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R o b u s t  Es t imat ion  o f  the  Variogram: 11 

Noel Cressie 2 and Douglas M. Hawkins 3 

It is a matter o f  common experience that ore values often do not follow the normal (or log- 
normal) distributions assumed for them, but, instead, follow some other heavier-tailed dis- 
tribution. In this paper we discuss the robust estimation o f  the variogram when the distri- 
bution is normal-like in the central region but heavier than normal in the tails. It is shown 
that the use o f  a fourth-root transformation with or without the use o f  M-estimation yields 
stable robust estimates o f  the variogram. 
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INTRODUCTION 

The variogram is a cornerstone of geostatistics. From it one deduces the model 
form that is applicable to the ore body, the kriging weights, and the consequent 
standard errors of estimation by kriging. Published work on geostatistics, while 
stressing the importance of the variogram, usually underplays the problems in 
estimating it. This is because most discussion assumes that the underlying data 
are either normal to an adequate degree of approximation or (if, for example, 
they are lognormal) have already been transformed to normality. 

In actual practice, by contrast, one discovers all too often that the data are 
not normal, and in particular tend to be contaminated by occasional outliers. 
These problems are mentioned inter alia by David (1977, 1978) who considers 
that the estimation of the variogram in the face of nonnormal data is an impor- 
tant and unsolved problem. This paper addresses this problem and provides an 
introductory evaluation of several possible robust methods of estimating the 
variogram. 
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OVERVIEW OF ROBUST STATISTICS 

In view of the comparative novelty of the statistical theory of robust esti- 
mation, a brief introduction may be in order. As a simple illustrative example, 
suppose one has a sample X1 . . . . .  X n from a distribution F, symmetric about 
an unknown location parameter/x that we wish to estimate. If F is the normal 
(Gaussian) distribution, then the best estimator is the sample mean .~. This is 
sufficient (i.e., contains all the sample information about/x) and has a minimum 
variance among all unbiased estimators of/1. The efficiency of an asymptotically 
unbiased estimator may be measured by the ratio to its asymptotic variance of 
the minimum asymptotic variance among all such estimators. For the normal dis- 
tribution the mean thus has efficiency 100%, while the sample median, which is 
also unbiased, has an efficiency of 64%. 

Both the mean and the median are particular members of the class of 
t r immed means defined as follows. Let X(1 ) ~< X(~_) ~< • .. ~< X(n ) represent the 
ordered sample and let u E [0, ½) be such that no~ is an integer. Then the 100o~ 
trimmed mean is defined by 

n - a n  

T(a)  = ~ X( i ) /n(1  - 2e) 
t ~ n + l  

that is, the 100a% largest and the 100o~% smallest observations are deleted from 
the sample, and the remaining observations averaged. If a = 0, T(a) is the mean 
of all the observations while a = ½ - e corresponds to the median. Clearly the 
trimmed means with a > 0 are insensitive to the presence of up to na outliers 
on either side of the sample; hence they are robust against outliers, in contrast to 
the sample mean, which is strongly affected by outliers. 

The common assumption underlying much of data analysis is that the nor- 
mal distribution represents a good point of departure, and when the robustness 
of estimators to the nonnormality of the data is studied, it is quite common to 
assume that the data are from a contaminated normal distribution. Letting ¢b 
denote the cumulative distribution function (cdf) of the standard normalN(0, 1) 
distribution, the cdf of a contaminated normal is defined by 

F~ (x)  = (1 - e) @ [(x - . ) / o ]  + e@ [(x - . ) / g o ]  

For e = 0 or e = 1, this reduces to the normal distribution, while if g > 1 
and e > 0, it defines a distribution that resembles N(/x, a 2) in the central regions 
but which has considerably heavier tails. 

Taking the family of contaminated normal distributions as a paradigm for 
the class of normal-like but heavy-tailed distributions, one then seeks estimators 
whose efficiency is high when the data are normal (e = O) and which are reason- 
ably insensitive to departures from normality (e > 0). 
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The class of trimmed means is one that provides such estimators of loca- 
tion, and is in fact a subclass of the larger class of L-estimators, formed by tak- 
ing linear combinations of order statistics of the sample. 

Another large class is that of M-estimators T which minimize 

p ( x i  - T )  
I 

or equivalently, which solve 

n 

~(X i - T ) = O ,  where ~ =p '  
1 

Any ff which is antisymmetric about the origin yields a potential estimator 
from this class. The choices ff (x)= x and if(x)= sgn (x) correspond, respec- 
tively, to the sample mean and median. If F is known to have a density f ,  then 
the choice ff (x) = -d  log f (x) /dx  yields T as the maximum-likelihood estimator, 
a property reflected in the mnemonic name M-estimator. 

