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Please, sir, [ want some more.
—Oliver
Charles Dickens, Oliver Twist

Anyone who understands algebraic
notation reads at a glance in an
equation results reached
arithmetically only

with great labour and pains.
—Augustin Cournot

Researches into the Mathematical
Principles of the Theory of Wealth
Translated by Nathaniel T. Bacon
Macmillan, 1897, p. 4
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Mathematical Notation
and Methods of Proof

In this book, an effort has been made to use “mathematical English” as much as pos-
sible, keeping mathematical notation to a minimum. However, mathematical nota-
tion is a convenient shorthand that can greatly simplify the amount of writing we
have to do. Moreover, it is commonly used in every branch of mathematics, so the
ability to read and write mathematical notation is an essential ingredient of mathe-
matical understanding. Finally, there are some theorems whose proofs become
“obvious” if the right notation is used.

Proving theorems in mathematics is as much an art as a science. For the beginner,
it is often hard to know what approach to use in proving a theorem; there are many
approaches,any one of which might turn out to be the best. To become proficient at proofs,
it is important to study as many examples as possible and to get plenty of practice.

This appendix summarizes basic mathematical notation applied to sets. Summa-
tion notation, a useful shorthand for dealing with sums, is also discussed. Finally,
some approaches to proofs are illustrated with generic examples.

A set is a collection of objects, called the elements (or members) of the set. Examples
of sets include the set of all words in this text, the set of all books in your college
library, the set of positive integers, and the set of all vectors in the plane whose equa-
tionis 2x + 3y —z = 0.

It is often possible to list the elements of a set, in which case it is conventional to
enclose the list within braces. For example, we have

{Lzﬂ,wmmd,&Aa””mﬂ,{ﬁ—ﬁ—;anq——

Note that ellipses (. . .) denote elements omitted when a pattern is present. (What is
the pattern in the last two examples?) Infinite sets are often expressed using ellipses.
For example, the set of positive integers is usually denoted by N or Z*, so

N=27"={1,23..}
The set of all integers is denoted by Z, so
z=1.,-2,-1012,...}
Two sets are considered to be equal if they contain exactly the same elements. The

order in which elements are listed does not matter, and repetitions are not counted. Thus,

*Exercises and selected odd-numbered answers for this appendix can be found on the student companion
website.
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{1,2,3} = {2,1,3} = {1,3,2,1}

The symbol € means “is an element of” or “is in,” and the symbol & denotes the
negation—that is, “is not an element of” or “is not in.” For example,

5€Z" but 0 Z"

It is often more convenient to describe a set in terms of a rule satisfied by all of its
elements. In such cases, set builder notation is appropriate. The format is

{x: x satisfies P}

where P represents a property or a collection of properties that the element x must
satisfy. The colon is pronounced “such that” For example,

{n:ne€z,n>0}

is read as “the set of all n such that n is an integer and n is greater than zero”
This is just another way of describing the positive integers Z*. (We could also
write Z' = {n € Z :n > 0}.)

The empty set is the set with no elements. It is denoted by either Jor { }.

Example A.1

John Venn (1834-1923) was an
English mathematician who studied
at Cambridge University and later
lectured there. He worked primarily
in mathematical logic and is best

known for inventing Venn diagrams.

\

Describe in words the following sets:

(a) A={n:n=2k, k€ 7} (b) B={m/n:mn€ Z,n # 0}
() C={xER:4x>— 4x— 3 =10} (d) D={xEZ:4x* —4x—3 =0}

Solution (a) Aisthesetof numbers n that are integer multiples of 2. Therefore, A is
theset of all even integers.

(b) Bis the set of all expressions of the form m/n, where m and n are integers and n
is nonzero. This is the set of rational numbers, usually denoted by (2. (Note that this
way of describing ) produces many repetitions; however, our convention, as noted
above, is that we include only one occurrence of each element. Thus, this expression
precisely describes the set of all rational numbers.)

(c) Cisthe set of all real solutions of the equation 4x* — 4x — 3 = 0. By factoring or

using the quadratic formula, we find that the roots of this equation are —} and 3.
(Verify this.) Therefore,

C={-33

(d) From the solution to (c) we see that there are #o solutions to 4x* — 4x — 3 = 0
in R that are integers. Therefore, D is the empty set, which we can express by writing

D=g. 4

If every element of a set A is also an element of a set B, then A is called a
subset of B, denoted A C B. We can represent this situation schematically using
a Venn diagram, as shown in Figure A.1. (The rectangle represents the universal
set, a set large enough to contain all of the other sets in question—in this case,
A and B.)
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Figure A.1
A CB

\

Example A.2

(@) {1,2,3}C{1,2 34,5}
(b) Z*CZCR

(c) Let A be the set of all positive integers whose last two digits are 24 and let B be
the set of all positive integers that are evenly divisible by 4. Then if # is in A4, it is of
the form

n = 100k + 24
for some integer k. (For example, 36,524 = 100 - 365 + 24.) But then
n = 100k + 24 = 4(25k + 6)

so n/4 = 25k + 6, which is an integer. Hence, # is evenly divisible by 4, so it is in B.
Therefore, A C B. I

We can show that two sets A and B are equal by showing that each is a subset of
the other. This strategy is particularly useful if the sets are defined abstractly or if it is
not easy to list and compare their elements.

»

Example A.3

Let A betheset of all positive integers whose last two digits form a number that is evenly
divisible by 4. In the case of a one-digit number, we take its tens digit to be 0. Let B be
the set of all positive integers that are evenly divisible by 4. Show that A = B.

Solution  Asin Example A.2(c), it is easy to see that A C B. If n is in A, then we can
split off the number m formed by its last two digits by writing

n = 100k + m

for some integer k. But, since m is divisible by 4, we have m = 4r for some integer r.
Therefore,

n = 100k + m = 100k + 4r = 4(25k + r)
so 1 is also evenly divisible by 4. Hence, A C B.

To show that B C A, let n be in B. That is, # is evenly divisible by 4. Let’s say that

n = 4s, where s is an integer. If m is the number formed by the last two digits of #,
then, as above, n = 100k + m for some integer k. But now

m = n — 100k = 4s — 100k = 4(s — 25k)
which implies that m is evenly divisible by 4, since s — 25k is an integer. Therefore, n

is in A, and we have shown that B C A.
Since A C Band B C A, we must have A = B. i



Appendix A Mathematical Notation and Methods of Proof A4

The intersection of sets A and B is denoted by A N B and consists of the elements
that A and B have in common. That is,

ANB={x:x€ A and x € B}

Figure A.2 shows a Venn diagram of this case. The union of A and B is denoted by
A U B and consists of the elements that are in either A or B (or both). That is,

AUB={x:x€EA or x€B}

See Figure A.3.

Figure A.2 Figure A.3
ANB AUB

»

Example A.4

Figure A.4
Disjoint sets

2 is the capital Greek letter sigma,
corresponding to S (for “sum”).
Summation notation was
introduced by Fourier in 1820 and
was quickly adopted by the
mathematical community.

LetA={n*:n€Z"',1=n<4andletB={n €Z" :n <10 and n is odd}. Find
AN Band A U B.

Solution We see that
A =1{1%2%3% 42} = {1,4,9,16} and B ={1,35709}

Therefore, AN B={1,9}and AU B ={1,3,4,5,7,9, 16}. I

If AN B = (J, then A and B are called disjoint sets. (See Figure A.4.) For example,
the set of even integers and the set of odd integers are disjoint.

Summation notation is a convenient shorthand to use to write out a sum such as
1+2+3+-+100

where we want to leave out all but a few terms. Asin set notation, ellipses (. . .) convey
that we have established a pattern and have simply left out some intermediate terms.
In the above example, readers are expected to recognize that we are summing all of
the positive integers from 1 to 100. However, ellipses can be ambiguous. For example,
what would one make of the following sum?

