
ARTICLE  IN  PRESS
Computational Statistics and Data Analysis ( ) –

Contents lists available at ScienceDirect

Computational Statistics and Data Analysis

journal homepage: www.elsevier.com/locate/csda

Birnbaum–Saunders nonlinear regression models
Artur J. Lemonte a,∗, Gauss M. Cordeiro b
a Departamento de Estatística, Universidade de São Paulo, Rua do Matão, 1010, São Paulo/SP, 05508-090, Brazil
b Departamento de Estatística e Informática, Universidade Federal Rural de Pernambuco, Recife/PE, 52171-900, Brazil

a r t i c l e i n f o

Article history:
Received 30 January 2009
Received in revised form 22 June 2009
Accepted 27 June 2009
Available online xxxx

a b s t r a c t

We introduce, for the first time, a new class of Birnbaum–Saunders nonlinear regression
models potentially useful in lifetime data analysis. The class generalizes the regression
model described by Rieck and Nedelman [Rieck, J.R., Nedelman, J.R., 1991. A log-linear
model for the Birnbaum–Saunders distribution. Technometrics 33, 51–60]. We discuss
maximum-likelihood estimation for the parameters of the model, and derive closed-
form expressions for the second-order biases of these estimates. Our formulae are easily
computed as ordinary linear regressions and are then used to define bias corrected
maximum-likelihood estimates. Some simulation results show that the bias correction
scheme yields nearly unbiased estimates without increasing themean squared errors. Two
empirical applications are analysed and discussed.

Crown Copyright© 2009 Published by Elsevier B.V. All rights reserved.

1. Introduction

Different regression models have been proposed for lifetime data such as those based on the gamma, lognormal and
Weibull distributions. These models typically provide a satisfactory fit in the middle portion of the data, but very often fail
to deliver a good fit at the tails, where only a few observations are generally available. The family of distributions proposed
by Birnbaum and Saunders (1969) can also be used to model lifetime data and it is widely applicable to model failure times
of fatiguing materials. This family was originally obtained from a model for which failure follows from the development
and growth of a dominant crack and has the appealing feature of providing satisfactory tail fitting. It was later derived
by Desmond (1985) using a biological model which followed from relaxing some of the assumptions originally made by
Birnbaum and Saunders (1969).
The random variable T is said to be Birnbaum–Saunders distributed with parameters α, η > 0, say B-S(α, η), if its

cumulative distribution function (cdf) is given by

FT (t) = Φ

[
1
α

(√
t
η
−

√
η

t

)]
, t > 0,

whereΦ(·) is the standard normal distribution function and α and η are shape and scale parameters, respectively. It is easy
to show that η is the median of the distribution: FT (η) = Φ(0) = 1/2. For any k > 0, then kT ∼ B-S(α, kη).
McCarter (1999) considered parameter estimation under type II data censoring for theB-S(α, η) distribution. Lemonte

et al. (2007) derived the second-order biases of the maximum-likelihood estimates (MLEs) of α and η, and obtained a
corrected likelihood ratio statistic for testing the parameter α. Lemonte et al. (2008) proposed several bootstrap bias
corrected estimates of α and η. Further details on the Birnbaum–Saunders distribution can be found in Johnson et al. (1995).
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Rieck and Nedelman (1991) proposed a log-linear regression model based on the Birnbaum–Saunders distribution. They
showed that if T ∼ B-S(α, η), then Y = log(T ) is sinh-normal distributed, say Y ∼ SN (α, µ, σ ), with shape, location and
scale parameters given by α,µ = log(η) and σ = 2, respectively. Their model has been widely used as an alternative model
to the gamma, lognormal and Weibull regression models; see Rieck and Nedelman (1991, Section 7). Diagnostic tools for
the Birnbaum–Saunders regression model were developed by Galea et al. (2004), Leiva et al. (2007) and Xie andWei (2007),
and the Bayesian inference was considered by Tisionas (2001).
In this paper we propose a class of Birnbaum–Saunders nonlinear regression models which generalizes the regression

model introduced by Rieck and Nedelman (1991).We discussmaximum-likelihood estimation of the regression parameters
and obtain the Fisher information matrix. As is well known, however, the MLEs, although consistent, are typically biased
in finite samples. In order to overcome this shortcoming, we derive a closed-form expression for the biases of the MLEs in
these models which are used to define bias corrected estimates.
Bias adjustment has been extensively studied in the statistical literature. For example, Pázman and Denis (1999) derived

