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The lack of an agreed inferential basis for statistics makes life
“interesting” for academic statisticians, but at the price of nega-
tive implications for the status of statistics in industry, science,
and government. The practice of our discipline will mature only
when we can come to a basic agreement about how to apply
statistics to real problems. Simple and more general illustrations
are given of the negative consequences of the existing schism
between frequentists and Bayesians.

An assessment of strengths and weaknesses of the frequen-
tist and Bayes systems of inference suggests that calibrated
Bayes—a compromise based on the work of Box, Rubin, and
others—captures the strengths of both approaches and provides
a roadmap for future advances. The approach asserts that infer-
ences under a particular model should be Bayesian, but model
assessment can and should involve frequentist ideas. This article
also discusses some implications of this proposed compromise
for the teaching and practice of statistics.
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1. INTRODUCTION

The year 2005 marks the term of the 100th president of
the American Statistical Association, in the person of Fritz
Scheuren. Such occasions promote reflections on where the ASA
stands, and more generally on the state of the discipline of statis-
tics in the world. The 99th ASA President, Brad Efron, was
optimistic about the state of statistics in his address to the Asso-
ciation (Efron 2005). He labeled the 19th Century as generally
Bayesian, the 20th Century as generally frequentist, and sug-
gested that statistics in the 21st Century will require a combi-
nation of Bayesian and frequentist ideas. In the spirit of Efron’s
call for a synthesis, I advocate here a compromise based on the
calibrated Bayesian ideas of George Box, Don Rubin, and oth-
ers. The topic is very broad, and I limit references to work with
which I am most familiar, without meaning to slight the large
body of other significant contributions.

In the next section I reflect on past debates of statistical philos-
ophy, and argue that a resolution of philosophical disagreements
about how to do statistics would help our profession. Some as-
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pects of the conflict are illustrated with basic and more general
examples. In Sections 3 and 4, I provide my personal perspec-
tive on strengths and weaknesses of the frequentist and Bayesian
approaches to statistics, and in Section 5 I argue that calibrated
Bayes is a compromise that capitalizes on the strengths of both
systems of inference. The calibrated Bayes compromise pro-
vides a useful roadmap, but remains sketchy on the boundary
between inference and model selection, suggesting areas of fu-
ture development. In Section 6, I discuss some implications of
the proposed compromise for the future teaching and practice
of statistics.

2. THE BAYES/FREQUENTIST SCHISM:
DOES IT MATTER?

I was a student of statistics in London in the early 1970s,
when debates raged about alternative philosophies of statistics.
Elements of the debate included:

1. Birnbaum’s (1962) “proof” of the likelihood principle,
which if true invalidates frequentist inference—more on this
later;

2. books emphasizing issues of comparative inference (Hack-
ing 1965; Edwards 1972; Barnett 1973; Cox and Hinkley 1974);

3. read papers at the Royal Statistical Society that focused
on competing systems of inference, with associated lively dis-
cussions (e.g. Dawid, Stone, and Zidek 1973; Wilkinson 1977;
Bernardo 1979);

4. alleged “counter-examples” to frequentist inference
(Robinson 1975);

5. debates on the “foundations of survey inference,” focus-
ing on model-based versus design-based inference (Basu 1971;
Smith 1976; Hansen, Madow, and Tepping 1983); and

6. the statements and work of outspoken and influential statis-
ticians like Dennis Lindley and Oscar Kempthorne.

I viewed these debates with a mixture of fascination and
youthful incomprehension. Many insights emerged, but no clear
winners—no agreed inferential philosophy for how to do statis-
tics has emerged. The Bayes/frequentist schism remains unre-
solved.

At some point people seemed to lose interest in this debate.
These days I find very few sessions on statistical philosophy
at statistical meetings, particularly where different inferential
views are contrasted and argued. Bayesians debate “objective”
versus “subjective” approaches to Bayesian inference, but that
seems like an argument between siblings in the Bayesian family,
largely ignored by frequentists.

Whether or not the inferential debate has receded, it is no
longer academic! Thirty years ago, applications of Bayes were
limited to smallish problems by the inability to compute the high-
dimensional integrations involved in multiparameter models. In-
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creased computational power and the development of Monte
Carlo approaches to computing posterior distributions has turned
this weakness of Bayes into a strength, and Bayesian approaches
to large complicated models are now common in the statistical
and scientific literatures.

I see current-day statisticians as roughly divided into three
main camps: (a) frequentists (F), who abhor the Bayesian ap-
proach, or never learned much about it; (b) Bayesians (B), with
varying views on the role of frequentist ideas; and (c) pragma-
tists, who do not have an overarching philosophy and pick and
choose what seems to work for the problem at hand.

To be a bit more specific about (a) and (b), I regard a “frequen-
tist” as one who bases inference for an unknown parameter θ on
hypothesis tests or confidence intervals, derived from the distri-
bution of statistics in repeated sampling. I regard a “Bayesian” as
one who bases inferences about θ on its posterior distribution,
under some model for the data and prior distribution for un-
known parameters. Included in the latter is “subjective” Bayes,
where proper priors are elicited, and “objective” Bayes, where
conventional “reference priors” are adopted. In my view these
different facets of the Bayesian paradigm both have useful roles,
depending on context. I also regard asymptotic maximum likeli-
hood inference as a form of large-sample Bayes, with the interval
for θ being interpreted as a posterior credibility interval rather
than a confidence interval. This broad view of Bayes provides
a large class of practical frequentist methods with a Bayesian
interpretation.

