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The optimal treatment of patients with cancer depends on estab-
lishing accurate diagnoses by using a complex combination of
clinical and histopathological data. In some instances, this task is
difficult or impossible because of atypical clinical presentation or
histopathology. To determine whether the diagnosis of multiple
common adult malignancies could be achieved purely by molecular
classification, we subjected 218 tumor samples, spanning 14 com-
mon tumor types, and 90 normal tissue samples to oligonucleotide
microarray gene expression analysis. The expression levels of
16,063 genes and expressed sequence tags were used to evaluate
the accuracy of a multiclass classifier based on a support vector
machine algorithm. Overall classification accuracy was 78%, far
exceeding the accuracy of random classification (9%). Poorly dif-
ferentiated cancers resulted in low-confidence predictions and
could not be accurately classified according to their tissue of origin,
indicating that they are molecularly distinct entities with dramat-
ically different gene expression patterns compared with their well
differentiated counterparts. Taken together, these results demon-
strate the feasibility of accurate, multiclass molecular cancer clas-
sification and suggest a strategy for future clinical implementation
of molecular cancer diagnostics.

Cancer classification relies on the subjective interpretation of
both clinical and histopathological information with an eye

toward placing tumors in currently accepted categories based on
the tissue of origin of the tumor. However, clinical information
can be incomplete or misleading. In addition, there is a wide
spectrum in cancer morphology and many tumors are atypical or
lack morphologic features that are useful for differential diag-
nosis (1). These difficulties can result in diagnostic confusion,
prompting calls for mandatory second opinions in all surgical
pathology cases (2). In the aggregate, these are significant
limitations that may hinder patient care, add expense, and
confound the results of clinical trials.

Molecular diagnostics offer the promise of precise, objective,
and systematic human cancer classification, but these tests are
not widely applied because characteristic molecular markers for
most solid tumors have yet to be identified (3). Recently, DNA
microarray-based tumor gene expression profiles have been used
for cancer diagnosis. However, studies have been limited to few
cancer types and have spanned multiple technology platforms
complicating comparison among different datasets (4–10). The
feasibility of cancer diagnosis across all of the common malig-
nancies based on a single reference database has not been
explored. In addition, comprehensive gene expression databases
have yet to be developed, and there are no established analytical
methods capable of solving complex, multiclass, gene expres-
sion-based classification problems.

To address these challenges, we created a gene expression
database containing the expression profiles of 218 tumor sam-
ples representing 14 common human cancer classes. By using an
innovative analytical method, we demonstrate that accurate

multiclass cancer classification is indeed possible, suggesting the
feasibility of molecular cancer diagnosis by means of comparison
with a comprehensive and commonly accessible catalog of gene
expression profiles.

Materials and Methods
Snap-frozen human tumor and normal tissue specimens, span-
ning 14 different tumor classes, were obtained from the National
Cancer Institute�Cooperative Human Tissue Network, Massa-
chusetts General Hospital Tumor Bank, Dana–Farber Cancer
Institute, Brigham and Women’s Hospital, Children’s Hospital
(all in Boston), and Memorial Sloan-Kettering Cancer Center
(New York). Tissue was collected and studied under an anon-
ymous discarded tissue protocol approved by the Dana–Farber
Cancer Institute Institutional Review Board.

Initial diagnoses were made at university hospital referral
centers by using all available clinical and histopathological
information. Tissues underwent centralized clinical and pathol-
ogy review at the Dana–Farber Cancer Institute and Brigham
and Women’s Hospital (by M.L.) or Memorial Sloan-Kettering
Cancer Center (by E.L. and W.G.) to confirm initial diagnosis of
site of origin and histological type. All tumors were biopsy
specimens from primary sites (except where noted) obtained
before any treatment and were enriched in malignant cells
(�50%) but otherwise unselected. Normal tissue RNA (Bio-
chain, Hayward, CA) was from snap-frozen autopsy specimens
collected through the International Tissue Collection Network.

‘‘Hybridization targets’’ were prepared with RNA from whole
tumors by using published methods (4). Targets were hybridized
sequentially to oligonucleotide microarrays [Hu6800 and
Hu35KsubA GeneChips (Affymetrix, Santa Clara, CA)] con-
taining a total of 16,063 probe sets representing 14,030 GenBank
and 475 The Institute for Genomic Research (TIGR) accession
nos., and arrays were scanned by using standard Affymetrix
protocols and scanners. For subsequent analysis, each probe set
was considered as a separate gene. Expression values for each
gene were calculated by using Affymetrix GENECHIP analysis
software.