expressions for the asymptotic approximation of the bias of the least-squares estimators in nonlinear regressionmodelswith
parameterswhich are subject to nonlinear equality constraints. Cordeiro et al. (2000) obtained bias correction for symmetric
nonlinear regression models. Vasconcellos and Silva (2005) discussed analytical bias corrections for MLEs in a regression
model where the errors are Student-t distributed with unknown degrees of freedom. Ospina et al. (2006) derived closed-
form expressions for the second-order biases of MLEs for beta regression models. Yang and Lin (2007) discussed improved
maximum-likelihood estimation for the common shape parameter of several Weibull populations. Cordeiro and Demétrio
(2008) proposed formulae for the second-order biases of the maximum quasi-likelihood estimates, whereas Cordeiro and
Toyama-Udo (2008) derived the second-order biases in generalized nonlinear models with dispersion covariates. More
recently, Patriota and Lemonte (2009) derive the second-order biases of the MLEs in a multivariate normal model where
the mean vector and the covariance matrix have parameters in common, whereas Patriota et al. (2009) develops a bias
correction scheme for a multivariate heteroskedastic errors-in-variables model.
The rest of the paper is organized as follows. Section 2 introduces the class of Birnbaum-Saunders nonlinear regression

models and discusses maximum-likelihood estimation. Using general results from Cox and Snell (1968), we derive in
Section 3 the second-order biases of the MLEs of the nonlinear parameters in our class of models and define bias corrected
estimates. Some special models are considered in Section 4. Simulation results are presented and discussed in Section 5 for
two nonlinear regression models. We show that the bias corrected estimates are nearly unbiased with mean squared errors
very close to those of the uncorrected estimates. Section 6 gives an application of the proposed regression model to a real
fatigue data set, which provides a better fit at the tail of the data. Finally, Section 7 concludes the paper.

2. Model specification

Let T ∼ B-S(α, η). The density function of Y = log(T ) ∼ SN (α, µ, σ ) has the form (Rieck and Nedelman, 1991)

π(y;α,µ, σ ) =
2

ασ
√
2π
cosh

(
y− µ
σ

)
exp

{
−
2
σ 2
sinh2

(
y− µ
σ

)}
, y ∈ R.

This distribution has a number of interesting properties (Rieck, 1989): (i) It is symmetric around the location parameter µ;
(ii) It is unimodal for α ≤ 2 and bimodal for α > 2; (iii) The mean and variance of Y are E(Y ) = µ and Var(Y ) = σ 2w(α),
respectively. There is no closed-form expression for w(α), but Rieck (1989) obtained asymptotic approximations for both
small and large values of α; (iv) If Yα ∼ SN (α, µ, σ ), then Sα = 2(Yα − µ)/(ασ) converges in distribution to the standard
normal distribution when α→ 0.
We define the nonlinear regression model

yi = fi(xi;β)+ εi, i = 1, . . . , n, (1)

where yi is the logarithm of the ith observed lifetime, xi is anm× 1 vector of known explanatory variables associated with
the ith observable response yi, β = (β1, . . . , βp)

> is a vector of unknown nonlinear parameters, and εi ∼ SN (α, 0, 2).
We assume a nonlinear structure for the location parameter µi in model (1), say µi = fi(xi;β), where fi is assumed to be a
known and twice continuously differentiable function with respect to β. For the linear regression µi = x>i β, the model (1)
reduces to Rieck and Nedelman’s (1991) model.
The log-likelihood function for the vector parameter θ = (β>, α)> from a random sample y = (y1, . . . , yn)> obtained

from (1), except for constants, can be expressed as

`(θ) =

n∑
i=1

log(ξi1)−
1
2

n∑
i=1

ξ 2i2, (2)

where ξi1 = ξi1(θ) = 2α−1 cosh([yi − µi]/2), ξi2 = ξi2(θ) = 2α−1 sinh([yi − µi]/2) for i = 1, . . . , n. The function `(θ)
is assumed to be regular (Cox and Hinkley, 1974, Ch. 9) with respect to all β and α derivatives up to third order. Further,
the n × p local matrix D = D(β) = ∂µ/∂β> of partial derivatives of µ = (µ1, . . . , µn)

> with respect to β is assumed
to be of full rank, i.e., rank(D) = p for all β. The nonlinear predictors x1, . . . , xn are embedded in an infinite sequence of
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m × 1 vectors that must satisfy these regularity conditions for the asymptotics to be valid. Under these assumptions, the
MLEs have good asymptotic properties such as consistency, sufficiency and normality.
The derivatives with respect to the components of β and α are denoted by: Ur = ∂`(θ)/∂βr , Uα = ∂`(θ)/∂α, Urs =

∂2`(θ)/∂βr∂βs, Urα = ∂2`(θ)/∂βr∂α, Urst = ∂3`(θ)/∂βr∂βs∂βt , Ursα = ∂3`(θ)/∂βr∂βs∂α, etc. Further, we use the follow-
ing notation for joint cumulants of log-likelihood derivatives: κrs = E(Urs), κr,α = E(UrUα), κrst = E(Urst), etc. Let κ

(t)
rs =

∂κrs/∂βt , etc. All κ ’s and their derivatives are assumed to be of order O(n). Also, we adopt the notation dir = ∂µi/∂βr and
girs = ∂2µi/∂βr∂βs for the first and second partial derivatives of µi with respect to the elements of β.
By differentiating (2) we have

Ur =
1
2

n∑
i=1

dir

(
ξi1ξi2 −

ξi2

ξi1

)
, Uα = −

n
α
+
1
α

n∑
i=1

ξ 2i2,

Urs =
1
2

n∑
i=1

girs

(
ξi1ξi2 −

ξi2

ξi1

)
−
1
4

n∑
i=1

dirdis

(
2ξ 2i2 +

4
α2
− 1+

ξ 2i2

ξ 2i1

)
,

Urα = −
1
α

n∑
i=1

dirξi1ξi2 and Uαα =
n
α2
−
3
α2

n∑
i=1

ξ 2i2.

