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Small-scale Structure via Flows

Albert M. Fisher

Abstract. We study the small scale of geometric objects embedded in a Eu-
clidean space by means of the flow defined by zooming toward a point in
the object. For Fuchsian and Kleinian limit sets this “scenery flow” corre-
sponds naturally to the geodesic flow. We explore this analogy in a variety of
examples, coming from dynamics, geometry and probability theory.
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1. Introduction

Suppose we center a mathematical microscope at some point of a fractal set, and
turn the knob continuously; as we zoom down toward smaller scales, ever-changing
scenes go past us, as if we were riding on a train taking us deeper and deeper into
the heart of the fractal landscape. Let us try to model such a fractal excursion
mathematically. The continuously changing nature of the process suggests that
a precise description will involve a continuous–time dynamical system, in other
words a flow. In this article, we shall sketch how such a flow (the scenery flow of
the fractal set) can be defined, and indeed, constructed rigorously for a variety of
examples, and we shall see how the scenery flow can be usefully applied in studying
the fractal geometry. We shall, moreover, see that this flow of magnification, and a
related translation flow, provide close analogues of two familiar flows: the geodesic
and horocycle flows of a Riemann surface.

To begin our story, we shall recall some basic properties of these classical
flows.
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2. Geodesic and horocycle flows

In the complex plane C, let H = {z = x + iy : y ≥ 0} denote the upper half
plane. The interior of H, those points with y > 0, is given the hyperbolic met-
ric, defined by ds2 = (dx2 + dy2)/y2, which makes it isometric to the Poincaré
disk ∆. The orientation-preserving isometries for this metric are the real Möbius
transformations Möb(R), with

fA(z) = (az + b)/(cz + d)

for A =
[
a b
c d

]
where a, b, c, d ∈ R and det(A) = ad−bc = 1; that is, A ∈ SL(2, R),

the special linear group.
The matrices A and γA for γ �= 0 give the same Möbius transformation, and

this is the only such identification, so Möb(R) ∼= PSL(2, R), the projective special
linear group. Let Γ ⊆ Möb(R) be a discrete subgroup. Then the identification
space Γ\H is a Riemann surface; this may be compact, or be noncompact with
either finite or infinite area. The unit tangent bundle of H can be identified with
PSL(2, R). This correspondence is easily described. We will associate (arbitrarily)
the identity matrix I to the vector ii which is located at the point i ∈ H and points
in the vertical direction; then, given A ∈ SL(2, R), let f∗

A(ii) be the image of this
vector by the derivative map of fA, that is, it is the vector located at the point fA(i)
which has been rotated appropriately by the argument of the complex derivative.
This image vector also has hyperbolic length one, as Möbius transformations are
isometries for the hyperbolic metric; so this defines a map from PSL(2, R) to the
unit tangent bundle T1(H). The group Γ acts on PSL(2, R) by left multiplication
and one sees that Γ\PSL(2, R) is the unit tangent bundle of the surface Γ\H.

The geodesic flow on the surface is by definition the flow on this unit tangent
bundle which moves a vector along its tangent geodesic at unit speed. Algebraically,

this is given by right multiplication by Et ≡
[
e

t
2 0
0 e−

t
2

]
on Γ\PSL(2, R). To

understand this, note that this matrix is equivalent as a Möbius transformation to[
et 0
0 1

]
which dilates the plane by the factor et, and hence moves the vector ii up

the imaginary axis at unit speed in the hyperbolic metric. The action on a general
unit vector is then given by the conjugation by f∗

A which is a hyperbolic isometry,
so this is indeed the geodesic flow. The unstable horocycle flow hu

t is given by the

right action of Hu
t ≡

[
1 0
t 1

]
; the stable flow acts by its transpose. As the names

suggest, these preserve the unstable and stable horocycles. Recall here that the
stable set of a point x in a flow τt is the set of all y which are forward asymptotic
to x, i.e. such that d(τt(x), τt(y)) → 0 as t → +∞, while for the unstable set we
trade + for −∞. The stable set of the point ii for the geodesic flow is the set of all
vertical unit vectors based on the line y = 1, see the right side of Fig. 2. This line
is a “circle” tangent to ∞. Therefore by conjugation, stable sets of the geodesic
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Figure 1. Covering space for punctured torus; the geodesic flow

flow are one dimensional, and are exactly the orbits of the stable horocycle flow,
which are carried by those circles classically known as horocycles: those tangent to
the boundary R of H.

For the simplest example of a noncompact, finite area surface, see Fig.1; here
(depicted in the disk model) Γ is a free group on two generators, these being two
hyperbolic Möbius transformations, one which shoves the interior of the disk to the
right and one which moves everything up; the curved quadrilateral in the center
is a fundamental domain for this action. The left side is glued to the right, and
the bottom to the top, so the resulting surface is a torus, just like for the usual
gluings of a square, to get the quotient space R2/Z2, except that now the corner
point gives a cusp, as it goes out to ∞ in the hyperbolic metric: this is a punctured
torus (Fig. 1). Classical results are:

Theorem 2.1. The geodesic and horocycle flows gt, h
u
t , hs

t preserve Riemannian
volume of the unit tangent bundle of the surface M . This measure is finite iff the
surface area is finite. For this case, if M is compact (equivalently has no cusps)
then:

(i) gt is ergodic, indeed is measure-theoretically isomorphic to a Bernoulli flow
of finite entropy (= 1);

(ii) hu
t , hs

t are uniquely ergodic, with entropy zero.
In the finitely generated, finite area case with cusps, all this is true except that
hu

t , hs
t are only nearly uniquely ergodic; normalized Riemannian volume is the only

non-atomic invariant probability measure if we disallow measures which give mass
to horocycle orbits tangent to cusps.

