector [0, 0] = OO from the
origin to itself. Nevertheless, it is a perfectly good vector and has a special name: the
zero vector. The zero vector is denoted by 0.

The set of all vectors with two components is denoted by R? (where R denotes
the set of real numbers from which the components of vectors in R” are chosen).
Thus, [—1, 3.5), [ V2, w], and [3, 4] are all in R?.

Thinking back to the racetrack game, let’s try to connect all of these ideas to vec-
tors whose tails are not at the origin. The etymological origin of the word vector in
the verb “to carry” provides a clue. The vector [3, 2] may be interpreted as follows:
Starting at the origin O, travel 3 units to the right, then 2 units up, finishing at P. The
same displacement may be applied with other initial points. Figure 1.4 shows two
equivalent displacements, represented by the vectors AB and CD.

>
>

Figure 1.4

We define two vectors as equal if they have the same length and the same direc-
tion. Thus, AB = CD in Figure 1.4. (Even though they have different initial and ter-
minal points, they represent the same displacement.) Geometrically, two vectors are
equal if one can be obtained by sliding (or translating) the other parallel to itself until
the two vectors coincide. In terms of components, in Figure 1.4 we have A = (3, 1)
and B = (6, 3). Notice that the vector [3, 2] that records the displacement is just the
difference of the respective components:

AB=[32]=[6-33—1]
Similarly, CD = [-1—(—4),1 - (-1] = [3,2]

and thus AB = @, as expected.

A vector such as OP with its tail at the origin is said to be in standard position.
The foregoing discussion shows that every vector can be drawn as a vector in stan-
dard position. Conversely, a vector in standard position can be redrawn (by transla-
tion) so that its tail is at any point in the plane.

»

Example 1.1

>

IfA=(—1,2)and B = (3, 4), find AB and redraw it (a) in standard position and
(b) with its tail at the point C = (2, —1).

SolLﬂgn We compute AB ~ B—-(-1),4 -2 =[4,2]. If AB is then translated
to CD, where C = (2, —1), then we must have D = (2 + 4, —1 + 2) = (6, 1). (See
Figure 1.5.)
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Figure 1.5
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New Vectors from Old

Asin the racetrack game, we often want to “follow” one vector by another. This leads
to the notion of vectoraddition, the first basic vector operation.

If we follow u by v, we can visualize the total displacement as a third vector,
denoted by u + v. In Figure 1.6, u = [1, 2] and v = [2, 2], so the net effect of follow-
inguby vis

[1+22+2]=[34]

which gives u + v. In general, if u = [u}, u,] and v = [v, v,], then their sumu + v
is the vector

u+v=[u +v,u, + v

It is helpful to visualize u + v geometrically. The following rule is the geometric
version of the foregoing discussion.

»
!

| | | » Y
T T T > X

Figure 1.6
Vector addition
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The Head-to-Tail Rule Given vectors u and v in R?, translate v so that its tail coincides with the head
of u. The sum u + v of u and v is the vector from the tail of u to the head of v.
(See Figure 1.7.)

v
ut+yv
u v
u
v Figure 1.7
The head-to-tail rule I
u v

Figure 1.8 By translating u and v parallel to themselves, we obtain a parallelogram, as
The parallelogram shown in Figure 1.8. This parallelogram is called the parallelogram determined by u
determined by uand v and v. It leads to an equivalent version of the head-to-tail rule for vectors in standard

position.

\J

The Parallelogram Rule Given vectors u and v in R* (in standard position), their sum u + v is the vector
in standard position along the diagonal of the parallelogram determined by u and
v. (See Figure 1.9.)

»
L

Figure 1.9

The parallelogram rule I

Example 1.2 Ifu=[3, —1] and v = [1, 4], compute and draw u + v.

\/

Solution We compute u + v = [3 + 1, —1 + 4] = [4, 3]. This vector is drawn
using the head-to-tail rule in Figure 1.10(a) and using the parallelogram rule in
Figure 1.10(b).
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iR -+ utyv

(a) (b)

The second basic vector operation is scalar multiplication. Given a vector v and
a real number ¢, the scalar multiple cv is the vector obtained by multiplying each
component of v by c. For example, 3[—2, 4] = [—6, 12]. In general,

cv = ¢ [v, o] = [evy, evy)

Geometrically, cv is a “scaled” version of v.

Example 1.3 If v = [—2, 4], compute and draw 2v, 3v, and —2v.

Solution We calculate as follows:

f 2v = [2(=2),2(4)] = [—4,8]
w=1(-2),3;4] =[-1,2]
—2v = [—-2(-2),—2(4)] = [4, 8]

These vectors are shown in Figure 1.11.

>
>

2v

+ —2v

Figure 1.11 1
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e

Figure 1.12

The term scalar comes from the
Latin word scala, meaning “lad-
der” The equally spaced rungs on
aladder suggest a scale, and in vec-
tor arithmetic, multiplication by a
constant changes only the scale (or
length) of a vector. Thus, constants

2v

became known as scalars.

—2v

u-+(—v)
Figure 1.13
Vector subtraction

NI

Observe that cv has the same direction as v if ¢ > 0 and the opposite direction if
¢ < 0. We also see that cv is |c| times as long as v. For this reason, in the context of
vectors, constants (i.e., real numbers) are referred to as scalars. As Figure 1.12 shows,
when translation of vectors is taken into account, two vectors are scalar multiples of
each other if and only if they are parallel.

A special case of a scalar multiple is (—1)v, which is written as —v and is called
the negative of v. We can use it to define vector subtraction: The difference of u and
v is the vector u — v defined by

u—v=u-+(-v)

Figure 1.13 shows that u — v corresponds to the “other” diagonal of the parallelo-
gram determined by uand v.

»
>

Example 1.4

y
A

A

b—a
a
B
b
Figure 1.14

Ifu=[1,2]andv=[—-3,1],thenu—v=1[1—(—3),2 — 1] = [4,1].

-

The definition of subtraction in Example 1.4 also agrees with the way we cal-
culate a vector such as AB . If the points A and B correspond to the vectors a and b
in standard position, then AB = b — a, as shown in Figure 1.14. [Observe that the
head-to-tail rule applied to this diagram gives the equation a + (b — a) = b. If we
had accidentally drawn b — a with its head at A instead of at B, the diagram would
have read b + (b — a) = a, which is clearly wrong! More will be said about algebraic
expressions involving vectors later in this section.]

Vectors in R3

Everything we have just done extends easily to three dimensions. The set of all or-
dered triples of real numbers is denoted by R’. Points and vectors are located using
three mutually perpendicular coordinate axes that meet at the origin O. A point such
as A = (1, 2, 3) can be located as follows: First travel 1 unit along the x-axis, then
move 2 units parallel to the y-axis, and finally move 3 units parallel to the z-axis. The
corresponding vector a = [1, 2, 3] is then OA', as shown in Figure 1.15.

Another way to visualize vector ain R’ isto construct a box whose six sides are de-
termined by the three coordinate planes (the xy-, xz-, and yz-planes) and by three planes
through the point (1, 2, 3) parallel to the coordinate planes. The vector [1, 2, 3] then corre-
sponds to the diagonal from the origin to the opposite corner of the box (see Figure 1.16).
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The “componentwise” definitions of vector addition and scalar multiplication are
extended to R’ in an obvious way.

Vectors in R"

In general, we define R" as the set of all ordered n-tuples of real numbers written as
row or column vectors. Thus, a vector vin R" is of the form

V1

Va
[V, Voo vy v,] OF

Ya

The individual entries of v are its components; v; is called the ith component.

We extend the definitions of vector addition and scalar multiplication to R" in
the obvious way: If u = [u}, u,, ..., u,] and v = [v}, v5, ..., v,], the ith component of
u + visu; + v; and the ith component of cv is just cv;.

Since in R" we can no longer draw pictures of vectors, it is important to be able to
calculate with vectors. We must be careful not to assume that vector arithmetic will be
similar to the arithmetic of real numbers. Often it is, and the algebraic calculations we
do with vectors are similar to those we would do with scalars. But, in later sections,
we will encounter situations where vector algebra is quite unlike our previous experi-
ence with real numbers. So it is important to verify any algebraic properties before
attempting to use them.

One such property is commutativity of addition: u + v = v + u for vectors u and
v. This is certainly true in R Geometrically, the head-to-tail rule shows that both
u + vand v + u are the main diagonals of the parallelogram determined by u and v.
(The parallelogram rule also reflects this symmetry; see Figure 1.17.)

Note that Figure 1.17 is simply an illustration of the propertyu + v=v + u. It
is not a proof, since it does not cover every possible case. For example, we must also
include the cases where u = v, u = —v, and u = 0. (What would diagrams for these
cases look like?) For this reason, an algebraic proof is needed. However, it is just as
easy to give a proof that is valid in R" as to give one that is valid in R

The following theorem summarizes the algebraic properties of vector addition
and scalar multiplication in R". The proofs follow from the corresponding properties
of real numbers.
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Theorem 1.1

The word theorem is derived from
the Greek word theorema, which
in turn comes from a word mean-
ing “to look at” Thus, a theorem
is based on the insights we have
when we look at examples and
extract from them properties that
we try to prove hold in general.
Similarly, when we understand
something in mathematics—the
proof of a theorem, for example—
we often say, “I see”

u+v)+w=u+(v+w

Figure 1.18

Algebraic Properties of Vectors in R"

Let u, v, and w be vectors in R" and let ¢ and d be scalars. Then

autv=v+tu Commutativity
b (u+tv)tw=u+(v+w Associativity
cut+t0=u
du+(—u)=0
e. clu+v)=cu+cv Distributivity
f. ctdu=cu+tdu Distributivity
g c(du) = (cd)u
h lu=u

Remarks

* Properties (c) and (d) together with the commutativity property (a) imply
that0 + u =wand —u + u = 0as well

e If we read the distributivity properties (e) and (f) from right to left, they say
that we can factor a common scalar or a common vector from a sum.

Proof  We prove properties (a) and (b) and leave the proofs of the remain-

ing properties as exercises. Let u = [uy, ty, ..., u,], V= [v, v, ..., v,],and w =
(Wi, Wa s Wy
(a) utv=lu,ty. .. )t [V, v, ]
=[uy+v,uy+ vy u, v,
=[v,+u,v, +ty ..., v, + u,l
= [V, Voo s V) + [Ug, tys ooy Uy
=v+u

The second and fourth equalities are by the definition of vector addition, and the
third equality is by the commutativity of addition of real numbers.

(b) Figure 1.18 illustrates associativity in R, Algebraically, we have

(a+v)+w= [upty...,u,] + [V, Voos v, ]) + (W Wy w,]
= (uy +vpuy vy u, H v, ]+ [, wy, e, w,]
= [(uy +v) +wp(uy +v) +wy ooy (u, +v,) + w,]
=[u + v, +w)u + (v, +wy), ... u, + (v, + w)]
= [upuy .o u,] + [vp+wpv, + wyoo, v, +ow,]
= [upthyy ... t,] + ([vy vy s v, ] + (W way oy w,])
=u+(v+w

The fourth equality is by the associativity of addition of real numbers. Note the care-
ful use of parentheses.

|
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By property (b) of Theorem 1.1, we may unambiguously write u + v + w without
parentheses, since we may group the summands in whichever way we please. By (a),
we may also rearrange the summands—for example, as w + u + v—if we choose.
Likewise, sums of four or more vectors can be calculated without regard to order or
grouping. In general, if v, v,, . . ., v; are vectors in R", we will write such sums with-
out parentheses:

VitV ot v

The next example illustrates the use of Theorem 1.1 in performing algebraic
calculations with vectors.

Example 1.5

Let a, b, and x denote vectors in R".
(a) Simplify 3a + (5b — 2a) + 2(b — a).
(b) If 5x — a = 2(a + 2x), solve for x in terms of a.

Solution  We will give both solutions in detail, with reference to all of the properties
in Theorem 1.1 that we use. It is good practice to justify all steps the first few times
you do this type of calculation. Once you are comfortable with the vector properties,
though, it is acceptable to leave out some of the intermediate steps to save time and
space.

