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Abstract

In this article, based on the half-Cauchy distribution, we propose the called beta-half-Cauchy
distribution for modeling lifetime data. Various explicit expressions for its moments, generating
and quantile functions, mean deviations, density function of the order statistics and their moments
are provided. The parameters of the new model are estimated by maximum likelihood and the ob-
served information matrix is derived. An application to lifetime real data shows that it can yield a
better fit than three- and two-parameter Birnbaum–Saunders, gamma and Weibull models.

Keywords: Half-Cauchy distribution; Lifetime data; Maximum likelihood estimation; Mean devia-
tion; Quantile function; Shape parameter.

1 Introduction

The statistics literature is filled with hundreds of continuous univariate distributions (see, for example,
Johnson et al., 1994, 1995). Numerous classical distributions have been extensively used over the past
decades for modeling data in several areas such as engineering, actuarial, environmental and medical
sciences, biological studies, demography, economics, finance and insurance. However, in many ap-
plied areas like lifetime analysis, finance and insurance, there is a clear need for extended forms of
these distributions, that is, new distributions which are more flexible to model real data in these areas
since the data can present a high degree of skewness and kurtosis. So, we can give additional con-
trol over both skewness and kurtosis by adding new parameters, and hence the extended distributions
become more flexible to model real data. Recent developments focus on new techniques for building
meaningful distributions, including the generator approach pioneered by Eugene et al. (2002). In par-
ticular, these authors introduced the beta normal (BN) distribution, denoted by BN(µ, σ, a, b), where
µ ∈ R, σ > 0 and a and b are positive shape parameters. These parameters control skewness through
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the relative tail weights. The BN distribution is symmetric if a = b, it has negative skewness when
a < b and positive skewness when a > b. For a = b > 1, it has positive excess kurtosis and, for
a = b < 1, it has negative excess kurtosis (Eugene et al., 2002). An application of this distribution to
dose-response modeling is presented in Razzaghi (2009).

In this note, we use the generator approach suggested by Eugene et al. (2002) to define a new
model called the beta-half-Cauchy (BHC) distribution, which extends the half-Cauchy (HC) model. In
addition, we investigate some mathematical properties of the new model, discuss maximum likelihood
estimation of its parameters and derive the observed information matrix. The proposed model is much
more flexible than the HC distribution and can be used effectively for modeling lifetime data.

The HC distribution is derived from the Cauchy distribution by mirroring the curve on the origin
so that only positive values can be observed. Its cumulative distribution function (cdf) is

Gφ(t) =
2

π
arctan

(
t

φ

)
, t > 0, (1)

where φ > 0 is a scale parameter. The probability density function (pdf) corresponding to (1) is

gφ(t) =
2

π φ

[
1 +

(
t

φ

)2
]−1

, t > 0. (2)

For k < 1, the kth moment comes from (2) as µ′k = φk sec
(

k π
2

)
. As a heavy-tailed distribution, the

HC distribution has been used as an alternative to model dispersal distances (Shaw, 1995), since the
former predicts more frequent long-distance dispersal events than the latter. Additionally, Paradis et
al. (2002) used the HC distribution to model ringing data on two species of tits (Parus caeruleus and
Parus major) in Britain and Ireland.

The article is outlined as follows. In Section 2, we introduce the BHC distribution and plot the
density and hazard rate functions. Explicit expressions for the density and cumulative functions,
moments, moment generating function (mgf), a power series expansion for the quantile function,
mean deviations, order statistics and Rényi entropy are derived in Section 3. In Section 4, we discuss
maximum likelihood estimation and inference. An application in Section 5 shows the usefulness of the
new distribution for lifetime data modeling. Finally, concluding remarks are addressed in Section 6.

2 The BHC distribution

Consider starting from an arbitrary baseline cumulative function G(t), Eugene et al. (2002) demons-
trated that any parametric family of distributions can be incorporated into larger families through an
application of the probability integral transform. They defined the beta generalized (beta-G) cumula-
tive distribution by

F (t) = IG(t)(a, b) =
1

B(a, b)

∫ G(t)

0

ωa−1 (1− ω)b−1dω, (3)
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where a > 0 and b > 0 are additional shape parameters whose role is to introduce skewness and
to vary tail weight, B(a, b) = Γ(a)Γ(b)/Γ(a + b) is the beta function, Γ(a) =

∫∞
0

ta−1 e−tdt is the
gamma function, Iy(a, b) = By(a, b)/B(a, b) is the incomplete beta function ratio and By(a, b) =∫ y

0
ωa−1 (1 − ω)b−1dω is the incomplete beta function. This mechanism for generating distributions

from equation (3) is particularly attractive when G(t) has a closed-form expression. One major benefit
of the beta-G distribution is its ability of fitting skewed data that cannot be properly fitted by existing
distributions.

