
ANALOGUES OF THE LEBESGUE DENSITY THEOREM
FOR FRACTAL SETS OF REALS AND INTEGERS

TIM BEDFORD and ALBERT M. FISHER

[Received 18 December 1989—Revised 11 January 1991]

ABSTRACT
We prove the following analogues of the Lebesgue density theorem for two types of fractal subsets

of U: cookie-cutter Cantor sets and the zero set of a Brownian path. Write C for the set, and jit for the
positive finite Hausdorff measure on C. Then there exists a constant c (depending on the set C) such
that for /x-almost every xeC,

,. 1 (T

where B(x, e) is the e-ball around x and d is the Hausdorff dimension of C. We also define analogues
of Hausdorff dimension and Lebesgue density for subsets of the integers, and prove that a typical zero
set of the simple random walk has dimension \ and density V(2/;r).

1. Introduction

In this paper we introduce a notion of density for fractal and fractal-like sets
including certain kinds of Cantor sets and sparse sets of integers. This type of
density is called order-two density, because it is based on the use of an order-two
averaging method, in the sense of [14, 15], to obtain a limit where the usual
density of a measure or set does not exist.

The main examples considered here are the middle-third Cantor set, non-linear
hyperbolic Cantor sets and the zero set of a Brownian path. Examples of
fractal-like subsets of the integers which are considered are the integer middle-
third Cantor set (for a definition see below) and the zero set of a simple random
walk.

Hyperbolic 'cookie-cutter' Cantor sets (the terminology is due to Sullivan) were
chosen because, in addition to their own intrinsic interest, the use of the basic
tools (for example, the use of both the Gibbs and the conformal measures, the
bounded distortion property, and the suspension to an ergodic flow over the
Cantor set) is quite clear. This should enable an extension of the theory to more
general situations where Bowen's Hausdorff dimension formula holds. This has
already been done for certain hyperbolic Julia sets in conjunction with M.
Urbariski. For an overview of what is known about cookie-cutter Cantor sets, for
complete references and for a self-contained development of the tools mentioned
above, see [4].

For the zero set of a Brownian path, our result is related to an additive
functional limit theorem of Brosamler ([8, Theorem 2.1]; there the limit at
infinity is studied) and for the simple random walk, it can be seen as a special case
of a beautiful but little known almost-sure limit theorem of Chung and Erdos [10,
Theorem 6]. The proof we give here uses the ergodicity of the scaling flow plus
Strassen's invariance principle and an almost-sure invariance principle of Reve"sz
for local time. Order-two density can also be proved to exist for times of return to
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a set of finite measure in a class of infinite ergodic measure-preserving
transformations; this is joint work with J. Aaronson and M. Denker and will
appear elsewhere. The theorem proved there is closely related to Chung and
Erdos' work although the proof and interpretation are quite different.

The purposes of the present paper are several. Firstly we introduce the notion
of order-two density and develop its basic properties: consistency with respect to
usual density (which however diverges almost surely for all the examples
mentioned above); a Radon-Nikodym-like result for absolutely continuous
measures; and the comparison with a hierarchy of order-n densities based on the
Hardy-Riesz log averages (see [15]) and on the averaging operators of [14].
Secondly we introduce the techniques needed to prove existence of the order-two
density for the examples mentioned above; the existence of order-2 density for
the Hausdorff measure on these sets can be considered to be an analogue (for
Hausdorff measure) of the Lebesgue density theorem. Finally, we want to show
that there is a deep underlying connection between all of the techniques we
use—even though they may at first seem disparate. The middle-third Cantor set is
dealt with in some detail because it is possible there to show these connections.
The analogies that one sees between the different situations are not precise but
seem to be very helpful in suggesting problems and methods.

The notion of order-two density is related to Mandelbrot's concept of
lacunarity (see [24], especially pp. 315-318, for an intuitive description and
illustrations). The lacunarity of a fractal should describe the degree to which the
structure is fractured; one wants a way of comparing different sets of the same
dimension or related sets of different dimensions. Order-two density provides a
possible tool for making such comparisons. In the physics literature Smith,
Fournier and Spiegel [33] observe that estimates of fractal dimension (they
consider in particular the correlation dimension) can show log-oscillatory be-
haviour. When such oscillations occur, this brings added difficulties to the
problem of numerical estimation of dimension. Smith, Fournier and Spiegel are
suggesting that one can however make use of this oscillation as a way of
measuring the 'textural property of fractal objects that Mandelbrot calls lacuna-
rity'. But as they point out, if the sets are not strictly self-similar then in general
the oscillations can damp out for small radius R. In that case, apparently, one will
not get a helpful definition of lacunarity by using the amplitude of the oscillation.
Some examples where one would expect to see such damping are the non-linear
sets studied in § 4 below.

Mandelbrot deals with the problem of oscillation in a different way. First, he
considers the distribution of the values of mass M(x, R) in a ball of fixed radius R
about points x in the fractal (that is, integrating over x). The moments of this
distribution are to provide parameters which measure the lacunarity. However
(again for self-similar fractals) this distribution will, after normalization by Rd,
oscillate log-periodically. Therefore he restricts attention to random fractal sets
and takes the ensemble average. The resulting distribution will in nice cases now
be i?-independent.

What we are suggesting instead is to study the oscillations of M(JC, R) for fixed
x as R—>0, by means of ergodic theory. This produces, for the examples studied
below, a limiting distribution (which one could call the lacunarity distribution at
JC) and which in these examples is in fact the same for almost all x in the fractal.
This distribution has as its mean value (i.e. as first moment) our order-two
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density. In a later paper we will study this distribution, and its higher moments,
more closely. But for the present we focus only on the order-two density, since it
is the most basic of this class of measurements.

The authors would like to thank J. Aaronson, M. Denker, H. v.d. Weide, and
especially M. Urbariski for useful conversations. The work was partially carried
out while the first author was visiting Gottingen, and while the second author was
visiting Warwick and Delft.

2. Definitions and properties of order-two density
We wish to define ^-dimensional analogues of the 'ordinary' densities,

Lebesgue density (for subsets of IR") and Cesaro density (for subsets of Z). For
subsets of U", Hausdorff dimension is considered; the corresponding notion of
dimension in Z is explained below. In this paper Un is always equipped with the
usual Euclidean metric.

If the subset under consideration has Hausdorff dimension d smaller than the
dimension of the ambient space then the most obvious analogue of Lebesgue
density does not exist, because the sparseness of the set implies large fluctuations
in the amount of mass in a neighbourhood of a point as the neighbourhood
shrinks.

Order-two density for subsets of the reals
The outer d-dimensional Hausdorff measure of a set C c IR" is given by

Hd{C) = lim inf j i q>d{\Ut\): IU,\ <e,\JUt=>c\,
e-»0 Ui l , = i J

where {U(} is a countable cover of C, |L/)| = diaml^ and q>d{t) = td. The
Hausdorff dimension of C is the unique d with the property that d =
inf{6: H8(C) = 0}. A subset CcUn is called a rf-set by Falconer [12] if it
is measurable with respect to rf-dimensional Hausdorff measure Hd and
0 < Hd(C) < oo. We shall denote the restriction of Hd to C by ju.

DEFINITIONS. The upper and lower densities (in dimension d) of C at x e Un are
respectively

M!&g£». and D
If D(C, x) = D(C, x), we call this common value the density of ju at x and denote
it by D(C, x); then one says that x is a regular point.

(We shall call this ordinary ^-dimensional density when there is a likelihood of
confusion.) One of the main theorems of geometric measure theory says (see [12,
Theorem 4.12]) that for d <n and non-integer, ju-almost every point is irregular.
This should be compared with the Lebesgue density theorem which says that if
one replaces /* with Lebesgue measure A then for any A-measurable set C the
density with respect to A exists at A-almost all points of C and equals 1.

