
BAYESIANS, FREQUENTISTS, AND PHYSICISTS
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Phystat2003 brought statisticians together with particle physicists, astrophysicists, and

cosmologists. This paper, which is taken from the text of the keynote address, concerns the

uneasy relationship between Bayesian and frequentist statistics, with particular attention

to the “neutrino problem”: how to set confidence limits for a parameter known to be non-

negative. Model selection, an objective Bayes technique, gives a different answer than the

classic Neyman confidence construction.



1. Introduction

Ten years ago I gave a talk entitled “Astronomy and biostatistics, the odd couple”. It

emphasized the mostly unconscious convergence of methods in the two fields, arising from a

shared need to account for biased sampling – astronomers because they are stuck on earth

and statisticians because humans are such lousy experimental animals, tending to go missing

just when you most need their data.

Of course astronomy historically is the most statistical branch of the physics tree. I

never expected to attend a conference bringing particle physicists and statisticians under

the same roof. The happy existence of phystat2003 reflects the determination of modern

physicists to pursue nature in its most subtle manifestations, where the certainties of mass

experimentation give way to small numbers of events observed with great difficulty; in short

where statistical inference becomes important.

It is hard to imagine “phystat1903”. Maybe phystat1803 is slightly more conceivable

with Laplace and Gauss arguing the virtues of Bayesian versus frequentist inference. The

Bayesian-frequentist argument is certainly a long-lived one, even by the standards of phi-

losophy. It reflects, I believe, two quite different attitudes toward the scientific process: the

cautious frequentist desire for objectivity and consensus, versus the individual scientist trying

aggressively to make the best sense of past data and the best choice for future direction.

Statistics concerns the efficient accumulation of knowledge – how a scientist learns from

experience – so it is not surprising that there is more than one philosophical approach to such

a broad problem. I will tread lightly on philosophical matters here. Mainly I want to show

how Bayesian and frequentist ideas interact, in particular concerning confidence intervals

and the “neutrino problem”, where both methodologies show virtues and defects.

2. Why Not Bayes?

Bayesianism was the first statistical philosophy, and remains the simplest and most

attractive from the point of view of intellectual neatness. Here is a true-life story illustrat-

ing Bayesian virtues. A physicist friend of mine and her husband found out, thanks to a

sonogram, that they were going to be the parents of twin boys. The doctor told them that

one-third of twin pairs are identical, the other two-thirds fraternal, but she wondered if there

was a more exact estimate for her twins being identical.

This is exactly the problem Bayes solved in 1763. To use standard language, the prior

odds of Identical are (1/3)/(2/3) = 1/2, while the likelihood ratio (the ratio of probabilities
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of observing “Both Boys”) equals about

P{Both Boys|Identical}
P{Both Boys|Fraternal} =

1/2

1/4
= 2.

Then Bayes’ rule says that the a posteriori odds of Identical to Fraternal equal the prior

odds times the likelihood ratio,

P{Identical|Both Boys}
P{Fraternal|Both Boys} =

1

2
× 2 = 1.

In other words my physicist friend had a 50-50 chance for Identical. (Later she told me that

the boys turned out to be “very non-identical”.)

Bayes’ rule is satisfying, convincing, and fun to use. But using Baye’s rule does not make

one a Bayesian; always using it does, and that’s where difficulties begin. “Expert Opinion”,

which (correctly) gave us the prior odds of one-third to two-thirds for the Twins question,

doesn’t exist for most genuine scientific problems, or if it does exist may be contentious or

just plain wrong. Even the likelihood ratio, which doesn’t depend on prior opinions, may be

impossible to compute.

Scientists are drawn to Bayesian thinking and language even when they can’t use Bayes’

theorem. In 2002 a heroic bout of radio telescopy detected subtle polarization in the cosmic

microwave background, as predicted by the Big Bang theory. Michael Turner, a leading

cosmologist, commented “If you had any doubts that this radiation is from the Big Bang,

this should quash them.” Even leaving aside the almost theological question of prior odds

on the Big Bang theory, this is a case where the denominator of the likelihood ratio,

P{Polarized|Big Bang}
P{Polarized|Any Other Theory}

seems especially obscure. Dr. Turner spoke as a good scientist but a questionable Bayesian.

