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1. Introduction

The generalized inverse Gaussian (GIG) distribution introduced by Good (1953) is widely used for modeling and analyzing
lifetime data. A random variable X has a GIG distribution if its probability density function (pdf) is given by

. _ (V’/X)A/z a—1 1 &
f(x,)\,x,zp)_izm(w)x exp{—z(tpx+x>}, x> 0.

Here, —oo < A < 00, (x,¥) € ©,,where @, = {(x,¥) : x > 0,¥ > 0}if L > 0,{(x,¥): x >0,¥ >0}if L, =0
and {(x,v¥) : x > 0,¥ > 0}if L < 0. Also, K, (z) denotes the modified Bessel function of the third kind with index v
and argument z (see, for example, Watson, 1995). Special sub-models include the gamma distribution (x = 0, A > 0), the
reciprocal gamma distribution (¢ = 0, A < 0), the inverse Gaussian distribution (A = —1/2) and the hyperbola distribution
(A = 0). Introducing the parameters w = x /2 and n = /2, the above density function becomes

fh o,n) =Cx¥ Texp|—(mx+wx ")}, x>0, (1)

where the normalizing constantis C = C(A, w, ) = (n/w)*/?/{2K), (2, /na))}. A random variable X having density function
(1) is denoted by X ~ GIG(X, w, n). The rth moment of X about zero is given by

r/2
EX") = (“’) Ko (2/70) 2)
n)  K(2n0)
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The moment generating function (mgf) associated to (1) is

Mm:( n )“21(1(2\/(77—00)).
t K. (2 /@)

In addition, the cumulative distribution function (cdf) becomes

Fx) =F(x; A, w,n) = Cn%y(k, nx;nw) =1— Crf*]’()\, nx; nw), (4)

where y(a,x;b) = [y t* Texp{—(t + bt~")}dt and I'(a,x;b) = [~ t* Texp{—(t + bt~")}dt are the generalized
incomplete gamma functions (Chaudhry and Zubair, 1994) discussed in detail by Chaudhry and Zubair (2002). If the
argument b vanishes, the functions y(«,x; b) and I'(«, x; b) reduce to the ordinary incomplete gamma functions
y(@.x0) = y(a,x) = [yt le"'dt and I'(er, x;0) = I'(a,x) = [, t*"'e~'dt. The GIG distribution has survival and
hazard rate functions given by S(x) = Cn~*I'" (A, nx; nw) and h(x) = n*x*~! exp{—(x+wx~")}/I" (X, nx; nw), respectively.

From Chaudhry and Zubair (2002, Eq. (2.91)), we have I'(a, x;b) = Y2 I'(@ — j, x)(=bY//j!. Since y(a,x) =
Y reo(—=Dkxe /{kI(k + )} and I'(a,x) = I'(2) — y (e, x), where I'(a) = [;° t* e 'dt is the gamma function, the
function I'(«, x; b) can be expanded as I'(«t, x; b) = Y20 (=bY[I" (@ — j) /j! = 3o (= DX /{klj!(k 4+ « — j)}]. Thus,
inserting this equation in (4), F(x) can be rewritten as

Fx)=1— (,0 +> aj,kx"fﬂ>, 5)

j,k=0

where p = p(h, 7, w) = Cn™* 32 I'(A — (—nwy /j! and ajx = ajx(r, 0, @) = (=DTCpkal /{(k — j + 1)jk!}. To
calculate p, the index j can stop after a large number of summands.

The GIG distribution has been applied in a variety of fields of statistics; see, for example, Embrechts (1983),
Iyengar and Liao (1997) and Thabane and Haq (1999). Sichel (1975) used the GIG distribution to construct mixture of
Poisson distributions. Barndorff-Nielsen (1978) and Barndorff-Nielsen et al. (1978) used the GIG distribution as a mixing
distribution to obtain the generalized hyperbolic distribution as a mixture of normal distributions. Statistical properties
and distributional behavior of the GIG distribution are discussed by Jergensen (1982). Atkinson (1982) and Dagpunar (1989)
provided algorithms for simulating the GIG distribution. More recently, Nguyen et al. (2003) showed that the GIG distribution
has positive skewness.

In this note, we introduce the so-called exponentiated generalized inverse Gaussian (EGIG) distribution that contains the
GIG model and other special models. Additionally, we introduce the exponentiated gamma distribution, which generalizes
the exponentiated standard gamma distribution proposed by Nadarajah and Kotz (2006). We obtain some mathematical
properties and discuss maximum likelihood estimation of the parameters. The rest of the article is organized as follows. In
Section 2, we introduce the new distribution. Expansions for the quantile functions of the GIG and EGIG distributions are
presented in Section 3. Section 4 gives a formal expansion for the EGIG density function as a mixture of GIG density functions.
The moments, moment generating function (mgf), moments of the order statistics and L-moments are also derived in this
section. Mean deviations and Rényi entropy are investigated in Section 5. The reliability is determined in Section 6. We
discuss in Section 7 maximum likelihood estimation of the model parameters. Section 8 gives an application to a real data
set to show that the proposed distribution can be used quite effectively in analyzing lifetime data. Section 9 provides some
conclusions.