Now we shall define a new type of density, which does exist almost everywhere
in the examples treated below. We wish to control the fluctuations of
fj.(B(x, e))/(2e)d as e converges to zero; what we do is to replace e with e~' and
then apply the Cesaro average.
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DEFINITIONS. The upper and lower order-two densities of C at x are

and

We similarly define £>2(C, x), the order-two density (in dimension d) to be the
common value if these are equal. In this case x is said to be order-two regular.

We choose the name 'order-two density' because the method being used to
smooth out the fluctuations of fi(B(x, e))/(2e)d can be seen to be an order-two
averaging method composed with an inversion (using the terminology of Fisher
[14])-

The exact connection of order-two density with the order-two averaging
methods is as follows. Setting f(t) = p(B(x, t))/2dtd, we have D2(C, x) equal to
lim^oo,4^(/(l//)), where V(*) = X(-»,o](*)e* a n d (Ayg)(t) is defined to be
(ip*(goQxp°exp))°\og°\og(t). By Wiener's Tauberian theorem, this is
equivalent to A2^ where <p= i//(—x), which can be written in the more familiar form

This is the Hardy-Riesz log average; see [15]. Based on this formula one can, if
the order-two density fails to converge, apply, in place of the order-two average,
higher-order averaging methods from an infinite, consistent hierarchy—the
Hardy-Riesz higher log averages—and also ultimately one could apply an
exponentially invariant mean, as in [14]. Thus, replacing A\ by Anq in the
equation above, for n s= 1, defines the order-n density Dn{C, x).

The definition of order-n density of a set extends in a natural way to the density
of a Borel measure v on a a-compact metric space M. For a fixed positive d, we
then write Dn{v, x) for the order-n density in dimension d of v at x; when fj, is
Hausdorff measure restricted to a <i-dimensional set C c M, one has by definition
Dn(n, x) = Dn(C,x). The relationship between densities for absolutely con-
tinuous measures is given in Theorem 2.2 below; this is a Radon-Nikodym type
of theorem. We use this in § 4 when comparing Gibbs measure with Hausdorff
measure.

For sets C in IR1, it is also natural to talk about right and left densities. These
densities, which will be denoted by Dr, Dl and so on, are defined as above by
replacing n(B(x, e))/2ded with fi([x, x + e))/ed.

We now note some basic properties of density and the order-n densities. For
the examples studied in this paper the order-two density always exists. The first
two properties hold also for the order-n density of a finite regular Borel measure
v on a a-compact metric space M.

(1) For all x e M and for 1 ^ n *s m,
D(C, x) ^ Dn(C, x) ^ Dm(C, x) ^ Dm(C, x) ^ Dn(C, x) ^ D(C, x).

The same is true, in U1, for the right and left densities.
(2) D(C, x) and D(C, x) are Borel-measurable functions of x. The same holds

for the order-n densities, and for right and left ordinary densities in U.
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(3) 2~d =s= D(C,x)«s 1 at //-almost all xeC, so by (1) we have Dn(C,x)^l.
For the case where M = R,

2~d(Dr + D')^D^D^ l-d{Dr + D');
hence Dr(C, x) ^ 2d (and similarly for Dl). The same holds for the order-n
densities.

(4) D(C, x) = 0 at tfd-almost all x outside C. As above, by (1) this holds for
order-n density also.

(5) Let C be a // -measurable subset of C; then

D(C,x) = D(C,x) and D(C, x) = D(C, x)
for //-almost all x € C. For order-n density, the same is true when Dn = Dn. That
is, if Dn{C, x) exists for almost every xeC, then

Dn(C, x) = Dn{C, x)

for almost every x e C c C. The same holds, in M = U, for left and right order-n
densities.

(6) More generally, let C = U«=o Cn, a countable disjoint union of d-sets with
Hd(C) < oo. Then for any n,

D(Cn,x) = D(C,x) and D(Cn, x) = D(C, x)
for almost all x eCn. As in (5), this is true for Dn when Dn = Dn, and in U it
holds also for Dr

n and Dl
n.

(7) Let V- IR"—•IR" be conformal, that is, a C1 diffeomorphism which in the
tangent space sends circles to circles. Then

D{y{C), y(x)) = D(C,x) and D(y(C), t//(*)) = D(C, x).
The same is true for the upper and lower order-n densities and in U for right and
left ordinary and order-n densities.

Proof of properties (l)-(6) for ordinary density can be either found in Chapter
2 of [12] or proved using the methods described there. Consistency of Dm with Dn
for n =£ m (Property 1) will be proved elsewhere since we do not actually need it
in this paper; the basic idea can be seen in Lemma 4.4 of [15]. To prove
Properties (5) and (6) for Dn we need first this lemma, which has its origins in
work of Besicovitch. It follows as a corollary of Theorem 2.9.8 of [13].

LEMMA 2.1. (i) Let v be a regular Borel measure on a compact metric space M,
and let fj, be absolutely continuous with respect to v, with Radon-Nikodym
derivative dfi/dv =f(x). Assume that the collection of open balls forms a v-Vitali
relation {see [13]). Then for v-almost every x e M,

^ ^ / ( )
e-o v(B(x, e)) J v '

(ii) For M = U1, one also has for almost every x,

» ( [ * , , + 6 ) )
e-0 V([X, X + £)) V '

(and similarly for the left-sided limits).
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The assumption that the collection of open balls forms a v-Vitali relation holds
for any Borel v in finite-dimensional vector spaces, finite-dimensional Riemann-
ian manifolds, and in shift spaces with the usual metric. In particular, we can
apply it in the case of U1. We thank B. Kirchheim for pointing out to us that this
assumption is needed in the above lemma. Property (7) is easily proved from the
conformal transformation property (see §4). Note that although the order-two
density of a set is defined by means of the Euclidean metric on U, by (7) it
remains the same under diffeomorphic changes of metric. A consequence of (7)
for 1R" is that order-two density is unambiguously defined for subsets of conformal
n-dimensional manifolds (via charts).

The proof of the next theorem then follows in a straightforward way, by use of
L'Hopital's Rule; we postpone details to a later paper.

THEOREM 2.2. (i) With M, v and p as above, if the order-n density exists at
v-almost every x and equals g(x), then the order-n density of /z exists v-almost
surely, and equals g(x) • d[i/dv = g(x) -f(x).

(ii) For M = U\ the same equations hold for right- and left-sided order-n
density.

To prove (5) and (6) above, note that for C<^C, if one sets n = v\c then
dfl/dv = Xc> s o tnat (5) and (6) now follow as corollaries of Theorem 2.2. In § 5
we shall extend the notion of order-two density to cover sets with positive finite
Hausdorff (^-measures for functions <p(t) =£ td which are regularly varying at the
origin.

Dimension and order-two density for subsets of the integers
We will say a subset F of the integers is sparse if it has Cesaro density zero.

DEFINITION. Let F be a subset of the non-negative integers Z+ and define
A/o = 0, and

Nn = Nn(F) = card(F D {0, 1, 2, ..., n - 1», for n ss 1.

The upper and lower dimensions of F are

dim(F) = lim sup log A^/log n
n—•»

and

dim(F) = lim inf log A^/log n.
n—»oo

If dim(F) = dim(F) then we call the common value the dimension of F, dim(F).

A useful equivalent definition is: dim(F) = d if and only if for every e > 0 there
exists n0 such that for every n > n0,

n~e<Nnlnd<ne.
Definitions of dimension for discrete sets appear in [18] and [25], but these

definitions have been designed for other purposes and generally take different
values than our dimension.



