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This paper reviews the literature on Bartlett and Bartlett-type corrections. It fo- 
cuses on the corrections to the likelihood ratio, score and Wald test statistics. Three 
different Bartlett-type corrections which are equivalent to order n- l ,  n being the 
sample size, are compared through simulation. One of the forms displayed superior 
behavior both in terms of size and power. We also use Monte Carlo simulation 
to examine the effect of independent variables and the impact of the number of 
nuisance parameters on the finite-sample behavior of some asymptotic econometric 
criteria in regression models. 
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CRIBARI-NET0 AND CORDEIRO 

'Large sample' tests are commonly used in the applied work in econometrics and 
statistics since exact tests are not always available. These tests rely on what is called 
'first order asymptotics', i e . ,  they employ critical values obtained from a known 
limiting distribution. A natural question is then: Is this first order approximation 
a good approximation to the null distribution of the test statistic in use? A related 
question is: Can we do better? This paper addresses these questions. We shall 
restrict ourselves to three large sample tests: the log-likelihood ratio (LR), score 
(5') and Wald (W) tests, since they are the most commonly used large sample tests. 
As is well known, these three statistics are asymptotically distributed as Xi when 
the null hypothesis is true, where q is the number of restrictions imposed by Ho. 
However, it is also well known that this first order approximation may not work well 
in finite samples, thus leading to size distortions. This paper addresses the issue of 
evaluating such approximation and designing more accurate tests. 

The question 'Can we do better?' can be approached from two distinct view- 
points. First, we can obtain a new distribution which is 'closer' to the true null 
distribution of our test statistic than the first order limiting distribution. Second, 
we can obtain a new test statistic which is better approximated by this first order 
limiting distribution. The focus of this survey will be on the latter since, unlike 
the former, there is no survey article or book with a detailed account of this lit- 
erature. Readers interested in the first approach are referred to Barndorff-Nieisen 
and Cox (1979, 1989), Ha11 (1992), Kallenberg (1993), Pfanzagl (l980), Reid (1988, 
1991), Rothenberg (1984) and the references therein. The purpose of our paper is to 
provide a unified review of the literature on Bartlett and Bartlett-type corrections, 
i e . ,  corrections to be applied to test statistics and not to critical values. An issue 
of interest is how to define Bartlett-type corrections since it is possible to write the 
correction in different ways which are equivalent up to a certain order of magnitude. 
We address this issue by Monte Carlo simulation. We also include a section that 
focuses on regression models, since these models are of central importance in the ap- 
plied econometrics literature. We use the linear regression framework to address two 
important issues through simulation: the influence of the covariate values and the 
effect of nuisance parameters on the first order asymptotic approximation to some 
chi-squared econometric criteria. One of the simulations in this section involves 
the Breusch-Pagan test for heteroskedasticity which is commonly used in empirical 
applications that deal with cross-sectional data sets. Although Bartlett corrections 
constitute an important topic of research amongst statisticians, they have yet not 
found their appropriate space and usage in the econometrics literature, where size- 
corrections are almost always based on transformations of critical values obtained 
from Edgeworth expansions. We hope this survey will help narrow this gap. 

Generally speaking, the main difficulty of testing a null hypothesis using the log- 
likelihood ratio criterion lies not so much in deriving its closed-form expression- 
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BARTLETT AND BARTLETT-TYPE CORRECTIONS 34 1 

when it has one-but in finding its exact distribution, or a t  least a good ap- 
proximation, when the null hypothesis is true. In an eventually influential paper, 
Bartlett (1937) proposed an improved LR statistic. His argument goes as follows. 
Suppose that under the null hypothesis E(LR) = q{l + bln + ~ ( n - 2 ) ) ,  where b is 
a constant that can be consistently estimated under Ho, n is the sample size and q 
is the difference between the dimensions of the parameter spaces under the alter- 
native and null hypotheses. Then, the expected value of the transformed statistic 
LR* = LRI(1 + bln) is closer to that of a Xi distribution than the expected value 
of LR. This became widely known as the Bartlett correction. He showed that for 
the test of homogeneity of variances the first three cumulants of LR* agree with 
those of a Xi distribution with error of order n-3/2, thus providing strong grounds 
for one to believe that the density of LR* is better approximated by the asymptotic 
chi-squared distribution than is that of LR. 

Bartlett (1938, 1947, 1954) obtained a number of adjustment factors in the area 
of multivariate analysis, and these factors became widely used for improving the 
large-sample chi-squared approximation to the null distribution of LR. Box (1949) 
used Bartlett's (1937) results to investigate in detail the general expression for the 
moments of the log-likelihood ratio statistic in the following cases: the test of con- 
stancy of variance and covariance of Ic sets of p-variate samples and Wilk's test for 
the independence of k sets of residuals, the i th  set having pi variates. He has shown, 
at least for these cases, that the modified statistic LR* follows a Xi distribution more 
closely than does the unmodified statistic LR. Box's results are applicable to all 
tests for which the Laplace transform of the test statistic can be explicitly written 
in terms of gamma functions and reciprocal gamma functions. In particular, it is 
possible to use these results to obtain E(LR) and var(LR). However, the results in 
Lawley (1956), McCullagh and Cox (1986) and Cordeiro (1993a) are better suited 
for econometric applications. 

For regular problems, Lawley (1956) obtained expressions for the moments of 
certain derivatives of the log-likelihood function, and, via an exceedingly complicated 
derivation, gave a general formula for the null expected value of the log-likelihood cri- 
terion and showed that all cumulants of the Bartlett-corrected statistic for testing 
a composite hypothesis agree with those of the reference chi-squared distribution 
with error of order n-312. A related reference is Beale (1960), who obtained an 
approximation to the asymptotic distribution of the residual sum of squares in a 
nonlinear normal regression model and gave an interpretation of the correction fac- 
tor in terms of the curvature of a surface. Beale's paper has three contributions: it 
defines a measure of the intrinsic nonlinearity of a regression model as a function of 
the covariates and of the parameter values, shows how to get improved confidence 
regions for the parameter values of the model numerically, and shows how to choose 
a suitable transformation of the parameters that delivers near-linearity in the neigh- 
borhood of the maximum likelihood estimates. His results, however, are limited to 
normal models. In terms of the Bartlett correction, its main contribution was to give 
a geometric interpretation of the correction for normal models. This interpretation 
was later generalized to nonnormal models by McCullagh and Cox (1986). 