2. The exponentiated generalized inverse Gaussian distribution

Since 1995, the exponentiated distributions have been widely studied in statistics and numerous authors have developed
various classes of these distributions. Mudholkar et al. (1995) proposed the exponentiated Weibull distribution. Its
properties have been studied in more detail by Mudholkar and Hutson (1996) and Nassar and Eissa (2003). Gupta and Kundu
(1999) introduced the exponentiated exponential distribution as a generalization of the standard exponential distribution.
Nadarajah and Kotz (2006) proposed, based on the same idea, four more exponentiated type distributions to extend the
standard gamma, standard Weibull, standard Gumbel and standard Fréchet distributions. More recently, Gusmdo et al.
(2009) introduced the exponentiated inverse Weibull distribution. In the same way, we generalize the GIG distribution.

Let F (x) be the cdf of the GIG distribution (Good, 1953). The EGIG cdf can be defined by elevating F (x) to the power 8 > 0,
i.e. G(x) = F(x)?. Hence, the cdf and density function of the EGIG distribution with four parameters, say EGIG(A, », 1, ),
are given, respectively, by

G = {1—Cn I, nx )}’ x>0, 6)
and

g(x) = B Texp{—(mx+ wx )1 —Cn I (x, nx; na))}ﬁf], x> 0. (7)
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Fig. 1. Plots of the density (7) and hazard rate function (8) for some parameter values withn = w = 1.

Alternatively, we can rewrite G(x) and g(x), respectively, as G(x) = Cfn~*Py (A, nx; nw)? and g(x) = BCPy=*B-D
X~ Texp{—(mx+wx~ N}y (A, nx; nw)?~1. When g is equal to a positive integer value, n say, then g (x) is the density function
of the maximum statistic in a random sample of size n from the distribution F (x). The survival S(x) and hazard rate h(x) are
Sx)=1—{1—=Cn*I'(%, nx; nw)}? and

BCx " exp{—(x + wx ") }[1 — Cy TGy mx ) ]* ™
1—{1=CnI(x, nx; nw)}P

h(x) = , x>0. (8)
The EGIG distribution generalizes a few known distributions. The GIG distribution arises as a special sub-model for 8 = 1
and its special cases are also special sub-models of the EGIG distribution. In addition, an interesting particular case from the
EGIG distribution arises for @ = 0. When z — 0, it is possible to show that K, (z) = 2*~'z7*I"()) (see Jergensen, 1982).
Thus, the normalizing constant C reduces to C = n*/I" (1) for = 0 and a new cdf is obtained as
B
A, NX
54@}, -0 ©)

a”:{rm

which is referred to as the exponentiated gamma (EGamma) distribution. The density function corresponding to (9) has the
form

_ B exp(—m¥) { y O ) }‘3_1
g2(x) = , x>0.

ro) ro)
The exponentiated standard gamma (ESGamma) distribution (Nadarajah and Kotz, 2006) is a special case of the EGamma
distribution (9) for n = 1 and, consequently, a special case of the EGIG distribution for @ = 0 and n = 1. The mathematical
properties derived in this note for the EGIG distribution hold for the EGamma and ESGamma distributions by setting w = 0
and w = 0 and n = 1, respectively. This fact happens for other special sub-models. It is evident that the EGIG distribution
is much more flexible than the GIG distribution. Plots of the density function (7) and hazard rate function (8) for selected
parameter values are shown in Fig. 1.

3. Quantile function

We provide power series expansions for the quantile functions of the GIG and EGIG distributions. First, we consider
the GIG quantile function defined by x = Qgic(u) = F~'(u), where u € (0, 1). Defining the set I; = {(k,j); k —j = i}
fori = 0,1,..., Eq. (5) can be written as F(x) = 1 — p — x* Zf’ia bix!, where b; = Z(k.j)e,’_ aj . We can expand

x* in a Taylor series to obtain x* = Y 2 (Mi(x — DF/K = Y fix), where fi = Y2 (=D <’;) (M)i/k! and
M =A(A—1)... (A — k+ 1) is the descending factorial. We have

