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C H A P T E R 0

Preliminaries

0.1 Introduction

The richness of Riemannian geometry is that it has many ramifications and connections to other
fields in mathematics and physics. Probably by the very same reasons, it requires quite a lot of
language and machinery to get going. In this chapter, we assemble a collection of results and
techniques about smooth manifolds and vector fields that we will use in later chapters to develop
the theory. Most of the proofs are given and in other cases references are supplied. Despite that,
the pace is quick and the absolute beginner is strongly encouraged to supplement the text with
other sources.

0.2 Smooth manifolds

The theory of smooth manifolds is a natural and very useful generalization of the differential
calculus on Rn. Namely, a smooth manifold is an object that, in the small, looks like a piece of
Euclidean space. More formally, a smooth manifold of dimension n is a topological space M that
can be covered by open sets {Uα}α, each of which is homeomorphic to an open subset of Euclidean
space under a map ϕα : Uα → Rn; the pair (Uα, ϕα) is called a local chart ; moreover, the following
important compatibility condition is required: the transition maps

ϕβ ◦ ϕ−1
α : ϕα(Uα ∩ Uβ) → ϕβ(Uα ∩ Uβ)

must be smooth for all α, β. The family {(Uα, ϕα)}α is called a smooth atlas. For technical reasons,
one also requires thatM be Hausdorff and second-countable, and that the smooth atlas {(Uα, ϕα)}α
be maximal. The basic idea behind this definition is that one can carry some notions and results
of differential calculus on Rn to smooth manifolds via the local charts, the compatibility condition
ensuring well defined objects.

A local chart ϕ : U → Rn has as components functions usually denoted xi : U → R. In this
way, a local chart ϕ = (x1, . . . , xn) : U → Rn is sometimes also called a system of local coordinates,
and a transition map is called a change of local coordinates.

0.2.1 Examples (First examples of smooth manifolds)

(a) Of course, Rn is a smooth manifold with the identity map as chart. More generally, any
real vector space is a smooth manifold, simply by choosing a basis and identifying with Rn.

(b) An open subset U of a smooth manifold M is also a smooth submanifold: one restricts the
local charts of M to U .

© Claudio Gorodski 2016



(c) The product M ×N of smooth manifolds, with the product topology, is naturally a smooth
manifold: typical charts have the form ϕα × ψβ : Uα × Vβ → Rm ×Rn = Rm+n, where ϕα : Uα →
Rm, ψβ : Uβ → Rn are charts of M , N , respectively. Note that dimM ×N = dimM + dimN .

(d) It follows from (a) and (b) that the group GL(n,R) of invertible real matrices of size n is
a smooth manifold. ⋆

Embedded submanifolds

Let N be a smooth manifold of dimension n+k. A subsetM of N is called an embedded submanifold
of N of dimension n if M has the topology induced from N and, for every p ∈ M , there exists
a local chart (U,ϕ) of N with p ∈ U such that ϕ(U ∩M) = ϕ(U) ∩ Rn, where we view Rn as a
subspace of Rn+k in the standard way. We say that (U,ϕ) is a local chart of N adapted to M .
Note that in this case the adapted chart (U,ϕ) induces a local chart (U ∩M,ϕ|U∩M ) of M so that
M is a smooth manifold in its own right (here the compatibility conditions for the local charts of
M follow from those for the local charts of N adapted to M).

0.2.2 Examples (Examples of embedded submanifolds)
(a) An open subset of a smooth manifold is an embedded submanifold of the same dimension.
(b) The graph of a smooth mapping f : U → Rm, where U is an open subset of Rn, is a smooth

submanifold of Rn+m of dimension n. In fact, an adapted local chart is given by ϕ : U ×Rm →
U ×Rm, ϕ(p, q) = (p, q−f(p)), where p ∈ Rm and q ∈ Rn. More generally, if a subset M of Rm+n

can be covered by open sets each of which is the graph of a smooth mapping from an open subset
of Rn into Rm, then M is an embedded submanifold of Rn+m.

