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One of the biggest challenges statisticians face when working with non-statisticians on applied 
problems is to be able to effectively communicate the statistical results. In this paper we discuss 
the use of interactive visualization as a tool to present the relationship between a binary response 
and a set of explanatory variables. The visualization system we present allows users to 
"manipulate" directly, dynamically, and interactively their data set. At a first level, this allows to 
integrate visualization with a classical statistical analysis by providing interactive 3D views of 
the data set. Beyond its potential use as a straightforward visualization tool, this new system 
opens up interesting possibilities for exploring data visually, by its better exploitation of the 
human visual system. The paper presents an example of exploring visual relationships between 
environmental variables and the presence/absence of Lyme disease in Rhode Island. 
 
INTRODUCTION 

One of the most difficult tasks faced by statisticians engaged in multidisciplinary 
collaboration is how best to communicate statistical concepts effectively and efficiently. In this 
paper we propose that a successful way to convey statistical information to a non-statistical 
audience is by means of visualization tools. Like the old saying “a picture is worth more than a 
thousand words,” in a statistical context we suggest that “a visualization tool is worth more than a 
thousand lines of statistical output.”  

The use of graphical representation of data has a long history, beginning in the second 
half of the eighteen century with simple plots such as the scatter plots and time-series plots. But it 
wasn’t until Tukey’s pioneering book Exploratory Data Analysis (Tukey, 1977) that visualization 
was first used in a more structured way. Today visualization is employed extensively in data 
presentation as well as in data analysis. An important first step in data analysis is developing “a 
feel” for the data at hand and visualization methods offer the best vehicle to achieve this goal. 
Graphics are not only useful in exploratory data analysis but also in presenting results. “Graphics 
are instruments for reasoning about quantitative information” (Tufte, 2001). 

Information visualization is the technology that tries to understand very large data sets by 
using enormous visual bandwidth and the remarkable human perceptual system. Information 
visualization focuses on data sets lacking inherent 2D or 3D semantics and therefore also lacking 
a standard mapping of abstract data onto the physical space of the paper or screen. A number of 
well-known techniques visualize (partially) such data sets, including x-y plots, line plots, and 
histograms. These techniques are useful for data exploration but are limited to relatively small 
low-dimensional data sets. A large number of information visualization techniques have been 
developed over the past decade, allowing visualizations of ever larger and more complex, or 
multidimensional, data sets (Keim, 2001; Soukup and Davidson, 2002). Among these, 
geometrically-transformed display techniques aim at finding useful information by using 
geometric transformations and projections. There is, however an infinite number of possibilities 
to project high-dimensional data onto the two dimensions of a standard display. “Projection 
pursuit” (Huber, 1985) attempts to locate projections that satisfy some computable quality of 
interest. A particular projection pursuit technique known as the GrandTour (Asimov, 1985) aims 
at automatically finding interesting projections or at least helping the user to find conclusion. 
 The GrandTour represents an interesting attempt at better exploiting the remarkable 
capabilities of the human visual system. Users can scan, recognize and recall images rapidly, and 
can detect subtle changes in size, color, shape, movement, or texture. They can extract efficiently 
“group” information: alignment, symmetry, “sameness,” and “togetherness.” At the same time, 
humans are easily deceived by a number of optical illusions based on relative dimensions, 
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intensity, or accidental alignments. These characteristics of the human visual system constitute 
one of the bases for rules of good graphic design as stated by Tufte (2001). Most geometrically-
transformed display techniques fail to exploit human perception because they present static 
representations. We may live in a 3D world that we perceive through 2D sensors, but we do so by 
interpreting dynamic 2D projections of 3D scenes. 3D-to-2D projections typically exhibit 
ambiguities that can only be resolved by a change of point of view, which is what the GrandTour 
proposes. The effectiveness of this technique is limited by the fact that viewpoint changes are 
passive, that is, controlled by the system rather than by the user. However, it has been clearly 
established by Bajcsy (1988) and others that active vision is an essential aspect of scene 
understanding. It is by actively changing their viewpoint, eye vergence, focus, etc. that viewers 
acquire a better understanding of what they are looking at (even when what they are looking at is 
a flat picture or graph).  

In this paper we discuss the use of interactive visualization as a tool to present the 
relationship between a discrete (binary) response and a set of explanatory variables. The 
visualization system we present allows users to “manipulate” directly, dynamically, and 
interactively their data set. This new system opens up interesting possibilities for exploring data 
visually, by its better exploitation of the human visual system. The ability of humans to detect 
subtle changes in size, color, shape, movement, or texture, and, beyond that, to extract “group” 
information (alignment, symmetry, “sameness”) are considerably superior to that of any of 
today’s computer-based system. This remarkable ability can be somewhat harnessed by letting the 
user’s visual system guide the choice of transformations applied to the data set. The software tool 
we present here adds this new dimension to the visualization of large and complex data sets by 
allowing users to manipulate directly and interactively the data. 
 
