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Abstract: Generalized linear models provide a general framework for handling regression

modeling for normal and non-normal data, including multiple linear regression, ANOVA,

logistic regression, Poisson regression and log-linear models for contingency tables. All the

major statistical packages include facilities for �tting generalized linear models. A generalized

linear model is de�ned by choosing a link function and a variance function, along with

choosing a response variable and a set of explanatory variables. The link function transforms

the mean of the response variable to a scale where the model is linear. The variance function

describes how the variance behaves as a function of the mean. Each choice of variance

function corresponds to a certain deviance function, and model �tting is accomplished by

minimizing the deviance, generalizing least squares �tting. Inference on parameters, and

hypothesis testing is performed by means of analysis of deviance, generalization the classical

ANOVAmethod. Estimation and analysis of deviance are based on quasi-likelihood methods,
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requiring only second-moment assumptions, thereby providing a certain robustness against

misspeci�cation of the probability model. The choice of link and variance functions may be

checked by means of residual analysis.

Introduction

The class of generalized linear models was introduced in 1972 by Nelder and Wedderburn [22]

as a general framework for handling a range of common statistical models for normal and

non-normal data, such as multiple linear regression, ANOVA, logistic regression, Poisson

regression and log-linear models. Ideas from generalized linear models are now pervasive

in much of applied statistics, and are very useful in Environmetrics, where we frequently

meet non-normal data, in the form of counts or skewed frequency distributions. Many

common statistical packages today include facilities for �tting generalized linear models to

data. Introductions to the area are given by Dobson and Barnett [8] and Firth [10], whereas

Hardin and Hilbe [12] and McCullagh and Nelder [21] give more comprehensive treatments.

Suppose that we have independent data from n units i = 1; : : : ; n, such that for unit i we

have a response variable Yi with mean �i and covariates xij for j = 1; : : : ; k, where xi1 = 1:

In ordinary multiple linear regression, the mean �i is assumed to be a linear function of

the covariates xij; and the variance of Yi is assumed to be common for all units. Such

assumptions are seldom satis�ed for non-normal data, where the linear regression model

may lead to incorrect conclusions.

Generalized linear models provide a straightforward way of modeling non-normal data
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when the usual regression assumptions are not satis�ed. The two key ingredients for a gen-

eralized linear model are the positive variance function V , and the monotonic link function

g. Both V and g are assumed to be continuously di�erentiable functions of the mean �i:

The variance of Yi is assumed to be proportional to the variance function,

var(Yi) = �
2V (�i); i = 1; : : : ; n;

where �2 > 0 is the dispersion parameter (sometimes called the scale parameter), assumed

to be common for all units. The variance function describes how the variance of the response

Yi varies as a function of the mean �i. The role of the link function g is to transform the

mean �i onto a scale where the model is linear, and the regression model is hence de�ned by

g(�i) = �1xi1 + � � �+ �kxik; i = 1; : : : ; n; (1)

where �1; : : : ; �k are unknown regression coe�cients. The special case where V (�) = 1 and

g(�) = � recovers the assumptions of the ordinary multiple linear regression model.

Both V and g are assumed to be known functions, and may often be chosen from among

a small set of standard options, reecting basic knowledge about the nature of the response

variable. Once V and g have been chosen, the regression structure is explored in much the

same way as in ordinary regression or ANOVA. The analysis hence proceeds via the familiar

steps of parameter estimation, model checking by residual analysis, and hypothesis testing,

each of which will be discussed in more detail below.

Note that the only nonlinearity in the model (1) comes from the link function, whereas

truly nonlinear models have a more complicated mean structure. However, an important
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advantage of the approach is that familiar ideas from regression and ANOVA such as factors,

interactions, dummy variates and polynomial regression retain their usefulness here, subject

to suitable interpretations.

The Choice of Link and Variance Functions

We now present some basic guidelines for choosing the link function g and the variance

function V: The role of the link function is similar to the choice of linearizing transformation

traditionally used in regression and ANOVA. Rather than transforming the response variable

Y; however, the link function is chosen such that the model is linear in g(�), thereby avoiding

the need for working with the mean of a transformed response variable, which may be di�cult

to interpret. Note that g may be selected independently of the variance function, so the

question of non-constant variance is dealt with separately. Here, and in the next section, we

have dropped the subscript i on Y and �:

The choice of link and variance functions may often be guided by the nature of the

domains for Y and �: The most common choices are as follows:

� For data on the real line, where � is a location parameter whose domain is unbounded

both to the right and to the left, the identity link g(�) = � and the constant variance

function V (�) = 1 are commonly used, and correspond to the ordinary multiple linear

regression model, including ANOVA and analysis of covariance.