The density function corresponding to (3) is

f(t) =
g(t)

B(a, b)
G(t)a−1{1−G(t)}b−1, (4)

where g(t) = dG(t)/dt is the baseline density function. The density function f(t) will be most
tractable when both functions G(t) and g(t) have simple analytic expressions. Except for some special
choices of these functions, f(t) could be too complicated to deal with in full generality.

By using the probability integral transform (3), some beta-G distributions have been proposed in
the last few years. In particular, Eugene et al. (2002), Nadarajah and Gupta (2004), Nadarajah and
Kotz (2004), Nadarajah and Kotz (2006), Lee et al. (2007) and Akinsete et al. (2008) defined the
BN, beta Fréchet, beta Gumbel, beta exponential, beta Weibull and beta Pareto distributions by taking
G(t) to be the cdf of the normal, Fréchet, Gumbel, exponential, Weibull and Pareto distributions,
respectively. More recently, Barreto–Souza et al. (2010), Pescim et al. (2010), Silva et al. (2010),
Paranaı́ba et al. (2011) and Cordeiro and Lemonte (2011a,b) defined the beta generalized exponential,
beta generalized half-normal, beta modified Weibull, beta Burr XII, beta Birnbaum–Saunders and beta
Laplace distributions, respectively.

In the same way, we can extend the HC distribution because it has closed-form cumulative func-
tion. By inserting (1) and (2) in (4), the BHC density function (for t > 0) with three positive parame-
ters φ, a and b, say BHC(φ, a, b), follows as

f(t) =
2a

φπa B(a, b)

[
1 +

(
t

φ

)2
]−1 [

arctan

(
t

φ

)]a−1 {
1− 2

π

[
arctan

(
t

φ

)]}b−1

. (5)

Evidently, the density function (5) does not involve any complicated function. Also, there is no func-
tional relationship between the parameters and they vary freely in the parameter space. The density
function (5) extends a few known distributions. The HC distribution arises as the basic exemplar when
a = b = 1. The new model called the exponentiated half-Cauchy (EHC) distribution is obtained when
b = 1. For a and b positive integers, the BHC density function reduces to the density function of the
ath order statistic from the HC distribution in a sample of size a + b − 1. However, equation (5)
can also alternatively be extended, when a and b are real non-integers, to define fractional HC order
statistic distributions.

The cdf and hazard rate function corresponding to (5) are

F (t) = I 2
π

arctan( t
φ)(a, b) (6)
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and

h(t) =
2a

φπa B(a, b)

[
arctan

(
t
φ

)]a−1 {
1− 2

π

[
arctan

(
t
φ

)]}b−1

[
1 +

(
t
φ

)2
] [

1− I 2
π

arctan( t
φ)(a, b)

] , (7)

respectively.
The BHC distribution can present several forms depending on the parameter values. In Figure 1,

we illustrate some possible shapes of the density function (5) for selected parameter values. From
Figure 1, we can see how changes in the parameters a and b modify the form of the density function.
It is evident that the BHC distribution is much more flexible than the HC distribution. Plots of the
hazard rate function (7) for some parameter values are shown in Figure 2. The new model is easily
simulated as follows: if V is a beta random variable with parameters a and b, then T = φ tan(π V/2)

has the BHC(φ, a, b) distribution. This scheme is useful because of the existence of fast generators
for beta random variables in statistical software.

3 Properties

In this section, we study some structural properties of the BHC distribution.

3.1 Expansion for the Density Function

The cdf F (t) and pdf f(t) of the beta-G distribution are usually straightforward to compute nu-
merically from the baseline functions G(t) and g(t) from (3) and (4) using statistical software with
numerical facilities. However, we provide expansions for these functions in terms of infinite (or finite
if both a and b are integers) power series of G(t) that can be useful when this function does not have
a simple expression.