ANALOGUES OF THE LEBESGUE DENSITY THEOREM 101

We will call F c N fractal if dim(F) is less than 1. Note that any fractal set is
also sparse. We now give the examples of fractal subsets of N which originally
motivated the definitions.

(1) F = {nk: n e N], for k a fixed integer greater than 1, has dimension 1/k:
this follows from the observation that nuk -l^Nn^ nVk for all n.

(2) The integer Cantor set,

,a (3' : NeN,at = Oor

= {0,2,6,8,18,20,24,26,...},

has dimension d = log2/log3 (not surprisingly!?) which comes directly from the
fact that (n/2)d ^Nn^nd for all n.

(3) Let Zs be the set of zeros of a simple random walk (50 = 0, Sn = T/l=\ Xh
where Z, = ± l with independent probabilities (2,2)), that is Zs = {n: Sn = 0}.
Then dim(Z5) = | almost surely. This follows from bounds due to Chung and
Erdos [10, Theorem 7], that for almost every S, given e > 0 there exists n0 such
that for all n>n0,

DEFINITION. Let F a Z+ have dimension d. The order-two density (in dimension
) is

Kmrrzf,(Njk)l
M->» log M ^Ti k

if the limit exists.

Note that this is the Hardy-Riesz log average applied to the sequence Nk/kd.
We mention that if, for instance, the (Cesaro) density of a set of integers exists
and is positive, that is, \\mn^.xNnln = a >0, then the set has dimension equal to
1; this is straightforward to check.

For the examples we described above, the following are true.
(1) F = {nk} has order-two density 1 since in fact Nnlnxlk^> 1.
(2) The integer Cantor set has order-two density which equals the right

order-two density of the middle third Cantor set at 0 (see § 3). This can be proved
by analogy with the proof given for the random-walk zeros in § 5.

(3) In § 5 we prove that the order-two density of Zs exists almost surely and is
equal to V(2/JT).

As in the real case, when the log average fails to converge, one can apply a
higher-order averaging operator or an invariant mean. Details will appear in a
later paper. The case of the integer Cantor set leads to some interesting ergodic
theory; see [16]. Further i.i.d. random walk examples will also be treated in [1].

We suggest two possible interpretations for integer order-two density. First, it
gives the density of a set F 'at the point +°°' analogous to real order-two density
of C at a point x e C. Second, it is a sort of (finitely additive) d-dimensional
Hausdorff measure on subsets of the integers. This second analogy is strength-
ened if one extends the definition to all subsets of Z+, by use of an appropriate
invariant mean.
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3. The middle-third set

In this section we will prove the existence of the order-two density at almost
every point, and at every rational point, of the middle-third set C. This set has a
very nice structure that makes the proof especially simple. We shall concentrate
here on right order-two density, and prove that it is almost surely constant. From
this we can determine the left and symmetric order-two densities using the
symmetry of C.

The middle-third Cantor set is defined as C= {EH=i «,3~': a, = 0,2}. It has
Hausdorff dimension d = log 2/log 3, and its Hausdorff measure Hd{C) is equal to
one; see [12] for proofs. We let n denote Hd restricted to C. The Cantor function
(or Devil's Staircase) L (shown in Fig. 1), is defined by L: [0, 1]—>[0, 1] with
L(y) — ^([0, y]); that is, L is the distribution function of n and pushes (i forward
to Lebesgue measure on [0,1]. One can easily check the following explicit
formula for L:

1=1
= 2

/=i

where bt = 0 when a, = 0 and bt = 1 when a, = 1, 2. We use the letter L in analogy
with P. Levy's local time for Brownian motion (see § 5). This important property
of L that we shall use is its scaling structure: for any y e [0, 1],

1-0-

0-9-

0-8-

0-7-

0-6-

0-5-

0-4-

0-3-

0-2-

0-1-

00 —i
1000 01 0-2 0-3 0-4 0-5 0-6 0-7 0-8 0-9

FIG. 1. The Devil's staircase function L(y) with upper and lower envelopes yd and
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This implies in particular that for any t ss 0,

103

e~dt-d log3 ~ e-dt •

In other words the function t*-*L{e~')le~td is periodic with period log 3 (see
Fig. 2). This proves that the right order-two density of C at zero,

,. 1 (TL(e-')J

exists, because the Cesaro average of any periodic function converges.

0-55
0 0-1 0-2 0-3 0-4 0-5 0-6 0-7 0-8 0-9

FIG. 2. The function y <-> L(y)/yd.

It is clear that 0 is a very special point of the Cantor set, but there are also
other points in C where the function

' } ~td

is periodic in t. Consider, for example, the points xx = \, x2 = \. Figs 3a and 3b
show the functions

and

These functions satisfy

) = L(xx + y) - L(xx) = fi([xx, xx +y))

= L(x2 + y)- L(x2) = fi([x2, x2 + y)).
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FIG. 3a. The function y •-> Li(y) = n([^, { + y)).

00 0-1 0-2 0-3 0-4 0-5 0-6 0-7 0-8 0-9 1-0

FIG. 3b. The function y •-> U(y) = /i([i I + y)).
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and

(we shall see why in a moment) which, in particular, implies that f(xx, t) and
f(x2, t) are periodic in t with period 2 log 3 = log 9. The right order-two densities
at xx and x2 therefore exist and since f(xlf t + log 3) = f(x2) t) for all t, the limits
are equal. LXx and LX2 are related because under the map S: [0, 1]—>[0, 1] given
by S(x) = 3x (modi), the whole Cantor set is invariant, with S(x1) = x2 and
S(x2) = xx. Now, for any small y > 0,

and, by the conformal transformation property of Hausdorff measure (see § 4),

which gives LXx{\y) = \LX2{y). Similarly one gets LX2(%y) - jLXl(y). These ex-
pressions generalise as follows. For each x e C define Lx(i) = n[x, x +t) for
t e [0, 1]. We call this the local time at x. For each jceCwe have

This implies that
(3.1) f(x, t + log 3) =f(S(x), t) for all x e C, f 2*0.

Now, for general points x eC, the function f(x, t) is not necessarily periodic in t,
but enough statistical regularity exists at typical points for the order-two density
to exist at jU-almost all points. The key to understanding this is the combination of
(3.1) together with the observation

(3.2) fi is invariant and ergodic under the transformation S: C—>C.

Here (3.1) comes immediately from the conformal transformation property of JU,
whilst (3.2) can either be checked directly or be seen from the fact that the system
(S, fi) is naturally isomorphic to the one-sided (2,2) Bernoulli shift (ergodicity
means that if K c C is a Borel set such that K = S~lK then (J.(K) = 0 or 1).

We note that the S-periodic points are exactly the rational numbers in C, and
that these are in fact the only points where / i s a periodic function; this is not too
hard to check.

THEOREM 3.1. For any point x eC that is periodic with respect to S and also for
H-almost all x eC the order-two density D2(C, x) exists. Furthermore, for ^-almost
all x,

D2(C, x) = Dl
2{C, x) = - J - f °8 f f(z, t) dn{z) dt,

log 3 Jo Jc
and

D2(C,x) = 21-dD2(C,x).