� For strictly positive data, where � > 0; the log link g(�) = ln� is often used together

with the square variance function V (�) = �2: Possible alternatives are the power link
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functions g(�) = �q; and the power variance functions V (�) = �p, where q 6= 0 and

p; q are assumed to be known.

� For non-negative data, in particular counts, the linear variance function V (�) = � is

often used together with the log link, corresponding to log-linear models. We may also

use one of the power link functions.

� For proportions satisfying 0 � Y � 1; where 0 < � < 1, a common choice is the logit

link

g(�) = ln
�

1� �

together with the variance function V (�) = �(1� �); which correspond to the logistic

regression model. Other data with a bounded range, such as percentages or rating

scales, may be handled in the same way after being transformed linearly onto the unit

interval. Other possible link choices are the probit link g(�) = ��1(�); where � is the

standard normal CDF, and the complementary log-log link g(�) = ln [� ln(1� �)] :

� For a given variance function V , we de�ne the canonical link g0 as follows:

g0(�) =
Z �

�0

1

V (z)
dz; (2)

where �0 is an arbitrary �xed value of the mean. Several of the link/variance function

pairs proposed above have canonical link functions, see Table 1 below.
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Probability Models

Up to this point have made only second-moment assumptions; i.e. assumptions regarding

the mean and variance of the response variable. However, several of the above variance

functions correspond to well-known probability models, in which case we talk about making

full distributional assumptions.

For a given variance function V; we de�ne the unit deviance function by

d(y;�) = 2
Z y

�

y � z
V (z)

dz;

which is strictly positive except for y = �; where it is zero. The unit deviance may be

interpreted as a measure of squared distance between y and �; in particular the case V (�) = 1

gives d(y;�) = (y � �)2.

In some cases, a unit deviance function gives rise to a probability (density) function of

the form

f(y;�; �2) = a(y;�2) exp
�
� 1

2�2
d(y;�)

�
; (3)

where a(y;�2) is a function that depends on y and the dispersion parameter �2 only. We call

(3) an exponential dispersion model [14, 17]. It has mean � and variance �2V (�), and we

have hence obtained a probability distribution with the prescribed �rst and second moments.

When �2 is known, the family (3) is called a natural exponential family, cf. J�rgensen [17,

Ch. 2] for details.

Table 1 summarizes some common exponential dispersion models, including those that

correspond to variance functions already mentioned above. For example, the constant vari-
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Table 1: Summary of common exponential dispersion models (CV = coe�cient of variation).

Distribution Variance function �2 Canonical link Unit deviance

Normal 1 variance � (y � �)2

Gamma �2 (CV)2 �1=� 2
�
y
� � ln

y
� � 1

�
Inverse Gaussian �3 variance=�3 �2=�2 (y � �)2=

�
y�2

�
Poisson � 1 ln� 2

�
y ln y� + �� y

�
Binomial=m �(1� �) 1=m ln �

1�� 2
h
y ln y� + (1� y) ln

1�y
1��

i
Negative binomial � (1 + �=m) 1 ln �

m+� 2
h
y ln y� + (m+ y) ln

m+�
m+y

i

ance function V (�) = 1 gives the normal distribution with mean � and variance �2: In

common with the normal, the gamma distribution is a two-parameter family, where the

dispersion parameter �2 is unknown. The three discrete distributions in Table 1 (Poisson,

binomial and negative binomial) all have known values of �2, although the negative binomial

has an additional shape parameter m: For the binomial distribution, the probability function

for the proportion of success out of m trials is of the form (3) with �2 = 1=m.

Not every variance function and unit deviance have an associated exponential dispersion

model, and this may be the case even for apparently reasonably shaped functions such as

the square-root variance function V (�) =
p
�; see J�rgensen [17, Ch. 3]. For the above

three discrete distributions, only the values of �2 indicated in Table 1 correspond to valid

probability functions in (3), whereas in practice it is common to encounter overdispersion,

in the form of discrete data for which �2 is bigger than 1 or, for binomial proportions, bigger

than 1=m.

7



On this background it is fortunate that most of the estimation and testing methods to be

introduced below depend on second-moment assumptions for Y only, giving procedures that

are robust against misspeci�cation of the probability model, as long as the link and variance

functions are correctly speci�ed.