Within either Bayes and frequentist paradigms, one might add
loss functions and adopt a decision-theoretic perspective; I do
not do that here since I lack the expertise to do it justice. It is
also my impression that (for better or worse) this perspective is
rarely adopted by practicing statisticians, who usually confine
attention to testing hypotheses and estimating parameters with
associated measures of uncertainty. I also recognize that much
of statistics involves describing and summarizing data without
any attempt to make a formal statistical inference. My focus on
the latter is not intended to devalue the former.

The classification (a) to (c) captures the major approaches
to inference in my view, but it is by no means comprehensive;
for example, there are “likelihoodists” who attempt to base in-
ferences directly on the likelihood without introducing a prior
distribution (Edwards 1972; Royall 1997).

Currently, it seems to me that the pragmatist approach (c)
to inference predominates. Pragmatists might argue that good
statisticians can get sensible answers under Bayes or frequentist
paradigms; indeed maybe two philosophies are better than one,
since they provide more tools for the statistician’s toolkit! For
example, sampling statisticians often use randomization infer-
ence for some problems, and models for other problems. I take
a pragmatic attitude to applications, but I confess I am discom-
forted by this “inferential schizophrenia.” Since the Bayesian
(B) and frequentist (F) philosophies can differ even on simple

Table 1. (2 × 2) Contingency Table for Example 1

Treatment Success Failure

A 170 2
B 162 9

problems, at some point decisions seem needed as to which is
right. I believe our credibility as statisticians is undermined when
we cannot agree on the fundamentals of our subject—as Efron
(2005) noted:

The physicists I talked to were really bothered by our 250-year old Bayesian-
frequentist argument. Basically, there’s only one way of doing physics, but there
seems to be at least two way of doing statistics, and they don’t always give the
same answers.

A prominent Bayesian (Berger 2000) writes in a similar vein:

Note that I am not arguing for an eclectic attitude toward statistics here; indeed,
I think the general refusal in our field to strive for a unified perspective has been
the single biggest impediment to its advancement.

Berger also saw the need for synthesis, adding that “any unifica-
tion that will be achieved will almost certainly have frequentist
components to it.”

Some examples are offered to support the idea that one system
of statistical inference may be better than two. The first two are
basic examples where the Bayesian and frequentist approaches
lead to fundamentally different results. The other examples are
broader, indicating some areas where our philosophical differ-
ences create confusion in many areas of statistical application.

Example 1: Tests of independence in a 2 × 2 contingency ta-
ble. Students with even a cursory exposure to statistics learn
the Pearson chi-squared test of independence in a 2 × 2 ta-
ble. Yet even in this well-studied problem, deep philosophical
questions lurk close to the surface. Consider a one-sided test
H0 : πA = πB ;Ha : πA > πB for independent samples as-
signed two treatments, where πj is the success rate for treat-
ment j, j = 1, 2. Three competitors of the standard Pearson
chi-squared test (P) are the Pearson test with Yates’s continuity
correction (Y), the Fisher exact test (F), or the Bayesian solution,
which computes the posterior probability that πA < πB , based
on some choice of prior distribution for the success rates. We
illustrate the Bayesian approach for Jeffreys’s reference prior
p(πA, πB) ∝ π

−1/2
A π

−1/2
B (B), while emphasizing that other

prior distributions yield different answers. Asymptotically, these
approaches yield similar answers, but in small or moderate sam-
ples they can differ in important ways. For example, Table 1,
taken from Little (1989), yields a one-sided P value of 0.016
for P, 0.030 for F, 0.032 for Y, and a posterior probability that
πA < πB of 0.013 for B.

The P values for F and Y tend to be similar for the one-sided
problem, and are known to be conservative when one margin of
the 2×2 table is fixed (a common feature of many designs); P is
better calibrated when one margin is fixed, but is approximate.
F is exact if both margins are fixed. So for the frequentist, the
choice of P versus F or Y comes down to whether or not we
condition on the second margin. There seems to me very little
agreement on this question (Yates 1984; Little 1989). If the sec-
ond margin were ancillary, many frequentists would condition
on it. In this case the second margin is not exactly ancillary for
the odds ratio, but it is approximately ancillary, in the sense that
information in the margin about the odds ratio tends to zero as
the sample size increases. So there is no clear frequentist answer
for this most basic of problems.

The Bayesian answer avoids ambiguity about conditioning on
the second margin; indeed conditioning is never really an issue
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with the Bayesian approach, because posterior distributions con-
dition on all the data. On the other hand, there is nothing unique
about the Bayesian answer either, since the posterior probabil-
ity depends on the choice of prior, and the theory of “reference
priors” leading to the Jeffreys’s prior has its own problems.