The score function for β is Uβ =
1
2D
>s, where s = s(θ) is an n-vector whose ith element is equal to ξi1ξi2 − ξi2/ξi1.

It is well known that, under general regularity conditions (Cox and Hinkley, 1974, Ch. 9), theMLEs are consistent, asymp-
totically efficient and asymptotically normal. Let θ̂ = (̂β>, α̂)> be theMLE of θ = (β>, α)>.We canwrite θ̂

a
∼ Np+1(θ,K−1θ )

for n large, where
a
∼ denotes approximately distributed, Kθ is the block-diagonal Fisher information matrix given by

Kθ = diag{Kβ, κα,α}, K−1θ is its inverse, Kβ = ψ(α)(D>D)/4 is the information matrix for β and κα,α = 2n/α2 is the
information for α. Also,

ψ(α) = 2+
4
α2
−

√
2π
α

{
1− erf

(√
2
α

)}
exp

(
2
α2

)
,

where erf(·) is the error function given by erf(x) = (2/
√
π)
∫ x
0 e
−t2dt . Details on erf(·) can be found in Gradshteyn and

Ryzhik (2007). SinceKθ is block-diagonal, the vectorβ and the scalarα are globally orthogonal (Cox andReid, 1987) and β̂ and
α̂ are asymptotically independent. It can be shown (Rieck, 1989) thatψ(α) ≈ 1+4/α2 forα small andψ(α) ≈ 2 forα large.
The MLE θ̂ satisfies p+ 1 equations Ur = Uα = 0 for the components of β and α. The Fisher scoring method can be used

to estimate β and α simultaneously by iteratively solving the equations

β(m+1) = (D(m)>D(m))−1D(m)>δ(m) and α(m+1) =
α(m)

2

(
1+ ξ̄ (m)2

)
,

where δ(m) = D(m)β(m) + 2s(m)/ψ(α(m)) and ξ̄ (m)2 =
∑n
i=1 ξ

2(m)
i2 /n form = 0, 1, 2, . . .

The above equations show that any software with a weighted linear regression routine can be used to calculate the MLEs
of β and α iteratively. Initial approximations β(0) and α(0) for the iterative algorithm are used to evaluate D(0), δ(0) and ξ̄ (0)2
fromwhich these equations can be used to obtain the next estimates β(1) and α(1). These new values can update D, δ and ξ̄2
and so the iterations continue until convergence is achieved.

3. Biases of estimates of β and α

We now obtain some joint cumulants of log-likelihood derivatives and their derivatives:

κrs = −
ψ(α)

4

n∑
i=1

dirdis, κrα = κrαα = 0, καα = −
2n
α2
, κααα =

10n
α3
,

κrst = −
ψ(α)

4

n∑
i=1

(girsdit + girtdis + gistdir), κrsα =
(2+ α2)
α3

n∑
i=1

dirdis,

κ (t)rs = −
ψ(α)

4

n∑
i=1

(girtdis + gistdir), κ (α)rα = κ
(s)
rα = 0 and κ (α)αα =

4n
α3
.

Let B(β̂a) and B(̂α) be the n−1 biases of β̂a (a = 1, . . . , p) and α̂, respectively. The use of Cox and Snell’s (1968) formula
to obtain these biases is greatly simplified, since β and α are globally orthogonal and the cumulants corresponding to the

Please cite this article in press as: Lemonte, A.J., Cordeiro, G.M., Birnbaum–Saunders nonlinear regression models. Computational Statistics and Data
Analysis (2009), doi:10.1016/j.csda.2009.06.015



ARTICLE  IN  PRESS
4 A.J. Lemonte, G.M. Cordeiro / Computational Statistics and Data Analysis ( ) –

parameters inβ are invariant under permutation of these parameters. From now on, we use Einstein summation convention
with the indices varying over the corresponding parameters. We have

B(β̂a) =
∑
s,t,u

′

κa,sκ t,u
(
κ
(u)
st −

1
2
κstu

)
+ κα,α

∑
s

′

κa,s
(
κ (α)sα −

1
2
κsαα

)
and

B(̂α) = (κα,α)2
(
κ (α)αα −

1
2
κααα

)
+ κα,α

∑
t,u

′

κ t,u
(
κ
(u)
αt −

1
2
καtu

)
,

where κ r,s is the (r, s)th element of the inverse K−1β of the information matrix for β, κα,α = κ−1α,α and
∑
′ denotes the

summation over all combinations of parametersβ1, . . . , βp. Plugging the cumulants given before into these two expressions
and after some algebra we can obtain the n−1 bias of β̂, say B(̂β), in matrix form, and B(̂α).
We now define the matrix G (n × p2) from the elements of β by G = G(β) = {∂2µi/∂βr∂βs} (for r, s = 1, 2, . . . , p).

