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SAM (Spatial Analysis in Macroecology) is a freeware application that offers a comprehensive array of spatial statistical
methods, focused primarily on surface pattern spatial analysis. SAM is a compact, but powerful stand-alone software,
with a user-friendly, menu-driven graphical interface. The methods available in SAM are the most commonly used in
macroecology and geographical ecology, and range from simple tools for exploratory graphical analysis (e.g. mapping
and graphing) and descriptive statistics of spatial patterns (e.g. autocorrelation metrics), to advanced spatial regression
models (e.g. autoregression and eigenvector filtering). Download of the software, along with the user manual, can be
downloaded online at the SAM website: /<www.ecoevol.ufg.br/> (permanent URL at /<http://purl.oclc.org/sam//>).

Today there are many software applications and packages
available for spatial statistical analysis. Some of them are
stand-alone applications that offer several methods (e.g.
Passage /<www.passagesoftware.net/>, GeoDa Bgeodacenter.
asu.edu�), while others are specific to particular methods
(e.g. GWR3 /<http://ncg.nuim.ie/ncg/GWR/software.htm/>,
SpaceMaker2 /<www.bio.umontreal.ca/casgrain/en/labo/
spacemaker.html/>, ModTTest /<www.bio.umontreal.ca/
legendre/indexEn.html/>) or collections of routines within
a general purpose statistical platform (e.g. SpDep for R,
EconoTools for MatLab). SAM (Spatial Analysis in
Macroecology, Rangel et al. 2006) is a compact, but
powerful stand-alone freeware application, compiled for
the MS Windows environment, with a user-friendly, menu-
driven graphical interface. SAM offers a comprehensive
array of spatial statistical methods. The methods available in
SAM are the most commonly used in macroecology and
geographical ecology, ranging from simple tools for
exploratory graphical analysis (e.g. mapping and graphing)
and descriptive statistics of spatial patterns (e.g. autocorre-
lation metrics), to advanced spatial regression models (e.g.
autoregression and eigenvector filtering).

Since SAM’s first release, in August 2005, it has been
downloaded about 9300 times (Fig. 1a), by researchers
working in �60 countries around the world. By tracking
scientific publications that cite the original SAM paper
(Rangel et al. 2006, Fig. 1b), we identified 165 studies
that cited SAM, of which 83% reported that SAM was
directly used for spatial statistical analysis. Among those
studies, 77% used SAM to investigate general ecological
questions, whereas 25% used for biodiversity conservation,

22% for physical geography and 9% for questions related
to evolutionary biology. These papers were collectively
published in 45 different journals, by authors from 33
different countries. The most commonly used methods
implemented in SAM were Moran’s I correlogram (43%),
Dutilleul’s (1993) estimator of effective sample size used
in correlation analysis (12%), spatial auto-regression
models (SAR, CAR or GLS, 11%) and spatial eigenvector
mapping (7%).

SAM has been under continuous development and
expansion (Table 1). SAM now uses extremely optimized
linear algebra libraries for the most computer-intensive
methods, so that time-consuming procedures (e.g. involving
eigenanalysis) are now must faster. Here we show how
the most important features currently available in SAM
evolved, while highlighting the new and improved features
available in SAM v4, released in March 2010.

The data table in SAM is a rectangular matrix of
numeric values, in which columns are variables and rows are
individual observations (e.g. grid cells), formatted in tab-
delimited text (ASCII) (*.txt or *.sam), dBase (*.dbf), MS
Excel (*.xls) or ESRI shapefile (*.shp and companion
files). Geographic coordinates must be included as two of
the columns (variables) in the data file. In addition to
the main data table, recent versions of SAM also allow the
input of species presence/absence matrices, in which each
species is represented in its own column, while rows are
locations in which the species is present (1) or absent (0).
Presence/absence matrices can be used, for instance, to
compute richness patterns considering different criteria
(e.g. body size and taxonomic structures; Bini et al. 2004,
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Terribile et al. 2009). In addition, if a matrix of species’
traits (with species in rows and species’ traits in columns) is
available, then individual species in the presence/absence
matrix can be selected according to a given trait (e.g. species
with body size larger than the average body size), or species
traits can be mapped in the geographical space, given the
species assemblage in each location. This is a very useful
tool for those interested in some of the most frequent
investigated macroecological patterns, as for instance, the
Bergmann’s and Rapoport’s rules.