Fx)=1—p — (ji.:f]x’) (2 b,x").
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By multiplying the two power series, we obtain F(x) = 1 — p — Z?:OO cix', where ¢; = ZL:Ofkbi,k (fori =0,1,...). Then,
we can rewrite w = F(X) as

o0
w=F®=wo— Y ¥, F@x)=-c#0, (10)

i=1
where wy = 1 — p — ¢o. By inverting (10), the quantile function x = Qgig(w) = F~'(w) can be written as a power
series expansion X = Qqic(w) = Yo, &(w — wo)’, where g, = (1/n)d" "W (x)" /dx""|,—y, and ¥ (x) = x/{F(x) — wo}.
We have ¥ (x) = —x/ Zf’:o] X = —1/ Z;’:OO CipX = Zfio d;ix'. Here, the inverse of the power series follows from
Gradshteyn and Ryzhik (2007). The coefficients d; can be calculated recursively from the quantities ¢; by dg = 1 and

di = Cf1 Z;;Zl di_iCkr1 (i > 1). We can obtain ¥ (x)" and then using a result due to Gradshteyn and Ryzhik (2007) for
a power series raised to a positive integer n, it follows that

n
o0 o0
vX)" = (E dixi> = gaX, nx>1, (11)
i=0 i=0

where the coefficients g; , (fori = 1, 2, .. .) can be determined from the recurrence relation

i
Gin=1") (nm —i+m)dnGi mn and qo,=1. (12)

m=1
The coefficient g; , can be calculated from the quantities go, = 1, ..., gi—1.n. Clearly, g; , can be given explicitly in terms

of the coefficients d;, but it is not necessary for programming numerically our expansions in any algebraic or numerical
software. The power series with the first (n + 1) terms is ¥ (x)" = qo.n + q1.oX + - - + Qu_1.0X" "' + qn.aX" + - - -. Simple
differentiation gives g, = (1/n))d"~ 1w (x)" /dx"~! [x=x, = qn—1,n/1 and, therefore, the quantile function x = Q (w) reduces
to

o0

x = Qgc(w) = Z

n=1

Ity — ), (13)

where the coefficients q;, are calculated from (12). They are basically implicit functions of the quantities b; and f; (for
i=0,1,...)defined above. Eq. (13) is the main result of this section.
We now derive an expansion for the EGIG quantile function x = Qgggc(u) = G~ '(u). From (10), we can write

Cx) =F®F =(1-p—Y, c,»x")ﬁ, and then, after some algebra, we obtain

[ee) k o) r o)
G = (-1 (ﬂ> > (k> i (Z cix’) = h, (14)
=0 k)i \r =0 i—0

where h; = 3o (—=DF (7) PN <’r‘) 0¥ e;, (i > 0), and the quantities e; , (fori = 1,2, ...) can be calculated from the
recurrence relation

1
ey =1 Z(rm —i+m)cpeim, and e, = 1.
m=1

Hence, G(x) in (14) has the form (10) and then Eq. (13) can be applied to obtain the EGIG quantile expansion by setting
wo = hg and ¢; = —h; (fori > 1) in (10).

Eq. (14) (and others expansions in this article) can be computed numerically in software such as MAPLE (Garvan, 2002),
MATLAB (Sigmon and Davis, 2002) and MATHEMATICA (Wolfram, 2003). These symbolic software have currently the ability
to deal with analytic expressions of formidable size and complexity.

4. Mixture form, moments and order statistics

From now on, let X ~ EGIG(}, w, 1, B). We can write from (10)

[1=FEP™" =) v (15)

j=0

r

where v; = Y2 (= 1) (ﬁf) Zi:o (') p'~"t;, and the constants tj, are determined by the recurrence relation ¢, =

j! ]m:1 (rm—j+m)cptj_m, (forj > 1)and tp , = 1. For evaluating vj, the index i can stop at a very large number. If 8 is an
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integer, the index j in the above sum stops at —1.By (7), we obtain g (x) = BC(, @, n) Y= pjuix* " exp{—(nx+ax ")}
and then

g =Y pfi®), (16)
j=0

where p; = Bv;C(A, o, n)/C(A + j, w, n) and f;(x) denotes the density function of the GIG(A + j, w, n) distribution. Hence,
the EGIG density function is an infinite linear combination of GIG densities and several of its mathematical properties can
be obtained directly from those GIG properties.

The rth moment about zero and the mgf of X can be determined from (2) and (3) as

w "2 oo K)»-H+j(2 r)a))
L= EX) = <7> pi— AV (17)
a n ; " Ki(2y/m0)

and
M2 2 K424/ = Do)
M(t) = (L) ij< ) Atj n
n—t n—t Ky+i(2/@n)
respectively. The nth descending factorial moment of X is given by pc/(n) =EXP}=EXX-1DX—-2)---X—n+1)}=
Zfzo s(n, r)u,, where s(n,r) = ()" '[D'x™],—o are the Stirling numbers of the first kind. They count the number of

ways to permute a list of n items into r cycles. Then, the factorial moments of X are obtained from (17). The central
moments and cumulants (k;) of X follow immediately from the ordinary moments using well-known relationships. The

skewness y; = «3 /K23/ 2 and kurtosis Y2 = ka/Kk3 can be calculated from the second, third and fourth cumulants given by

=y — ik = phy — 3ubpl + 20 and ky = py — Ay — 3uF + 12u5uF — 6.