1+2+ -+ 64
Is this the sum of all positive integers from 1 to 64 or just the powers of two, 1 + 2 +

4+ 8 + 16 + 32 + 642 It is often clearer (and shorter) to use summation notation
(or sigma notation).
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We can abbreviate a sum of the form
at+a,+ - +a, (1)

as éak (2)
i=1

which tells us to sum the terms a, over all integers k ranging from 1 to n. An alterna-
tive version of this expression is

> @

1=k=n

The subscript k is called the index of summation. It is a “dummy variable” in the sense
that it does not appear in the actual sum in expression (1). Therefore, we can use any
letter we like as the index of summation (as long as it doesmt already appear somewhere
else in the expressions we are summing). Thus, expression (2) can also be written as

n
>4
i=1
The index of summation need not start at 1. The sum a, + a, + --- + a,, becomes
99
>
k=3
although we can arrange for the index to begin at 1 by rewriting the expression as

97
>
k=1

The key to using summation notation effectively is being able to recognize patterns.

Write the following sums using summation notation.

@ 1+2+4+-+64 (b)) 1+3+5++99 (c)3+8+15+--+99

Solution (a) We recognize this expression as a sum of powers of 2:
1+2+4+---+64=20+2"+22+--- +26

6
Therefore, the index of summation appears as the exponent, and we have 2.
=0

(b) This expression is the sum of all the odd integers from 1 to 99. Every odd integer is of
the form 2k + 1, so the sum is

1+3+5+- 499
20+ +@21+1)+@R22+1)+---4+(2-49+1)

49

D2k + 1)

k=0

(c) The pattern here is less clear, but a little reflection reveals that each term is 1 less than
a perfect square:

3+8+15+ - +99
2ZP-D+@F-D+ @ -1+ +(10°-1)

10
= 2k =1 1
k=2
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Rewrite each of the sums in Example A.5 so that the index of summation starts at 1.

Solution (a) If we use the change of variable i = k + 1, then, as k goes from 0 to 6,
igoesfrom 1to 7. Since k = i — 1, we obtain

-

6 7
221\‘ — 221’*1
k=0 i=1

(b) Using the same substitution as in part (a), we get

50 50

49
Sk+1)=>@iE-1)+1)=>@2i-1)
k=0

i=1 i=1

(c) The substitution i = k — 2 will work (try it), but it is easier just to add a term corre-
sponding to k = 1, since 1> — 1 = 0. Therefore,

10

10
k-1 =DK1
k=2 k=1 1

Multiple summations arise when there is more than one index of summation, as
there is with a matrix. The notation

2 aij (3)
i,j=1

means to sum the terms a;; as i and j each range independently from 1 to ». The sum
in expression (3) is equivalent to either

where we sum first over j and then over i (we always work from the inside out), or

n

n
P ai;
=)

j=1i

where the order of summation is reversed.

Example A.1

\/

3

Write out . i/ using both possible orders of summation.
ij=1

3 n

SHi =D+ 2+ 1)

i=1 j=1 i=1

'+ 1P+ 1)+ +22+2)+ (3 +3+3)

=1+1+1)+Q2+4+8 +@B+9+27)=56
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How to Solve It is the title of a book
by the mathematician George
Pélya (1887-1985). Since its publi-
cation in 1945, How to Solve It has
sold over a million copies and has

been translated into 17 languages. o

Pélya was born in Hungary, but
because of the political situation in
Europe, he moved to the United
States in 1940. He subsequently
taught at Brown and Stanford
Universities, where he did mathe-
matical research and developed a
well-deserved reputation as an
outstanding teacher. The Pélya
Prize is awarded annually by the
Society for Industrial and Applied
Mathematics for major contribu-
tions to areas of mathematics close
to those on which Pélya worked.
The Mathematical Association

of America annually awards

Pélya Lectureships to math-
ematicians demonstrating

the high-quality exposition

for which Pélya was known.

and

3 3 . i . . .

D= DV + 2+ 3))

j=1i=1 j=1

(1" +2'+3) + (1P + 27 +3) + (1P +2° + 3)

=(1+2+3)+(1+4+9 +1+8+27) =56 I

Remark Of course, the value of the sum in Example A.7 is the same no matter
which order of summation we choose, because the sum is finite. It is also possible to
consider infinite sums (known as infinite series in calculus), but such sums do not
always have a value and great care must be taken when rearranging or manipulating
their terms. For example, suppose we let

S=>2
k=0

Then S=1+2+4+8+ -
=1+20+2+4+- )
=1+2§
from which it follows that S = —1. This is clearly nonsense, since S is a sum of

non-negative terms! (Where is the error?)

Methods of Proof

The notion of proof is at the very heart of mathematics. It is one thing to know what
is true; it is quite another to know why it is true and to be able to demonstrate its truth
by means of a logically connected sequence of statements. The intention here is not to
try to teach you how to do proofs; you will become better at doing proofs by studying
examples and by practicing—something you should do often as you work through
this text. The intention of this brief section is simply to provide a few elementary ex-
amples of some types of proofs. The proofs of theorems in the text will provide fur-
ther illustrations of “how to solve it

Roughly speaking, mathematical proofs fall into two categories: direct proofs
and indirect proofs. Many theorems have the structure “if P, then Q,” where P (the
hypothesis, or premise) and Q (the conclusion) are statements that are either true or
false. We denote such an implication by P = Q. A direct proof proceeds by establish-
ing a chain of implications

P=P,=P,= =P =Q

leading directly from P to Q.

Prove that any two consecutive perfect squares differ by an odd number. This instruc-
tion can be rephrased as “Prove that if a and b are consecutive perfect squares, then
a — b is odd” Hence, it has the form P = Q, with P being “a and b are consecutive
perfect squares” and Q being “a — b is odd”
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Solution  Assume that a and b are consecutive perfect squares, with a > b. Then
a=m+1?% and b=n?
for some integer n. But now

a—-b=m+1?-n

=n*+2n+1-n
2n + 1

so a — bis odd.

-

There are two types of indirect proofs that can be used to establish a conditional
statement of the form P = Q. A proof by contradiction assumes that the hypothesis
Pistrue, just as in a direct proof, but then supposes that the conclusion Q is false. The
strategy then is to show that this is not possible (i.e., to rule out the possibility that
the conclusion is false) by finding a contradiction to the truth of P. It then follows
that Q must be true.

>

»)»—L

Let n be a positive integer. Prove that if n* is even, so is 7. (Take a few minutes to try
to find a direct proof of this assertion; it will help you to appreciate the indirect proof
that follows.)

Solution  Assume that 7 is a positive integer such that n* is even. Now suppose that
n is not even. Then n is odd, so

n=2k+1
for some integer k. But if so, we have
n* = (2k + 1) = 4k* + 4k + 1

so n? is odd, since it is 1 more than the even number 4k* + 4k. This contradicts our
hypothesis that 1* is even. We conclude that our supposition that n was not even must
have been false; in other words, # must be even.

Closely related to the method of proof by contradiction is proof by contraposi-
tive. The negative of a statement P is the statement “it is not the case that P,” abbrevi-
ated symbolically as =P and pronounced “not P.” For example, if P is “n is even,” then
=P is “it is not the case that 7 is even”—in other words, “n is odd.”

The contrapositive of the statement P = Q is the statement ~Q = —P. A conditional
statement P=> Q and its contrapositive =Q = =P are logically equivalent in the sense that
they are either both true or both false. (For example, if P= Q is a theorem, then so is =Q
= —P. Tosee this, note thatif the hypothesis ~Qis true, then Qis false. The conclusion =P
cannot be false, for if it were, then P would be true and our known theorem P = Q would
imply the truth of Q, giving us a contradiction. It follows that =P is true and we have
proved -Q = —P.) Here is a contrapositive proof of the assertion in Example A.9.
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Example A.10

Y

Let n be a positive integer. Prove that if n* is even, so is 7.
Solution The contrapositive of the given statement is
“If nis not even, then n* isnoteven” or “If nis odd, so is n*”

To prove this contrapositive, assume that 7 is odd. Then n = 2k + 1 for some inte-
ger k. As before, this means that n* = (2k + 1) = 4k* + 4k + 1 is odd, which
completes the proof of the contrapositive. Since the contrapositive is true, so is the

original statement. I

Although we do not require a new method of proof to handle it, we will briefly
consider how to prove an “if and only if” theorem. A statement of the form “P if and
only if Q” signals a double implication, which we denote by P <> Q. To prove such a
statement, we must prove P = Q and Q = P. To do so, we can use the techniques
described earlier, where appropriate. It is important to notice that the “if ” part of
P< Qis “Pif Q” whichis Q= P; the “only if” part of P < Q is “P only if Q,” mean-
ing P = Q. The implication P = Q is sometimes read as “P is sufficient for Q” or “Q
is necessary for P”; Q = P is read “Q is sufficient for P” or “P is necessary for Q”
Taken together, they are P < Q, or “P is necessary and sufficient for Q” and vice
versa.