Previous SAM versions were mostly dedicated to data
analysis, and most of data processing relevant to macro-
ecological studies had to be done with the aid of a GIS
software. The GIS environment implemented in the
current SAM version, however, allows users to easily pre-
pare data for macroecological analysis without any addi-
tional software. Grids can be generated in any resolution
and extent, using equal area square or hexagonal cells, and
they can be saved into shapefiles. Also, because shapefiles

have become a standard format to share information on
species distributions (range polygons or points), SAM can
process the distribution of each species to record its
presence or absence in each grid cell, and thus generate
presence/absence matrices directly from shapefiles. Finally,
from ESRI rasters or text files, environmental layers can be
downscaled to the resolution of the grid by calculating
mean and standard deviation of all observations within
each grid cell, which then become additional variables in
the main data matrix.

The graphical exploratory data analysis (GEDA) is one
of the most important steps in statistical analysis (Tukey
1980). For this reason, one of SAM’s greatest strengths
is its rich collection of graphical analytical tools and the
simplicity of using and editing them. All charts, which
may be drawn with just a few clicks, allow zooming,
scrolling and changing colors, maximizing investigators’
capacity to find patterns and identify particular details in
the data. Colors are abundantly used to highlight patterns

Table 1. The evolution of the most used modules available in SAM. Greek letters denote the versions of the modules (a: first; b: second;
g: third; d: forth). GEDA stands for Graphical Exploratory Data Analysis, PAM stands for Presence/Absence Matrix and SEVM stands for Spatial
Eigenvector Mapping).

SAM v1 SAM v2 SAM v3 SAM v4
Aug-05 Aug-06 Aug-08 Mar-10

GEDA tools a b g d
Moran’s I and Auto-Correlogram a a a b
Spatial Correlation a a a b
Regression and Partial Regression a b b g
PAM and Spp. Attributes Mapping a a b
Principal Component Analysis a a a
Auto-Regression: Lagged a a b
Auto-Regression: SAR/CAR a a b
Auto-Regression: GLS a a b
SEVM a b
Model Selection and Multi-Model Inference a a
Logistic Regression a b
Geographically Weighted Regression a a
GIS Processing and Mapping a b
Pattern Finder a b
Ripley’s K a
Join-Count Analysis a
Mantel Test a
ANOVA a

(a) (b)
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Figure 1. (a) Time-series of number of scientific publications that cite the original SAM paper (Rangel et al. 2006). (b) Time series of
cumulative number of SAM downloads since first release (August 2005). Discontinuities in April 2007 and April 2008 were caused by
intensified download activity following the releases of SAM v2 and v3.
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in the data or to superimpose multiple plots in the same
panel. For example, in two-dimensional scatter-plots, poly-
nomial regression lines can be easily drawn to highlight
the relationship between two variables. In the three-
dimensional scatter-plot, tilting and rotating allow that
visual inspection of the data can be done from any
perspective. In the new version, the residuals plot applies
a well designed set of color gradients in a scatter plot and
in a map simultaneously. This tool graphically displays
the correlation between two variables and is ideal for
evaluating the geographic structure in model’s residuals, as
it uses different color gradients to differentiate under- and
over-estimated values.

Maps are the most important exploratory tools in
spatial data analysis, which is why they are fully embedded
in each of SAM’s analytical modules. SAM allows users
to easily draw one or multiple maps simultaneously,
which facilitates the visual comparison of the spatial
patterns in different variables. The map module in SAM
allows re-sizing, zooming and scrolling simple maps, as
well as inspecting values by moving the cursor over the
map. An even more advanced mapping module is enabled
when the main data is extracted from an ESRI shapefile.
For example, one may overlay multiple map layers, which
may be regular or irregular polygons, and points, to
produce publication-quality maps. The graduated color
gradients, with customizable classes, are applicable to each
shapefile, with automatically generated legends.

