
STATISTICS IN MEDICINE
Statist. Med. 2000; 19:563–574

Choice of conditional models in bivariate survival
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SUMMARY

We consider bivariate survival problems in which interest is in the conditional distribution of one survival
variable given an uncensored observation of the other. The work is motivated by an analysis of time to cancer
diagnosis then subsequent survival amongst a group of organ transplant recipients. The e�ect of conditioning is
illustrated for �ve standard bivariate models. The consequences of adopting a misspeci�ed marginal approach
in which the conditioning variable is considered to be a �xed covariate are investigated. Copyright ? 2000
John Wiley & Sons, Ltd.

1. INTRODUCTION

Incidence rates of various types of cancer, particularly lymphoma and Kaposi’s sarcoma, can be
very high amongst solid organ transplant recipients [1; 2]. In this paper we explore the relationship
between two time measurements made on such patients: �rst the time from transplantation to
diagnosis of cancer, and second the subsequent time from diagnosis to death. Most recipients are
never diagnosed as having cancer, as although the relative incidence rates are very high the absolute
rates are still low. However, for those who are so diagnosed it would be useful to know whether
knowledge of the time to diagnosis holds any prognostic information for subsequent survival. Thus
we have a bivariate survival problem with interest mainly in the conditional distribution of the
second survival time T2 given the value of the �rst, T1.
Day et al. [3] consider a similar problem: the use of binary (present=absent) biological markers

for prediction. Times to marker and event form bivariate survival, and interest is in the conditional
distribution of time to event given the appearance of marker. This is close to our problem but an
important di�erence is that they assume times are not sequential, that is, the event may occur before
the marker. In contrast, in our application the events are serial, with T2 by de�nition beginning
when T1 is observed. In addition we are interested only in the conditional distribution of T2 given
the exact value of T1, not in a condition of the form T1¿t.
Perhaps the most obvious and natural approach is to obtain a suitable bivariate survival model

for (T1; T2) and then derive the associated conditionals. A simpler alternative might be to take a
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marginal approach, modelling T2 directly, with T1 considered as if it were a �xed covariate, as in
for instance an approach of Gail et al. [4] to the analysis of multiple tumour times. In this work we
compare these methods, beginning in Section 2 with a brief summary of some common methods
of modelling bivariate survival data. The associated conditional distributions are then illustrated
in Section 3 and the consequences of adopting a misspeci�ed marginal approach are discussed in
Section 4. In Section 5 we apply the techniques to data on a group of 634 patients who developed
lymphoma or Kaposi’s sarcoma following organ transplantation. The paper is completed by some
comments and suggestions for future work in Section 6.

2. BIVARIATE SURVIVAL

Clearly almost any bivariate distribution can be adapted to survival through a suitable transforma-
tion of T1 and T2, though rather few seem to be used in practice. We will concentrate on the �ve
di�erent models summarized in Table I and described below.

2.1. Model 1: bivariate log-normal

The bivariate log-normal distribution (with log(T1); log(T2) bivariate normal) may seem a natural
and simple �rst choice but seems to have had little use in practice recently, in biostatistical
applications at least. We will denote the parameters on the log scale as usual as �1; �2; �21 ; �

2
2 and

�. Covariates are assumed to a�ect survival through �1 and �2, usually linearly.

2.2. Models 2 and 3: frailty

A more common method of modelling bivariate or multivariate survival is to adopt a frailty model
[5–10]. We assume that T1 and T2 are conditionally independent given the value of some shared
unobservable random e�ect or frailty Z , which acts multiplicatively on the hazard functions. If Z
is large then both hazards are high and T1 and T2 both tend to be low. If Z is small then both
hazards are low and T1 and T2 both tend to be large. Thus the frailty induces a positive association
between responses.
Semi-parametric frailty models are in widespread use but here we prefer a parametric approach,

assuming Weibull survival conditional on Z . Thus, for i=1; 2 we assume

Si(t | z)= exp{−z�it�i}
with covariate e�ects modelled through �1 and �2, usually log-linearly.
There are various choices available for the form of frailty distribution. Aalen [8] describes a

useful general class, perhaps the two most important of which, or at least most commonly used,
are gamma and positive stable.

Table I. Five bivariate survival models.

