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a b s t r a c t

The modeling and analysis of lifetime data is an important aspect of statistical work in a
wide variety of scientific and technological fields. Good (1953) introduced a probability
distribution which is commonly used in the analysis of lifetime data. For the first time,
based on this distribution, we propose the so-called exponentiated generalized inverse
Gaussian distribution, which extends the exponentiated standard gamma distribution
(Nadarajah and Kotz, 2006). Various structural properties of the new distribution are
derived, including expansions for its moments, moment generating function, moments of
the order statistics, and so forth. We discuss maximum likelihood estimation of the model
parameters. The usefulness of the new model is illustrated by means of a real data set.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The generalized inverseGaussian (GIG) distribution introduced byGood (1953) iswidely used formodeling and analyzing
lifetime data. A random variable X has a GIG distribution if its probability density function (pdf) is given by

f (x; λ, χ,ψ) =
(ψ/χ)λ/2

2Kλ(
√
χψ)

xλ−1 exp

−

1
2


ψx +

χ

x


, x > 0.

Here, −∞ < λ < ∞, (χ, ψ) ∈ Θλ, where Θλ = {(χ, ψ) : χ ≥ 0, ψ > 0} if λ > 0, {(χ, ψ) : χ > 0, ψ > 0} if λ = 0
and {(χ, ψ) : χ > 0, ψ ≥ 0} if λ < 0. Also, Kν(z) denotes the modified Bessel function of the third kind with index ν
and argument z (see, for example, Watson, 1995). Special sub-models include the gamma distribution (χ = 0, λ > 0), the
reciprocal gammadistribution (ψ = 0, λ < 0), the inverse Gaussian distribution (λ = −1/2) and the hyperbola distribution
(λ = 0). Introducing the parameters ω = χ/2 and η = ψ/2, the above density function becomes

f (x; λ, ω, η) = C xλ−1 exp

−

ηx + ωx−1, x > 0, (1)

where the normalizing constant is C = C(λ, ω, η) = (η/ω)λ/2/{2Kλ

2
√
ηω

}. A random variable X having density function

(1) is denoted by X ∼ GIG(λ, ω, η). The rth moment of X about zero is given by

E(X r) =


ω

η

r/2 Kλ+r

2
√
ηω


Kλ

2
√
ηω
 . (2)
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The moment generating function (mgf) associated to (1) is

M(t) =


η

η − t

λ/2 Kλ2√(η − t)ω


Kλ

2
√
ωη
 . (3)

In addition, the cumulative distribution function (cdf) becomes

F(x) = F(x; λ, ω, η) = Cη−λγ (λ, ηx; ηω) = 1 − Cη−λΓ (λ, ηx; ηω), (4)

where γ (α, x; b) =
 x
0 tα−1 exp{−(t + bt−1)}dt and Γ (α, x; b) =


∞

x tα−1 exp{−(t + bt−1)}dt are the generalized
incomplete gamma functions (Chaudhry and Zubair, 1994) discussed in detail by Chaudhry and Zubair (2002). If the
argument b vanishes, the functions γ (α, x; b) and Γ (α, x; b) reduce to the ordinary incomplete gamma functions
γ (α, x; 0) = γ (α, x) =

 x
0 tα−1e−tdt and Γ (α, x; 0) = Γ (α, x) =


∞

x tα−1e−tdt . The GIG distribution has survival and
hazard rate functions given by S(x) = Cη−λΓ (λ, ηx; ηω) and h(x) = ηλxλ−1 exp{−(ηx+ωx−1)}/Γ (λ, ηx; ηω), respectively.

From Chaudhry and Zubair (2002, Eq. (2.91)), we have Γ (α, x; b) =
∑

∞

j=0 Γ (α − j, x)(−b)j/j!. Since γ (α, x) =∑
∞

k=0(−1)kxk+α/{k!(k + α)} and Γ (α, x) = Γ (α) − γ (α, x), where Γ (α) =


∞

0 tα−1e−tdt is the gamma function, the
function Γ (α, x; b) can be expanded as Γ (α, x; b) =

∑
∞

j=0(−b)j[Γ (α − j)/j! −
∑

∞

k=0(−1)kxk+α−j/{k!j!(k + α − j)}]. Thus,
inserting this equation in (4), F(x) can be rewritten as

F(x) = 1 −


ρ +

∞−
j,k=0

aj,kxk−j+λ


, (5)

where ρ = ρ(λ, η, ω) = Cη−λ
∑

∞

j=0 Γ (λ − j)(−ηω)j/j! and aj,k = aj,k(λ, η, ω) = (−1)k+j+1Cηkωj/{(k − j + λ)j!k!}. To
calculate ρ, the index j can stop after a large number of summands.

The GIG distribution has been applied in a variety of fields of statistics; see, for example, Embrechts (1983),
Iyengar and Liao (1997) and Thabane and Haq (1999). Sichel (1975) used the GIG distribution to construct mixture of
Poisson distributions. Barndorff-Nielsen (1978) and Barndorff-Nielsen et al. (1978) used the GIG distribution as a mixing
distribution to obtain the generalized hyperbolic distribution as a mixture of normal distributions. Statistical properties
and distributional behavior of the GIG distribution are discussed by Jørgensen (1982). Atkinson (1982) and Dagpunar (1989)
provided algorithms for simulating theGIGdistribution.More recently, Nguyen et al. (2003) showed that theGIGdistribution
has positive skewness.

In this note, we introduce the so-called exponentiated generalized inverse Gaussian (EGIG) distribution that contains the
GIG model and other special models. Additionally, we introduce the exponentiated gamma distribution, which generalizes
the exponentiated standard gamma distribution proposed by Nadarajah and Kotz (2006). We obtain some mathematical
properties and discuss maximum likelihood estimation of the parameters. The rest of the article is organized as follows. In
Section 2, we introduce the new distribution. Expansions for the quantile functions of the GIG and EGIG distributions are
presented in Section 3. Section 4 gives a formal expansion for the EGIG density function as amixture of GIG density functions.
The moments, moment generating function (mgf), moments of the order statistics and L-moments are also derived in this
section. Mean deviations and Rényi entropy are investigated in Section 5. The reliability is determined in Section 6. We
discuss in Section 7 maximum likelihood estimation of the model parameters. Section 8 gives an application to a real data
set to show that the proposed distribution can be used quite effectively in analyzing lifetime data. Section 9 provides some
conclusions.