Parameter Estimation

We now consider estimation of the vector of regression coe�cients � from data y = (y1; : : : ; yn)
0;

where �2 is either known, or is an additional parameter to be estimated from the data. We

assume that suitable link and variance functions have been chosen. Let us generalize the

variance assumption as follows:

var(Yi) =
�2

wi
V (�i); i = 1; : : : ; n;

where w1; : : : ; wn are known weights, which may for example be sample sizes if the Yis are

group averages, where subscript i again refers to the unit. Let xi denote the k-vector of

covariates for unit i, let X be the n�k design matrix with rows x01; : : : ;x0n; and assume that

X has rank k < n.

For binomial proportions, wi is the number of trials for unit i and �
2 = 1 now corresponds

to the ordinary binomial distribution, whereas �2 > 1 indicates overdispersion.

Let us de�ne the (total) deviance for � as the weighted sum of unit deviances,

D(�) =
nX
i=1

wid(yi;�i);

where here and in the following � enters via �i = g�1(x0i�): We de�ne the estimate
b� to
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be the value of � that minimizes D(�): In the case V (�) = 1; the deviance is the familiar

residual sum-of-squares statistic from regression, and b� is the least-squares estimate.
Under full distributional assumptions, the log likelihood for � is

l(�) = const:� 1

2�2
D(�); (4)

where the constant depends on �2 and the data only, so that b� is the maximum likelihood

estimate. Under second-moment assumptions, (4) (without the constant) is the (log) quasi-

likelihood of Wedderburn [30] and McCullagh [20], and b� is the corresponding maximum
quasi-likelihood estimate.

To calculate b�, we solve the (quasi-) score equation corresponding to (4),
nX
i=1

xi
wi (Yi � �i)
_g(�i)V (�i)

= 0; (5)

where _g denotes the derivative of g. Note the simpli�cation that occurs for the canonical

link, where _g(�i)V (�i) = 1. The equation (5) generally is nonlinear, and is solved iteratively

by Fisher's scoring method, as we shall now see.

In each step of the iteration for Fisher's scoring method, the updated value �� of the

regression parameter is the solution to the following weighted least-squares equation:

��X0WX = X0Wz: (6)

HereW and z; which both depend on the previous value of �; are de�ned by

W = diag

 
w1

_g(�1)2V (�1)
; : : : ;

wn
_g(�n)2V (�n)

!
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and

z = X� + _g(�)(y � �); (7)

where � is the vector of means and _g(�) = diag [ _g(�1); : : : ; _g(�n)] : The iterations are stopped

when the relative decrease of the deviance becomes small.

The starting value for the iterations is obtained from the data y, so that in the �rst

iteration we take � = y and replace X� in (7) by the vector with entries g(yi), with suitable

modi�cations for extreme values of yi, where g(yi) and V (yi) may not be de�ned. By using a

good weighted least-squares algorithm for solving (6), the resulting Fisher scoring algorithm

becomes very e�cient.

When the dispersion parameter is unknown, it may be estimated by the Pearson Esti-

mator,

b�2 = 1

n� k

nX
i=1

wi (yi � b�i)2
V (b�i) ;

where b�i = g�1(x0i
b�) is the ith �tted value: Some computer packages routinely estimate

�2 by the deviance estimator D(b�)=(n � k); but this estimator cannot be recommended
in practice because of problems with bias and inconsistency in the case of a non-constant

variance function. For positive data, the deviance may also be sensitive to rounding errors

for small values of yi.

The asymptotic variance of b� is estimated by the inverse (Fisher) information matrix,
giving

var(b�) � �2 (X0WX)
�1
; (8)

where W is calculated from b�: The standard error se( b�j) is calculated as the square-root
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of the jth diagonal element of this matrix, for j = 1; : : : ; k: When �2 is known, a 1 � �

con�dence interval for �j is de�ned by the endpoints

b�j � se( b�j)z1��=2; (9)

where z1��=2 is the 1 � �=2 standard normal quantile. For �2 unknown, we replace �2 by

b�2 in (8) and z1��=2 by t1��=2(n � k) in (9), where t1��=2(n � k) is the 1 � �=2 quantile of
Student's t distribution with n� k degrees of freedom.