The strength of the relationships among variables can
change across space (see GWR below). For example, water
availability is thought to affect species richness in the
tropics, whereas temperature is the most important driver
of species richness at higher latitudes (Hawkins et al.
2003). Pattern Finder is a new tool available in SAM that
graphically links scatter plots, maps and tables to aid the
identification of geographically structured relationships.
Using this tool, one can select cells in a map, then the
points in the scatter plot and the rows in a spreadsheet
that refer to the selected cells are highlighted. The selec-
tion of the data may also be made directly from the
scatter plot or the spreadsheet. This is an especially useful
tool to detect outliers or mistyping.

One of the most important steps in exploratory analysis
of spatial data is to measure the magnitude and direction
of spatial autocorrelation, which has been defined as ‘‘the
property of random variables taking values, at pairs of
locations a certain distance apart, that are more similar
(positive autocorrelation) or less similar (negative auto-
correlation) than expected for randomly associated pairs of
observations’’ (Legendre 1993). Moran’s I coefficient is
one of the most commonly used descriptors of spatial
autocorrelation. Moran’s I can be calculated for individual
distance classes (e.g. from 0 to 300 km, 300 to 600 km),
producing a plot known as a spatial correlogram. Besides a
standard spatial correlogram, SAM’s current version also
computes asymmetric correlograms, directional correlo-
grams (Rosenberg 2000), Anselin’s Moran’s I scatter plot
(Anselin 1996), and local Moran’s I (LISA, Sokal et al.
1998). Also, a new module in SAM implements join-
count analysis, which measures the magnitude of spatial
autocorrelation in binary data, and is thus very useful to
describe the spatial pattern in the distribution of species.

Still in the context of spatial autocorrelation, a new
important feature in SAM 4.0 is that autocorrelation can
be evaluated in multidimensional data using Mantel test
(Manly 1998). This technique is widely used in ecology
and evolutionary biology to evaluate if the (dis)similarity
among samples (many metrics are available) is structured
in geographic space. One of the advanced features on SAM
implementation of Mantel test is the ability to perform a
Mantel correlogram, which separates the geographic space
into sequential distance classes to aid the identification of
changes in the strength of correlation between matrices
(e.g. compositional similarity against a distance matrix) at
different scales.

The problem of inflated type I error rates and model
instability that may arise from violation of the assumption
of residuals independence in ecological models are now
well-known (Legendre 1993, Schabenberger and Gotway
2005, Diniz-Filho et al. 2008, Cliff and Ord 2009). In
SAM, this assumption can be easily checked for by
evaluating the spatial correlogram of regression residuals
that is automatically calculated when the regressed data is
spatially explicit. However, researchers have been gradually
abandoning classical null-hypothesis testing when the actual
goal of the analysis is to confront multiple competing
hypotheses (Hilborne and Mangel 1997, Burnham and
Anderson 2002). Instead, they have been adopting the
information theoretic approach to select the best model
among a large set of competing models, or combining
the most parsimonious models as a function of their rank.
SAM performs model selection and multi-model inference
employing the Akaike information criterion (AIC), which
provides a parsimonious balance between model predictive
power and complexity. Thus, when a set of competing
explanatory variables are defined by the researcher, SAM
evaluates models that emerge from all possible combina-
tions of individual variables, and ranks them according to
their AIC value and derived statistics (e.g. Akaike’s weights
and delta AIC). In addition, when the goal is to estimate
model parameters or to generate a single predictive model,
a ‘‘multi-model’’ consensus is calculated by averaging and
weighting the estimated model parameters as function of
Akaike weights. Although this module is based on a
standard OLS approach, spatial structure may be easily
incorporated by adding spatial covariates as ‘‘fixed’’
predictors in the model selection procedure (Diniz-Filho
et al. 2008).

When a matrix of explanatory variables represents two
or more sets of competing hypotheses, it is possible to
quantify the explanatory power due to individual sets
of variables as well as the magnitude of redundancy
between the sets. Partial regression analysis has been
widely applied in spatial ecology to quantify how the
total variation in a response variable can be attributed to
the independent effects of the 1) environmental variation
not structured in space, 2) spatially structured environ-
mental variation, 3) intrinsic spatially contagious processes,
and the 4) unexplained variation. The partial regression
module in the current version SAM allows users to define
up to three sets of variables, which could be, for example,
contemporary environmental factors (e.g. temperature),
historical factors (e.g. mean root distance of a phylogenetic
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tree) and spatial covariates (e.g. polynomial expansions of
geographic coordinates).