Several correction factors applied to Markov chains were obtained by Sharp 
(1975) who has used Lawley's result to derive corrections for the test of the following 
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CRIBARI-NET0 AND CORDEIRO 

hypotheses: that the transition probabilities are stable over time, that the chain is 
of a given order, and that several samples come from the same chain. Sharp's results 
cover most of the tests on Markov parameters used in practice. Williams (1976) de- 
rived Bartlett correction factors for log-linear models in complete multidimensional 
tables with closed-form estimators by expanding the criterion in a Taylor series. 

A further step on the improvement of the log-likelihood ratio statistic was taken 
by Hayakawa (1977), who obtained an asymptotic expansion of the null distribution 
of the log-likelihood ratio statistic LR for testing a composite null hypothesis Ho 
against a composite alternative hypothesis H. He has shown that 

where F,(.) is the cumulative distribution function of a chi-squared random vari- 
able with s degrees of freedom. A1 and A2 are functions of some cumulants of 
certain derivatives of the log-likelihood function. The error in (1) is and not 
~ ( n - ~ l ~ )  as it is usually reported; see Barndorff-Nielsen and Hall (1988) for a proof 
of this result. However, the Bartlett correction factor is given by p = 1+ (12nq)-'Al, 
which differs from the one obtained from expansion (1) above, unless A2 = 0. This 
points to a conflict between Hayakawa's and Lawley's results. The answer to this 
puzzle came ten years later with papers by Harris (1986) and Cordeiro (1987); see 
Hayakawa (1987). Harris showed that A2 should not be present in (1) whereas 
Cordeiro showed that A2 is equal to zero. This puzzle was recently revisited by 
Chesher and Smith (1995). They present an example in which A2 is different from 
zero, and show that after one corrects Hayakawa's original formula for A2, a zero 
value is always obtained. The main contribution of equation (1) with A2 = 0 is that 
it provides a relatively simple demonstration that LR* = LR/p has a Xi distribution 
with error O ( ~ I - ~ ) .  The term A1 is a function of expected values of the first four 
log-likelihood derivatives and of the first two derivatives of these expected values 
with respect to the parameters of the model; see the Appendix. The expression 
for A1 holds for both simple and composite hypotheses, thus allowing for nuisance 
parameters. When nuisance parameters are present, A1 can be calculated as the 
difference between two identical functions evaluated under the null and alternative 
hypotheses, respectively. This expression is general enough to be used in a number 
of econometric models since it is usually obtained from likelihood functions that 
obey the general regularity conditions stated in Cox and Hinkley (1974, Chapter 9),  
thus allowing one to handle independent, but not necessarily identically distributed 
observations. The applicability of the general expression for A1 to regression models 
with serial correlation requires further restrictions on the cumulants of log-likelihood 
derivatives. The main problem of Lawley's formula is its interpretation since its in- 
dividual terms are not parameter invariant. However, it can be widely used by 
econometricians when programmed in an algebraic manipulation language, such as 
Mathematica (Wolfram, 1991). 

In recent years there has been a renewed interest in Bartlett corrections. Cor- 
deiro (1983, 1987) derived closed-form expressions for Bartlett correction factors in 
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BARTLETT AND BARTLETT-TYPE CORRECTIONS 343 

generalized linear models (Nelder and Wedderburn, 1972) and discussed improved 
likelihood ratio goodness-of-fit tests. Williams' (1976) results are a special case of 
Cordeiro's results. Also, Cordeiro (1995) presents extensive simulation results on the 
performance of a Bartlett-corrected deviance in generalized linear models focusing 
on gamma and log-linear models. Attfield (1995) focused on models that involve 
systems of equations, and derived Bartlett corrections to the log-likelihood ratio 
statistic in this case. A survey of various topics in regression analysis, including 
the asymptotic convergence of the adjusted residual sum of squares with a brief 
account of the role of the curvature, can be found in Johansen (1983). He considers 
the asymptotic distribution of the log-likelihood ratio statistic in normal nonlinear 
regression models and gives several theorems that deal with the convergence of LR 
and of the maximized log-likelihood, and interprets these results using Beale's (1960) 
measure and other measures of differential geometry. Johansen also gives a simple 
expression for the Bartlett correction in terms of Beale's curvature and an upper 
bound for the correction which is proportional to the minimal curvature of the 
model. Johansen's expression for the Bartlett correction was later generalized to 
nonlinear exponential family models by Cordeiro and Paula (1989). 

An important non-regression case is that of one-parameter exponential family 
models. A simple, closed-form Bartlett correction for testing the null hypothesis 
that the parameter that indexes such models equals a given scalar was obtained by 
Cordeiro, Cribari-Neto, Aubin and Ferrari (1995). They then applied their result to 
a number of distributions in the exponential family, some of which are widely used 
in empirical applications in a variety of fields. A Bartlett correction for the natural 
exponential family had been previously given by McCullagh and Cox (1986). 

Barndorff-Nielsen and Cox (1984a) gave an indirect method for computing 
Bartlett corrections under rather general parametric models by establishing a simple 
connection between the correction factor b and the norming constants of the gen- 
eral expression for the conditional distribution of a maximum likelihood estimator, 
namely 

where A and A. are the norming constants of the general formula for the density of 
a maximum likelihood estimator conditional on an exact or approximate ancillary 
statistic (Barndorff-Nielsen, 1983) when this formula is applied to the full and null 
models, respectively. It is usually easier to obtain the Bartlett correction for special 
cases using Lawley's formula than using Barndorff-Nielsen and Cox's expression, 
since the former involves only moments of log-likelihood derivatives whereas the 
latter requires exact or approximate computation of the conditional distribution 
of the maximum likelihood estimates. When there are many nuisance parameters, 
it may not be easy to obtain ancillary statistics for these parameters, and hence 
the evaluation of Barndorff-Nielsen and Cox's formula can be quite cumbersome. 
The constants b, A and A. are usually functions of the maximal ancillary statistic, 
although to the relevant order of magnitude LR' is independent of the ancillary 
statistic selected. They have also obtained various expressions for these quantities 
and, in particular, an approximation which does not require integration over the 
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344 CRIBARI-NET0 AND CORDEIRO 

sample space for the one-parameter case. In another paper, Barndorff-Nielsen and 
Cox (1984b) considered the distribution of the log-likelihood ratio statistic for a 
number of types of censoring and sequential stopping rules related to Brownian 
motion, Poisson processes and survival analysis. It is clear from their examples that 
different stopping rules may lead to the same or to different Bartlett adjustments, 
that the stopping rule may be such that the asymptotic chi-squared distribution does 
not hold, and that there are intermediate cases in which the asymptotic chi-squared 
distribution holds but it is not Bartlett-correctable. Also, Cox (1984) considered 
the use of confidence intervals based on the adjusted log-likelihood ratio statistic 
and obtained adjustments for two special cases, one concerning two components of 
variance and the other being a slight generalization of the Behrens-Fisher problem. 

