WILEY-
BLACKWELL

Principal Component Analysis of Designed Experiment

Author(s): J. N. R. Jeffers

Source: Journal of the Royal Statistical Society. Series D (The Statistician), Vol. 12, No. 3,
Factor Analysis (1962), pp. 230-242

Published by: Blackwell Publishing for the Royal Statistical Society

Stable URL: http://www.jstor.org/stable/2986916

Accessed: 13/07/2009 14:06

Y our use of the JSTOR archive indicates your acceptance of JISTOR's Terms and Conditions of Use, available at
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of ajourna or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of thiswork. Publisher contact information may be obtained at
http://www.jstor.org/action/showPublisher?publisherCode=black.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is anot-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the
scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that
promotes the discovery and use of these resources. For more information about JSTOR, please contact support@jstor.org.

Blackwel| Publishing and Royal Statistical Society are collaborating with JSSTOR to digitize, preserve and
extend access to Journal of the Royal Statistical Society. Series D (The Satistician).

http://www.jstor.org


http://www.jstor.org/stable/2986916?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=black

Principal Component Analysis
of Designed Experiment

J. N. R. JEFFERS

1. Introduction

The increasing availability of electronic digital computers for
statistical analysis has focused a great deal of attention upon
techniques of multivariate analysis. The books of Rao, 1952, and
Kendall, 1957, have, in particular, made clear the interrelationships
between the various types of multivariate analysis, and have under-
lined the basic theory upon which these techniques depend. Although
few of the standard texts deal with the application of multivariate
techniques to data arising from designed experiments, there have
been a number of papers dealing with this subject. Quenouille, 1950,
reviewed and extended some methods of multivariate experimenta-
tion, distinguishing between dependent and independent variables.
Steel, 1955, suggested a multivariate test of significance for the
effects of varieties or treatments, and the use of orthogonal trans-
formations in the analysis of experiments, with particular emphasis
upon the use of canonical variates. Rao, 1958, suggested two
methods for the special problem of repeated measurements of
perennial crops, and Danford et al., 1960, suggested multivariate
procedures for situations where a valid univariate analysis is not
justified. Fairfield-Smith, 1958, discussed a special case of the
related problem of the multivariate analysis of covariance.

The small number of papers listed above is by no means exhaustive,
and it is clear that a number of statisticians have been thinking
about the multivariate analysis of data from designed experiments.
Despite this interest, remarkably little use of multivariate methods
is evident in the day-to-day analysis of experimental results, and
general procedures for such analysis do not appear to be in
common use.

This paper gives an example of the applieation of one form of
multivariate analysis, that of principal component analysis, to
experimental data. The methods described have been applied to
many experiments, and have been found to combine a reasonably
simple method of analysis, if an electronic digital computer is
available, with an approach sufficiently general to be usefully applied
to the widest possible range of experimental procedures.
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2. Methods of Multivariate Analysis

It is desirable, first to consider some of the many forms of multi-
variate analysis that might be adopted in the interpretation of
designed experiments. In considering these, the simplest form which
the data from a typical experiment might take is that of a two-way
table giving the arithmetic mean of each variable assessed for each of
the experimental treatments. Such a data-set most nearly conforms
to the type of data usually assumed in texts on multivariate analysis,
and may be looked at in two ways. First, greatest interest may be
expressed in the degrees of similarity between pairs of treatments,
calculated over the full range of the variables assessed. Techniques
with this emphasis, sometimes known as Q-techniques, have come
to form the basis of many methods of numerical classification, and
lead to the setting up of a “taxonomy” of the treatments. (Sneath,
P.H.A.,1957,and Michener, C.D.and Sokal,R.R.,1957). For certain
types of experiment, they may prove to be of particular value, as, for
example, in experiments seeking to evaluate closely related groups of
plants or animals. This approach will not, however, be adopted in
this paper.

The alternative emphasis in examining the data directs attention to
the variates themselves and the ways in which they are correlated.
By seeking for “dimensions” of variability which are more general
than the individual variates, the experimenter attempts to gain a
better understanding of the response to his ‘“‘treatments” and a
sounder knowledge of the variates which are important in future
experiments. If these more general “dimensions” are discovered, the
treatments may be compared in terms of these new variables and
most of the information provided by the experiment summarized by
only a small number of comparisons. The techniques with this
emphasis are sometimes grouped together under the name of factor
analysis, but this terminology is unfortunate, since the term is also
applied to a particular type of analysis with this emphasis. In fact, a
considerable number of closely related techniques of this broad class
can be generated by different choices of procedure at various stages
in the analysis. In this paper, only one of the possible methods will
be examined, that of principal component analysis.