These brief comments do not and cannot do full justice to the growing area 
of robust inference, and the interested reader should consult the very readable 
overviews by Huber (1978) and by Jaeckel (1971). 

METHODS OF ESTIMATING THE VARIOGRAM 

Like the proverbial cat which may be skinned in more than one way, the 
variogram has a number of properties that allow it to be estimated in different 
ways. We distinguish four that seem to us to be potentially useful. Suppose {Zt} 
is a collection of regionalized variables (for example, ore grade at the point t), 
whose differences Zt+ h - Zt, have a zero mean and a variance depending only 
on h. Matheron (1963) has coined the term variogram for this variance 27(h). 
Ultimately one would like to have 7(h) as some explicit mathematical function 
of h; in practice however this is best and most easily done by estimating 7(h) for 
various discrete values of h, and then carrying out a modeling exercise on these 
values to fit a suitable function or to test possible hypothesized models (Davis, 
1978). A satisfactory conclusion of the latter exercise thus depends on good esti- 
mates in the former, and it is this that we consider here. The four approaches are 

A Define the quantities Yt = (Zt+h - Zt) 2. Then 27(h) =E(Y),  and the esti- 
mation of the variogram becomes a problem of estimating the expectation 
of the random variables Yt which, under the normality of the Zt, follow 
scaled X] distributions. 

B If the sequence Z t may be assumed to be stationary (or to have been trans- 
formed initially to stationarity) then E(Zt+h)= E(Zt). Thus 27(h) = var 
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D 

( Z t .  h - Z t )  and so the estimation of the variogram may be approached by 
estimating the variance of the symmetr ic  random variables Zt÷ h - Z t .  

For many purposes (including the estimation of kriging weights), it is 
enough to determine the set 3'(h) for all h up to an unknown constant 
multiple. Now, provided var (Zt)  is finite: 

27(h) = 2 var (Zt)  [1 - p(h)l 

where p(h )  here refers to the autocorrelation at lag h. Thus an estimate of 
the set p(h )  also determines the set 7(h) up to the unknown variance. 
Assuming for the moment that the data form a traverse, there exists an auto- 
regressive-moving average (ARMA) model describing them 

~o(B)Z t = t~ (B)a t 

where ~o and ff me power series in the backshift operator B and the series 
a t is white noise. From ~, if, and the variance of the at, one may deduce 
7(h), and any method of estimating ~ and ff can yield 7(h) up to an un- 
known constant multiple of the variance of the at. 

All four methods could provide the basis for robust (or for that matter con- 
ventional) methods of estimating the variogram; this paper, however, deals only 
with approach A. 

PRELIMINARY TRANSFORMATION 

The problem for which we have by far the most powerful tools, algorithms, 
and theoretical results is that of the robust estimation of a center of symmetry 
(Huber 1964, 1972; Hogg 1974). By contrast, the estimation of some character- 
istic of a nonsymmetric distribution or of a scale parameter is not well under- 
stood at all. Now we are interested in estimating the variogram 

2') '(h) - - E  [ Z t +  h - Z t ]  2 

Considering the problem as one in estimating the expectation of ( Z t .  h - 

Zt) 2 , we find at once that under the normal model which forms our point of de- 
parture, ( Z t .  h - Z t )  2 follows a 27(h)× 2 distribution, which is highly skewed. 
Therefore, in order to use the well-known results on robust estimation, we 
looked for a method of transforming the problem to one of estimating a center 
of symmetry. The class of power transformations Yt  = { (Z t+n - Zt)2) x was 
chosen since it is very broad and includes several that one might believe a priori 
to be suitable: 3, -+ 0 gives the logarithmic, 3, = ½ the Wilson-Hilferty, and 3, = 1 
the identity transformation, respectively. A theoretical study of the cumulants 
of Y t  as a function of 3, showed that the choice 3, = 0.25 leads to a Yt  that is 
very close to normal if the Z t are normal, having cumulant coefficients of skew- 
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ness and kurtosis of 0.08 and -0.52, respectively. In the subsequent study use 
was thus made of this transformation (to Y t  = ]Zt+ h - Z t ]  1/2) and the problem 
regarded as one of measuring the center of symmetry of the Y t .  Huber (1972) in 
fact has suggested estimating the scale by first taking logarithms and then esti- 
mating location. 

Undoing the effect of this transformation is a relatively straightforward op- 
eration. Y t / ( 2 7 ( h ) }  1/4 is the fourth root of a X~ variate and so can be shown 
quite easily to have 

mean = 21/4p (3)/(701/2 = 0.82216 

and variance = 21/: [7r-1/2 _ p2 (¼)/Tr] = 0.12192. 