(c) It follows from (b) that the n-sphere

Sn = { (x1, . . . , xn+1) | x21 + · · ·x2n+1 = 1 }
is an n-dimensional embedded submanifold of Rn+1.

(d) The product of n-copies of the circle S1 is a n-dimensional manifold called the n-torus and
denoted by Tn. ⋆

Smooth mappings

A smooth mapping between two smooth manifolds is defined to be a continuous mapping whose
local representations with respect to charts on both manifolds is smooth. Namely, let M and N be
two smooth manifolds and let Ω ⊂ M be open. A continuous map f : Ω → N is called smooth if
and only if

ψ ◦ f ◦ ϕ−1 : ϕ(Ω ∩ U) → ψ(V )

is smooth as a map between open sets of Euclidean spaces, for every local charts (U,ϕ) of M and
(V, ψ) of N . Clearly, the composition of two smooth maps is again smooth.

A smooth map f : M → N between smooth manifolds is called a diffeomorphism if it is
invertible and the inverse f−1 : N → M is also smooth. Also, f : M → N is called a local
diffeomorphism if every p ∈ M admits an open neighborhood U such that f(U) is open and f
defines a diffeomorphism from U onto f(U).

Tangent space and differential

Since arbitrary smooth manifolds in principle do not come with an embedding into an Euclidean
space, the tangent space must be constructed abstractly. The philosophy amounts to use the
“differential” (not yet defined) of the local charts of M around p to model the tangent space at p.
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Let M be a smooth manifold of dimension n, and let p ∈ M . The tangent space of M at p is
the set TpM of all pairs (a, ϕ) — where a ∈ Rn and (U,ϕ) is a local chart around p — quotiented
by the equivalence relation

(a, ϕ) ∼ (b, ψ) if and only if d(ψ ◦ ϕ−1)ϕ(p)(a) = b.

It follows form the chain rule in Rn that this is indeed an equivalence relation, and we denote the
equivalence class of (a, ϕ) be [a, ϕ]. Each such equivalence class is called a tangent vector at p. For
a fixed local chart (U,ϕ) around p, the map

a ∈ Rn 7→ [a, ϕ] ∈ TpM

is a bijection, and it follows from the linearity of d(ψ ◦ ϕ−1)ϕ(p) that we can use it to transfer the
vector space structure of Rn to TpM . Note that dimTpM = dimM .

Let (U,ϕ = (x1, . . . , xn)) be a local chart of M , and denote by {e1, . . . , en} the canonical basis
of Rn. The coordinate vectors at p are with respect to this chart are defined to be

∂

∂xi

∣
∣
∣
p
= [ei, ϕ].

Note that

(0.2.3)

{
∂

∂x1

∣
∣
∣
p
, . . . ,

∂

∂xn

∣
∣
∣
p

}

is a basis of TpM .
In the case of Rn, for each p ∈ Rn there is a canonical isomorphism Rn → TpR

n given by

(0.2.4) a 7→ [a, id],

where id is the identity map of Rn. Usually we will make this identification without further
comment. In particular, TpR

n and TqR
n are canonically isomorphic for every p, q ∈ Rn. In the

case of a general smooth manifold M , obviously there are no such canonical isomorphisms.
Next, let f : M → N be a smooth map between smooth manifolds. Fix a point p ∈ M , and

local charts (U,ϕ) of M around p, and (V, ψ) of N around q = f(p). The differential of f at p is
the linear map

dfp : TpM → TqN

given by
[a, ϕ] 7→ [d(ψ ◦ f ◦ ϕ−1)ϕ(p)(a), ψ].

It is easy to check that this definition does not depend on the choices of local charts. Using
the identification (0.2.4), one checks that dϕp : TpM → Rn and dψq : TpM → Rn are linear
isomorphisms and

dfp = (dψq)
−1 ◦ d(ψ ◦ f ◦ ϕ−1)ϕ(p) ◦ dϕp.

It is also a simple exercise to prove the following important proposition.