The data-set referred to above is the most general that can be
derived from designed experiments, and enables data derived from
different stages of the experiment to be included in the same analysis,
even if the actual designs of the stages of the experiment are not the
same. Thus, in an experiment to compare the progeny from different
trees, assessments of important variables may be made on the seed,
on the seedlings raised from the seed, on transplants taken from the
seedlings, on the trees planted in several sites, and on the timber cut
from the mature trees, and all of the stages of this experiment may
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require different experimental designs. The ability to analyse
the data together helps to correlate a great number of separate
variates.

At a lesser level of summary, there may be a number of assessments
within any single stage of the experiment, so that, for each plot of the
experimental design, there are corresponding values of a number of
variates. It is therefore possible, for this more limited number of
variates, to express the correlations between the variates for several
components isolated by the experimental design. Thus, it is possible
to calculate the correlations for the total range of variability of the
experiment, for the more limited range expressed as “treatments-
plus-error,” and for the experimental error alone. Factor analysis of
the correlations shown by the various components may therefore
reveal the precise effects of the treatments, and, sometimes more
important, the structure of the unexplained error (Pearce and Holland,
1960). An alternative approach by Steel, 1955, made use of canonical
correlations to maximize the ratio of treatment to treatment-plus-
error correlations, in other words, to identify those ‘“‘dimensions”
which were most affected by the treatments. Yet another approach
has been adopted in this paper, that of Rao, 1958, in which a principal
component analysis is based upon the total correlation matrix,
followed by the calculation of the new variables defined in this
analysis, and an analysis of variance of these variables.

3. Methods of Calculation

As indicated above, only one of the many possible forms of multi-
variate analysis is described in this paper. The reasons for this choice
are not intended to be the subject of this paper, but may be summarized
briefly—

1. The method of principal component analysis described below
is objective and free from the dubious practices of estimation of
communalities and rotation of axes present in some other methods
of factor analysis.

2. Principal component analysis is relatively easy to programme
on electric digital computers, and can be applied to a wide variety
of situations.

3. Although obviously a mathematical artefact, experience in its
application frequently suggests meaningful and valuable inter-
pretations.

4. The method directs attention to the wider problem of the
“dimensions” which assessed variates seek to express, and gives
guidance to the choice of variates in future experimentation.
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The actual method of computation can be described very simply.

Given a matrix of variates.

X1
Xo1

X

X12
Xog

Xig

X13
Xa3

X3

X1n
Xon

xtn

where 7 is the number of variates, and ¢ is the number of treatments
or plots, the coefficients of correlation between every pair of columns
are calculated to form the correlation matrix.

m

T1

Vo

Fna

I3
Fag

Fp3

rnn

where the principal diagonal, composed of the elements ryy, 149, . . .,
I, consists of 1’s. The latent roots and vectors of this symmetric
correlation matrix define an orthogonal set of linear combinations of
the original variates

Z=day X +a, X+. . . .+a, x
Zg=Qqy Xyt dyy Xo+ . . . .4a, x,

Zn=an1 x1+an2 x2+' '+ann Xn

such that the first linear combination (component) has, subject to the
restraint of statistical independence, maximum variance. Further-
more, the second component is uncorrelated with the first and has as
large a variance as possible, and so on. The new linear combinations
therefore describe the original variance in as small a number of
uncorrelated dimensions as possible, and, if the components so
obtained have any physical interpretation, may lead to a better
understanding of the measured variates.