The 20th century saw the development of a persuasive frequentist theory of statistical

inference that continues to dominate scientific practice. (An “objective” Bayesian counter-

reformation is stirring, discussed later.) Frequentist statistics does away with the need for

prior opinions. This gives frequentism a legitimate claim to objectivity, a considerable virtue

in a world with competing scientific teams working at great distances from each other.

Here is a classic frequentist result: data points x1, x2, . . . , xn are independently observed

from a normal distribution with mean µ and variance 1,

x1, x2, . . . , xn
ind∼ N(µ, 1), (1)
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and we want to say something about the unknown value of µ. The standard 90% confidence

interval for µ is

µ ∈ [x̄ − 1.645/
√

n, x̄ + 1.645/
√

n ], (2)

with x̄ the mean Σxi/n. Interval (2) contains the unknown µ with 90% probability no matter

what µ might be, which is its crucial frequentist property.

Formula (2) and its generalizations are familiar friends, appearing literally millions of

times per year in the scientific literature. Nevertheless, there are limitations to the frequentist

viewpoint that become more problematical as one moves away from simple situations like (1).

One doesn’t have to move very far away for difficulties to emerge, as the neutrino problem

will show.

3. Accuracy and Correctness

One criticism of frequentist statistics is that it is incomplete: by itself it does not neces-

sarily produce a unique solution to a given inferential problem. In situation (1) for instance

the interval

µ ∈ [x̄ − 1.96/
√

n, x̄ + 1.44/
√

n ]

also contains µ with 90% probability. The standard interval (2) is preferred because of

its symmetry, dividing its 10% noncoverage probability into 5% errors on either side, but

symmetry is not part of the frequentist philosophy.

R.A. Fisher, the founder of modern statistical theory, and the person most responsible

for demoting Bayesianism to the back burner, distrusted Jerzy Neyman’s confidence interval

methodology. He felt that Neyman intervals could be accurate (that is, have the claimed

coverage probability) without being correct.

Here is a simple example of Fisherian “incorrectness”. Suppose that in situation (1) the

sample size n is either 25 or 100, the choice being determined by the independent flip of a

fair coin. It is easy to compute that in this case

x̄ ± .262 (3)

is a 90% confidence interval for µ. However it is always incorrect: if n = 25 then interval (2)

is x̄ ± .329, wider than (3), while n = 100 gives the narrower interval x̄ ± .164.

Fisher called the random variable n an ancillary statistic, a quantity conveying no direct

information for µ, but whose value determines the accuracy with which µ can be estimated.
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With typical ingenuity Fisher showed that ancillaries can pop up quite unexpectedly, even

in innocuous-looking situations.

Suppose we independently observe x1, x2, . . . x10 from a Cauchy distribution with un-

known center µ, so each xi has density

fµ(x) = π−1/[1 + (x − µ)2].

The maximum likelihood estimate µ̂ is, to a quite good approximation, normally distributed

about µ,

µ̂ ∼̇N(µ, σ2) with σ = 0.447, (4)

but the obvious 90% confidence interval µ ∈ µ̂ ± 1.645 · 0.447, which is almost perfectly

accurate, runs into the same correctness problems as (3).

Here the ancillary is the second derivative of the log likelihood function �(µ) = log
10∏
i=1

fµ(xi)

evaluated at µ̂,

�̈ =
∂2

∂µ2
�(µ)|µ=µ̂.

The conditional distribution of µ̂ given �̈ is approximately

µ̂|�̈ ∼ N(µ, (−�̈)−1),

so the magnitude of −�̈ determines the accuracy of µ̂ for estimating µ. The correct interval

is

µ̂ ± 1.645 · (−�̈)−
1
2 . (5)

Figure 1 shows log likelihood functions for two Cauchy samples each of size 10, both of

which have µ̂ = 5.00. However the “good sample” has its likelihood declining much more

rapidly on either side of µ̂, resulting in a shorter interval (5),

Good Sample : 5.00 ± .35; Bad Sample : 5.00 ± .65. (6)

(The difference is the closer spacing of the good samples’ observations around µ̂ = 5.00.)