Model 1 Bivariate log-normal
Model 2 Weibull conditional distributions given gamma frailty
Model 3 Weibull conditional distributions given positive stable frailty
Model 4 Oakes’ model with c¡1 and Weibull marginals
Model 5 Oakes’ model with c¡1 and Burr marginals

Copyright ? 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 19:563–574



CONDITIONAL MODELS IN BIVARIATE SURVIVAL 565

For model 2 we assume gamma frailty with (for identi�ability) mean one, that is, Z ∼ �(�; �).
An advantage of this model is that explicit expressions for the joint and marginal survivor functions
can be obtained when the conditioning on the frailty is removed. The resulting distributions are
of Burr form, for example the joint survivor function is

S(t1; t2)=

(
�

�+ �1t
�1
1 + �2t

�2
2

)�

and the marginal survivor functions for i=1; 2 are

Si(t)=
(

�
�+ �it�i

)�

: (1)

A disadvantage of the gamma choice is that the marginal distributions are no longer of propor-
tional hazards form. This property is retained in the marginals if a positive stable distribution is
assumed for the frailty terms. Hence for model 3 we retain the Weibull assumption given the
frailty Z , but assume that Z has a positive stable distribution with parameter � (0¡�61), most
easily de�ned through its Laplace transform E[exp{−uZ}] = exp{−u�} [11]. In that case the joint
survivor function becomes

S(t1; t2)= exp{−(�1t�11 + �2t
�2
2 )

�}
with marginals

Si(t)= exp{−(�it�i)�}
which are of Weibull (and hence proportional hazards) form.
The exact choice of frailty may not be important; Pickles and Crouchley [9] found that �tted

mixture distributions were robust to choice of mixture (frailty) distribution.

2.3. Models 4 and 5: negative association

Usually a single frailty term is used to describe the association between responses in each cluster of
cases. Crouchley and Pickles [12] and Xue and Brookmeyer [13], amongst others, prefer multiple
component frailty models, where separate responses within the same cluster may have distinct,
though not independent, associated frailties. Such a technique has the advantage that it can be
used to model negative association between T1 and T2, by allowing their associated frailty terms
to be negatively correlated. Negative correlation can also be accommodated within a bivariate
model described by Oakes [14; 15], following earlier work by Clayton [16]. The model assumes
that the marginal survivor functions S1 and S2 are speci�ed and the degree of association is
controlled through a parameter c, with independence at c=1. If we restrict attention to 0¡c¡1
then there is negative association and the joint survivor function is

S(t1; t2)= (max[{S1(t1)}1−c + {S2(t2)}1−c − 1; 0])1=(1−c):

Model 4 is de�ned by taking this joint survivor function with both survival times assumed to have
Burr marginal distributions, as in (1). Here � is now a free parameter to be estimated, rather than
a property of an underlying frailty distribution. Model 5 has marginal distributions of Weibull
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Figure 1. Bivariate densities: (a)–(c) log-normal marginals; (d)–(f) Burr marginals; (g)–(i) Weibull
marginals. Correlations refer to log scale.

form. In both cases we model covariate e�ects through the scale parameters �i in the same way
as models 2 and 3.

2.4. Illustration

Figure 1 illustrates the similarities and di�erences between the bivariate densities for the �ve
models, in the absence of covariates. Correlations between log(T1) and log(T2) are −0:5 in the
left-hand column, zero in the central column, and +0:5 in the right-hand column. Across the top
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row all marginals are log-normal, in the second row they are Burr, and in the third row Weibull.
Plots (a)–(c) refer to model 1, (d) to model 4, (f) to model 2, (g) to model 5 and (i) to model
3, with the independence cases (e) and (h) included for reference. We scale so that in each plot
the marginal distributions of T1 and T2 are the same, standardized to zero mean and unit variance
on the log scale. Together with the required correlations this standardization uniquely de�nes the
log-normal and Weibull parameters, but not Burr in plots (d) and (e). In those we select �=1 for
comparability with (f) (where �=1 gives the required correlation of 0.5). Note that under the
Oakes models (4 and 5) the bivariate density becomes concentrated along the curve S1 +S2 = 1 as
the degree of negative correlation increases, and also that observations are always con�ned to the
region S1 + S2¿1. The concentration is noticeably more severe when the marginals are Weibull
rather than Burr, whereas when there is positive correlation (plots ( f) and (i)) the two bivariate
contour plots are more similar. Both show more concentration near the origin than the bivariate
log-normal distribution with the same correlation between log(T1) and log(T2).