(a) We begin by inserting parentheses.

+ (5b —2a) + 2(b—a) = (3a + (5b — 2a)) + 2(b — a)

= (3a + (—2a + 5b)) + (2b — 2a) (a), (e)
= ((3a + (—2a)) + 5b) + (2b — 2a) (b)

= ((3 + (—2))a + 5b) + (2b — 2a) 6)

= (la + 5b) + (2b — 2a)

= ((a + 5b) + 2b) — 2a (b), (h)

= (a+ (5b + 2b)) — 2a (b)

=(a+(5+2)b)—2a (f)

= (7b + a) — 2a (a)

=7b + (a — 2a) (b)

=7b+ (1 —2)a (), (h)

=7b+ (—1)a

=7b—a

You can see why we will agree to omit some of these steps! In practice, it is acceptable to
simplify this sequence of steps as

+ (5b —2a) + 2(b—a) = 3a+5b—2a+2b—2a
= (3a — 2a — 2a) + (5b + 2b)
—a+7b

or even to do most of the calculation mentally.
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(b) In detail, we have

5x —a = 2(a + 2x)
2a + 2(2x) ()
5x —a=2a+ (2:2)x (g)
5x —a = 2a+ 4x
(5x —a) — 4x = (2a + 4x) — 4x
(—a + 5x) — 4x = 2a + (4x — 4x) (a), (b)

5x — a

—a+ (5x —4x) =2a + 0 (b), (d)
—a+(5—-4)x=2a (), ()
—a+ (I)x=2a
a+(—a+x)=a+2a (h)
(@a+(-a) +x=(1+2a (b), ()
0+x=3a (d)
x = 3a (c)
Again, we will usually omit most of these steps. 4

Linear Comhinations and Coordinates

A vector that is a sum of scalar multiples of other vectors is said to be a linear combi-
nation of those vectors. The formal definition follows.

Definition A vector v is a linear combination of vectors Vi, Vo o .., Vi if
there are scalars ¢}, ¢,, . . . , ¢, such that v = ¢;v; + ¢,v, + + + * + ¢,v;. The scalars
€1, €5 - . . » ¢ are called the coefficients of the linear combination.
Example 1.6 2 1 2 5
The vector | —2 | is a linear combination of 0|,| =3 |,and | —4 |, since
—1 -1 1 0
1 2 5 2
30 0| +2/-3|—|—4|=|-2

-1 1 0 -1

1.

Remark Determining whether a given vector is a linear combination of other
vectors is a problem we will address in Chapter 2.

In R? it is possible to depict linear combinations of two (nonparallel) vectors
quite conveniently.

Example 1.7

\

3 1 .
Letu = : and v = 5 We can use u and v to locate a new set of axes (in the same

1 0
way that e, = [0} and e, = [J locate the standard coordinate axes). We can use
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»
»

Figure 1.19

these new axes to determine a coordinate grid that will let us easily locate linear
combinations of u and v.

As Figure 1.19 shows, w can be located by starting at the origin and traveling
—u followed by 2v. That is,

w= —u+2v

We say that the coordinates of w with respect to u and v are —1 and 2. (Note that
this is just another way of thinking of the coefficients of the linear combination.)

It follows that
HEENR
w=—|"|+2]|_ | =
1 2 3

(Observe that —1 and 3 are the coordinates of w with respect to e, and e,.) ‘4

Switching from the standard coordinate axes to alternative ones is a useful idea. It
has applications in chemistry and geology, since molecular and crystalline structures
often do not fall onto a rectangular grid. It is an idea that we will encounter repeatedly
in this book.

Binary Vectors and Modular Arithmetic

We will also encounter a type of vector that has no geometric interpretation—at least
not using Euclidean geometry. Computers represent data in terms of Os and 1s (which
can be interpreted as off/on, closed/open, false/true, or no/yes). Binary vectors are
vectors each of whose components is a 0 or a 1. As we will see in Chapter 8, such
vectors arise naturally in the study of many types of codes.

In this setting, the usual rules of arithmetic must be modified, since the result of
each calculation involving scalars must be a 0 or a 1. The modified rules for addition
and multiplication are given below.

+10 1 0 1
010 1 0(0 O
111 0 110 1

The only curiosity here is the rule that 1 + 1 = 0. This is not as strange as it appears;
if we replace 0 with the word “even” and 1 with the word “odd,” these tables simply
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summarize the familiar parity rules for the addition and multiplication of even and
odd integers. For example, 1 + 1 = 0 expresses the fact that the sum of two odd inte-
gers is an even integer. With these rules, our set of scalars {0, 1} is denoted by Z, and
is called the set of integers modulo 2.

=

Example 1.8 l

We are using the term length dif-
ferently from the way we used it in
R". This should not be confusing,
since there is no geometric notion
of length for binary vectors.

InZ,1+1+0+1=1and1+1+ 1+ 1=0. (These calculations illustrate
the parity rules again: The sum of three odds and an even is odd; the sum of four

odds is even.) I

With Z, as our set of scalars, we now extend the above rules to vectors. The set of
all n-tuples of 0s and 1s (with all arithmetic performed modulo 2) is denoted by Z.
The vectors in Z; are called binary vectors of length n.

>

Example 1.9

’ o

The vectors in Z2 are [0, 0], [0, 1], [1, 0], and [1, 1]. (How many vectors does Z;

contain, in general?)

=

Example 1.10

Letu=[1,1,0,1,0]andv = [0, 1, 1, 1, 0] be two binary vectors of length 5. Findu + v.

Solution The calculation of u + v takes place over Z,, so we have

u+v=/[1,1010]+[0,1,1,1,0]
=[1+0,1+1,0+1,1+1,0+0]

=[1,0,1,0,0] I

It is possible to generalize what we have just done for binary vectors to vectors whose
components are taken from a finite set {0, 1, 2, . . ., k} for k = 2. To do so, we must
first extend the idea of binary arithmetic.

»

Example 1.11

The integers modulo 3 is the set Z; = {0, 1, 2} with addition and multiplication given
by the following tables:

Observe that the result of each addition and multiplication belongs to the set
{0, 1, 2}; we say that Z5 is closed with respect to the operations of addition and multi-
plication. It is perhaps easiest to think of this set in terms of a 3-hour clock with 0, 1,
and 2 on its face, as shown in Figure 1.20.

The calculation 1 + 2 = 0 translates as follows: 2 hours after 1 oclock, it is
0 oclock. Just as 24:00 and 12:00 are the same on a 12-hour clock, so 3 and 0 are
equivalent on this 3-hour clock. Likewise, all multiples of 3—positive and negative—
are equivalent to 0 here; 1 is equivalent to any number that is 1 more than a multiple
of 3 (such as —2, 4, and 7); and 2 is equivalent to any number that is 2 more than a
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multiple of 3 (such as —1, 5, and 8). We can visualize the number line as wrapping
around a circle, as shown in Figure 1.21.

> —3,0,8, ..«

\S]

o 1,2,5,00. .2, 1,4,
Figure 1.20

Arithmetic modulo 3 Figure 1.21

==

Example 1.12

To what is 3548 equivalent in Z;?

Solution This is the same as asking where 3548 lies on our 3-hour clock. The key is
to calculate how far this number is from the nearest (smaller) multiple of 3; that is,
we need to know the remainder when 3548 is divided by 3. By long division, we find that
3548 = 3-1182 + 2, so the remainder is 2. Therefore, 3548 is equivalent to 2 in Z;. 4

In courses in abstract algebra and number theory, which explore this concept in
greater detail, the above equivalence is of ten written as 3548 = 2 (mod 3) or 3548 =2
(mod 3), where = is read “is congruent to.” We will not use this notation or termi-
nology here.

\/

Example 1.13

InZ;, calculate2 + 2 + 1 + 2.

Solution 1 We use the same ideas asin Example 1.12. The ordinary sumis2 + 2 +
1 + 2 = 7, which is 1 more than 6, so division by 3 leaves a remainder of 1. Thus, 2 +
24+1+2=1inZ,.

Solution 2 A better way to perform this calculation is to do it step by step entirely in Z.

Il

2+2)+1+2
=1+1+2
=(1+1+2
=2+2

=1

2+2+1+2

Here we have used parentheses to group the terms we have chosen to combine. We could
speed things up by simultaneously combining the first two and the last two terms:

2+2)+0+2)=1+0

=l



16 Chapter 1  Vectors

Repeated multiplication can be handled similarly. The idea is to use the addition and
multiplication tables to reduce the result of each calculation to 0, 1, or 2. I

Extending these ideas to vectors is straightforward.

Example 1.14

m— 1 0 |

Figure 1.22
Arithmetic modulo m

InZ3,letu=1[2,201,2 and v = [1, 2 2, 2 1]. Then

[2)2)0$ 1’2] + [1)2)2)2)1]
[2+1,2+2,0+2,1+22+1]
[0,1,2,0,0]

utv=

Vectors in Z are referred to as ternary vectors of length 5.

.

In general, we have the set Z,, = {0, 1, 2, ..., m — 1} of integers modulo m (cor-
responding to an m-hour clock, as shown in Figure 1.22). A vector of length #n whose
entries are in Z,, is called an m-ary vector of length n. The set of all m-ary vectors of
length # is denoted by Z,,.

I Exercises 1.1

1. Draw the following vectors in standard position

Y

6. A hiker walks 4 km north and then 5 km northeast.

in R*: Draw displacement vectors representing the hiker’s
trip and draw a vector that represents the hiker’s net
@) a = [34 ®) b= {ZJ displacement from the starting point.
Exercises 7-10 refer to the vectors in Exercise 1. Compute
-2 3 the indicated vectors and also show how the results can be
(c) ¢ = d) d= . .
3 =2 obtained geometrically.

2. Draw the vectors in Exercise 1 with their tails at the
point (2, —3).

3. Draw the following vectors in standard position in R’:
(@ a=10,20] (b) b=13,21]
(c) c=1[1,-2,1] d d=[-1,-1,—-2]

4. If the vectors in Exercise 3 are translated so that their

heads are at the point (3, 2, 1), find the points that
correspond to their tails.

5. For each of the following pairs of points, draw the
vector AB. Then compute and redraw AB as a vector
in standard position.

(@) A=(1,-1),B=(4,2)
(b) A=1(0,-2),B=(2,-1)
© A=(2,3,B=(43)

( B
@ A=G3).B=(3

Q=

8b-—c
10.a+d

7.a+b
9.d-c¢

Exercises 11 and 12 refer to the vectors in Exercise 3.
Compute the indicated vectors.

11.2a + 3¢ 12.3b —2c +d

13. Find the components of the vectors u, v, u + v, and
u — v, where u and v are as shown in Figure 1.23.

14.In Figure 1.24, A, B, C, D, E, and F are the vertices of a
regular hexagon centered at the origin.

Express each of the following vectors in terms of
a=0A and b = OB:

(@) AB () BC
(©) AD d) CF
(e) AC (f) BC + DE + FA



}7
A
1 €
u
‘\60°
t —»x
-1 30° \. 1
A\
— 1 - -
Figure 1.23
})
A
C B
D A
» X
0
E F
Figure 1.24

In Exercises 15 and 16, simplify the given vector expression.
Indicate which properties in Theorem 1.1 you use.

15.2(a — 3b) + 3(2b + a)
16. —3(a—c¢c) + 2(a+2b) + 3(c— b)

In Exercises 17 and 18, solve for the vector x in terms of the
vectorsa and b.

17.x —a = 2(x — 2a)
18.x+2a—b=3(x+a)—2(2a—Db)

In Exercises 19 and 20, draw the coordinate axes relative to
u and v and locate w.

1
=1

=7 2
20.u = ,V = , W= —u — 2V
{ 1] [—2}

In Exercises 21 and 22, draw the standard coordinate axes
on the same diagram as the axes relative to w and v. Use
these to find w as a linear combination of u and v.

1
19.u = { ],v= L},w= 2u + 3v

Section 1.1  The Geometry and Algebra of Vectors 1

= =[]
S W

23. Draw diagrams to illustrate properties (d) and (e) of
Theorem 1.1.

24. Give algebraic proofs of properties (d) through (g) of
Theorem 1.1.

In Exercises 25-28, u and v are binary vectors. Find u + v
in each case.