The density of the ith order statistic X;.,, say g.n(), in a random sample of size n from the EGIG distribution is g;.,(x) =
g20G T 0{1 — Gx)})"'/B(i,n+1—1i) (i=1,...,n), whereB(., -) is the beta function. Using (6) and (7), we can rewrite
8in(X) as
B lexp{—(nx + ox~ ")} [1 = {1 - Cn™* I (0, nx; na))} ]'1 :

B(i,n+1—1) {-1 — Cn~ T (A, 1 Uw)}

From the binomial expansion and the above results, we have

= - Uk( ) @
gin(x) = Z Bin—i+1) (Z melfm(X)>

m,j=0

gin(X) =

where v} = Z;’io(—l)s< Alitk= ”) > i_o (3) p*7t;,r. Hence, we write

& G Dk( ) (O]
gin(X) = Z BGn—i+1) (Z Sinj, kfmﬂ(x)) (18)

where Sm, = ﬂvf’,ZC(k, w, n)/C(A + m+j, w, n). The moments of X;., can be expressed as

r/2 n—i (—l)k <n_i> (o] K . 2
w k i Atm+j+ nw
2 = (2) 5 gy (3 s e B0 19
n k=0 B(L n—i+ 1) m,j=0 I<A+m+j (24 / T]Cl))
An alternative expression to (19) can be derived from the probability weighted moments (PWMs) (see Greenwood et al.,
1979) using a result due to Barakat and Abdelkader (2004). We have E(X[,) = rY .., (—=Dk "1 ("_1,) (%) Irko

n—i

where I, = [;°x {1 — G(x)}*dx. By expanding the binomial, we obtain I, = Z’,; 0( )( )™t _1,m. Here,

s = E{X GX)*} Zk, 0 (’35) (— ¥ Z ( ) k=rp; .My where h;; can be determined recursively from h;, =

i1 Z;bl(rm — i+ m)cphi_p,r, (fori=1,2,...), ho, = 1and u;_; follows from (17).
The mgf of the ith order statistic, say M;.,(t), can be written from (3) and (18) as

Z(‘”(){io (-2 )‘“mﬂ)”zqmﬂ(zm——r)w)},

Min(t) = - - ikl —
= B(i,n—i+ 1) mk Ky+m+j(2/on)

n—t
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The L-moments (Hosking, 1990) are analogous to the ordinary moments but can be estimated by linear combinations of
order statistics. They exist whenever the mean of the distribution exists, even though some higher moments may not exist,

and are relatively robust to the effects of outliers. The rth L-moment is defined by 7, = Z;;OI (=11 (r;]> (P}H ) &,

where § = EXGXY} = ( + 1) 'E(Xj41541)- In particular, 7y = &, 12 = 2& — &, 13 = 6§ — 6§ + & and
T4 = 20&3 — 30&; + 12&; — &y. The L-moments of the EGIG distribution can be obtained from (19).

5. Mean deviations and Rényi entropy

The amount of scatter in a population is evidently measured to some extent by the totality of deviations from the mean
and median. If X has the EGIG distribution, we can derive the mean deviations about the mean p, = E(X) and about the
median m from the density function (7) by

o0 o0
= [ - wilewax and 8= [ - migcoy
0 0

respectively. The mean 1/ is calculated from (17) and the median m is the solution of the nonlinear equation I" (A, nm; nw) =
n*(1 — 27V/8)/C. These measures can be calculated from the relationships

81 = 2{p\Guy) —J ()} and 8 = i — 2J(m), (20)

where J(p) = f(f xg(x)dx and G(u,) comes from (6). We have J(p) = n~*™Vy (1 + 1, np; nw) Yo BiC 1, w, ),
where p; was defined in Section 4. Bonferroni and Lorenz curves have applications not only in economics to study income
and poverty, but also in other fields like reliability, demography, insurance and medicine. For the EGIG distribution, these
measures are given by B(p) = J(q)/(pp}) and L(p) = J(q)/u}, respectively, where u; = E(X) and g = G~ 1(p; A, 1, ) can
be calculated for a given probability p € (0, 1) by solving the non-linear equation I" (A, nq; nw) = n*(1 — p/#)/C.