2. The exponentiated generalized inverse Gaussian distribution

Since 1995, the exponentiated distributions have beenwidely studied in statistics and numerous authors have developed
various classes of these distributions. Mudholkar et al. (1995) proposed the exponentiated Weibull distribution. Its
properties have been studied inmore detail byMudholkar andHutson (1996) andNassar and Eissa (2003). Gupta and Kundu
(1999) introduced the exponentiated exponential distribution as a generalization of the standard exponential distribution.
Nadarajah and Kotz (2006) proposed, based on the same idea, four more exponentiated type distributions to extend the
standard gamma, standard Weibull, standard Gumbel and standard Fréchet distributions. More recently, Gusmão et al.
(2009) introduced the exponentiated inverse Weibull distribution. In the same way, we generalize the GIG distribution.

Let F(x) be the cdf of the GIG distribution (Good, 1953). The EGIG cdf can be defined by elevating F(x) to the power β > 0,
i.e. G(x) = F(x)β . Hence, the cdf and density function of the EGIG distribution with four parameters, say EGIG(λ, ω, η, β),
are given, respectively, by

G(x) =

1 − Cη−λΓ (λ, ηx; ηω)

β
, x > 0, (6)

and

g(x) = βCxλ−1 exp

−

ηx + ωx−11 − Cη−λΓ (λ, ηx; ηω)

β−1
, x > 0. (7)
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Fig. 1. Plots of the density (7) and hazard rate function (8) for some parameter values with η = ω = 1.

Alternatively, we can rewrite G(x) and g(x), respectively, as G(x) = Cβη−λβγ (λ, ηx; ηω)β and g(x) = βCβη−λ(β−1)

xλ−1 exp{−(ηx+ωx−1)}γ (λ, ηx; ηω)β−1. When β is equal to a positive integer value, n say, then g(x) is the density function
of the maximum statistic in a random sample of size n from the distribution F(x). The survival S(x) and hazard rate h(x) are
S(x) = 1 − {1 − Cη−λΓ (λ, ηx; ηω)}β and

h(x) =
βCxλ−1 exp


−

ηx + ωx−1


1 − Cη−λΓ (λ, ηx; ηω)

β−1

1 − {1 − Cη−λΓ (λ, ηx; ηω)}β
, x > 0. (8)

The EGIG distribution generalizes a few known distributions. The GIG distribution arises as a special sub-model for β = 1
and its special cases are also special sub-models of the EGIG distribution. In addition, an interesting particular case from the
EGIG distribution arises for ω = 0. When z → 0, it is possible to show that Kλ(z) = 2λ−1z−λΓ (λ) (see Jørgensen, 1982).
Thus, the normalizing constant C reduces to C = ηλ/Γ (λ) for ω = 0 and a new cdf is obtained as

G(x) =


γ (λ, ηx)
Γ (λ)

β
, x > 0, (9)

which is referred to as the exponentiated gamma (EGamma) distribution. The density function corresponding to (9) has the
form

g(x) =
βηλxλ−1 exp(−ηx)

Γ (λ)


γ (λ, ηx)
Γ (λ)

β−1

, x > 0.

The exponentiated standard gamma (ESGamma) distribution (Nadarajah and Kotz, 2006) is a special case of the EGamma
distribution (9) for η = 1 and, consequently, a special case of the EGIG distribution for ω = 0 and η = 1. The mathematical
properties derived in this note for the EGIG distribution hold for the EGamma and ESGamma distributions by setting ω = 0
and ω = 0 and η = 1, respectively. This fact happens for other special sub-models. It is evident that the EGIG distribution
is much more flexible than the GIG distribution. Plots of the density function (7) and hazard rate function (8) for selected
parameter values are shown in Fig. 1.

3. Quantile function

We provide power series expansions for the quantile functions of the GIG and EGIG distributions. First, we consider
the GIG quantile function defined by x = QGIG(u) = F−1(u), where u ∈ (0, 1). Defining the set Ii = {(k, j); k − j = i}
for i = 0, 1, . . . , Eq. (5) can be written as F(x) = 1 − ρ − xλ

∑
∞

i=0 bix
i, where bi =

∑
(k,j)∈Ii

aj,k. We can expand

xλ in a Taylor series to obtain xλ =
∑

∞

k=0(λ)k(x − 1)k/k! =
∑

∞

j=0 fjx
j, where fj =

∑
∞

k=j(−1)k−j


k
j


(λ)k/k! and

(λ)k = λ(λ− 1) . . . (λ− k + 1) is the descending factorial. We have

F(x) = 1 − ρ −


∞−
j=0

fjxj


∞−
i=0

bixi

.
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By multiplying the two power series, we obtain F(x) = 1 − ρ −
∑

∞

i=0 cix
i, where ci =

∑i
k=0 fkbi−k (for i = 0, 1, . . .). Then,

we can rewritew = F(x) as

w = F(x) = w0 −

∞−
i=1

cixi, F ′(x) = −c1 ≠ 0, (10)

where w0 = 1 − ρ − c0. By inverting (10), the quantile function x = QGIG(w) = F−1(w) can be written as a power
series expansion x = QGIG(w) =

∑
∞

i=1 gi(w − w0)
i, where gn = (1/n!)dn−1Ψ (x)n/dxn−1

|x=x0 and Ψ (x) = x/{F(x) − w0}.
We have Ψ (x) = −x/

∑
∞

i=1 cix
i

= −1/
∑

∞

i=0 ci+1xi =
∑

∞

i=0 dix
i. Here, the inverse of the power series follows from

Gradshteyn and Ryzhik (2007). The coefficients di can be calculated recursively from the quantities ci by d0 = 1 and
di = c−1