1 1
0 1
25.u={1} =[J 260u= |1, v=|1
0 1
27.u= [1,0,1,1],v=[1,1,1,1]
28.u= [1,1,0,1,0],v=[0,1,1,1,0]

29. Write out the addition and multiplication tables for Z,.
30. Write out the addition and multiplication tables for Z;.
In Exercises 31-43, perform the indicated calculations.
31.2 + 2 + 2in Z, 32.2-2-2inZ,
33.2Q+1+2)inZ; 34.3+1+2+3inZ,
35.2-3-2inZ, 36.33 + 3 +2)inZ,
372+ 1+ 2+ 2+ 1inZ, Z, and Z,
38.3+4)(3+ 2+ 4+ 2)inZs

39.8(6 + 4+ 3)inZ, 40.2'inZ,,

41.(2,1,2] + [2,0,1]inZ 42. 2[2,2,1]) in Z3
43.2([3,1,1,2] + [3,3,2,1])inZ;and Z2

In Exercises 44-55, solve the given equation or indicate that
thereis no solution.

44.x + 3 = 2in Z, 45. x + 5= 1inZ;
46.2x = 1in Z, 47. 2x = 1in Z,
48.2x = 1in Z, 49. 3x = 4in Z,
50. 3x = 4in Z; 51. 6x = 5in Z4
52.8x = 9inZ,, 53.2x + 3 = 2inZ;

54.4x + 5 = 2in Z; 55. 6x + 3 = 1in/Z;

56. (a) For which values of a does x + a = 0 have a solu-
tion in Z4?
(b) For which values of aand bdoesx + a = b have a
solution in Z4?
(c) For which values of a, b, and mdoesx + a=1»b
have a solution in Z,,?
57. (@) For which values of a does ax = 1 have a solution
inZg?
(b) For which values of a does ax = 1 have a solution
inZg?
() For which values of a and m does ax = 1 have a
solution in Z,,?
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Length and Angle: The Dot Product

It is quite easy to reformulate the familiar geometric concepts of length, distance,
and angle in terms of vectors. Doing so will allow us to use these important and
powerful ideas in settings more general than R* and R’. In subsequent chapters,
these simple geometric tools will be used to solve a wide variety of problems arising
in applications—even when there is no geometry apparent at all!

The Dot Product

The vector versions of length, distance, and angle can all be described using the
notion of the dot product of two vectors.

Definition 1

Uy V1
U V)
u=| . and v=| .
un V}’l

then the dot product u - v of u and v is defined by

u-v=uv iy, +-+uw,

In words, u*v is the sum of the products of the corresponding components of u
and v. It is important to note a couple of things about this “product” that we have just
defined: First, u and v must have the same number of components. Second, the dot
product u-v is a number, not another vector. (This is why u- v is sometimes called
the scalar product of u and v.) The dot product of vectors in R" is a special and im-
portant case of the more general notion of inner product, which we will explore in
Chapter 7.

\

Example 1.19

1 -3
Compute u*vwhenu = 2 |andv = 5.
-3

Solution u-v=1-(-3)+2-5+(=3)-2=1

Notice that if we had calculated v - u in Example 1.15, we would have computed
viu=(-3)-1+5-2+2-(=3) =1

Thatu-v = v-uin general is clear, since the individual products of the components
commute. This commutativity property is one of the properties of the dot product
that we will use repeatedly. The main properties of the dot product are summarized
in Theorem 1.2.
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Theorem 1.2

G

L

Let u, v,and w be vectors in R"” and let ¢ be a scalar. Then

a uv=v-u Commutativity
b.u-(v+w) =uv+uw Distributivity
¢ (cu)-v=clu-v)

d uu=0 and u-u= 0ifand onlyifu =0

Proof We prove (a) and (c) and leave proof of the remaining properties for the
exercises.

(a) Applying the definition of dot product to u*v and v - u, we obtain
u-v =y + Uy, +ootw,

=viu; + vu, + -+ vu,
=v-u

where the middle equality follows from the fact that multiplication of real numbers
is commutative.

(c) Using the definitions of scalar multiplication and dot product, we have

(cu) v = [cup, cty .. .scty] * [V Ve eoos V]
= cuyv; + cuyy, + o0+ oy,
= cluv, + wyv, + -+ ww,)
= c(u-v)

Remarks

® Property (b) can be read from right to left, in which case it says that we can
factor out a common vector u from a sum of dot products. This property also has
a “right-handed” analogue that follows from properties (b) and (a) together:
v+wu=v-u+tw-u

* Property (c) can be extended to give u-(cv) = c(u - v) (Exercise 58). This
extended version of (c) essentially says that in taking a scalar multiple of a dot product
of vectors, the scalar can first be combined with whichever vector is more convenient.
For example,

(-1,-3,2])[6,—4,0] = [-1,-3,2]-(G[6,—4,0]) = [-1,-3,2][3,—2,0] =3

With this approach we avoid introducing fractions into the vectors, as the original
grouping would have.

® The second part of (d) uses the logical connective if and only if. Appendix A dis-
cusses this phrase in more detail, but for the moment let us just note that the wording
signals a double implication—namely,

Il
o

ifu=0,thenu-u

and ifu-u = 0,thenu =0

Theorem 1.2 shows that aspects of the algebra of vectors resemble the algebra of
numbers. The next example shows that we can sometimes find vector analogues of
familiar identities.
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‘ »
>

Example 1.16 Provethat (u + v)-(u + v) = u-u + 2(u-v) + v-vforall vectors u and v in R".

Solution u+v)w+v)=(u+v)-u+@+v)-v
=u‘utveutuvt+v-v
=uutu-vtuvtvy

=uu+2u-v)+veyv

w—>  (Identify the parts of Theorem 1.2 that were used at each step.) I

y Length

v = [Z] To see how the dot product plays a role in the calculation of lengths, recall how lengths
are computed in the plane. The Theorem of Pythagoras is all we need.

>
>

[Iv|| = Ja? + b2

In R?, the length of the vector v = [Z} is the distance from the origin to the point

(a, b), which, by Pythagoras’ Theorem, is given by V' a* + b? as in Figure 1.25.
Observe that a* + b* = v-v. This leads to the following definition.

P =
v
=

Figure 1.25 o

I v
Definition The length (or norm) ofavectorv = |  |in R"is the nonnega-

tive scalar ||v| defined by

Va

v = Vvv=Vvi2 + v+ + 42

In words, the length of a vector is the square root of the sum of the squares of its
components. Note that the square root of v-v is always defined, since v:v = 0 by
Theorem 1.2(d). Note also that the definition can be rewritten to give |[v||* = v-v,
which will be useful in proving further properties of the dot product and lengths of
vectors.

Example 1.17 I[2,3]] = V2 + 7 = VT3

g

Theorem 1.3 lists some of the main properties of vector length.

Theorem 1.3 Let v be a vector in R" and let ¢ be a scalar. Then

a. |v| = 0ifandonlyifv =0
b flev]l = feffv]

Proof Property (a) follows immediately from Theorem 1.2(d). To show (b), we have
[ev|? = (ev)«(cv) = (v-v) = ?|v|?
using Theorem 1.2(c). Taking square roots of both sides, using the fact that Vit = |c|

for any real number c, gives the result.
e
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A vector of length 1 is called a unit vector. In R?, the set of all unit vectors can
be identified with the unit circle, the circle of radius 1 centered at the origin (see
Figure 1.26). Given any nonzero vector v, we can always find a unit vector in the
same direction as v by dividing v by its own length (or, equivalently, multiplying by
1/|v|). We can show this algebraically by using property (b) of Theorem 1.3 above:

Ifu = (1/|v|)v, then

lall = 1C/vDvl = 11/IviHivi = G/vIDlv] = 1

and u is in the same direction as v, since 1/ |v| is a positive scalar. Finding a unit vec-
tor in the same direction is often referred to as normalizing a vector (see Figure 1.27).

1]

Figure 1.26
Unit vectors in R?

/1/
il
Il

Figure 1.217

Normalizing a vector

Example 1.18

>
>

1 0
InR% lete, = [0} and e, = [J Then e, and e, are unit vectors, since the sum of the

squares of their components is 1 in each case. Similarly, in R’, we can construct unit

vectors

0 0
,e,=|1|, and e;=10
0 1

Observe in Figure 1.28 that these vectors serve to locate the positive coordinate axes

in R? and R°.

g
1l
("]
[ ]

g

Ll

€]

Figure 1.28

Standard unit vectors in R? and R?

€]

.
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In general, in R”, we define unit vectors ey, e,, . . ., e,, where e; has 1 in its ith
component and zeros elsewhere. These vectors arise repeatedly in linear algebra and
are called the standard unit vectors.

Example 1.19

Y

2
Normalize the vectorv = | —1
3

Solution  |[v| = V2> + (—1)2 + 3> = V14, s0 a unit vector in the same direc-
tion as v is given by

2 2/V14
u=(1/|v|)v=>0/V14)| -1|=|-1/V14

3 3/V14 4

Since property (b) of Theorem 1.3 describes how length behaves with respect to
scalar multiplication, natural curiosity suggests that we ask whether length and vec-
tor addition are compatible. It would be nice if we had an identity such as |[u + v| =
[w] + ||v]], but for almost any choice of vectors u and v this turns out to be false. [See
Exercise 52(a).] However, allis notlost, forit turns out that if we replace the = sign by
=, the resulting inequality is true. The proof of this famous and important result—the
Triangle Inequality—relies on another important inequality—the Cauchy-Schwarz
Inequality—which we will prove and discuss in more detail in Chapter 7.

Theorem 1.4

%

u v

Figure 1.29
The Triangle Inequality

The Cauchy-Schwarz Inequality

For all vectors uand vin R",

wev] < fluf| v

See Exercises 71 and 72 for algebraic and geometric approaches to the proof of this
inequality.

In R? or R’ where we can use geometry, it is clear from a diagram such as
Figure 1.29 that ||u + v|| = ||u| + |v| for all vectors u and v. We now show that
this is true more generally.

Theorem 1.9

The Triangle Inequality

For all vectors u and vin R",

lu+ v = fluf + v
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Proof  Since both sides of the inequality are nonnegative, showing that the square of
the left-hand side is less than or equal to the square of the right-hand side is equiva-
lent to proving the theorem. (Why?) We compute

[u+v[]P=(@+V)-(u+v)
=u-u+2u-v)+v-v By Example 1.9
= [uf® + 2[u-v[ + |v|?
= ||u||2 + 2||u|| ||V|| + HVH2 By Cauchy-Schwarz
= (Juf| + fv])*
as required. -

Distance

The distance between two vectors is the direct analogue of the distance between two
points on the real number line or two points in the Cartesian plane. On the number
line (Figure 1.30), the distance between the numbers a and b is given by |a — b|. (Tak-
ing the absolute value ensures that we do not need to know which of a or b is larger.)
This distance is also equal to V' (a — b)? and its two-dimensional generalization is
the familiar formula for the distance d between points (a,, a,) and (b,, b,)—namely,
d=V(a, — b)? + (a, — b))

a b

b T T T _é T (I) T T 5 T T L

Figure 1.30

d=la-bl=]-2-3]=5

. a, b, ..

In terms of vectors, ifa = and b = b I then d is just the length of a — b,
a 2
as shown in Figure 1.31. This is the basis for the next definition.

y
A (ay, ap)

(a, as)

(b1, by)

Figure 1.31
d=V(a, = b) + (a,— b) = [[a—b|

Definition The distance d(u, v) between vectors u and vin R” is defined by

d(u,v) = Ju—v|
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Figure 1.33

Example 1.20

A J

V2 0
Find the distance between u = 1 |andv = 2.
—1 =7
N2
Solution Wecomputeu —v=| —1}|,s0
1

dwv) = lu=v] = VW2 + (-1 + 12 = V4 =2

-

The dot product can also be used to calculate the angle between a pair of vectors.
In R’ or R’, the angle between the nonzero vectors u and v will refer to the angle 0
determined by these vectors that satisfies 0 = 6 = 180° (see Figure 1.32).

v .
e \?9

yd 0

VQﬂ u v K

Figure 1.32
The angle between u and v

In Figure 1.33, consider the triangle with sides u, v, and u — v, where 6 is the angle
between u and v. Applying the law of cosines to this triangle yields

lw = v]* = fu|* + [v|* = 2][u v] cos 6
Expanding the left-hand side and using ||v||* = v - v several times, we obtain
lul* = 26a-v) + Iv]* = JJu]* + v]* = 2]Ju/||v] cos 6

which, after simplification, leaves us with u+v = ||u|| |v|| cos 6. From this we obtain
the following formula for the cosine of the angle 6 between nonzero vectors u and v.
We state it as a definition.