Let Y be the arithmetic mean of n independent Yr .  Assuming that Y is nor- 
mally distributed (which is true for n large by the central limit theorem and is, 
as noted above, nearly true for n as small as 1) some simple but unilluminating 
distribution theory then shows that 

E [Y4/27(h)] = 0.457 + (0.494/n)+ (0.045/n 2) 

and so an almost completely unbiased estimator for 27(h) is given by Y4/(0.457 + 
0.494n -1 + 0.045n -2). 

Later we use this correction factor, not only with Y but with other, more 
robust estimators. Provided that these estimators are also asymptotically normal 
(as they are) and have high asymptotic efficiency (as most of them do) then the 
same correction procedure will turn these estimators, too, into almost unbiased 
estimators of the variogram. 

The above reasoning applies to independent Yr .  In fact, our Y t  are not in- 
dependent, since they are functions of the Z t which are mutually correlated. 
However, this correlation is not of great practical import, as may be shown by 
the following reasoning 

COV ( Z t  + h - Z t ,  Zs+ h - Z s )  = E ( Z t  + h - Z t )  (Zs+ h - Z s )  

= var ( Z )  { 2 p ( l s  - t l )  - p ( l s  - t + h])  - p ( l s  - t -  h [ ) } ,  white 

var (Z t+  h - Z t )  = var (Zs+ h - Z s )  = var (Z) 211 - p(h)] 

Thus the correlation between Z t + h - Z t and Z s + h - Z s  is 

( p ( [ s -  t [ ) -  1 [p( ]s -  t + h l ) + P ( l s -  t -  hi)]}/[1 - fi(h)] 

Now in a real-life problem 

(i) If Is - t] is large, then p ( [ s  - t]) and p ( ] s  - t +- hi) are small. 
(ii) The autocorrelation function p(h) varies smoothly, and so if Is - t[ and h 

are small, it may be approximated locally by a linear function for which 
2D( i  - j )  = t)( i  - j + h )  + p ( i  - j - h ) .  
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(iii) For h around 1, there may be nonnegligible correlations between two dif- 
ferences; however, their effect in estimation is merely to increase slightly 
the width of confidence intervals and hence create a mild degree of conser- 
vatism (Cressie, 1980). 

Thus we see that for problems of practical interest the interdependence be- 
tween Yt and Ys will be negligible except for a negligibly small proportion of the 
Yt, Ys pairs. We therefore feel justified in treating the { Yt} as if they were an in- 
dependent random sample. 

ESTIMATORS USED 

Altogether 10 estimators of the type A were studied. Those of the class of 
M-estimators solved for T an equation of the form 

n 

Z ~ { ( r t  - r ) / cS}  = o 
1 

where S is a measure of scale for which we used the median absolute deviation of 
the Yt about their median (Hogg 1974, p. 910). 

The 10 estimators were 
(i) The mean Y of the Yt values. 
(ii) The median of the Yt values. 
(iii), (iv), and (v) The trimmed mean of the Yt values trimming, respec- 

tively, 5, 10, and 25% of the extreme order statistics on each side. (Gastwirth 
and Rubin, 1969). 

(vi) The Huber M-estimator, where 

x [xr-<l 
~(x)= sgnx [x] > 1 ,  

(vii) The Tukey bisquare M-estimator using 

~(x) = { ; ( l -  x2)~ [x[~<l 

[ x ] > l ,  where 

(viii) The Hampel M-estimator using 

~(x)= sgn(x) [(14- [x[) / l l ] ,  

where 

and c = 2.2. 

c = 6 (Gross 1977, p. 342) 

Ix[ ~< 3 

3 < [ x [ < 1 4  

Ixl/-" 14, 

C = 1 (Shorack 1976, p. 124) 
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(ix) The Andrews M-estimator using 

if(x)= ]xl>Tr, where c=3.11 

(x) The conventional estimator (Matheron, 1963) 

N 
(Zt+h-Zt)2/N, where N = n - h  

1 

The study consisted of simulating 500 traverses of length 50 according to 
the model 

Zt = 0.6Zt-1 + Ut 

and estimating "/(1) using each estimator. The U t were independent identically 
distributed random variables from the following distributions 

A: N(0, 1) 
B: Standard Laplace: f ( x )  = ½ exp (- Ixl) 
c: N(o, 1) 5% contaminated withN(0, 9) 
D: N(0, 1) 10% contaminated withN(0, 9) 
E: N(0, 1) 20% contaminated withN(0, 9) 
F: N(O, 1) 5% contaminated withN(0,100) 

In addition, as case G, we analyzed a set of real data from the Hartebeest- 
fontein gold mine, kindly supplied by Dr. D. G. Krige. These latter data con- 
sisted of 83 parallel traverses each containing up to 128 values. Since these 
values were expected a priori to be lognormally distributed, they were log trans- 
formed for analysis and the following results refer to the transformed values. 