0.2.5 Proposition (Chain rule) Let M , N , P be smooth manifolds. If f :M → N and g : N →
P are smooth maps, then g ◦ f :M → P is a smooth map and

d(g ◦ f)p = dgf(p) ◦ dfp

for p ∈M .
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Consider now the case of a smooth map f : M → R. Then dfp : TpM → Tf(p)R ∼= R. For
v ∈ TpM , the number

v(f) = dfp(v)

is called the directional derivative of f with respect to v. Fix a coordinate chart (U,ϕ = (x1, . . . , xn))
around p and apply this to f = xi. Since xj ◦ ϕ−1 : ϕ(U) → R is just the restriction of the linear
projection onto the jth coordinate of Rn, for any v =

∑n
i=1 ai

∂
∂xi

|p, we have

v(xj) = d(xj)p(v) = d(xj ◦ ϕ−1)ϕ(p)

(
n∑

i=1

aiei

)

= aj ,

showing that
{dx1|p, . . . , dxn|p}

is the basis of TpM
∗ dual of the basis (0.2.3).

Finally, a smooth curve in M is simply a smooth map γ : (a, b) →M where (a, b) is an interval
of R. One can also consider smooth curves γ in M defined on a closed interval [a, b]. This simply
means that γ admits a smooth extension to an open interval (a − ǫ, b + ǫ) for some ǫ > 0. If
γ : (a, b) →M is a smooth curve, the tangent vector to γ at t ∈ (a, b) is

γ̇(t) = dγt(e1) ∈ Tγ(t)M,

where e1 = 1 ∈ R.

Tangent and cotangent bundles

There is a situation in which we want to endow a set X with no natural topology with a structure
of smooth manifold. In that case there is a way of using charts to define the topology and smooth
structure simultaneously. Namely, fix an integer n, and let {Uα}α∈A be a countable covering of
X by arbitrary subsets, on each of which is defined a bijective map ϕα : Uα → Rn onto an open
subset of Rn such that the sets ϕα(Uα ∩Uβ), ϕβ(Uα ∩Uβ) are open in Rn and the transition maps
ϕβ ◦ϕ−1

α : ϕα(Uα ∩Uβ) → ϕβ(Uα ∩Uβ) are homeomorphisms for all α, β ∈ A. Then one can define
a topology on X by declaring the ϕα to be homeomorphisms or, in other words, that the collection

{ϕ−1
α (W ) |W open in Rn, α ∈ A}

be a basis for a topology τ on X. The countability of A ensures that τ is second-countable, but
it is not automatically Hausdorff, and this property has to be checked case-by-case. If indeed τ is
Hausdorff, the collection {(Uα, ϕα)}α∈A is automatically a smooth atlas for (X, τ).

Perhaps the most important example of the above is the tangent bundle of a smooth manifold.
For a smooth manifoldM , there is a canonical way of assembling together all of its tangent spaces at
its various points. The resulting object turns out to admit a natural structure of smooth manifold
of twice the dimension of M and even the structure of a vector bundle which we will discuss later.

Consider the disjoint union

TM :=
⋃̇

p∈M
TpM.

We can view the elements of TM as equivalence classes of triples (p, a, ϕ), where p ∈ M , a ∈ Rn

and (U,ϕ) is a local chart of M such that p ∈ U , and

(p, a, ϕ) ∼ (q, b, ψ) if and only if p = q and d(ψ ◦ ϕ−1)ϕ(p)(a) = b.
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There is a natural projection π : TM →M given by π[p, a, ϕ] = p, and then π−1(p) = TpM . Next,
we use the above remark to introduce a topology and smooth structure on TM . Let {(Uα, ϕα)} be
a smooth atlas for M . For each α, ϕα : Uα → ϕα(Uα) is a diffeomorphism and, for each p ∈ Uα,
d(ϕα)p : TpUα = TpM → Rn is the isomorphism mapping [p, a, ϕ] to a. Set

ϕ̃α : π−1(Uα) → ϕα(Uα)×Rn, [p, a, ϕ] → (ϕα(p), a).