STATISTICAL PROBLEM 
 To contribute to our understanding of the spatial and temporal patterns of Lyme disease 
and the environmental factors associated with its presence/absence in the state of Rhode Island -
an endemic area- a five-year study of the disease was conducted. To evaluate the spatial and 
temporal dynamics of the disease we gathered information on all cases of Lyme disease reported 
to the Rhode Island Department of Health (RIDOH) between 1993 and 1997. Each case included 
in the analysis met the Council of State and Territorial Epidemiologist/Centers for Disease 
Control and Prevention surveillance case definition for Lyme disease.  
 The identification of the risk factors associated with Lyme disease required comparison of 
Lyme disease patients to non-disease patients that were randomly selected from each of the 39 
cities and towns of Rhode Island and with sizes proportional to their corresponding population 
sizes. The total sizes in both groups were the same for each of the years of the study. The home 
address of all reported Lyme disease cases and that of the non-disease cases was assigned 
geographic coordinates (as a surrogate for county) using a geographic information system (GIS). 
A circle of radius of 500m centered on the GIS-derived location became the estimate of the 
location of addresses and several environmental characteristics at the locations were measured 
and used in the analysis. Kriging was used to estimate tick abundance (Nymphs/hr) for each of 
the addresses and different surfaces were used for each of the years separately. To gather 
information for land uses at each of the locations of interest, the land use/land cover map 
developed by the Rhode Island Geographic Information System was used and the proportion of 
each habitat type within the 500 m radius circle was used as an estimate of the peri-domestic 
environment for that address. Other variables included were area classification of address 
(urban/rural), elevation (in meters), distance to closest fresh water (in meters), closest distance to 
forest edge (in meters), distance from location to primary road (in meters), distance to coastline 
(as a surrogate for climate) and total amount of forest edge within the 500 m radius circle around 
the home location (in meters). After including only the relevant land use classifications, there 
were a total of fourteen independent variables, where two were categorical and twelve were of the 
continuous type. 
 
STATISTICAL RESULTS 
 From 1993 to 1997, 1371 Lyme disease cases were reported to the Rhode Island 
Department of Health. In the year 1993, 149 cases were reported, in 1994 they increased to 301 
cases and decreased over the 1995 year to 246, with numbers increasing again in 1996 (366) and 
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decreasing once more in 1997 (309). In general, the Lyme disease cases increased in the even 
years and decreased during the odd years (with respect to the previous year) with a clear 
increasing trend over time. That is, Lyme disease in the years of the study showed a two-year 
cyclical pattern. The analysis of the presence/absence of Lyme disease indicates that the disease is 
more prevalent in rural than in urban areas. Moreover, there is a clear indication that Washington 
County is an endemic area, with 65.35% of the reported cases in the five-year period of the study. 
The number of cases reported in Kent and Providence Counties were basically the same over the 
study period (about 14% each), Newport reported 5.62% of the cases and Bristol County only 
1.6% of the cases.  

Logistic regression was used to assess the relationship between the presence/absence of 
Lyme disease in Rhode Island and all the other environmental variables considered in the study. 
Assessment of the associations between presence/absence of Lyme disease and each of the 
individual variables indicated that the strongest relationships, in order of importance, correspond 
to the xy-coordinates (used as a surrogate for county), total edge, percentage build-up and nymphs 
per hour. Model building indicated that the most important variables in predicting the 
presence/absence of Lyme disease in Rhode Island, after adjusting for the other effects present 
were, in order of significance, the xy-coordinates (p<0.0001), total edge (p<0.0001), year 
(p<0.0001), area classification (rural/urban, p=0.0014), percentage build-up (p=0.0031) distance 
to edge (p=0.0066) and nymphs per hour (p=0.0482). The likelihood ratio test for comparison of 
models indicated that there was no statistical difference between the full model and the final 
selected reduced model (χ2=4.74, df=6, p=0.5776) that included the previous eight listed 
variables. 
 
VISUALIZATION TOOL 
 We have developed a first prototype of an interactive 3D visualization tool. The tool was 
developed in C++ with the Metrowerks CodeWarrior IDE, and using the OpenGL graphical 
library and the GLOW framework for user interface elements. It runs on the Windows 32 and 
Mac OS platforms. Data points are displayed as colored, tilted triangles. The user can at any time 
associate a specific column of the data to one of the 6 display dimensions (X, Y, Z, Hue, and two 
angles), as shown in Figure 1. 
 

“Net” for the capture
of data points

projection plane for the
data points’ shadows

Interactive viewpoint
and scaling controls

assignment of a visual role
to a column of the data set

data points rendered
as colored, tilted
triangles

capture net and
clustering  controls

 
 

Figure 1: The interface of our first prototype. Left: Data visualization window. Right: Control panel 
allowing the user to change the viewpoint interactively, select data points, divide the data into clusters, etc. 
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The choice of the triangle as the basic shape to represent data points as opposed to, say, 
the sphere or the cube can be explained by the performance gains it offers: The triangle is the 
fundamental shape of computer graphics. A cube will be rendered as at least 12 triangles while a 
sphere will be rendered as a group of at least a hundred triangles, typically several hundreds. In 
addition, using the triangle as a basic shape allows the display of two additional data columns as 
the orientation of the triangle. The orientation of a uniform sphere is indeed imperceptible and the 
orientation of a cube among many other cubes is hardly perceptible at all. 