Thus, the ith row of G is given by ∂2µi/∂β21 , ∂
2µi/∂β1∂β2, . . . , ∂

2µi/∂β
2
p . We can show after some algebra that the p × 1

bias vector B(̂β) reduces to

B(̂β) = (D>D)−1D>d, (3)
where d is an n× 1 vector defined as d = −{2/ψ(α)}Gvec{(D>D)−1} and ‘‘vec’’ is the operator which transforms a matrix
into a vector by stacking the columns of the matrix one underneath the other. The n−1 bias of α̂ is given by simple formula

B(̂α) = −
1
n

{
p
(
2+ α2

αψ(α)

)
+
α

4

}
. (4)

A number of remarks are worthmaking with respect to formulae (3) and (4). The bias vector B(̂β) can be obtained from a
simple ordinary least-squares regression of d on the columns of D. It depends on the nonlinearity of the regression function
f and the parameter α. The bias vector B(̂β) will be small when d is orthogonal to the columns of D. Also, it can be large
whenψ(α) and n are both small. Eq. (3) is easily handled algebraically for any type of nonlinear regression, since it involves
simple operations on matrices and vectors. For special models with closed-form information matrix for β, it is possible to
obtain closed-form expressions for B(̂β). For linearmodels, thematrix G and the vector d vanish and hence B(̂β) = 0, which
is in agreement with the result due to Rieck and Nedelman (1991, p. 54) that theMLEs are unbiased to order n−1. Expression
(4) depends directly on the nonlinear structure of the regression model only through the rank p of D. It shows that the bias
is always a linear function of the dimension p of β.
On the right-hand sides of expressions (3) and (4), which are both of order n−1, consistent estimates of the parameters β

andα can be inserted to define bias corrected estimates β̃ = β̂−B̂(̂β) and α̃ = α̂−B̂(̂α), where B̂(̂β) and B̂(̂α) are the values
of B(̂β) and B(̂α), respectively, at θ̂ = (̂β>, α̂)>. The bias corrected estimates β̃ and α̃ are expected to have better sampling
properties than the classical MLEs β̂ and α̂. In fact, we present some simulations in Section 5 to show that β̃ and α̃ have
smaller biases than their corresponding uncorrected estimates, thus suggesting that these bias corrections have the effect
of shrinking the adjusted estimates toward to the true parameter values. However, we cannot say that the bias corrected
estimates offer always some improvement over the MLEs, since they can have mean squared errors larger.
It is worth emphasizing that there are other methods to obtain bias corrected estimates. In regular parametric problems,

Firth (1993) developed the so-called ‘‘preventive’’ method, which also allows for the removal of the second-order bias.
His method consists of modifying the original score function to remove the first-order term from the asymptotic biases
of these estimates. In exponential families with canonical parameterizations, his correction scheme consists in penalizing
the likelihood by the Jeffreys invariant priors. This is a preventive approach to bias adjustment which has its merits, but
the connections between our results and his work are not pursued in this paper since they could be developed in future
research. Additionally, it should be mentioned that it is possible to avoid cumbersome and tedious algebra on cumulant
calculations by using Efron’s bootstrap (Efron and Tibshirani, 1993). We use the analytical approach here since this leads
to a nice formula. Moreover, the application of the analytical bias approximation seems to generally be the most feasible
procedure to use and it continues to receive attention in the literature.
We now calculate the second-order bias B(µ̂i) of the MLE µ̂i of the ith meanµi = fi(xi;β). We can easily show by Taylor

series expansion that

B(µ̂i) = d>i B(̂β)+
1
2
tr{MiCov(̂β)},

where d>i is a 1 × p vector of first partial derivatives ∂µi/∂βr (for r = 1, . . . , p), Mi is a p × p matrix of second partial
derivatives ∂2µi/∂βr∂βs (for r, s = 1, . . . , p), Cov(̂β) = K−1β is the asymptotic covariance matrix of β̂ and B(̂β) was given
previously. All quantities in the last equation should be evaluated at β̂.
The asymptotic variance of µ̂i can also be expressed explicitly in terms of the covariance of β̂ by

Var(µ̂i) = tr{(did>i )Cov(̂β)}.
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4. Special models

Eq. (3) is easily handled algebraically for any type of nonlinear model, since it involves simple operations on matrices
and vectors. This equation, in conjunction with a computer algebra system such asMAPLE (Abell and Braselton, 1994) will
compute B(̂β) algebraically with minimal effort. In particular, Eq. (3) may simplify considerably if the number of nonlinear
parameters is small. Moreover, for any special nonlinear model, we can calculate the bias B(̂β) numerically via a software
with numerical linear algebra facilities such as Ox (Doornik, 2006) and R (R Development Core Team, 2008).
First, we consider a nonlinear regression model which depends on a single nonlinear parameter. Eq. (3) gives

B(β̂) = −
2

ψ(α)

κ2

κ21
,

where κ1 =
∑n
i=1(dfi/dβ)

2 and κ2 =
∑n
i=1(dfi/dβ)(d

2fi/dβ2). The constants κ1 and κ2 are evaluated at β̂ and α̂ to yield
B̂(β̂) and the corrected estimate β̃ = β̂ − B̂(β̂). For example, the simple exponential model fi = exp(βxi) leads to κ1 =∑n
i=1 x

2
i exp(2βxi) and κ2 =

∑n
i=1 x

3
i exp(2βxi).