More interesting for us will be the infinite area case, where the cusp opens
up to flare out in a hyperbolic trumpet, Fig. 3, we return to this below.
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T 1(M)
he−a·b−−−−→ T 1(M)

ga

� �ga

T 1(M) −−−−→
hb

T 1(M)

aa

b

−a
e b

Figure 2. A commutative diagram, seen in the upper half plane;
hyperbolic distances = flow times.

Figure 3. After opening the cusp; gluing, we now have infinite area.

The flows gt and ht = hs
t do not commute, but do satisfy the following

commutation relation:
hbga = gahe−ab.

In other words, the diagram in the left part of Fig. 2 commutes. One can prove
this algebraically, or see it geometrically in the upper half plane, as illustrated in
the right-hand part of the figure.

Remark 2.1. Because of the commutation relation, the pair (geodesic flow, horo-
cycle flow) gives an action of the (ax + b)-group (the real affine group) on T 1(M).
This already hints that there might be a relation with fractal geometry, as fractal
sets generally exhibit symmetries with respect to both dilation and translation.

Observation. The commutation relation tells us that ht = hs
t is isomorphic to a

speeded-up version of itself. An ergodic theorist immediately will recognise that
this is very special, as the entropy of a sped-up transformation or flow multiplies
by that factor, so in this case:

entropy(ht) = e−a · entropy(ht).
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There are, thus, only two possibilities for the entropy of the flow hs (or hu): 0,
or ∞!

We have already seen an example of zero entropy (the finite area Riemann
surface case); next we shall see a situation where infinite entropy occurs, and this
example will lead us into the fractal realm.

3. Brownian motion and stable processes

Let Ω be the space of continuous functions from R to R, with the topology of
uniform convergence on compact sets. This makes Ω into a Polish space, that is, a
complete separable metric space, which is ideal from the point of view of measure
theory.

Let µ denote Wiener measure on Ω, conditioned to be 0 at time 0, and defined
both for future and past times. Then the scaling property of Brownian motion says:
for B ∈ Ω and a > 0,

B(at)/
√

a

is “distributed like” B(t). What this probability language means to an analyst is:
the transformation B 
→ ∆a(B) defined by

(∆a(B))(t) = B(at)/
√

a

preserves Wiener measure. To an ergodic theorist this suggests the following: defin-
ing

gt = ∆e−t ,

the action gt : Ω → Ω is a measure- preserving flow! Next question: what flow is it?
Answer: up to measure theoretic isomorphism, it is (the) Bernoulli flow of infinite
entropy. (See [Fis87], and see [Fis04] for related work.) Call this the scaling flow
of Brownian motion; geometrically it dilates time and rescales space appropriately
to give another Brownian path.

Next, consider the increment flow,

((hu)a(B))(t) = B(a + t) − B(a).

This simply shifts the origin point (0, 0) along the graph of B(t), and since the
process B(t) has stationary increments, again preserves the measure µ.

Now comes the magical part: these two flows satisfy the same commutation
relation as the geodesic and horocycle flows of our surface! But what is (hu)t,
measure-theoretically? Answer: it is now infinite entropy. (One way to see this is
to note that the increment flow is naturally isomorphic to the shift flow on white
noise, which is an infinite entropy Bernoulli flow; the isomorphism is given by
integration). So we have our “infinite entropy horocycle flow” example.

It is clear that the same commutation relation holds for any self-similar pro-
cess with stationary increments; examples are the stable processes, see [FL02]; see
[Zä91] for closely related work.
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4. Brownian zero sets

This study of Brownian motion gives us almost for free another example, which
will make the link to fractal subsets of the line. As is well known, the zero set of a
Brownian path, ZB ⊆ R, has Hausdorff dimension 1/2, and for the gauge function
φ = (2t log log(1/t))

1
2 , has positive locally finite Hausdorff measure Hφ. Now define

the map from Ω to itself by B(t) 
→ LB(t) where LB(t) = Hφ(ZB ∩ [0, t]), the total
measure up to time t (and similarly for t < 0, but with negative sign). Write µZ

for the image measure on path space Ω; this is Paul Lévy’s local time. (Note: to
visualize the local time LB(t) of a Brownian path B, it helps to know – by a
theorem of Lévy – that local time paths are exactly maximum paths MB̂(t) =
sup{B(s) : s ∈ [0, t]} for a different Brownian path B̂.) The flow gt preserves these
correspondences, hence the scaling flow on (Ω, µZ) is also a Bernoulli flow of infinite
entropy (being a factor of the flow on (Ω, µ)) [BF92]. But what about the increment
flow? Here things change: we slide into the gaps of the local time; the appropriate
measure has become infinite. We shall return to examine the consequences of this
in §11.