Of 314 tumor and 98 normal tissue samples processed, 218
tumor and 90 normal tissue samples passed quality control
criteria and were used for subsequent data analysis. The remain-
ing 104 samples either failed quality control measures of the
amount and quality of RNA, as assessed by spectrophotometric
measurement of OD and agarose gel electrophoresis, or yielded
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poor-quality scans. Scans were rejected if mean chip intensity
exceeded 2 SDs from the average mean intensity for the entire
scan set, if the proportion of ‘‘present’’ calls was less than 10%,
or if microarray artifacts were visible. The resulting dataset
contained �5 million gene expression values.

Clustering. Gene expression data were subjected to a variation
filter that excluded genes showing minimal variation across the
samples as follows: genes were excluded if they exhibited less
than 5-fold and 500 units absolute variation across the dataset
after a threshold of 20 units and ceiling of 16,000 units was
applied. Of 16,063 expression values considered, 11,322 passed
this filter and were used for clustering. The dataset was normal-
ized by standardizing each row (gene) to mean � 0 and
variance � 1. Average-linkage hierarchical clustering was
performed by using CLUSTER and TREEVIEW software (11).
Self-organizing map analysis was performed by using our
GENECLUSTER analysis package (available at www-genome.
wi.mit.edu�MPR) (12).

Support Vector Machine (SVM) Algorithm and One vs. All (OVA)
Classification Scheme. The SVM experiments described in this
article were performed by using an implementation of SVM-FU
(available at www.ai.mit.edu�projects�cbcl). This linear SVM
algorithm maximizes the distance between a hyperplane, w, and
the closest samples to the hyperplane from two tumor classes,
with the constraint that the samples from the two classes lie on
separate sides of the hyperplane. This distance is calculated in
16,063-dimensional gene space, corresponding to the total num-
ber of expression values considered. This geometric property can
be imposed by means of the following optimization problem:
min1⁄2�w�2 subject to yi(w�xi � b) � 1, for all i. An unknown test
sample’s position relative to the hyperplane determines its class,
and the confidence of each SVM prediction is based on the
distance of a test sample from the hyperplane. In going from
binary to multiclass classification, we used an OVA approach
(described in Results). Given m classes and m trained classifiers,
a new sample takes the class of the classifier with the largest real
valued output class � arg maxi�1...m fi, where fi is the real valued
output of the ith classifier. A positive prediction strength cor-
responds to a test sample being assigned to a single class rather
than to the ‘‘all other’’ class.

Recursive Feature Elimination. This feature selection method re-
cursively removes features based on the absolute magnitude of
each hyperplane element (13). Given microarray data with n
genes per sample, each OVA SVM classifier outputs a hyper-
plane, w, that can be thought of as a vector with n elements each
corresponding to the expression of a particular gene. Assuming
that the expression values of each gene have similar ranges, the
absolute magnitude of each element in w determines its impor-
tance in classifying a sample, because f(x) � �i�1

n wi xi � b and
the class label is sign[f(x)]. Each OVA SVM classifier is first
trained with all genes, then genes corresponding to �wi� in the
bottom 10% are removed, and each classifier is retrained with
the smaller gene set. This procedure is repeated iteratively to
study prediction accuracy as a function of gene number.

Statistical Analysis. A class-proportional random predictor was
used to determine the number of correct classifications that
would be expected by chance for multiclass prediction. Associ-
ated P values were calculated based on the likelihood that the
observed classification accuracy could be arrived at by chance,
as described (14). Genes that correlate with each tumor class
were identified by sorting all of the genes on the array according
their signal to noise (S2N) values [(�0 � �1)�(�0 � �1)], where
� and � represent the mean and SD of expression, respectively,
for each class] as published (4). For the permutation tests, 1,000

permutations of the sample labels (tumor type) were performed
on the dataset, and the S2N ratio was recalculated for each gene
for each class label permutation. A gene is considered a
statistically significant class-specific marker if the observed
S2N exceeds the permuted S2N at least 99% of the time (P �
0.01) (4).

Complete details regarding patient samples, pathology, mo-
lecular biology protocols, data analysis, raw gene expression
data, and additional information are available at www-
genome.wi.mit.edu�MPR�GCM.html.