RESULTS 

The overall means and standard deviations across traverses of the estimates 
of 3,(1) are given in Table 1. Turning first to the standard deviations, we see that 
the conventional estimator is by far the most stable for the normal distribution, 
and by far the least stable in almost all of the heavy-tailed runs (including that 
on the real data). The estimators having consistently the smallest standard devia- 
tions in the nonnormal cases are the M-estimators. Except for the grossly (and 
probably unrealistically) contaminated case F, the median performs poorly, and 
perhaps surprisingly, the mean of the Yt performs very well. All of the trimmed 
means were dominated by M-estimators, the best of which seems to be Tukey's 
bisquare. 
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Table 1. Means and Standard Deviations of 10 Variogram Estimates, for Seven Different 
Data Sets. 

Data set 

A B C D E F G 

Estimator Standard deviations 

1 0.35 0.65 0.46 0.57 0.78 1.32 1.88 
2 0.47 0.82 0.56 0.66 0.87 0.86 2.19 
3 0.41 0.73 0.50 0.62 0.87 1.29 2.10 
4 0.41 0.73 0.50 0.60 0.85 1.06 2.14 
5 0.45 0.76 0.52 0.61 0.83 0.88 2.20 
6 0.37 0.65 0.45 0.54 0.76 0.91 1.92 
7 0.39 0.66 0.46 0.54 0.75 0.71 1.97 
8 0.36 0.65 0.44 0.54 0.76 0.96 1.89 
9 0.35 0.65 0.46 0.56 0.78 1.28 1.88 

10 0.28 0.78 0.65 0.84 1.15 6.65 2.68 

A B C D E F G 

Means 

1 1.31 2.03 1.57 1.85 2.47 2.61 0.70 
2 1.43 2.00 1.62 1.83 2.35 2.04 0.70 
3 1.51 2.29 1.77 2.07 2.75 2.69 0.74 
4 1.52 2.23 1.75 2.02 2.65 2.43 0.74 
5 1.54 2.19 1.76 2.00 2.57 2.26 0.73 
6 1.34 1.97 1.55 1.80 2.35 2.13 0.69 
7 1.36 1.95 1.55 1.77 2.29 1.87 0.68 
8 1.32 1.99 1.54 1.80 2.39 2.14 0.69 
9 1.31 2.03 1.57 1.85 2.46 2.54 0.70 

10 1.27 2.46 1.76 2.21 3.15 7.38 0.84 

Turning next  to the means given in Table 1, it becomes  necessary for us to 

consider very carefully a fundamenta l  ques t ion  that  unti l  n o w  we have ignored,  

viz what  exact ly  we are trying to achieve wi th  robust  es t imat ion o f  the vario- 

gram. By the  usual def ini t ion,  27 (h )  = E ( Z t +  h - Z t )  2 , and the  convent ional  esti- 

mator  is an unbiased es t imator  o f  27(h) .  Thus any o ther  es t imator  whose mean  

does no t  coincide wi th  that  o f  the convent ional  es t imator  is biased, and so may  

seem to be undesirable.  We do no t  believe this to be the  case, and put  forward 

the  fol lowing jus t i f icat ion.  
First suppose the  fol lowing Kalman filter type  mode l  holds,  giving outl iers  

that  are qual i ta t ively the  same as the  first order  a.v. above (Meditch 1969) 

W t = l a ( h )  Wt+ h d h  + V t 
Jh 

Z t = W t + e t 
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Here the Wt represents a continuous unobservable underlying process de- 
fined by the autoregression coefficient function a ( h )  and the white noise U t. We 
may observe Z t ,  which is Wt plus a white noise error et,  at any point t. The ob- 
jective is to estimate the set W t from the set Z t. Note where this model differs 
from the usual geostatistical one: instead of using Z t as the basic entity and say- 
ing that we are only interested in values of Z t averaged over a block, we intro- 
duce the abstract quantity Wt, which is defined at a point but varies smoothly, 
thus being similar in practice to the average of Z t over a block, but conceptually 
different. The variogram 27(h) = E (Z  t + h - Z t) 2 