5. The extended Cantor function (or Devil’s Staircase)

The graph of Brownian local time is a continuous, nondecreasing function with a
dense set of flat spots, reminiscent of the Cantor function– which suggests to us
that we study that non-random example in a similar way. In [Fis92] we see an ex-
tended version of the usual Cantor function as depicted, say, in Mandelbrot’s book
[Man]. Note the upper and lower envelopes of the form ctd for d = log 2/ log 3, the
Hausdorff dimension of the Cantor set. Now this extended function L(t), defined
to be identically 0 for t ≤ 0, satisfies

L(3t)/2 = L(3t)/3d = L(t);

this means that for the scaling flow gt of exponent d, gt0(L) = L, where t0 = log 3;
in other words, the scaling flow of this graph is a single periodic orbit!

Rescaling this path represents zooming down toward the point 0 in the Cantor
set. But though the set C is, as we all know, “the same everywhere”, on closer
inspection this isn’t quite so true. What do we see, for instance, if we slide the
graph of f over to the point 1/4 (which happens to be in C) by the increment
flow, and then begin rescaling? In this case, the orbit is no longer periodic, but will
converge asymptotically to a different periodic orbit, one with twice the previous
length: 2 log 3 = log 9. But now differently from the point 0, there is asymptotic
scenery on both sides of the point 1/4 [Fis92].

And this is still very special: what happens when a general point of C replaces
the number 1/4? Answer: after taking the forward orbit closure, we get a mixing
ergodic flow! This will be naturally isomorphic to the scenery flow of the fractal
set C, with which we began the article. So now it is time to give some precise
definitions.
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6. The scenery flow

Let Ω = Ω(Rn) be the collection of all closed subsets of R
n; topologise this by

taking first the Hausdorff metric on closed subsets of the one-point compactifica-
tion and then taking the relative topology on this subset Ω. This topology (the
Attouch-Wetts or geometric topology, see §2 of [BF96]) makes Ω compact; for an
example consider Fn = {n}; this sequence of subsets of R converges in Ω(R) to
the empty set.

Define the magnification flow gt on Ω by A 
→ et · A. Choose a closed subset
F ⊆ Rn, choose a point z ∈ F , and define Ω(F,z) to be the omega-limit set of
(F − z), the set translated so as to place z at the origin. Thus,

ΩF,z =
⋂

T≥0

closure{gt(F − z) : t ≥ T}.

The flow (ΩF,z; gt) is the scenery flow of the set F at the point z.

Example. Let C be the Cantor set C ⊆ [0, 1]; define Ĉ = ∪∞
k=03

kC, so 3 · Ĉ = Ĉ.
Then

glog 3(Ĉ) = elog 3 · Ĉ = Ĉ,

so the scenery flow of C at 0 is {etĈ : t ∈ [0, log 3]}, and this is a single periodic
orbit of length log 3. The total Hausdorff measure L(t) = Hd(Ĉ∩[0, t]) gives a non-
decreasing continuous function, the extended Cantor function, and this produces
a flow isomorphism to the scaling flow of the Cantor function, described before.

Definition 6.1. The scenery flow of the set F is the flow of magnification by et on
ΩF , the union of the scenery flow spaces of each point z ∈ F (so ΩF = ∪ΩF,z).

One can show [Fis92] that the scenery flow of the set C is naturally isomorphic
to the following special flow: the height log 3 suspension of the natural extension
of the map 3x( mod 1) on C. As a first consequence, since this flow is recurrent,
a.e. orbit is dense and so the landscape encountered while zooming down toward
a general point passes through all possible limiting scenes; the orbit closure is the
whole space. Moreover, the flow is ergodic, so, by the Birkhoff ergodic theorem, the
scenes will be encountered with the right frequency. So in particular this proves
that the order-two (average) density exists and is a.s. constant. See [BF92] for a
slightly different proof.

But what else can one say about this flow? The base map is isomorphic to the
Bernoulli shift σ with weights (1/2, 1/2) on Σ = Π∞

−∞{0, 1} via ternary expansion,
and this map has entropy log 2. Now we see something interesting. By Abramov’s
formula, flow entropy = (base entropy)/(expected return time), so we conclude:
entropy(gt) = log 2/ log 3 = d = dim(C)! This gives us a formula for dimension:

The Hausdorff dimension of C equals the entropy of the scenery flow.

This formula is not always valid: a counterexample is a Brownian zero set; the
dimension is 1/2 but the scenery flow is isomorphic to the scaling flow on local
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time, which, as we have seen, has infinite entropy. Nevertheless, we wonder: is it
possible that this formula is valid elsewhere?

7. The Fuchsian case

In fact we shall find just such an example in Fuchsian limit sets. Recall our modified
punctured torus, where we opened up the cusp into a trumpet. The limit set Λ of
the group Γ is now a Cantor subset of the boundary (Fig. 3; all the open intervals
which are unions of the closed interval where the fundamental domain meets the
boundary are removed, leaving a topological Cantor set). So, what is its scenery
flow? Well, first of all, the Cantor set is a subset of the circle, and zooming down
toward this we see a tangent line: the infinitesimal scenery of a circle is a line.
That’s rather boring! But if we consider the scenery flow of the limit set, things
become much more interesting. What we will see asymptotically is a collection of
fractal subsets of the tangent space to the circle (the real line) which is invariant
under dilation. But what are these sets? The answer is satisfyingly simple: they
are the limit set Λ moved to the boundary R of H, the upper-half space model of
the hyperbolic disk. Here we have to allow all possible correspondences via Möbius
transformations from ∆ to H such that a point of the limit set occurs both at 0 and
∞. Next, what can we say about the dynamics or ergodic theory of this scenery
flow? We find:

Theorem 7.1. Let ∆ be the unit disk with Poincaré metric, with boundary ∂∆ = S1.
Let Γ be a finitely generated Fuchsian group of second type (that is, the limit set
Λ is not all of the boundary). Then the scenery flow of Λ is a finite-to-one factor
of the geodesic flow of the surface M = Γ\∆, and the limiting scenes are images
of Λ in R with respect to Möbius transformations from ∆ to H.