My second example is a minor wrinkle on another problem
from Statistics 101:

Example 2: Single sample t inference with a bound on pre-
cision. Consider an independent normally distributed sample
with n = 7 observations, with sample mean x = 1 and standard
deviation s = 1. If the population standard deviation (say σ)
is unknown, the usual t-based 95% interval for the population
mean is

IBRP
0.05 (s) = IF

0.05(s) = x ± 2.447(s/
√

n) = 1 ± 0.92, (1)

where a frequentist F interprets this as a 95% confidence interval
(CI), and a Bayesian B interprets it as a 95% posterior credibility
interval, based on Jeffreys’s reference prior (RP) distribution
p(µ, σ) ∝ 1/σ. The correspondence of the B and F intervals
is well known. Suppose now that we are told that σ = 1.5, as
when σ is the known precision of a measuring instrument. The
standard 95% interval is then

IBRP
0.05 (σ = 1.5) = IF

0.05(σ = 1.5)
= x ± 1.96(1.5/

√
n) = 1 ± 1.11. (2)

A collaborator hoping for an interval that excludes a null value
of zero might prefer (1), but both F and B can agree that (2) is the
correct inference, the wider interval reflecting the fact that the
sample variance s is underestimating the true variance σ. Now,
suppose the experimenter reports that σ > 1.5, since he remem-
bers some additional unaccounted sources of variability. Three
candidate 95% intervals for µ are Equations (1) and (2), or the
Bayesian credibility interval with the reference prior modified
to incorporate the constraint that σ > 1.5, namely:

IBRP
0.05 (σ > 1.5) = 1 ± 1.45. (3)

Pick your poison:
(a) Equation (1) seems the optimal 95% frequentist confi-

dence interval, given that it is has exact nominal coverage and σ
is unknown, but it is counter-intuitive for inference: advocates
of this confidence interval will have difficulty explaining how
the information that σ > 1.5 leads to a narrower interval than
Equation (2), the standard frequentist interval when σ = 1.5!
A referee scoffs at any notion that (1) is the frequentist solution
because it ignores the lower bound on σ; but I know of no inter-
val that has exact 95% coverage and takes appropriate account
of this information.

(b) Equation (2) is the obvious asymptotic approximation,
given that 1.5 is the maximum likelihood estimate of σ. How-
ever, for a sample size n = 7 the appeal to asymptotics is clearly
wrong, and it is not clear with what to replace it. The constraint
σ > 1.5 implies that Equation (2) has less than 95% confidence
coverage, since it is based on a known underestimate of σ. Inter-
estingly, this is true even though it contains the exact t interval,
Equation (1), for the observed sample; a neat illustration that a

CI is not a probability interval, since with a probability interval
that clearly cannot happen!

(c) Equation (3) is the Bayes interval subject to the constraint
that σ > 1.5. It is appropriately wider than Equation (2), but it
is (as always) dependent on the choice of prior distribution.

These examples illustrate worrying ambiguity in simple set-
tings; I would also argue that differences in Bayes and frequentist
solutions undermine the credibility of statisticians in much more
complex real-world settings. Here are some broader examples:

Example 3: Penalties for peeking? Clinical trials often have
interim analyses to assess whether they should be continued, or
stopped because one treatment has a decisive advantage. Should
inferences be affected by these multiple looks at the data? A
frequentist says yes, tests need to be modified to maintain the
nominal alpha-level for tests of the null (spending functions)
(e.g., DeMets and Ware 1980). A Bayesian says no, the stopping
rule is ignorable, so the posterior distribution is unaffected by
prior looks at data (e.g., Lindley 1972, p. 24). This example is
cited as a counter-example by both Bayesians and frequentists! If
we statisticians can’t agree which theory this example is counter
to, what is a clinician to make of this debate?

Example 4: Multiple imputation combining rules for miss-
ing data. Rubin developed multiple imputation, which imputes
more than one draw from the predictive distribution of the miss-
ing values (Rubin 1987). Multiple imputation combining rules
(MICR) have been developed for interval estimation and hypoth-
esis testing, which can be applied to yield inferences that account
for imputation uncertainty (Rubin 1987; Little and Rubin 2002).
There is much controversy about these combining rules under
potentially misspecified imputation models (Meng 1994; Ru-
bin 1996; Fay 1996; Rao 1996; Robins and Wang 2000). The
300-pound gorilla looming over these debates is to my mind
philosophical, namely whether the inference is frequentist or
Bayesian (see Figure 1). In particular, MICRs are based on
Bayesian principles, whereas the criticisms focus on frequentist
issues like unbiased estimation of sampling variance. Without
an agreement on the underlying philosophy of inference, it is
hard to see how these disputes can be resolved.

Example 5: Survey weights in regression. Substantive anal-
yses of survey data are usually model-based, whereas the sur-
vey statisticians who collect the data typically advocate design-
based inference. These groups differ on basic issues like how
to weight the data: should we use design-based weights propor-
tional to the inverse of the probability of selection, or model-
based weights proportional to the inverse of the residual model
variance? Bayesian inference in surveys is one variant of the
model-based approach, and design-based inference is inherently
frequentist, so this division is a further illustration of the Bayes-
frequentist divide. I have argued that a unified approach based on
models that account for the survey design would reduce friction
and speed progress (Little 2004).

Example 6: Modeling the Census undercount. The Census
undercount is a very complicated problem, involving an inter-
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Figure 1. The Bayes/frequentist gorilla lurks behind arguments about multiple imputation combining rules (MICRs).

play between politics, data collection, human behavior, and com-
plex statistical modeling. The design-based tradition at the Cen-
sus Bureau, antipathy towards subjective elements of models in
a data-collection agency, and divisions within the profession of
the value of statistical modeling in such settings, have led to
limited and hesitant use of statistical models for this problem.
The lack of a unified front on the role of statistical modeling
within the profession has encouraged politicians to weigh in on
sides that favor their self-interest. Thus, it seems at times that
the Census Bureau is limited to the kind of basic statistical tools
“that a U.S. congressman can understand.” One might contrast
this with the sophisticated modeling that occurs in other areas
of policy interest, like econometric simulation models or infec-
tious disease modeling (e.g. Longini et al. 2005). With a unified
front that accepted modeling as the basic tool for inference, we
might develop the complex methodology needed to launch this
spaceship.