As a second example, we consider a partially nonlinear regression model defined by

µ = Zλ+ ηg(γ ), (5)

where Z is a known n×(p−2)matrix of full rank, g(γ ) is an n×1 vector,β = (λ>, η, γ )>,λ = (λ1, . . . , λp−2)> and η and γ
are scalar parameters. This class ofmodels occurs very often in statisticalmodeling. For example,µ = λ1z1+λ2z2+η exp(γ x)
(Gallant, 1975), µ = λ− η log(x1 + γ x2) (Darby and Ellis, 1976) and µ = λ+ η log(x1/(γ + x2)) (Stone, 1980). Ratkowsky
(1983, Ch. 5) discusses several models of the form (5) which include the asymptotic regression and Weibull-type models
given by µ = λ− ηγ x and µ = λ− η exp(−γ x), respectively.
The n× p local model matrix D takes the form D = [Z, g(γ ), η(dg(γ )/dγ )] and, after some algebra, we can obtain from

Eq. (3)

B(̂β) = −
[
1
η
Cov(̂η, γ̂ )τp +

η

2
Var(γ̂ )δp

]
, (6)

where τp is a p × 1 vector with a one in the last position and zeros elsewhere, δp = (D>D)−1D>(d2g(γ )/dγ 2) is simply
the set of coefficients from the ordinary regression of the vector d2g(γ )/dγ 2 on the matrix D, and Var(γ̂ ) and Cov(̂η, γ̂ )
are the large-sample second moments obtained from the appropriate elements of the asymptotic covariance matrix
Cov(̂β) = K−1β = (4/ψ(α))(D>D)−1. It is clear from formula (6) that B(̂β) does not depend explicitly on the linear para-
meters in λ and it is proportional to 4/ψ(α). Further, the covariance term Cov(̂η, γ̂ ) contributes only to the bias of γ̂ .

5. Numerical results

We now use Monte Carlo simulation to evaluate the finite-sample performance of the MLEs of the parameters and of
their corrected versions in two nonlinear regression models. The estimates of the parameters were obtained bymaximizing
the log-likelihood function using the BFGS quasi-Newton method with analytical derivatives. This method is generally
regarded as the best-performing nonlinear optimization method (Mittelhammer et al., 2000, p. 199). The covariate values
were selected as random draws from the uniform U(0, 1) distribution and for fixed n those values were kept constant
throughout the experiment. The number of Monte Carlo replications was 10,000 and all simulations were performed using
the Oxmatrix programming language (Doornik, 2006).1
In order to analyze the performance of the estimates, we computed, for each sample size and for each estimate: the

relative bias (the relative bias of an estimate θ̂ , defined as {E(̂θ) − θ}/θ , is obtained by estimating E(̂θ) by Monte Carlo)
and the root mean square error (

√
MSE), where MSE is the estimated mean square error from the 10,000 Monte Carlo

replications.
First, we consider the nonlinear regression model

µi = λ1zi1 + λ2zi2 + η exp(γ xi),

where εi ∼ SN (α, 0, 2) for i = 1, . . . , n. The sample sizes were n = 15, 30 and 45. Without loss of generality, the true
values of the regression parameters were taken as λ1 = 4, λ2 = 5, η = 3, γ = 1.5 and α = 0.5 and 1.5.
Table 1 gives the relative biases of both uncorrected and corrected estimates to show that the bias corrected estimates are

much closer to the true parameters than the unadjusted estimates. For instance, when n = 15 and α = 1.5, the average of
the estimated relative biases for the estimates of the model parameters is−0.03244, whereas the average of the estimated
relative biases for the corrected estimates is−0.0083. Hence, the average bias (in absolute value) of the MLEs is almost four

1 Ox is freely distributed for academic purposes and available at http://www.doornik.com.
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Table 1
Relative biases of the uncorrected and corrected estimates.

α n λ1 λ2 η γ α

0.5 15 MLE 0.0006 −0.0013 0.0011 0.0020 −0.1691
BCE 0.0007 −0.0011 0.0001 0.0008 −0.0395

30 MLE 0.0001 −0.0013 0.0013 0.0009 −0.0811
BCE 0.0002 −0.0012 0.0007 −0.0001 −0.0092

45 MLE 0.0003 −0.0012 0.0007 0.0008 −0.0537
BCE 0.0003 −0.0011 0.0003 0.0001 −0.0042

1.5 15 MLE −0.0068 −0.0083 0.0248 0.0197 −0.1916
BCE −0.0055 −0.0046 0.0113 0.0056 −0.0481

30 MLE −0.0016 −0.0034 0.0079 0.0078 −0.0933
BCE −0.0011 −0.0018 0.0027 0.0012 −0.0116

45 MLE −0.0028 −0.0027 0.0052 0.0026 −0.0614
BCE −0.0023 −0.0018 0.0023 −0.0005 −0.0048

BCE: bias corrected estimate.