Our tool allows us to perform “classical” visualization of the data. For example, we can 
plot under the form of maps and view side by side the presence/absence of Lyme disease and 
nymphs/hr, and notice that Lyme presence and high rate of nymphs/hr are mostly observed about 
Rhode Island’s South County (Figure 2). However, the correlation between these data is much 
more striking in interactive 3D. Figure 3 attempts to convey some of that impression in a series of 
3 flat screenshots. In these diagrams, the x and y data points are still plotted as the X and Y 
coordinates, but the nymphs/hr data is now displayed as the Z coordinate, while presence/absence 
provides the hue information. 

 

Figure 2: “Flat” representations (x and y drawn as X and Y and Z axis collapsed) showing presence/absence 
of Lyme disease (left), nymphs/hr (middle), RI County (right) 

 
Figure 3: Screenshots from 3 different viewpoints of the mapping [X=x, Y=y, Z=nymphs/hr, 

Hue=presence/absence of Lyme disease] 
 
 It is interesting to note that in the chosen final model, the least significant variable was 
nymphs/hr and the most significant one the xy-location. This can be explained by the high 
correlation between the y-location and nymphs/hr, as visualized in the above screenshots. Once 
the y-coordinate was included in the model and being the most significant of all the variables, the 
significance of what would seem the most relevant variable in modeling Lyme disease became 
almost non-existent.  

Our tool also allows us to represent the same data in a different visual role. For example, 
Figure 4 shows presence/absence of Lyme disease plotted against total edge-the second most 
important variable in our logistic regression model-, x and y being still plotted as X and Y. In the 
left and middle views, presence/absence is displayed as the Hue, while total edge provides Z 
information. In the right view, presence/absence of Lyme disease is used as Z, which splits the 
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graph into two planar maps on which we display total edge information as the Hue (in this view 
we changed to an orthographic projection). 

 
 

Figure 4: Left, Middle: Z=total edge, Hue=presence/absence of Lyme disease; Right: Z= presence/absence 
of Lyme disease, Hue=total edge 

 
The next two most important variables associated with the presence/absence of Lyme 

disease in Rhode Island were year (1993-1997) and area classification (rural/urban). Our tool is 
now used to display these associations. Figure 5 below shows presence/absence of Lyme disease 
plotted against year-a categorical variable-, with x and y still being the X and Y coordinates. The 
left and middle pictures show the graph in perspective projection for 2 different viewpoints. The 
right graph is a flattened orthographic projection with the most recent year (1997) on the left and 
the most ancient (1993) on the right. Figure 6 shows the dependent variable plotted against area 
classification. This is a categorical variable as well, with two levels (urban/rural).  

 

 
 

Figure 5: Left, Middle: Z=year, Hue=presence/absence of Lyme disease; Right: flattened orthographic 
projection with the most recent year on the left (1993) and the ancient on the right (1997), 

Hue=presence/absence of Lyme disease 
 

 
Figure 6: The left and middle graphs show Z=area classification (urban front, rural back) and 

Hue=presence/absence of Lyme. The right graph shows a collapsed orthographic projection of the mapping 
Z=Lyme (absence left, presence right) and Hue=red for urban, blue for rural. 
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EXPLORATORY VISUALIZATION 
The tool also allows us to explore the data set directly, using solely our visual abilities as 

a guide to what constitutes “interesting” arrangements of the data as we assign different visual 
roles to the various columns of our data set. The power of this approach is also its main limitation. 
Because it is to some extent an uninformed study of the data, it cannot pretend to lead to an 
interpretation. Rather, its objective is to identify patterns in the data that would justify a guided 
statistical analysis. Figure 7 below gives examples of such interesting patterns that seem to 
indicate some form of correlation of the data that would deserve further investigation. 
 

                (a)                         (b)                                (c)                                   (d)   
 

Figure 7: (a) X=nymphs/hr, Y=closest fresh water, Z=distance to edge, Hue=Lyme 
            (b) X=total edge, Y=closest fresh water, Z=nymphs/hr, Hue=Lyme 
  (c) X=elevation, Y=distance to edge, Z=nymphs/hr, Hue=total edge 
  (d) X=Lyme, Y=Hue=Nymphs/hr, Z=Year 

 
CONCLUSION 
 The use of an interactive visualization tool to aid in the exploratory phase of a statistical 
analysis, as well as in the presentation of statistical results, has been discussed in this paper. 
Sometimes visualization can fully replace the need for probabilistic inference, but in other cases, 
visualization is not enough and probabilistic inference is needed to help calibrate the uncertainty 
of a less certain issue (Cleveland, 1993). In the particular application presented in this paper a 
combination of inference with the visualization tool proved useful in developing a full 
understanding of the important environmental variables associated with the presence/absence of 
Lyme disease in Rhode Island.  
 The use of this tool is by no means limited to the problem presented here. The tool we 
developed for interactive visualization is flexible and could be applied to many other situations. 
As for future work, an extension of the present tool is being developed to interface with the 
programming language R. 
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