Definition For nonzero vectors u and vin R”,
u-v

cosf) = ———
[l v

Example 1.21

\J

Compute the angle between the vectorsu = [2,1, —2]and v = [1, 1, 1].
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u|=V22+ 1P +(2) =

Solution We calculate u'v =2-1+1:1 +(-2)-1=1,

V9 =3 and |v||=V1*+ 1>+ 1> = V3. Therefore, cosf = 1/3V3, so
0 = cos '(1/3V/3) = 1.377 radians, or 78.9°. 1

Example 1.22

Compute the angle between the diagonals on two adjacent faces of a cube.

Solution The dimensions of the cube do not matter, so we will work with a cube
with sides of length 1. Orient the cube relative to the coordinate axes in R3, as shown
in Figure 1.34, and take the two side diagonals to be the vectors [1, 0, 1] and [0, 1, 1].
Then angle 6 between these vectors satisfies

cos B = 1-0+0-1+1-1 :l
V2V2 2
from which it follows that the required angle is 77 /3 radians, or 60°.
R

[0, 1,1] (1,0, 1]

Figure 1.34

(Actually, we don’t need to do any calculations at all to get this answer. If we draw
a third side diagonal joining the vertices at (1, 0, 1) and (0, 1, 1), we get an equilateral
triangle, since all of the side diagonals are of equal length. The angle we want is one of
the angles of this triangle and therefore measures 60°. Sometimes, a little insight can
save a lot of calculation; in this case, it gives a nice check on our work!)

® As this discussion shows, we usually will have to settle for an approximation
to the angle between two vectors. However, when the angle is one of the so-called
special angles (0°, 30°, 45°, 60°, 90°, or an integer multiple of these), we should be able
to recognize its cosine (Table 1.1) and thus give the corresponding angle exactly. In
all other cases, we will use a calculator or computer to approximate the desired angle
by means of the inverse cosine function.

Table 1.1 Cosines of Special Angles

0 0° 30° 45° 60° 90°
V4 V3 V2 1 1 1 V0
C089 — =1 e —— = = —— = 5= —=90
2 2 2 2 2 2 2
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The word orthogonal is derived
from the Greek words orthos, mean-
ing “upright;” and gonia, meaning
“angle” Hence, orthogonal literally
means “right-angled” The Latin
equivalent is rectangular.

* The derivation of the formula for the cosine of the angle between two vectors
is valid only in R? or R’ since it depends on a geometric fact: the law of cosines. In
R", for n > 3, the formula can be taken as a definition instead. This makes sense, since
u-v

= 1,so————rranges from

the Cauchy-Schwarz Inequality implies that lul [v]
ul ||v

—1to 1, just as the cosine function does. [l vl

Orthogonal Vectors

The concept of perpendicularity is fundamental to geometry. Anyone studying
geometry quickly realizes the importance and usefulness of right angles. We now gen-
eralize the idea of perpendicularity to vectors in R", where it is called orthogonality.

In R? or R’, two nonzero vectors u and v are perpendicular if the angle 6 between

u-v
them is a right angle—that s, if = 7 /2 radians, or 90°. Thus, m = c0s90° =0,
u|l|v

and it follows that u+v = 0. This motivates the following definition.

Definition Two vectors u and vin R" are orthogonal to each other ifu-v = 0.

Since 0-v = 0 for every vector v in R", the zero vector is orthogonal to every
vector.

»

Example 1.23

InR% u=1[1,1,—2]and v = [3, 1, 2] are orthogonal, sinceu-v = 3+ 1—4=0.

-l

Using the notion of orthogonality, we get an easy proof of Pythagoras’ Theorem,
valid in R".

Theorem 1.6

Figure 1.35

Pythagoras’ Theorem

For all vectorsuand vin R", |u + v||*> = ||u|* + ||v|* if and only if u and v are

orthogonal.

Proof From Example 1.16, we have |u + v|? = |ju|®> + 2(u-v) + |v]|]* for all
vectors u and v in R". It follows immediately that |ju + v|* = |u]® + |v|* if and
only ifu+v = 0. See Figure 1.35. b |

The concept of orthogonality is one of the most important and useful in linear
algebra, and it often arises in surprising ways. Chapter 5 contains a detailed treatment
of the topic, but we will encounter it many times before then. One problem in which
it clearly plays a role is finding the distance from a point to a line, where “dropping a
perpendicular” is a familiar step.
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Figure 1.37
The projection of v onto u
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Projections

We now consider the problem of finding the distance from a point to a line in the
context of vectors. As you will see, this technique leads to an important concept: the
projection of a vector onto another vector.

As Figure 1.36 shows, the problem of finding the distance from a point B to a
line € (in R* or R?) reduces to the problem of finding the length of the perpendicular
line segment PB or, equivalently, the length of the vector PB. If we choose a point A
on €, then, in the right-angled triangle AAPB, the other two vectors are the leg AP and
the hypotenuse AB. AP is called the projection of AB onto the line €. We will now look
at this situation in terms of vectors.

B B

_—4
Figure 1.36

The distance from a point to a line

Consider two nonzero vectors u and v. Let p be the vector obtained by dropping
a perpendicular from the head of v onto u and let 6 be the angle between u and v, as

shown in Figure 1.37. Then clearly p = ||p||u, where u = (1/]u|)u is the unit vector in
the direction of u. Moreover, elementary trigonometry gives |p| = |v| cos#, and
we know that cos § = ﬁh Thus, after substitution, we obtain

uf v

= ”<||u|| ||v||)<ﬁ>“
G
G2

This is the formula we want, and it is the basis of the following definition for vec-
tors in R".

Definition If u and v are vectors in R" and u # 0, then the projection of
v onto u is the vector proj,(v) defined by

proj,(v) = (%)u

An alternative way to derive this formula is described in Exercise 73.
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Figure 1.38
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|

Remarks

® The term projection comes from the idea of projecting an image onto a wall
(with a slide projector, for example). Imagine a beam of light with rays parallel to each
other and perpendicular to u shining down on v. The projection of v onto u is just the
shadow cast, or projected, by vonto u.

e It may be helpful to think of proj,(v) as a function with variable v. Then the
variable v occurs only once on the right-hand side of the definition. Also, it is helpful
to remember Figure 1.38, which reminds us that proj,(v) is a scalar multiple of the
vector u (not v).

* Although in our derivation of the definition of proj,(v) we required v as well
as u to be nonzero (why?), it is clear from the geometry that the projection of the

zero vector onto u is 0. The definition is in agreement with this, since (ﬂ>u =
Ou = 0. u

e Ifthe angle between u and vis obtuse, as in Figure 1.38, then proj,(v) will be in
the opposite direction from u; that is, proj,(v) will be a negative scalar multiple of u.

e Ifuisaunitvector then proj,(v) = (u-v)u. (Why?)

Y

Example 1.24

Find the projection of v onto u in each case.

_ 1
(a) v= _ﬂ anduZ[ﬂ (b) v=|2|andu = e,
N 3
1 1/2
(c) v=|2|andu = 1/2
13 1/V2
Solution
KRN HIRH
(a) We computeu-v = . = landu-u = . = 5,50
1 3 1 1

o (b -
PIOY = { w51 1/5

(b) Since e; is a unit vector,

0
proj.(v) = (e;-v)e; = 3e; = | 0
3
(c) We see that |u| = Vj + i + 5 = 1. Thus,
1/2 1/2
proj,(v) = (u-v)u = G +1+ %) 1/2 | = 30 2\/5) 1/2
1/V2 1/V2
_ 301+ Vv2) 1
o lwa
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Iixercises 1.2

In Exercises 1-6, find u-v. 26. Exercise 20 “° 27. Exercise 21
. , cas 28. Exercise 22 ° 29. Exercise 23
l.uZ{ :|,V:[:| 2.u
2 1

30. Let A = (—3,2),B=(1,0),and C = (4, 6). Prove that
AABC is a right-angled triangle.

\/

I
—
|

N W
3
<
I
—
N
(I

1 2 2 .
- B ) 3 ) L5 31.LetA=(1,1, —1),B=(—3,2,—-2),and C = (2, 2, —4).
Su=12Lv=13 | @bu=|—06v=| 4l Prove that AABCis a right-angled triangle.
3 1 —1.4 —0.2

css 32, Find the angle between a diagonal of a cube and an ad-

5.u=[1,V2, V3,0],v = [4,—\/5,0,—5] jacent edge.
33. A cube has four diagonals. Show that no two of them

s 6. u= [1.12, —3.25,2.07, —1.83], are perpendicular

v = [—229,1.72,4.33, —1.54]
34. A parallelogram has diagonals determined by the

vectors
In Exercises 7-12, find ||u| for the given exercise, and give
a unit vector in the direction of u. 2 1
7. Exercise 1 8. Exercise 2 9. Exercise 3 d, =|2|,andd, = | —1
s 10. Exercise4 ~ 11. Exercise 5 c¢As 12. Exercise 6 0 3

Show that the parallelogram is a rhombus (all sides of

In Exercises 13-16, find the distance d(u, v) between u and equal length) and determine the side length.
v thegz'ven exercise. _ 35. The rectangle ABCD has vertices at A = (1, 2, 3),
13. Exercise 1 14. Exercise 2 B = (3,6, —2),and C = (0, 5, —4). Determine the
15. Exercise 3 “° 16. Exercise 4 coordinates of vertex D.
17.If u, v, and w are vectors in R", n = 2, and cis a 36. An airplane heading due east has a velocity of
scalar, explain why the following expressions make 200 miles per hour. A wind is blowing from the north
no sense: at 40 miles per hour. What is the resultant velocity of
' ?
@) [u-v| ®) u-v+w the airplane?
() u-(v-w) d ¢ (u+w) 37. A boat heads north across a river at arate of 4 miles

per hour. If the current is flowing east at a rate of

3 miles per hour, find the resultant velocity of
In Exercises 18-23, determine whether the angle between the boat.

u and v is acute, obtuse, or a right angle. T . ;
8 g 38. Ann is driving a motorboat across a river that is 2 km

2 1 wide. The boat has a speed of 20 km/h in still water, and
18.u = [3}’ v = {_ 1} D.u=|-1|,v=|-2 the current in the river is flowing at 5 km/h. Ann heads
0 1 1 1 out from one bank of the river for a dock directly across
from her on the opposite bank. She drives the boat in a
20.u=[43 —1],v=[1, ~1,1] direction perpendicular to the current.
s21.u=[0.9,2.1,1.2],v=[—4.5,2.6, —0.8] (a) How far downstream from the dock will
22.u=11,2,3,4],v=[-3,1,2, —2] Ann land?

23.u=1[1,2,3,4],v=[5678] (b) How long will it take Ann to cross the river?
39. Bert can swim at a rate of 2 miles per hour in still

water. The current in a river is flowing at a rate of
In Exercises 24-29, find the angle between w and v in the 1 mile per hour. If Bert wants to swim across the river
given exercise. to a point directly opposite, at what angle to the bank
24. Exercise 18 25. Exercise 19 of the river must he swim?
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In Exercises 40-45, find the projection of v onto w. Draw a
sketch in Exercises 40 and 41.

[—1 -2 3/5 1
40.u = , V= 41.u = , V=
L1 4 —4/5 2
_ 1 2
1/2 2 _1 4
2. u=|-1/4,v=| 2| 43. u= 1 ,V = 1
—1/2 -2
-1/ _ 5
[0.5 2.1
A5 44, u = , V=
=)
3.01 1.34
cas45.u = | —0.33 |,v= 4.25
L 2.52 —1.66

Figure 1.39 suggests two ways in which vectors
may be used to compute the area of a triangle.