3. CONDITIONAL DISTRIBUTIONS

We now turn to the conditional distribution of T2 given an uncensored observation of T1. The
problem of censored T1 will be considered later. Conditional survival distributions are given in
Table II. The form for model 3 (positive stable frailty) was given by Hougaard [11] and the others
are either standard or easily derived.
Figure 2 illustrates these using the same distributions and parameter values as in the outer

columns of Figure 1. Each plot shows the marginal survival function of T2 and the conditional
survival functions given both log(T1)=− 2 and log(T1)= + 2. Given the scaling to unit variance
for log(T1) these represent fairly extreme values.
When there is negative correlation (left-hand column) we note the small variance in the con-

ditional distribution of T2 given large T1 under the Oakes models (4 and 5), resulting from
the restriction to the region S1 + S2¿1. When there is positive correlation (right-hand column)
the large variability in T2 given large T1 under model 2, gamma frailty, is worth noting, as
is the high probability of T2 being very small given small T1 under model 3, positive stable
frailty.

Table II. Conditional survival functions.

Model S(t2 | T1 = t1)

1 1− �((t2 − �2 − �(�2=�1)(log(t1)− �1))=�2
√{1− �2})

2

(
�+ �1t

�1
1

�+ �1t
�1
1 + �2t

�2
2

)�

3

(
�1t

�1
1

�1t
�1
1 + �2t

�2
2

)
exp{(�1t�11 )� − (�1t�11 + �2t

�2
2 )

�}

4, 5 {S(t1; t2)=S1(t1)}c
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Figure 2. Conditional survival curves for T2 given log(T1) = −2 (dotted line), log(T1) = 2 (dashed line)
and unconditional (solid line).

4. MISSPECIFICATION

In principle, in practical applications the most appropriate bivariate model can be �tted and then
conditional distributions can be derived as in the previous section. In practice however this can be
quite cumbersome. If interest is solely in the conditional distribution of T2 given T1 then a much
simpler approach is to model that conditional distribution directly, with T1 (or more likely log(T1))
treated as a �xed covariate rather than a given value of a correlated response. If the conditional
distribution is correctly speci�ed then the two appoaches will lead to the same conclusions. The true
conditional distribution can be a rather complicated function of T1, however, and if simpler, more
standard survival functions can provide good approximations then their use could be recommended.
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4.1. Model 1

As seen in Table II, for this model t1 appears in the conditional distribution of T2 |T1 = t1 only
through a linear term in log(t1) in the mean log survival time. Since the standard method of
incorporating covariates in a log-normal analysis is to assume a linear predictor for the mean log
lifetime, inclusion of log(t1) as a covariate in a standard analysis will lead to the correct model
and inferences, and there is no need for a bivariate analysis.

4.2. Models 2 and 3

Both of these models assume frailty e�ects acting multiplicatively on conditionally independent
Weibull hazards, that is, if covariates are included

Si(t | x; z)= exp{−ze�ixt�i}
for i=1; 2, and assuming x includes an intercept term. It is of interest to investigate the conse-
quences of simply �tting a Weibull distribution to T2 with log(T1) included as a covariate. Thus
we might �t to T2 a misspeci�ed model of the form

SM(t | x; t1)= exp{−e�x+ log(t1)t�}:

Henderson [17] considers asymptotic properties of the resulting estimators �̂; ̂ and �̂ for the
gamma=Weibull model (model 2). His results can in fact be generalized to any frailty mixture of
Weibulls. Assuming that, intercept apart, covariates are scaled to zero mean, it can be shown that
for uncensored T2 as sample size increases the estimators converge to �∗, ∗ and �∗ satisfying

E[Z (1−2�
∗=�2) log Z]

E[Z (1−2�∗=�2)]
− E[log Z] =C −  (�∗=�2)