Results
We determined the gene expression profiles of 144 primary
tumors by using oligonucleotide microarrays containing 16,063
oligonucleotide probe sets. Tumor samples were primarily solid
tumors of epithelial origin, spanning 14 common tumor classes
that account for �80% of new cancer diagnoses in the U.S., as
shown in Fig. 1.

We explored two fundamentally different approaches to data
analysis. The first, unsupervised learning, often referred to as
clustering, allows the dominant structure in a dataset to dictate
the separation of samples into clusters based on overall similarity
in gene expression, without prior knowledge of sample identity.
Fig. 1 shows the results of both hierarchical and self-organizing
map clustering of this dataset. Although some tumor types
[lymphoma, leukemia, and central nervous system (CNS)]
formed relatively discrete clusters with both methods, others, in
particular the epithelial tumors, were largely intermixed. This
finding indicates that unsupervised learning does not adequately
capture the tissue of origin distinctions among these molecularly
complex tumors. This result possibly reflects the large degree of
biological variability in gene expression data. In addition, be-
cause tumor specimens were unselected with regard to percent-
age of stromal infiltration or inflammation, these clustering
results might reflect contributions from nonneoplastic cellular
elements to gene expression signatures that confound tissue of
origin distinctions. Alternatively, the hierarchical tree structure
might reflect bona fide previously unrecognized relationships
among tumors that transcend tissue of origin distinctions.

The second approach to this classification problem is to use a
supervised learning method. This method involves ‘‘training’’ a
classifier to recognize distinctions among the 14 clinically de-
fined tumor classes based on gene expression patterns, and
testing the accuracy of the classifier in a blinded manner.
Supervised learning has been used to make pairwise distinctions
with gene expression data [e.g., the distinction between acute
lymphoblastic leukemia (ALL) and acute myeloid leukemia
(AML); ref. 4]. However, making multiclass distinctions can be
a considerably more difficult challenge. For this purpose, we
devised an analytical scheme, depicted in Fig. 2. First, we divide
the multiclass problem into a series of 14 OVA pairwise com-
parisons. Each test sample is presented sequentially to these 14
pairwise classifiers, each of which either claims or rejects that
sample as belonging to a single class. This method results in 14
separate OVA classifications per sample, each with an associated
confidence. Each test sample is assigned to the class with the
highest OVA classifier confidence.

We evaluated several classification algorithms for these OVA
pairwise classifiers including weighted voting (15), k-nearest
neighbors (16), and SVM, all of which yielded significant pre-
diction accuracy. Because the SVM algorithm consistently out-
performed other algorithms, these results are described in detail
(Figs. 3, 4, and 5). The SVM algorithm was used recently for
pairwise gene expression-based classification (17, 18) and has a
strong theoretical foundation (19, 20). This algorithm considers
all profiled genes, to create descriptions of samples in this
high-dimensional space, and then defines a hyperplane that best
separates samples from two classes (Fig. 2). The position of an
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unknown sample relative to the hyperplane determines its
membership in one or the other class (e.g., ‘‘breast cancer’’ vs.
‘‘not breast cancer’’). Fourteen separate OVA classifiers classify
each sample. The confidence of each OVA SVM prediction is
based on the distance of the test sample to each hyperplane, with
a value of 0 indicating that a sample falls directly on a hyper-
plane. The overall multiclass classifier assigns a sample to the
class with the highest confidence among the 14 pairwise OVA
analyses.

The accuracy of this multiclass SVM-based classifier in cancer
diagnosis was first evaluated by cross-validation in a set of 144
training samples. This method involves randomly withholding 1
of the 144 primary tumor samples, building a predictor based
only on the remaining samples, then predicting the class of the
withheld sample. The process is repeated for each sample, and
the cumulative error rate is calculated. As shown in Fig. 3, the
majority (80%) of the 144 calls was high confidence (defined as
confidence �0) and these had an accuracy of 90%, using the
patient’s clinical diagnosis as the ‘‘gold standard.’’ The remain-
ing 20% of the tumors had low confidence calls (confidence �0),
and these predictions had an accuracy of 28%. Overall, the
multiclass prediction corresponded to the correct assignment for
78% of the tumors. For half of the errors, the correct classifi-
cation corresponded to the second- or third-most confident
OVA prediction.