Proof. Define a function F: C—>M by
1 /-log 3

F(x)=--\ f{x,t)dt.
log 3 Jo
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The function f(x, t) is jointly continuous since L is continuous. This implies that
F is also continuous. Note that

n —1 n — 1 1 r l o g 3

i=0

n — 1 1 rl

«=0 1 O g J JO

t ( f r o m ( 3 1 ) )

log 3 Jo

Averaging F along an 5-orbit thus corresponds to averaging f(x, t) over /; for,
letting n{T) = [771og3], we have

1 n(ltl 1 fT

-7- 2 HS'x)--] f(x,t)dt
n\l) ,=o i h

n{T)\og2>

<2J|/IU
^ n(T) '

which converges to zero as T—>», using the fact that / is a jointly continuous
function on a compact set and hence bounded (||-||<» denotes the sup-norm). Now
the Birkhoff ergodic theorem says that, for //-almost all x,

n ,=o
and so we have for //-almost all x that

i ff(x, t) dt^ f F{z) dv{z) = -±- f'°83 f /(z, 0 ^(z) A.
T Jo Jc log 3 Jo Jc

We mention two other ways in which one can prove the above result; these two
ideas will be used for the work on hyperbolic Cantor sets in § 4 and on the
Brownian zero sets in § 5. Define

M = {(x,t): xeC,/6[0f log3]}/=,
where = is the equivalence relation

We can define a semi-flow on M by integrating the vector field x = 0, t = 1; that
is, we flow up with unit speed in the constant-height suspension of S. Now the
function f(x, t) can be thought of as a function / : M—>M since it respects the
identifications made in the definition of M, by property (3.1). Averaging fix, t)
over t then corresponds to averaging / along the semiflow. Using ergodicity of the
semiflow, one then gets convergence to a constant from almost all initial
conditions for the semiflow. The second way to prove the result (which is the
technique used for the Brownian motion example of § 5) is to take the space of
paths Lx{t) with the measure induced from ft on C. A scaling (semi-) flow on this



ANALOGUES OF THE LEBESGUE DENSITY THEOREM 107

space of functions can be defined such that the scaling flow does essentially the
same as the flow induced on M above. One shows again that the flow is ergodic
and that calculating the order-two density corresponds to taking an ergodic
average of a certain function on the space of paths. In the corresponding
construction for Brownian motion, the space of paths is the space of local times of
the zero set for the Brownian motions.

4. Hyperbolic Cantor sets

In this section we show that for a class of Cantor sets in U1 the left, right and
symmetric order-two densities of Hausdorff measure exist almost surely, and are
each constant almost everywhere. One can see this as a version of the Lebesgue
density theorem for Hausdorff measure on these Cantor sets, since almost every
point has the same order-two density. We do not have an expression for this
value in general, but J. Aaronson and T. Kamae have independently found ways
to approximate the order-two density for the case of the middle-third Cantor set.
As a corollary of the existence of order-two densities for Hausdorff measure, the
order-two densities of the Gibbs measure also exist. We then prove that the
densities exist at all periodic points, and show how the almost-sure value can be
expressed in terms of the values at the periodic points. Further information on
the techniques used here can be found in [4]. These techniques stem from
Bowen's paper [7] which was the first to use the theory of Gibbs states to
calculate Hausdorff dimension.

We now describe the construction of cookie-cutter Cantor sets.
Take a small neighbourhood 7=>[0, 1] and two maps cp0, cp}: J—>J satisfying

the following hypotheses:
(1) <po(0) = 0, V l ( l ) = 1 and (pQ(J) fl <?,(/) = 0 ;
(2) <p0 and q)x are C1+y diffeomorphisms on their images;
(3) there exist 0 < a < ft < 1 such that for all xeJ,

a<\D(p,(x)\<p (/ = 0,l).
(Note that (1) implies that <p0, <Pi are orientation-preserving and thus that D<pQ,
D(px > 0. With minor changes to the proof of the existence of right order-two
density, everything in this section can be done just as easily with orientation-
reversing maps. For this reason we shall always use absolute value signs around

Two such mappings <p0, <Pi uniquely determine a compact non-empty set
C = C((p0, q)x) with the property that

(see [21]). Such a set will be called a hyperbolic Cantor set (the term hyperbolic is
used since condition (3) is a hyperbolicity condition on q>0 and (px). To see that
C = (po(C) U <p\{C), first set 2 = {xxx2x3... | jtn=O or 1}; a point of 2 will be
denoted x = xxx2 ... . Let / = [0, 1] and for x e 2 let IXl Xn = q>Xl... q)Xn(I), so that
IXt...Xn=>IXl...Xn+r By (1) we have

and
/on/, =
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Inductively one sees that for any distinct finite sequences xx ... xn and _y,... yn, the
corresponding intervals IXv__Xn and Iyv..yn are disjoint. If we can show that

.̂ )—»0 as n—»<» then for any * e 2 , fT=i IXl...Xn is a single point, and so

is a Cantor set (by which we mean it is homeomorphic to the middle-third set).
Now

so that \IX].,.Xn\—>0 (in fact geometrically fast) as n—»<». We denote the map
x >-»nr=i !*,...*„ by jr: Z—• C and will use the notation ^(^) = x. We shall use the
notat ion JXi.,.Xn = (pXt... (pXn(J)-

The Cantor set C can be regarded as an invariant set of expanding dynamical
system, with the map 5: /0U7,->7 defined by

S(x) =

(For the middle-third Cantor set one takes q)Q(x) = \x, q>\{x) = \x + § and 5(JC) =
3x (mod 1).) The assumptions we made on q)Q, cpt then imply that S is a
hyperbolic C1+v map with <p0 and (p, as inverse branches, and with C as an
invariant set. The condition from hypothesis (3) above implies that

(4.0) p-l<\DS(x)\<a~l.

Note that Sn maps JX]...Xn diffeomorphically onto J.
One can now apply the well-known argument of Bowen ([7]; see also, for

example, [2, 4]) to obtain an expression for the Hausdorff dimension d of C and
to show that d-dimensional Hausdorff measure /i is positive and finite. The
Hausdorff dimension is the unique real number d such that P{—d log \DS(x)\) = 0,
where P is the topological pressure. The concept of topological pressure is a
part of the theory of equilibrium states (see [6]). We need only a few facts from
this theory: there is a Borel probability measure v on C which is invariant and
ergodic with respect to S, and such that there exists t] e (0, 1) with

for any IXv,.Xn and

(4.2) ri<y(IXl...J-\DS"(x)\d<ri-1

for any x eJXl...Xn (the measure v is actually the Gibbs—or equilibrium—state for
the function —<ilog|D5(jc)|, and (4.2) is just a statement of the Gibbs property
for our situation (see [6]) so we call v the Gibbs measure). The reason for
introducing v is that the Ergodic Theorem can be used to obtain v-almost
everywhere results, which then automatically hold ju-almost everywhere because
JU and v are equivalent (with Radon-Nikodym derivative bounded below and
above by r\ and r/"1 respectively; this follows from (4.1)). In the case of the
middle-third set, \i and v are identical.
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We shall make heavy use of two other facts. Firstly the bounded distortion
property of S, which can be stated in this form: there exists fj e (0, 1) such that for
all n,

(4.3) fl<\Ix,..Xm\-\DS"(x)\<fl-1

for any x eJXt...Xn (to avoid too many constants we shall replace r\ by the minimum
of r), fj so that we can take rj = fj in the above inequality); see, for example, [4,
29] for a proof. We also need the bounded distortion property in this slightly
different form: there exists K>0 such that for x, y eJXi^Xn,

(4.4) |log \DS"(x)\ - log \DS"{y)\\ < K \S"X - Sny\Y.
We mention that the bounded distortion property is proven in general for 5"
restricted to an interval on which it is one-to-one; this is guaranteed by taking x, y
to be in JX],..Xn. Finally, we recall the fact that Hausdorff measure Hd on IR1

satisfies the following conformal transformation property: for any one-to-one C1

mapO: R-»R,

Hd(<S>(E)) = f \D<&\ddHd.
JF.