∗=�1 = �∗=�2 − 1
and

�∗=(∗=�1)�1 + (�∗=�2)�2 + log{E[Z1−2�∗=�2 ]�(∗=�1 + 1)�(�∗=�2 + 1)}j
where C is Euler’s constant,  (:) is the digamma function, and j=(1; 0; : : : ; 0)′. When there is
no frailty (Z ≡ 1) there is no misspeci�cation and so the asymptotic �tted shape parameter �∗ is
equal to the true shape parameter �2, the asymptotic �tted coe�cient ∗ of log(t1) is zero since
the conditioning has no e�ect, and the asymptotic �tted regression coe�cients �∗ are equal to
the true coe�cients �2. As the amount of frailty increases �∗ converges towards 0:5�2 and ∗

converges towards −0:5�1, whilst the regression coe�cients �∗ move away from �2 and towards
0:5(�2 − �1). It is interesting to note that the asymptotic regression coe�cient �∗ will be close to
zero when frailty e�ects are large and �1 = �2.

4.3. Models 4 and 5

Interest is again in the consequences of �tting a misspeci�ed Weibull distribution with log(t1)
treated as a covariate. For these models the asymptotic values �∗, ∗ and �∗ cannot be obtained
algebraically and hence we have relied on numerical methods in the illustration below.
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Figure 3. True (solid line) and misspeci�ed (dotted line) conditional survival curves.

4.4. Illustration

Figure 3 compares true conditional survival curves for models 2–5 with those which would be
obtained from a misspeci�ed Weibull �t to uncensored T2 with log(T1) treated as a covariate.
Scaling is the same as for the previous �gures. Each plot shows three pairs of curves, corresponding
to true and misspeci�ed �ts at log(T1)= − 2; 0 and +2. Under model 2, the absolute di�erence
between the true and misspeci�ed �ts is small when the conditioning is on small log(T1), but
there is more apparent di�erence when log(T1) is large and the survival rate is higher. This is a
consequence of attempting to �t a thin-tailed distribution (Weibull) to data arising from a heavy-
tailed distribution (Burr). The relative error arising from the misspeci�cation is less dependent on
the conditioning value, however. Under model 3 both true and misspeci�ed models are thin tailed
and the misspeci�ed �t is always close to the true for all three illustrations given. Recall that this
model assumes positive stable frailty and has Weibull marginal distributions, but note that the true
conditional distribution of T2 given T1 is not Weibull (Table II), explaining the small di�erences.
Model 4, with negative association, leads to reasonably close true and misspeci�ed conditional
survival curves when T1 is not low, but a very poor �t for the misspeci�ed model when T1 is low,
with the misspeci�ed �t considerably overestimating early survival rate. Model 5 leads to rather
poor �ts for all T1, with the misspeci�ed univariate �t tending to overestimate survival when we
condition on an extreme value of T1.
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In the above we assumed that T2 is uncensored. Simulation results (not shown) with both random
and type I censorship indicate that if censoring is allowed the misspeci�ed distributions are only
relatively slightly a�ected unless the conditioning has the e�ect of increasing survival rate, that is,
high T1 for models 2 and 3, low T1 for models 4 and 5. In that case the �tted distributions can
vary considerably according to the amount of censoring in T2. There is no consistent pattern across
all models however; censoring can lead to either increased or decreased �tted conditional survival
rates depending on the model in use. For reference, positive stable simulations were obtained using
a method given by Chambers et al. [18].

5. APPLICATION

We now turn to the application which motivated this work, the relationship between time T1 from
transplant to cancer diagnosis then time T2 from diagnosis to death for a group of organ transplant
patients. Data were provided by the Collaborative Transplant Study, based at Heidelberg, which
collates details of transplant operations and outcomes from over 300 centres worldwide. Only
those centres which provided written con�rmation that their malignancy reports were complete
were included in this study.
We consider a subset of the data consisting of results for 634 patients who developed lymphoma

or Kaposi’s sarcoma and who received heart or kidney transplants at centres in Western Europe
or North America. Some 45 per cent of these patients died within the follow-up period, all due
to cancer, leaving 55 per cent with censored T2 values. Since the subset is con�ned to patients
who developed cancer, T1 is always known, never censored. Had follow-up been longer some
additional patients may have developed the diseases of interest and we have to take this into
account in the analyses. Fortunately this is straightforward since for each of the 634 patients the
potential follow-up period f between transplant and study date is available. Thus we can obtain
valid inference by conditioning on T1 occurring within the follow-up period. With �2 indicating
whether T2 is observed (�2 = 1) or censored (�2 = 0) the likelihood contributions are thus of the
form (−@S(t1; t2)