Expansions for the beta-G cumulative function are given by Cordeiro and Lemonte (2011a) and
follow immediately from (3) (for b > 0 real non-integer) as

F (t) =
1

B(a, b)

∞∑
r=0

wr G(t)a+r, (8)

where wr = (−1)r (a+r)−1
(

b−1
r

)
. If b is an integer, the index r in (8) stops at b−1. If a is an integer,

equation (8) gives the beta-G cumulative distribution as a power series of G(t). Otherwise, if a is a
real non-integer, we can expand G(t)a as

G(t)a =
∞∑

r=0

sr(a) G(t)r, (9)

where sr(a) =
∑∞

j=r(−1)r+j
(

a
j

) (
j
r

)
, and then F (t) can be expressed from (8) and (9) as

F (t) =
1

B(a, b)

∞∑
r=0

tr G(t)r, (10)
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Figure 1: Plots of the density function (5) for some parameter values; φ = 1.
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Figure 2: Plots of the hazard rate function (7) for some parameter values; φ = 1.
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where tr =
∑∞

m=0 wm sr(a + m). By simple differentiation, it is immediate from (8) and (10) that

f(t) =
g(t)

B(a, b)

∞∑
r=0

(a + r) wr G(t)a+r−1 (11)

and

f(t) =
g(t)

B(a, b)

∞∑
r=0

(r + 1) tr+1 G(t)r, (12)

which hold if a is an integer and a is a real non-integer, respectively. Using the expansion

arctan(x) =
∞∑
i=0

ai
x2i+1

(1 + x2)i+1
,

where ai = 22i (i!)2/[(2i + 1)!], Gφ(t) can be expanded as

Gφ(t) =

(
t

φ2 + t2

) ∞∑
i=0

bi

(
t2

φ2 + t2

)i

,

where bi = (2 φ ai)/π.
By application of an equation from Gradshteyn and Ryzhik (2007) for a power series raised to a

positive integer j, we obtain

Gφ(t)
j =

(
t

φ2 + t2

)j ∞∑
i=0

cj,i

(
t2

φ2 + t2

)i

(13)

where the coefficients cj,i (for i = 1, 2, . . .) can be determined from the recursive equation (cj,0 = bj
0)

cj,i = (i b0)
−1

i∑
m=1

[(j + 1) m− i] bm cj,i−m. (14)

The coefficient cj,i follows recursively from cj,0, . . . , cj,i−1 and then from b0, . . . , bi. Here, cj,i can
be written explicitly in terms of the quantities bm, although it is not necessary for programming
numerically our expansions in any algebraic or numerical software. Now, we can rewrite (11) and
(12) as

f(t) =
∞∑

i,r=0

Ai,r
ta+r+2i−1

(φ2 + t2)a+r+i
and f(t) =

∞∑
i,r=0

Bi,r
tr+2i

(φ2 + t2)r+i+1
, (15)

where
Ai,r =

2 φ (a + r) wr ca+r−1,i

π B(a, b)
and Bi,r =

2 φ (r + 1) tr+1 cr,i

π B(a, b)
.

Equations (15) are the main results of this section.
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3.2 Moments

Here and henceforth, let T ∼ BHC(φ, a, b). Then, for a an integer and a a real non-integer, the
moments of T can be expressed from (15) as

E(T s) =
∞∑

i,r=0

Ai,r

∫ ∞

0

ts+a+r+2i−1

(φ2 + t2)a+r+i
dt and E(T s) =

∞∑
i,r=0

Bi,r

∫ ∞

0

ts+r+2i

(φ2 + t2)r+i+1
dt,

respectively. For 0 < α < 2ρ, these integrals can be calculated from Prudnikov et al. (1986, Volume
1, page 309, integral 7) as

∫ ∞

0

xα−1

(c2 + x2)ρ
dx = cα−2ρ B(α, 2ρ− α) 2F1

(
α

2
, ρ− α

2
; ρ +

1

2
; 1

)
,

where

2F1(p, q; c; z) =
∞∑
i=0

(p)i (q)i

(c)i

zi

i!

is the hypergeometric function and (p)i = p(p + 1) · · · (p + i − 1) is the ascending factorial (with
the convention that (p)0 = 1). The function 2F1

(
α
2
, ρ− α

2
; ρ + 1

2
; 1

)
is absolutely convergent since

c− p− q = 1/2 > 0.
Hence, for a a positive integer and s < a, we can express the moments of T as

E(T s) =
∞∑

i,r=0

Pi,r(s) 2F1

(
s + a + r + 2i

2
,
r + a− s

2
+ 1; a + r + i +

1

2
; 1

)
, (16)

where Pi,r(s) = φs−r−a B(s + a + r + 2i, r + a − s) Ai,r. The moments of the HC distribution for
s < 1 can be computed from (16) with a = b = 1.

On the other hand, for a a positive real non-integer and s < 1, we can obtain

E(T s) =
∞∑

i,r=0

Qi,r(s) 2F1

(
s + 1 + r + 2i

2
,
r + 1− s

2
+ 1; r + i +

3

2
; 1

)
, (17)

where Qi,r(s) = φs−r−1 B(s+ r +1+2i, r +1− s) Bi,r. The moments functions (16) and (17) show
that the method of moments will not work for this distribution.