Proof. We construct the factor map directly. Let vp be a unit tangent vector based
at the point p ∈ ∆. Consider the geodesic tangent to vp; this is a circle which meets
∂∆ orthogonally in two points η, ξ in the past, future directions respectively. Since
a complex Möbius transformation is determined uniquely by where it sends three
points, there exists a unique Möbius transformation α = αvp

such that α takes
vp to the unit vector −ii which points in the direction −i at the location i ∈ H,
taking p to i, η, ξ to ∞, 0 and the geodesic to the imaginary axis.

More precisely, α(p) = i and α∗(vp) = −ii, where α∗ is the derivative of α.
Now define a map π̂ : T 1(∆) → Ω = { closed subsets of R} by vp 
→ αvp

(Λ).
Claim 1. For γ ∈ Γ, π̂ ◦ γ = π̂.

This holds since γ(Λ) = Λ.
Now let ĝt be the geodesic flow on T 1(∆).

Claim 2. π̂(ĝtvp) = et · π̂(vp).
The reason is that in H, moving along the geodesic tangent to −ii (the

imaginary axis) toward the point 0 ∈ H is isomorphic by conjugacy to keeping the
vector fixed at location i and dilating H by the factor et.
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Claim 1 tells us that π̂ induces a well-defined map π : T 1(M) → Ω on the
factor space M = Γ\∆.
Claim 3. π is finite-to-one.
Proof: Suppose π̂(vp) = π̂(wq) for some other vector wq tangent to ∆. Then
(αwq

)−1 ◦ αvp
is a Möbius transformation of ∆ which preserves the limit set Λ.

Let Γ̃ be the subgroup of Möb(Γ) which has been extended from Γ by adjoining
all such elements. Then the limit set of Γ̃ is also Λ. Now Margulis’ Lemma implies
that if Γ1 ⊆ Γ2 are groups of hyperbolic isomorphisms of Hn and have the same
limit set, then Γ1 is of finite index in Γ2. Hence in the factor space T 1(M)there
are at most finitely many such vectors wq for a given vp. �

We thank Bernie Maskit and Peter Waterman for their help with this part
of the proof.

It remains to show:
Claim 4. The asymptotic limiting sceneries of the limit set in the circle S1 are the
images by the stereographic projections.
Proof: Choose a point z in the limit set and place the circle so this point is at
the origin, in the upper half space and tangent to the real axis. Zooming toward
z for time t is equivalent to dilating this picture by the factor et; let us at the
same time consider the downward-pointing unit vector at Euclidean height 1 in
each picture. The Poincaré disks get larger and larger, approximating H, and our
tangent vector is moving via the geodesic flow. Now superimpose on this picture
the stereographic projection determined by that vector, that is, by its image in
the original Poincaré disk. The Möbius transformations converge to stereographic
projections, proving the Claim. �

We mention that the above proof extends immediately to limit sets of geo-
metrically finite groups of isometries of hyperbolic n- space Hn. There is one main
change: “geodesic flow” is replaced by “geodesic frame flow”. Consider for instance
n = 3. Then ∆3 is the unit ball in R

3 with the Poincaré metric; a frame is an or-
thonormal set of three vectors, one tangent to the geodesic flow, and the frame flow
by definition simply moves this triple according to parallel transport. The choice
of a frame defines a unique “stereographic projection” to the upper half-space
model H

3, sending the frame fp to the standard basis frame based at the point
(0, 0, 1) ∈ H3 ⊆ R3. The reason we need frames is that pictures of the scenery flow
are different when rotated, and the frame flow will include this information.

8. Ergodic theory and Sullivan’s formula

For the case of a Fuchsian group of second type, the geodesic flow of the surface
M = Γ\∆ at first glance is not nice from the point of view of ergodic theory: not
only does T 1(M) have infinite volume (this is not a priori a problem, as infinite
measure ergodic theory can be brought in) but, much worse than that, a.e. vector
vp is non-recurrent, i.e. eventually leaves any compact region. Sullivan’s insight
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is that interesting dynamics can be recovered if we restrict attention precisely to
those vectors which are recurrent for positive and negative times; these are exactly
those vectors vp for which the endpoints η, ξ at −∞, +∞ belong to the limit set
Λ.
Next question: is there a natural measure to put on this recurrent set, replacing
Riemannian volume? Sullivan’s answer is a modification of Patterson’s measure
µ on Λ. (For nice cases, µ is the Hausdorff covering measure on Λ; for some
other cases, as Sullivan showed, it is the packing measure.) Sullivan’s measure
on T 1(M) is described as follows. It is defined first on T 1(∆), in a Γ-equivariant
way; hence it projects to the factor space T 1(M). A unit tangent vector vp is
parametrized by the two endpoints η �= ξ, plus a real number (where it is along
the geodesic). Hence T 1(∆) can be parameterized by (S1×S1−diagonal)×R. The
recurrent set is represented by (Λ×Λ− diagonal)× R. The measure is equivalent
(shares the same sets of measure zero) with (µ × µ) × Lebesgue measure; the
Radon-Nikodym derivative with respect to this product measure is 1/|η − ξ|2d,
with distance measured in the Euclidean metric on the disk and d the Hausdorff
dimension of Λ.