The calculations described above may be readily programmed for
any electronic digital computer which has an efficient sub-routine
for the calculation of latent roots and vectors of symmetric matrices.
The computations for the example of this paper were carried out on
a Ferranti Pegasus computer, using a special programme for principal
component analysis written by the British Iron and Steel Research
Association (Head, 1961). .
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4. An Example

As an example of the application of the methods described above,
the data from an actual experiment will be analysed in this section of
the paper. The investigation from which the data are taken was
designed to compare the growth and characteristics of thirteen
provenances of a tree species (Thuya plicata) introduced into this
country from North America. Provenance, in this sense, is defined
as a group of trees grown from seed collected at a given geographical
source of place of origin. The experiment was laid out in a random-
ized block design, with four replications, the seed from the thirteen
separate origins being sown in square yard plots. Before sowing,
the percentage of seeds germinating on standard germination tanks,
and the weight of 1,000 pure seed, were determined for samples of the
seed from each origin. After sowing. counts of the numbers of
seedlings on each plot where made when there were germinating
seedlings on all plots of any one provenance, and at four and eight
weeks after this. At the end of the first year, the number of seedlings
remaining on each plot were counted, and the heights of a random
sample of seedlings from each plot were measured. In addition,
seedlings were selected at random from each plot for determination
of the root length, shoot length, and root collar diameter. Thus, data
illustrating the two stages of summary discussed above are available
for analysis. Table 1 summarizes the variables assessed.

TABLE 1

Variables Assessed in Experiment.

Key Variable Sampling units
Percentage of seed germinating in laboratory | 3 samples from each
provenance
Weight of 1,000 pure seed 3 samples from each
provenance
C | First seedling count Experimental plots
D | Second seedling count " ’
E | Third seedling count . .
F | Total number of seedlings . .
G | Mean height in inches . ”
H | Root length in millimetres ' .
I | Shoot length in millimetres ” "
J | Root collar diameter in millimetres ’ '
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4.1. Analysis of Treatment Means

Table 2 gives the half-matrix of the coefficients of correlation
between every pair of variables, calculated from the mean values of
the variables for each of the thirteen provenances. The principal
diagonal and the upper half of the matrix has been omitted. A
diagrammatic form of the correlations is also given in Figure 1.

Ist germination count

2nd germ count 3rd germ count

Total seedlings

Seed weight

Mean height

Germination percentage Shoot length Root collar diameter

Root length

FiG. 1

Diagrammatic representation of correlations between variables

Thus, there is a large, closely correlated group of variables repre-
senting the numbers of seedlings at the various counts, and the total
number of seedlings at the end of the growing season, and all except
the numbers of seedlings at the first count are linked to seed weight.
A second group of variables is composed of the mean height of the
seedlings, the shoot length and the root collar diameter, and this
second group is linked to the first by the correlation between the total
number of seedlings and the mean height. Percentage germination
in the laboratory, and root length, are not significantly correlated
with either of these groups, or with each other.

The first five latent roots of the correlation matrix are given in
table 3, together with the percentage of the total variability accounted
for by each component, and the cumulative percentages.
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TABLE 3

Analysis of Treatment Means: Latent Roots of the First Five Components

Percentage of variability

Component | Latent root
Component | Cumulative

M1 5-05 50-5 50-5
M2 1-80 18:0 68:5
M3 1-42 14-2 827
M4 076 7-6 90-3
M5 0-46 46 94-9

The first five components therefore account for 94-9 per cent of the
variability contained by the ten variables assessed so far, and a
worthwhile condensation of the data has been achieved. Further-
more, the first two components account for 68:5 per cent of the
variability, and the first alone for 50-5 per cent. The identification of
the components may be achieved by examination of the latent vectors
for these five components, given in table 4.

TABLE 4

Analysis of Treatment Means: Latent Vectors for the First Five Components

Vectors for component—

Variable
M1 M2 M3 M4 M5

A | Germination per cent

of seed 0072 —0-189 —0-728 0-221 0-334
B | Seed weight —0266 0316 —0-376 0-311 0-176
C | First seedling count | —0-373  0-:054 0-112 —0-234  0-644
D | Second seedlingcount| —0-419  0-196 —0-043 —0-160 —O0-116
E | Third seedling count | —0-411  0-178 —0-057 —0-223 —0-193
F | Total number of seed-

lings —0421 0-129 —0:097 —0-168 —0-087
G | Mean height —0294 —0-358 —0294 0199 —0-550
H | Root length 0193 —0-296 —0-368 —0-755 0-032
I | Shoot length —0-280 —0-528 0168 —0-086 —0-007
J

Root collar diameter | —0-:249 —0-529 0226 0281 0-284
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The first component clearly represents the yield of seedlings given
by the provenances, while the second represents the vigour of these
seedlings. These two components correspond, therefore, to the main
groups of Figure 1. The third gives greatest weight to the laboratory
germination percentage of the seed, and the fourth and fifth com-
ponents to root length and to speed of germination respectively.
From the vectors of table 4, it is possible to calculate the value of
each component for each of the thirteen provenances, and these
values are given in table 5.