@t1

)1−�2 (−@2S(t1; t2)
@t1@t2

)�2

(1− S1(f))−1:

Five covariates were considered: organ transplanted (heart or kidney); age; sex; use of cyclosporin-
A for immunosuppression, and ethnic group. These were allowed for in all the analyses summarized
below, though results are not presented, since in the present work we are interested mainly in the
relationship between T1 and T2. We note however that conclusions with respect to these covariates
were reasonably consistent across all the models, though statistical signi�cance tended to be less
strong under the bivariate log-normal model than the others.
Table III shows the maximized log-likelihoods under the �ve bivariate models, together with

that for a univariate Weibull �t to T2 with log(T1) included as a covariate. Also shown are the
corresponding maximized log-likelihoods under an independence assumption for the bivariate mod-
els, and for the last row a univariate �t to T2 without T1. There is highly signi�cant improvement
in maximized log-likelihoods for models 4 and 5 against the independence alternative, and in the
univariate analysis when log(T1) is included. The coe�cient of the latter is estimated to be 0.191
(SE=0:056) implying increased hazard at high T1 and hence negative association. This is also
the conclusion from the rejection of independence under models 4 and 5, which are appropriate
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Table III. Maximized log-likelihoods.

Model Bivariate Independent

1 Log-normal −1603:48 −1605:39
2 Gamma frailty −1642:11 −1642:11
3 Positive stable frailty −1642:11 −1642:11
4 Oakes=Burr −1630:90 −1639:36
5 Oakes=Weibull −1633:73 −1642:11

With log(T1) Without log(T1)
Univariate Weibull − 640:09 − 646:07

Figure 4. Kaplan–Meier survival plots for patients with 20 per cent highest and 20 per cent lowest T1 values,
together with �tted conditional survival curves assuming mean covariates and mean T1 for each group.

for negatively associated responses. Estimates of the parameter c are 0.638 and 0.650, respec-
tively. There is less convincing evidence of non-independence under model 1, log-normal, with
estimated correlation �̂=− 0:129 (SE=0:077). The log-likelihoods for models 2 and 3 are maxi-
mized at the independence boundaries, as expected if there is negative association since they are
both appropriate for positive association only, and so neither are considered further.
It is not possible to illustrate the �t of the conditional distributions at any single choice of T1

since few patients have common T1. Instead, in each plot of Figure 4 we show observed survival

Copyright ? 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 19:563–574



CONDITIONAL MODELS IN BIVARIATE SURVIVAL 573

Figure 5. Estimated conditional survival curves. Two curves for each model: upper at the 5 per cent point
of the T1 distribution, lower at the 95 per cent point.

rates for the group of patients with the lowest 20 per cent of T1 values, and for the group with 20
per cent highest T1 values. This con�rms the negative association; the lower �tted survival curve
corresponds to the group with higher T1. Each plot also includes �tted curves at the mean covariate
value for each group, and conditional on T1 taking the mean observed value for the group. The
two versions of Oakes’ model seem to �t the data well, but the log-normal �t underestimates the
separation between the groups. The univariate �t seems reasonable, though early survival rate may
be overestimated slightly more than under the Oakes’ models.
Figure 5 illustrates the �tted conditional distributions at more extreme T1 values, with predicted

survival curves at the 5 per cent and 95 per cent quantiles of the observed distribution of T1,
which are 0.15 and 6.67 years, respectively. Conclusions are consistent with Figure 4; under the
log-normal model T1 has less e�ect than under the Oakes’ models, which are indistinguishable
in this plot. The univariate �t with T1 treated as a covariate leads to higher conditional survival
estimates over this time range, especially when T1 is low so conditional survival is high. Note that
this is consistent with the misspeci�cation results of Section 4 for the negative correlation models
(4 and 5).