Example A.11

A pawn is placed on a chessboard and is allowed to move one square at a time, either
horizontally or vertically. A paw’s tour of a chessboard is a path taken by a pawn, moving
as described, that visits each square exactly once, starting and ending on the same square.
Prove that there is a pawn’s tour of an n X # chessboard if and only if 7 is even.

Solution [ <] (“if”) Assume that n is even. It is easy to see that the strategy illus-
trated in Figure A.5 for a 6 X 6 chessboard will always give a pawn’s tour.

[ =] (“only if”) Suppose that there is a pawn’s tour of an n X 1 chessboard. We
will give a proof by contradiction that n must be even. To this end, let’s assume that n
is odd. At each move, the pawn moves to a square of a different color. The total num-
ber of moves in its tour is #%, which is also an odd number, according to the proof in
Example A.10. Therefore, the pawn must end up on a square of the opposite color
from that of the square on which it started. (Why?) This is impossible, since the pawn
ends where it started, so we have a contradiction. It follows that n cannot be odd;

hence, # is even and the proof is complete. I

Some theorems assert that several statements are equivalent. This means that
each is true if and only if all of the others are true. Showing that #n statements are

nl n* —

n
equivalent requires (2> S -2 2
however, it is often easier to establish a “ring” of n implications that links all of the
statements. The proof of the Fundamental Theorem of Invertible Matrices provides
an excellent example of this approach.

n
“if and only if” proofs. In practice,
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Great fleas have little fleas

upon their backs to bite em,

And little fleas have lesser fleas,
and so ad infinitum.

—Augustus De Morgan

A Budget of Paradoxes
Longmans, Green, and Company,
1872, p. 377
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Mathematical Induction

The ability to spot patterns is one of the keys to success in mathematical problem
solving. Consider the following pattern:

1 =
1+3=4
1+3+5=9

1+3+5+7=16
1+3+5+7+9=25

The sums are all perfect squares: 12, 2%, 3%, 42, 5. It seems reasonable to conjecture that
this pattern will continue to hold; that is, the sum of consecutive odd numbers, start-
ing at 1, will always be a perfect square. Let’s try to be more precise. If the sum is #?,
then the last odd number in the sum is 21 — 1. (Check this in the five cases above.) In
symbols, our conjecture becomes

1+3+5+---+@2n—1 =n?® forallu =1 (1)

Notice that Equation (1) is really an infinite collection of statements, one for each
value of n = 1. Although our conjecture seems reasonable, we cannot assume that the pat-
tern continues—we need to prove it. This is where mathematical induction comes in.

First Principle of Mathematical Induction

Let S(n) be a statement about the positive integer #. If

1. 8(1) is true and
2. for all k = 1, the truth of S(k) implies the truth of S(k + 1)

then S(n)istrueforalln = 1.

Verifying that S(1) is true is called the basis step. The assumption that S(k) is true
for some k = 1 is called the induction hypothesis. Using the induction hypothesis to
prove that S(k + 1) is then true is called the induction step. Mathematical induction
has been referred to as the domino principle because it is analogous to showing that a
line of dominoes will fall down if (1) the first domino can be knocked down (the basis
step) and (2) knocking down any domino (the induction hypothesis) will knock over
the next domino (the induction step). See Figure B.1.

We now use the principle of mathematical induction to prove Equation (1).

*Exercises and selected odd-numbered answers for this appendix can be found on the student companion
website.

B1
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If the first domino falls, and . . . each domino that falls knocks down the next one, . . .

then all the dominoes can be made to fall by pushing over the first one.

Figure B.1

Example B.1

\/

Use mathematical induction to prove that

1+3+5+--+0@2n—1)=n?
foralln = 1.
Solution  For n = 1, the sum on the left-hand side is just 1, while the right-hand side

is 12. Since 1 = 12, this completes the basis step.
Now assume that the formula is true for some integer k = 1. That is, assume that

1+3+5+- -+ 2k—1) = k?

(This is the induction hypothesis.) The induction step consists of proving that the
formula is true when n = k + 1. We see that when n = k + 1, the left-hand side of
formula (1) is

143454+ Q2Kk+1)—1)

143454+ 2k+1)
1+3+5+--+2k— 1)+ (2k+1)

= k> +2k+1
= (k + 1) by the induction
hypothesis

which is the right-hand side of Equation (1) when n = k + 1.
This completes the induction step, and we conclude that Equation (1) is true for
all n = 1, by the principle of mathematical induction.
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The next example gives a proof of a useful formula for the sum of the first n
positive integers. The formula appears several times in the text; for example, see the
solution to Exercise 51 in Section 2.4.

\/

Example B.2

Prove that
+
1+2+ - +n="00%D
2
foralln = 1.
Solution The formula is true for n = 1, since
11+ 1)
2
Assume that the formula is true for n = k; that is,
k(k +1
1+2+ - +k= %

We need to show that the formula is true when n = k + 1; that is, we must prove that

(k+ D[k+1)+1]
2

1+24+ -+ ((k+1)=
But we see that

k(k + 1
- %*’ k +1) by the induction hypothesis
o k(k+ 1)+ 2(k+ 1)
2
2

(k + (k + 2)
2

(k+ Dl(k+1)+1]
2

which is what we needed to show.
This completes the induction step, and we conclude that the formula is true for all
n = 1, by the principle of mathematical induction.

In a similar vein, we can prove that the sum of the squares of the first # positive
integers satisfies the formula

nn+ 1)2n + 1)
6

P+22+3+ -+ =

for all n = 1. (Verify this for yourself.)
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The basis step need not be for n = 1, as the next two examples illustrate.

\

Example B.3

Prove that n! > 2" for all integers n = 4.

Solution The basis step here is when n = 4. The inequality is clearly true in this case,
since

4 =24>16=2"
Assume that k! > 2* for some integer k = 4. Then

(k + 1! = (k + k!

> (k + 1)2¢ by the induction hypothesis
=52k since k = 4
>2-28 =241

which verifies the inequality for n = k + 1 and completes the induction step.
We conclude that n! > 2" for all integers n = 4, by the principle of mathematical

induction. I

If a is a nonzero real number and n = 0 is an integer, we can give a recursive
definition of the power a" that is compatible with mathematical induction. We define
a’ = 1and, forn =0,

n+l — _n
a =aada
n times

(This form avoids the ellipses used in the version a” = aa - - - a.) We can now use
mathematical induction to verify a familiar property of exponents.

Example B.4

\/

Let a be a nonzero real number. Prove that a™a” = a™*" for all integers m, n = 0.

Solution At first glance, it is not clear how to proceed, since there are two variables,
m and #n. But we simply need to keep one of them fixed and perform our induction
using the other. So, let m = 0 be a fixed integer. When n = 0, we have

m m+0

m,0 _— =g

a’a" =a"1=a
using the definition @’ = 1. Hence, the basis step is true.
Now assume that the formula holds when n = k, where k = 0. Then a”a* = a™**,
For n = k + 1, using our recursive definition and the fact that addition and multipli-
cation are associative, we see that

a"ad""! = a"(a‘a) by definition
= (a"a%a
= g™ty by the induction hypothesis
= glm+h+ by definition

— am+(k+1)



Appendix B Mathematical Induction BS

Therefore, the formula is true for n = k + 1, and the induction step is complete.
We conclude that a”a” = a™*" for all integers m, n = 0, by the principle of

mathematical induction. I

In Examples B.1 through B.4, the use of the induction hypothesis during the
induction step is relatively straightforward. However, this is not always the case. An
alternative version of the principle of mathematical induction is often more useful.

Second Principle of Mathematical Induction

Let S(n) be a statement about the positive integer n. If

1. 8(1) is true and
2. the truth of S(1), S(2), . .., S(k) implies the truth of S(k + 1)

then S(») is true for all n = 1.