The entropy of a random variable is a measure of uncertainty variation (see Song, 2001). The Rényi entropy is defined
by Ix(8) = (1 — 8) 'log{/, g°(x)dx}, where § > 0 and § # 1. We can write g(x)° = B°C°x**~Dexp{—(Snx +

Swx~ 1)) 0% hexl, where bt = Y0 (—1)F (‘“ﬁk—”) P (") p*e,, (i = 0), and the quantities e;, (fori = 1,2, ...)
can be determined from the ¢;’s by the recurrence relation given at the end of Section 3. Hence, the Rényi entropy reduces

to

00 h*
Ik(8) = (1—8)"'log { B°C(A, @, )" - '
(%) = (1-19) og{ﬂ ( w”)§C(5(A—1)+z+1,w,n)}

6. Reliability

In the context of reliability, the stress-strength model describes the life of a component which has a random strength X;
that is subjected to a random stress X,. The component fails at the instant that the stress applied to it exceeds the strength,
and the component will function satisfactorily whenever X; > X,. Hence, R = Pr(X; < X;) is a measure of component
reliability. It has wide applications in the engineering area. First, we derive the reliability R when X; and X, have independent
GIG(\1, w1, n1) and GIG(X;, w,, n,) distributions with different sets of parameters. We readily obtain from (5)

00 ) .
R= / AER®d=1-p— Y aJEX ), 21)
0 jk=0
where p; = p(ha. . @2) = Gy 2 Y220 Ik — D(—mawp) /i, @f) = (=D Cnwh/{(k — j + A2)jlk!} and

E(x{“f“z) = (01/n)*TDRK 110, (23/mw1) /K, (24/M7@1). The reliability R* when Y; and Y, have independent
EGIG(X\1, w1, n1, B1) and EGIG(A;, w,, 12, B2) distributions can be derived as follows. From Eq. (16), we have

oo e ]
R = / HXGEd =Y p(l)jp(Z)k/ JiFarx)dx,
0 0

J,k=0

where f;)j(x) and F(;);(x) denote the density and cumulative functions of the GIG(A, + j, w;, n;) distribution (for r =
1, 2) and the p(; are the coefficients of the corresponding linear combination form. Eq. (1) yields fi1);j(x) = C(A; +

J, @1, n)XM1 I exp{—(mx + wix7') } and (10) gives Gy (x) = 1 — pék) -3 c((gix", where pék) =phy +k 12, w2) =

C(hatk, @y, ma)n~27* Zr?io r()‘2+k_r)(_'72w2)r/r!'C((gi = Zin:Of((ZK))mbEl;;(ifm)‘f((Z?m = Z;im(_l)p_m (51) (2 4k)p /D!,

b = Y pier U0 A3y = (~DPTHICCa ke 12 w2, /{(p—j+ MjlpY (fori = 0.1, .. ),y = (k. ): k—j = p)
and p > 0. The coefficients in R* are determined by py); = C(A;, @r, 1) Brvw)j/C(Ar + j, @r, ;) for r = 1, 2. Here,



512 AJ. Lemonte, G.M. Cordeiro / Statistics and Probability Letters 81 (2011) 506-517

Vi = Doimo(—1)! (ﬂ’_l) Zp —0 ( ) or Ptjps tinjp is calculated by the recurrence relation t(, = j~! {,1:1(pm —j+
M)Crymtr)j—m,p (for j > 1) and to , = 1, where c(; are the coefficients in the expansion of the GIG(A;, w, 1;) cumulative
distribution (10). Thus,

(o]
/ fj(l)(x)Fk(z)(x)dx =1- ") Zc(k) / C(hy +J, wq, np)x* 1t exp{—(n1x + w1x~") Jdx.
0

This above integral is the ith moment of the GIG(Aq +j, w1, ny) distribution and using (2), we obtain

2 K)\ +it 24 /N1
R=1- ZszP Z P(l)]Pa)kC((z;,( ) 1412/ Ti1)
k=0 j.k,i=0 m KMﬂ (2\/ ]0)1)

7. Estimation

We consider estimation of the model parameters by the method of maximum likelihood. Let x = (x4, ..., X,) ' denote
n independent observations from the EGIG distribution with unknown parameter vector § = (X, n, , 8) . The total log-
likelihood function for @ can be written as

€0) = L(. 0. 0, B) =nlog(BO) + (A — 1) Y log(x) — Y (nxi + x; ")
i=1 i=1

n

+ (B = 1) ) log{1— Cn~* I" G, iz ). (22)

i=1
For maximizing the log-likelihood (22), we consider A fixed and then obtain the likelihood equations for estimating n, w and
B. In principle, A could also be estimated directly by maximum likelihood but there may be practical difficulties, since in
general the modified Bessel function, and hence the total log-likelihood, is difficult to handle as a function of the parameter
A, and then the derivatives of £(0) with respect to A seem very difficult. Further, the generalized incomplete gamma function
also depends on A and may also present numerical problems. Thus, potential computational problems can be avoided using
an indirect method to estimate A. Jorgensen (1982) also used an indirect method to estimate X for the GIG distribution. Here,

we proceed in this direction.
For A fixed, the function (22) can be written as ¢® = £® (5, w, B). Thus, the score vector UM (5, w, B) =