1
∑i

k=1 di−kck+1 (i ≥ 1). We can obtain Ψ (x)n and then using a result due to Gradshteyn and Ryzhik (2007) for
a power series raised to a positive integer n, it follows that

Ψ (x)n =


∞−
i=0

dixi
n

=

∞−
i=0

qi,nxi, n ≥ 1, (11)

where the coefficients qi,n (for i = 1, 2, . . .) can be determined from the recurrence relation

qi,n = i−1
i−

m=1

(nm − i + m)dmqi−m,n and q0,n = 1. (12)

The coefficient qi,n can be calculated from the quantities q0,n = 1, . . . , qi−1,n. Clearly, qi,n can be given explicitly in terms
of the coefficients di, but it is not necessary for programming numerically our expansions in any algebraic or numerical
software. The power series with the first (n + 1) terms is Ψ (x)n = q0,n + q1,nx + · · · + qn−1,nxn−1

+ qn,nxn + · · ·. Simple
differentiation gives gn = (1/n!)dn−1Ψ (x)n/dxn−1

|x=x0 = qn−1,n/n and, therefore, the quantile function x = Q (w) reduces
to

x = QGIG(w) =

∞−
n=1

qn−1,n

n
(w − w0)

n, (13)

where the coefficients qi,n are calculated from (12). They are basically implicit functions of the quantities bi and fi (for
i = 0, 1, . . .) defined above. Eq. (13) is the main result of this section.

We now derive an expansion for the EGIG quantile function x = QEGIG(u) = G−1(u). From (10), we can write
G(x) = F(x)β =


1 − ρ −

∑
∞

i=0 cix
i
β , and then, after some algebra, we obtain

G(x) =

∞−
k=0

(−1)k

β

k

 k−
r=0


k
r


ρk−r


∞−
i=0

cixi
r

=

∞−
i=0

hixi, (14)

where hi =
∑

∞

k=0(−1)k

β

k

∑k
r=0


k
r


ρk−rei,r (i ≥ 0), and the quantities ei,r (for i = 1, 2, . . .) can be calculated from the

recurrence relation

ei,r = i−1
i−

m=1

(rm − i + m)cmei−m,r and e0,r = 1.

Hence, G(x) in (14) has the form (10) and then Eq. (13) can be applied to obtain the EGIG quantile expansion by setting
w0 = h0 and ci = −hi (for i ≥ 1) in (10).

Eq. (14) (and others expansions in this article) can be computed numerically in software such asMAPLE (Garvan, 2002),
MATLAB (Sigmon andDavis, 2002) andMATHEMATICA (Wolfram, 2003). These symbolic software have currently the ability
to deal with analytic expressions of formidable size and complexity.

4. Mixture form, moments and order statistics

From now on, let X ∼ EGIG(λ, ω, η, β). We can write from (10)

[1 − F(x)]β−1
=

∞−
j=0

vjxj, (15)

where vj =
∑

∞

i=0(−1)i

β−1
i

∑i
r=0


i
r


ρ i−r tj,r and the constants tj,r are determined by the recurrence relation tj,r =

j−1∑j
m=1(rm− j+m)cmtj−m,r (for j ≥ 1) and t0,r = 1. For evaluating vj, the index i can stop at a very large number. If β is an
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integer, the index j in the above sum stops atβ−1. By (7), we obtain g(x) = βC(λ, ω, η)
∑

∞

j=0 pjvjx
λ+j−1 exp


−

ηx+ωx−1


and then

g(x) =

∞−
j=0

pjfj(x), (16)

where pj = βvjC(λ, ω, η)/C(λ+ j, ω, η) and fj(x) denotes the density function of the GIG(λ+ j, ω, η) distribution. Hence,
the EGIG density function is an infinite linear combination of GIG densities and several of its mathematical properties can
be obtained directly from those GIG properties.

The rth moment about zero and the mgf of X can be determined from (2) and (3) as

µ′

r = E(X r) =


ω

η

r/2 ∞−
j=0

pj
Kλ+r+j


2
√
ηω


Kλ+j

2
√
ηω
 (17)

and

M(t) =


η

η − t

λ/2 ∞−
j=0

pj


η

η − t

j/2 Kλ+j

2
√
(η − t)ω


Kλ+j


2
√
ωη
 ,

respectively. The nth descending factorial moment of X is given byµ′

(n) = E{X (n)} = E{X(X − 1)(X − 2) · · · (X − n+ 1)} =∑n
r=0 s(n, r)µ

′
r , where s(n, r) = (r!)−1

[Drx(n)]x=0 are the Stirling numbers of the first kind. They count the number of
ways to permute a list of n items into r cycles. Then, the factorial moments of X are obtained from (17). The central
moments and cumulants (κs) of X follow immediately from the ordinary moments using well-known relationships. The
skewness γ1 = κ3/κ

3/2
2 and kurtosis γ2 = κ4/κ

2
2 can be calculated from the second, third and fourth cumulants given by

κ2 = µ′

2 − µ′2
1 , κ3 = µ′

3 − 3µ′

2µ
′

1 + 2µ′3
1 and κ4 = µ′

4 − 4µ′

3µ
′

1 − 3µ′2
2 + 12µ′

2µ
′2
1 − 6µ′4

1 .
The density of the ith order statistic Xi:n, say gi:n(x), in a random sample of size n from the EGIG distribution is gi:n(x) =

g(x)Gi−1(x){1 − G(x)}n−i/B(i, n + 1 − i) (i = 1, . . . , n), where B(·, ·) is the beta function. Using (6) and (7), we can rewrite
gi:n(x) as

gi:n(x) =
βCxλ−1 exp


−

ηx + ωx−1


B(i, n + 1 − i)


1 −


1 − Cη−λΓ (λ, ηx; ηω)

1−βn−i
1 − Cη−λΓ (λ, ηx; ηω)

1−βi .