Table 2
Root mean squared errors of the uncorrected and corrected estimates.

α n λ1 λ2 η γ α

0.5 15 MLE 0.4093 0.4920 0.2707 0.0924 0.1234
BCE 0.4093 0.4921 0.2709 0.0922 0.1067

30 MLE 0.3006 0.3806 0.2113 0.0688 0.0763
BCE 0.3006 0.3806 0.2114 0.0686 0.0702

45 MLE 0.2434 0.2874 0.1768 0.0567 0.0590
BCE 0.2434 0.2874 0.1769 0.0566 0.0555

1.5 15 MLE 1.6302 1.1230 0.9756 0.3235 0.3938
BCE 1.6333 1.1274 0.9819 0.3152 0.3315

30 MLE 0.9684 0.7003 0.5785 0.1931 0.2399
BCE 0.9693 0.7011 0.5807 0.1908 0.2155

45 MLE 0.6505 0.5575 0.3895 0.1318 0.1837
BCE 0.6507 0.5577 0.3901 0.1311 0.1700

BCE: bias corrected estimate.

times greater than the average bias of the corrected estimates. This fact suggests that the second-order biases of the MLEs
should not be ignored in samples of small to moderate size since they can be non-negligible. Table 2 shows that the root
mean squared errors of the uncorrected and corrected estimates are very close. Hence, the figures in both tables suggest
that the corrected estimates have good properties.
When the parameter α increases, the finite-sample performance of the MLEs deteriorates (see Tables 1 and 2). For in-

stance, when n = 15, the relative biases of γ̂ (MLE) and γ̃ (BCE) were 0.0020 and 0.0008 (for α = 0.5) and 0.0197 and
0.0056 (for α = 1.5), which indicate an increase in the relative biases of nearly 10 and 7 times, respectively. Also, the root
mean squared errors in the same order were 0.0924 and 0.0922 (for α = 0.5) and 0.3235 and 0.3152 (for α = 1.5).
Next, we consider the very useful Michaelis–Menton model for estimating growth curves, where it is common for the

response to approach an asymptote as the stimulus increases. The Michaelis–Mentonmodel (Ratkowsky, 1983) provides an
hyperbolic form for µi against xi given by

µi =
ηxi
γ + xi

, i = 1, . . . , n,

where the curve has an asymptote at µ = η. Here, the sample sizes were n = 20, 30, 40 and 50. Also, the true values of the
nonlinear parameters were taken as η = 3 and γ = 0.5, with α = 0.5.
Table 3 gives the relative biases and root mean squared errors of the uncorrected and corrected estimates. The figures in

this table reveal that theMLEs of the parameters can be substantially biased, evenwhen n = 50, and that the bias correction
is very effective. In terms of MSE, the adjusted estimates are slightly better than the ordinary MLEs.
Following Paolino (2001), we compute an efficiency measure for the corrected estimator (BCE) relative to the MLE by

comparing the average values of the first differences for the mean response (for the Michaelis–Menton model) from the
estimates of the parameters with and without bias correction with the true values of the first differences. This measure is
related to the estimation of the impact of a covariate change on the mean. Measuring such impact is oftentimes of interest.
The first differences are computed by varying the covariate from one standard deviation above its average value to one
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Table 3
Relative biases and root mean squared errors of the uncorrected and corrected estimates; α = 0.5 and different sample sizes.

n Relative Bias
√
MSE

η γ α η γ α

20 MLE 0.0476 0.1718 −0.0669 0.6984 0.3947 0.0859
BCE −0.0016 −0.0081 −0.0061 0.5264 0.2783 0.0847

30 MLE 0.0313 0.1077 −0.0439 0.5245 0.2750 0.0684
BCE 0.0004 0.0012 −0.0024 0.4478 0.2252 0.0678

40 MLE 0.0215 0.0754 −0.0330 0.4222 0.2207 0.0582
BCE −0.0001 −0.0003 −0.0015 0.3835 0.1954 0.0578

50 MLE 0.0160 0.0558 −0.0259 0.3609 0.1862 0.0516
BCE 0.0000 −0.0001 −0.0005 0.3380 0.1710 0.0514

BCE: bias corrected estimate.

Table 4
Efficiency with respect to the MLE: mean change.

n 20 25 30 35 40 50 80 100

EFFIC 110.50 109.00 107.46 105.37 105.21 104.30 102.91 102.12

standard deviation below it. That is, we compute

EFFIC = 100×

√
R∑
l=1
(∆l,MLE −∆true)2√

R∑
l=1
(∆l,BCE −∆true)2

,

where∆true is the true value of the first difference, i.e.,∆true = ∆µ,∆MLE is the estimate of the first difference evaluated at
theMLEs,∆BCE is the estimate using the bias corrected estimates and R is the total number of Monte Carlo replications. Eight
different sample sizes were considered: n = 20, 25, 30, 35, 40, 50, 80 and 100. The values of the parameters (η, γ and α)
are as those considered above. Numerical values greater than 100 indicate that the bias corrected estimator ismore efficient,
in the sense discussed above, than the classical estimator. The figures in Table 4 show that the adjusted bias estimator is
more efficient than the MLE. As expected, when the sample size increases the statistic EFFIC approaches 100.