Both (5) and the unconditional interval µ̂ ± 1.645 · 0.447 are accurate, i.e. have 90%

frequentist coverage, but (5) more correctly reflects the information available in the sample

at hand. This problem doesn’t affect interval (2) since x̄ is a sufficient statistic in the

normal case (1), but an argument can be made that Cauchy-type situations are actually

more common.
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Figure 1:Log likelihood functions for two Cauchy samples of size n = 10, each with µ̂ = 5.00;

µ can be determined much more accurately in the “good sample”, which has its likelihood

decreasing more rapidly on either side of µ̂.

It’s worth noting that the simplest Bayesian analysis, beginning with a flat prior for

µ (an improper uniform distribution over the entire real line) automatically gives results

like (6). This is a reminder that Bayesian properties are important to consider even if are

eventually intends a frequentist analysis.

4. The Neutrino Problem

Adding a non-negativity constraint,

µ ≥ 0 (7)

to the normal sampling assumptions (1) brings us to what might be called “the neutrino

problem” since it arises pertinaciously in experiments assessing the mass of the neutrino.

Here we will state the problem as setting a 95% upper limit for µ under model (1) and (7).

There is no loss of generality taking n = 1 in (1), so we can express the data simply as a

single observation of

x ∼ N(µ, 1). (8)
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The standard one-sided interval for µ in this case is

µ ≤ x + 1.645. (9)

The standard interval in perfectly accurate, covering µ exactly 95% of the time no matter

what its value might be. However it seems incorrect, especially to physicists, since if x is less

than -1.645 interval (9) is empty of values satisfying (7). Exactly this case arose in actual

neutrino experimentation, see Mandelkern (2002).

Various alternative bounds have been suggested, the best-known being the Feldman-

Cousins bounds (1998), classic Neyman confidence limits based on likelihood ratio statistics.

Figure 2 displays four possibilities: the standard bound x + 1.645; Feldman-Cousins; the

Bayes upper 95% a posteriori value beginning with a uniform prior density for µ on [0,∞);

and a bound based on model selection, as discussed below, an “objective Bayesian” construc-

tion that takes seriously the possibility of µ equaling zero. If a good bound is a small one

then Model Selection is the clear winner, the Uniform[0,∞) Bayesian bound is worst, while

Feldman-Cousins and the standard bound are intermediate, differing only for x < 0.But of

course there is more to the story.

Which upper bound is right? The Bayesian answer would be “surely that depends upon

our prior knowledge concerning µ. If there is nothing scientifically special about µ = 0

except as the lower endpoint of the allowable µ domain, then a case can be made for the

Uniform[0,∞) prior approach. In some situations though there may be strong scientific

grounds for suspecting this µ equals zero, or at least is very close to zero compared to the

standard deviation 1 of the observation x ∼ N(µ, 1). Then an analysis should reflect those

beliefs.”

“Model Selection” refers to the last situation. We assume that there are two possible

models for the parameter µ in (8),

Small Model M0 : µ = 0

Big Model M1 : µ > 0.
(10)

Having observed x ∼ N(µ, 1) we wish to set a 95% upper bound for µ, including in our

calculations the possibility that µ = 0. Because the two models are of different dimensions,

a hallmark of the general model selection problem, this is a more intricate task than setting

confidence bounds within a single model.

A full Bayesian analysis requires prior probabilities on the two models in (10), and also
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Figure 2:Four possible 95% upper bounds for µ having observed x in model (7,8): standard

bound x + 1.645; Feldman-Cousins; Bayesian bound versus uniform prior on [0,∞); Model

Selection bound.

a prior density on µ when M1 applies,

A priori

M0 true with probability π0

M1 true with probability π1 = 1 − π0

(11)

and

µ ∼ g(·) if M1 true, (12)

where g(µ) is some prior density on (0,∞).