Given these confusions and ambiguities arising from differ-
ences in frequentist and Bayesian statistics, is there a compro-
mise that captures the strengths of both approaches? I think
there is, and it emerges naturally from an assessment of the
relative strengths and weaknesses of the Bayesian and frequen-
tist paradigms. My personal assessment is provided in the next
two sections.

3. STRENGTHS AND WEAKNESSES OF
FREQUENTIST INFERENCE

The frequentist paradigm avoids the need for a prior distri-
bution, and makes a clear separation of the role of prior infor-
mation in model formulation and the role of data in estimating
parameters. These pieces are treated on a more equal footing
in the Bayesian approach, in that the prior density and likeli-
hood multiply to create the posterior distribution. The frequen-
tist approach is flexible, in the sense that full modeling is not
necessarily required, and inferences lack the formal structure of
Bayes’s theorem under a fully specified prior and likelihood. In
a sense any method is frequentist, provided its frequentist prop-
erties can be studied. The focus on repeated sampling properties

tends to assure that frequentist inferences are well calibrated;
for example, in the survey sampling setting, design-based in-
ference automatically takes into account survey design features
that might be ignored in a model-based approach.

The frequentist paradigm has serious shortcomings, however.
To be succinct, the frequentist paradigm is not prescriptive, in-
complete, ambiguous, and incoherent. (Apart from that it’s a
great theory!) Let me elaborate.

Frequentist theory is not prescriptive. Frequentist theory
seems to me a set of concepts for assessing properties of in-
ference procedures rather than an inferential system per se.

There is no unified theory for how to generate these proce-
dures. Thus, the principle of least squares generates some useful
methods, but is too limited for a general theory. Unbiasedness
seems a desirable property, but it has severe limitations as a gen-
eral principle. Illustrations include the James-Stein results on
inadmissibility of unbiased estimates, and (my favorite) Basu’s
famous elephant example (Basu 1971), where an unbiased esti-
mator based on a misguided underlying model is always useless.
Generalized estimating equations provide a very broad class of
procedures, but there seems no general prescription for how to
choose the equations, and the theory is basically asymptotic.

Although frequentist inference as a whole is not, I feel, pre-
scriptive, some parts of it are: in particular, Efron (1986) sug-
gested that Fisher’s theory of maximum likelihood estimation,
with measures of uncertainty based on the observed information,
is popular because it provides an “automatic” form of frequentist
inference. This is not to me an argument against Bayes, because
it is the form of frequentist inference closest to Bayes, and it has
a large sample Bayes interpretation. Efron contrasted this with
Bayesian theory, which “requires a great deal of thought about
the given situation to apply sensibly.” However, given enough
data and some attention to the treacherous rocks represented by
improper posterior distributions, one may use Bayes with a ref-
erence prior to achieve an inference with same degree of thought
as Fisherian theory, and often with better results. In his discus-
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Figure 2. How large a sample is needed to reach the land of asymptotia?

sion of Efron (1986), Lindley (1986) noted the automatic nature
of Bayes’s theorem for generating the posterior distribution.

Frequentist theory is incomplete. If we define frequentist an-
swers as capturing the information in the data, and yielding an-
swers with exact frequentist properties—for example, a 95%
confidence interval covering the true parameter 95% of the time
in repeated sampling—then frequentist statistics does not yield
enough answers. That is, exact finite-sample frequentist solu-
tions are limited to a narrow class of problems. A famous his-
torical example is the Behrens-Fisher problem, concerning two
independent normal samples with means (µ1, µ2) and distinct
variances (σ2

1 , σ2
2), where there is no efficient confidence inter-

val for the difference in means with exact confidence coverage
(although there are many serviceable approximate solutions).

Perhaps the lack of a satisfactory small-sample theory has led
frequentists to focus on asymptotic properties, where the ground
is much more fertile. An example is the current enthusiasm for
semiparametric efficiency, with asymptotic results driven by a
search for robustness without invoking modeling assumptions.
This focus generates a lot of elegant mathematics and some use-
ful practical methods as well. However, the emphasis on asymp-
totic properties has its dangers, as it is often unclear whether
we have reached the magic “land of asymptotia” (see Figure 2).
Asymptotic results are of limited use for assessing the trade-off
between model complexity and the available sample size. Sim-
ulations can do this, but they are often treated with disdain by
mathematical statisticians, and have limited scope.

Frequentist theory is ambiguous. Specifically, the reference
set for determining repeated-sampling properties is often am-
biguous, and frequentist theory suffers from nonuniqueness of
ancillary statistics (Cox 1971). Example 1 is one of many exam-
ples; another is whether to condition on the post-stratum sample

counts in post-stratification of sample surveys (Holt and Smith
1979).

Frequentist theory is incoherent, in the sense that it violates
the likelihood principle. Birnbaum (1962) claimed to “prove”
that under a well-specified model M, S + C = L. That is,

S = sufficiency—the principle that data can be reduced to suf-
ficient statistics, when combined with

C = conditionality—the principle of conditioning on ancillary
statistics that have distributions unrelated to parameters of
interest, which leads to

L = likelihood principle—models and datasets leading to the
same likelihood function should generate the same statis-
tical inferences.