TABLE 5
Analysis of Treatment Means: Values of the First Five Components for each
Provenance
Value of component number—
Provenance
Ml M2 M3 M4 M35

Terrace —1-35 | —048 | —2:74 | —0-71 0-52
Massett 0-63 093 | —0-71 0-46 1-34
Queen Charlotte

Islands 3-00 0-74 031 | —1-68 | —0-03
Shuswap Lake —1:27 0-40 2:11 | —0-09 0-53
Courtenay —3:90 | —2-87 1-11 0-14 0-55
Alberni 194 | —1-19 | —0-98 0-88 | —0-60
Ladysmith —042 | —1-49 009 | —094 | —1-11
Sooke —0-35 127 | —0-12 179 | —0-33
Joyce —2-46 2:08 0:00 | —0-51 0-26
Sequim —2:92 1-73 002 | —0-04 | —1-23
Tenino 222 | —023 | —0-11 | —0'53 016
Ashford 140 | —0-83 | —0-74 0-85 | —0-11
Vernonia 347 | —005 1-76 0-39 0-05

These values of the five components provide the experimenter with
five independent and mutually orthogonal comparisons of the
thirteen provenances, while the weighting given to the original
variables in each component provide him with further information
upon which to base his comparison. Thus, the relatively high
weighting given to seed weight in the first two components would
lead the experimenter to discount the value of early seedling yields
and vigour as a useful measure for the selection of provenances,
since it suggests that differences in seedling yield and vigour may be
largely dependent upon climatological conditions in the summer
preceding the formation and collection of the seed. Greater weight
might therefore be given to comparisons based upon the other
components.
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The principal component analysis of the treatment means has
therefore given a worthwhile condensation of the data, and has given
some information on the ways in which the several variables assessed
in the experiment interact. Definable factors have emerged which
may be sensibly interpreted by the experimenter, the more so in that
he is guaranteed their mutual orthogonality.

4.2. Analysis of Plot Means

For the more limited set of variables (C — J) determined for each
plot of the same experimental design, the analysis of the preceding
section may be repeated using the 13 x 4 values available for each
variable. The latent roots and vectors derived in this way are given
in tables 6 and 7.

TABLE 6
Analysis of Plot Means: Latent Roots of the First Five Components
Percentage of o
Component | Latent root variability Identification

P1 3-83 479 Seedling yield

P2 2:08 260 Seedling vigour

P3 0-96 12:0 Root length

P4 0-70 87 Seedling height

PS5 0-24 30 Speed of germination
TaBLE 7

Analysis of Plot Means: Latent Vectors of the First Five Components

Vectors for component—

Variable P1 P2 P3 P4 P5

C | First seedling count| 0-434 | 0-028 | —0-216 | —0-332 | —0-800
D | Second seedling

count 0499 | 0041 | —0-036 | —0-043 | 0-176
E | Third seedling

count 0496 | 0049 | —0-024 | —0-019 | 0-317
F | Total number of

seedlings 0-484 | 0-015| —0-035 | —0-074 | 0-378
G | Mean height 0-267 | —0-281 | 0-160 | 0-865 | —0-262
H | Root length —0-103 | —0-195 | —0:947 | 0-171| 0-117
I | Shoot length 0-019 | —0-673 | 0-031 | —0-156 | 0-055
J | Root collar

diameter —0-005 | —0-651 | 0-167 | —0-284 | 0-031
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The component P1 clearly corresponds to that of M1, the reversal
of the signs having no practical meaning in these artefacts. Similarly
P2, P3 and PS5 correspond to M2, M4 and M5 respectively. The
component P4, giving greatest weight to the variable of mean height
accounting for nearly 9 per cent of the total variability, is given greater
emphasis in this analysis than in the analysis of treatment means.

From these vectors, values of the components may be calculated
for each plot in the randomized block design, and the new values so
calculated subjected to the usual analysis of variance for random-
ized blocks, in order to test the significance of differences between
provenances. The result of such an analysis is given in table 8.