We confirmed these results by training the multiclass SVM
classifier on the entire set of 144 samples and applying this
classifier without further modification to an independent test set
of 54 tumor samples. Overall prediction accuracy on this test set
was 78%, a result similar to cross-validation accuracy and highly
statistically significant when compared with class-proportional
random prediction (P � 10�16). The majority of these 54
predictions (78%) were high confidence, with an accuracy of

Fig. 1. Clustering of tumor gene expression data and identification of tumor-specific molecular markers. Hierarchical clustering (a) and a 5 � 5 self-organizing
map (SOM) (b) were used to cluster 144 tumors spanning 14 tumor classes according to their gene expression patterns. (c) Gene expression values for class-specific
OVA markers, as determined using the S2N metric, are shown. Columns represent 190 primary human tumor samples ordered by class. Rows represent 10 genes
most highly correlated with each OVA distinction. Red indicates high relative level of expression, and blue represents low relative level of expression. The known
cancer markers prostate-specific antigen (PSA), carcinoembryonic antigen (CEA), and estrogen receptor (ER) are identified. BR, breast adenocarcinoma; PR,
prostate adenocarcinoma; LU, lung adenocarcinoma; CR, colorectal adenocarcinoma; LY, lymphoma; BL, bladder transitional cell carcinoma; ML, melanoma; UT,
uterine adenocarcinoma; LE, leukemia; RE, renal cell carcinoma; PA, pancreatic adenocarcinoma; OV, ovarian adenocarcinoma; ME, pleural mesothelioma; CNS,
central nervous system.

Fig. 2. Multiclass classification scheme. The multiclass cancer classification
problem is divided into a series of 14 OVA problems, and each OVA problem
is addressed by a different class-specific classifier (e.g., ‘‘breast cancer’’ vs. ‘‘not
breast cancer’’). Each classifier uses the SVM algorithm to define a hyperplane
that best separates training samples into two classes. In the example shown,
a test sample is sequentially presented to each of 14 OVA classifiers and is
predicted to be breast cancer, based on the breast OVA classifier having the
highest confidence.
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83%, whereas low-confidence calls were made on the remaining
22% of tumors with an accuracy of 58%. Again, for one-half of
the errors, the correct classification corresponded to the second-
or third-best prediction. Of note, classification of 100 random
splits of a combined training and test dataset gave similar results,
confirming the stability of prediction for this collection of
samples (Fig. 5).

Among these 54 test samples, were 8 metastatic samples, 6 of
which were correctly classified despite the classifier having been
trained solely with gene expression data derived from primary
tumors (P � 0.005 vs. random multiclass assignment). This
finding implies that prediction is being driven by cancer-intrinsic
gene expression patterns rather than by gene expression signa-
tures derived from contaminating nonmalignant tissue elements.
These results further indicate that many cancers retain their
tissue of origin identity throughout metastatic evolution, sug-
gesting that gene expression-based approaches to the diagnosis
of clinically problematic metastases of unknown primary origin
(21) may be feasible.

We next investigated the number of genes contributing to the
high accuracy of the SVM OVA classifier. The SVM algorithm
considers all 16,063 input genes and naturally utilizes all genes
that contain information for each OVA distinction. Genes are

assigned weights based on their relative contribution to the
determination of each hyperplane, and genes that do not con-
tribute to a distinction are weighted at zero. Virtually all genes
on the array were assigned weakly positive and negative weights
in each OVA classifier (data not shown), indicating that thou-
sands of genes potentially carry information relevant for the 14
OVA class distinctions. To determine whether the inclusion of
this large number of genes was actually required for the observed
high-accuracy predictions, we examined the relationship be-
tween classification accuracy and gene number by using recur-
sive feature elimination. As shown in Fig. 5, maximal classifica-
tion accuracy is achieved when the predictor utilizes all genes for
each OVA distinction. Nevertheless, significant prediction can
still be achieved by using smaller gene numbers. Alternate
feature selection methods with different properties, such as S2N
(4), radius-margin scaling (22), and gene shaving (23), also
resulted in reduced classification accuracy (data not shown).

Fig. 3. Multiclass classification results. (a) Results of multiclass classification
by using cross-validation on a training set (144 primary tumors) and indepen-
dent testing with 2 test sets: Test (54 tumors; 46 primary and 8 metastatic) and
PD (20 poorly differentiated tumors; 14 primary and 6 metastatic). (b) Scatter
plot showing SVM OVA classifier confidence as a function of correct calls (blue)
or errors (red) for Training, Test, and PD samples. A, accuracy of prediction; %,
percentage of total sample number.