This is easily proved from the definition of Hausdorff outer measure. (In the
higher-dimensional case C1 maps are replaced by conformal maps, which explains
the terminology. Measures satisfying the conformal transformation property were
first defined in the context of Fuchsian groups by Patterson [27], and for more
general conformal transformations by Sullivan [35, 36].) Now since 5 maps C to
C, the measure ju (which is the restriction of Hd to C) satisfies

(4.5) KS(E))=\ \DS(x)\
E

for every E where S\E is one-to-one. Such a measure is known as conformal
measure for the pair (C, S), so we shall refer to /J. both as Hausdorff measure and
conformal measure.

For a hyperbolic Cantor set we show that the order-two density and the right
and left order-two densities exist //-almost everywhere and are constant almost
surely.

The arguments for left and right order-two densities are identical (up to
confusion of left and right) and follow the argument for the symmetric case with a
few obvious changes. We therefore give only the proof in the symmetric case.

Define a function/: Cx[R + -»[R,

J \>)

We will show that the order-two density

limi f f(x,t)dt
T—•<» 1 Jo

exists ^-almost everywhere by comparing the function / to functions defined on C
for which we can use the Ergodic Theorem to obtain averaging results. Define

M = {(x, t): xeC,0^t**\o



110 TIM BEDFORD AND ALBERT M. FISHER

where = is the equivalence relation

There is a semi-flow 4>, defined on M by flowing with unit speed in the /-direction.
On M we define a function gtQ: M-*R for each t0 3= 0 by

gt0(x,t)=f(x,t + t0).
This function extends naturally to the domain C x IR + by the equivalence relation
= ; that is, it is extended so as to satisfy the equation

gtQ(x,t + \og\DS(x)\)=glo(Sx,t)
for all t^0. We also have corresponding functions/,„: C x R + -*|R given by

ftQ(x,t)=f(x,t + t0).

Our strategy is to show that /,n and g,0 are close to each other uniformly in x and
t, and then to use the Ergodic Theorem to show that lim?-.^ T~l jogl() dt exists.
In the original version of this paper we estimated ftQ and gtQ via the ratios of
certain quantities, in a way which necessitated separate considerations of the
one-sided and symmetric cases. Following a suggestion of the referee and of M.
Urbanski, however, we have replaced these estimates by difference-based
estimates. This enables one to deal with the one-sided and symmetric arguments
in the same way. The first step is to find a uniform bound on f(x, t); note that a
fortiori one then has the same bounds for ftQ and g,0, for each t0 > 0. The following
lemma is well-known and holds in more general dynamical systems.

LEMMA 4.1. The function f(x, t) is bounded away from 0 and °°. In fact for all x
and t,

v
2+2dad **f(x, t) ^ -bj)-*-™(x-d.

In the next four lemmas, we prepare the ingredients for the proof of
Proposition 4.6. We write Ao = B{y, e) and An = B(Sny, \DSn(y)\ • e), and show
that the following three quantities are almost equal: ti(A0) • \DSn(y)\d,
ju(5"(y40)), and ju(/ln). Note that if (C, 5) were a linear cookie-cutter (by this we
mean that there exists an n such that DS is constant on each nth-level interval
40...*„-,) a s f°r t n e middle third set, then these quantities are equal. We shall
assume in Lemmas 4.2-4.5 that e is small enough that A0<^Jyi...yn; this is the
hypothesis needed to apply the bounded distortion property (4.4) to 5" on Ao.
First we need a preliminary lemma.

LEMMA 4.2. There is a constant ko>0 such that if z eA0 then
\DS"(y)\d , \DSn(y)\

1 - \DS"(z)\' 1 - \DSn(z)\ ko\An\

Proof. By (4.4) we know that, since AoczJyx yn, we have

\DS"(z)\
and so \DS"(y)\/\DSn(z)\ e U for some neighbourhood U of 1 bounded away
from 0 and ». Now since the exponential function is Lipschitz on the domain
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log U, there is a k' > 0 such that
|JC — JC'| ̂  A:'|logjc — logjc'l forx,x'eU.

Taking x = 1 and x' = \DSn(y)\/\DS"(z)\ we have

k> | l o g lDS"(y)l"log | D y l ( 2 ) l 1

= k'K\AQ\Y\DSn(x)\Y (for some xe/ lo
by the Mean Value Theorem)

^k'KeYKlJ]Y\An\Y (by the above inequality).
Setting kQ = k'KeyK[J^ gives one of the claimed inequalities. A similar estimate
holds for

\DS"(y)\d

1 - \DS"(z)\d

taking x' = \DS"(y)\d/\DS"(z)\d in the argument. This gives the constant dk0 and
since d < 1, fc0 works in both inequalities.

LEMMA 4.3. There exists kQ>0 such that for any y eC and e>0,

i_KA0)\DS"(y)\d

Proof. By the transformation property (4.5) of ju we have
d^ t*(A0)\DS"(y)\d JDS"(y)\d

J
\DSn(z)\d

for some z Gi40, since DSn is continuous. Applying Lemma 4.2 finishes the proof.
LEMMA 4.4. There exists kx>0 such that for any y e C and e > 0,

Proof. We have

This symmetric difference is a union of two intervals. We first estimate the
measure of the right interval Ar

n = (An ASn(A0)) n [Sn(y), 1]. Now the length of
An is exactly |i4rt| = \DSn(y)\ • |i40|. Hence

\A"n\ = \1
2\An\-\S"A0n[S"(y), 1]||

^ ji \An\ - \ \DS"(z)\ \A0\\ (for some z €^ 0 by
the Mean Value Theorem)

\DSn(z)\
1 -

\DSn{y)\
= 2̂ 0 \An\y+x (by Lemma 4.2).

(by definition of \An\)
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Next, writing k' = sup/(which is finite by Lemma 4.1), we have
lx{A'n) *£ k' \Ar

n\d^ k'{\ko)d \An\^d.

With the same estimate for the left interval, A'n, we have
p(AH &SnA0) = p{A'H) + n(A'H) =£ kx \AnVd+d,

where kx = 2k'(\k0)d.

LEMMA 4.5. There exists k2>0 such that for any y and e, with AQ and An as
above,

0) \DS"(y)\d - p(AH)\ ^ k2 \AnYd+d.

Proof. From Lemmas 4.3 and 4.4,

\H(AO) \DSn(y)\d - p(AH)\ ^ \p(Ao) \DS"(y)\d - / i (5^ 0 ) | + \KSnA0) - p(AH)\

k0 \AH\*(jA(An) + kx \AnVd+d) + kx \AnVd+d

k0 \AnV{k' \An\d + kx \An\d) + kx \AnVd+d

(k' = supf)

where k2 = ko(k' + kx) + kx.

Before proving the principal estimate we introduce the convenient notion of
reduction of t ̂  0 modulo x, mod,.

DEFINITION. Given xeC define ro(x) = 0 and rn(x) to be the nth return time of
(JC, 0) to the Poincare" cross-section C x {0} under the flow O,, that is,

rn(x) = log |D5"(JC)| = 2 log \DS(S'x)\.
i"=0

Furthermore, define int^(f) to be the unique integer n with

and define modx(t) = t — rn where n = intx(t).

PROPOSITION 4.6. There are constants t*, &3>0 such that for any x eC, setting
d = yd, then for all to>t* and for all t ̂  0,

\Ux,t)-gl0(x,t)\<k3e-6t".

Proof. By definition of gt(t, for n = intx(t) and t' = modx(t) one has
\Ux, t)-gt0(x, 01 = \Ux, t)-gl0(S"x, t')\.