The Bayes 95% upper limit for µ having observed x ∼ N(µ, 1) from prior situation (11,

12) depends on an integral of the sampling density ϕµ(x) = (2π)−
1
2 exp{−1

2
(x − µ)2},

ϕ(1)(x) ≡
∫ ∞

0

ϕµ(x)g(µ)dµ,

as well as ϕ0(x) = (2π)−
1
2 exp{−x2/2}. Bayes’ rule then provides the a posteriori probability

of M1 given x,

Prob{M1|x} = π1ϕ(1)(x)/[π0ϕ0(x) + π1ϕ(1)(x)], (13)
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and the probability that µ exceeds some positive value “c” given M1 and x,

Prob{µ > c|M1, x} =

∫ ∞

c

ϕµ(x)g(µ)dµ/ϕ(1)(x). (14)

Since µ can exceed c only if M1 is true, the a posteriori probability of µ > c is

Prob{µ > c|x} = (13) · (14). (15)

The value of c that makes (15) equal is the Model Selection upper 95% bound.

At this point the non-Bayesian may quail at making prior selections of π0 and g(µ). “Ob-

jective Bayes”, currently the most popular form of Bayesian statistics, attempts to alleviate

such fears by restricting attention to priors that enjoy reasonable frequentist properties.

First consider choosing g(µ) in (12). Without the negativity constraint (1) we might

very well take g(µ) ≡ 1, which yields the standard interval (9) as the one-sided Bayes 95%

interval. This suggests using

g(µ) = 1 on (0,∞) (16)

in (12), the prior that gave the dotted curve in Figure 2. (Another choice is mentioned

below.) Now ϕ(1)(x) equals the standard normal cumulative distribution function

Φ(x) =

∫ x

−∞
ϕ0(x)dx,

so (13) becomes

Prob{M1|x} = π1Φ(x)/[π0ϕ0(x) + π1Φ(x)]. (17)

We can complete the choice of objective prior by selecting π0, and π1 = 1− π0, to make

Prob{M1|X0} =
1

2
(18)

at some “break-even point” x0 that is comfortable for frequentists. Efron and Gous (2001)

argue that

x0 = 1.28 (19)

the 90th percentile of x under M0, is a choice commensurate with standard Fisherian hy-

pothesis testing. The “Model Select” curve in Figure 2 is formula (15) evaluated for the prior

choices (16-19). [Note: solving P{M1|x0} = 1
2

in (17) determines π0 and π1 = 1 − π0, so

that (15) can be evaluated. However π0 cannot be interpreted as the actual prior probability

of M0; we would get a different π0, but the same values of (15), if (16) were changed to say

g(µ) = 2 on (0,∞).]
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Figure 3 graphs Prob{M0|x}, the a posteriori probability that µ = 0. The values

roughly agree with standard frequentist hypothesis testing: observing x equal the 95th M0

percentile 1.645 gives mild evidence against M0, Prob{M0|x} = 0.36; x equal the 99th

percentile gives strong evidence, etc. Observing x = 0 gives 80% probability that µ = 0.

This leaves only 20% for µ > 0, and leads to the notably small 95% upper bound.
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Figure 3: A posteriori probability that µ = 0 given x for Model Selection specifications

(16)-(19); observing x = 1.645 gives 36% probability that µ = 0, etc.

From a classical point of view Model Selection looks like an ungainly combination of

hypothesis testing and estimation. We used Bayes’ theorem to handle the problem, but the

resulting method is not subjective in the sense of employing specific prior knowledge (or

guesses) concerning neutrinos. What it does employ is a qualitative belief that values of µ

at or near 0 deserve increased weight. “Near” means near compared to the variance 1 of the

observation x ∼ N(µ, 1). Mandelkern’s discussion suggests that this was and is the case for

the actual electron neutrino problem.