From the binomial expansion and the above results, we have

gi:n(x) =

n−i−
k=0

(−1)k


n−i
k


B(i, n − i + 1)


∞−

m,j=0

v
(i)
j,kpmx

jfm(x)


,

where v(i)j,k =
∑

∞

s=0(−1)s

β(i+k−1)

s

∑s
r=0

 s
r


ρs−r tj,r . Hence, we write

gi:n(x) =

n−i−
k=0

(−1)k


n−i
k


B(i, n − i + 1)


∞−

m,j=0

s(i)m,j,kfm+j(x)


, (18)

where s(i)m,j,k = βv
(i)
j,kC(λ, ω, η)/C(λ+ m + j, ω, η). The moments of Xi:n can be expressed as

E(X r
i:n) =


ω

η

r/2 n−i−
k=0

(−1)k


n−i
k


B(i, n − i + 1)


∞−

m,j=0

s(i)m,j,k
Kλ+m+j+r


2
√
ηω


Kλ+m+j

2
√
ηω
 . (19)

An alternative expression to (19) can be derived from the probability weighted moments (PWMs) (see Greenwood et al.,
1979) using a result due to Barakat and Abdelkader (2004). We have E(X r

i:n) = r
∑n

k=n−i+1(−1)k−n+i−1


k−1
n−i

  n
k


Ir,k,

where Ir,k =


∞

0 xr−1
{1 − G(x)}kdx. By expanding the binomial, we obtain Ir,k =

∑k
m=0


k
m


(−1)mτr−1,m. Here,

τr,s = E{X rG(X)s} =
∑

∞

k,i=0


βs
k


(−1)k

∑k
r=0


k
r


ρk−rhi,rµ

′

r+i, where hi,r can be determined recursively from hi,r =

i−1∑i
m=1(rm − i + m)cmhi−m,r , (for i = 1, 2, . . .), h0,r = 1 and µ′

r+i follows from (17).
The mgf of the ith order statistic, sayMi:n(t), can be written from (3) and (18) as

Mi:n(t) =

n−i−
k=0

(−1)k


n−i
k


B(i, n − i + 1)


∞−

m,j=0

s(i)m,j,k


η

η − t

(λ+m+j)/2 Kλ+m+j

2
√
(η − t)ω


Kλ+m+j


2
√
ωη
 

.
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The L-moments (Hosking, 1990) are analogous to the ordinary moments but can be estimated by linear combinations of
order statistics. They exist whenever the mean of the distribution exists, even though some higher moments may not exist,
and are relatively robust to the effects of outliers. The rth L-moment is defined by τr =

∑r−1
j=0 (−1)r−1−j


r−1
j

 
r−1+j

j


ξj,

where ξj = E{XG(X)j} = (j + 1)−1E(Xj+1:j+1). In particular, τ1 = ξ0, τ2 = 2ξ1 − ξ0, τ3 = 6ξ2 − 6ξ1 + ξ0 and
τ4 = 20ξ3 − 30ξ2 + 12ξ1 − ξ0. The L-moments of the EGIG distribution can be obtained from (19).

5. Mean deviations and Rényi entropy

The amount of scatter in a population is evidently measured to some extent by the totality of deviations from the mean
and median. If X has the EGIG distribution, we can derive the mean deviations about the mean µ′

1 = E(X) and about the
medianm from the density function (7) by

δ1 =

∫
∞

0
|x − µ′

1|g(x)dx and δ2 =

∫
∞

0
|x − m|g(x)dx,

respectively. Themeanµ′

1 is calculated from (17) and themedianm is the solution of thenonlinear equationΓ (λ, ηm; ηω) =

ηλ(1 − 2−1/β)/C . These measures can be calculated from the relationships

δ1 = 2

µ′

1G(µ
′

1)− J(µ′

1)


and δ2 = µ′

1 − 2J(m), (20)

where J(p) =
 p
0 xg(x)dx and G(µ′

1) comes from (6). We have J(p) = η−(λ+1)γ (λ + 1, ηp; ηω)
∑

∞

j=0 pjC(λ + j, w, η),
where pj was defined in Section 4. Bonferroni and Lorenz curves have applications not only in economics to study income
and poverty, but also in other fields like reliability, demography, insurance and medicine. For the EGIG distribution, these
measures are given by B(p) = J(q)/(pµ′

1) and L(p) = J(q)/µ′

1, respectively, where µ′

1 = E(X) and q = G−1(p; λ, η, ω) can
be calculated for a given probability p ∈ (0, 1) by solving the non-linear equation Γ (λ, ηq; ηω) = ηλ(1 − p1/β)/C .

The entropy of a random variable is a measure of uncertainty variation (see Song, 2001). The Rényi entropy is defined
by IR(δ) = (1 − δ)−1 log{


R gδ(x)dx}, where δ > 0 and δ ≠ 1. We can write g(x)δ = βδCδxδ(λ−1) exp{−(δηx +

δωx−1)}
∑

∞

i=0 h
⋆
i x

i, where h⋆i =
∑

∞

k=0(−1)k

δ(β−1)

k

∑k
r=0


k
r


ρk−rei,r (i ≥ 0), and the quantities ei,r (for i = 1, 2, . . .)

can be determined from the ci’s by the recurrence relation given at the end of Section 3. Hence, the Rényi entropy reduces
to

IR(δ) = (1 − δ)−1 log


βδC(λ, ω, η)δ

∞−
i=0

h⋆i
C(δ(λ− 1)+ i + 1, ω, η)


.