This guarantees that the resulting measure (known as the Patterson-Sullivan
measure ) is Γ-equivariant and invariant for the geodesic flow. Sullivan then proves
the following theorem (we state the n-dimensional version); some background ref-
erences are [Pat76],[Pat87], [Sul84], [Sul70]:

Theorem 8.1. Let Γ be a geometrically finite subgroup of Möb(∆n). Then the geo-
desic flow is ergodic for the Patterson-Sullivan measure µ̂, and µ̂ is the unique mea-
sure of maximal entropy, with entropy equal to the Hausdorff dimension dim(Λ) =
d.

We can hence conclude:

Corollary 8.2. The topological entropy of the scenery flow of the limit set of a
geometrically finite Kleinian group is equal to the Hausdorff dimension of that set.

Proof. The scenery flow is a finite index factor of the frame flow. The entropy of
the frame flow equals that of the geodesic flow, since it is an isometric extension.
Since it is a finite-to-one factor, entropy is preserved. �

9. The scenery flow of a Julia set and hyperbolic Cantor set

The definition of the scenery flow (as an omega-limit set of the magnification flow
acting on closed subsets of Rn) makes sense for general fractal sets; sometimes we
can identify this flow, constructing it concretely. We have already discussed the
example of the middle-1/3 Cantor set; this is a linear Cantor set, and many other
such linear flows (such as those generated by linear conformal IFS’s with the open
set condition) can be studied by a straightforward modification of this. The case of
Kleinian limit sets was also easy, as this is also a “linear” case; the maps are linear
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fractional transformations, and, as we have seen above, the limiting sceneries are
just given by stereographic projection.

We describe next the case of hyperbolic Julia sets; conformal mixing repellors
and hyperbolic C

1+α Cantor sets are dealt with in a similar way.
There is an analogy to the Kleinian case. There we had a homomorphism

π from the hyperbolic manifold T 1(M) = T 1(Γ\∆) to the space Ω of scenes,
conjugating the geodesic frame flow to the magnification flow on sets.

Here we construct a “model scenery flow” which will play the role of T 1(M).
Let f : C → C be a rational map which is hyperbolic on its Julia set J .

Write Df for its derivative, and f∗ for the action of the derivative on the unit
tangent bundle of J (by which we mean the unit tangent bundle of C, restricted
to J ). Let f̃ : Ĵ → Ĵ denote the natural extension of this map. The space Ĵ is an
inverse limit and can be identified with the space of sequences ẑ = (. . . ẑ−1ẑ0ẑ1 . . . )
where ẑi = (zi, θi) ∈ C× [0, 2π] represents a unit tangent vector and the sequence
satisfies ẑi+1 = f∗(ẑi). Write Ω̂ for this collection of sequences, with shift map σ̂; let
Ω̃ denote the suspension flow over (Ω̂, σ̂) with height (= return time) log |Df(z0)|.
This is our model flow.

The flow homomorphism π from Ω̃ to Ω is defined as follows: on the base,
π(ẑ) = Lẑ = limn→∞(Dfn(z−n) · (J − z−n)). The limit is in the Hausdorff metric
on closed subsets of Ĉ ≡ C∩ {∞}; thus the Julia set has been centered at the nth

preimage z−n and expanded and rotated by the derivative map. That this always
converges is a consequence of bounded distortion, see [BFU]. We have:

Theorem 9.1. ([BFU], [FU]). For the hyperbolic Julia set of a rational map, there
is, up to rotation, a unique measure of maximal entropy for the model scenery
flow. Its entropy satisfies the formula “model flow entropy equals dim(J )”. When
we include rotations, then for all but a few exceptional cases, there is a unique
measure of maximal entropy and the model scenery flow is ergodic with respect to
this measure.

Remark on proof. We refer the reader to [BFU], but mention two interesting points.
First, ergodicity for the model flow implies a rotational symmetry for the scenery
flow; that is, when zooming down toward a.e. point we not only eventually see all
possible scenes, but they occur at all angles (and with the expected frequency).
This question can, by a lemma of Furstenberg [Fur61] see [BFU] be formulated
in terms of the non-existence of a certain circle-valued cocycle or equivalently as
a problem about the non-existence of Hausdorff measure invariant line fields (or
cross fields); so, the hard work in proving ergodicity has been transferred to that
setting: see [FU] and [May].

Second, we sketch here the proof of the entropy formula because it is so
instructive and works out so nicely. Bowen’s formula for dimension [Bo79] reads:
there exists a unique d such that P (− log |Df |d) = 0; this is dim(J ). Here P (φ) is
the pressure of a function φ, which can be defined as P (φ) = sup(h(µ) +

∫
φ dµ)

where the supremum is taken over invariant probability measures and h(µ) is the
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entropy of the transformation (J , f, µ). We know from the theory of Sinai-Ruelle-
Bowen that there exists a unique invariant measure µ such that the sup is attained.
So we have for this invariant measure µ:

0 = h(µ) +
∫

− log |Df |ddµ

hence

h(µ) =
∫

log |Df |ddµ = d

∫
log |Df |dµ

and so
h(µ)∫

log |Df |dµ
= d.