3.3 Generating Function

The mgf M(−v) = E{exp(−vT )} of T can be derived from the following result due to Prudnikov et
al. (1986, Volume 1, page 309, integral 7)

Km,n(v; φ) =

∫ ∞

0

xm exp(−v x)

(φ2 + x2)n
dx =

(−1)m+n−1

2n−1 (n− 1)!

∂m

∂vm

(
∂

v ∂v

)n−1

H(v; φ), (18)

which holds for any v, where

H(v; φ) = φ−1 [sin(φv) ci(φv)− cos(φv) si(φv)] ,
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and ci(φv) = − ∫∞
φv

t−1 cos(t)dt and si(φv) = − ∫∞
φv

t−1 sin(t)dt are the cosine integral and sine
integral, respectively.

For a an integer and a a real non-integer, the BHC generating function can be determined, from
equations (15) and (18), as linear combinations of K·,·(v; φ) functions

M(−v) =
∞∑

i,r=0

Ai,r Ka+r+2i−1,a+r+i(v; φ) (19)

and

M(−v) =
∞∑

i,r=0

Bi,r Kr+2i,r+i+1(v; φ), (20)

respectively. Equations (19) and (20) are the main results of this section.

3.4 Quantile Expansion

The BHC quantile function t = Q(u) is straightforward to be computed from the beta quantile func-
tion QB(u), which is available in most statistical packages, by

t = Q(u) = φ tan

(
π QB(u)

2

)
.

Power series methods are at the heart of many aspects of applied mathematics and statistics. Here, we
provide a power series expansion for Q(u) that can be useful to derive some mathematical measures
of the new distribution. Further, we propose alternative expressions for the BHC moments based upon
this expansion.

First, an expansion for the beta quantile function, say QB(u), can be found in Wolfram website1

as QB(u) =
∑∞

i=0 g′i u
i/a, where g′0 = 0 and g′i = qi [aB(a, b)]i/a (for i ≥ 1) and the quantities qi’s

(for i ≥ 2) can be derived from the cubic recursive equation

qi =
1

[i2 + (a− 2)i + (1− a)]

{
(1− δi,2)

i−1∑
r=2

qrqi+1−r[r(1− a)(i− r)− r(r − 1)]

+
i−1∑
r=1

i−r∑
s=1

qrqsqi+1−r−s[r(r − a) + s(a + b− 2)(i + 1− r − s)]

}
,

where δi,2 = 1 if i = 2 and δi,2 = 0 if i 6= 2. For example, q0 = 0, q1 = 1, q2 = (b − 1)/(a + 1),
q3 = [(b − 1)(a2 + 3ab − a + 5b − 4)]/[2(a + 1)2(a + 2)], and so on. We can expand Q(u) (since
E0 = 0) as

Q(u) = φ

∞∑

k=1

Ek QB(u)k,

where E2k = 0, E2k−1 = (22k − 1) π2k−1 [2(2k)!]−1 B2k (for k = 1, 2 . . .) and B2k are the Bernoulli
numbers. We have B2 = 1/6, B4 = −1/30, B6 = 1/42, B8 = −1/30, . . . The beta quantile

1http://functions.wolfram.com/06.23.06.0004.01.

9



function can be rewritten as QB(u) = u1/a
∑∞

i=0 gi u
i/a because g′0 = 0, where gi = g′i+1 =

qi+1 [aB(a, b)](i+1)/a for i = 0, 1, . . . So, g0 = [aB(a, b)]1/a, g1 = [(b − 1)/(a + 1)] [aB(a, b)]2/a,
and so on. Now, we obtain

Q(u) = φ

∞∑

k=1

Ek

(
u1/a

∞∑
i=0

gi u
i/a

)k

and then

Q(u) = φ

∞∑

k=1,i=0

Ek hk,i u
(k+i)/a,

where the constants hk,i can be evaluated recursively using (14) from the quantities gi by hk,0 = gk
0

and hk,i = (i g0)
−1

∑i
m=1[(k + 1) m− i] gm hk,i−m, for i = 1, 2, . . . Further,

Q(u) = φ

∞∑
p=1

Np up/a, (21)

where Np =
∑p

k=1 Ek hk,p−k for p = 1, 2, . . . The power series (21) for the BHC quantile can be used
to obtain some mathematical properties of this distribution. For example, the sth moment of T (for a

a real non-integer) can be expressed as

E(T s) =

∫ ∞

0

xs f(x)dx =

∫ 1

0

Q(u)s du.