6. Reliability

In the context of reliability, the stress–strength model describes the life of a component which has a random strength X1
that is subjected to a random stress X2. The component fails at the instant that the stress applied to it exceeds the strength,
and the component will function satisfactorily whenever X1 > X2. Hence, R = Pr(X2 < X1) is a measure of component
reliability. It haswide applications in the engineering area. First, we derive the reliability Rwhen X1 and X2 have independent
GIG(λ1, ω1, η1) and GIG(λ2, ω2, η2) distributions with different sets of parameters. We readily obtain from (5)

R =

∫
∞

0
f1(x)F2(x)dx = 1 − ρ2 −

∞−
j,k=0

a(2)j,k E(Xk−j+λ2
1 ), (21)

where ρ2 = ρ(λ2, η2, ω2) = C2η
−λ2
2

∑
∞

j=0 Γ (λ2 − j)(−η2ω2)
j/j!, a(2)j,k = (−1)k+j+1C2η

k
2ω

j
2/{(k − j + λ2)j!k!} and

E(Xk−j+λ2
1 ) = (ω1/η1)

(k−j+λ2)/2Kk−j+λ1+λ2


2
√
η1ω1


/Kλ1


2
√
η1ω1


. The reliability R∗ when Y1 and Y2 have independent

EGIG(λ1, ω1, η1, β1) and EGIG(λ2, ω2, η2, β2) distributions can be derived as follows. From Eq. (16), we have

R∗
=

∫
∞

0
g1(x)G2(x)dx =

∞−
j,k=0

p(1)jp(2)k

∫
∞

0
f(1)j(x)F(2)k(x)dx,

where f(r)j(x) and F(r)j(x) denote the density and cumulative functions of the GIG(λr + j, ωr , ηr) distribution (for r =

1, 2) and the p(r)j are the coefficients of the corresponding linear combination form. Eq. (1) yields f(1)j(x) = C(λ1 +

j, ω1, η1)xλ1+j−1 exp

−

η1x + ω1x−1


and (10) gives G(2)k(x) = 1 − ρ

(k)
2 −

∑
∞

i=0 c
(k)
(2)ix

i, where ρ(k)2 = ρ(λ2 + k, η2, ω2) =

C(λ2+k, ω2, η2)η
−λ2−k∑∞

r=0 Γ (λ2+k−r)(−η2ω2)
r/r!, c(k)(2)i =

∑i
m=0 f

(k)
(2)mb

(k)
(2)(i−m), f

(k)
(2)m =

∑
∞

p=m(−1)p−m
 p
m


(λ2+k)p/p!,

b(k)(2)i =
∑

(p,j)∈Ii
a(k)(2)(j,p), a

(k)
(2)(j,p) = (−1)p+j+1C(λ2 +k, η2, ω2)η

p
2ω

j
2/{(p− j+λ)j!p!} (for i = 0, 1, . . .), Ip = {(k, j); k− j = p}

and p ≥ 0. The coefficients in R∗ are determined by p(r)j = C(λr , ωr , ηr)βrv(r)j/C(λr + j, ωr , ηr) for r = 1, 2. Here,
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v(r)j =
∑

∞

i=0(−1)i

βr−1

i

∑i
p=0


i
p


ρ
i−p
r t(r)j,p, t(r)j,p is calculated by the recurrence relation t(r)j,p = j−1∑j

m=1(pm − j +
m)c(r)mt(r)j−m,p (for j ≥ 1) and t(r)0,p = 1, where c(r)i are the coefficients in the expansion of the GIG(λr , ωr , ηr) cumulative
distribution (10). Thus,∫

∞

0
f (1)j (x)F (2)k (x)dx = 1 − ρ

(k)
2

∞−
i=0

c(k)2i

∫
∞

0
C(λ1 + j, ω1, η1)xλ1+i+j−1 exp


−

η1x + ω1x−1dx.

This above integral is the ith moment of the GIG(λ1 + j, ω1, η1) distribution and using (2), we obtain

R∗
= 1 −

∞−
k=0

p2kρ
(k)
2 −

∞−
j,k,i=0

p(1)jp(2)kc
(k)
(2)i


ω1

η1

i/2 Kλ1+i+j

2
√
η1ω1


Kλ1+j


2
√
η1ω1

 .
7. Estimation

We consider estimation of the model parameters by the method of maximum likelihood. Let x = (x1, . . . , xn)⊤ denote
n independent observations from the EGIG distribution with unknown parameter vector θ = (λ, η, ω, β)⊤. The total log-
likelihood function for θ can be written as

ℓ(θ) = ℓ(λ, η, ω, β) = n log(βC)+ (λ− 1)
n−

i=1

log(xi)−

n−
i=1

(ηxi + ωx−1
i )

+ (β − 1)
n−

i=1

log{1 − Cη−λΓ (λ, ηxi; ηω)}. (22)

Formaximizing the log-likelihood (22), we consider λ fixed and then obtain the likelihood equations for estimating η, ω and
β . In principle, λ could also be estimated directly by maximum likelihood but there may be practical difficulties, since in
general the modified Bessel function, and hence the total log-likelihood, is difficult to handle as a function of the parameter
λ, and then the derivatives of ℓ(θ)with respect to λ seem very difficult. Further, the generalized incomplete gamma function
also depends on λ and may also present numerical problems. Thus, potential computational problems can be avoided using
an indirectmethod to estimate λ. Jørgensen (1982) also used an indirectmethod to estimate λ for the GIG distribution. Here,
we proceed in this direction.