The only difference between the two principles of mathematical induction is in the
induction hypothesis: The first version assumes that S(k) is true, whereas the second
version assumes thatall of S(1), S(2), ..., S(k) are true. This makes the second prin-
ciple seem weakerthanthefirst,sincewe need toassumemore in order to prove S(k + 1)
(although, paradoxically, the second principle is sometimes called strong induction).
In fact, however, the two principles are logically equivalent: Each one implies the
other. (Can you see why?)

The next example presents an instance in which the second principle of mathe-
matical induction is easier to use than the first. Recall that a prime number is a posi-
tive integer whose only positive integer factors are 1 and itself.

»

P

Prove that every positive integer #n = 2 either is prime or can be factored into a prod-
uct of primes.

Solution  The result is clearly true when n = 2, since 2 is prime. Now assume that for
all integers n between 2 and k, n either is prime or can be factored into a product of
primes. Let n = k + 1. If k + 1 is prime, we are done. Otherwise, it must factor into a
product of two smaller integers—say,

k+1=ab
Since 2 = a, b = k (why?), the induction hypothesis applies to a and b. Therefore,
a:Pl.HPr and b:qlqs
where the p’s and ¢’s are all prime. Then

ab:Pl.”Prql‘”qs

gives a factorization of ab into primes, completing the induction step.
We conclude that the result is true for all integers n = 2, by the second principle

of mathematical induction.
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Do you see why the first principle of mathematical induction would have been
difficult to use here?

We conclude with a highly nontrivial example that involves a combination of in-
duction and backward induction. The result is the Arithmetic Mean-Geometric
Mean Inequality, discussed in Chapter 7 in Exploration: Geometric Inequalities and
Optimization Problems. The clever proof in Example B.6 is due to Cauchy.

Example B.6

\/

i PRy ol be nonnegative real numbers. Prove that
n Xt x, + o+ X,
X)Xy 0 Ky =
n

for all integers n = 2.

Solution For n = 2, the inequality becomes Vxy < (x + y)/2. You are asked to
verify this in Problems 1 and 2 of the Exploration mentioned above.

If S(n) is the stated inequality, we will prove that S(k) implies S(2k). Assume that
S(k) is true; that is,

Vi o efitmt ot
XXyt X =

k
for all nonnegative real numbers x , . . ., x,. Let
Nt »n Y3 T s Y1 T Y
XN=ETT, =T, L, K =T
2 2 2
Then

ZV)}’l"')’zk = \5/\/)’1"‘}’21\» = \I\/V)’l)’z"' V Vok-1Y2k

+ 1 T Yk
= <J’1 )’z).__<}’zk 1 }’zk) by $(2)
2 2
- Va-ox
ta ot x
= : by S(k)
k
Nty Y1t Ya
) ()
- k
_ yl + e _|_ yzl\
2k
which verifies S(2k).
Thus, the Arithmetic Mean-Geometric Mean Inequality is true for n = 2, 4,
8, ...—the powers of 2. In order to complete the proof, we need to “fill in the gaps”

We will use backward induction to prove that S(k) implies S(k — 1). Assuming S(k) is
true, let
X+ ox, oo+ ox

k—1

X =
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Then

X+ X+ X
x1+x2+~-+(1 E “)

\k/ XXt e k-1
(XX Xy =
1%2 k-1 k—1 k

kxy kg e kg

k(k — 1)
X tx X
k—1
Equivalently,
<x1+x2+~-~+xk1>< x1+x2+~-+xk1)k
. =
122 k—1 k_l k_l
k-1
x; +x, + + X5
or xle"'xk,IS k—l

Taking the (k — 1)th root of both sides yields S(k — 1).
The two inductions, taken together, show that the Arithmetic Mean-Geometric

Mean Inequality is true for all n = 2. I

Remark Although mathematical induction is a powerful and indispensable tool,
it cannot work miracles. That is, it cannot prove that a pattern or formula holds if it
does not. Consider the diagrams in Figure B.2, which show the maximum number of
regions R(#) into which a circle can be subdivided by # straight lines.

R(O)=1=20 R(1)=2=2! RQ2)=4=2?
Figure B.2

Based on the evidence in Figure B.2, we might conjecture that R(n) = 2" forn = 0
and try to prove this conjecture using mathematical induction. We would not succeed,
since this formula is not correct! If we had considered one more case, we would have
discovered that R(3) = 7 # 8 = 23, thereby demolishing our conjecture. In fact, the
correct formula turns out to be

n?+n+2
2

which can be verified by induction. (Can you do it?)

For other examples in which a pattern appears to be true, only to disappear when
enough cases are considered, see Richard K. Guy’s delightful article “The Strong Law of
Small Numbers” in the American Mathematical Monthly, Vol. 95 (1988), pp. 697-712.

R(n) =



[The] extension of the number
concept to include the irrational, and
we will at once add, the imaginary, is

the greatest forward step which pure
mathematics has ever taken.
—Hermann Hankel

Theorie der Complexen
Zahlensysteme

Leipzig, 1867, p. 60

There is nothing “imaginary”
about complex numbers—they are
just as “real” as the real numbers.
The term imaginary arose from the
study of polynomial equations
such as x* + 1 = 0, whose solu-
tions are not “real” (i.e., real num-
bers). It is worth remembering that
at one time negative numbers were
thought of as “imaginary” too.

Jean-Robert Argand (1768-1822)
was a French accountant and ama-
teur mathematician. His geometric
interpretation of complex numbers
appeared in 1806 in a book that he
published privately. He was not,
however, the first to give such an
interpretation. The Norwegian-
Danish surveyor Caspar Wessel
(1745-1818) gave the same version
of the complex plane in 1787, but his
paper was not noticed by the
mathematical community until after
his death.

G1

Complex Numbers

A complex number is a number of the form a + bi, where a and b are real numbers and
i is a symbol with the property that i* = —1. The real number a is considered to be a
special type of complex number, since a = a + 0i. If z = a + bi is a complex number,
then the real part of z, denoted by Re z, is a, and the imaginary part of z, denoted by
Im z, is b. Two complex numbers a + bi and ¢ + di are equal if their real parts are equal
and their imaginary parts are equal—that is, ifa = cand b = d. A complex number a +
bi can be identified with the point (a, b) and plotted in the plane (called the complex
plane, or the Argand plane), as shown in Figure C.1. In the complex plane, the horizon-
tal axis is called the real axis and the vertical axis is called the imaginary axis.

Im
A
6i T
—4+3 M7
. B2
20 + .
—t—+—+—+—+——+—+——+—+—+—+>Re
-6 -4 2 1 2 4 6
e —2iT
—3 — 2
—4i+ o
|1 — 4
_6l'__
Figure C.1

The complex plane

The sum of the complex numbers a + bi and ¢ + di is defined as
@+ bi)+ (c+di)=(@+c)+ (b+ di

Notice that, with the identification of a + bi with (a, b), ¢ + di with (¢, d), and
(@+c¢)+ (b+ d)iwith (@ + ¢, b + d), addition of complex numbers is the same
as vector addition. The product of a + biand ¢ + di is

(a + bi)(c + di) = a(c + di) + bi(c + di)
ac + adi + bci + bdi?

*Exercises and selected odd-numbered answers for this appendix can be found on the student companion
website.
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Since i = —1, this expression simplifies to (ac — bd) + (ad + bc)i. Thus, we have

(@ + bi)(c + di) = (ac — bd) + (ad + bo)i

Observe that, as a special case, a(c + di) = ac + adi, so the negative of ¢ + di is
—(c + di) = (—1)(c + di) = —c — di. This fact allows us to compute the difference
ofa + biand ¢ + di as
(a + bi) — (c +di) = (a + bi) + (—=1)(c + di)
=@+ (=0) + &+ (=d)
=(a—c¢c)+(b—di

v

Example C.1

Im
A
z=a+ bi
bi ]
|
L
|
I
Il »
ia » Re
L
T
I
—biT .
! Z=a— bi
Figure 6.2

Complex conjugates

Find the sum, difference, and product of 3 — 4i and —1 + 2i.

Solution Thesumis
B—4)+(-1+2)=0B—-1)+(—4+2)i=2—-2i
The difference is
B—4i)—(-1+2)=0B—-(-1))+(—4—2)i=4— 6i
The product is
(3 —4i)(—1+2i)=—3+6i+4i— 8

—3 4+ 10i — 8(—1) = 5 + 10

g

The conjugate of z = a + bi is the complex number
7= @ = g

(z is pronounced “z bar”) Figure C2 gives the geometric interpretation of the
conjugate.