It is easy to criticize Bayesian Model Selection methods. Even trying to be objective,

we still have had to make an uncomfortable number of prior specifications. Alternative
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specifications are certainly possible. Choosing

g(µ) = 1 + 3e−3µ (for µ > 0),

instead of g(µ) = 1, makes the dotted curve in Figure 2 look much more like the standard

bound x + 1.645 when x ≥ 0. However this change doesn’t have much effect on the Model

Select curve.

Moving the break-even point x0 closer to zero, which effectively puts less prior probability

on µ = 0, changes the Model Selection upper 95% value more dramatically. Taking x0 = 0.50

instead of 1.28 makes the Model Selection upper 95% bounds agree rather nicely with the

Feldman-Cousins curve, as seen in Figure 4.
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Figure 4: Moving the break-even point x0, (17), closer to zero makes the Model Selection

upper 95% point nearly match the Feldman-Cousins bound.

At this point an optimist could say that we have the best of all possible statistical

worlds, with close agreement between the Bayesian Model Selection and Neyman frequentist

approaches. However the two methods deliver there 95% upper bounds quite differently. At

x = −0.50, roughly the neutrino result obtained by the “Troisk” group in (1999) according

to Mandelkern, both bounds equal about 1.15; however Model Selection (with x0 = 0.50)
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implies a 69% probability that µ equals or is quite near 0. If believed, this might strongly

influence subsequent detection strategies.

5. Multidimensional Problems and Stein’s Paradox

The neutrino problem is one-dimensional in the sense of involving only a single real-

valued parameter. The relationship between Bayesian and frequentist methods becomes

more difficult, and more intriguing, when we venture into multi-dimensional situations.

Suppose then that instead of (8) the observed data x is a p-dimensional normal vector

having unknown mean vector µ and identity covariance matrix I,

x ∼ Np(µ, I). (19)

We wish to make inference about µ having observed x. Another way to express (19) is to

say that we have p independent versions of (8), each with its own unknown parameter µi,

xi
ind∼ N(µi, 1) i = 1, 2, . . . , p. (20)

At first glance this looks easy enough. The maximum likelihood estimate of µ is µ̂ = x,

i.e. µ̂i = xi for i = 1, 2, . . . , p. The obvious 90% confidence region for µ is a sphere centered

at x, say

C = {µ : ‖µ − x‖2 < c},

where c is the upper 90% point of a chi-square distribution with p degrees of freedom. The

obvious “objective prior” g(µ) = 1 for µ in Rp also leads to point estimate µ̂ = x as a

posteriori mean and to C as the a posteriori Bayes 90% region, so Bayesian and frequentist

methods agree with each other.

It came as a great surprise to statisticians that there is something wrong with these

“obvious” estimates and confidence regions. Charles Stein, working with his graduate student

Willard James in the early 1960’s, produced an estimator µ̃ uniformly superior to the MLE

µ̂ = x in terms of expected squared error,

µ̃ =

[
1 − p − 2

‖x‖2

]
· x. (21)

The James-Stein theorem states simply that in dimensions p ≥ 3,

E{‖µ̃ − µ‖2} < E{‖µ̂ − µ‖2} (22)
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for every possible choice of the parameter vector µ. Similarly, one can find 90% confidence

regions uniformly smaller than C.

Statisticians have a lot invested in the estimator µ̂ = x, (it underlies analysis of variance

and regression theory among other things) so Stein’s result was initially viewed as paradox-

ical. A great deal of subsequent effort has gone into understanding Stein’s paradox and

tapping its potential for improved estimation in high dimensions.

The difference in squared error seen in (22) can be enormous in realistic applied problems.

An example of Stein estimation (applied in a binomial setting rather than (14), but basically

the same procedure) appears in Table 1. The batting averages of 18 major league baseball

players in their first 45 at bats of the 1970 season are given in column one. They play the

role of MLE estimates µ̂i for the underlying true averages µi. The second column shows each

player’s average for the remainder of the season. These typically involved several hundred

more at bats so we can use them as surrogates for the true µi. Column three gives a version of

the James-Stein estimate µ̃ (based only on the first 45 at bats) applicable to binomial data.