Now if (C, S) were a linear cookie-cutter (as defined above) then the relation
(3.1) from the last section would hold for large enough t0, and we would have
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for every xeC and t ̂  0. The first step of the proof is to note that

\fjx, t)-gh(x, 01 = \Ux, t)-gl0(S"x, t')\
(4.6) =\f,0(x,t)-fl0(Snx,t')\

^e«o+Od \\DSn(x)\d t*(B(x, e-'o-*))

-p(B(S»x,e—-'))\.
We wish to apply Lemma 4.5, taking Ao = B(x, e~'°~'), and An = B(Sn(x), e~'0~')
(note that e"'0" \DSn(x)\ = e-'°-t+r» = e"'0"'', that is, \An\ = \A0\\DSn(s)\).
However, to apply Lemma 4.5, we must check the assumption made before the
statement of Lemma 4.2 that AoczJXx Xn. Assuming for the moment that we can
apply Lemma 4.5, we have

\U** 0 -gh{x, 01 * e^d \\DSn(x)\d p(A0) - n(An)\

. e(to+f)de-(to+f)(d+dy)

using the fact that V <maxr1< — log a. To finish the proof we must verify the
assumption stated above.

We claim that there exists t* such that if to> t* then one has that for any x eC
and t s* 0 that if n = int,(t) then

The idea of the proof is that JXx...Xn has diameter approximately e~' (by bounded
distortion), and so one has to shrink the ball B(x, e~') only by a bounded
amount, e~'°, to guarantee (again using bounded distortion) that B(x, e"'0"*) c
/*,...*„• First n o t e ^a t there is a <5 > 0 such that for any y eC, B(y, 6)czJ (the
neighbourhood of / on which q)0, q>x are defined). For x e C and t, n as above,
take t0> -log d + K \J\r = t*. Choose z near x such that Sn(z) = Sn(x) + 8. Then
we have

\Sn(x) — Sn(z)\
\x - z\= — — (for some y e [x, z] by the Mean Value Theorem)\DS \y)\

= 6/\DSn(y)\

e
\DSn(y)\

^ e-'°-r" (by (4.4))

The same estimate holds if z is chosen so that S"(z) = Sn(x) - 6. Hence

B(x, <r'0-') <= <pxt... VxBfl(xf 6) <=/„...,„,

which was what we wanted.
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In order to show that order-two density exists at fi -almost all xeC, we shall
show that

•T1 f

exists (for ju-almost all JC) for any /0 and then compare T l Sof(x, t) dt to this
limit.

PROPOSITION 4.7. There exists h(t0) e U such that, for [i-almost all x e C,

1 fT
- gt0(x,t)dt^h(t0)
l Jo

as r-»°°.
Proof. The Cesaro average of gto written above is just the ergodic average of gtQ

under the semiflow 4>, on M from the initial point (x, 0). One easily checks that
<I>, is an ergodic semi-flow with respect to the probability measure v which is
locally v x A (normalized) where A is Lebesgue measure. The Birkhoff Ergodic
Theorem for the semi-flow <!>, then implies that the claimed limit exists and is
constant for v-almost all x e C, and hence also for ju-almost all points in C.

We can now show that the order-two symmetric density exists.

THEOREM 4.8. For a hyperbolic Cantor set C as above, the symmetric order-two
density of \i exists at (i-almost all x eC and is constant almost surely: there is a
number Z)2(ju) such that, for ^.-almost all x eC,

1 fT

. D2(ti) = D2(C,x): = 2-d\im-\ f(x,t)dt.
7"-»oo i JQ

Proof Take a sequence tk-+<*> such that tk>t* for all k. By the last
proposition there is a set K(tk) with v(K(tk)) = 1 and

-r1 f
1 Jo'0

for x e K{tk). Let K = f\ Kih)- This has v-measure 1. Let x e K and fix e > 0
while taking tk large enough that k3e~6tk < e. Choose also To such that, for T> To,

•T
<£.i r

- glk(x,t)dt-h(tk)1 Jo
We then have

l im- f(x,t)dt=\im-\ ftk(x,t)dt

1 CT

< - ftk(x, t)dt + s (for some T > To)T Jo
l rT

< - gtk(x, t) dt + 2e (by Proposition 4.6)
T Jo

<h(tk)
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Similarly we get
1 fT

Urn- f(x,t)dt>h(tk)-3e
r-»«> L Jo

and so

lim- f(x,t)dt-\un-\ f(x,t)dt <6e.

Letting e —> 0 shows that the limit

lim -E- I fix. t) dt
1 fT

l i m - f(x,t)
7-»oo / J o

exists. The limit is clearly equal to the limit of h(tk) as &-»<», which is
independent of*. This proves the theorem.

COROLLARY 4.9. The order-two density of the Gibbs measure v exists, and
satisfies

dv
2{V>X)~dti 2{fi)'

for almost every x.

Proof. Apply Theorem 2.2.

THEOREM 4.10. For any point xeC that is periodic with respect to S, the
symmetric order-two density of (X exists.

Proof. If x is periodic under 5, then g,0(x, t) is periodic in t so that the limit
-7"

exists. Essentially the same argument as that used above then shows that
T~x llf{x, t) dt converges as T—>•<».

The proof of existence of right order-two density is more or less the same as
above. One defines a function f: C x IR + —>U by

(
-id

so that the right order-two density is given by

D2{C, x) = lim i f fr(c,t)dt,
r-»oo I Jo

and then one works as above with intervals
Ao = [y>y + £)> An = [S"y, Sny + \DS"y\ e).

Proceeding just as in the symmetric case (Proposition 4.6), one gets uniform
estimates on \fr,0 — gr,n\. This leads to
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THEOREM 4.11. The right order-two density of fj. exists at fi-almost all x eC and
is constant almost surely. For any point x eC that is periodic with respect to S, the
right order-two density of fi exists at x.

We remark that except where the Cantor set has an obvious symmetry (the
middle-third set is an example) we do not yet know if the left and right order-two
densities are equal. This seems to be quite a delicate problem. Our last result in
this section shows that the almost sure order-two density value can be obtained
from the order-two densities at periodic orbits.

THEOREM 4.12. Let Bx = {x e C: x = Sn(x), \DSn(x)\d ^ A}. Then

A similar statement holds for Dr
2 and Dl

2.

One proves this by using the fact that

—T^T S <5*->v asA^oo
card BXxeBl

in the weak topology (this is a consequence of a theorem of Bowen [5], and the
fact that the measure of maximal entropy for the flow <I>, is equal to v times
Lebesgue measure on the fibres of M).

5. Zeros of Brownian motion and random walks

In this section we will see that the notion of order-two density makes sense
outside the narrow domain where it was defined in § 2. The examples we shall
consider are the zero sets of Brownian motion and the simple random walk.

For a typical path of the one-dimensional Brownian motion W(t), as is well
known, the set of returns to zero

Cw = {t&0: W(t) = O}
is (almost surely with respect to Wiener measure) topologically a Cantor set, i.e.
is homeomorphic to the middle-third set, and has Hausdorff dimension \.
However the Hausdorff ^-dimensional measure of Cw is zero. So instead one uses
a more general kind of measure, which gives positive finite measure on the set: in
the definition of Hausdorff measure given in § 2 one replaces the function
<P</(0 = td by the function

(for 0 < f < l / e ) . The resulting measure is known as Hausdorff <p-measure, and
will be denoted Hv.

The order-two density for Cw at x is, therefore, defined to be

D2{Cw,x)=\xm-\
T-*CO i j 0

, . f ( ( , e~')nC
w,x)=\xm-\ \ ' >

T-*CO i j0 Z2e

when this limit exists.
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As in the proof of the existence of order-two density for the middle-third
Cantor set, the proof here uses the ergodic theorem applied to a scaling flow on
path space. The strategy of the proof is as follows: compare (p-measure with P.
Levy's local time; compare local time with the maximum process of Brownian
motion; then use ergodicity plus the strong Markov property to prove the
theorem. Ergodicity for the scaling flow of the maximum process will follow from
ergodicity of the scaling flow of Brownian motion.