To find the quotient of two complex numbers, we multiply the numerator and the
denominator by the conjugate of the denominator.

Y

Example C.2

1+ 2i. .
Express ———— in the form a + bi.
3+ 4i

Solution  We multiply the numerator and denominator by 3 + 4i = 3 — 4i. Using
Example C.1, we obtain

-1+2i —-1+2 3—4 5+10i 5+ 10i

1
3+ 4 3+4i 3—4i 3P +4 25 5

2.
+ i
5

.

On the following page is a summary of some of the properties of conjugates. The
proofs follow from the definition of conjugate; you should verify them for yourself.
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Im
A
. z=a+ bi
bi 1+ X
\z\ = \“‘a2 + b2
b
= »Re
a
Figure 6.3
B—
Im
A .
a—+ bi
b
n »Re

Figure G.4

||

1NNz

2.ztw=z+tw

3. zw = zw

4. Ifz # 0, then (w/z) = w/z.
5. zisrealifand only ifz = z.

The absolute value (or modulus) |z| of a complex number z = a + bi is its dis-
tance from the origin. As Figure C.3 shows, Pythagoras’ Theorem gives

lz| = |a + bi] = Va?+ ¥

Observe that

zz = (a + bi)(a — bi) = a® — abi + bai — b** = a®> + b?
Hence, 2z = |z|?

This gives us an alternative way of describing the division process for the quotient of
two complex numbers. If w and z # 0 are two complex numbers, then

w w
Zz z

Below is a summary of some of the properties of absolute value. (You should try
to prove these using the definition of absolute value and other properties of complex
numbers.)

1. |z| = 0ifand onlyifz = 0.
2. |z] = ||
3. |zw| = |z||w]
1
4, Ifz # 0, then —‘ = m

Lz + wl = |z + wl

w

Polar Form

As you have seen, the complex number z = a + bi can be represented geometrically
by the point (a, b). This point can also be expressed in terms of polar coordinates
(r,6), where r = 0, as shown in Figure C.4. We have

a=rcos and b =rsinb
) z=a+ bi =rcosf + (rsin )i

Thus, any complex number can be written in the polar form

z = r(cos @ + isinB)
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where r = |z| = Va* + b® and tan § = b/a. The angle 0 is called an argument of z
and is denoted by arg z. Observe that arg z is not unique: Adding or subtracting any
integer multiple of 27 gives another argument of z. However, there is only one argu-
ment 6 that satisfies

—T<0=7

This is called the principal argument of z and is denoted by Arg z.

Example C.3

Im
A
14 z=1+4+1i
I
5 I
V2 e
I J\
t »Re
(e 1
3 |
|
|
[ _
) 2 : ~ 0e3
l
|
: 7
ol w=1-—,3i
Figure C.5

»
>

Write the following complex numbers in polar form using their principal arguments:
(@ z=1+i b) w=1- V3i

Solution  (a) We compute

1
r=lzl =V1?+1*=V2 and tan9=T=1
T
Therefore, Argz = 6 = N (= 45°), and we have
z = \/f(cosz + isin 1)
4 4

as shown in Figure C.5.
(b) We have

-3
r=1lwl =VI12+ (-V3)?2=vV4=2 and tan6=T= -V3
Since w lies in the fourth quadrant, we must have Arg z =6 = —% (= —60°).

Therefore,

T T
w= 2(cos<——> - isin(——))
3 3
See Figure C.5. I

The polar form of complex numbers can be used to give geometric interpretations
of multiplication and division. Let

z, = r(cos B, + isinf,) and 2z, = ry(cos B, + isinh,)
Multiplying, we obtain
z12; = 1y1,(cos 0, + isin 0,)(cos 0, + isin 0,)
= rr,[(cos 6, cos B, — sin 6, sin 6,) + i(sin O, cos §, + cos f, sin 6,) ]
Using the trigonometric identities
cos(f, + 0,) = cosf,cosf, — sinf,sin b,

sin(f, + 6,) = sin 0, cosf, + cos @, sin 0,
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Im
o A
212
0+ 0,
2]
0
o i » Re
Figure C.6
»_.L
Im
A
.
6
»Re
-0
1
r 1
Figure G.7

we obtain
2,2, = riry[cos(0, + 6,) + isin(0; + 0,)] (1)

which is the polar form of a complex number with absolute value r,r, and argument
0, + 0,. This shows that

|z12,| = |z1]|z,] and arg(ziz,) = argz; + argz,

Equation (1) says that to multiply two complex numbers, we multiply their absolute
values and add their arguments. See Figure C.6.
Similarly, using the subtraction identities for sine and cosine, we can show that

2= Dlcos(@, — 0) + isin(@, — 8))] ifz # 0
2 n

(Verify this.) Therefore,

‘Zl‘

2
=-—— and arg| — | =argz — argz,
‘Zz‘ 2

21

)

and we see that to divide two complex numbers, we divide their absolute values and
subtract their arguments.

As a special case of the last result, we obtain a formula for the reciprocal of a com-
plex number in polar form. Setting z, = 1 (and therefore §;, = 0) and z, = z (and
therefore 6, = 6), we obtain the following:

If z = r(cos O + isin 0) is nonzero, then

— = —(cos® — isin0)
z r

See Figure C.7.

Example C.4

\

Find the product of 1 + i and 1 — V/3i in polar form.

Solution From Example C.3, we have

1+i= W(cos% + isin %) and 1 — V3i = 2(cos<—§> + isin(—%))

Therefore,

R )

- 2w en(~2) 4 sun( 5]

See Figure C.8.



Abraham De Moivre (1667-1754) was
a French mathematician who made
important contributions to trigonom-
etry, analytic geometry, probability,
and statistics.
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Im
A
I+
i_
2
4
: : +—»Re
2 | 3
-3 ~ 12
2,2
i 2 (1+ (1 —\3i) =
(1 +,3) +i(1 =3)
il 1 —\3i
Figure G.8

-

Remark Since (1 + i)(1 — V/3i) = (1 + V3) + i(1 — V3) (check this), we
must have

1+ V3= ZVECOS(—E) = —ZVfcos(l)
12 12

and 1- V3= 2\/551n(—%) = —2\/§sin<%>
(Why?) This implies that

cos(z) _1+V3 Sin(l) _V3i-1
12 2V2 12 2V2

We therefore have a method for finding the sine and cosine of an angle such as 7/12
that is not a special angle but that can be obtained as a sum or difference of special
angles.

De Moivre’s Theorem

If n is a positive integer and z = r(cos 6 + i sin ), then repeated use of Equation (1)
yields formulas for the powers of z:

z% = r*(cos 20 + isin 260)
z3 = zz% = r3(cos 30 + isin30)

zt = zz® = r*(cos 40 + isin40)

In general, we have the following result, known as De Moivre’s Theorem.
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Theorem C.1

De Moivre’s Theorem

If z = r(cos § + isin 6) and n is a positive integer, then

z" = r"(cos nf + isin no)

Stated differently, we have
|z"| = |z|" and arg(z") = nargz

In words, De Moivre’s Theorem says that to take the nth power of a complex number,
we take the nth power of its absolute value and multiply its argument by n.

Im
A
-2+2 |
+ 2/
—4i T 1+
—4—+— —+—Re
—4—4i T
<+ —8i
Figure .9

Powers of 1 + i

\]

Find (1 + )°.