The likelihood principle plays an important role in the in-
ferential debate since it is satisfied by Bayesian inference and
violated by frequentist inference. A classic example of the lat-
ter is contained in two coin-tossing experiments, where θ is the
probability of a head and 1−θ the probability of a tail. Consider
two experiments: (a) binomial sampling, where the coin is tossed
n = 12 times and X = 3 of the tosses turn up heads (E1); and
(b) negative binomial sampling, where the coin is tossed until a
predetermined number x = 3 heads are obtained, and N = 12
tosses are needed (E2). Both E1 and E2 lead to the same likeli-
hood, namely

L ∝ θ3(1 − θ)9.

Hence, under the likelihood principle, these two experiment/data
combinations should yield the same inferences. The maximum
likelihood estimates are the same (3/12), but since the sampling
spaces of E1 and E2 are different, the P values from the usual
exact tests of H0 : θ = 1/2 against Ha : θ < 1/2 are different—
0.073 for E1 and 0.033 for E2. These repeated sampling infer-
ences (and the confidence intervals obtained by inverting the

The American Statistician, August 2006, Vol. 60, No. 3 5



tests) violate the likelihood principle, since they differ, despite
the fact that the likelihood function L is the same.

Birnbaum’s (1962) paper caused quite a stir when it came out.
For example, Savage opened his discussion with the words:

. . . this is really an historic occasion. This paper is a landmark in statistics
because it seems to me improbable that many people will be able to read
it. . . without coming away with considerable respect for the likelihood prin-
ciple.

In a recent discussion of these ideas, Robins and Wasserman
(2000) argued for reexamination of the likelihood principle in the
context of an infinite-dimensional example described by Robins
and Ritov (1997).

4. STRENGTHS AND WEAKNESSES OF THE
BAYESIAN PARADIGM

The Bayesian paradigm addresses many of the weaknesses of
the frequentist approach described above. Specifically it is a pre-
scriptive, complete, unambiguous (for a given choice of model
and prior distribution), and coherent. For a given Bayesian model
and prior distribution, Bayes’s theorem is the simple prescrip-
tion that supplies the inference. It may be difficult to compute,
and checks are needed to ensure that the posterior distribution
is proper, but the solution is clear and ambiguous. Bayes’s in-
ference is also coherent, in that Bayes’s theorem is the cor-
rect way to update beliefs (as represented by probability dis-
tributions) to incorporate new information (e.g., Savage 1954;
de Finetti 1974). Coherency is often argued in the decision-
theoretic framework (e.g., Ferguson 1967).

Bayesian inferences (fixed probability intervals for unknown
quantities), not frequentist inferences (random intervals for fixed
quantities), are arguably what people really want; in particular,
confidence intervals lead to the kinds of inconsistencies illus-
trated in Example 2, or in more elaborate examples such as that
of Robinson (1975).

There are, however, difficulties in implementing the Bayes ap-
proach that inhibit its adoption. Some often-cited problems with
the Bayesian paradigm are not to my mind very compelling.
Perhaps the most common is that Bayes is viewed as too sub-
jective for scientific inference, requiring a subjective definition
of probability and the selection of a prior distribution. However,
subjectivity is to me a matter of degree, and Bayesian models
can run the full gamut, from standard regression models with
reference priors that mimic frequentist intervals, to more subjec-
tive models that bring in proper prior information (Press 1986).
My broad view of Bayesian methods includes methods based
on noninformative priors that some classify as frequentist (e.g.,
Samaniego and Reneau 1994). Frequentist methods also vary in
subjectivity. For example, a covariate selected out of a regres-
sion equation is in effect being given a sharp prior distribution
with all the probability at zero. Models with strong assumptions,
such as models selectivity bias (e.g., Heckman 1976), are no less
subjective because they are analyzed using frequentist methods.
Some statisticians worry about the subjective definition of prob-
ability that underlies the Bayesian approach, but I am not one of
them.

Another criticism of Bayesianism is that it denies the role
of randomization for design, since the randomization distribu-
tion is not the basis for model-based inferences. Indeed, some
Bayesians have fueled this criticism by denying that randomiza-

tion plays any kind of useful design role. On the contrary, the
utility of randomization from the Bayesian perspective becomes
clear when the model is expanded to include indicators for the
selection of cases or allocation of treatment. Randomization pro-
vides a practical way to assure that the selection or allocation
mechanisms are ignorable for inference, without making ignor-
able selection or allocation a questionable assumption. Gelman,
Carlin, Stern, and Rubin (2003, chap. 7) provided a clear dis-
cussion of this point.

There are, however, some difficulties with the practical imple-
mentation of the Bayesian approach that I find more compelling.

Bayes requires and relies on full specification of a model (like-
lihood and prior). In general Bayes involves a full probability
model for the data, including a prior distribution for unknown
parameters—Efron (2005) discussed this high degree of speci-
fication. Developing a good model is often challenging, particu-
larly in complex problems. Where does this model come from?
Is it trustworthy? Bayes is much less prescriptive about how to
select models than it is once model and prior distribution are
selected.

Bayes yields “too many answers.” I complained that the fre-
quentist paradigm does not provide enough exact answers; with
Bayes, there is an embarrassment of riches, because once the
likelihood is nailed down, every prior distribution leads to a dif-
ferent answer! If forced to pick a prior distribution, the problem
is which prior to choose. If the mapping from the prior dis-
tribution to the posterior distribution is considered the key, as
argued cogently by some Bayesians (e.g., Leamer 1978), there
is still a problem with the surfeit of posterior distributions. Sen-
sitivity analysis is often a rational choice, but it is not a choice
that appeals much to practitioners who are looking for clear-cut
answers.