The area A of
A\
>v — proj,(v)
H
[ u
(a)
v
2
u
(b)
Figure 1.39

the triangle in part (a) is given by 3 ||u|| [|[v — proj,(v)

>

and part (b) suggests the trigonometric form of the
area of a triangle: A = 3| u| |v|sin® (We can use the

identity sin® = V1 — cos’0 to find sin 6.)

In Exercises 46 and 47, compute the area of the triangle
with the given vertices using both methods.

46.A=(1,-1),B=(2,2),C=(4,0)
47.A=(3,-1,4,B=(4, —2,6),C=(5,0,2)

In Exercises 48 and 49, find all values of the scalar k for
which the two vectors are orthogonal.

1 k?
2 k+1

48. u = ,V = 9. u=|-1|v= k
3 k—1

2 -3

50. Describe all vectors v = [X] that are orthogonal
y

on=[]

x
51. Describe all vectors v = [ ] that are orthogonal
y

ou= 4

52. Under what conditions are the following true for
vectors u and v in R* or R*?

@) [u+ vl =[ull+[v]
53. Prove Theorem 1.2(b).
54. Prove Theorem 1.2(d).

®) fJu+ vl = [[ull v

In Exercises 55-57, prove the stated property of distance
between vectors.

55. d(u, v) = d(v, u) for all vectors u and v

56. d(u, w) = d(u, v) + d(v, w) for all vectors u, v, and w

57.d(u,v) = 0ifand only ifu = v

58. Prove that u* cv = ¢(u - v) for all vectors u and v in R"
and all scalars c.

59. Prove that |[u — v|| = ||u|| — ||v|| for all vectors u and
vin R". [Hint: Replace u by u — v in the Triangle
Inequality.]

60. Suppose we know that u+ v = u-w. Does it follow that
v = w? If it does, give a proof that is valid in R";
otherwise, give a counterexample (i.e., a specific set of
vectors u, v, and w for which u*v = u-wbut v # w).

61. Prove that (u + v): (u — v) = [|ul|* — ||v||* for all vec-
tors wand vin R".
62. (a) Prove that |[u + v|* + [ju — v||* = 2[u]]* + 2||v|]
for all vectors u and v in R".
(b) Draw a diagram showingu,v,u + v,;andu — v
in R? and use (a) to deduce a result about
parallelograms.

1 1
63. Prove thatu-v = Z||u +v|? - Z||u — v|*forall

vectors u and vin R".



64. (@) Prove that |u + v|| = |[u — v| if and only if u and
v are orthogonal.
(b) Draw a diagram showingu,v,u + v,andu — v
in R? and use (a) to deduce a result about
parallelograms.

65. (a) Prove thatu + vand u — vare orthogonal in R" if
and only if [|u|| = ||v]|
(b) Draw a diagram showing u,v,u + v,;andu — v
in R? and use (a) to deduce a result about
parallelograms.

66.If |lu| = 2,

v[|=V3,andu-v =1, find |ju + v||.

67. Show that there are no vectors u and vsuch that|[ul| = 1,
[v]|=2,andu-v=3.

68. (a) Prove that if u is orthogonal to both v and w, then
u is orthogonal to v + w.
(b) Prove that if u is orthogonal to both v and w, then
u is orthogonal to sv + tw for all scalars s and ¢.

69. Prove that u is orthogonal to v — proj,(v) for all
vectors u and v in R", where u # 0.

70. (a) Prove that proj,(proj,(v)) = proj,(v).
(b) Prove that proj,(v — proj,(v)) = 0.
(c) Explain (a) and (b) geometrically.

71. The Cauchy-Schwarz Inequality |u - v| = |Ju|/||v] is
equivalent to the inequality we get by squaring both
sides: (u-v)* =< [l [|v[*.

(a) In R* withu = [ul} andv = [Vl , this becomes
v

U 2

(uv, + uy,)? = (u? + ud)W + v3)

Prove this algebraically. [Hint: Subtract the left-hand
side from the right-hand side and show that the
difference must necessarily be nonnegative.]

(b) Prove the analogue of (a) in R.
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72. Figure 1.40 shows that, in R® or R?,
Iproju(v) | = v

(@) Prove that this inequality is true in general. [Hint:
Prove that proj,(v) is orthogonal to v - proj,(v)
and use Pythagoras’ Theorem.]

(b) Prove that the inequality ||proj,(v) | = |v| is
equivalent to the Cauchy-Schwarz Inequality.

>
Proju(v) u

Figure 1.40
73. Use the fact that proj,(v) = cu for some scalar ¢, to-

gether with Figure 1.41, to find c and thereby derive
the formula for proj,(v).

\ vV —cu
:\5 B
cu } u
Figure 1.41

74. Using mathematical induction, prove the following
generalization of the Triangle Inequality:

i+ v+t vl =l + v+ + v
foralln = 1.
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Exploration

Vectors and Geometry

Many results in plane Euclidean geometry can be proved using vector techniques.
For example, in Example 1.24, we used vectors to prove Pythagoras’ Theorem. In
this exploration, we will use vectors to develop proofs for some other theorems from
Euclidean geometry.

As an introduction to the notation and the basic approach, consider the following
easy example.

Example 1.25

Figure 1.42
The midpoint of AB
C
P 0
A“ *B
Figure 1.43

32

\/

Give a vector description of the midpoint M of a line segment AB.

Solution We first convert everythmg to vector notation. If O denotes the origin and
Pis a point, let tp! be the vector OP. In this situation, a = OA, b = OB, m = OM, and
AB = OB — OA = b—a(F1gure142)

Now, since M is the midpoint of AB, we have

S0 m=a+3i(b—a)=3(a+b)

1. Give a vector description of the point P that is one-third of the way from A to
B on the line segment AB. Generalize.

2. Prove that the line segment joining the midpoints of two sides of a trlangle is
parallel to the third side and half as long. (In vector notation, prove that PQ = 2AB in
Figure 1.43.)

3. Prove that the quadrilateral PQRS (Figure 1.44), whose vertices are the mid-
points of the sides of an arbitrary quadrilateral ABCD, is a parallelogram.

4. A median of a triangle is a line segment from a vertex to the midpoint of
the opposite side (Figure 1.45). Prove that the three medians of any triangle are con-
current (i.e., they have a common point of intersection) at a point G that is two-
thirds of the distance from each vertex to the midpoint of the opposite side. [Hint: In
Figure 1.46, show that the point that is two-thirds of the distance from A to P is given
by ;(a + b + ¢). Then show that 3(a + b + ¢) is two-thirds of the distance from B
to Q and two-thirds of the distance from C to R.] The point G in Figure 1.46 is called
the centroid of the triangle.



A R
0
B
P
C

Figure 1.45 Figure 1.46
Figure 1.44 A median The centroid

5. An altitude of a triangle is a line segment from a vertex that is perpendicu-
lar to the opposite side (Figure 1.47). Prove that the three altitudes of a triangle are
concurrent. [Hint: Let H be the point of intersection of the altitudes from A and B in
Figure 1.48. Prove that CH is orthogonal to AB.] The point H in Figure 1.48 is called
the orthocenter of the triangle.

6. A perpendicular bisector of a line segment is a line through the midpoint of
the segment, perpendicular to the segment (Figure 1.49). Prove that the perpendicular
bisectors of the three sides of a triangle are concurrent. [Hint: Let K be the point of in-
tersection of the perpendicular bisectors of AC and BC in Figure 1.50. Prove that RK is
orthogonal to AB.] The point K in Figure 1.50 is called the circumcenter of the triangle.

C
\ 55 A : L : B
.l A® *B

Figure 1.417 Figure 1.48 Figure 1.49
An altitude The orthocenter A perpendicular bisector

7. Let A and B be the endpoints of a diameter of a circle. If C is any point on the
circle, prove that £~ ACB is a right angle. [Hint: In Figure 1.51, let O be the center of the
circle. Express everything in terms of a and ¢ and show that AC is orthogonal to BC. ]

8. Prove that the line segments joining the midpoints of opposite sides of a
quadrilateral bisect each other (Figure 1.52).

C

A . B

Figure 1.50 Figure 1.51 Figure 1.52
The circumcenter 33
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y

1]

Lines and Planes

We are all familiar with the equation of a line in the Cartesian plane. We now want
to consider lines in R* from a vector point of view. The insights we obtain from this
approach will allow us to generalize to lines in R* and then to planes in R*. Much of
the linear algebra we will consider in later chapters has its origins in the simple geom-
etry of lines and planes; the ability to visualize these and to think geometrically about
a problem will serve you well.

Lines in R? and R?

In the xy-plane, the general form of the equation of a line is ax + by = ¢. If b # 0, then
the equation can be rewritten as y = —(a/b)x + ¢/b, which has the form y = mx + k.
[This is the slope-intercept form; m is the slope of the line, and the point with coordi-
nates (0, k) is its y-intercept.] To get vectors into the picture, let’s consider an example.

=

Example 1.26

The Latin word norma refers to a
carpenter’s square, used for draw-
ing right angles. Thus, a normal
vector is one that is perpendicular
to something else, usually a plane.

The line € with equation 2x + y = 0 is shown in Figure 1.53. It is a line with slope —2
passing through the origin. The left-hand side of the equation is in the form of a dot

2 X
product; in fact, if weletn = [J andx = { },then the equation becomes n - x = 0.
y

The vector n is perpendicular to the line—that is, it is orthogonal to any vector x that
is parallel to the line (Figure 1.54)—and it is called a normal vector to the line. The
equation n + x = 0 is the normal form of the equation of <.

Another way to think about this line is to imagine a particle moving along the
line. Suppose the particle is initially at the origin at time t = 0 and it moves along
the line in such a way that its x-coordinate changes 1 unit per second. Then att =1
the particleisat (1, —2), att = 1.5itisat (1.5, —3), and, if we allow negative values of ¢
(i.e., we consider where the particle was in the past), at t = —2 itis (or was) at (—2, 4).

»
»>
>
|

Figure 1.53 Figure 1.54
Theline2x +y =10 A normal vector n
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This movement is illustrated in Figure 1.55. In general, if x = ¢, then y = —2¢, and we
may write this relationship in vector form as

5=l -

1
What is the significance of the vector d = { 2}? It is a particular vector parallel

to €, called a direction vector for the line. As shown in Figure 1.56, we may write the
equation of € as x = td. This is the vector form of the equation of the line.

If the line does not pass through the origin, then we must modify things
slightly.

Figure 1.56
Figure 1.59 A direction vector d

»

Example 1.21

Consider the line € with equation 2x + y = 5 (Figure 1.57). This is just the line from
Example 1.26 shifted upward 5 units. It also has slope —2, but its y-intercept is the
point (0, 5). It is clear that the vectors d and n from Example 1.26 are, respectively, a
direction vector and a normal vector for this line too.

Thus, n is orthogonal to every vector that is parallel to €. The point P = (1, 3)

ison €. If X = (x, y) represents a general point on ¢, then the vector PX = x - pis
parallel to € and n - (x — p) = 0 (see Figure 1.58). Simplified, we haven - x = n - p.
As a check, we compute

n.x:m.mzzx+y and n.p:m.M:S

Thus, the normal form n + x = n - p is just a different representation of the general
form of the equation of the line. (Note that in Example 1.26, p was the zero vector, so
n - p = 0 gave the right-hand side of the equation.)
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The word parameter and the cor-
responding adjective parametric
come from the Greek words para,
meaning “alongside,” and metron,
meaning “measure.” Mathemati-
cally speaking, a parameter is a
variable in terms of which other
variables are expressed—a new
“measure” placed alongside

old ones.

Figure 1.57 Figure 1.58
The line2x + y =5 n:(x—p)=0 44

These results lead to the following definition.