(Equivalently, ϕ̃α(v) = (π(v), d(ϕα)π(v)(v)) for v ∈ π−1(Uα).) Then ϕ̃α is a bijection and ϕα(Uα)

is an open subset of R2n. Moreover, the maps

ϕ̃β ◦ ϕ̃−1
α : ϕα(Uα ∩ Uβ)×Rn → ϕβ(Uα ∩ Uβ)×Rn

are given by
(x, a) 7→ (ϕβ ◦ ϕ−1

α (x) , d(ϕβ ◦ ϕ−1
α )x(a)).

Since ϕβ ◦ ϕ−1
α is a smooth diffeomorphism, we have that d(ϕβ ◦ ϕ−1

α )x is a linear isomorphism
and d(ϕβ ◦ ϕ−1

α )x(a) is also smooth on x. It follows that {(π−1(Uα), ϕ̃α)} defines a topology and
a smooth atlas for TM so that it becomes a smooth manifold of dimension 2n called the tangent
bundle of M .

Similarly, the inverses of the transpose maps of the (dϕα)p can be used to endow the disjoint

union T ∗M := ˙⋃
p∈M (TpM)∗ of dual spaces to the tangent spaces of M with the structure of a

smooth manifold of dimension 2n, called the cotangent bundle. Namely, the charts have the form

λ ∈ π−1(Uα) 7→ (π(λ),
(
d(ϕα)

t
p

)−1
(λ)) ∈ ϕ(Uα)× (Rn)∗

Here π : T ∗M →M is defined by π((TpM)∗) = {p} and (Rn)∗ is identified with Rn.
If f :M → N is a smooth map between smooth manifolds, we define the differential of f to be

the map
df : TM → TN

that restricts to dfp : TpM → Tf(p)N for each p ∈M . Using the above atlases for TM and TN , we
immediately see that df is smooth.

Inverse function theorem

The proof of the following theorem just consists of unraveling the definitions and applying the
inverse function theorem for smooth mappings between open subsets of Rn.

0.2.6 Theorem (Inverse function theorem) Let f :M → N be a smooth function between two
smooth manifolds M , N , and let p ∈ M and q = f(p). Then f is a local diffeomorphism at p if
and only if dfp : TpM → TqN is an isomorphism.

Immersions and submanifolds

The concept of embedded submanifold that was introduced above is too strong for some purposes.
There are other, weaker notions of submanifolds one of which we discuss now. We first give the
following definition. A smooth map f :M → N between smooth manifolds is called an immersion
at p ∈ M if dfp : TpM → Tf(p)N is an injective map, and f is called simply an immersion if it is
an immersion at every point of its domain.

Let M and N be smooth manifolds such that M is a subset of N . We say that M is an
immersed submanifold of N or simply a submanifold of N if the inclusion map of M into N is an

5



immersion. Note that embedded submanifolds are automatically immersed submanifolds, but the
main point behind this definition is that the topology of M can be finer than the induced topology
from N . Note also that it immediately follows from this definition that if P is a smooth manifold
and f : P → N is an injective immersion, then the image f(P ) is a submanifold of N . A smooth
map f : M → N between manifolds is called an embedding if it is an injective immersion which is
also a homeomorphism into f(M) with the relative topology.

Recall that a continuous map between locally compact, Hausdorff topological spaces is called
proper if the inverse image of a compact subset of the counter-domain is a compact subset of
the domain. It is known that proper maps are closed. Also, it is clear that if the domain is
compact, then every continuous map is automatically proper. An embedded submanifold M of a
smooth manifold N is called properly embedded if the inclusion map is proper. Now the following
proposition is a simple remark.

0.2.7 Proposition If f :M → N is an injective immersion which is also a proper map, then the
image f(M) is a properly embedded submanifold of N .

As an application of the inverse function theorem, it is not difficult to see that any immersion
f : M → N , where dimM = n, dimN = n + k, can be locally represented via appropriate charts
as the standard inclusion Rn → Rn+k In particular, it is locally an embedding. This result will be
particularly useful in geometry when dealing with local properties of an isometric immersion. It
also follows from the local form of an immersion that the image of an embedding is an embedded
submanifold.