This integral in (0, 1) yields an alternative formula for (17) as

E(T s) = φs

∫ 1

0

( ∞∑
p=0

Mp u(p+1)/a

)s

du = φs

∞∑
p=0

Ls,p

∫ 1

0

u(p+s)/adu = a φs

∞∑
p=0

Ls,p

(p + s + a)
,

where Mp = Np+1 =
∑p+1

k=1 Ek hk,p+1−k and Ls,p can be computed from (14) by (Ls,0 = M s
0 )

Ls,p = (pM0)
−1

p∑
m=1

[(s + 1)m− p] Mm Ls,p−m.

3.5 Mean Deviations

The amount of scatter in a population is evidently measured to some extent by the totality of deviations
from the mean and median. We can derive the BHC mean deviations about the mean µ = E(T ) and
about the median M (M = Q(1/2)) from the relations

δ1 = 2µF (µ)− 2H(µ) and δ2 = E(T )− 2H(M),

respectively, where µ can be computed from (16) with s = 1 for a > 1, F (µ) and F (M) are calculated
from (6) and H(s) =

∫ s

0
t f(t)dt. After some algebra from (21), H(s) takes the form

H(s) = φ

∫ F (s)

0

( ∞∑
p=1

Np up/a

)
du = a φ

∞∑
p=1

Np F (s)p/a+1

(a + p)
. (22)
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Figure 3: Plots of L(π) and B(π) with φ = 1 and µ = 1.

An application of the mean deviations is to the Lorenz and Bonferroni curves that are important
in fields like economics, reliability, demography, insurance and medicine. They are defined for a
given probability π by L(π) = H(q)/µ and B(π) = H(q)/(π µ), respectively, where q = Q(π)

comes from (21). In economics, if π = F (q) is the proportion of units whose income is lower than
or equal to q, L(π) gives the proportion of total income volume accumulated by the set of units with
an income lower than or equal to q. The Lorenz curve is increasing and convex and given the mean
income, the density function of T can be obtained from the curvature of L(π). In a similar manner, the
Bonferroni curve B(π) gives the ratio between the mean income of this group and the mean income
of the population. In summary, L(π) yields fractions of the total income, while the values of B(π)

refer to relative income levels. The curves L(π) and B(π) for the BHC distribution as functions of π

are readily calculated from (22). They are plotted for selected parameter values in Figure 3.

3.6 Order statistics and Moments

Order statistics make their appearance in many areas of statistical theory and practice. The density
function fi:n(t) of the ith order statistic, say Ti:n, for i = 1, 2, . . . , n, from data values T1, . . . , Tn

having the beta-G distribution can be obtained from (4) as

fi:n(t) =
g(t) G(t)a−1 {1−G(t)}b−1

B(a, b) B(i, n− i + 1)

n−i∑
j=0

(−1)j

(
n− i

j

)
F (t)i+j−1. (23)
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From equations (10), (13) and (14), we can write

F (t)i+j−1 =
1

B(a, b)i+j−1

∞∑
r=0

di+j−1,r G(t)r,

where di+j−1,r = (r t0)
−1

∑r
`=1 [(i + j) `− r] t` di+j−1,r−` and di+j−1,0 = ti+j−1

0 .
Inserting this equation in (23), fi:n(t) can be further reduced to

fi:n(t) = g(t)
∞∑

k=0

Mi:n(k) G(t)k,

where

Mi:n(k) =
n−i∑
j=0

(−1)j
(

n−i
j

)

B(a, b)i+j B(i, n− i + 1)

∞∑
r,m=0

(−1)m

(
b− 1

m

)
di+j−1,r sk(a + r + m− 1).

If b is an integer, the index m in the above quantity stops at b− 1.
Using (13), we obtain

fi:n(t) = gφ(t)
∞∑

k,p=0

ck,p Mi:n(k)
t2p+k

(φ2 + t2)p+k
, (24)

where ck,p is given by (14). By equation (24), we can derive some mathematical properties of Ti:n.
For example, the sth moment of Ti:n follows immediately as

E(T s
i:n) =

2

π

∞∑

k,p=0

φs−k+2 B(2p + k + s + 1, k − s− 1) ck,p Mi:n(k)

× 2F1

(
2p + k + s + 1

2
,
k − s− 1

2
; p + k +

1

2
; 1

)
.