The ratio it squared errors is seen to be overwhelming in the case,
n∑

i=1

(µ̂i − µi)
2
/ n∑

i=1

(µ̃i −

µi)
2 = 3.50.

Stein’s work was carried out in a frequentist framework but results like (22) also dis-

turbed Bayesians. Why can the estimates and confidence regions derived from the “uni-

formative” prior g(µ) ≡ 1 be uniformly dominated? It turns out that there are better

uninformative priors for high-dimensional problems.

Suppose we assume a scaled multivariate normal prior for µ in (19),

µ ∼ Np(0, A · I), (23)

but then take the scaler A in (23) to itself have a flat “prior prior”, say

h(A) ≡ 1 for A > 0. (24)

The Bayes estimator µ̂Bayes = E{µ|x} computed from the hierarchical prior (23)-(24) turns

out to closely resemble the James-Stein estimator, and likewise dominates the MLE µ̂ = x

as in (22). Another way to say this is that µ̂Bayes from (23)-(24) has smaller Bayes risk than

µ̂Bayes from g(µ) ≡ 1 no matter what the true prior may be. In other words (23)-(24) is more

uninformative than a flat prior, at least in dimensions p ≥ 3. Perhaps the most important

general lesson is that the facile use of what appear to be uninformative priors is a dangerous

practice in high dimensions.
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µ̂i µi µ̃i

First Remainder James-

45 Season Stein

Clemente 0.400 0.346 0.290

F. Robinson 0.378 0.298 0.286

F. Howard 0.356 0.276 0.282

Johnstone 0.333 0.222 0.277

Berry 0.311 0.273 0.273

Spencer 0.311 0.270 0.273

Kessinger 0.289 0.263 0.268

Alvarado 0.267 0.210 0.264

Santo 0.244 0.269 0.259

Swoboda 0.244 0.230 0.259

Unser 0.222 0.264 0.254

Williams 0.222 0.256 0.254

Scott 0.222 0.303 0.254

Petrocelli 0.222 0.264 0.254

Rodriguez 0.222 0.226 0.254

Campaneris 0.200 0.285 0.249

Munson 0.178 0.316 0.244

Alvis 0.156 0.200 0.239

Table 1: A baseball example of Stein estimation, 1970 season. The James-Stein estimator based

on each player’s first 45 at bats does move better than their observed averages at predicting sub-

sequent performance.

Hierarchical priors dominate the recent Bayesian literature. They lead to an interesting

amalgam of frequentist and Bayesian thinking called empirical Bayes. Empirical Bayes ideas

neatly motivate the James-Stein estimation (21). For a given value of A in the normal prior

(23), the a posteriori expectation of µ given x ∼ Np(µ, I) is

µ̂A = Bx where B = A/(A + 1).

If we don’t know A, we can replace B with the estimate

B̂ = 1 − (p − 2)/‖x‖2,

which is unbiased for B, in the usual frequentist sense, under assumptions (23) and (19).
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In this way the James-Stein estimator µ̃ = B̂x is an obvious frequentist estimate for the

unavailable Bayes rule µ̂A we would like to use.

Notice that the James-Stein estimator µ̃i for µi depends on the other observation xj, j 	=
i. Even though the component problems are assumed independent in (20), putting them

together as in (21) is always better, in an expected total squared-error sense, than using

the separate estimators µ̂i. Originally this seemed the most paradoxical element of James-

Stein estimation. The empirical Bayes argument helps reduce the sense of paradox. Sets of

problems that are analyzed together, like the baseball averages, may relate to each other at

the parameter level even if their individual statistical errors are independent.

The twenty First Century has brought statisticians bigger problems to deal with, involv-

ing inferences for hundreds and even thousands of parameters at once. An uneasy alliance

between Bayesian and frequentist methods, epitomized by empirical Bayes, seems to be re-

placing the time-worn adversarial relationship. We can hope all of this will all be settled by

the time of phystat2103.
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