A strategy commonly employed to account for spatial
autocorrelation in regression analysis is to explicitly incor-
porate in the model the spatial relationship between pairs
of sites. The family of statistical techniques that employ
this strategy is collectively known as autoregression, or
spatial regression models (Dormann et al. 2007), because
they require the estimation of the autoregressive parameter
to measure the magnitude of autocorrelation in the data.
There are several autoregressive (AR) models available in
SAM, including: pure (PAR), lagged-response (LRAR),
lagged-predictor (LPAR), simultaneous (SAR), conditional
(CAR) and moving-average (MAAR) autoregression. In
addition, researchers may also use a semi-variogram to
define a variance-covariance matrix and incorporate the
spatial structure in a Generalized Least Squares (GLS)
model (a technique known as kriging regression).

Among the techniques available today for spatial regres-
sion, one of the most flexible and statistically powerful is
spatial eigenvector mapping (SEVM, Borcard et al. 2004,
Diniz-Filho and Bini 2005, Griffith and Peres-Neto 2006,
Bini et al. 2009). SEVM comes in various flavors,
depending on how the matrix of spatial relationships
among pairs of observations is defined. The module
implemented in SAM has been continuously improved,
and the current version has three important new features:
1) allows both binary connectivity and continuous distance
matrices, 2) provides additional ways to select eigenvectors,
including the minimization of Moran’s I in model residuals,
and 3) both explanatory variables (e.g. environmental
factors) and spatial eigenvectors can be analyzed simultan-
eously within the SEVM module, which enables the
automated computation of a partial regression analysis
between explanatory variables and spatial predictors.

Both spatial and non-spatial regression models actually
require careful evaluation of the stationarity assumption
(a lack of importance in the absolute geographical position
for estimating model parameters), as violations to this
assumption may lead to biases in estimated parameters
(Fotheringham et al. 2002). For example, if the direction
and magnitude of an ecological process shift from one
region to another, the parameter estimated by a global
stationary model weights the strength and direction of the
process in both regions, which may lead to the conclusion
that the processes is globally irrelevant to the observed
pattern. Thus, the Geographically Weighted Regression
(GWR), now implemented in SAM, is an important
method because it allows users to evaluate possible viola-
tions of the stationarity assumption and to estimate geo-
graphically varying model parameters that may then be
biologically interpretable (Cassemiro et al. 2007).

In modeling process, another new possibility in the
recent version of SAM is to use presence-absence data to
model species’ distributions, in the context of niche
modeling or species distribution modeling (SDM) (Elith
et al. 2006). Although SAM is not particularly designed to
run the many different algorithms available for SDM, it
now provides a routine for logistic regression that can be
used for SDM when presence and absence data are
available. This tool can be coupled with other richness
analyses and allows a first evaluation of species’ environ-

mental drivers and their relationship with other macro-
ecological patterns (Terribile et al. 2009). Moreover,
spatial autologistic model is also available in SAM. This
model uses the information on the relative position of the
species occurrence to generate a spatial weighting covariate,
and aims to improve the model predictive power by
accounting for stochastic processes driving species distribu-
tion, such as species’ dispersal capacity (Segurado et al.
2006). Dormann et al. (2007) recently used artificial
simulation to show that autologistic models sometimes
underestimate the effect of environmental factors, although
his analyses have been questioned by Betts et al. (2009).

Download of the software, along with the user manual,
can be found online at the SAM website: /<www.ecoevol.
ufg.br/sam/> (/<http://purl.oclc.org/sam//>).

To cite SAM or acknowledge its use, cite this Software
note as follows, substituting the version of the application
that you used for ‘‘Version 4’’:

Rangel, T. F., Diniz-Filho, J. A. F. and Bini, L. M. 2010.
SAM: a comprehensive application for Spatial Analysis in
Macroecology. � Ecography 33: 46�50, (Version 4).
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