Solution  From Example C.3(a), we have

T T
1+i= \/§<cosz+ isinz>

Hence, De Moivre’s Theorem gives

(1+49)°= (\/5)6(c05%7 + isin 6777)

3 .. 37
8l cos— + isin—
2 2

8(0 + i(—1)) = —8i

See Figure C.9, which shows 1 + i, (1 + )% (1 +i)°,..., (1 + )"

-

We can also use De Moivre’s Theorem to find nth roots of complex numbers. An
nth root of the complex number z is any complex number w such that

w' =z
In polar form, we have
w=s(cosg + ising) and z = r(cos® + isinf)
s0, by De Moivre’s Theorem,
s™(cosng + isinng) = r(cosh + isinf)
Equating the absolute values, we see that

n

s"=r or s=r/"="\/r
We must also have

cosng = cosf) and sin np = sin O
(Why?) Since the sine and cosine functions each have period 27, these equations
imply that ne and 6 differ by an integer multiple of 27; that is,

0 + 2k

ne =0+ 2kwr or ¢ = "
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where k is an integer. Therefore,

1/{ (9 + 2k7r> o (0 + 2k7'r)}
w=r cos T + isin ?

describes the possible nth roots of z as k ranges over the integers. It is not hard to
show that k = 0,1, 2,...,n — 1 produce distinct values of w, so there are exactly n
different nth roots of z = r(cos 6 + i sin 6). We summarize this result as follows:

Let z = r(cos @ + i sin 0) and let n be a positive integer. Then z has exactly # dis-
tinct nth roots given by

1n 0 + 2kw (0 + 2kmw
ri cos| — = + isin T8 (2)

fork=0,1,2,...,n— 1.

\/

§ . 5= .
2t ¢
2
3
» Re
3
3 33
2 2
Figure G.10
The cube roots of —27
»—

Find the three cube roots of —27.

Solution In polar form, —27 = 27(cos @ + isin ). It follows that the cube roots of
—27 are given by

+ 2k + 2k
(—27)1/3 = 271/3{c03<¥> + isin<¥)} fork=20,1,2

Using formula (2) with n = 3, we obtain

T T
27'3| cos — + isin —} =
3 3

1/%— T+ 27 L [T+ 27
2777 cos| ——— | +isin| ——
L 3 3
1/3- T + 47 o (Tm + 4w
27°77| cos f + isin f

(1 \/§> 3 3V3,
3\t —i) =+ i
2 2 2 2

3(cosw + isinw) = —3

57 .. 5w
3l cos— + isin—
3 3

As Figure C.10 shows, the three cube roots of —27 are equally spaced 277 /3 radians
(120°) apart around a circle of radius 3 centered at the origin. I

In general, formula (2) implies that the nth roots of z = r(cos 6 + i sin 0) will lie
on a circle of radius r'/" centered at the origin. Moreover, they will be equally spaced
27r/n radians (360/1°) apart. (Verify this.) Thus, if we can find one nth root of z, the
remaining #nth roots of z can be obtained by rotating the first root through successive
increments of 27/n radians. Had we known this in Example C.6, we could have used
the fact that the real cube root of —27 is —3 and then rotated it twice through an
angle of 27/3 radians (120°) to get the other two cube roots.
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Leonhard Euler (1707-1783) was the most prolific mathematician of all time. He has over 900 pub-
lications to his name, and his collected works fill over 70 volumes. There are so many results attrib-
uted to him that “Euler’s formula” or “Euler’s Theorem” can mean many different things, depending
on the context.

Euler worked in so many areas of mathematics, it is difficult to list them all. His contribu-
tions to calculus and analysis, differential equations, number theory, geometry, topology, me-
chanics, and other areas of applied mathematics continue to be influential. He also intro-
duced much of the notation we currently use, including 7, ¢, i, 3 for summation, A for
difference, and f(x) for a function, and was the first to treat sine and cosine as functions.

Euler was born in Switzerland but spent most of his mathematical life in Russia and Germany.
In 1727, he joined the St. Petersburg Academy of Sciences, which had been founded by Catherine
I, the wife of Peter the Great. He went to Berlin in 1741 at the invitation of Frederick the Great, but
returned in 1766 to St. Petersburg, where he remained until his death. When he was young, he lost
the vision in one eye as the result of an illness, and by 1776 he had lost the vision in the other eye
and was totally blind. Remarkably, his mathematical output did not diminish, and he continued to
be productive until the day he died.

In calculus, you learn that the function e has a power series expansion

2 Z3

, z
ef=14+z+—+—+--
21 3!
that converges for every real number z. It can be shown that this expansion also
works when z is a complex number and that the complex exponential function
e” obeys the usual rules for exponents. The sine and cosine functions also have power
series expansions:

, x> x5 X
smx=x— -+ ———+ —--
3! 5! 7!
xr  xt X
cosx=1——+———+ —
2! 4! 6!

Ifwelet z = ix, where x is a real number, then we have

. \2 23
) ix ix
ezze”‘=1+ix+() £

3!
Using the fact that i> = —1,i* = —i,i* = 1,i° = i, and so on, repeating in a cycle of
length 4, we see that
) xr ix® xt i x% ix’
e =R s =R === LR iR R

|
A~
—

|
SIS
»J>|><
— ES

|
R,
+

|
N———
+
N
=

|
wIR,
+
m|><
— w

|
\1|><
— N}

|
N———

=cosx + isinx

This remarkable result is known as Euler’s formula.
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Theorem €.2

Euler’s Formula
For any real number x,

e™ = cos x + isinx

Using Euler’s formula, we see that the polar form of a complex number can be
written more compactly as

z=r(cos® + isinf) = re'
For example, from Example C.3(a), we have

m T .
1+i= \/E<cosz + i sin Z) = V2e'/

We can also go in the other direction and convert a complex exponential back
into polar or standard form.

Example C.7

\/

Write the following in the form a + bi:

(a) ei7T (b) 62+i77/4

Solution (a) Using Euler’s formula, we have

e™ =cosm +isinm=—-1+i-0=—1
(If we write this equation as ™ + 1 = 0, we obtain what is surely one of the most
remarkable equations in mathematics. It contains the fundamental operations of
addition, multiplication, and exponentiation; the additive identity 0 and the multipli-
cative identity 1; the two most important transcendental numbers, 7 and e; and the
complex unit i—all in one equation!)

(b) Using rules for exponents together with Euler’s formula, we obtain

. . T T V2 V2
eZ+17T/4 — 626177/4 — 62 cos— + isin— | = eZ —_—t —
4 4 2 2

_ e\V2 N V2
2 2

i

-

z =1r(cos@ — isinf) (3)

If z = re” = r(cos 6 + isin 0), then

The trigonometric identities

cos(—60) = cosf and sin(—0) = —sin 0
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allow us to rewrite Equation (3) as
z = r(cos(—0) + isin(—0)) = re'"?
This gives the following useful formula for the conjugate:
Ifz = re”, then

z=re?

Note Euler’s formula gives a quick, one-line proof of De Moivre’s Theorem:

[r(cosf + isinB)]" = (re")" = r"e™ = ¢"(cos nh + isin no)



Euler gave the most algebraic of the
proofs of the existence of the roots of
[a polynomial] equation. . . . I regard
it as unjust to ascribe this proof
exclusively to Gauss, who merely
added the finishing touches.
—Georg Frobenius, 1907

Quoted on the MacTutor History of
Mathematics archive,
http://www-history.mcs
.st-and.ac.uk/history/

|

Appendix D*f

Polynomials

A polynomial is a function p of a single variable x that can be written in the form
px) = a, + ax + ax® + - + a,x" (1)

where ay, a,, . . ., a, are constants (a, # 0), called the coefficients of p. With the con-
vention that x” = 1, we can use summation notation to write p as

plx) = D ax*
=0

The integer n is called the degree of p, which is denoted by writing deg p = n. A
polynomial of degree zero is called a constant polynomial.

Example D.1

\/

Which of the following are polynomials?

) 2 - é (©) Vax?

x> =5x+6
x— 2

(@) 2 — lx + V2«2

5x°
@ 1n<2:3x ) (e)

(h) ¢*

f) Vx

(g) cos(2cos 'x)

Solution (a) This is the only one that is obviously a polynomial.

(b) A polynomial of the form shown in Equation (1) cannot become infinite as
x approaches a finite value [lim p(x) # *oo], whereas2 — 1/ 3x? approaches —oo as

x approaches zero. Hence, it is nota polynomial.
(c) Wehave

V2x? = V2Vx? = V2 x|

which is equal to \/2x when x = 0 and to —V2x when x < 0. Therefore, this expres-
sion is formed by “splicing together” two polynomials (a piecewise polynomial), but it
is not a polynomial itself.

*Exercises and selected odd-numbered answers for this appendix can be found on the student companion
website.

D1
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(d) Using properties of exponents and logarithms, we have

2e5 . .
ln< ¢ ) = In(2e* ~*) = In2 + In(e>™ %)

e3x
=In2 +5x* — 3x=1n2 — 3x + 5x°

so this expression is a polynomial.