For the case of random walk zeros, the proof is based on a dynamical
interpretation of the almost-sure in variance principles of probability theory, given
in [15]. There it is proved that having an almost-sure invariance principle of rate
o(tt) is equivalent to having a joining such that the paths are forward asymptotic
in the scaling flow. Here we need to use two almost sure invariance principles,
one for the random walk and one for its local time. Combining these allows us to
pass the results for Brownian zeros over to the random walk.

A good introductory reference on Brownian motion is [23]; see also
[17,19,39,22].

Scaling flow
Let Q = {/: [R + -»IR| / i s continuous and/(0) = 0}, with the topology ^given

by uniform convergence on compact sets, and with 58 the Borel a-algebra
generated by 5". Define the scaling maps Aa: Q—»Q of dimension d by
(Aa/)(0 =f(at)/ad, for a >0, and define the scaling flow xs on Q by zs = AexpC0
(where s e U). For this section we now fix d = \, so

•s/2(Tj)(t)=f(e*t)/e
Note that ra°xb = ra+b, that is, rs is a flow. We let v denote Wiener measure on
Q, and write 58V for the v-completion of 58. We recall from [14,15] that 2F makes
Q into a Polish space (that is, a complete separable metric space) and that r̂
acting on (Q, S8V, v) is a Bernoulli flow of infinite entropy (on a Lebesgue space).
In particular this is an ergodic, and mixing, flow.

q)-measure
The measure Hv defined above has the following important scaling property:

for any a >0, and any //''"-measurable set E,

Hv(aE) = flii/v(£).

This is immediately seen from the definition of Hv and the fact that
limf_0 <p(fl0/<?(') = a<i (=al)> m other words since cp(t) is 'regularly varying at the
origin' [9, p. 18]. We note that, more generally, such measures satisfy the
conformal transformation property (see §4), by the same argument used for
Hausdorff measure; we will not however need that stronger version here.

The first goal of this section is to prove the existence of, and evaluate, the
^-dimensional order-two density of //<p on Cw, at //^-almost all x e Cw. Since Hv

has the above scaling property and since the zero sets of a Brownian path are
preserved by dilation (in the sense that the set aCw for a fixed a > 0 is the zero set
of another path (AaW)(t) = (l/y/a)W(t/a)), one guesses that the average
behaviour of mass around a point is governed by the function n rather than by
q>{i). This guess is borne out by our result, that is, that the 2-dimensional
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order-two density of Hv on CW) for //^-almost all x e Cw, exists and is positive
and finite.

We comment briefly on a basic difference between the geometry of the
hyperbolic Cantor sets of § 3 and that of a Brownian zero set. There the average
and extremal behaviours of mass in a ball of radius t were governed by the same
function, td. Here, the average behaviour hovers around td, while the asymptotic
upper envelope, for right density, is the larger function q>(i). To prove this one
uses Khinchine's law of the iterated logarithm. For symmetric density, an upper
envelope of c<p{i) for some constant c between V2 and 1 can be deduced from a
purely geometric theorem of Wallin [38]. The point we wish to make here is that
this extremal behaviour occurs infinitely often as f—»0, but so rarely that it does
not affect the time average which defines the order-two density.

Local time
P. Levy's local time of a Brownian path W(t) e Q is the function Lw: (R + -» IR +

defined by

e->0

(when this limit exists). Some background references are [11, 39, 22, 32].
We first prove these flow-invariant versions of two basic theorems concerning

local time.

THEOREM 5.1. There is a xs-invariant set, Qx c Q with v(Ql) = 1, such that for
W e Qi, Lw(t) is defined (for all t^Q) and is continuous (in t). Furthermore, the
function W *-> Lw from Ql to Q is ($JV, ^-measurable.

Proof. First, the fact that Lw is v-almost surely defined and is continuous is a
theorem of Levy; see, for example, [11] for the proof. Next we note that the
definition of local time is scaling invariant. That is, if Lw exists for some W e Q,
then the limit for rs(W) also exists and LTsW= rs(Lw). (We call this the scaling
property of local time). Finally, we check measurability. Let & be the algebra of
finite cylinder sets in Q; it is shown in [11] that W >->Lw is (S8V, &) measurable.
This implies ($JV, S8)-measurability because SF generates 38 in Q (since a
continuous path is determined by its values on a dense set of times).

Local time Lw is related to the Hausdorff measure of Cw by the next theorem,
which is a corollary of work by Taylor and Wendell [37], Hawkes [20] and
Perkins [28].

THEOREM 5.2. There exists a zs-invariant set Q2S ^ i of v-measure 1 such that
for any W e Q2, for all t s* 0,

Lw(t) = Hcp(Cwn[0,t]).

Proof. That the set Q2
 o n which the above property holds has v-measure 1

follows from Hawkes' and Perkins' refinements of Taylor and Wendell's theorem.
It suffices then to show that Q2 is flow-invariant. For W e Q2, we will show that
Aa(W) e Q2. Now given that for all t,

Lw(t) = H*(Cwn[0,t]),
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we want to verify that for any a > 0,

LMVV)(0 = #"(C^w) n [0, t]) for all /.

We have

= A.(H"(CW D [0, t])) = H*(CW n [0, at])/a*
= H*(a-xCw n [0, at]) = H*(C*a(w) n [0, t]),

where the first equality is the scaling property of local time and the next to last
uses the scaling property of Hv.

Now let vL denote the Borel measure on Q which is the image of v under the
(measurable) map W>-*LW. Let 58L denote the completion of 58. We call
(Q, S8L, vL, rs) the scaling flow for local time.

We remark that the scaling flow for local time is a Bernoulli flow. One sees this
as follows. As noted above, LXsW= rs(Lw). Therefore the map W>-*LW is a
homomorphism of flows (it is, by definition of vL, measure-preserving). Thus
since (as noted at the beginning of this section) the scaling flow for W is
Bernoulli, one knows, by Ornstein's theory [26], that this factor flow is also
Bernoulli.

We shall show that Dr
2{Cw,x) = yJ(2ln) for /f'-almost every x and v-almost

every W e Q. First we need:

DEFINITION. For W eQ write

Mw{t)= sup W(s).
se[O,t\

This is the maximum process of Brownian motion.

Note that the map W>-+Mw is continuous (since on any compact interval [a, b],
||Wi — W2\\[a,b]<e implies \\MWx-MWl\\~aM< e) and hence certainly (S8V, 58)-
measurable. Thus v pushes forward to a Borel measure vM on Q.

In order to calculate the value of D2, we will use a theorem of Levy which
identifies the local time process as the maximum process of a different copy of
Brownian motion. A rigorous statement of this is:

THEOREM 5.3. For any Borel set A c Q ,

Proof. We begin with the statement usually given in the probability literature:
that the two processes are equal in distribution (or in law), which means exactly
that vM = vL on the collection 8F of finite cylinder sets (see [11] or [22] for a
proof). But this immediately extends to the Borel sets since ^generates 38 in the
space Q.

In probability terminology one can also express this in the following way: given
two copies W and W of Brownian motion, they can be redefined to live on the
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same probability space (Q, v), such that for v-almost every coeQ, with
W(t) = W((o, t) and W(t) = W(a), t), we have that Lw = M&. This is therefore a
close analogue of Revesz' almost-sure invariance principle for random walk local
time (Theorem 6 below).

To help explain this correspondence (between vM and vL) we note that one can
see from the proof of (8.7) in [11] how it arises from an underlying isomorphism
of Wiener space with itself, which is given by an explicit formula. Here sgn(-) is
the sign function, taking the values, +1, —1, and 0, and the integral is a stochastic
integral.