Fig. 4. Multiclass classification error analysis. Matrices delineate distribution of actual compared with predicted class membership for multiclass prediction on
training (crossvalidation) and test sets.

Fig. 5. Multiclass classification as a function of gene number. Training and
test datasets were combined (190 tumors; 14 classes), then were randomly split
into 100 training and test sets of 144 and 46 samples (all primary tumors) in a
class-proportional manner. SVM OVA prediction was performed, and mean
classification accuracy for the 100 splits was plotted as a function of number
of genes used by each of the 14 OVA classifiers, showing decreasing prediction
accuracy with decreasing gene number. Results using other algorithms (k-NN,
k-nearest neighbors; WV, weighted voting) and classification schemes (AP,
all-pairs) are also shown.
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Our gene expression dataset is also useful for biological
discovery. For example, the genes most highly correlated with
each of the 14 tumor classes are displayed in Fig. 1, and a
complete list of marker genes is available at www-genome.wi.m-
it.edu�MPR�GCM.html. Many genes already in routine clinical
use for cancer diagnosis were identified, including prostate-
specific antigen (prostate cancer), carcinoembryonic antigen
(colon cancer), CD20 (lymphoid cancers), S100 (melanoma),
and estrogen receptor (uterine cancer). In addition, many pre-
viously unrecognized markers were discovered, the vast majority
of which are tissue-specific genes, reflecting a recurring onco-
developmental connection that has been described for many
cancers (24). For example, a search for colorectal adenocarci-
noma-specific markers revealed 27 that were statistically signif-
icant (P � 0.01) based on permutation testing. These genes
include intestine-specific transcription factors, cytoskeletal and
adhesion molecules, signaling molecules, and membrane-bound
tumor markers. Notably, the two transcription factors, Cdx-1 and
Bteb-2, are both downstream targets of the Wnt-1��-Catenin
signaling pathway, which is mutated in most colorectal cancers
(25–27). The other statistically significant colon adenocarcinoma
marker genes are thus also candidates for being under Wnt-1�
�-Catenin control. This observation suggests that the gene
expression database described here may be useful not only for
cancer diagnosis, but also for the generation of new biological
hypotheses into the pathogenesis of cancer.

The significant degree of shared gene expression between
tumors and their normal tissue counterparts prompted us to ask
whether supervised learning could be used to distinguish 210
primary tumors considered as a single class from a collection of
90 normal tissues. By using the S2N metric, we were unable to
identify single gene markers that are uniformly expressed only in
cancer and not normal tissue. Nevertheless, using the SVM
algorithm in cross-validation, we were able to make this pairwise
distinction with high accuracy (92%), indicating the presence of
a cancer-specific gene expression fingerprint common to all
tumors.

We next considered the 28 samples that yielded low-
confidence predictions in cross-validation, as these samples are
generally misclassified by the multiclass predictor. We found that
a large number (17 of 28) were moderately or poorly differen-
tiated (high-grade) carcinomas. It can be difficult to classify such
tumors with traditional methods because they often lack the
characteristic morphological hallmarks of the organ from which
they arise. It has been assumed that these tumors are nonetheless
fundamentally molecularly similar to their better-differentiated
counterparts, apart from a few differences that might account for
their clinically aggressive nature. We directly tested this hypoth-
esis by applying our multiclass classifier, trained on the original
144-tumor dataset, to an independent set of poorly differenti-
ated tumors.

Gene expression data were collected from 20 poorly differ-
entiated adenocarcinomas (14 primary and 6 metastatic), rep-
resenting 5 tumor types: breast, lung, colon, ovary, and uterus.
The technical quality of this dataset was indistinguishable from
the other samples in the study. However, these tumors could not
be accurately classified according to their tissues of origin,
compared with the high overall accuracy seen with lower-grade
tumors. Overall, only 6�20 samples (30%) were correctly clas-
sified, which is statistically no better than what one would expect
by chance alone (P � 0.38) (Fig. 3). Because the classifier relies
on the expression of thousands of similarly weighted tissue-
specific molecular markers to determine the class of a tumor,
these findings indicate that poorly differentiated tumors do not
simply lack a few key markers of differentiation, but rather have
fundamentally distinct gene expression patterns. This result has
significant implications for the future management of patients
with these cancers.