Models are always wrong, and bad models lead to bad an-
swers. Although the search for procedures with good frequen-
tist properties provides some degree of protection against model
misspecification under the frequentist paradigm, there seems
no such built-in protection under the strict Bayesian paradigm.
Models are always idealizations and hence simplified, and mod-
els that are disastrously wrong lead to disastrous answers. This
makes the search for good model checks important, but models
are also vulnerable to subtle misspecification errors that are not
easily picked up by model diagnostics. The following example
is influential in survey sampling circles.

Example 7: A nonrobust model for disproportionate stratified
sampling. Hansen, Madow, and Tepping (1983) considered es-
timators of the finite population mean Y of a survey variable
Y , in the setting of disproportionate stratified sampling with an
auxiliary variable X known for all units of the population. They
considered the model-based prediction estimator obtained from
the ratio model

[
yi | xi, zi = j, β, σ2] ∼

iid N
(
βxi, σ

2xi

)
, (4)

which leads (ignoring finite population corrections) to the sim-
ple ratio estimator yR = (y/x)X , where X is the population
mean of X and (y, x) are the unweighted sample means of
Y and X that ignore the differential sampling weights across
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strata. They conducted simulations comparing the performance
of yR with the combined ratio estimate yCR = (yst/xst)X ,
where (yst, xst) are stratified means that incorporate the sam-
pling weights. If the ratio model (4) is true, yR is better than yCR,
so the sampling weights should be ignored. However, Hansen,
Madow, and Tepping (1983) showed that the bias of yR can be
serious even when diagnostic checks for whether β in the ra-
tio model is constant across the strata suggest that assumption
is plausible. Valliant, Dorfman, and Royall (2000) questioned
Hansen et al.’s choice of diagnostics, but my view is that under
disproportionate stratified sampling, a model like (4) that ignores
stratum effects is too vulnerable to misspecification to be a sound
basis for inference, unless there are convincing reasons to be-
lieve that stratum effects are not present. One setting where (4)
is justified is when the strata are created using random numbers,
since then stratum is clearly independent of outcomes. How-
ever, in practice strata are never created in this way, but rather
are based on characteristics likely to be related to the survey
outcomes. If the sample size is large, even a slight misspecifi-
cation in (4) caused by minor differences in the distribution of
Y between strata can induce a bias in yR that dominates mean
squared error and corrupts confidence coverage.

Bayes is less convincing for model formulation and assess-
ment than for inference under a given model: Bayesian model
averaging is intuitive and compelling, but in any given problem
there is still the problem of deciding the class of models over
which averaging takes place, and how to choose the prior prob-
abilities of models in the class. Bayesian hypothesis testing has
the logic of Bayes’s theorem in its favor, but comparing models
of different dimension is tricky, and sensitive to the choice of
priors. Strictly subjective Bayesians claim they can make this
work, but the approach is a hard sell for scientific inference (and
I suspect applied Bayesians “peek” at the data in practice). It
seems unlikely to me that Bayesian model assessment can ever
achieve the degree of clarity of Bayesian inference under an
agreed model.

5. CALIBRATED BAYES: A POTENTIAL
RESOLUTION OF THE BAYES/FREQUENTIST

SCHISM

A crude summary of the strengths and weaknesses described
above is given in Table 2: Bayesian statistics is strong for in-
ference under an assumed model, but is relatively weak for the
development and assessment of models. Frequentist statistics
provides a useful tool for model development and assessment,
but is a weak tool for inference under an assumed model. If this
summary is accepted, then the natural compromise is to use fre-
quentist methods for model development and assessment, and
Bayesian methods for inference under a model. This capitalizes
on the strengths of both paradigms, and is the essence of the
approach known as calibrated Bayes.

Table 2. Summary of Strengths and Weaknesses of Bayes
and Frequentist Paradigms

Activity Bayes Frequentist

Inference under assumed model Strong Weak
Model formulation/Assessment Weak Strong

Many statisticians have advanced the calibrated Bayesian
idea; some examples are Peers (1965), Welch (1965), and Dawid
(1982). I myself have assessed the frequentist properties of
Bayesian procedures in methodological work (e.g., Little 1988).
But two seminal papers by leading proponents of this school,
Box (1980) and Rubin (1984), are required reading for those
interested in this approach. Box (1980) wrote that

I believe that . . . sampling theory is needed for exploration and ultimate criticism
of the entertained model in the light of the current data, while Bayes’s theory is
needed for estimation of parameters conditional on adequacy of the model.

Box (1980) based his implementation of this idea on the fac-
torization:

p (Y, θ | M) = p (Y | M) p (θ | Y, M) ,

where the second term on the right side is the posterior distri-
bution of the parameter θ given data Y and model M , and is
the basis for inference, and the first term on the right side is the
marginal distribution of the data Y under the model M , and is
used to assess the validity of M , with the aid of frequentist con-
siderations. Specifically, discrepancy functions of the observed
data d(Yobs) are assessed from the perspective of realizations
from their marginal distribution p(d(Y ) | M). A questionable
feature of this “prior predictive checking” is that checks are sen-
sitive to the choice of prior distribution even when this choice has
limited impact on the posterior inference; in particular it leads to
problems with assessment of models involving noninformative
priors.