Now the formula on the left is (base entropy)/(expected return time), hence (by
Abramov’s formula) equals the special flow entropy.

The scenery flow is, a priori, a magnification flow defined on sets; however, it
is natural to carry along more information, given (for the previous examples) by a
labelling inherited from the Kleinian group or map f respectively. This information
is provided by the model flows; we call this the labelled or marked scenery flow. We
conclude with a dimension formula which unites Sullivan’s formula for Kleinian
limit sets, with Bowen’s for Julia sets and “cookie cutter” Cantor sets:

Theorem 9.2. For geometrically finite Kleinian groups in dimension n, hyperbolic
rational maps, conformal mixing repellors, and hyperbolic C1+α Cantor sets, we
have the formula:

The topological entropy of the marked scenery flow of the limit set
is equal to the Hausdorff dimension of the limit set.

10. Doubling maps and the Riemann surface lamination

The simplest example of a hyperbolic Julia set is for the map f(z) = z2 + c with
c = 0; then J is the circle S1 and f restricted to J is the usual doubling map of
S1, isomorphic to x 
→ 2x( mod 1) on the unit interval. In this case, the natural
extension of f is the hyperbolic map on the solenoid f̂ : Ŝ → Ŝ, which in turn
is an a.s. one-to-one factor of the Bernoulli shift σ : Σ → Σ for Σ ≡ Π∞

−∞. Here
|Df | = 2 so the model flow is the special flow of height log 2 over the solenoid. The
base entropy is log 2, so the flow entropy is (by Abramov) log 2/ log 2 = 1, which
is, indeed, the Hausdorff dimension of the Julia set S1. In this case the model
flow space is identical to Sullivan’s Riemann surface lamination [Sul92], [Sul91];
we thank especially D. Sullivan and J. Kahn for conversations on this point. See
also Chapter VI of [dMvS] regarding these papers of Sullivan.

This suggests that the model flow for a general hyperbolic Julia set is, on
the one hand, a generalization of the Riemann surface lamination and on the
other, an analogue for rational maps of the recurrent part of the frame bundle
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of the hyperbolic n-manifold Γ\∆n. Minsky and Lyubich, building partly on our
construction of sceneries, and extending that to general rational maps, showed
the following remarkable result: that a rigidity theorem of Thurston for rational
maps can be proved analogously to Mostow’s rigidity theorem for Kleinian groups,
replacing the 3-manifold by the “hyperbolic 3-manifold lamination”. See [ML], and
[Lyu] for related work. All of this, also [BFU] and [FU], fits the philosophy of the
Sullivan-Thurston “dictionary” between Kleinian groups and rational maps.

The Riemann surface lamination is a double suspension: the solenoid is a sus-
pension of the adic transformation (odometer), giving a flow (hu)t, and the scenery
flow space is a suspension flow gt over that (now suspending the hyperbolic map).
This space carries two flows: the flow which spins around the solenoid direction,
which is just the lift of the rotation flow on the circle, and which preserves each
level, and the vertical flow. This pair of flows hu, g satisfy the same commutation
relation as before–which is, indeed, exactly what should happen, since the solenoid
leaves at a given height are the unstable leaves of the vertical flow.

11. The horocycle flow: infinite measures, return times and
average density

Let us consider the case of a Fuchsian group of first type (the limit set is the circle);
here the appropriate measure for the geodesic flow and for the horocycle flows
hu, hs is the same: Riemannian volume on T 1(M). For a group of second type,
the situation is radically different: our recurrent measure is Patterson-Sullivan
measure µ̂, but this is no longer invariant for hu or hs. The reason is that any
given horocycle tangent to the limit set Λ meets the recurrent set in a fractal
subset of the horocycle. The natural measure, therefore, is a modification of this:
it is now equivalent to (Lebesgue measure × µ) × Lebesgue measure. That is, e.g.
for hs, the boundary point ξ at +∞ of a vector vp in the support of this measure
is required to be in the limit set, while the infinite past boundary point η is free
to wander along the real line; these points have conditional measure given by
Patterson measure µ and by Lebesgue measure on R respectively.

In nice cases, this measure (which we call Kenny measure), is the unique
invariant Radon measure up to multiplication by a constant (since it is infinite
there is always this choice of normalization). See [Ken] for the general no-cusp
case, [Bur] for the no-cusp case with dimension > 1/2. With M. Burger we have
a proof different from Kenny’s which includes the case with cusps allowed (where
we rule out atomic measures and measures supported on horocycles around the
cusps in the statement of unique ergodicity); manuscript in preparation.

It is natural to wonder what happens for other fractal sets. For instance for
hyperbolic C1+α Cantor sets, one can also prove infinite-measure unique ergodicity,
using techniques of [BM], combined with [BF96] and [BF97], see also [Fis03a].