Correction factors to the signed version of the standardized log-likelihood ratio 
statistic L R ' I ~  were derived by DiCiccio (1984) who showed through several exam- 
ples that the signed log-likelihood ratio may be mean and variance adjusted, by 
means of cumulant,~, so as to approximate normality to order n-'I2. In particular, 
he considered parameterizations which reduce the asymptotic bias and skewness of 
various pivotal quantities that arise in large-sample theory for models depending on 
an unknown scalar parameter. 

Porteous (1985a) derived a correction factor for covariance selection models 
when the log-likelihood ratio statistic has a closed-form solution and illustrated the 
practical use of this correction through simulations. Also, Porteous (1985b) showed 
that the results of Cordeiro (1983) and Williams (1976) are equivalent for the test of 
nested decomposable log-linear regression models. These models involve a Poisson 
distributed dependent variable for which the logarithm of its mean is defined as  
a linear predictor that depends on unknown parameters and known independent 
variables. 

Bartlett corrections for models defined by any one-parameter distribution in 
which the mean is a known function of a linear combination of unknown parameters 
were obtained by Cordeiro (1985), who generalized his own results of 1983. Fur- 
ther Bartlett adjustments for ten multivariate normal testing problems concerning 
structured covariance matrices from the simple connection between the adjustment 
factor and the norming constants of the conditional density of the maximum like- 
lihood estimator were obtained by Msller (1986). In particular, Mmller's results 
apply to real, complex and quaternion Wishart distributions and cover a number 
of tests. However, they do not apply directly to tests of restrictions on the pattern 
of covariance matrix in seemingly unrelated regression models, or to the test of the 
hypothesis that coefficients are not random in a random coefficients model. Bartlett 
corrections for both these tests can be obtained using Lawley's (1956) or McCullagh 
and Cox's (1986) results. DiCicciols (1986) paper is also related to the problem of 
computing correction factors for this general case. 

When testing affine hypotheses in an exponential family, the "ideal" procedure 
is to calculate the exact similar test, or an approximation to it, based on the condi- 
tional distribution given the minimal sufficient statistic under the null hypothesis. 
Alternatively, there is a "primitive" approach in which the marginal distribution 
of a test statistic is used and any nuisance parameter appearing in the statistic is 
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BARTLETT AND BARTLETT-TYPE CORRECTIONS 345 

replaced by an estimate. Jensen (1986) showed that when using standardized log- 
likelihood ratio statistics, the "primitive" procedure is indeed an "ideal" procedure 
to order nP3l2 .  

Since the log-likelihood ratio statistic is invariant under reparameterization, it 
is possible to express a large sample expansion of the test statistic and its expecta- 
tion in terms of invariants. McCullagh and Cox (1986) used this fact to express 
the Bartlett adjustment factor in terms of invariant combinations of cumulants 
of the first two log-likelihood derivatives and gave it a geometric interpretation 
for some specific models. It  should also be remarked that for the one-parameter 
model, the Bartlett correction can be easily interpreted in terms of the measures 
of the noninverse normality of the first derivative of the log-likelihood function 
and of Efron's (1975) curvature. The interpretation of the Bartlett correction in 
terms of this curvature in the multiparameter case was discussed by McCullagh and 
Cox (1986) in full generality, and by Ross (1987) for curved exponential families. 
Normal nonlinear regression models, which are of interest to econometricians, were 
discussed by McCullagh and Cox in terms of the curvature of the model. They give a 
simple expression for the Bartlett correction which coincides with Johansen's (1983) 
formula. It is also noteworthy that McCullagh and Cox's (1986) general formula 
coincides with Lawley's (1956) formula. The advantage of McCullagh and Cox's 
approach is its geometric interpretation, whereas the main advantage of Lawley's 
approach is that it can be more easily implemented to obtain the Bartlett correction 
for special cases. 

Another method for obtaining Bartlett correction factors was described by 
Barndorff-Nielsen and Blzsild (1986) which simplifies the numerical calculations 
in situations where one considers a number of hypotheses which are all linear in one 
and the same parameterization. This method relies on the Cartesian tensorial nature 
of the cumulants of log-likelihood derivatives and should be particularly convenient 
in connection with statistical packages of structure similar to GLIM (Generalized 
Linear Interactive Modeling). However, our experience is that it is usually more 
convenient to work with Lawley's expression. 

A parameter-invariant form for the expected log-likelihood ratio criterion for 
statistical and econometric models consisting of a curved exponential family of dis- 
tributions was presented by Ross (1987). His expression consists of two components: 
the first one measures the skewness and kurtosis associated with the tangent to the 
model at the null hypothesis whereas the second one reflects the nonplanarity of 
the model as a submanifold of the canonical parameter space. He also applied his 
expression to a general nonlinear regression model. 

Improved log-likelihood ratio statistics for exponential family nonlinear models 
were obtained by Cordeiro and Paula (1989). They gave general closed-form expres- 
sions for Bartlett corrections in these models. Their expressions involve the general 
n-' term in the null expected deviance for the class of generalized linear models 
and an unpleasant looking quantity which may be regarded as a measure of nonlin- 
earity of the null expected deviance by the nonlinear parameters in the systematic 
component of the model. 
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346 CRIBARI-NET0 AND CORDEIRO 

Cordeiro (1993a) gave general matrix expressions for computing Bartlett cor- 
rections. Many recent papers have focused on deriving closed-form expressions 
for specific problems. For example, Moulton, Weissfeld and St. Laurent (1993) 
have obtained Bartlett corrections for logistic regressions; Cordeiro, Paula and Bot- 
ter (1994) have derived corrections for the class of dispersion models proposed by 
Jmgensen (1987); Attfield (1991) and Cordeiro (1993b) have shown how to correct 
LR tests for heteroskedasticity; Wong (1991) has obtained a Bartlett correction fac- 
tor for testing several slopes in regression models whose independent variables are 
subject to error; Wang (1994) derived the correction factor for testing the equality 
of normal variances against an increasing alternative; and Chesher and Smith (1993) 
have obtained Bartlett corrections for LR specification tests. A correction to the 
log-likelihood ratio statistic in regression models with Student-t errors was obtained 
by Ferrari and Arellano-Valle (1993), and similar corrections to heteroskedastic 
linear models and multivariate regression were obtained by Cribari-Neto and Fer- 
rari (1995a) and Cribari-Neto and Zarkos (19951, respectively. Bartlett adjust- 
ments to log-likelihood tests of the unit root hypothesis were proposed by Lars- 
son (1994) and Nielsen (1995). An algorithm for computing Bartlett corrections 
was given by Jensen (1993); see also Andrews and Stafford (1993) and Stafford and 
Andrews (1993). 