32™ /31, 3LP /dw, 3™ /38)T has components

)

PYAR) nw!/2R n " /n — (/M) VPR + S
= A le—'—cr/ik(ﬂ_l)z{ /77 ( /77) )L} i,0 i

m g 1-Cn*lio

RYA A n 1/2R 1 - 2R T
__m n"*Ry Z 4o — DZ{ Jo— /w) R} o+ 1 i1

ow PR 1—Cn*Tip

RYAR) n

—1
5 =T ;log{l Cn' o),
whereR, = Ry, (1, ®) = Ky11(2/10) /K. (2/1®), I}; = T (a—j, nxi; nw), S = Si(h, 1, ©; x;) = ol 147" X! exp(—nx;—
a)x_)fori—l ,nandj € {0, 1, 2}.

The SQP method (see Lawrence and Tits, 2001) with analytical derivatives has been used for maximizing the log-
likelihood function £(8) in order to obtain the restricted maximum likelihood estimates (MLEs) 7®, ®® and B® of n,
and B, respectively. This method is implemented in the Ox matrix programming language (Doornik, 2006) through the
subroutine MaxSQPF. We add the superscript (1) to emphasize the dependence of the estimates on this parameter.

From 3£™ /38 = 0, we immediately obtain

n
BY = —n / Y log{1—CYT, /@M,
i=1

where C® = C(, a»,7P) = @GP /@*)*2 /2K, (2y/7P@™)} and T, = I (b, 7Px; THEP) fori = 1,...,n. By
replacing in £(), , @ and B by 7™, @™ and ™), respectively, we obtain the profile log-likelihood function for X as

n n
£p(0) = nlog(BYTH) + (.= 1) ) "logx) — Y @Pxi + M)

i=1 i=1

+ B =1 log{1-CHRE GV (23)
i=1
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Table 1
Estimates and log-likelihood functions.
Distribution Estimates l(@)
A U w B
EGIG 34.860 8.399 1.08 x 10714 0.127 —141.72
(=) (0.4681) (0.0218) (0.0172)
EGamma 34.860 8.399 0 0.127 —141.72
(0.9838) (0.4662) (0.0185)
GIG 5.953 2.271 2.52 x 10716 1 —143.23
(4.215; 7.385) (0.3265) (0.7819)
Gamma 5.953 2.271 0 1 —143.23
(0.8193) (0.3261)
ESGamma 1.092 1 0 6.553 —146.15
(0.2993) (3.1302)
Hyperbola 0 0.942 5.286 1 —149.96
(0.1470) (0.8179)
Inverse Gaussian -1/2 0.848 5.826 1 —150.73
(0.1449) (0.8239)

The plot of the profile log-likelihood £,(A) against A for a trial series of values determines numerically the value of the
estimate A which maximizes (23). We only need to find the value A such that

A= arg m/\ax £,(A).

Once A is obtained from the plot, it can be substituted in the log-likelihood £(#) to produce the unrestricted MLEs 7 = 7™,
®=0" and g = B*.

We can use the following two-step algorithm for maximum likelihood estimation of A, 1, @ and B. (i) For a given A,
the log-likelihood function (22) is maximized with respect to 1,  and g, that is, we compute 7™, @* and ™. Thus, we
compute £,(1) from (23). (ii) Vary A over a grid of values to obtain the estimate A that maximizes (23). In the next section,
we shall adopt this algorithm to obtain approximate MLEs of the parameters A, 1, w and 8 in model (7).

The observed information matrix for the parameters 1, w and § of the EGIG distribution is given in Appendix A. The
log-likelihood function, score function and the observed information matrix for the unknown parameters of the EGamma
distribution can be found in Appendix B.

8. Application

In this section, we compare the fits of the EGIG, EGamma, GIG, gamma, ESGamma, inverse Gaussian and hyperbola
distributions to a real data set. All the computations were done using the Ox matrix programming language. Ox is freely
distributed for academic purposes and available at http://www.doornik.com. For maximizing the log-likelihood functions,
we use the subroutine MaxSQPF with analytical derivatives.