6. DISCUSSION

There can be considerable di�erences in the shapes of conditional survival curves even when �tted
marginal distributions and estimated correlations are similar. Hence it is, as always, very important
to check the validity of a proposed model before any inferences are drawn. How best to do this
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for conditional survival remains an open question, complicated by the observation that in practice
there are likely to be few patients with the same value of T1, and also because a misspeci�ed �t
can be adequate for certain values of T1 but not others, as seen in Figure 3.
We concentrated on parametric modelling in this work so that true conditional distributions

could be compared. Clearly in practice semi-parametric models might be preferred, especially
when treating T1 as a covariate in a univariate analysis of T2. Here a standard semi-parametric
proportional hazards model might be selected rather than Weibull, but this has not been pursued
in this work, partly because none of the true conditional distributions considered are themselves
of proportional hazards form. We note however that there are bivariate distributions in which
conditionals do have proportional hazards structure [19], whether the conditioning is on observed
or censored T1. In those cases there need be no misspeci�cation in a univariate analysis, just as
for the log-normal model considered above.

ACKNOWLEDGEMENTS

We thank Professor Gerhard Opelz, Director of the Collaborative Transplant Study, for providing the data
analysed in Section 5, and Professor Mitchell Gail and two anonymous reviewers for helpful comments on
an earlier version of this paper.

REFERENCES

1. Penn I. Cancer is a complication of severe immunosuppression. Surgery in Gynecology and Obstetrics 1986; 162 :
603–610.

2. Opelz G, Henderson R. Incidence of Non-Hodgkin’s Lymphoma in kidney and heart transplant recipients. Lancet 1993;
342 : 1514–1516.

3. Day R, Bryant J, Lefkopoulou M. Adaptation of bivariate frailty models for prediction, with application to biological
markers as prognostic indicators. Biometrika 1997; 84 : 45–56.

4. Gail MH, Santner TJ, Brown CC. An analysis of comparative carcinogenesis experiments based on multiple times to
tumour. Biometrics 1980; 36 : 255–266.

5. Hougaard P, Harvald B, Holm NV. Measuring the similarities between the lifetimes of adult Danish twins born between
1881–1930. Journal of the American Statistical Association 1992; 87 : 17–24.

6. Hougaard P. Frailty models for survival data. Lifetime Data Analysis 1995; 1 : 255–273.
7. Oakes D. Frailty models for multiple event times. In Survival Analysis: State of the Art, Klein JP, Goel PK (eds).
Kluwer, 1992.

8. Aalen OO. E�ects of frailty in survival analysis. Statistical Methods in Medical Research 1994; 3 : 227–243.
9. Pickles A, Crouchley R. A comparison of frailty models for multivariate survival data. Statistics in Medicine 1995;
14 : 1447–1461.

10. Aalen OO, Bjertness E, S�nju T. Analysis of dependent survival data applied to lifetimes of amalgam �llings. Statistics
in Medicine 1995; 14 : 1819–1829.

11. Hougaard P. A class of multivariate failure time distributions. Biometrika 1986; 73 : 671–678.
12. Crouchley R, Pickles AR. Multivariate survival models for repeated and correlated events. Journal of Statistical

Planning and Inference 1995; 47 : 95–110.
13. Xue X, Brookmeyer R. Bivariate frailty model for the analysis of multivariate survival time. Lifetime Data Analysis

1996; 2 : 277–289.
14. Oakes D. A model for association in bivariate survival. Journal of Royal Statistical Society, Series B 1982; 44 :

414–422.
15. Oakes D. Bivariate survival models induced by failures. Journal of the American Statistical Association 1989; 84 :

487–493.
16. Clayton DG. A model for association in bivariate life tables and its application in epidemiological studies of familial

tendency in chronic disease incidence. Biometrika 1978; 65 : 141–151.
17. Henderson R. Modelling conditional distributions in bivariate survival. Lifetime Data Analysis 1996; 2 : 241–259.
18. Chambers JM, Mallows CL, Stuck BW. A method for simulating stable random variables. Journal of the American

Statistical Association 1976; 71 : 340–344.
19. Arnold BC, Kim YH. Conditional proportional hazards models. In Lifetime Data: Models in Reliability and Survival

Analysis, Jewell NP, Kimber AC, Lee, M-LT, Whittmore GA (eds). Kluwer: Dordrecht, 1996.

Copyright ? 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 19:563–574