Bickel and Ghosh (1990) showed that it is possible to apply Bartlett corrections 
to improve Bayesian inference by showing that the posterior distribution of the log- 
likelihood statistic agrees with the chi-squared reference distribution with error of 
order C?(nP1) and that the posterior distribution of its Bartlett-corrected version 
is chi-squared when terms of order C?(n-2) and smaller are neglected. Ghosh and 
Mukerjee (1991, 1992) derived closed-form expressions for the Bartlett correction 
factor for Bayesian inference for: (i) q = 1 and no nuisance parameters, and (ii) 
q = 1 and one nuisance parameter when both parameters are orthogonal. A general 
formula for the Bartlett correction factor in this framework was obtained by DiCiccio 
and Stern (1993). Also, it was shown by DiCiccio and Stern (1994) that the errors in 
the X2 approximation to the sampling and posterior distributions of the adjusted log- 
profile-likelihood statistic can be reduced to order C? (TL-~ )  by a Bartlett correction. 

It is also possible to use Bartlett corrections in some nonparametric cases. For 
example, DiCiccio, Hall and Romano (1991) have shown that empirical likelihood 
(Owen, 1988, 1990) is Bartlett-correctable, and Chen and Hall (1993) extended this 
result to cover smoothed empirical likelihood. 

Finally, it should be remarked that there is no guarantee that the corrected LR 
statistic for discrete data will yield an improvement in the asymptotic error rate of 
the chi-squared approximation. Indeed, Frydenberg and Jensen (1989) have shown 
by extensive numerical calculations that the Bartlett correction does not always 
deliver an error of order C?(n-2) in the lattice case. 

The problem of developing a correction similar to the Bartlett correction to other 
test statistics was posed by Cox (1988) and addressed three years later in full gen- 



D
ow

nl
oa

de
d 

B
y:

 [F
ac

ul
da

de
 D

e 
E

co
no

m
ua

 A
dm

in
is

tra
ca

o 
E

 C
on

ta
bi

lid
ad

e 
U

S
P

] A
t: 

17
:4

8 
6 

Fe
br

ua
ry

 2
00

8 

BARTLETT AND BARTLETT-TYPE CORRECTIONS 347 

erality by Cordeiro and Ferrari (1991)' and by Chandra and Mukerjee (1991) and 
Taniguchi (1991) for certain special cases; see also Mukerjee (1992). We shall focus 
on Cordeiro and Ferrari's results since they are more general in the sense that they 
allow for nuisance parameters. For a comparison of these corrections, see Rao and 
Mukerjee (1995). 

An asymptotic expansion to the null distribution of the score statistic S was 
given by Harris (1985) as 

where A1, A2 and A3 are functions of some cumulants of log-likelihood derivatives. 
The general expressions for these coefficients are given in the Appendix. Harris has 
also shown that the first three cumulants of the score statistic are given by 

As is well known, K.~(X:) = q, K ~ ( ~ : )  = 24 and n3(~ : )  = 8q, and hence if we know 
Al, AP and A3 we can use the expressions above to find the first three cumulants 
of the score statistic to order n-l and compare them with the cumulants of a 
random variable which is the basis for our first order approximation. Equation 
(2) holds for both simple and composite hypotheses. More importantly, this result 
implies that there exists no scalar transformation based on the test statistic which 
corrects all cumulants to a certain order of precision, as it is the case with the 
Bartlett correction to the LR statistic. All Harris' results enable us to do is to 
apply Hill and Davis' (1968) inverse formula to (2) in order to obtain transformed 
critical values to be used in the score test (Harris, 1985, p.657). The A's can be 
used to obtain corrections for models based on independent, but not necessarily 
identically distributed observations, thus covering a number of linear and nonlinear 
regression models; see Section 6 .  

A correction t,o be directly applied to the test statistic itself was obtained by 
Cordeiro and Ferrari (1991). They have shown that 

where yl = (A1 - A2 + A3)/(12q), 7 2  = (A2 - 2A3)/{12q(q + 2)) and 7 3  = 
A3/{12q(q+2)(q+4)), is distributed as Xi when terms of order smaller than n-I are 
neglected. When the A's involve unknown parameters they should be replaced by 
their maximum likelihood estimates under Ho and this does not affect the order of 
approximation of the correction. Note that the correction factor in (3) is a function 
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348 CRIBARI-NET0 AND CORDEIRO 

of the unmodified statistic, and hence this correction is not a 'Bartlett correction' 
in the classical sense. Given its similarity with the Bartlett correction, however, it 
is termed Bartlett-type correction. 

Cordeiro and Ferrari (1991) have also obtained a more general result which can 
be described as follows. Let T be a test statistic which is asymptotically distributed 
as X:. Then, it has been shown by Chandra (1985) that, under mild regularity 
conditions, it is possible to write 

when terms of order ~ ( n - ~ )  or smaller are neglected. Note that (4) implies that 
the distribution function to C?(np1) of a test statistic asymptotically distributed as 
chi-squared is, under certain conditions, a linear combination of chi-squareds with 
degrees of freedom q, q + 2, .  . . , q + 2k. The a's are linear functions of cumulants of 
log-likelihood derivatives for a general test statistic T. For LR (k = 1) and S (k = 3) 
the a's are linear functions of the A's in (1) and (2). Cordeiro and Ferrari's (1991) 
result can then be stated as follows. Let pi = 2iI'(i + q/2)/{I'(q/2)), where r ( . )  is 
the gamma function, be the i th  moment about zero of the Xi distribution. Then, 
the modified test statistic 

is distributed as to Q(nP1). This is a very general result which can be used to 
improve many important tests in econometrics and statistics. An extension of this 
result to Bartlett-type adjustments of order higher than a second order of approxi- 
mation was recently proposed by Kakizawa (1994). 