For λ fixed, the function (22) can be written as ℓ(λ) = ℓ(λ)(η, ω, β). Thus, the score vector U (λ)(η, ω, β) =

(∂ℓ(λ)/∂η, ∂ℓ(λ)/∂ω, ∂ℓ(λ)/∂β)⊤ has components

∂ℓ(λ)

∂η
=

nω1/2Rλ
η1/2

−

n−
i=1

xi + Cη−λ(β − 1)
n−

i=1

{λ/η − (ω/η)1/2Rλ}Γi,0 + Si
1 − Cη−λΓi,0

,

∂ℓ(λ)

∂ω
= −

nλ
ω

+
nη1/2Rλ
ω1/2

−

n−
i=1

1
xi

+ Cη−λ(β − 1)
n−

i=1

{λ/ω − (η/ω)1/2Rλ}Γi,0 + ηΓi,1

1 − Cη−λΓi,0
,

∂ℓ(λ)

∂β
=

n
β

+

n−
i=1

log{1 − Cη−1Γi,0},

whereRλ = Rλ(η, ω) = Kλ+1

2
√
ηω

/Kλ


2
√
ηω

,Γi,j = Γ (λ−j, ηxi; ηω), Si = Si(λ, η, ω; xi) = ωΓi,1+η

λ−1xλi exp(−ηxi−
ωx−1

i ), for i = 1, . . . , n and j ∈ {0, 1, 2}.
The SQP method (see Lawrence and Tits, 2001) with analytical derivatives has been used for maximizing the log-

likelihood function ℓ(θ) in order to obtain the restricted maximum likelihood estimates (MLEs)η(λ),ω(λ) andβ(λ) of η, ω
and β , respectively. This method is implemented in the Ox matrix programming language (Doornik, 2006) through the
subroutine MaxSQPF. We add the superscript (λ) to emphasize the dependence of the estimates on this parameter.

From ∂ℓ(λ)/∂β = 0, we immediately obtain

β(λ) = −n
 n−

i=1

log

1 −C (λ)Γ (λ)

i,0 /(η(λ))λ,
whereC (λ) = C(λ,ω(λ),η(λ)) = (η(λ)/ω(λ))λ/2/{2Kλ2η(λ)ω(λ)} and Γ (λ)

i,0 = Γ (λ,η(λ)xi;η(λ)ω(λ)) for i = 1, . . . , n. By
replacing in ℓ(θ), η, ω and β byη(λ),ω(λ) andβ(λ), respectively, we obtain the profile log-likelihood function for λ as

ℓp(λ) = n log{β(λ)C (λ)} + (λ− 1)
n−

i=1

log(xi)−

n−
i=1

(η(λ)xi +ω(λ)x−1
i )

+ (β(λ) − 1)
n−

i=1

log

1 −C (λ)Γ (λ)

i,0 /(η(λ))λ . (23)
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Table 1
Estimates and log-likelihood functions.

Distribution Estimates ℓ(θ)
λ η ω β

EGIG 34.860 8.399 1.08 × 10−14 0.127 −141.72
(–) (0.4681) (0.0218) (0.0172)

EGamma 34.860 8.399 0 0.127 −141.72
(0.9838) (0.4662) (0.0185)

GIG 5.953 2.271 2.52 × 10−16 1 −143.23
(4.215; 7.385) (0.3265) (0.7819)

Gamma 5.953 2.271 0 1 −143.23
(0.8193) (0.3261)

ESGamma 1.092 1 0 6.553 −146.15
(0.2993) (3.1302)

Hyperbola 0 0.942 5.286 1 −149.96
(0.1470) (0.8179)

Inverse Gaussian −1/2 0.848 5.826 1 −150.73
(0.1449) (0.8239)

The plot of the profile log-likelihood ℓp(λ) against λ for a trial series of values determines numerically the value of the
estimateλwhich maximizes (23). We only need to find the valueλ such thatλ = argmax

λ
ℓp(λ).

Onceλ is obtained from the plot, it can be substituted in the log-likelihood ℓ(θ) to produce the unrestricted MLEsη =η(λ),ω = ω(λ) andβ = β(λ).
We can use the following two-step algorithm for maximum likelihood estimation of λ, η, ω and β . (i) For a given λ,

the log-likelihood function (22) is maximized with respect to η, ω and β , that is, we computeη(λ),ω(λ) andβ(λ). Thus, we
compute ℓp(λ) from (23). (ii) Vary λ over a grid of values to obtain the estimateλ that maximizes (23). In the next section,
we shall adopt this algorithm to obtain approximate MLEs of the parameters λ, η, ω and β in model (7).

The observed information matrix for the parameters η, ω and β of the EGIG distribution is given in Appendix A. The
log-likelihood function, score function and the observed information matrix for the unknown parameters of the EGamma
distribution can be found in Appendix B.

8. Application

In this section, we compare the fits of the EGIG, EGamma, GIG, gamma, ESGamma, inverse Gaussian and hyperbola
distributions to a real data set. All the computations were done using the Ox matrix programming language. Ox is freely
distributed for academic purposes and available at http://www.doornik.com. For maximizing the log-likelihood functions,
we use the subroutine MaxSQPF with analytical derivatives.

We shall consider an uncensored data set from Nichols and Padgett (2006) consisting of 100 observations on breaking
stress of carbon fibres (in Gba). The data are: 0.39, 0.81, 0.85, 0.98, 1.08, 1.12, 1.17, 1.18, 1.22, 1.25, 1.36, 1.41, 1.47, 1.57,
1.57, 1.59, 1.59, 1.61, 1.61, 1.69, 1.69, 1.71, 1.73, 1.80, 1.84, 1.84, 1.87, 1.89, 1.92, 2.00, 2.03, 2.03, 2.05, 2.12, 2.17, 2.17, 2.17,
2.35, 2.38, 2.41, 2.43, 2.48, 2.48, 2.50, 2.53, 2.55, 2.55, 2.56, 2.59, 2.67, 2.73, 2.74, 2.76, 2.77, 2.79, 2.81, 2.81, 2.82, 2.83, 2.85,
2.87, 2.88, 2.93, 2.95, 2.96, 2.97, 2.97, 3.09, 3.11, 3.11, 3.15, 3.15, 3.19, 3.19, 3.22, 3.22, 3.27, 3.28, 3.31, 3.31, 3.33, 3.39, 3.39,
3.51, 3.56, 3.60, 3.65, 3.68, 3.68, 3.68, 3.70, 3.75, 4.20, 4.38, 4.42, 4.70, 4.90, 4.91, 5.08, 5.56.