6. Applications

Obviously, due to the genesis of the Birnbaum–Saunders distribution, the fatigue processes are by excellence ideally
modeled by this model. First, we consider an application to a biaxial fatigue data set reported by Rieck and Nedelman (1991)
on the life of a metal piece in cycles to failure. The response N is the number of cycles to failure and the explanatory variable
w is the work per cycle (mJ/m3). The data of forty six observations were taken from Table 1 of Galea et al. (2004). Rieck and
Nedelman (1991) proposed the following model for the biaxial fatigue data:

yi = β1 + β2 log(wi)+ εi, (7)

where yi = log(Ni) and εi ∼ SN (α, 0, 2) for i = 1, . . . , 46. The MLEs (the corresponding standard errors in parentheses)
are: β̂1 = 12.2797 (0.3942), β̂2 = −1.6708 (0.1096) and α̂ = 0.4104 (0.0428). We take the logarithm of w to ensure a
linear relationship between the response variable (y) and the covariate in (7); see Galea et al. (2004, Fig. 1). However, Fig. 1
suggests a nonlinear relationship between the response variable and the covariatew.
Hence, we propose the nonlinear regression model

yi = β1 + β2 exp(β3/wi)+ εi, i = 1, . . . , 46, (8)

where εi ∼ SN (α, 0, 2). The MLEs (the standard errors in parentheses) are: β̂1 = 8.9876 (0.7454), β̂2 = −5.1802
(0.5075), β̂3 = −22.5196 (7.3778) and α̂ = 0.40 (0.0417). The bias corrected estimates are: β̃1 = 8.7806 (0.7734),
β̃2 = −4.9362 (0.5266), β̃3 = −22.1713 (7.6548) and α̃ = 0.4157 (0.0433). The uncorrected estimates are slightly
different from the bias corrected estimates even for large samples (n = 46 observations).
Fig. 2 gives the scatter-plot of the data, the fittedmodel (8) and the fitted straight line, say yi = β1+β2wi+εi, where the

MLEs are: β̂1 = 7.9864 (0.1622), β̂2 = −0.0406 (0.0036) and α̂ = 0.52 (0.0542). Fig. 2 shows that the nonlinear model
(8) (unlike the linear model) fits satisfactorily to the fatigue data.
Following Xie andWei (2007), we obtain the residuals ε̂i = yi− µ̂i and R̂i = 2α̂−1 sinh(̂εi/2). Fig. 3 gives the scatter-plot

of R̂i versus the predicted values µ̂i for both fitted models: (i) yi = β1 + β2wi + εi; and (ii) yi = β1 + β2 exp(β3/wi) + εi.
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Fig. 1. Scatter-plot of the data set.
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Fig. 2. Scatter-plot and the fitted models.

Table 5
MLEs of the parameters, relative changes (%) on β dropping 46th observation and the corresponding p-values.

Parameter Linear model Nonlinear model
Estimate RC p-value Estimate RC p-value

β1 8.1906 −2.56 0.00 8.8005 2.08 0.00
β2 −0.0469 15.5 0.00 −5.1695 0.21 0.00
β3 – – – −25.0287 −11.2 0.00

Fig. 3 shows that the distribution of R̂i is approximately normal for model (ii) but this is not true for model (i). Based upon
the fact that U ∼ SN (α, µ, σ ) if 2α−1 sinh{(U − µ)/σ } ∼ N (0, 1), then the residual ε̂i should follow approximately a
sinh-normal distribution.
The 46th case (the one with work per cycle near 100) can be an influential observation. We deleted this observation and

the estimates for the models yi = β1 + β2wi + εi and yi = β1 + β2 exp(β3/wi) + εi are presented in Table 5, together
with the relative changes (in percentage) of each parameter estimate, defined by RCθr = {(̂θr − θ̂r[i])/̂θr}×100%, where θ̂r[i]
denotes the MLE of θr after the observation ith being removed. We note that the 46th observation changes the estimate of
β3 more than 11% but the significance of β3 is not modified.
A generalized LR statistic can be used for discriminating among nonnested models as discussed in the book of Camerom

and Trived (1998, p. 184). Consider choosing between two nonnestedmodels:model Fµ1 with density functionπ(yi|µ1i) and
model Fµ2 with density function π(yi|µ2i), where µ1i = µ1i(xi; θ) and µ2i = µ2i(xi; γ). This statistic is a distance between
the twomodels measured in terms of the Kullback–Liebler information criterion. The generalized LR statistic can be written
as

TLR,NN =
{
1
√
n

n∑
i=1

log
π(yi|µ̂1i)
π(yi|µ̂2i)