Residual Analysis

Residuals are usually de�ned as observed minus �tted values, standardized to have constant

variance. From this point of view, an obvious choice of residual for generalized linear models

is the Pearson residual, de�ned by

rPi =
yi � b�i
[V (b�i)]1=2 :

Residuals are useful for making graphical checks of the adequacy of the link and variance

function choices and other model assumptions. In order to perform such checks as accurately

as possible, it is useful to work with residuals that are as nearly normally distributed as

possible. Unfortunately, the Pearson residual is somewhat inadequate from this point of

view, because it tends to reect the skewness of the underlying distribution. A better choice

is the deviance residual, de�ned by

rDi = � [d(yi; b�i)]1=2 ; (10)
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where � denotes the sign of yi� b�i. Pierce and Schafer [23] and McCullagh and Nelder [21,
pp. 37{40] found that the deviance residual is much closer to being normal than the Pearson

residual, but has a bias of

� E(Yi � �i)3

6�2 [V (�i)]
3=2
;

which should be subtracted from (10). Note, however, that the bias depends on the third

moment of Yi. See also Williams [31], who studied residuals and diagnostics for generalized

linear models.

Under second-moment assumptions, an alternative way of correcting the bias of the

deviance residual is via the modi�ed deviance residual r�Di , de�ned by

r�Di = rDi +
�2

rDi
ln
rWi

rDi
;

see J�rgensen [17, Ch. 3]. Here rWi
is the Wald residual, de�ned by

rWi
= [g0(yi)� g0(�i)] [V (yi)]1=2 ;

where g0 is the canonical link (2). Note that in the discrete case, rWi
is generally in�nite for

extreme values of yi.

Taking the variation of b�i into account, all of the above residuals have approximately
mean zero and variance �2(1 � hi); where hi is the ith diagonal element of the hat matrix

H; de�ned by

H =W1=2X (X0WX)
�1
X0W1=2:

In practice, we hence use standardized residuals such as r�Di(1 � hi)
�1=2; which are nearly

normal with variance �2. The residuals may be plotted against the �tted values (or better
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their logarithms) in order to check the validity of the proposed variance function; or the

correctness of the distributional assumption may be checked by means of a normal Q-Q plot

for the residuals. See McCullagh and Nelder [21, Ch. 12] and Davison and Snell [5] for more

details about residual analysis for generalized linear models.

Analysis of Deviance

Analysis of deviance is the method of parameter inference for generalized linear models

based on the deviance, generalizing ideas from ANOVA, and �rst introduced by Nelder and

Wedderburn [22]. We emphasize, however, that even for balanced data, the situation is

similar to regression analysis, in the sense that model terms must be eliminated sequentially,

and the signi�cance of a term may depend on which other terms are in the model. We

consider separately the cases where �2 is known and unknown, but �rst we introduce some

notation.

Let H1 denote the model (1) with k parameters, and let D1 = D(b�) denote the minimized
deviance under H1: Similarly, let H2 denote a sub-model of H1 with l < k parameters, and

let D2 denote the corresponding minimized deviance, where D2 � D1: The model H2 may

for example correspond to the hypothesis that certain regression coe�cients are zero, or to

some other linear constraint on �:

The results that we now present are based on large-sample theory, and we need to consider

two separate asymptotic frameworks. The �rst is called large w asymptotics, where it is

assumed that the data yi are group averages based on large sample sizes wi for all i: This
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framework is often relevant for discrete data, where the conventional rule is that all expected

counts should be at least �ve in order for the asymptotic results to apply. For binomial data

both the expected number of successes and failures should be at least �ve. Under full

distributional assumptions, the large w asymptotics are called small-dispersion asymptotics,

see J�rgensen [14, 15].

The second asymptotic framework is large n asymptotics, which is mainly relevant for

regression models, where it is assumed that n is large relative to the number of parameters

in the models under consideration.

Known dispersion parameter

The case of a known dispersion parameter �2 is mainly relevant for discrete data, as discussed

in connection with Table 1. We assume for simplicity that �2 = 1:

The deviance D1 is a measure of goodness-of-�t of the model H1; and is also known as the

G2 statistic in discrete data analysis [1, p. 48]. A more traditional goodness-of-�t statistic

is the Pearson X2 statistic

X2 =
nX
i=1

wi (yi � b�i)2
V (b�i) ;

which we have already met in connection with the Pearson estimator above.

Asymptotically for large w, the statistics D1 and X
2 are equivalent and distributed as

�2(n � k) under H1; but various numerical and analytical investigations have shown that

the limiting �2 distribution is approached faster for the X2 statistic than for D1, at least for

discrete data [4], in line with our recommendation of the Pearson estimator for �2 above. A
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formal level � goodness-of-�t test for H1 is obtained by rejecting H1 if X
2 > �21��(n � k),

the latter being the 1�� quantile of the �2(n�k) distribution. This test may be interpreted

as a test for overdispersion [6]. Here and in the following, we may calculate the P value of

the test in the usual way; in the present case by equating X2 to �21�P (n� k) and solving for

P:

There is a long tradition for goodness-of-�t tests for discrete data, but it should be kept

in mind that the �t of a model is a complex question, which can hardly be summarized in

a single number. For this reason, we recommend that the X2 test is supplemented with an

inspection of residuals, as discussed above.