0.2.8 Example Take the 2-torus T 2 = S1 × S1 viewed as a submanifold of R2 × R2 = R4 and
consider the map

f : R → T 2, f(t) = (cos at, sin at, cos bt, sin bt),

where a, b are non-zero real numbers. Since f ′(t) never vanishes, this map is an immersion. If
b/a is rational, f is periodic and f induces an embeddeding of S1 into T 2. If b/a is an irrational
number, then f(R) is not an embedded submanifold of T 2. In fact, the assumption on b/a implies
that f(R) is a dense subset of T 2, but an embedded submanifold of some other manifold is always
locally closed. ⋆

Submersions and inverse images

Submanifolds can also be defined by equations togetehr with some nondegeracy conditions. In order
to explain this point, we introduce the following definition. A smooth map f : M → N between
manifolds is called a submersion at p ∈ M if dfp : TpM → Tf(p)N is a surjective map, and f is
called simply a submersion if it is a submersion at every point of its domain.

As an application of the inverse function theorem, it is not difficult to see that any submersion
f : M → N , where dimM = n + k, dimN = n, can be locally represented via appropriate charts
as the standard projection Rn+k → Rn. It follows that each level set of f admits the structure of
an embedded submanifold of dimension k.

0.2.9 Examples (a) Let A be a non-degenerate real symmetric matrix of order n+ 1 and define
f : Rn+1 → R by f(p) = 〈Ap, p〉 where 〈, 〉 is the standard Euclidean inner product. Then
dfp : Rn+1 → R is given by dfp(v) = 2〈Ap, v〉, so it is surjective if p 6= 0. It follows that f is a
submersion on Rn+1 \ {0} and f−1(r) for r ∈ R is an embedded submanifold of Rn+1 of dimension
n if it is nonempty. In particular, by taking A to be the identity matrix we get a manifold structure
for Sn which coincides with the one previously constructed.
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(b) Denote by V the vector space of real symmetric matrices of order n, and define f :
GL(n,R) → V by f(A) = AAt. We first claim that f is a submersion at the identity matrix
I. One easily computes that

dfI(B) = lim
h→0

f(I + hB)− f(I)

h
= B +Bt,

where B ∈ TIGL(n,R) = M(n,R). Now, given C ∈ V , dfI maps 1
2C to C, so this checks the

claim. We next check that f is a submersion at any D ∈ f−1(I). Note that DDt = I implies that
f(AD) = f(A). This means that f = f ◦ RD, where RD : GL(n,R) → GL(n,R) is the map that
multiplies on the right by D. We have that RD is a diffeomorphism of GL(n,R) whose inverse is
plainly given by RD−1 . Therefore d(RD)I is an isomorphism, so the chain rule dfI = dfD ◦ d(RD)I
yields that dfD is surjective, as desired. Now f−1(I) = { A ∈ GL(n,R) |AAt = I } is an embedded
submanifold of GL(n,R) of dimension

dimGL(n,R)− dimV = n2 − n(n+ 1)

2
=
n(n− 1)

2
.

Note that f−1(I) is a group with respect to the multiplication of matrices; it is called the orthogonal
group of order n and is usually denoted by O(n). ⋆

Smooth coverings

In this subsection, we summarize some properties of covering spaces in the context of smooth
manifolds. Recall that a (topological) covering of a space X is another space X̃ with a continuous
map π : X̃ → X such that X is a union of evenly covered open set, where a connected open subset
U of X is called evenly covered if

(0.2.10) π−1U = ∪i∈I Ũi

is a disjoint union of open sets Ũi of X̃, each of which is mapped homeomorphically onto U under
π. In particular, the fibers of π are discrete subsets of X̃. It also follows from the definition that
X̃ has the Hausdorff property if X does. Further it is usual, as we shall do, to require that X and
X̃ be connected, and then the index set I can be taken the same for all evenly covered open sets.

0.2.11 Examples (a) π : R → S1, π(t) = eit is a covering.

(b) π : S1 → S1, π(z) = zn is a covering for any nonzero integer n.