Definition The normal form of the equation of a line € in R? is

n-(x—p)=0 or n-x=n-p

The general form of the equation of € is ax + by = ¢, where n =

where p is a specific point on € and n # 0 is a normal vector for €. {
normal vector for €.

a .
b is a

Continuing with Example 1.27, let us now find the vector form of the equation
of €. Note that, for each choice of x, x — p must be parallel to—and thus a multiple
of—the direction vector d. That is, x — p = td or x = p + ¢d for some scalar . In

terms of components, we have
x 1 1
b))
y 3 =2

or x=1+1
y=3—-2t (2)
Equation (1) is the vector form of the equation of €, and the componentwise Equa-
tions (2) are called parametric equations of the line. The variable ¢ is called a parameter.
How does all of this generalize to R*? Observe that the vector and parametric
forms of the equations of a line carry over perfectly. The notion of the slope of a line
in R*—which is difficult to generalize to three dimensions—is replaced by the more
convenient notion of a direction vector, leading to the following definition.

Definition  The vector form of the equation of a line € in R? or R® is
x=p+iud

where p is a specific point on € and d # 0 is a direction vector for €.
The equations corresponding to the components of the vector form of the
equation are called parametric equations of €.
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We will often abbreviate this terminology slightly, referring simply to the general,
normal, vector, and parametric equations of a line or plane.

Example 1.28

Find vector and parametric equations of the line in R* through the point P = (1, 2, —1),
5

parallel to the vectord = | —1
3

Solution The vector equation x = p + tdis

x 1 5

y| = 20+t —1

z -1 3
The parametric form is x= 1+5t
y= 2—-t

Remarks

e The vector and parametric forms of the equation of a given line € are not
unique—in fact, there are infinitely many, since we may use any point on € to de-
termine p and any direction vector for €. However, all direction vectors are clearly

multiples of each other. 10
In Example 1.28, (6, 1, 2) is another point on the line (take t = 1), and | —2 | is
another direction vector. Therefore, 6
X 6 10
yl=11|+sl =2
z 2 6

gives a different (but equivalent) vector equation for the line. The relationship between
the two parameters s and ¢ can be found by comparing the parametric equations: For
a given point (x, ¥, z) on €, we have

x= 1+5t=6+10s
y= 2— t=1— 12
z=-—-1+3=2+ 6s

implying that
—10s +5t= 5
2s— t= -1
—6s+3t= 3

Each of these equations reducestot = 1 + 2s.
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* Intuitively, we know that a line is a one-dimensional object. The idea of
“dimension” will be clarified in Chapters 3 and 6, but for the moment observe that
this idea appears to agree with the fact that the vector form of the equation of a line
requires one parameter.

-

Example 1.29

Figure 1.59
n is orthogonal to infinitely many
vectors
n
P X —p
&
X

Figure 1.60
n*(x—p)=0

One often hears the expression “two points determine a line” Find a vector equation
of the line € in R® determined by the points P = (—1,5,0) and Q = (2, 1, 1).

Solution We may choose any point on € for p, so we will use P (Q would also be

fine). r 3]
A convenient direction vector is d = ﬁ = | —4 | (or any scalar multiple of this).
Thus, we obtain L 1]
x=p+td
—1] [ 3
=| 5|+1¢t|—4
0| L1 I

Planes in R®

The next question we should ask ourselves is, How does the general form of the equa-
tion of a line generalize to R*? We might reasonably guess that if ax + by = ¢ is the
general form of the equation of a line in R?, then ax + by + cz = d might represent a
line in R>. In normal form, this equation would be n - x = n - p, where n is a normal
vector to the line and p corresponds to a point on the line.
To see if this is a reasonable hypothesis, let’s think about the special case of the
a
equation ax + by + cz = 0. In normal form, it becomes n + x = 0, wheren = | b |.
c
However, the set of all vectors x that satisfy this equation is the set of all vectors or-
thogonal to n. As shown in Figure 1.59, vectors in infinitely many directions have
this property, determining a family of parallel planes. So our guess was incorrect: It
appears that ax + by + cz = d is the equation of a plane—not a line—in R’.
Let's make this finding more precise. Every plane % in R’ can be determined by
specifying a point p on % and a nonzero vector n normal to % (Figure 1.60). Thus,
if x represents an arbitrary point on %, we haven - (x — p) =0orn-x=n- p. If

a X
n=|b| and x = |y |, then, in terms of components, the equation becomes
c z

ax + by + cz=d(whered =n- p).

Definition The normal form of the equation of a plane P in R’ is
n-(x—p)=0 or n-x=n-p

where p is a specific point on % and n # 0 is a normal vector for . a

The general form of the equation of % isax + by + cz =d, wheren = | b
is a normal vector for %. c
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Note that any scalar multiple of a normal vector for a plane is another normal
vector.

»

Example 1.30

S

Find the normal and general forms of the equation of the plane that contains the
1

point P = (6, 0, 1) and has normal vectorn = | 2 |.
3
6 X
Solution Withp = |0 |andx= |y |,wehaven-p=1:6+2:0=3-1= 9, s0
1 z

the normal equation n + x = n - p becomes the general equation x + 2y + 3z = 9.

Geometrically, it is clear that parallel planes have the same normal vector(s).
Thus, their general equations have left-hand sides that are multiples of each other. So, for
example, 2x + 4y + 6z = 10 is the general equation of a plane that is parallel to the
plane in Example 1.30, since we may rewrite the equation as x + 2y + 3z = 5—from
which we see that the two planes have the same normal vector n. (Note that the planes
do not coincide, since the right-hand sides of their equations are distinct.)

We may also express the equation of a plane in vector or parametric form. To do
so, we observe that a plane can also be determined by specifying one of its points
P (by the vector p) and two direction vectors u and v parallel to the plane (but not
parallel to each other). As Figure 1.61 shows, given any point X in the plane (located

tv X—p=su-+i1v

A X

Figure 1.61
X—p=su+titv

by x), we can always find appropriate multiples su and tv of the direction vectors such
thatx — p =su+ tvorx = p + su + tv. If we write this equation componentwise,
we obtain parametric equations for the plane.

Definition The vector form of the equation of a plane P in R is
x=ptsutitv

where pisa pointon % and u and v are direction vectors for ? (u and v are non-
zero and parallel to P, but not parallel to each other).

The equations corresponding to the components of the vector form of the
equation are called parametric equations of .
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Example 1.31

n

Figure 1.62

Two normals determine a line

n

Py

Figure 1.63

The intersection of
two planes is a line

np

Find vector and parametric equations for the plane in Example 1.30.

Solution We need to find two direction vectors. We have one point P = (6, 0, 1) in
the plane; if we can find two other points Q and R in %, then the vectors PQ and PR
can serve as direction vectors (unless by bad luck they happen to be parallel!). By
trial and error, we observe that Q = (9, 0, 0) and R = (3, 3, 0) both satisfy the general
equation x + 2y + 3z = 9 and so lie in the plane. Then we compute

3 -3
uzm):q—p: 0 andv=ﬁ=r—p= 3
-1 -1

which, since they are not scalar multiples of each other, will serve as direction vectors.
Therefore, we have the vector equation of %,

X 6 3 -3
y|=10|+s 0]+t 3
z 1 -1 -1

and the corresponding parametric equations,

x=6+ 3s— 3t

y= 3t
z=1—s—t
[What would have happened had we chosen R = (0, 0, 3)?] I
Remarks

® Aplaneisatwo-dimensional object, and its equation, in vector or parametric
form, requires two parameters.

° As Figure 1.59 shows, given a point P and a nonzero vector n in R’, there are
infinitely many lines through P with n as a normal vector. However, P and two non-
parallel normal vectors n; and n, do serve to locate a line € uniquely, since € must
then be the line through P that is perpendicular to the plane with equation x = p +
sn; + tn, (Figure 1.62). Thus, a line in R® can also be specified by a pair of equations

ax +by+cz=d,
ax + by + cz=d,

one corresponding to each normal vector. But since these equations correspond to a
pair of nonparallel planes (why nonparallel?), this is just the description of a line as
the intersection of two nonparallel planes (Figure 1.63). Algebraically, the line con-
sists of all points (x, y, z) that simultaneously satisfy both equations. We will explore
this concept further in Chapter 2 when we discuss the solution of systems of linear
equations.

Tables 1.2 and 1.3 summarize the information presented so far about the equa-
tions of lines and planes.

Observe once again that a single (general) equation describes a line in R* but
a plane in R®. [In higher dimensions, an object (line, plane, etc.) determined by a
single equation of this type is usually called a hyperplane.] The relationship among



Section 1.3  Lines and Planes mn

Table 1.2 Equations of Lines in R?

Normal Form General Form Vector Form Parametric Form
n-x=n-p ax + by =c¢ x=p+1td {x=p1+td1
y=p, ttd,

Table 1.3 Lines and Planes in R®
Normal Form General Form Vector Form Parametric Form
Lines {nl-x=n1-p1 {a1x+b1y+c1z=d1 x=p+1ud X = p, + td,
n, X =mn,"p, ax + by + ¢,z = d, y= p, + td,
z= py+ td,
Planes n'x=mn-p axtby+cz=d Xx=p+su+tiv X = p;+ su + tn
Y= pp T osu, oty
z = p; t su; + tvy

the dimension of the object, the number of equations required, and the dimension of
the space is given by the “balancing formula™:

(dimension of the object) + (number of general equations) = dimension of the space

The higher the dimension of the object, the fewer equations it needs. For
example, a plane in R’ is two-dimensional, requires one general equation, and lives
in a three-dimensional space: 2 + 1 = 3. A line in R’ is one-dimensional and so
needs 3 — 1 = 2 equations. Note that the dimension of the object also agrees with
the number of parameters in its vector or parametric form. Notions of “dimension”
will be clarified in Chapters 3 and 6, but for the time being, these intuitive observa-
tions will serve us well.

We can now find the distance from a point to a line or a plane by combining the
results of Section 1.2 with the results from this section.

»

Example 1.32

Find the distance from the point B = (1, 0, 2) to the line € through the point
-1
A = (3, 1, 1) with direction vector d = 1
0

Solution  As we have already determined, we need to calculate the length of PB,
where P is the point on € at the foot of the perpendicular from B. If we label v = AB,
then AP = projq(v) andPB = v — proja(v) (see Figure 1.64). We do the necessary
calculations in several steps.

1 3 —2
Stepl: v=AB=b—a=|0|—|1|=|—-1
2 1 1
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proja(v)

Figure 1.64
d(B,€) = |v — projs(v) ||

Step 2: The projection of vonto d is

d+
projg(v) = (ﬁ)d

_ <(—1)-(—2) +1-(-1) +0-1> B
B (-1)2+1+40

0
-1
:% 1
0
1
2
- 1
2
0
Step 3: The vector we want is
-] [ [+
v=proi(n = | -1 | = | b=
1 L 0 1
Step4: Thedistance d(B, €) from B to € is
_3
2
lv = proja(v) | = || =
1

Using Theorem 1.3(b) to simplify the calculation, we have

9

lv = proja(v) || =

o

3
Ul -3
2

=3Vo9+9+4
V22

Note
e In terms of our earlier notation, d(B, €) = d(v, projq(v)).
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In the case where the line € is in R* and its equation has the general form
ax + by = ¢, the distance d(B, €) from B = (x,, y,) is given by the formula

\ax0 + by, — c’
Va* + b?

You are invited to prove this formula in Exercise 39.

d(B,¢) = (3)

»

Example 1.33

>

Find the distance from the point B = (1, 0, 2) to the plane % whose general equation
isx+ty—z=1

Solution In this case, we need to calculate the length of PB, where P is the point on
@ at the foot of the perpendicular from B. As Figure 1.65 shows, if A is any point on
1
% and we situate the normal vector n = 1 | of & so that its tail is at A, then we
-1
need to find the length of the projection of AB onto n. Again we do the necessary
calculations in steps.

proj n(/ﬁi)

A
&

Figure 1.65
d(B,®) = ||proj.(AB)||
Step 1: By trial and error, we find any point whose coordinates satisfy the equation
x+y—z=1.A=(1,0,0)will do.
Step 2:  Set
1 1 0
v=AB=b-a=|0|-|0|=|0
2 0 2

Step 3: The projection of vonto n is

proju(v) = <ﬁ>n

(104 1-0-1-2
T\ 141+ (-1)2

-1

,_.
|

I
|
Wi
—
Il
|
WIN WM W
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Step 4:

The distance d(B, %) from B to P is

Iproja()|| = [=3ffif 1

1
1
-1

=2v3

[

In general, the distance d(B, %) from the point B = (x,, ¥, z;) to the plane whose
general equation is ax + by + cz = d is given by the formula

You will be asked to derive this formula in Exercise 40.