(e) The domain of this function consists of all real numbers x # 2. For these values
of x, the function simplifies to

x?=5x+6  (x—2)(x—3)
x— 2 x— 2

=x—3

so we can say that it is a polynomial on its domain.

(f) We see that this function cannot be a polynomial (even on its domain x = 0),
since repeated differentiation of a polynomial of the form shown in Equation (1)
eventually results in zero and V'x does not have this property. (Verify this.)

(g) The domain of this expressionis —1 < x =< 1.Letf = cos ' xso that cos 6 = x. Using
a trigonometric identity, we see that

cos(2cos 'x) = cos20 = 2cos?’f —1=2x*—1

so this expression is a polynomial on its domain.

(h) Analyzing this expression as we did the one in (f), we conclude that it is not a

polynomial.

Two polynomials are equal if the coefficients of corresponding powers of x are all
equal. In particular, equal polynomials must have the same degree. The sum of two
polynomials is obtained by adding together the coefficients of corresponding pow-
ers of x.

\

Example D.2

Find the sum of 2 — 4x + x*and 1 + 2x — x% + 3x°.

Solution  We compute

(2 —4x + x3) + (1 + 2x — x2 + 3x%)

@+ 1)+ (-4 +2x
+ (1 + (—=1)x* + (0 + 3)x°

3 — 2x + 3x°

where we have “padded” the first polynomial by giving it an x” coefficient of zero.

We define the difference of two polynomials analogously, subtracting
coefficients instead of adding them. The product of two polynomials is obtained
by repeatedly using the distributive law and then gathering together correspond-
ing powers of x.
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Example D.3

\

Find the product of 2 — 4x + x*and 1 + 2x — x* + 3x°.

Solution We obtain

(2 — 4x + 2 + 2x — x2 + 3x%)

=2(1 + 2x — x% + 3x%) — 4x(1 + 2x — x* + 3x?)

+ x%(1 + 2x — x% + 3x9)
2 + 4x — 2x% + 6x°) + (—4x — 8x? + 4x® — 12x%)
+ (2% + 2x° — x* + 3x°)
2 4 (4x — 4x) + (—2x% — 8x% + x2) + (6x° + 4x* + 2x7)
+ (—12x* — &%) + 34°

=2 —9x% + 12x° — 13x* + 3x° I

Observe that for two polynomials p and g, we have

deg(pq) = degp + degq

If p and q are polynomials with deg g = deg p, we can divide q into p, using long
division to obtain the quotient p/q. The next example illustrates the procedure, which
is the same as for long division of one integer into another. Just as the quotient of two
integers is not, in general, an integer, the quotient of two polynomials is not, in gen-
eral, another polynomial.

A\

Example D.4

1+ 2x — x%2+ 3x3

Compute
P 2 — 4x + x?

Solution  We will perform long division. It is helpful to write each polynomial with
decreasing powers of x. Accordingly, we have

B —dx+2)3 — X+ 2x + 1

We begin by dividing x* into 3x’ to obtain the partial quotient 3x. We then multiply
3x by the divisor x* — 4x + 2, subtract the result, and bring down the next term from
the dividend (3x* — x* + 2x + 1):

3x

x2 —dx +2)3x — 2+ 2+ 1
3x% — 12x2 + 6x

11x* —4x + 1

Then we repeat the process with 11x?, multiplying 11 by x* — 4x + 2 and subtracting
the result from 11x* — 4x + 1. We obtain

3x + 11

x2—dx +2)3x* — x*+ 2x+ 1
3x — 12x2 + 6x

11x2 — 4x + 1

11x% — 44x + 22

40x — 21
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We now have a remainder 40x — 21. Its degree is less than that of the divisor
x* — 4x + 2, so the process stops, and we have found that

36 = x2+ 2x + 1 = (x2 — 4x + 2)(3x + 11) + (40x — 21)

3x3 — x2+2x+ 1 40x — 21
or 5 =3+ 11+
X —4dx + 2 x°—4x + 2

.

Example D.4 can be generalized to give the following result, known as the division
algorithm.

Theorem D.1

The Division Algorithm

If f and g are polynomials with deg g = deg f, then there are polynomials q and r
such that

f(x) = g(x)q(x) + r(x)
where either r = 0 or deg r < deg g.

In Example D.4,
fx) =3x>—x*+2x+ 1, gx) =x>—4dx +2, q(x) =3x+ 11,

and r(x) = 40x — 21

In the division algorithm, if the remainder is zero, then

fx) = g(x)q(x)

and we say that g is a factor of f. (Notice that g is also a factor of f.) There is a close
connection between the factors of a polynomial and its zeros. A zero of a polynomial
fis a number a such that f(a) = 0. [The number a is also called a root of the polyno-
mial equation f(x) = 0.] The following result, known as the Factor Theorem, estab-
lishes the connection between factors of a polynomial and its zeros.

Theorem D.2

The Factor Theorem

Let f be a polynomial and let a be a constant. Then a is a zero of f if and only if
x — ais a factor of f(x).

Proof By the division algorithm,
f&) = (x = a)g(x) + r(x)

where either r(x) = 0 or deg r < deg(x — a) = 1. Thus, in either case, r(x) = risa
constant. Now,

fla) = (@@ —a)ga) +r=r
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so f(a) = 0 if and only if r = 0, which is equivalent to
fx) = (x — a)q(x)
as we needed to prove. m

There is no method that is guaranteed to find the zeros of a given polynomial.
However, there are some guidelines that are useful in special cases. The case of a poly-
nomial with integer coefficients is particularly interesting. The following result,
known as the Rational Roots Theorem, gives criteria for a zero of such a polynomial
to be a rational number.

Theorem D.3

The Rational Roots Theorem

Let
fx) =ay+ax+ -+ ax"

be a polynomial with integer coefficients and let a/b be a rational number writ-
ten in lowest terms. If a/b is a zero of f, then a, is a multiple of a and a,, is a multiple
of b.

Proof Ifa/bisazerooff, then

a a n—1 a n
a, + al(Z) + -+ a,,l(z> + an(g> =0

Multiplying through by b", we have

agh" + aab" '+ - +a,_a"'b+aa=0 (1)
which implies that

ab" + ajab” '+ -+ a, ,a" 'b = —a,a" (2)

The left-hand side of Equation (2) is a multiple of b, so a,a" must be a multiple of b
also. Since a/b is in lowest terms, a and b have no common factors greater than 1.
Therefore, a, must be a multiple of b.

We can also write Equation (1) as

_ no_ n—1 e n—1 n
agh” = a,ab” " + +a, 0" b+ aa

and a similar argument shows that a, must be a multiple of a. (Show this.)

\/

Find all the rational roots of the equation
6x’ + 13x* —4 =10 (3)

Solution Ifa/bis a root of this equation, then 6 is a multiple of b and —4 is a multiple
of a, by the Rational Roots Theorem. Therefore,

ae{*1,+2,+4} and be{*l, *2,+3, +6}
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Forming all possible rational numbers a/b with these choices of a and b, we see that
the only possible rational roots of the given equation are

1
*+1,x2, x4, 1 +1 +

W

—+
g —

Wik

—+
3 —

o=
S

Substituting these values into Equation (3) one at a time, we find that —2, —3, and 5

»—  are the only values from this list that are actually roots. (Check these.) As we will see
shortly, a polynomial equation of degree 3 cannot have more than three roots, so
these are not only all the rational roots of Equation (3) butalso its only roots.

We can improve on the trial-and-error method of Example D.5 in various ways.
For example, once we find one root a of a given polynomial equation f(x) = 0, we
know that x — a is a factor of f(x)—say, f(x) = (x — a)g(x). We can therefore divide
f(x) by x — a (using long division) to find g(x). Since deg g < deg f, the roots of g(x) = 0
[which are also roots of f(x) = 0] may be easier to find. In particular, if g(x) is a qua-
dratic polynomial, we have access to the quadratic formula.