Table 1 lists the MLEs of the parameters (standard errors between parentheses) and the values of the log-likelihood
functions. We also give in this table an approximate 90% confidence interval for the parameter λ of the GIG distribution. An
approximate 90% confidence interval forλ of the EGIGdistributionwas not obtained because therewere numerical problems
in the evaluation of themodified Bessel function for large values of λ. Note that the EGIG and EGamma distributions produce
the highest value of the log-likelihood function. It is noteworthy that these distributions have the same estimates for the
parameters λ, η and β . It is expected sinceω ≈ 0 for the EGIG distribution. Recall that the EGamma distribution is a special
case of the EGIG for ω = 0. It also happens with the GIG and gamma distributions, as expected, since ω ≈ 0 for the GIG
distribution.

The parameter λ for the EGIG and GIG distributions was estimated using the profile log-likelihood function. Fig. 2 shows
the profile log-likelihood curve plotted against the parameter λ for the EGIG and GIG distributions. For the EGIG distribution,
its maximum of −141.72 occurs near λ = 34.860, whereas for the GIG distribution its maximum of −143.23 occurs near
λ = 5.953.

Plots of the estimated pdf and cdf of the fitted models are given in Fig. 3. It is clear that the EGIG and EGamma, and
GIG and gamma distributions present the same fits, i.e. there is no difference between the curves. Additionally, these plots
indicate that the EGIG and EGamma models provide better fits than the other models.

http://www.doornik.com
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Fig. 2. The profile log-likelihood curves for λ for the EGIG and GIG models fitted to the data from Nichols and Padgett (2006).

Fig. 3. Estimated pdf and cdf of the EGIG, EGamma, GIG, Gamma, ESGamma, Hyperbola and Inverse Gaussian distributions for the data from Nichols and
Padgett (2006).

Table 2
Goodness-of-fit tests.

Distribution Statistics
W ∗ A∗

EGIG 0.08616 0.48662
EGamma 0.08616 0.48662
GIG 0.14802 0.75721
Gamma 0.14802 0.75721
ESGamma 0.21838 1.13910
Hyperbola 0.29658 1.60980
Inverse Gaussian 0.31370 1.71010

In what follows, we shall apply formal goodness-of-fit tests in order to verify which distribution fits better to the data
from Nichols and Padgett (2006). We apply the Cramér–von Mises (W ∗) and Anderson–Darling (A∗) test statistics. The W ∗

and A∗ test statistics are described in details in Chen and Balakrishnan (1995). In general, the smaller the values of W ∗ and
A∗ statistics, the better the fit to the data. The values of these statistics for all models are given in Table 2. As expected, the
values of W ∗ and A∗ for the EGIG and EGamma, and GIG and gamma distributions are exactly the same. According to these
statistics, the EGIG and EGamma distributions produce better fits to these data than the other distributions.
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In summary, the proposed distributions EGIG and EGamma produce better fits for the data from Nichols and Padgett
(2006) than other known distributions in the literature. In this case, the EGamma distribution could be chosen since it has
fewer parameters to be estimated.

9. Conclusions

In this note, we propose the so-called exponentiated generalized inverse Gaussian (EGIG) distribution to extend several
widely known distributions in the lifetime literature. It includes, as special sub-models, the generalized inverse Gaussian
(GIG) distribution (Good, 1953) and the exponentiated standard gamma distribution (Nadarajah and Kotz, 2006). We
provide amathematical treatment of the new distribution including expansions for the density function, moments, moment
generating function, mean deviations, reliability and Rényi entropy. We examine a maximum likelihood estimation of the
model’s parameters and derive the observed information matrix. An application of the new distribution to a real data set is
given to demonstrate that it can be used quite effectively to provide better fits than other available models. We hope this
generalization may attract wider applications in survival analysis.
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Appendix A. Observed information matrix for the EGIG distribution

The observed information matrix J (λ)(η, ω, β) is

J (λ)(η, ω, β) = −

Uηη Uηω Uηβ
· Uωω Uωβ
· · Uββ


,

whose elements are: Uββ = −n/β2,

Uηη = −
nλ
4η2

−
3nλωDλ
2η

√
ηω

−
nωHλ
η

+
nω{λ+ 2Dλ}Dλ

2η
−

nCω3Dλ
2(ηω)3/2

+
nCω{λ(ηω)−1/2

− 2Kλ(2
√
ηω)D2

λ}

η(η/ω)λ/2

− Cη−λ(β − 1)
n−

i=1

{λ(λ+ 2)/(4η2)+ λω2/[4(ηω)3/2]}Γi,0 + {λ/η + ωDλ/
√
ηω}Si

1 − Cη−λΓi,0

− Cη−λ(β − 1)
n−

i=1

ωDλ{λ/(2η
√
ηω)+ ω/{2(ηω)3/2} + Dλ/η}Γi,0 − ωHλΓi,0/η + ηλ−1

{Ii + Ti}
1 − Cη−λΓi,0

− C2η−2λ(β − 1)
n−

i=1


{λ/(2η)+ ωDλ/

√
ηω}Γi,0 + Si

1 − Cη−λΓi,0

2

,

Uηω =
nλ
4ηω

−
nDλ
√
ηω

− nHλ + Cη−λ(β − 1)
n−

i=1

{Hλ − λ/2 − λ(λ+ 1)/(4ηω)− 2Dλ + (1 − λ)Dλ/(2
√
ηω)}Γi,0

1 − Cη−λΓi,0

+ nD2
λ − Cη−λ(β − 1)