THEOREM 5.4. The map

W - • W(t) = - f sgn(W(.s)) dW(s)
Jo

is defined for v-almost every W e Q and is an isomorphism of (Q, v, rs) with itself
(in other words there are flow-invariant sets of full measure such that the map
W*-+W is one-to-one surjective and measure-preserving). Furthermore, the
following diagram commutes and is x/invariant:

W i > W

\
Lw = Mfi

We can now prove the existence of order-two density for the Brownian zero
sets.

THEOREM 5.5. For v-almost every W eQ, one has that for H*-almost every
x e Cw the right and left and the symmetric \-dimensional densities exist and equal
V(2/;r), V(2/JT) and 2V(1/n) respectively.

Proof. One knows explicitly the distribution of the maximum process (for a
good account see [19]); it is half of a Gaussian, i.e. has probability density
function

e~x2/2 for x ** 0, and 0 for x < 0.

This has expected value

-J—rxedx=J-
V(2JIT) JO V JT

If we now define a function F: Q—> U to be evaluation (of the maximum process)
at time 1,

F<J)=f(X),
then Fis in L,(Q, vM) and has expected value

f FdvM=J-.
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Now since (Q, v, zs) is an ergodic flow, so is its homomorphic image (Q, vM, rs)
(under the map W *-* WM). The Birkhoff ergodic theorem for flows thus implies
that for vM-almost every path M e Q,

(12)

The set of M e Q for which this holds meets the set for which Mw = Ly, in a set of
full measure. Hence (12) holds for v^-almost every Lw which means that

n[o, h
— \ —esl2 V nl i m ^ l X **

> s/z

for v-almost every W. This says that for a set of v-measure 1, the right order-two
density of Cw exists at zero and equals V(2/^).

To extend this proof of the existence of Dr
2 at zero to give existence at

//'''-almost all x e Cw we will use the strong Markov property of Brownian motion
plus a Fubini's Theorem argument.

For a fixed W e Q and t^O, let t(f) = inf{s e U+: Lw(s) = t}. This is a
stopping time, that is, it only depends on the path up to time t(f). Therefore by
the strong Markov property, Brownian motion begins anew at time t(t) for each
t. Hence for every fixed t, the right order-two density at the point x = t(t) exists
v-almost surely by what we have proved above for x = 0. Note that t is an inverse
of Lw, that is (for v-almost every W),

Lw(t(s))=s forallselR+.

Note also that since Hv of the zero set Cw gives local time, the image of / / V | C H ,
under Lw is Lebesgue measure on IR + .

Now let Q3 denote the subset of v-measure 1 in Q such that the right order-two
density at zero exists and equals V(2/^r). Without loss of generality we assume
that Q3 is a Borel set; we can do this since 58V-measurable sets are exactly those
whose inner and outer measures are equal [31], so the set contains a Borel set of
full measure. We need this to be a Borel set for a technical reason given below.

Define, for s s* 0, Ws(t) = W(s + t)- W(s), and set

AT = {{t, W) e [0, T] x Q: Wt{t)(-) e Q3}.

We claim that AT is S8m x <38V-measurable, where m is Lebesgue measure. This is
because the maps a: U+ x Q-> Q and p: U+ x Q-» U+ x Q, defined by

at:(s,W)~WM(') and 0: (t, W)~(t(f, W), W),
are respectively jointly continuous and Borel measurable. Hence since Q3 is a
Borel set, AT = (a°0)~1(Q3) is S8m x <38v-measurable.

Now for each fixed t e [0, T] the set {W: (t, W) eAr} has v-measure 1.
Therefore AT has v x m-measure T by Fubini's Theorem [31] (this is why we
checked the measurability of AT above). Also by Fubini's theorem, for v-almost
every fixed W, the set {t: (t, W)eAT} has Lebesgue measure T. That says
exactly that for //''-almost every x e [0, t(T)], the right order-two density of Cw
at x converges (since t pushes Lebesgue measure forward to //(p restricted to Cw).
This is true for each T eR+ and so we have finished.

Convergence for the left order-two density is a consequence of the time
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symmetry for Brownian motion (that is, if W(t) is Brownian motion on IR with
W(0) = 0, then W(t)*^W(-t) is an isomorphism of the space (Q, v)). Hence the
left and right order-two densities exist simultaneously and are equal. Therefore
the symmetric order-two density also exists on a set of v-measure 1, and (by (3)
of § 2) equals 2V(1/JT).

The simple random walk
We now turn our attention to the zero set of a simple random walk. The set-up

is much like that in [15].

DEFINITIONS. Let Xt (i = l, 2,...) be a sequence of i.i.d. random variables
taking values ±1 with probability {\,\)- Define 50 = 0 and Sn = Tl?=iXi; this
sequence of partial sums is commonly known as the simple random walk.

By the polygonal random walk we mean the functions S(t) in continuous path
space

Q = {/: R + -> IR | / is continuous and /(0) = 0}
such that S(n) = Sn for n e N and is linear in between. We write 5 = (So, Su ...)
for the sequence of partial sums, and also for the path in Q it determines. The
random walk gives a Borel probability measure on Q which we call y, the
measure of the polygonal random walk.

The zero set of the random walk 5 is the set
Cs = {n: Sn = 0}.

We define
Nn = Nn(Cs) = card{A:: 0 ̂  k *£ n, Sk = 0}

and define the maximum process

Mn = max Sk,

and interpolate linearly to consider M as an element of Q.

We need the following theorem of R6vesz, which is a discrete time analogue of
Theorem 4.3.

THEOREM 5.6 [30]. For the simple random walk Sn, given any e > 0 the
processes Nn and Mn can be redefined to live on the same probability space, so that
for almost all co in that space,

We are now ready to prove our theorem.

THEOREM 5.7. For y-almost every path S of the simple random walk, the
order-two ̂ -dimensional density of its zero set exists and equals

Proof. We are to show that for A^ = Nn(Cs), for y-almost every S,

lim—!— f ^ i = I-K-*°°\ogKn^x n5 n V n'
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Now as at the start of the proof of Theorem 5, let F: Q—» U denote evaluation at
time 1, and (Q, vM) the maximum process of Brownian motion. Using the
Birkhoff ergodic theorem with negative time, we have that vM-almost surely,

(5.1)
n

By Strassen's almost-sure invariance principle ([34]; see also [15]), S(t) and W(t)
can be redefined to live on the same space so that for almost every <o in that space

\W(a>,t)-S(<o,t)\=o(n).

Now notice that this implies the same estimate for the associated maximum
processes. That is, for almost every co,

(5.2) \im\Mw(t)-Ms(t)\/P = 0.

Now notice that (5.1) can be written as:
Mw(y)dy \l

T—logTJi yt v V n

From (5.2) one immediately sees that this is also true for Ms, and hence for
y-almost every Ms (technically speaking, one uses here Fubini's theorem on the
joining given by the a.s.i.p. and the fact that Q is a Lebesgue space; a basic
theorem of Rochlin implies this—see, for example, [14,15] for related details).

From the above, it easily follows that

;v—a, log Nj~i «2 n

Finally by Re"ve"sz' theorem, the same is true for Nn, and we have finished.

REMARK. Here is a more picturesque but less direct way of looking at the
above proof. As in [15], a o(tf) a.s.i.p. is equivalent to the two paths being
forward asymptotic in the scaling flow. Hence since \MW — Ms\ = o(n) and
\MS — N\ = o{ti), we have that there exists a joining of (Q, vM) and (Q, y) such
that Mw and N are forward asymptotic in the scaling flow. Hence the ergodic
averages of F starting at these two points in Q agree.
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