The philosophy suggested by these examples is:
For some infinite measure preserving transformations,

the returns to a finite measure subset are a fractal-like subset of times.
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This idea of a “fractal-like” subset of the integers can be made precise by use
of the scaling flow (as t → −∞ for the way we have defined that flow here). The
notion of average (or order-two) density extends to integer fractal sets, playing
the role of a finitely additive Hausdorff measure, see [BF92]. There is another
interpretation: since the average density can be thought of as a parameter which
measures the lacunarity of a fractal set, we have here an analogue of Mandelbrot’s
concept [Man], for subsets of the integers. The integer average density leads to a
new type of ergodic theorem for certain infinite measure transformations, given
by normalization by the “dimension” followed by a log average [Fis92]. Then the
average density reappears in a different guise: the limiting value of the time average
is the expected value of the observable times the average density of the fractal
integer set. The fractal point of view leads to two new isomorphism invariants for
infinite measure-preserving transformations: the dimension of return times, and
the average density (providing the defining limits exist). See [Fis92] and [Fis03b].

Further insight is given by examples coming from probability theory. Certain
countable state Markov chains [Fel] exhibit this type of behavior. This led us to
an extension of a beautiful but little-known result of Chung and Erdös [CE], see
[ADF].

Now since infinite measure-preserving transformations can have a geometrical
significance, related to fractal sets, one might wonder whether there might be
examples of a transition from finite to infinite measure, based on this point of
view; that might be regarded as analogous to a change of phase in physics.

Just such a phenomenon occurs for certain maps of the interval with an in-
different (or neutral or parabolic) fixed point. Here there is a 1- parameter family
of maps (see [FL01], [FL02], [FL04a], [FL04b]), related to the Markov chain ex-
amples just discussed and also to the Manneville-Pomeau maps (see also [Lop]) as
well as to the interesting counterexamples of Hofbauer [Hof], which exhibits three
“phases” of behavior, as the parameter α ranges from 0 to ∞.

We consider the distribution of returns to the right half of the interval. For
α ∈ (2,∞), the mean and variance are finite; for α ∈ (1, 2), variance is infinite
but mean is finite, while for α ∈ (0, 1), both are infinite. For (1, 2] and (2,∞) the
unique absolutely continuous invariant measure for the map is finite; for (0, 1] it
is infinite. The asymptotic return-time behavior for [2,∞) is Gaussian; for (1, 2] it
is stable, passing through all the completely asymmetric stable laws; for (0, 1) it
continues on, through all the Mittag-Leffler processes.

This last region (infinite measure) is the realm of fractal-like return times.
The Mittag-Leffler paths are similar to Cantor functions. The increment flow along
these processes has infinite measure (for background see [Aar], [Zwe]), and is a
horocycle flow for the corresponding scaling flow (which is the “geodesic flow”).
For all parameters α �= 1 the scaling flow on paths is infinite entropy Bernoulli
(the case α = 1 is handled in a special way as it has an extra drift parameter).
This example completes a circle of ideas begun in [Fis92], [ADF].
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12. Spaces of tilings

Fractal sets are but one of the geometric forms with an interesting small-scale
structure. Other examples are tilings of Rn which have some sort of self-similar
nesting character.

The simplest example is the binary tiling of the unit interval; at level n ≥ 0,
there are 2n+1 tiles given by the intervals of the form [k ·2−(n+1), (k+1) ·2−(n+1)].
The tiling structure is generated by the dynamics of the map f : x 
→ 2x( mod 1)
and can be thought of as a “cookie cutter Cantor set without the gaps”. Spaces
of nested tilings of Rm are topologized in a natural way related to the Attouch-
Wetts topology discussed above: the hierarchy of tilings is indexed by Z; two nested
tilings are close if on a large ball in R

m, the boundaries are ε-close in the Hausdorff
metric, for each index l between −k and k. The scenery flow for this space of tilings
is modelled by the height log 2 suspension flow over the natural extension of f ,
discussed before, i.e. by Sullivan’s Riemann surface lamination.

Now the binary tilings are the joins of pullbacks of the standard Markov par-
tition P = {P0, P1} = {[0, 1/2], [1/2, 1]} for this map. This suggests that Markov
partitions give interesting candidates for a scenery flow. A next example to con-

sider is that of an Anosov toral diffeomorphism, such as
[
2 1
1 1

]
. Here we will have

two scenery flows, one for the stable and one for the unstable foliation. The result-
ing model scenery flow (for the unstable case) is the height log |Dfu| suspension of
the Anosov diffeomorphism; the horocycle flows are the translations of the tilings,
and this is modelled by the unstable flow of the suspension.

Many fractal tilings associated to “complex number systems” can be treated
in a similar way, with more complicated Markov partitions. A theorem of Bowen
[Bo78] says that a Markov partition for an n−toral automorphism for n ≥ 3, or
toral endomorphism for n ≥ 2, cannot have a smooth boundary. Examples with
fractal Markov partition boundaries were studied by Bedford [Bed], see also [Dek],
[Pra], [KV], [Ma02]. The scenery flow of the hierarchy of nested tilings generated
by such Markov partition is constructed in a similar way as for the doubling map
of the circle, see §10.

Another class of interesting one-dimensional tilings are those given by the
renormalization hierarchy of an interval exchange transformation. See [AF03] for
a development of the basic theory and an in-depth study of the simplest example
(exchanges of two intervals), and [AF01], [Fis03b] for more information.