L-moments are summary statistics for probability distributions and data samples (Hosking, 1990).
They have the advantage that they exist whenever the mean of the distribution exists, even though
some higher moments may not exist, and are relatively robust to the effects of outliers. The L-
moments can be expressed as linear combinations of the ordered data values

λr =
r−1∑
j=0

(−1)r−1−j

(
r − 1

j

)(
r − 1 + j

j

)
ηj,

where ηj = E{TF (T )j} = (j + 1)−1E(Tj+1:j+1). In particular, λ1 = η0, λ2 = 2η1 − η0, λ3 =

6η2 − 6η1 + η0 and λ4 = 20η3 − 30η2 + 12η1 − η0. The L-moments of the BHC distribution can be
obtained from the results of this section.
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3.7 Entropy

The entropy of a random variable T with density function f(t) is a measure of variation of the uncer-
tainty. Rényi entropy is defined by IR(ρ) = (1 − ρ)−1 log{∫ f(t)ρdt}, where ρ > 0 and ρ 6= 1. If a
random variable T has a BHC distribution, we have

f(t)ρ = L(ρ)

[
1 +

(
t

φ

)2
]−ρ

Gφ(t)
(a−1)ρ {1−Gφ(t)}(b−1)ρ , (25)

where L(ρ) = 2ρ [π φB(a, b)]−ρ. By expanding the binomial term, we obtain

f(t)ρ = L(ρ)

[
1 +

(
t

φ

)2
]−ρ ∞∑

j=0

Rj Gφ(t)
(a−1)ρ+j,

where Rj = (−1)j
(
(b−1)ρ

j

)
. By equation (9), we can write

f(t)ρ = L(ρ)

[
1 +

(
t

φ

)2
]−ρ ∞∑

r=0

Nr(ρ)

[
arctan

(
t

φ

)]r

,

where

Nr(ρ) =
∞∑

j=0

Mj sr((a− 1)ρ + j)

(
2

π

)r

,

and sr((a− 1)ρ + j) is defined after equation (9). We obtain
[
arctan

(
t

φ

)]r

= φr

∞∑

k=0

fr,k
t2k+r

(φ2 + t2)k+r
,

where fr,0 = ar
0, fr,k = (i a0)

−1
∑k

m=1[(r + 1) m − k] am fr,k−m, and ak = 22k (k!)2/[(2k + 1)!].
Thus, ∫ ∞

0

f(t)ρ dt = L(ρ)
∞∑

r,k=0

φ2ρ+r Nr(ρ) fr,k

∫ ∞

0

t2k+r

(φ2 + t2)k+r+ρ
dt.

Finally, the Rénvy entropy can be determined from
∫ ∞

0

t2k+r

(φ2 + t2)k+r+ρ
dt =

B(2k + r + 1, r + 2ρ− 1)

φr+2ρ−1 2F1

(
2k + r + 1

2
, ρ+

r − 1

2
; k+r+ρ+

1

2
; 1

)
.

4 Estimation and Inference

The estimation of the model parameters is investigated by the method of maximum likelihood. Let
t = (t1, . . . , tn)> be a random sample of size n from the BHC distribution with unknown parameter
vector θ = (φ, a, b)>. The total log-likelihood function for θ can be written as

`(θ) = n a log(2/π)− n log(φ)− n log{B(a, b)} −
n∑

i=1

log(ẇi)

+ (a− 1)
n∑

i=1

log(żi) + (b− 1)
n∑

i=1

log(ḋi),

13



where v̇i = v̇i(φ) = ti/φ, ẇi = ẇi(φ) = 1+ v̇2
i , żi = żi(φ) = arctan(v̇i) and ḋi = ḋi(φ) = 1−2żi/π,

for i = 1, . . . , n. The maximization of the log-likelihood over three parameters looks easy in practice.
The components of the score vector Uθ = (Uφ, Ua, Ub)

> are

Uφ = −n

φ
+

2

φ3

n∑
i=1

t2i
ẇi

− (a− 1)

φ2

n∑
i=1

ti
ẇi żi

+
2(b− 1)

πφ2

n∑
i=1

ti

ẇi ḋi

,

Ua = n log(2/π) + n{ψ(a + b)− ψ(a)}+
n∑

i=1

log(żi),

Ub = n{ψ(a + b)− ψ(b)}+
n∑

i=1

log(ḋi),

where ψ(·) is the digamma function. The maximum likelihood estimates (MLEs) θ̂ = (φ̂, â, b̂)> of
θ = (φ, a, b)> are the simultaneous solutions of the equations Uφ = Ua = Ub = 0. They can be
solved numerically using iterative methods such as a Newton–Raphson type algorithm.