We shall consider an uncensored data set from Nichols and Padgett (2006) consisting of 100 observations on breaking
stress of carbon fibres (in Gba). The data are: 0.39, 0.81, 0.85, 0.98, 1.08, 1.12, 1.17, 1.18, 1.22, 1.25, 1.36, 1.41, 1.47, 1.57,
1.57, 1.59, 1.59, 1.61, 1.61, 1.69, 1.69, 1.71, 1.73, 1.80, 1.84, 1.84, 1.87, 1.89, 1.92, 2.00, 2.03, 2.03, 2.05, 2.12, 2.17, 2.17, 2.17,
2.35,2.38,2.41,2.43,2.48, 2.48, 2.50, 2.53, 2.55, 2.55, 2.56, 2.59, 2.67, 2.73, 2.74, 2.76, 2.77, 2.79, 2.81, 2.81, 2.82, 2.83, 2.85,
2.87,2.88,2.93,2.95,2.96,2.97, 2.97, 3.09, 3.11, 3.11, 3.15, 3.15, 3.19, 3.19, 3.22, 3.22, 3.27, 3.28, 3.31, 3.31, 3.33, 3.39, 3.39,
3.51, 3.56, 3.60, 3.65, 3.68, 3.68, 3.68, 3.70, 3.75, 4.20, 4.38, 4.42, 4.70, 4.90, 4.91, 5.08, 5.56.

Table 1 lists the MLEs of the parameters (standard errors between parentheses) and the values of the log-likelihood
functions. We also give in this table an approximate 90% confidence interval for the parameter A of the GIG distribution. An
approximate 90% confidence interval for A of the EGIG distribution was not obtained because there were numerical problems
in the evaluation of the modified Bessel function for large values of A. Note that the EGIG and EGamma distributions produce
the highest value of the log-likelihood function. It is noteworthy that these distributions have the same estimates for the
parameters A, n and B. It is expected since @ =~ 0 for the EGIG distribution. Recall that the EGamma distribution is a special
case of the EGIG for w = 0. It also happens with the GIG and gamma distributions, as expected, since @ =~ 0 for the GIG
distribution.

The parameter X for the EGIG and GIG distributions was estimated using the profile log-likelihood function. Fig. 2 shows
the profile log-likelihood curve plotted against the parameter X for the EGIG and GIG distributions. For the EGIG distribution,
its maximum of —141.72 occurs near A = 34.860, whereas for the GIG distribution its maximum of —143.23 occurs near
A =5.953.

Plots of the estimated pdf and cdf of the fitted models are given in Fig. 3. It is clear that the EGIG and EGamma, and
GIG and gamma distributions present the same fits, i.e. there is no difference between the curves. Additionally, these plots
indicate that the EGIG and EGamma models provide better fits than the other models.


http://www.doornik.com

514 AJ. Lemonte, G.M. Cordeiro / Statistics and Probability Letters 81 (2011) 506-517

Exponentiated GIG distribution GIG distribution
o <
'~ <+
| T
I
]
o
< 7 ©
bl <+
° ! - 7
o o
o o
< £
T © ]
3 ] X
T ¥ T
8 g g |
2 2
S S
8 o a
Q
T
3 | A =5.953
o By
g A =34.860 '
I
o
wn
T T T T T T T i T T T T T T T T
0 20 40 60 80 100 120 3 4 5 6 7 8 9 10
A A
Fig. 2. The profile log-likelihood curves for A for the EGIG and GIG models fitted to the data from Nichols and Padgett (2006).
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Fig. 3. Estimated pdf and cdf of the EGIG, EGamma, GIG, Gamma, ESGamma, Hyperbola and Inverse Gaussian distributions for the data from Nichols and
Padgett (2006).

Table 2

Goodness-of-fit tests.
Distribution Statistics

w* A*

EGIG 0.08616 0.48662
EGamma 0.08616  0.48662
GIG 0.14802  0.75721
Gamma 0.14802 0.75721
ESGamma 0.21838 1.13910
Hyperbola 0.29658  1.60980

Inverse Gaussian ~ 0.31370 1.71010

In what follows, we shall apply formal goodness-of-fit tests in order to verify which distribution fits better to the data
from Nichols and Padgett (2006). We apply the Cramér-von Mises (W*) and Anderson-Darling (A*) test statistics. The W*
and A* test statistics are described in details in Chen and Balakrishnan (1995). In general, the smaller the values of W* and
A* statistics, the better the fit to the data. The values of these statistics for all models are given in Table 2. As expected, the
values of W* and A* for the EGIG and EGamma, and GIG and gamma distributions are exactly the same. According to these
statistics, the EGIG and EGamma distributions produce better fits to these data than the other distributions.
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In summary, the proposed distributions EGIG and EGamma produce better fits for the data from Nichols and Padgett
(2006) than other known distributions in the literature. In this case, the EGamma distribution could be chosen since it has
fewer parameters to be estimated.