}
×

{
1
n

n∑
i=1

(
log

π(yi|µ̂1i)
π(yi|µ̂2i)

)2
−

(
1
n

n∑
i=1

log
π(yi|µ̂1i)
π(yi|µ̂2i)

)2}−1/2
, (9)

where µ̂1i = µ̂1i(xi; θ̂) and µ̂2i = µ̂2i(xi; γ̂), i = 1, . . . , n. For strictly nonnested models, the statistic (9) converges in
distribution to a standard normal distribution under the null hypothesis of equivalence of the models (Vuong, 1989). Thus,
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Fig. 4. Index plot of generalized Cook distance for the estimate β̂.

the null hypothesis is not rejected if |TLR,NN | ≤ zρ/2. On the other hand, we reject at significance level ρ the null hypothesis
of equivalence of the models in favor of model Fµ1 being better (or worse) than model Fµ2 if TLR,NN > zρ (or TLR,NN < −zρ).
We nowuse (9) for comparing the linear and nonlinearmodels fitted to the data. Let µ̂1i = β̂1+β̂2 exp(β̂3/wi) (nonlinear

model) and µ̂2i = β̂1 + β̂2wi (linear model). The generalized LR test statistic (TLR,NN ) equals 2.4064 (p-value < 0.01).
Therefore, the nonlinear model is significantly better than the linear model according to the generalized LR statistic.
Fig. 4 gives the generalized Cook distance for the nonlinear model (8) and shows that the 46th observation is not

influential. The Cook distance identifies the cases 3 and 5 as possible influential observations on β̂. Again, we eliminate the
most influential observations (3 and 5) and refitted the model. Relative changes on the estimates of β are given in Table 6.
We note that the observation 3 changes more than 11% the estimate of β3 but the significance of β3 is not modified.
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Table 6
Relatives changes (%) on β dropping the cases indicated.

Eliminated β̂1 β̂2 β̂3

RC p-value RC p-value RC p-value

None 0.00 0.00 0.00 0.00 0.00 0.00
3 −4.09 0.00 −5.84 0.00 11.2 0.00
5 −3.44 0.00 −5.63 0.00 7.96 0.00

Table 7
Fatigue data for SAE 1137 carbon steel.

Strain amplitude Fatigue life (cycles)

1 0.00188 336546
2 0.00200 218749
3 0.00225 92467
4 0.00250 66838
5 0.00300 38552
6 0.00350 20884
7 0.00400 15264
8 0.00450 10035
9 0.00500 7384
10 0.00600 5502
11 0.00700 3699
12 0.00800 2351
13 0.00900 2117

Table 8
MLEs of the parameters, relative changes (%) on the estimates of βr by dropping the first observation and the corresponding p-values.

Parameter Estimate RC p-value

β1 1.7373 −6.52 0.00
β2 −0.3109 3.87 0.00
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Fig. 5. Scatter-plot and the fitted model.

Next, as a second application, we consider a fatigue data set reported by Williams et al. (2003) on the life of a SAE 1137
carbon steel in cycles to failure. The response N is the number of cycles to failure and the explanatory variable x is the strain
amplitude (mm/mm). The data are given in Table 7.
Here, we proposed the nonlinear regression model

yi = β1xβ2 + εi, i = 1, . . . , 13, (10)

where yi = log(Ni) and εi ∼ SN (α, 0, 2). The MLEs (the standard errors in parentheses) are: β̂1 = 1.6309 (0.0899),
β̂2 = −0.3228 (0.0096) and α̂ = 0.1704 (0.0334). The bias corrected estimates are: β̃1 = 1.6285 (0.0984), β̃2 =
−0.3228 (0.0106) and α̃ = 0.1869 (0.0367). Fig. 5 gives the scatter-plot of the data and the fitted model (10).
Fig. 6 gives the generalized Cook distance for the nonlinear model (10). The Cook distance shows that the first case

is a possible influential observation on β̂. We eliminate this observation and refitted the model. Relative changes on the
estimates of β are given in Table 8. The significance of β2 is not modified dropping the first observation.
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7. Conclusions

The Birnbaum–Saunders distribution is widely used to model times to failure for materials subject to fatigue. The
purpose of the paper was two fold. First, and most important, we propose a new class of Birnbaum–Saunders nonlinear
regression models which is the natural extension of the regression model described in Rieck and Nedelman (1991). An
important milestone in the development of more general Birnbaum–Saunders models was the emergence of exponential
family nonlinear models (Cordeiro and Paula, 1989), which now have a wide range of applications in statistics. Second, we
give simple formulae for calculating bias corrected maximum-likelihood estimates of the parameters of these models. We
show by simulation that the bias correction derived is very effective, even when the sample size is large. Indeed, the bias
correction mechanism adopted yields adjusted maximum-likelihood estimates which are nearly unbiased. We also present
two applications to real data which illustrate the usefulness of the proposedmodel. Future researchwill be devoted to study
local influence analysis (Cook, 1986) in the new class of nonlinear models.
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