T Exercises 1.3

d(B,®) =

B lax, + by, + czy — d|

Va*+ b>+ ¢? i

.

In Exercises 1 and 2, write the equation of the line passing
through P with normal vector n in (a) normal form and
(b) general form.

1P =(0,0),n= m 2.P = (1,2),n = [_ﬂ

In Exercises 3-6, write the equation of the line passing
through P with direction vector d in (a) vector form and
(b) parametric form.

3.P=(1,0),d= {_1} 4.P = (—4,4),d= m

3
1 2
5.P=1(0,00,d=|-1| 6.P=1(3,0,—2),d=|5
4 0

In Exercises 7 and 8, write the equation of the plane passing
through P with normal vector n in (a) normal form and
(b) general form.

3 2
7.P=1(0,1,0),n=|2| 8P=(30,-2),n= |5
1 0

\

In Exercises 9 and 10, write the equation of the plane pass-
ing through P with direction vectors u and v in (a) vector
form and (b) parametric form.

2 -3
9.P=(0,0,0),u=|1[|,v=1| 2
2 1

0 -1

10.P = (6,—4,—3),u=|1|,v= 1

1 1

In Exercises 11 and 12, give the vector equation of the line
passing through P and Q.

11.P=(1,-2),Q = (3,0)
12.P=(0,1,-1),Q=(—2,1,3)

In Exercises 13 and 14, give the vector equation of the plane

passing through B, Q, and R.

13.P=(1,1,1),Q=(4,0,2),R= (0,1, —1)

14.P=(1,1,0),Q=(1,0,1),R=(0,1,1)

15. Find parametric equations and an equation in vector
form for the lines in R? with the following equations:

(@ y=3x—1 (b) 3x +2y=5



16. Consider the vector equation x = p + t(q — p), where
p and q correspond to distinct points P and Q in R?
or R?,
(@) Show that this equation describes the line segment
PQ as ¢ varies from 0 to 1.
(b) For which value of ¢ is x the midpoint of PQ,
and what is x in this case?
(c) Find the midpoint of PQwhen P = (2, —3) and
Q = (0,1). o
(d) Find the midpoint of PQ when P = (1,0, 1)
and Q = (4,1, —2).
(e) Find the two points that divide PQin part (c) into
three equal parts.
(f) Find the two points that divide PQin part (d) into
three equal parts.
17. Suggest a “vector proof” of the fact that, in R?, two
lines with slopes m, and m, are perpendicular if and

only if mym, = —1.
18. The line € passes through the point P = (1, —1,1) and
2
has direction vector d = 3 |. For each of the
—1

following planes %, determine whether € and & are
parallel, perpendicular, or neither:

(@ 2x+3y—z=1 () &x—y+5z=0
(c)x—y—2z=3 d) 4ax+6y—2z=0

19. The plane %, has the equation 4x — y + 5z = 2. For
each of the planes % in Exercise 18, determine whether
%, and %P are parallel, perpendicular, or neither.

20. Find the vector form of the equation of the line in R?
that passes through P = (2, —1) and is perpendicular
to the line with general equation 2x — 3y = 1.

21. Find the vector form of the equation of the line in R?
that passes through P = (2, —1) and is parallel to the
line with general equation 2x — 3y = 1.

22. Find the vector form of the equation of the line in R’
that passes through P = (—1, 0, 3) and is perpendicular
to the plane with general equation x — 3y + 2z = 5.

23. Find the vector form of the equation of the line in R’
that passes through P = (—1, 0, 3) and is parallel to
the line with parametric equations

x= 1—- 1t
y= 2+3t
z=—-2—t

24. Find the normal form of the equation of the plane that
passes through P = (0, —2, 5) and is parallel to the
plane with general equation 6x — y + 2z = 3.

Section 1.3 Lines and Planes 43

25. A cube has vertices at the eight points (x, y, z), where
each of x, y, and z is either 0 or 1. (See Figure 1.34.)

(a) Findthe general equations of the planes that
determine the six faces (sides) of the cube.

(b) Find the general equation of the planethat con-
tains the diagonal from the origin to (1, 1, 1) and
is perpendicular to the xy-plane.

(c) Find the general equation of the plane that
contains the side diagonals referred to in
Example 1.22.

26. Find the equation of the set of all points that are
equidistant from the points P = (1, 0, —2) and
Q=(524).

In Exercises 27 and 28, find the distance from the point Q to
the line €.

27. Q = (2, 2), € with equation [ﬂ = [—1} + t[ 1}

2 —1
X 1 =0
28.Q=(0,1,0), € withequation | y | = | 1 | + ¢
z 1 3

In Exercises 29 and 30, find the distance from the point Q to
the plane P.

29.Q=1(2,2,2), P withequationx + y —z=0
30. Q = (0, 0, 0), % with equationx — 2y + 2z =1

Figure 1.66 suggests a way to use vectors to locate the point
R on € that is closest to Q.

31. Find the point R on € that is closest to Q in Exercise 27.
32. Find the point R on € that is closest to Q in Exercise 28.

0
4
R
P
r
P
‘o
Figure 1.66
r=p-+ PR
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Figure 1.67 suggests a way to use vectors to locate the point
R on P that is closest to Q.

o
P
p R
r P
0
Figure 1.67

r=p+PQ + QR
33. Find the point R on % that is closest to Q in Exercise 29.
34. Find the point R on % that is closest to Q in Exercise 30.

In Exercises 35 and 36, find the distance between the
parallel lines.

sl [ Lm0

r -

X 1 1 x 0 1
36. |y | = O|+s|l]|and |y|=]1]|+¢1
z -1 1 z 1 1

L L

In Exercises 37 and 38, find the distance between the
parallel planes.

37.2x +y—2z=0 and 2x+y—2z=5
38.x+ty+z=1 and x+y+z=3

39. Prove Equation (3) on page 43.

40. Prove Equation (4) on page 44.

41. Prove that, in R? the distance between parallel lines
with equations n*x = ¢; and n*x = ¢, is given by
e — ¢l
]
42. Prove that the distance between parallel planes with
equations n-x =4d;, and n-x =d, is given by
‘d1 — dz‘
In

If two nonparallel planes %, and P, have normal vectors n,
and n, and 0 is the angle between n, and n,, then we define

the angle between P, and P, to be either 0 or 180° — 6,
whichever is an acute angle. (Figure 1.68)

n n,

6

180 — 6
Figure 1.68

In Exercises 43-44, find the acute angle between the planes
with the given equations.

43.x+y+2z=0 and 2x+y—2z=0

44.3x —y+2z=5 and x+4y—2z=2

In Exercises 45-46, show that the plane and line with the
given equations intersect, and then find the acute angle of
intersection between them.

45. The plane given by x + y + 2z = 0 and the line
givenbyx =2 + ¢

y=1-—2t
z=3+ t
46. The plane given by 4x — y — z = 6 and the line
given by x = t
y=1+2t
z=2+3t

Exercises 47-48 explore one approach to the problem of
finding the projection of a vector onto a plane. As Fig-

ure 1.69 shows, if P is a plane through the origin in R with
normal vector n, and v is a vector in R®, then p = projp(v)
is a vector in %P such that v — cn = p for some scalar c.

Figure 1.69
Projection onto a plane



47. Using the fact that n is orthogonal to every vector in %
(and hence to p), solve for ¢ and thereby find an expres-
sion for p in terms of v and n.

48. Use the method of Exercise 43 to find the projection of
1
V= 0
=2

onto the planes wi
@x+y+z=0
(c) x—2z=0

Section 1.3 Lines and Planes

th the following equations:
b) 3x—y+2z=0
d 2x—3y+z=0

a1
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Exploration

The Cross Product

It would be convenient if we could easily convert the vector form x = p + su + ¢tvof
the equation of a plane to the normal form n-x = n-p. What we need is a process
that, given two nonparallel vectors u and v, produces a third vector n that is orthogo-
nal to both u and v. One approach is to use a construction known as the cross product
of vectors. Only valid in R?, it is defined as follows:

U V1
Definition  The cross product of u = | u, | and v = | v, | is the vector u X v
defined by Us V3
u2V3 = L{3V2
uXv=|uyv, — Vs
U, = v

A shortcut that can help you remember how to calculate the cross product of
two vectors is illustrated below. Under each complete vector, write the first two com-
ponents of that vector. Ignoring the two components on the top line, consider each
block of four: Subtract the products of the components connected by dashed lines
from the products of the components connected by solid lines. (It helps to notice that
the first component of u X v has no 1s as subscripts, the second has no 2s, and the
third has no 3s.)

u Y1
U, V2
Us >\ V3 u2V3 — Uz,

U s Vi UV T s
u, - Vy UV, T UV

The following problems briefly explore the cross product.

1. Compute u X v.

0 3 3 0
(@Qu=|1v=|—-1 B)u=|-1v=|1
1 2 2 1



uXxXy

u
Figure 1.70

Figure 1.71

—1| 2 1 1
(c) u= 2|,v=|—4 (du=|1|,v=|2
3 —6 1 3

. Show thate; X e, = e;,e, X e;=¢,and e; X e, = e,.
. Using the definition of a cross product, prove that u X v (as shown in Figure 1.70)

is orthogonal to uand v.

. Use the cross product to help find the normal form of the equation of the plane.

0 3
(a) The plane passing through P = (1,0, —2), paralleltou = | 1 |andv = | —1
1 2

(b) The plane passing through P = (0, —1,1), Q = (2,0,2),and R = (1,2, —1)

. Prove the following properties of the cross product:

(a) vXu=—(uXv) (b)) uxo0=0

(c) uXu=0 (d) uX kv =k(u X v)

(e) uXku=0 f) uX(v+w)=uXv+tuXw

. Prove the following properties of the cross product:

@u-(vxw =(uXv)w b)) uXvXw=wv-—(uvw
© fluxv]*=Jul*|v]* = (u-v)?

. Redo Problems 2 and 3, this time making use of Problems 5 and 6.
. Letu and v be vectors in R® and let § be the angle between u and v.

(a) Prove that [|[u X v|| = ||u| ||v] sin 6. [Hint: Use Problem 6(c).]
(b) Prove that the area A of the triangle determined by u and v (as shown in Fig-
ure 1.71) is given by
A =3lluxv]
(c) Use the result in part (b) to compute the area of the triangle with vertices
A=(1,21),B=(2,1,0),and C = (5, — 1, 3).

Writing Project

The Origins of the Dot Product and Cross Product

The notations for dot and cross product that we use today were introduced in the
late 19th century by Josiah Willard Gibbs, a professor of mathematical physics at
Yale University. Edwin B. Wilson was a graduate student in Gibbs’s class, and he
later wrote up his class notes, expanded upon them, and had them published in
1901, with Gibbs’s blessing, as Vector Analysis: A Text-Book for the Use of Students
of Mathematics and Physics. However, the concepts of dot and cross product arose
earlier and went by various other names and notations.

Write a report on the evolution of the names and notations for the dot product

and cross product.

1. Florian Cajori, A History of Mathematical Notations (New York: Dover, 1993).
2. J. Willard Gibbs and Edwin Bidwell Wilson, Vector Analysis: A Text-Book for the

Use of Students of Mathematics and Physics (New York: Charles Scribner’s Sons,
1901). Available online at http://archive.org/details/117714283.