If all exchanges of k intervals are considered as parameter space, the con-
struction places parameter space and dynamical space (the interval exchanges
themselves) in a single unified picture. Following this example, we can return to
the geodesic and horocycle flows of a Riemann surface, and reinterpret them in
this new light. The commutation relation now says: The horocycle flow is a fixed
point of renormalization, as the geodesic flow renormalizes the horocycle flow to
itself. This may make us think of the scenery flow of the attracting Cantor set C
of the Coullet-Tresser-Feigenbaum map f, also a fixed point for a renormalization



74 Albert M. Fisher

operator. There is a second map g, conjugate to the shift σ, which has an analytic
extension, and for which C is a repellor, see [Fal85], [Ran], [Sul87]. Using this
hyperbolic map g we construct its scenery as in §9. The maps g and f satisfy the
commutation relation g◦f2 = f ◦g, a discrete-time version of that for the geodesic
and horocycle (dilation and translation) scenery flows.

13. Nonlinear doubling maps and smooth classification

Now we return to the basic example of the doubling map on the circle, but with
a twist which makes things even more interesting: we take a nonlinear version,
given by a degree 2 hyperbolic C1+α map f : S1 → S1. Using the same machinery
discussed above for Julia sets, and similar also to the cookie cutter Cantor set
case of [BF97], one constructs the scenery flow for the space of tilings. This is a
complete invariant of smooth conjugacy. A closely related invariant is Sullivan’s
scaling function [Sul87]. We construct a solenoid much as before, but with relative
lengths of subtiles now given by this scaling function. As Sullivan noted [Sul92]
there is a correspondence between conformal structures on the Riemann surface
lamination and scaling functions. See Theorem VI.6.1 of [dMvS] for a proof in the
analytic case.

The scenery flow picture helps to make the conformal structure more easily
understood: for it is just the natural conformal structure on the height log |Df |
suspension flow over the solenoid. It turns out that a smooth equivalence class of
hyperbolic C1+α maps is determined by the topological data (degree) plus any
one of these: a Gibbs measure class, a Hölder scaling function, a scenery flow with
Hölder return time, and a conformal structure on the Riemann surface lamination.

Here is one way of viewing all this. Given a hyperbolic doubling map, Cantor
set or Julia set, the construction of the scenery is a sort of linearization procedure
– and the space of scenes is a tangent object, the analogue of a tangent space. As
such, it is acted on (linearly) by the derivative of the map. This gives the return
map to a cross-section of the scenery flow. The flow itself is simply dilation, and
is linear as well; the nonlinearity of the original map has been coded into the flow
space, by means of the identifications made when defining that space; and that
information is, in turn, remembered by the conformal structure of the Riemann
surface lamination.

14. Further directions of research; Acknowledgements

Some classes of examples not mentioned so far are self-affine fractals (as for ex-
ample the graphs (t, B(t)) of Brownian motion paths, see U. Zähle [Zä91]), space-
filling curves (on which the author is currently working with P. Arnoux), and
spatially inhomogeneous fractals such as the “theater curtain” pictures in [Man],
which interpolate middle- interval Cantor sets from the whole unit interval to the
empty set, see also p. 107 of [Fal97] and [PZ]. The holy grail of non-homogeneous
examples must be the Mandelbrot set boundary M . As Tan Lei showed [Tan], at
certain points of M the scenery flow can be precisely analysed: for a Misiurewicz
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point c, the scenery flow of M at c ∈ M is that of the Julia set Jc at c for the
map z 
→ z2 + c. However what happens at this set of points, even though it is
a countable dense subset of M , says next to nothing about the nearby points.
The limiting scenery there is anybody’s guess (though see [McM] regarding “deep
points”) and seems to be a deep and difficult problem.

Lastly we mention two closely related but quite complementary approaches
to the study of small-scale structure of fractal sets, each of which is much like what
we have called the scenery. Furstenberg’s microsets were motivated especially by
the study of intersections, sums and products of arithmetically derived fractal sets
see [Fur70]. Preiss’ tangent measures were introduced to study geometric measures
at small scales [Pre], [Mat]. For certain self-similar measures, the tangent measures
at almost every point form the same tangent measure distribution [Gra]. Mörters
and Preiss [MP] have shown that tangent measure distributions are so-called Palm
measures, and so have connected the geometric study of measures to an important
series of papers by Ulrich Zähle [Zä88], [Zä90], [Zä91] who studied self-similarity
of random measures. See Patzschke and M. Zähle [PZ], Moerters (who generalized
the average density introduced in [BF92]) [Mö97], [Mö98], [KM], Falconer and
Xiao [Fal97], [FX], [Xia] for some related developments.

Perhaps the future will see a general theory which integrates all these ap-
proaches. My own sense is that our understanding is still at a very beginning
stage, and that there is a world of exciting exploring yet to be done at the small
scales of these remarkable landscapes.

I wish especially to thank coworkers on these and related projects: Jon Aaron-
son, Pierre Arnoux, Tim Bedford, Marc Burger, Herold Dehling, Manfred Denker,
Sebastien Ferenczi, Pascal Hubert, Artur Lopes, Jerome Los, Yair Minsky, Luis
Fernando Carvalho da Rocha and Mariusz Urbański. Figures 1 and 3 were made us-
ing McMullen’s lim program; Tony Phillips helped with the other graphics. There
are many more people who should be acknowledged here, see [Fis03b]. I wish to
add that without the encouragement and participation of these friends, teachers,
and colleagues, most of this would never have been worked out and in any case
the process would not have been nearly so much fun.
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