Rubin (1984) wrote that

The applied statistician should be Bayesian in principle and calibrated to the real
world in practice—appropriate frequency calculations help to define such a tie
. . . frequency calculations are useful for making Bayesian statements scientific,
scientific in the sense of capable of being shown wrong by empirical test; here
the technique is the calibration of Bayesian probabilities to the frequencies of
actual events.

Rubin (1984) and Gelman, Meng, and Stern (1996) advocated
model checking based on a different factorization than that of
Box (1980), namely:

p (Y ∗, θ∗, θ | Yobs, M)
= p (Y ∗, θ∗ | Yobs, θ, M) p (θ | Yobs, M) ,

where (Y ∗, θ∗) is the realization of a future data and parameter
values based on the posterior predictive distribution given model
M and observed data Yobs. This leads to posterior predictive
checks (Rubin 1984; Gelman, Meng, and Stern 1996), which
extend frequentist checking methods by not limiting attention
to checking statistics that have a known distribution under the
model. These checks involve an amalgam of Bayesian and fre-
quentist ideas, but are clearly frequentist in spirit in that they
concern embedding the observed data within a sequence of un-
observed datasets that could have been generated under M , and
seeing whether the observed data are “reasonable.”

These methods have been criticized for using the data twice
and hence not yielding tail-area P values that are uniformly
distributed under the posited model (Bayarri and Berger 2000;
Robins, van der Vaart, and Ventura 2000), but it seems to me
that they nevertheless provide a promising avenue for model-
checking.
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What are the implications of the calibrated Bayes viewpoint
for the examples in this article? Space precludes a detailed dis-
cussion, but some brief considerations follow:

Example 1 (continued). Tests of independence in a 2 × 2
contingency table. The standard Bayesian inference adds Beta
priors for the success rates in the two groups and computes the
posterior probability that π1 > π2. Proper prior distributions
may be entertained in certain contexts; when there is little prior
evidence about the success rates, the choice of “objective prior”
has been debated, but Jeffreys’s prior is one plausible conven-
tional choice. The Fisher exact test P value corresponds to an
odd choice of prior distribution (Altham 1969). Calibrated Bayes
methods limit ambiguities in the reference set for frequentist as-
sessments to model evaluation, rather than to model inference
under a specified model. In particular, Gelman (2003) argued
for posterior predictive checks that condition on the margin of
the contingency table fixed by the design.

Example 2 (continued): Single sample t inference with a
bound on precision. As a simple example of posterior predictive
checking, Figure 3 displays the posterior predictive distribution
of the sample variance s∗2 under the normal model in Example
2, assuming a Jeffreys’s prior for the parameters. The posterior
probability of observing a sample variance in future datasets as
low as the observed sample variance of s2 = 1 is about 0.065,
which is low but not exceptional, so the posited model seems
not unreasonable.

Example 3 (continued): Penalties for peeking? Since the cal-
ibrated Bayes inference is Bayesian, there are no penalties for
peeking in the inference—the inference is unaffected by interim
analysis. On the other hand, interim analyses and stopping rules
do increase sensitivity of the Bayesian inference to the choice of
prior distribution (Rosenbaum and Rubin 1984), so they do have
subtle implications for the robustness of the inference. Thus,
models for datasets subject to interim analyses need to be care-
fully justified and checked.

Example 4 (continued): Multiple imputation combining rules
for missing data. The calibrated Bayes inference is Bayesian,
Rubin’s (1987) MICRs are valid as approximations to this infer-
ence. On the other hand, in situations where multiple imputation
is used in public use datasets, the imputation model needs to
take into account the fact that the user may be adopting a differ-
ent model or analysis. Rubin argued that the imputation model
should be relatively “weak,” in the sense of including rather than
excluding covariates, arguing that it is worth sacrificing some ef-
ficiency to avoid imposing a strong imputation model on the user
of the dataset.

Example 5 (continued): Survey weights in regression. The
calibrated Bayes approach implies that survey inference should
be model-based rather than design-based—with large samples
the likelihood often dominates the prior, and the Bayesian ap-
proach yields similar results to the super-population modeling
paradigm popular in model-based survey inference (Valliant,
Dorfman, and Royall 2000). However, the calibrated Bayes per-
spective does encourage frequentist assessments of the proper-
ties of the Bayesian inferences, and in particular favors models

that lead to estimates with good frequentist properties. One such
property is design consistency (Brewer 1979; Isaki and Fuller
1982), which holds when an estimate tends to the estimand as the
sample size increases, irrespective of the truth of the model. Re-
striction to models that yield design-consistent estimates (Little
1983, 2004; Firth and Bennett 1998) avoids models that ignore
features of the survey design and are vulnerable to misspecifi-
cation.

Thus, the calibrated Bayes approach leads to regression mod-
els for complex surveys that take explicit account of features of
the sample design like stratification and weighting. In particular,
it can be shown that design-weighted regression estimates, with
the weights incorporating factors for nonconstant variance, can
be justified as approximate Bayes for models that include effects
for strata defined by different probabilities of selection (Little
1991; Little 2004, Example 11).

Example 6 (continued): Modeling the Census under-
count. Complex models need to be developed that capture the
intricacies of Census data collection. For an initial attempt at
such a Bayesian model for combining Census, post-enumeration
data and demographic analysis, see Elliott and Little (2005). The
model assessment component would be helped by building re-
search pseudo-populations of records from earlier censuses that
form the basis for simulation assessments of different model pro-
cedures. Subjective elements of the model needed to be made
explicit and resolved by consensus of experts, and in some cases,
sensitivity analyses may be needed to assess the impact of alter-
native assumptions on Census answers.