Building upon the result described above, Cordeiro, Ferrari and Paula (1993) 
and Cribari-Neto and Ferrari (1995b) obtained Bartlett-type corrections to score 
tests in generalized linear models for the cases of known and unknown disper- 
sion, respectively. Bartlett-corrected score tests for heteroskedastic linear mod- 
els were considered by Cribari-Neto and Ferrari (1995a). Similar corrections for 
score tests in multivariate regression models were obtained by Cribari-Neto and 
Zarkos (1995). Bartlett-type corrections to score tests for heteroskedasticity were 
obtained by Cribari-Neto and Ferrari (1995~).  Ferrari and Arellano-Valle (1993) 
derived improved score statistics for regression models with Student-t errors. Cor- 
rections to score tests that can be used in proper dispersion models were obtained 
by Cordeiro and Ferrari (1996). Bartlett-type corrections to the class of information 
matrix tests, which are score tests, were considered by Cribari-Neto (1997) building 
upon the Edgeworth expansion in Chesher and Spady (1991). 

The Wald test is very convenient to test nonlinear restrictions in linear models 
since it does not require estimation of the null model and therefore avoids nonlinear 
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BARTLETT AND BARTLETT-TYPE CORRECTIONS 349 

estimation. However, it has been shown by Gregory and Veal1 (1985)) Lafontaine and 
White (1986) and others that a major drawback of this test is that it is not invariant 
to alternatively equivalent forms of the null hypothesis. Since many hypotheses of 
interest in economics are nonlinear (e.g. ,  restrictions implied by rational expectations 
models), it is important to develop corrections that can be reliably applied in finite- 
samples. Phillips and Park (1988) obtained an Edgeworth expansion to the null 
distribution of the Wald test of nonlinear restrictions (for simple hypotheses, an 
asymptotic expansion had been previously given by Hayakawa and Puri, 1985). 
Following Ferrari and Cribari-Neto (1993), their expansion can be written as 

where f,(.) is the probability density function of a chi-squared random variable with 
s degrees of freedom. Note that Phillips and Park's expansion is not in agreement 
with Chandra's result in (4), since (5) involves an extra term, b0 fq( . ) ,  unless bo = 0. 
If bo # 0, then the expansion for the null distribution of W is not given by a linear 
combination of chi-squared distribution functions. It should be noted that bo equals 
zero in all examples considered by Phillips and Park (1988) and hence this extra 
term vanishes in such cases. However, it would be important to establish whether 
bo is always equal to zero. If this is the case, their expansion would no longer be 
in conflict with Chandra's (1985) result. It should be remarked that Phillips and 
Park (1988) obtained the expansion in (5) assuming that the limiting covariance 
matrix of the standardized estimator of the parameter vector is the identity matrix. 
Another interesting topic for further research is to obtain a similar expansion without 
making such an assumption. To this end, one would have to follow up on the results 
in the Appendix of their paper. 

A Bartlett-type correction to the Wald test of nonlinear restrictions was ob- 
tained by Ferrari and Cribari-Neto (1993). They have shown that 

is distributed as chi-squared to order n-I, ie., Pr[W* I z ]  = Pr[Xi 5 z]  + o(nP1). 
The a 's  here are obtained by rewriting (5) as 

As an example, consider the model in Lafontaine and White (1986): y, = Po + 
Plxi  + ~i with ~i NID(0,u2). The null hypothesis under test is Ho : Pf = 1 
against a two-sided alternative. As shown by Lafontaine and White (1986), the 
size of the Wald test is highly sensitive to the value of k .  For the Bartlett-type 
correction of the Wald test of this null hypothesis, we have that a 0  = a1 = 0, 
a2 = -(2/3)(k - l ) (k  - 2) and a 3  = (1/4)(k - 1)'; see Phillips and Park (1988) 
and Ferrari and Cribari-Neto (1993). The Bartlett-type correction to W should 



D
ow

nl
oa

de
d 

B
y:

 [F
ac

ul
da

de
 D

e 
E

co
no

m
ua

 A
dm

in
is

tra
ca

o 
E

 C
on

ta
bi

lid
ad

e 
U

S
P

] A
t: 

17
:4

8 
6 

Fe
br

ua
ry

 2
00

8 

350 CRIBARI-NET0 AND CORDEIRO 

be effective for moderately small values of Ic.  However, no simulation results are 
available for this corrected test. 

It is also possible to design Bartlett-type corrections for other Wald tests. For 
example, Cribari-Neto and Ferrari (1995a) obtained improved Wald tests for het- 
eroskedastic linear models and Cribari-Neto and Zarkos (1995) derived similar cor- 
rections to be used in multivariate regressions. An Edgeworth expansion for the 
nonnull distribution of W in generalized linear models was given by Cordeiro, Bot- 
ter and Ferrari (1994), who have also compared the power of the Wald test under 
Pitman alternatives to the powers of the log-likelihood ratio and score tests. 

Bartlett-type corrections are usually defined as T; = T ( l  - B l n ) ,  where B is a 
polynomial on the unmodified statistic, as in equation (3). However, there are 
alternative definitions of Bartlett-type corrections which are equivalent to order 
n-'. For example, T; = T / ( l  + B/n )  and Ti = Texp{-Bln) are equivalent to 
T; when terms of order smaller than n-' are ignored. Note that the latter has the 
advantage of always delivering nonnegative corrected statistics. In this section we 
compare these three alternative forms through Monte Carlo simulation. 

We consider three cases. Let Z1, Z2 and Z3 be distributed as N(O1, 02), IG(O3, B4) 
and G(Bs,06), respectively. That is, Z1 is normally distributed with mean O1 and 
variance 02, Z2 is distributed as inverse Gaussian with mean O3 and scale parameter 
04, and Z3 has a gamma di~tribut~ion with mean 05 and scale parameter 06. [The 
inverse Gaussian distribution is also known as Wald's distribution or the first passage 
time distribution of a Brownian motion with positive drift.] Our interest is in testing 
Ha : O2 = o?), Ho : Oq = OF) and Ho : O6 = 0p)  against two-sided alternatives, 
assuming that the means are unknown. For the first two cases, A1 = -6, A2 = 
12 and A3 = 40, whereas for the latter case the A's are functions of O f )  and of 
the trigamma and tetragamma functions evaluated at  this point. These A's are 
those in (2) and in the the neighborhood of equation (3). The numerical values 
for the A's used in all three cases were obtained using the simplified expressions 
in Table 2 of Cordeiro and Ferrari (1991). The size simulations were conducted 
by setting O1 = 0, O2 = 1, 03 = 3, O4 = 1, o5 = 2 and O6 = 0.5. In order 
to generate random numbers from an inverse Gaussian distribution we used the 
algorithm in Devroye (1986, p.149); see also Michael, Schucany and Haas (1976) 
and Padgett (1978). All simulations are based on 10,000 replications, and the power 
simulations were performed using O2 = B4 = 0.7 and 06 = 0.4. Figure 1 displays the 
size distortions ( i . e . ,  estimated sizes in percentages minus 5) and estimated powers 
of the score test (Score) and its three corrected versions (Bartlettl, Bartlett2 and 
Bartlett3) for a = 5%. 