Discussion
We report here the creation of a gene expression database from
308 common human cancers and normal tissues by using oligo-
nucleotide microarrays and demonstrate that multiclass cancer
diagnosis is feasible by means of comparison of an unknown
sample to this reference database. Notably, molecularly complex
solid tumors can be distinguished with this method despite the
presence of varying proportions of nonneoplastic elements in
clinical specimens. These findings suggest a new strategy for the
future uniform and comprehensive molecular classification of
primary and metastatic tumors.

The multiclass classifier that we describe is highly accurate, but
is not perfect. That errors were evenly distributed throughout
most solid tumor classes and that half of the errors were ‘‘close
calls’’ imply that improved accuracy might be possible by in-
creasing the number of samples from these classes in the training
set, beyond the modest number used in this study.

Our findings also imply that information useful for multiclass
tumor classification is encoded in complex gene expression
patterns not adequately captured by a small number of genes.
Although pairwise distinctions can be made between select
tumor classes using fewer genes, multiclass distinctions among
highly related tumor types (i.e., adenocarcinomas) are intrinsi-
cally more difficult. The effects of biological and measurement
noise, contaminating nonmalignant tumor components, and
inclusion of genetically heterogeneous samples within clinically
defined tumor classes may all effectively decrease predictive
power in the multiclass setting. Increased gene number likely
allows for highly accurate prediction despite these factors. A
greater variety and large number of tumors with detailed clinico-
pathological characterization will be required to fully explore the
true limitations of gene expression-based multiclass classifica-
tion. In addition, the SVM-based classification strategy used
here may not be the optimal method for every type of multiclass
problem. Other classification schemes, classification algorithms,
or novel marker selection methods might also be useful for
making multiclass distinctions.

Interestingly, the poorly differentiated tumors analyzed in this
study could not be classified according to their tissues of origin,
despite the classifier’s use of thousands of tissue-specific molec-
ular markers. We had expected that these tumors would have
fundamentally similar gene expression patterns compared with
their well differentiated counterparts, with only minor differ-
ences. To the contrary, our data indicate that poorly differen-
tiated tumors have a very different gene expression program. On
a fundamental level, this finding raises the possibilities that
poorly differentiated tumors arise from distinct cellular precur-
sors, have different molecular mechanisms of transformation, or
have unique natural histories in some other respect. This finding
also has important clinical implications in that it suggests that
these tumors should be classified distinctly, rather than lumped
with well differentiated tumors arising from the same organ.
Given the clinically aggressive nature of poorly differentiated
cancers, some markers of poorly differentiated tumors might
prove generally useful for predicting poorer clinical outcome.

Expression-based multiclass cancer classification is not a
substitute for traditional diagnostics, but it represents a poten-
tially important adjunct. Molecular characteristics of a tumor
sample may remain intact despite atypical clinical or histological
features. Classification occurs through an algorithmic rather
than subjective approach in which classification confidence is
quantified. In addition, all samples are evaluated by a uniform
method that can be standardized throughout the medical com-
munity. Currently, diagnostic advances are disseminated into
clinical practice in a slow and uneven fashion. By contrast, a
centralized classification database may allow classification ac-
curacy to rapidly improve as the classification algorithm ‘‘learns’’
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from an ever-growing database. As robust molecular correlates
of stage, natural history, and treatment response in multiple
tumor classes are discovered (5, 28, 29), computational methods
for making multiclass distinctions using gene expression or
proteomic data will take on increasing importance.

Clinical trials will be required to determine how best to
integrate genomics-based diagnostics into standard patient care.
This study provides insight into the form such molecular diag-
nosis might take. A future challenge is to directly apply this
approach to the diagnosis of clinically ambiguous tumors. In
addition, many have assumed that DNA microarrays will be
useful for the high-throughput discovery of tumor-specific
marker genes, but that clinical implementation will use routine
immunohistochemistry or other traditional methods. Indeed,
some of the markers that we describe may prove useful in this
realm. However, our results indicate that optimal multiclass
molecular classification may require gene numbers that are
beyond the scope of traditional molecular diagnostics such as
immunohistochemistry. This finding suggests that the successful

clinical deployment of comprehensive molecular-based classifi-
cation may require the introduction of highly parallel platforms
such as DNA microarrays into the clinical setting.

Note Added in Proof. Recently, Su et al. (30) also reported using human
tumor gene expression profiles to distinguish a number of carcinoma
classes.
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