Once H1 has been accepted, we may calculate con�dence intervals for the regression

coe�cients using the normal distribution, as explained in the parameter estimation section.

We may also proceed to test the sub-model H2 under H1: For this purpose we use the log

(quasi-) likelihood ratio statistic D2�D1; which is a relative measure of �t for H2 under H1:

The asymptotic distribution of D2 �D1 is �
2(k � l) for n large as well as for w large, and

H2 is rejected at level � if D2 �D1 > �
2
1��(k� l): Once H2 has been accepted, a sub-model

of H2 may be tested under H2 in a similar way, and so on.

In the case where the known value of �2 is di�erent from 1, we use the scaled deviance

D1=�
2 instead of D1; and the scaled Pearson statistic X

2=�2 instead of X2 and so on.
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Unknown dispersion parameter

The dispersion parameter is usually unknown for continuous data, as discussed in connection

with Table 1, and the methods of inference need to be modi�ed accordingly. In the discrete

case we may prefer to work with unknown dispersion parameter, if evidence of overdispersion

has been found in the data.

When the dispersion parameter is unknown, there is no formal goodness-of-�t test avail-

able based on X2 as above. Instead, X2 is used for estimating the dispersion parameter, as

explained in the parameter estimation section, and the �t of the model H1 to the data must

be checked by residual analysis.

Once the �t of H1 has been veri�ed, we may set up con�dence intervals for the regression

coe�cients using the t distribution, as explained in the parameter estimation section. Simi-

larly, we may use the large w asymptotic �2(n�k) distribution for (n�k)b�2=�2 to calculate
con�dence intervals for �2:

Let us now consider testingH2 underH1 for �
2 unknown. A simple-minded approach is to

base the test on the scaled deviance di�erence � = (D2 �D1) =b�2, whose large n asymptotic
distribution underH2 is �

2(k�l); due to the consistency of the dispersion parameter estimate

b�2 in this limit. Contrary to the case �2 known, however, the asymptotic �2 distribution
for � does not apply in the large w limit. Instead, we scale � by the degrees of freedom to

obtain the following F statistic:

F =
D2 �D1

(k � l)b�2 ;
whose asymptotic distribution is F(k � l; n � k) for w large, which agrees asymptotically
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with the limiting �2(k � l) distribution for � in the large n limit. The F test is hence valid

in both the large w and large n limits, and we reject H2 at level � if F > F1��(k� l; n� k):

We may proceed similarly to test, in a sequential manner, further reductions of the model.

The t based con�dence intervals for the regression coe�cients mentioned above may be

justi�ed by similar arguments. Further details regarding the asymptotic results may be

found in J�rgensen [14].

Generalizations

Generalized linear models have now been extended in many di�erent directions compared

with Nelder and Wedderburn's original de�nition. The ideas of quasi-likelihood and esti-

mating functions have made it easy to develop simple and robust estimation methods for a

wide variety of problems, including correlated data, while preserving much of the original

simplicity of the idea.

In particular, Liang and Zeger [19] proposed the method of generalized estimating equa-

tions (GEE) for analysis of longitudinal data, which is now widely used, and has spawned

much further research [7]. Several methods for analysis of generalized linear mixed models

have been proposed, see Schall [26], Zeger and Karim [32], Breslow and Clayton [3] and Lee

and Nelder [18].

Efron [9] and Smyth [27] proposed methods for generalized linear models where the

dispersion parameter, as well as the mean, varies as a function of covariates according to a

speci�ed regression model.
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A large variety of probability models are of exponential dispersion model form, and this

class has been studied extensively together with the even larger class of dispersion models,

see J�rgensen [17]. The generalization of analysis of deviance to dispersion models was

investigated by J�rgensen [13, 16].

Software

The GLIM (Generalized Linear Interactive Modelling) software, specially designed for �tting

generalized linear models, was �rst released in 1974, and went through several releases, the

last one being GLIM4 from 1993. See also the monograph [2] on statistical modeling in

GLIM4. GLIM is no longer available on the market, but all the major statistical packages

now include facilities for �tting generalized linear models, including GenStat [11], R [24],

SAS [25], S-Plus [28] and STATA [29]. These implementations of generalized linear models

basically retain the simplicity and exibility that characterized the original implementation

in GLIM, allowing the user to select any suitable combination of link function and variance

function, combined with the Wilkinson and Rogers notation for specifying the regression

model.
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