It is clear that the three Bartlett-corrected statistics have a similar size behavior, 
and that all corrected tests outperform the original score test, especially when the 
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A: Normal. Size 

C: Gamma, Size 

suFple r m  

E: Inv. Gaussian. Power 

B: Inv. Gaussian. Size 

D: Normal. Power 

v m p t c  S l U  

F: Gamma. Power 

Figure 1: Size Distortions and Estimated Powers (%) 
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352 CRIBARI-NET0 AND CORDEIRO 

number of observations is small. In particular, SG has a slightly superior behavior 
for small samples, followed by S; and then S;. 

The power simulations were conducted using tabulated and not estimated criti- 
cal values. This was done mainly because none of the tests is oversized. We are then 
comparing the powers of level a (as opposed to size a) tests. The results show that 
S; has the best power performance. For the normal distribution, all three corrected 
tests had slightly higher power than the original test. The power behavior of the 
corrected tests was similar. When the data were generated from an inverse Gaus- 
sian distribution, S; was the most powerful test statistic, followed by S, S; and SF. 
For the gamma distribution, S; was followed by Si, S and S f .  Although S ;  is the 
most used version of the Bartlett-type corrected score statistic, the other alternative 
forms considered here were slightly more effective in reducing the size distortion of 
the test and also more powerful under the alternative hypothesis. Finally, it should 
be remarked that when the power comparisons are based on estimated critical val- 
ues so that all tests are forced to have the same size, some corrected tests become 
considerably less powerful than the original test. This illustrates the fact that in 
some cases the size-adjustment comes at the expense of some loss in power. Some 
remarks on the theoretical relationship between the powers of the original test and 
its corrected versions are made in Section 7. 

Most econometric applications involve regression models where the mean of a de- 
pendent variable is related to a linear or nonlinear predictor which is defined by 
unknown parameters and independent variables. There are a number of Bartlett 
and Bartlett-type corrections that can applied to regression models, and this sec- 
tion looks at some of them. It also sheds some light on the effect of covariate values 
and nuisance parameters on the convergence to the limiting null distribution of some 
test statistics using Monte Carlo simulation. 

At the outset, consider the linear regression model y = X/3 + E ,  where y ,  the 
dependent variable, and E ,  the random disturbance, are n-vectors, X is an 71 x p 
matrix of covariates and p is a pvector of unknown parameters. For each i ,  i = 
1 ,2 , .  . . , n ,  ~i - NID(0,a;) with 0: = h(w:a), w: = (1 v:) is a 1 x (q + 1) vector of 
exogenous variables, a is a (q + 1)-vector of parameters and h(.)  is a positive valued 
function which does not depend on i. It is common practice to use Breusch and 
Pagan's (1979) score (Lagrange multiplier) statistic to test the null hypothesis of 
homoskedasticity ( a l  = . . . = aq = 0) against the alternative of heteroskedasticity 
of unknown form. A well known problem associated with this test is its tendency to 
under-reject the null hypothesis when heteroskedasticity is not present. Closed-form 
expressions for the A's for this test can be found in Cribari-Neto and Ferrari (1995~) 
and Honda (1988). In particular, Cribari-Neto and Ferrari (1995~) have shown that 
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where J = X(XrX)- 'X' ,  H = v(VrV)- 'Vr,  V = (vl - f i ,  . . . , v, - fi)', Jd = 

diag{jll,. . . , j nn ) ,  Hd = diag{hll,. . . , h,,), 1 is an n-vector of ones, and '*' denotes 
the Hadamard product. These formulae can be used to obtain numerical values 
for All A2 and A3 in empirical applications or closed-form expressions for special 
models. Bartlett corrections for log-likelihood ratio tests for heteroskedasticity can 
be found in Attfield (1991) and Cordeiro (1993b). 

Consider a simple linear regression model given by y, = Do + Pix, + E % ,  i = 

1,2 , .  . . , n, ~i N NID(0,o:) where a: = h(ao  + a lx i ) ,  which is a special case of 
the heteroskedastic model introduced above. Cribari-Neto and Ferrari (1995~) have 
shown that for this simple regression model the expressions for the A's given above 
reduce to Al = -6(8 + yzz - 37;,), A2 = 12(3 + 372, - 2&) and Ag = 40yf,, 
where yl, and 72, are the sample measures of skewness and excess kurtosis of the 
independent variable x. This then suggests that the covariate values can play an 
important role in the quality of the asymptotic chi-squared approximation that is 
used to perform the Breusch-Pagan t a t .  To illustrate this point, we perform a Monte 
Carlo simulation experiment using Po = PI = 1, n = 30 and 10,000 replications. 
The data are generated under Ho with a: = a2 = I .  The values of x consist of an 
evenly spaced sequence of n - 2 = 28 points from -1 to 1 and endpoints -a and 
a.  It is clear that the sample excess kurtosis of x increases with a. Figure 2 shows 
the estimated size distortions of the Breusch-Pagan test and its Bartlett-corrected 
version (obtained in a similar fashion as what we called 'Bartlett 2' in the previous 
simulation experiment) for the nominal level of 5%. The results for other nominal 
levels were similar. 

It is clear that the size performance of the Breusch-Pagan deteriorates as a (and 
consequently 72,) increases. The Bartlett-type correction is effective for moderate 
values of a (say, a < 2.5), delivering estimated sizes that are closer to the 5% 
nominal level. For large values of a ,  it tends to overcorrect the score statistic. These 
results show that in some cases the covariate values can affect the size performance 
of asymptotic tests considerably. The expressions for the A's should reveal which 
features of the model affect this performance (to order n-l) .  For example, the 
expressions for the A's for the Bartlett-type correction of the Breusch-Pagan test 
reveal that the sample skewness and the sample excess kurtosis of the independent 
variable affect the first order approximation of the test. 