Example 7 (continued) A nonrobust model for disproportion-
ate stratified sampling. The model (4) criticized in Example 7
does not yield to a design-consistent estimate of the popula-
tion mean, and hence is not appropriate from a calibrated Bayes
perspective. A simple modification that achieves design con-
sistency is to allow for differences in the regression coefficient
across strata, as in the model

[
yi | xi, zi = j, β, σ2] ∼

iid N
(
βj , xi, σ

2
j xi

)
, (5)

which leads to the separate ratio estimator ysr = ΣjPjyj(
Xj/xj

)
, where in stratum j, Pj is the population proportion

and yj , xj , Xj are, respectively, the sample means of Y and X
and the population mean of X . This model is robust to misspec-
ification in large samples. In small samples ysr may be exces-
sively noisy, but smoothing ysr towards yR can be achieved by
assuming a prior distribution on the slopes {βj} with mean β
and variance τ2. The estimator from this random effects model
is also design consistent, and might prove a strong competitor
to ysr or the estimator ycr considered by Hansen, Madow, and
Tepping (1983). The latter is a prediction estimator under model
(5), but ignores the information in the known population means
{Xj}.

Fisherian significance tests have a role within the calibrated
Bayes paradigm for model checking (Box 1980; Rubin 1984).
For example, a global test of whether data are consistent with a
null model is allowed without the need to specify the alternative
hypothesis. On the other hand, classical hypothesis testing does
not have a role for inference about model parameters—not in
my view a serious loss. For an interesting recent assessment of
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Figure 3. The posterior predictive distribution of the sample variance under the model of Example 2.

the various forms of hypothesis testing that lends support to this
position, see Christensen (2005).

This is not to claim that calibrated Bayes solves all the prob-
lems of statistical inference. Ambiguities arise at the frontier be-
tween model inference and model checking. How much peeking
at the data is allowed in developing the model without seriously
corrupting the inference? When is model selection appropri-
ate as opposed to model averaging (e.g., Draper 1995)? There
remains much to argue about here, but I still think that the cal-
ibrated Bayes provides a useful roadmap for many problems of
statistical modeling and inference.

6. IMPLICATIONS FOR THE TEACHING AND
PRACTICE OF STATISTICS

If calibrated Bayes provides a useful roadmap, what are its
implications for the future teaching and practice of statistics? I
conclude by offering some thoughts on this issue:

1. Bayesian statistical methods need to be taught! Currently
Bayesian statistics is absent or “optional” in many programs for
training MS and even Ph.D. statisticians, and Ph.D. statisticians
are trained with very little exposure to Bayesian ideas, beyond a
few lectures in a theory sequence dominated by frequentist ideas.
This is clearly incompatible with my roadmap, and it seems to
me unconscionable given the prominence of Bayes in science, as
evidenced by the strong representation of modern-day Bayesians
in science citations (Science Watch 2002). As a first step, I would
argue that a Bayes course should be a required component of any
MS or Ph.D. program in statistics.

When it comes to consumers of statistics, Bayes is not a part
of most introductory statistics courses, so most think of frequen-
tist statistics as all of statistics, and are not aware that Bayesian
inference exists. Defenders of the status quo claim that Bayesian
inference is too difficult to teach to students with limited math-
ematical ability, but my view is that these difficulties are over-
rated. The basic idea of Bayes’s theorem does not require calcu-

lus, and Bayesian methods seem to me quite teachable if the em-
phasis is placed on interpretation of models and results, rather
than on the inner workings of Bayesian calculations. Indeed,
Bayesian posterior credibility intervals have a much more direct
interpretation than confidence intervals, as illustrated in Exam-
ple 2. Frequentist hypothesis testing is no picnic to teach to
consumers of statistics, for that matter!

2. More emphasis on statistical modeling over methods.
Since the roadmap advocates model-based inference, it empha-
sizes statistical models over statistical methods. Formulating
useful statistical models for real problems is not simple, and
students need more instruction on how to fit models to com-
plicated datasets. We need to elucidate the subtleties of model
development. Issues include the following: (a) models with bet-
ter fits can yield worse predictions than methods that fit the
observed data better; (b) all model assumptions are not equal,
for example, in regression lack of normality of errors is sec-
ondary to misspecification of the error variance, which is in turn
secondary to misspecification of the mean structure; and (c) If
inferences are to be Bayesian, more attention needs to be paid
to the difficulties of picking priors in high-dimensional complex
models, objective or subjective.

3. More attention is needed to assessments of model fit.
Models are imperfect idealizations, and hence need careful
checking; according to the roadmap, this is where frequentist
methods have an important role. These methods include Fishe-
rian significance tests of null models, diagnostics that check the
model in directions that are important for the target inferences,
and model-checking devices like posterior predictive checking
and cross-validation. Such diagnostics are well known for re-
gression, but perhaps less developed and taught for other mod-
els.
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To summarize, Bayes and frequentist ideas are important for
good statistical inference, and both sets of ideas need to be devel-
oped and taught. The calibrated Bayes compromise capitalizes
on strengths of Bayes and frequentist paradigms. It leaves much
to argue about, but it is a good roadmap for future advances.

[Received February 2006. Revised March 2006.]
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