The normal approximation of the estimate θ̂ can be used for constructing approximate confidence
intervals and for testing hypotheses on the parameters φ, a and b. Under standard regularity con-
ditions, we have

√
n(θ̂ − θ)

A∼ N3(0,K−1
θ ), where A∼ means approximately distributed and Kθ is

the unit expected information matrix. The asymptotic result Kθ = limn→∞ n−1Jn(θ) holds, where
Jn(θ) is the observed information matrix. The average matrix evaluated at θ̂, say n−1Jn(θ̂), can es-
timate Kθ. The elements of the observed information matrix Jn(θ) = −∂2`(θ)/∂θ∂θ> = −{Uij},
for i, j = φ, a and b, are

Uφφ =
n

φ2
− 6

φ4

n∑
i=1

t2i
ẇi

+
4

φ6

n∑
i=1

t4i
ẇ2

i

+
2(a− 1)

φ3

n∑
i=1

ti
ẇi żi

[
1− t2i

φ2 ẇi

− ti
2 φ ẇi żi

]

− 4(b− 1)

π φ3

n∑
i=1

ti

ẇi ḋi

[
1− t2i

φ2 ẇi

+
ti

π φ ẇi ḋi

]
,

Uφa = − 1

φ2

n∑
i=1

ti
ẇi żi

, Uφb =
2

π φ2

n∑
i=1

ti

ẇi ḋi

,

Uaa = n{ψ′(a + b)− ψ′(a)}, Uab = nψ′(a + b), Ubb = n{ψ′(a + b)− ψ′(b)},
where ψ′(·) is the trigamma function. Thus, the multivariate normal N3(0,Jn(θ̂)−1) distribution can
be used to construct approximate confidence intervals φ̂ ± zη/2 × [v̂ar(φ̂)]1/2, â ± zη/2 × [v̂ar(â)]1/2

and b̂ ± zη/2 × [v̂ar(̂b)]1/2 for the parameters φ, a and b, respectively, where var(·) is the diagonal
element of Jn(θ̂)−1 corresponding to each parameter and zη/2 is the quantile 100(1 − η/2)% of the
standard normal distribution.

We can easily check if the fit using the BHC model is statistically “superior” to a fit using the
HC model for a given data set by computing the likelihood ratio (LR) statistic w = 2{`(φ̂, â, b̂) −
`(φ̃, 1, 1)}, where φ̂, â and b̂ are the unrestricted MLEs and φ̃ is the restricted estimate. The statistic
w is asymptotically distributed, under the null model, as χ2

2. Further, the LR test rejects the null
hypothesis if w > ξη, where ξη denotes the upper 100η% point of the χ2

2 distribution.
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5 Application

Here, we present an application of the BHC distribution to a real data set. We shall compare the
fits of the BHC, EHC and HC distributions. We also consider for the sake of comparison the two-
parameter Birnbaum–Saunders (BS), gamma and Weibull models, and the three-parameter BS and
Weibull models. The BHC distribution may be an interesting alternative to these distributions for
modeling positive real data sets. The cdf’s of the exponentiated BS (ExpBS), exponentiated Weibull
(ExpWeibull) and gamma models are (for t > 0)

F (t) = Φ

(
1

α

[√
t

β
−

√
β

t

])γ

, F (t) = (1− e−βtα)γ, F (t) =
ζ(α, βt)

Γ(α)
,

respectively, where α > 0, β > 0, γ > 0. Here, Φ(·) is the cdf of the standard normal distribution
and ζ(·, ·) is the ordinary incomplete gamma function. If γ = 1 we have the two-parameter BS
and Weibull models. All the computations were done using the Ox matrix programming language
(Doornik, 2006) which is freely distributed for academic purposes at http://www.doornik.com. The
maximization was performed by the BFGS method with analytical derivatives. For further details
about this method the reader is referred to Nocedal and Wright (1999, §8.1) and Press et al. (2007,
§10.7). We shall consider the data set originally due to Bjerkedal (1960), which has also been analyzed
by Gupta et al. (1997). The data represent the survival times of guinea pigs injected with different
doses of tubercle bacilli.

Table 1 lists the MLEs (and the corresponding standard errors in parentheses) of the model pa-
rameters and the following statistics: AIC (Akaike Information Criterion), BIC (Bayesian Information
Criterion) and HQIC (Hannan–Quinn Information Criterion). These results show that the BHC dis-
tribution has the lowest AIC, BIC and HQIC values in relation to their sub-models, and so it could
be chosen as the best model. The LR statistics for testing the hypotheses H0: EHC against H1: BHC
and H0: HC against H1: BHC are 22.9462 and 40.7366, respectively, and all yield p-values < 0.001.
Thus, we can reject the null hypotheses in all cases in favor of the BHC distribution at any usual
significance level, i.e. the BHC model is significantly better than the EHC and HC distributions. In
order to assess if the model is appropriate, plots of the estimated density functions are given in Figure
4. They also indicate that the BHC model provides a better fit than the other models.