Another important factor that can affect the first order approximation of asymp- 
totic econometric criteria is the number of nuisance parameters. To illustrate this 
point, we consider a linear normal regression model. The A's for tests on the /3 
vector were obtained by Cribari-Neto and Ferrari (1995b) as A1 = 12q(p - q), 
A2 = -6q(q+ 2) and A3 = 0; see below. It is then clear that the number of nuisance 
parameters p-q, where q is the number of restrictions imposed by Ho, has an impact 
on Al,  and thus on the finite-sample performance of the score test. Such an impact 
can be made clear with the help of a simulation experiment. We consider ten models. 
The first is y = Pgxg +Plozlo + E  (p-q = O), the second is y = Po +Pgxg +P lox~o  + E  
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3 54 CRIBARI-NET0 AND CORDEIRO 

Figure 2: Heteroskedasticity Test (% size distortions) 

(p - q = I ) ,  the third is y = Po + Plxl + P9x9 + Ploxlo + E ( p  - q = 2). and so forth, 
until the last model, which is defined as y = Po + Plxl +. . . + P8x8 + PSXS + PIOXIO + E 

(p - q = 9). The null hypothesis under test in all cases is Ho : /?9 = plo = 0. The 
number of observations was set at  30 and the number of replications at  10,000. All 
independent variables were chosen as random draws from a U(O, 1) distribution, the 
errors were obtained from a N(O, 1) distribution, and all nuisance parameters (if 
any) were set equal to 1. The results were not sensitive to the values of the nui- 
sance parameters, and we only report the results for the case where such parameters 
were set equal to one. Figure 3 plots the size distortions of the score test and its 
Bartlett-corrected version (again using the second specification, as defined in the 
previous section) for the nominal level of 5%. That is, it displays estimated sizes in 
percentages minus 5. The results for other nominal levels were similar and are not 
reported. 

It  is clear that the number of nuisance parameters has a substantial impact 
on the conventional first order chi-squared approximation. The score test is slightly 
undersized when p - q = 0. and becomes oversized as p - q increases, being extremely 
oversized when p - q becomes large. The Bartlett-corrected test holds its size close 
to the nominal 5% level remarkably well. 

Simulation results for regression models involving gamma distributed random 
variables can be found in Cordeiro and Cribari-Neto (1993). Their simulation results 
also show that the Bartlett-type correction is effective in bringing the actual size of 
the score test closer to its nominal level. 
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Figure 3: Exclusion of Variables (% size distortions) 

A fairly general framework for working with regression models is the class of 
generalized linear models introduced by Nelder and Wedderburn (1972); see also the 
comprehensive book by McCullagh and Nelder (1989). These models can be briefly 
described as follows. y = (yl,  . . . , y,)' is a vector of independent variables and each 
y, has a probability or density function in the exponential family: 

where a ( . ,  .), b ( . )  and c(.)  are known functions and 9, and 4 are (possibly unknown) 
parameters. We have that E(y,) = p, = b'(9,) and var(y,) = 4-'V,, where 4-' 
is the dispersion parameter, V = V(p) = dp/dO is the variance function, and 
0 = S ( l / V ) d p  = q(p) is a strictly monotonic function of the mean. The linear 
predictor is defined as 71 = &x3 = X P ,  where X is an n x p matrix of 
covariates (of rank p) and /3 is a p-vector of unknown parameters. The mean of 
the dependent variable is then related to the linear predictor through a strictly 
monotonic. twice differentiable link function d(p)  = 7.  The link function here 
is assumed known; for recent developments involving unknown link functions, see 
Mallick and Gelfand (1 994) and Weisberg and Welsh (1994). Generalized linear 
models have normal linear regression, Poisson regression, gamma regression, inverse 
Gaussian regression, and logit and probit models as special cases. For example, in 
the normal linear regression model, V = 1, 4-' is the error variance and p = 77. 

Suppose we partition the /? vector as (Pi,  P;)', where PI = (PI , .  . . . Pq)' (q I p) 
and /32 = (Oq+l,. . . , &)'. thus inducing a partition of the covariate matrix as X = 

[XI X 2 ] ,  and we want to test the null hypothesis Ho : P1 = @I0) ,  where P!') is a 
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q-vector of known constants, against a two-sided a1ternat)ive. The score statistic for 
this test is given by 

where W = diag{wl,. . . ,w,) with w, = ( d p , / d q , ) 2 / ~ ,  s = ( s l , .  . . s,)' with s, = 

1 2 (  - p , ) / l / ~ ' ~ ~ ,  R = X I  - X 2 ( ~ ; ~ ~ 2 ) - 1 X ; W ~ 1  and tildes denote evaluation 
at  the restricted maximum likelihood estimates. When the dispersion parameter is 
unknown we have a two-parameter full exponential family with canonical parameters 
4 and 48, and the term a(y,  4) in (6) can be written as a ( y , 4 )  = dl(4)  + d2(4) .  
Different distributions yield different functions for d l (4 )  and d2(y).  For example, for 
the normal distribution with variance 4-'. d l (4)  = log(4/277)/2 and d2(y) = 0. The 
A's that define the Bartlett-type correction to the score statistic can be written as 
(Cribari-Neto and Ferrari, 1995b) A1 = A I , ~  + Al,p4, A2 = A2,3 + and Ag = 

A3,p + A3,001 where A1,8, A Z , ~  and As,$ are the A's for the known dispersion case, 
and A1,44, A2,p4 and A3,S0 are some extra terms that account for the uncertainty 
involved in the estimation of 4 - I ,  the dispersion parameter. We have that (Cordeiro, 
Ferrari and Paula, 1993) 

and 
As,p =n4- ' (3  1 ' ( ~  - G ) ( Z  - Z2),j(Z - 2 2 ) ( 2  - & ) d ( F  - G) 1 

+ a I'(F - G)(Z - z ~ ) ( ~ ) ( F  - G) 1). 

Here, Z = X(X1WX)- 'X ' ,  Z2 = x ~ ( x ~ w X ~ ) - ~ X ~ ,  Zd = diag{zI1,. . . . znn) ,  

Z2d = diag(z211, . . . , ~ 2 n n ) j  F = diag{f~ ,  . . . , fn) ,  G = diag{gl, . . . ,g,), B = 
diag{bl,. . . , bn), and H = diag{hl,. . . , h,). with 

We also have that (Cribari-Neto and Ferrari, 199513) 

where d ~ )  = d(,) (4) = 4'd','(+) and d(3) = d(3) (4)  = 43dy(4).  Also, = 0. 
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The A's used in the simulations of normal linear models (Figure 3) were obtained 
as special cases of these A's for generalized linear models. It should also be noted 
that similar results for Poisson regression and logit and probit models that are 
commonly used in the econometrics literature can also be obtained as special cases 
of the formulae above. For Poisson models, V = p and for logit and probit models 
V = p(1  - p) .  A generalization of the result presented above to nonlinear models 
can be found in Ferrari, Uribe-Opazo and Cribari-Neto (1995). 