n−
i=1

{λ/2 +
√
ηωDλ}Γi,1 + {λ/(2ω)+

√
ηDλ/

√
ω}Si

1 − Cη−λΓi,0

− C2η−2λ(β − 1)
n−

i=1


{λ/(2η)+

√
ωDλ/

√
η}Γi,0 + Si


{λ/(2ω)+

√
ηDλ/

√
ω}Γi,0 − ηΓi,1


(1 − Cη−λΓi,0)2

,

Uωω =
3nλ
4ω2

−
nηHλ
ω

+
n(1 − λ)η1/2Dλ

2ω3/2
+

nηDλ
ω

− Cη−λ(β − 1)
n−

i=1

{λη/ω + 2η2Dλ/
√
ηω}Γi,1 + η2Γi,2

1 − Cη−λΓi,0

+ Cη−λ(β − 1)
n−

i=1

{ηHλ/ω − (λ+ 3)λ/(4ω2)− (1 + 2λ)η1/2Dλ/(2ω3/2)− 2ηD2
λ/ω}Γi,0

1 − Cη−λΓi,0

− C2η−2λ(β − 1)
n−

i=1


{λ/(2ω)+

√
ηDλ/

√
ω}Γi,0 + ηΓi,1

1 − Cη−λΓi,0

2

,

Uηβ = Cη−λ
n−

i=1

{λ/(2η)+
√
ωDλ/

√
η}Γi,0 + Si

1 − Cη−λΓi,0
, Uωβ = Cη−λ

n−
i=1

{λ/(2ω)+
√
ηDλ/

√
ω}Γi,0 + ηΓi,1

1 − Cη−λΓi,0
,
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where Dλ = Dλ(η, ω) = λ/{2
√
ηω} − Rλ, Rλ was defined in Section 7, Hλ = Hλ(η, ω) = 1 + (λ + 1)Rλ/{2

√
ηω}, Ii =

Ii(λ, η, ω; xi) = ω2Γi,2 +ηλ−1xλ+1
i exp(−ηxi −ωx−1

i ) and Ti = Ti(λ, η, ω; xi) = {ωx−1
i − (λ−1)}ηλ−2xλi exp(−ηxi −ωx

−1
i ),

for i = 1, . . . , n.
Under conditions that are fulfilled for parameters in the interior of the parameter space but not on the boundary,

the asymptotic distribution of (η,ω,β)⊤ − (η, ω, β)⊤ can be approximated by N3

0, J(η,ω,β)−1


, where J(η,ω,β) =

J (λ)(η,ω,β). Thus, themultivariate normalN3

0, J(η,ω,β)−1


approximation canbeused to construct confidence intervals

and confidence regions for the parameters. In fact, asymptotic 100(1− η)% confidence intervals for η, ω and β are given byη±zα/2×{var(η)}1/2,ω±zα/2×[var(ω)]1/2 andβ±zα/2×[var(β)]1/2, where var(·) is the diagonal element of J(η,ω,β)−1

corresponding to each parameter, and zα/2 is the quantile (1 − α/2) of the standard normal distribution.

Appendix B. Estimation for the EGamma distribution

The log-likelihood function for the unknown parameter vector θ = (λ, η, β)⊤ of the EGamma distribution is given by

ℓ = ℓ(θ) = n log(β)+ nλ log(η)− nβ log{Γ (λ)} + (λ− 1)
n−

i=1

log(xi)− η

n−
i=1

xi + (β − 1)
n−

i=1

γ (λ, ηxi).

The above log-likelihood function does not depend on the modified Bessel function. It implies that the derivatives with
respect to the parameter λ can be obtained. The components of the score function are:

∂ℓ

∂λ
= n log(η)− nβψ(λ)+

n−
i=1

log(xi)+ (β − 1)
n−

i=1

γ ′(λ, ηxi)
γ (λ, ηxi)

,

∂ℓ

∂η
=

nλ
η

−

n−
i=1

xi + (β − 1)ηλ−1
n−

i=1

xλi exp(−ηxi)
γ (λ, ηxi)

,
∂ℓ

∂β
=

n
β

− n log{Γ (λ)} +

n−
i=1

log{γ (λ, ηxi)},

where ψ(·) is the digamma function and γ ′(λ, ηxi) =
 ηxi
0 log(t)tλ−1 exp(−t)dt , for i = 1, . . . , n. The maximization of

ℓ can be done directly without the necessity of an indirect method as the case of the EGIG distribution. We use the SQP
method with analytical derivatives (above presented) in order to obtain the MLEsλ,η andβ of λ, η and β , respectively. The
observed information matrix J(θ) is

J(θ) = −

Uλλ Uλη Uλβ
· Uηη Uηβ
· · Uββ


,

whose elements are

Uλλ = −nβψ ′(λ)+ (β − 1)
n−

i=1


γ ′′(λ, ηxi)
γ (λ, ηxi)

−


γ ′(λ, ηxi)
γ (λ, ηxi)

2
,

Uλη =
n
η

+ (β − 1)ηλ−1
n−

i=1

xλi exp(−ηxi) log(ηxi)
γ (λ, ηxi)

− (β − 1)ηλ−1
n−

i=1

xλi exp(−ηxi)γ
′(λ, ηxi)

γ (λ, ηxi)2
,

Uηη = −
nλ
η2

+ (β − 1)ηλ−1
n−

i=1

xλi exp(−ηxi){log(η)− xi}
γ (λ, ηxi)

− (β − 1)η2(λ−1)
n−

i=1

x2λi exp(−2ηxi)
γ (λ, ηxi)2

,

Uλβ = −nψ(λ)+

n−
i=1

γ ′(λ, ηxi)
γ (λ, ηxi)

, Uηβ = ηλ−1
n−

i=1

xλi exp(−ηxi)
γ (λ, ηxi)

, Uββ = −
n
β2
,

where ψ ′′(·) is the trigamma function and γ ′′(λ, ηxi) =
 ηxi
0 (log(t))2tλ−1 exp(−t)dt , for i = 1, . . . , n. The asymptotic

100(1−η)% confidence intervals forλ, η, β are given byλ±zα/2×[var(λ)]1/2,η±zα/2×{var(η)}1/2 andβ±zα/2×[var(β)]1/2,
where var(·) is the diagonal element of J(θ)−1. If η = 1, the EGamma distribution reduces to the ESGamma distribution
introduced by Nadarajah and Kotz (2006) and the score function and observed information matrix can also be applied for
this distribution. They seem to be new results for the ESGammadistribution, sinceNadarajah andKotz (2006) donot consider
maximum likelihood estimation in order to estimate the model’s parameters.
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