Now, we apply formal goodness-of-fit tests in order to verify which distribution fits better to
these data. We consider the Cramér–von Mises (W ∗) and Anderson–Darling (A∗) statistics described
in details in Chen and Balakrishnan (1995). In general, the smaller the values of these statistics,
the better the fit to the data. Let H(x; θ) be the cdf, where the form of H is known but θ (a k-
dimensional parameter vector, say) is unknown. To obtain the statistics W ∗ and A∗, we can proceed
as follows: (i) Compute vi = H(xi; θ̂), where the xi’s are in ascending order, and then yi = Φ−1(vi),
where Φ(·) is the standard normal cdf and Φ−1(·) its inverse; (ii) Compute ui = Φ{(yi − ȳ)/sy},
where ȳ = n−1

∑n
i=1 yi and s2

y = (n − 1)−1
∑n

i=1(yi − ȳ)2; (iii) Calculate W 2 =
∑n

i=1{ui − (2i −
1)/(2n)}2 + 1/(12n) and A2 = −n− (1/n)

∑n
i=1{(2i− 1) log(ui) + (2n + 1− 2i) log(1− ui)} and
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Table 1: MLEs (standard errors in parentheses) and the measures AIC, BIC and HQIC.
Estimates Statistic

Distribution φ a b AIC BIC HQIC
BHC 56.6890 3.7238 2.7033 785.58 792.41 788.30

(23.1921) (1.1825) (0.6056)
EHC 20.9790 4.1938 806.53 811.08 808.34

(11.6134) (2.3670)
HC 75.8253 822.32 824.60 823.23

(10.3629)
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Figure 4: Estimated densities of the BHC, EHC and HC models.
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then W ∗ = W 2 (1 + 0.5/n) and A∗ = A2 (1 + 0.75/n + 2.25/n2). The values of the statistics W ∗

and A∗ for the models are listed in Table 2, thus indicating that the BHC model should be chosen to
fit the current data.

Table 2: Goodness-of-fit tests.
Statistic

Distribution W ∗ A∗

BHC 0.10682 0.60255
EHC 0.13318 0.79202
HC 0.13099 0.72207

The MLEs (standard errors in parentheses) of the model parameters of the ExpBS, ExpWeibull,
BS, gamma and Weibull models and the statistics W ∗ and A∗ are listed in Table 3. Based on these
statistics, the ExpWeibull model yields a better fit than the ones of the other distributions. Overall, by
comparing the figures in Tables 2 and 3, we conclude that the BHC model outperforms all the models
considered in Table 3. So, the proposed distribution can yield a better fit than the classical three-
and two-parameter BS, gamma and Weibull models and therefore may be an interesting alternative to
these distributions for modeling positive real data sets. These results illustrate the potentiality of the
new distribution and the necessity of additional shape parameters.

Table 3: MLEs (standard errors in parentheses) and the measures W ∗ and A∗.
Estimates Statistic

Distribution α β γ W ∗ A∗

ExpBS 0.5845 131.3672 0.3984 0.18182 0.98014
(0.9407) (377.8605) (2.2449)

ExpWeibull 0.4611 0.4744 22.4424 0.14017 0.76577
(0.1709) (0.5344) (30.1960)

BS 0.7600 77.5348 0.18824 1.01205
(0.0633) (6.4508)

Gamma 2.0815 0.0209 0.33952 1.85891
(0.3305) (0.0037)

Weibull 1.3932 0.0014 0.43476 2.39383
(0.1184) (0.0009)
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6 Concluding remarks

We introduce a new lifetime model, called the beta half-Cauchy (BHC) distribution, that extends the
Half-Cauchy (HC) distribution, and study some of its general structural properties. We provide a
mathematical treatment of the new distribution including expansions for the density function, mo-
ments, generating function, order statistics, quantile function, Rényi entropy, mean deviations and
Lorentz and Bonferroni curves. The model parameters are estimated by maximum likelihood. Our
formulas related with the BHC model are manageable and with the use of modern computer resources
with analytic and numerical capabilities, may turn into adequate tools comprising the arsenal of ap-
plied statisticians. The usefulness of the proposed model is illustrated in an application to real data
using likelihood ratio statistics and formal goodness-of-fit tests. The new model provides consistently
better fit than other models available in the literature. We hope that the proposed model may attract
wider applications in survival analysis for modeling positive real data sets.
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