We can also consider the test of the null hypothesis Ho : 4 = 4 ( O )  against 
the alternative H1 : 4 # 4(O), where is a given scalar. For example, in Pois- 
son regression models one might want to test the hypothesis that 4 = 1 against 
the alternative of overdispersion or underdispersion. The A's for the Bartlett-type 
correction of the score statistic are (Cordeiro, Ferrari and Paula, 1993) 

where d(4) = d ( 4 ) ( ~ )  = 41~d?(4). 
Here we have focused on Bartlett-type corrections for score tests. Similar 

Bartlett corrections for log-likelihood ratio statistics in generalized linear models 
can be found in Cordeiro (1983, 1987). 

Bartlett and Bartlett-type corrections are designed to bring the actual size of asymp- 
totic tests close to their respective nominal sizes. In most cases, they are effective in 
doing so. They are riot intended, however. to be corrections to increase the power 
of the test. It is important to bear in mind that these corrections can lead to a 
loss in power. much in the same way as the power of Durbin's h statistic (Durbin, 
1970)) a transformation of the traditional Durbin-Watson statistic, can be lower 
than the power of the Durbin-Watson test in regression models with lagged depen- 
dent variables; see Inder (1984, 1986, 1990). However, an important result is that 
the untransformed statistic and its Bartlett-corrected version have the same local 
power to order n-lI2. This result follows from Theorem 1 in Cox and Reid (1987). 
More precisely. let T be a test statistic with null distribution X:, and T* a Bartlett- 
corrected statistic obtained as a transforrnation of T. Then, under local (Pitman) 
alternatives, Pr[T* 2 c] = Pr[T 2 c] + o(n-'I2). 

It should also be mentioned that a similar literature is that of bias correc- 
tion. where the asymptotic bias is used to obtain estimators that are bias-free to 
order (say) n-', which is an appealing alternative to computer-intensive bias cor- 
rection techniques, such as the one described by MacKinnon and Smith (1995). 
Cordeiro and McCullagh (1991) used this approach to obtain bias-corrected maxi- 
mum likelihood estimators for the class of generalized linear models, and Cordeiro 
and Klein (1994) have obtained similar bias corrections for maximum likelihood 
estimators in ARMA models. Si~nulation results are given in Cordeiro and Cribari- 
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Neto (1993). In particular, it is possible to obtain bias-corrected estimators for a 
number of regression models as a special case of Cordeiro and McCullagh's (1991) 
results. Both Cordeiro and McCullagh's and Cordeiro and Klein's results are based 
on the general formulae given by McCullagh (1987). For alternative approaches, see 
Cadigan (1994) and Taniguchi and Puri (1995). Second and third order bias cor- 
rections for one-parameter models were obtained by Ferrari, Botter, Cordeiro and 
Cribari-Neto (1996). 

Finally, it should be remarked that a simulation-based alternative to Bart,lett 
and Bartlett corrections is the bootstrap, as introduced by Efron (1979) in a seminal 
Annals of Statistics paper. The main idea is to design a resampling mechanism and 
then obtain estimated critical values based on a large number of realizations of the 
test statistic. The degree of accuracy can be improved by making use of the iterated 
bootstrap, as shown by Hall and Martin (1988). For further details on bootstrap. 
see Efron and Tibshirani (1986, 1993), Hall (1992), Shao and Tu (1995) and the 
references therein. A more critical survey is Young (1994). The relationship between 
Edgeworth expansions and the bootstrap is discussed in generality in Hall (1992). 
For an econometric example of this relationship, see Rayner (1990). Rocke (1989) 
suggests a bootstrap Bartlett adjustment for the log-likelihood ratio statistic in the 
context of seemingly unrelated regressions. 

Bartlett-type corrections constitute a recent extension of Bartlett corrections to 
statistics other than the log-likelihood ratio. In this paper we described some of the 
main results involving Bartlett and Bartlett-type corrections in a unified framework. 
Although most of the literature has focused on a particular form of the Bartlett-type 
correction, we have also considered two other forms which are equivalent to order 
n-' to that form, and compared them through Monte Carlo simulation. For the 
cases we considered, one of the alternative forms seemed t,o be clearly preferable to 
the other two, and to the unmodified statistic for that matter. We have also pre- 
sented simulation results that show how the independent variables and the number 
of nuisance parameters can affect the first order asymptotic approximation to some 
econometric criteria in regression models. 

Part of the material in this paper was drawn from chapter 2 of the first author's 
PhD dissertation at  the University of Illinois. We thank Andrew Chesher, Silvia 
Ferrari, Richard Spady and especially Roger Koenker for useful comments and sug- 
gestions. We also thank two referees for suggestions that led to major improvements 
in our paper. All remaining errors are our own. The partial financial support of 
CNPq/Brazil is also gratefully acknowledged. 
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We start by presenting the expressions for A1, A2 and As in expansion (2) in their 
general form. Suppose we have n independent random variables y = (yl,  . . . , y,)' 
whose probability or density function is indexed by a parameter vector 0 = (0;) Oi)', 
where 01 = (01,. . . , Oq)' and 02 = (13~+~,  . . . , Op)', and hence dim(0) = p, dim(O1) = q 
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and dim(02) = p - g ,  q < p. We want to test Ho : O1 = 0p)  against a two-sided 

altenative hypothesis, where 0[O) is a q-vector of constants. O2 is a vector of nuisance 
parameters. Let L = L(y; 0) be the total log-likelihood function, and define the log- 
likelihood derivatives as 

The corresponding cumulants are defined as 

Let K = { - K ~ ~ )  denote Fisher's information matrix, i.e., 

and K-' = { - ~ ~ 3 )  its inverse. Now define the matrices 

and M = K-' - A. By making use of the notation introduced above, the general 
expressions for A1, A2 and Aj  can be written as 
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Here, aij and mij are the ( i , j ) t h  elements of the matrices A and M, respectively, 
and C' is short for Cy=l C;=l CiZ1 CYzl C:=l Cf=)=l. The reader is referred to 
Harris (1985) and Ferrari and Cordeiro (1994) for further details. 

Next, we consider the expansion (1). In order to present a general formula for 
All  we need to introduce some further notation. Let 

Then, 
A* = 12(6, - 6,-,), 

where 

with 

and 

The term is defined analogously, the only difference being that the summations 
now run from q+ 1 to p. For further details, see Cordeiro (1993a) and Lawley (1956). 