2,,/(h) = E ( Z ~  +,,, - Z~)  ~ 

= E ( W t +  h - W t + et+ h - et)  2 

= 2 [3`w (h) + o2el 

where 27w (h) is the variogram of W t and Oe 2 the variance of e. By definition, the 
W-process is continuous, and so as h-+ O, 3 'w(h)  -+ O. Thus the nugget effect 
(which is the limit of 3,(h) as h -+ 0) is just ae 2. If the distribution of e t is altered, 
but not that of Ut or a(h ) ,  the variogram is merely moved up or down parallel to 
its starting profile. The information about a(h) and the variance of the U t is con- 
rained in 3,w (h),  and so these parallel movements of the variogram do not affect 
it. Thus the interpretation of the variogram may be reduced to (i) estimating the 
nugget effect e2e, (ii) subtracting this from 3,(h), and (iii) inferring the properties 
of the W t process. From these separate pieces of information one may infer an 
optinaal scheme for regressing W t on the set Z t. 

Let us interpret these remarks in the context of robust estimation. If one 
assumes both U t and e t to be normally distributed, then a normal distribution 
for Z t and a "classical" geostatistical estimation and kriging scheme;may be de- 
duced. If, however, the U t process remains normal but the e t process is assumed 
to have some heavier-tailed distribution, then the Z t are not normal but exhibit 
occasional outliers. It is here that the use of good robust estimators of the vario- 
gram is desirable. These estimators, by reducing the sampling variability of esti- 
mates of 3,(h), can provide a more stable estimation procedure for 7w(h), and 

2 any downward bias will merely imply that they underestimate Oe while leaving 
the structure of 7 w  (h) unaffected. 

Since the important parameters defining the deposition process relate to 
the o~(h), we are thus able to estimate these with greater accuracy from such a 
robust variogram. The determination of an optimum set of weights for kriging or 
robust kriging (as set out in the following paragraph)requires estimates of both 
a(h) and various parameters, including perhaps ae 2, of  the distribution of the e t. 

This determination in the nonnormal case may however have to be done in an 
/ x  A 

iterative way by successively computing estimates W t and residuals Z t - IV t and 
using these residuals to refine our estimates of the distribution of the et ,  and, 

A 

hence, improve our estimates W t. 
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It is appropriate to observe at this point that the adoption of this model has 
far-reaching consequences, for if the et are not normally distributed, then it is 
not correct to use the linear regressions implicit in kriging. Thus, parallel to the 
development of robust estimators of the geostatistical model, one needs to de- 
velop robust equivalents to kriging. For example, a robust alternative to the krig- 
ing equation T= ~ibiZi might be the solution of ~ibi~(Zi - T ) =  0, which we 
recognize as an M-estimator. More generally, a regression equation merely pro- 
vides one with an estimator of a location parameter which, in the case of normal 
data, is a center of symmetry. 

As already noted, this is the best studied problem in robust estimation, and 
solutions abound. Unfortunately most of these, including those involving the use 
of M-estimators, cannot be applied in most practical cases because of the enor- 
mous volume of computation they would entail, and so effort in this area should 
concentrate on noniterative estimators based possibly on Winsorization, outlier 
rejection, or trimming of the apparently outlying Z t. 

Returning now to Table 1, we see that in the heavy-tailed cases all the ro- 
bust estimators are biased relative to the conventional estimator. Again in all 
cases except case F, there is little to choose between the mean of the Yt  and the 
M-estimators; in case F however the M-estimators have a consistently greater 
downward bias. 

Thus the M-estimators are the estimators of choice, having quite good effi- 
ciency for normal data coupled with stability for all the heavy-tailed distribu- 
tions studied. Another very simple estimator, Y, the mean of the Yt  performs 
equally well for the distributions contaminated with N(0,  9) data and, which is 
more significant, for the real data. In a technical sense Y is not robust in that it 
goes to infinity if any Yt  does, however it does seem to be robust enough to 
handle data which, while not normal, have outliers that deviate by not more 
than six or seven standard deviations. This description is likely to cover the large 
majority of  real data sets. 

CONCLUSION AND OVERVIEW 

The paper uncovers a number of  very interesting conclusions about the ro- 
bust estimation of the variogram, among which is the surprising finding that the 
arithmetic mean of the fourth root of (Zt+ h - Z t )  2 gives a reasonably robust, 
stable estimate of  the variogram. Furthermore, the orthodox M-estimators are 
equally stable, and theoretically more robust, while trimmed means and the 
median do not perform well. 

Much work remains to be done. There is no pretence that all reasonable ro- 
bust estimators were tried, nor that working via the fourth-root transformation 
is the only or necessarily the best approach to robust estimation of the vario- 
gram. Furthermore the whole area of kriging in the face of nonnormal distur- 
bances warrants extensive attention. 
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