TABLE 8
Analysis of Plot Means: Treatment Means for the Components P1 to P5

Mean value of component
Provenance
P1 P2 P3 P4 P5
Terrace 1-06 —027 | =075 |0-41 0-17
Massett —049 043 | —0-10 | —0-62 | —0:07
Queen Charlotte —1-40 084 | —0-88 | —0-26 011
Islands
Shuswep Lake 0-79 —0-01 046 | —0-87 | —0-12
Courtenay 1-69 —1-88 035 | —0-23 | —0-27
Alberni —1-20 —0-12 019 075 | —0-08
Ladysmith 0-33 —0-63 | —0-30 0-57 0-29
Sooke 027 0-51 1-04 0-04 015
Joyce 1-87 0-57 0:01 | —0-24 | —0-08
Sequim 191 0-18 0-37 013 0-84
Tenino —1-18 028 | —0-46 0:00 | —0-10
Ashford —1-28 —026 | —001 0:60 | —0-45
Venonia —2-36 0-36 012 | —0-28 | —0-39
Standard error +0-665** | +-0-641 | +-0-470 | 4-0-822 | +-0-206*

Thus, only for the components P1 and P5 were there any significant
differences between the provenances, corresponding to differences in
seedling yield and speed of germination. Since the principal com-
ponent analysis has already demonstrated that these factors are
linked to seed weight, it is clear that the experiment has not yet given
any information which would lead to a worthwhile selection from
the provenances and that suggested differences between them are a
reflection of the energy stored in the seed.
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4.3. Conclusions and Discussion

Finney, 1956, has suggested that analyses of the type illustrated
above are not desirable if they remove from the experimenter the
necessity of formulating meaningful hypotheses about the variables
that he has chosen to assess, particularly if these variables represent
successive measurements of the same character, as is frequently the
case in perennial crop experiments. It must be admitted that this is
fair criticism. There can be no substitute for proper formulation of
hypotheses in the analysis of designed experiments. Nevertheless, in
many fields of research, knowledge of essential “dimensions” of vari-
ability is still incomplete, and variables for assessment are frequently
chosen for their convenience and ease of measurement. In forestry,
for example, the general concept of tree vigour is important, but little
work has so far been done on the relative value of such measurements
as height, diameter, taper, etc., as measures of “vigour.” It is, there-
fore, of value to know whether, in any particular experiment, these
variables can be regarded as measuring some common factor, or
whether they are measures of distinct factors.

In the experiment used as an example above, normal statistical
analysis of the separate variables gave no significant differences
between the provenances. The application of principal component
analysis to the plot means has revealed significant differences between
the provenances in two of the factors of which the individual vari-
ables may be regarded as expressions, and principal component
analysis of the treatment means has further revealed the nature and
possible origin of these differences, and suggested that they do not
provide useful criteria for the selection of provenances in the future.
The analysis has in fact pointed the way to useful hypotheses for
future research, and to other variables which should be assessed, e.g.
the climatological conditions in the years preceding seed collection.

Perhaps even more important in a world in which important
subjects for research jostle for the attention of experimenters, the
analysis above has revealed a certain wastefulness in the number of
assessments made. In future experiments of this kind, assessments
could well be reduced to five variables without any important loss of
information, and the vector loadings of tables 4 and 7 give clear
indications as to which these should be.

As more and more evidence becomes available on such an experi-
ment, for example, by later measurements of the growth of the
seedlings, of the growth of the surviving trees when they are planted
in the forest, of the properties of the timber of the resulting trees,
etc., principal component analysis of experimental results would
inform the experimenter when he had obtained information which
genuinely pointed to the existence of new dimensions, as opposed to
merely strengthening the evidence for the dimensions he had already
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found. Such a facility is not to be despised in perennial experiments,
where the greatest difficulty may be experienced in knowing where to
terminate the experiment and when to expect the onset of the treat-
ment effects. Moreover, most experimenters would readily agree that
they themselves think about their problems in a multivariate context,
but that they have conditioned themselves to expressing their
requirements in a univariate form, largely because of the insistence of
statisticians that this is the only form that can readily be handled.

The analysis described above is relatively simple to perform and
interpret, though tedious if attempted on desk-calculating machines.
In the simple account given, much of the complication which can be
introduced has been omitted, as, for example, in the testing of the
“significance” of individual components as proposed by Bartlett,
1950. The theory underlying such an analysis has been understood
for some time, what is now needed is its application to a wide field of
practical research in order that the usefulness of the technique may
be tested.
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