9. Conclusions

In this note, we propose the so-called exponentiated generalized inverse Gaussian (EGIG) distribution to extend several
widely known distributions in the lifetime literature. It includes, as special sub-models, the generalized inverse Gaussian
(GIG) distribution (Good, 1953) and the exponentiated standard gamma distribution (Nadarajah and Kotz, 2006). We
provide a mathematical treatment of the new distribution including expansions for the density function, moments, moment
generating function, mean deviations, reliability and Rényi entropy. We examine a maximum likelihood estimation of the
model’s parameters and derive the observed information matrix. An application of the new distribution to a real data set is
given to demonstrate that it can be used quite effectively to provide better fits than other available models. We hope this
generalization may attract wider applications in survival analysis.
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Appendix A. Observed information matrix for the EGIG distribution

The observed information matrix J® (1, w, B) is
B Unn Upw  Upp
.’( )(77 , ,3) Ua)w Ua)ﬂ 5
. . Ugg
whose elements are: Ugg = -n/B2,

U ni 3niwDy  nwH, N no{A +2D:}D; nCw’D;  nCawfr(nw)~V? — 2K; (2, /nw)D?}
nm -

4n? ZnW n 2n 2(nw)>? n(n/w)*/?
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where D, = D; (n, ) = A/{2./nw} — R;, R, was defined in Section 7, H, = H, (n, a)) 1+ O+ l)RA/{Z,/na) I, =
LG, @3 %) = @ Tig + 075 exp(—nxi —oxg ) and Ty = TiCh, 0, @ %) = {@x; ' = (b= DIn*>x} exp(=nxi — wx; ),
fori=1,...,n

Under condltlons that are fulfilled for parameters in the interior of the parameter space b but not on the boundary,
the asymptotlc distribution of (7, @, B)T — (1, , B)T can be approximated by N3(0,J (7, @, B~ 1), where J (@, @, B) =
](”(n w, ,3) Thus, the multivariate normal A3 (0 ], o, ,3) )approx1mat10r1 can be used to construct confidence intervals
and confidence regions for the parameters. In fact, asymptotic 100(1 — 1)% confidence intervals for 1, » and g are glven by
Nk zg /o x Va2, @+z42 x [Var(@)]'/? and B +24)5 ¥ [var(B)]"/2, where var(-) is the diagonal element of J (7, @, B)~!
corresponding to each parameter, and z,; is the quantile (1 — «/2) of the standard normal distribution.

Appendix B. Estimation for the EGamma distribution
The log-likelihood function for the unknown parameter vector # = (A, 5, 8) T of the EGamma distribution is given by
n n n
€ = €(6) = nlog(B) + nilog(n) — nBlog{I" ()} + (h — 1) Y log(x) —n Y_xi+(B—1) Y y(h, nx).
i=1 i=1 i=1

The above log-likelihood function does not depend on the modified Bessel function. It implies that the derivatives with
respect to the parameter A can be obtained. The components of the score function are:

e v O, X))

55, = nlog(n) —npyr () +Zlog<xl>+<ﬁ — 1)2 )

.  ni i x> exp(—nx;) a n u

or_n_ (8= D! ., —=——nlog{rM}+ ) 1 A, %)},
3= TNt ; TS 55 = g~ "losr ) ; ogly (h, mx))

where 1/ (-) is the digamma function and y’(A, nx;) = jonxi log(t)t* exp(—t)dt, fori = 1, ..., n. The maximization of
£ can be done directly without the necessity of an indirect method as the case of the EGIG distribution. We use the SQP
method with analytical derivatives (above presented) in order to obtain the MLEs A, 77 and 8 of A,  and 8, respectively. The
observed information matrix J () is

U Usy U
](0)=_< ' Urm Unﬂ)v
. . Uﬁﬁ
whose elements are

2
y" (A, nx;) Y (&, nx)

U =—npy’' Q)+ (B -1 { -
M Z v (A, nxi) v (A, nx;)

n 1\ X exp(—nx;) log(nx;) 1 N X exp(—nx) Y (A, nx;)
Uy =—+ (B —Dn*"" ' —(B—Dn '
My ; ¥ (A, %) Z ¥ (A, 1%)>

ni = X exp(—nx;){log(n) — x;} x?* exp(—2nx;)
Up = ——3 +(B—= D'~ Y= — (=Y
"o Z ¥ (h, %) ,Z: ¥ (h nxi)?2
Y (ks mXi) 1 X} exp(—nx;) n
Up = —nyr (1) + . Ugg=——,
“9 Z y o)’ Z ) g
where v (-) is the trigamma function and y” (X, nx;) = "X’ (log(t))*t*~'exp(—t)dt, fori = 1, ..., n. The asymptotic

100(1—n)% confidence intervals for A, n, B are given by/):iza/z x [Var(n)]/2, 7 Ntzy/2 X {var(n)}l/2 and [H:za/z x [var(B)1"/2,
where var(-) is the diagonal element of J()~'. If » = 1, the EGamma distribution reduces to the ESGamma distribution
introduced by Nadarajah and Kotz (2006) and the score function and observed information matrix can also be applied for
this distribution. They seem to be new results for the ESGamma distribution, since Nadarajah and Kotz (2006) do not consider
maximum likelihood estimation in order to estimate the model’s parameters.
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