Suppose

ax* +bx+c¢c=0

(We may assume that a is positive, since multiplying both sides by —1 would produce
an equivalent equation otherwise.) Then, completing the square, we have

, ., b b? b?
alx*+-—x+—|=—=—¢c
a 4a 4a
»—  (Verify this.) Equivalently,

b\ b? b\ b — 4dac
alxt_—) =——c or (x+_—| =—5—
2a 4a 2a 4a

Therefore,
b> —dac  *=Vb? - dac
X+ —== > =
2a 4da 2a
—b =V — dac
or x = >

Let’s revisit the equation from Example D.5 with the quadratic formula in mind.

\

Example D.6 Find the roots of 6x° + 13x% — 4 = 0.
Solution Let’s suppose we use the Rational Roots Theorem to discover that x = —2
is a rational root of 6x° + 13x% — 4 = 0. Then x + 2 is a factor of 6x° + 13x2 — 4, and

long division gives

6x° + 13x2 — 4 = (x + 2)(6x> + x — 2)
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»—>  (Check this.) We can now apply the quadratic formula to the second factor to find
that its zeros are

—1+V1* - 4(6)(—2)

X =

2:6
e - T -
12 12
_ 6 _8
12> 12

or, in lowest terms, 3 and — 3. Thus, the three roots of Equation (3) are —2,3,and —3,

as we determined in Example D.5.

Remark The Factor Theorem establishes a connection between the zeros of a
polynomial and its linear factors. However, a polynomial without linear factors may
still have factors of higher degree. Furthermore, when asked to factor a polynomial,
we need to know the number system to which the coefficients of the factors are sup-
posed to belong.

For example, consider the polynomial
px) =x*+1

Over the rational numbers (), the only possible zeros of p are 1 and —1, by the Rational
Roots Theorem. A quick check shows that neither of these actually works, so p(x) has
no linear factors with rational coefficients, by the Factor Theorem. However, p(x) may
still factor into a product of two quadratics. We will check for quadratic factors using
the method of undetermined coefficients.

Suppose that

x4+ 1=x24ax + b)(x?+ cx + d)

==  Expanding the right-hand side and comparing coefficients, we obtain the equations

atc=20

b+ac+d=0

bc+ad =0

bd =1
Ifa = 0, then c = 0 and d = —b. This gives —b* = 1, which has no solutions in Q.
Hence, we may assume thata # 0. Then ¢ = —a, and we obtain d = b. It now follows

that b> = 1,50 b = 1 or b = —1. This implies that a> = 2 or a*> = —2, respectively,
neither of which has solutions in @. It follows that x* + 1 cannot be factored over Q.
We say that itis irreducible over Q.

However, over the real numbers R, x* + 1 does factor. The calculations we have
just done show that

P+ 1=+ V2x+ Dx?— V2x + 1)

w—>  (Why?) To see whether we can factor further, we apply the quadratic formula. We see
that the first factor has zeros
V2 EV(V2) -4 —\/Et\/—z_ﬁ( 1 1

X = _lil’):_ii—

2 2 2 2 V2
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—¥

Figure D.1

4 4

which are in C but not in R. Hence, x> + V2x + 1 cannot be factored into linear fac-
tors over R. Similarly, x> — V/2x + 1 cannot be factored into linear factors over R.

Our calculations show that a complete factorization of x* + 1 is possible over the
complex numbers C. The four zeros of x* + 1 are

1 1. _ 1 1 1 1

a=——7+—F7i, a=——-——i, —a=—12+—i,
V2 V2 V2 2 2 V2
1 1
—a= = = =i
V2 V2
which, as Figure D.1 shows, all lie on the unit circle in the complex plane. Thus, the
factorization of x* + 1 is

HHl=k—-a)kx—a)x+ a)(x+ @)

The preceding Remark illustrates several important properties of polynomials.
Notice that the polynomial p(x) = x* + 1 satisfies deg p = 4 and has exactly four
zeros in C. Furthermore, its complex zeros occur in conjugate pairs; that is, its com-
plex zeros can be paired up as

{a,a} and {-a,—a}

These last two facts are true in general. The first is an instance of the Fundamental
Theorem of Algebra (FTA), a result that was first proved by Gauss in 1797.

Theorem D.4

The Fundamental Theorem of Algebra

Every polynomial of degree n with real or complex coefficients has exactly n zeros
(counting multiplicities) in C.

This important theorem is sometimes stated as
“Every polynomial with real or complex coefficients has a zero in C.”

Let’s call this statement FTA'. Certainly, FTA implies FTA’. Conversely, if FTA' is
true, then if we have a polynomial p of degree n, it has a zero « in C. The Factor
Theorem then tells us that x — « is a factor of p(x), so

plx) = (x — a)q(x)

where g is a polynomial of degree n — 1 (also with real or complex coefficients). We
can now apply FTA' to g to get another zero, and so on, making FTA true. This argu-
ment can be made into a nice induction proof. (Try it.)

It is not possible to give a formula (along the lines of the quadratic formula) for
the zeros of polynomials of degree 5 or more. (The work of Abel and Galois confirmed
this; see page 311.) Consequently, other methods must be used to prove FTA. The
proof that Gauss gave uses topological methods and can be found in more advanced
mathematics courses.

Now suppose that

plx) =ay+ax—+ -+ ax"

n



Descartes’ stated this rule in his
1637 book La Géometrie, but did
not give a proof. Several mathema-
ticianslater furnished a proof, and
Gauss provided a somewhat
sharper version of the theorem in
1828.
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is a polynomial with real coefficients. Let a be a complex zero of p so that
aytaa+ -+ a,” = pla) =0

Then, using properties of conjugates, we have

n

p@)=a,+a@+ - +aa"=a+aa+- -+ ax
=aytaa+ -+ a,a"

Thus, « is also a zero of p. This proves the following result:

The complex zeros of a polynomial with real coefficients occur in conjugate pairs.

In some situations, we do not need to know what the zeros of a polynomial are—
we only need to know where they are located. For example, we might only need to
know whether the zeros are positive or negative (as in Theorem 4.35). One theorem
that is useful in this regard is Descartes’ Rule of Signs. It allows us to make certain
predictions about the number of positive zeros of a polynomial with real coefficients
based on the signs of these coefficients.

Given a polynomial ay + a,x + -+ + a,x", write its nonzero coefficients in order.
Replace each positive coefficient by a plus sign and each negative coefficient by a
minus sign. We will say that the polynomial has k sign changes if there are k places
where the coefficients change sign. For example, the polynomial 2 — 3x + 4x* + x*
— 7x° has the sign pattern

-+

+ + -
—— ——

so it has three sign changes, as indicated.

Theorem D.5

Descartes’ Rule of Signs

Let p be a polynomial with real coefficients that has k sign changes. Then the
number of positive zeros of p (counting multiplicities) is at most k.

In words, Descartes’ Rule of Signs says that a real polynomial cannot have more
positive zeros than it has sign changes.

Example D.1

\/

Show that the polynomial p(x) = 4 + 2x> — 7x" has exactly one positive zero.

Solution  The coefficients of p have the sign pattern + + —, which hasonly one sign
change. So, by Descartes’ Rule of Signs, p has at most one positive zero. But
p(0) = 4 and p(1) = —1, so there is a zero somewhere in the interval (0, 1). Hence,

this is the only positive zero of p.
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We can also use Descartes’ Rule of Signs to give a bound on the number of nega-
tive zeros of a polynomial with real coefficients. Let

px) = ag + ayx + ax® + -+ ax"
and let b be a negative zero of p. Then b = —c for ¢ > 0, and we have
0=pb) =a, + ajb + ab* +- -+ a,b"

=a,—ac+ ayx?— +---+(—1)"a,"

But p(—x) =ay— ax + ax®> — +- -+ (—1)"a,x"

so ¢ is a positive zero of p(—x). Therefore, p(x) has exactly as many negative zeros as
p(—x) has positive zeros. Combined with Descartes’ Rule of Signs, this observation
yields the following:

Let p be a polynomial with real coefficients. Then the number of negative zeros of
p is at most the number of sign changes of p(—x).

\

Show that the zerosof p(x) = 1 + 3x + 2x* + x° cannot all be real.

Solution  The coefficients of p(x) have no sign changes, so p has no positive zeros.
Since p(—x) = 1 — 3x + 2x”> — x° has three sign changes among its coefficients, p has
at most three negative zeros. We note that 0 is not a zero of p either, so p has at most
three real zeros. Therefore, it has at least two complex (nonreal) zeros. 4