3. Ivor Grattan-Guinness, Companion Encyclopedia of the History and Philosophy

of the Mathematical Sciences (London: Routledge, 2013).
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4

1]

Force is defined as the product of
mass and acceleration due to grav-
ity (which, on Earth, is 9.8 m/ ).
Thus, a 1 kg mass exerts a down-
ward force of 1 kg X 9.8 m/s” or
9.8 kg m/s®. This unit of measure-
ment is a newton (N). So the force
exerted by a 1 kg mass is 9.8 N.

l':fl+f2

Figure 1.72
The resultant of two forces

Applications

Force Vectors

We can use vectors to model force. For example, a wind blowing at 30 km/h in a west-
erly direction or the Earths gravity acting on a 1 kg mass with a force of 9.8 newtons
downward are each best represented by vectors since they each consist of a magnitude
and a direction.

It is often the case that multiple forces act on an object. In such situations, the
net result of all the forces acting together is a single force called the resultant, which
is simply the vector sum of the individual forces (Figure 1.72). When several forces
act on an object, it is possible that the resultant force is zero. In this case, the object
is clearly not moving in any direction and we say that it is in equilibrium. When an
object is in equilibrium and the force vectors acting on it are arranged head-to-tail,
the result is a closed polygon (Figure 1.73).

Figure 1.73
Equilibrium

>»

Example 1.34

>

Ann and Bert are trying to roll a rock out of the way. Ann pushes with a force of 20 N
in a northerly direction while Bert pushes with a force of 40 N in an easterly direction.

(a) What is the resultant force on the rock?
(b) Carlais trying to prevent Annand Bert from moving the rock. What force must
Carla apply to keep the rock in equilibrium?

Solution (a) Figure 1.74 shows the position of the two forces. Using the paral-
lelogram rule, we add the two forces to get the resultant r as shown. By Pythagoras’

v
v

Figure 1.714
The resultant of two forces
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Theorem, we see that [|r| = V/20? + 402 = V/2000 ~ 44.72 N. For the direc-

tion of r, we calculate the angle 6 between r and Berts easterly force. We find that

sinf = 20/||r|| = 0.447,500 =~ 26.57°.

(b) If we denote the forces exerted by Ann, Bert, and Carla by a, b, and ¢, respec-
tively, then we require a + b + ¢ = 0. Therefore c = —(a + b) = —r, so Carla
needs to exert a force of 44.72 N in the direction opposite to r. 4

Often, we are interested in decomposing a force vector into other vectors whose
resultant is the given vector. This process is called resolving a vector into com-
ponents. In two dimensions, we wish to resolve a vector into two components.
However, there are infinitely many ways to do this; the most useful will be to re-
solve the vector into two orthogonal components. (Chapters 5 and 7 explore this
idea more generally.) This is usually done by introducing coordinate axes and by
choosing the components so that one is parallel to the x-axis and the other to the
y-axis. These components are usually referred to as the horizontal and vertical
components, respectively. In Figure 1.75, f is the given vector and f, and f, are its
horizontal and vertical components.

ylk

A 4

Figure 1.75
Resolving a vector into components

Example 1.35

Ann pulls on the handle of a wagon with a force of 100 N. If the handle makes an
angle of20° with the horizontal, what is the force that tends to pull the wagon forward
and what force tends to lift it off the ground?

Solution  Figure 1.76 shows the situation and the vector diagram that we need to
consider.

Figure 1.16
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We see that
If.| = |f] cos20°and ||f, | = |f|| sin20°
Thus, [f,] = 100(0.9397) =~ 93.97 and |f,| = 100(0.3420) =~ 3420. So the

wagon is pulled forward with a force of approximately 93.97 N and it tends to lift off
the ground with a force of approximately 34.20 N. T
-

We solve the next example using two different methods. The first solution considers
a triangle of forces in equilibrium; the second solution uses resolution of forces into
components.

-

Example 1.36

Figure 1.77 shows a painting that has been hung from the ceiling by two wires. If the
painting has a mass of 5 kgand if the two wires make angles of 45 and 60 degrees with
the ceiling, determine the tension in each wire.

Figure 1.77

Solution 1 We assume that the painting is in equilibrium. Then the two wires must
supply enough upward force to balance the downward force of gravity. Gravity
exerts a downward force of 5 X 9.8 = 49 N on the painting, so the two wires must
collectively pull upward with 49 N of force. Let f, and f, denote the tensions in the
wires and let r be their resultant (Figure 1.78). It follows that || r|| = 49 since we are
in equilibrium.



NS

o

r= f| =+ f2
f,
30°
—
Figure 1.78
fl AV1
A fZ
V2
— 07 A
hy h
49 N
Figure 1.719

||f1|| =
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Using the law of sines, we have

161 161 _ el
sin45°  sin30°  sin 105°
SO
r|sin45°  49(0.7071 r||sin 30°  49(0.5
I sin ~ 2 )z3s.87and I, = Il sin 30° _ 45¢ )z25.36

sin105° 0.9659 sin105°  0.9659
Therefore, the tensions in the wires are approximately 35.87 N and 25.36 N.

Solution 2 We resolve f, and f, into horizontal and vertical components, say, f; =
h;, + v, and f, = h, + v,, and note that, as above, there is a downward force of 49 N

(Figure 1.79).

It follows that

2 V3£
Iy || = [[fi] cos 60° = ”21”, Ivill = [Ifil] sin 60° = #
I£: , 16|
Ihy|| = [|f,]| cos 45° = \/22 v, = [I£,] sin 45° = %

Since the painting is in equilibrium, the horizontal components must balance, as
must the vertical components. Therefore, |h,| = ||h,|| and ||v,|| + |v,|| = 49, from
which it follows that

2|, V3£l | Il
f| = = V2|f d + =49
I = 22 = Valgl and S+
Substituting the first of these equations into the second equation yields
V3|l | IE] 49V2
+ = 49, f,] = ———== 2536
V2 V2 or I8l =705
Thus, || = V2|f,|| = 1.4142(25.36) =~ 35.87, so the tensions in the hires are
approximately 35.87 N and 25.36 N, as before. I

I[Xﬂl‘ﬂiSﬂS 1.4

Force Vectors

In Exercises 1-6, determine the resultant of the given

forces.

1. f; acting due north with a magnitude of 12 N and
f, acting due east with a magnitude of 5 N

\/

2. f; acting due west with a magnitude of 15 N and
f, acting due south with a magnitude of 20 N

3. f, acting with a magnitude of 8 N and f, acting at an
angle of 60° to f; with a magnitude of 8 N

4. f, acting with a magnitude of 4 N and f, acting at an
angle of 135°to f, with a magnitude of 6 N
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. f, acting due east with a magnitude of 2 N, f, acting

due west with a magnitude of 6 N, and f; acting at an
angle of 60° to f) with a magnitude of 4 N

. f, acting due east with a magnitude of 10 N, f, acting

due north with a magnitude of 13 N, f; acting due west
with a magnitude of 5 N, and f, acting due south with
a magnitude of 8 N

. Resolve a force of 10 N into two forces perpendicular

to each other so that one component makes an angle
of 60° with the 10 N force.

. A 10 kg block lies on a ramp that is inclined at an angle

of 30° (Figure 1.80). Assuming there is no friction, what
force, parallel to the ramp, must be applied to keep the
block from sliding down the ramp?

10 kg

30°

Figure 1.80

A tow truck is towing a car. The tension in the tow
cable is 1500 N and the cable makes a 45° with the
horizontal, as shown in Figure 1.81. What is the verti-
cal force that tends to lift the car off the ground?

f=1500 N

10. A lawn mower has a mass of 30 kg. It is being pushed

11.

12.

13.

14.

with a force of 100 N. If the handle of the lawn mower
makes an angle of 45° with the ground, what is the
horizontal component of the force that is causing the
mower to move forward?

A sign hanging outside Joe’s Diner has a mass of 50 kg
(Figure 1.82). If the supporting cable makes an angle
of 60° with the wall of the building, determine the
tension in the cable.

JOE’S DINER

A sign hanging in the window of Joe’s Diner has a
mass of 1 kg. If the supporting strings each make an
angle of 45° with the sign and the supporting hooks
are at the same height (Figure 1.83), find the tension in
each string.

Figure 1.82

fi fz
459, ,N45°
IF)PEN FOR BUSINESS J

Figure 1.83

A painting with a mass of 15 kg is suspended by two
wires from hooks on a ceiling. If the wires have lengths
of 15 cm and 20 cm and the distance between the
hooks is 25 cm, find the tension in each wire.

A painting with a mass of 20 kg is suspended by two
wires from a ceiling. If the wires make angles of 30°
and 45° with the ceiling, find the tension in each wire.
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Key Definitions and Concents

algebraic properties of vectors, 10
angle between vectors, 24

binary vector, 13
Cauchy-Schwarz Inequality, 22
cross product, 48

direction vector, 35

distance between vectors, 23

dot product, 18

equation ofaline, 36

equation ofa plane, 38-39

)

¥

head-to-tail rule, 6
integers modulo m (Z,,), 14-16
length (norm) ofa vector, 20
linear combination of

vectors, 12
normal vector, 34, 38
m-ary vector 16
orthogonal vectors, 26
parallel vectors, 8
parallelogram rule, 6

projection of a vector onto
a vector, 27

Pythagoras’ Theorem, 26

scalar multiplication, 7

standard unit vectors, 22

Triangle Inequality, 22

unit vector, 21

vector, 3

vector addition, 5

zero vector, 4

1. Mark each of the following statements true or false: 4. Let A, B, C, and D be the vertices of a square centered

(a) Forvectorsu,v,andwin R" ifu +w=v+w,

at the ori& O, labegle’d in clockwise order. If a = OA
and b = OB, find BC in terms of a and b.

Find the angle between the vectors [—1, 1, 2] and

thenu = v.
(b) For vectors u, v, and win R", ifu - w = v - w, then 5.
u=yv. 2,1, —1].

(c) For vectors u, v, and w in R?, if u is orthogonal
to v, and v is orthogonal to w, then u is orthogonal
tow.

(d) In R’ if a line € is parallel to a plane %, then a di-
rection vector d for € is parallel to a normal vector
n for P.

(e) InR’ ifaline € is perpendicular to a plane %, then
a direction vector d for € is a parallel to a normal
vector n for .

(f) In R’ if two planes are not parallel, then they must
intersect in a line.

(g) In R?, if two lines are not parallel, then they must
intersect in a point.

(h) If vis a binary vector such that v - v = 0, then
v=0.

(i) InZ,, if ab = 0 then eithera = 0 or b = 0.

(j) InZ, if ab = 0 then eithera = 0 or b = 0.

—1 3
. Ifu = [ 5},v = [J,amd the vector 4u + v is drawn

with its tail at the point (10, —10), find the coordinates
of the point at the head of 4u + v.

-1 3
fu = [ 5},v= {J,ande-l—u:S(x—v),solve

for x.

78

8.

10.

11.

1 1
. Find the projectionofv=| 1 [ontou = | =2 |.
1 2

Find a unit vector in the xy-plane that is orthogonal

to| 2.
3

Find the general equation of the plane through the
point (1, 1, 1) that is perpendicular to the line with
parametric equations

x= 2—t
3+ 2t
z=-1+ t

. Find the general equation of the plane through the

point (3, 2, 5) that is parallel to the plane whose general
equation is 2x + 3y — z = 0.

Find the general equation of the plane through the
points A(1, 1, 0), B(1, 0, 1), and C(0, 1, 2).

Find the area of the triangle with vertices A(1, 1, 0),
B(1, 0, 1), and C(0, 1, 2).

99



96 Chapter 1  Vectors

12. Find the midpoint of the line segment between
A=(51,—-2)and B = (3, —7,0).

13. Why are there no vectors u and vin R" such that
|ul| =2 ||v|]| = 3 andu-v=—7?

14. Find the distance from the point (3, 2, 5) to the plane
whose general equation is 2x + 3y — z = 0.

15. Find the distance from the point (3, 2, 5) to the line

with parametric equationsx =,y =1 + t,z=2 + ¢.

16. Compute 3 — (2 + 4)*(4 + 3)%in Zs.
17. If possible, solve 3(x + 2) = 5in Z,.
18. If possible, solve 3(x + 2) = 5in Z,,.
19. Compute [2, 1, 3, 3] + [3, 4, 4, 2] in Z2.

20.Letu= (1,1, 1,0] in Z5. How many binary vectors v
satisfy u - v = 07?