(c) π : (0, 3π) → S1, π(t) = eit is a local homemeomorphism which is not a covering, since
1 ∈ S1 does not admit evenly covered neighborhoods. ⋆

Covering spaces are closely tied with fundamental groups. The fundamental group π1(X,x0) of
a topological space X with basepoint x0 is defined as follows. As a set, it consists of the homotopy
classes of continuous loops based at x0. The concatenation of such loops is compatible with the
equivalence relation given by homotopy, so it induces a group operation on π1(X,x0) making it into
a group. If X is arcwise connected, the isomorphism class of the fundamental group is independent
of the choice of basepoint (indeed for x0, x1 ∈ X and c a continuous path from x0 to x1, conjugation
by c−1 induces an isomorphism from π1(X,x0) and π1(X,x1)) and thus is sometimes denoted by
π1(X). Finally, a continuous map f : X → Y between topological spaces with f(x0) = y0 induces a
homomorphism f# : π1(X,x0) → π1(Y, y0) so that the assignment (X,x0) → π1(X,x0) is functorial.
Of course the fundamental group is trivial if and only if the space is simply-connected.
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Being locally Euclidean, a smooth manifold is locally arcwise connected and locally simply-
connected. A connected space X with such local connectivity properties admits a simply-connected
covering space, which is unique up to isomorphism; an isomorphism between coverings π1 : X̃1 → X
and π2 : X̃2 → X is a homeomorphism f : X̃1 → X̃2 such that π2 ◦ f = π1. More generally, there
exists a bijective correspondance between isomorphism classes of coverings π : (X̃, x̃0) → (X,x0)
and subgroups of π1(X,x0) given by (X̃, x̃0) 7→ π#(π1(X̃, x̃0)); moreover, a change of basepoint in
X̃ corresponds to passing to a conjugate subgroup π1(X,x0).

Suppose π : M̃ → M is a covering where M is a smooth manifold. Then there is a natural
structure of smooth manifold on M̃ such that the projection π is smooth. In fact, for every chart
(U, π) of M where U is evenly covered as in (0.2.10), take a chart (Ũi, ϕ ◦ π|Ũi

) for M̃ . This gives

an atlas of M̃ , which is smooth because for another chart (V, ψ) of M , V evenly covered by ∪i∈I Ṽi
and Ũi ∩ Ṽj 6= ∅ for some i, j ∈ I, we have that the transition map

(ψ ◦ π|Ṽj )(ϕ ◦ π|Ũi
)−1 = ψ ◦ ϕ−1

is smooth. We already know that M̃ is a Hausdorff space. It is possible to choose a countable basis
of connected open sets forM which are evenly covered. The connected components of the preimages
under π of the elements of this basis form a basis of connected open sets for M̃ , which is countable
as long as the index set I is countable, but this follows from the countability of the fundamental
group π1(M)�1�. Now, around any point in M̃ , π admits a local representation as the identity, so
it is a local diffeomorphism. Note that we have indeed proved more: M can be covered by evenly
covered neighborhoods U such that the restriction of π to a connected component of π−1U is a
diffeomorphism onto U . This is the definition of a smooth covering . Note that a topologic covering
whose covering map is smooth need not be a smooth covering (e.g. π : R → R, π(x) = x3).

Next, we can formulate basic results in covering theory for a smooth covering π : M̃ → M of
a smooth manifold M . Fix basepoints p̃ ∈ M̃ , p ∈ M such that π(p̃) = p. We say that a map
f : N →M admits a lifting if there exists a map f̃ : N → M̃ such that π ◦ f̃ = f .

0.2.12 Theorem (Lifting criterion) Let q ∈ f−1(p). A smooth map f : N → M admits a
smooth lifting f̃ : N → M̃ with f̃(q) = p̃ if and only if f#(π1(N, q)) ⊂ π#(π1(M̃, p̃)). In that case,
if N is connected, the lifting is unique.

Taking f : N →M to be the universal covering ofM in Theorem 0.2.12 shows that the universal
covering of M covers any other covering of M and hence justifies its name.

For a topological covering π : X̃ → X, a deck transformation or covering transformation is
an isomorphism X̃ → X̃, namely, a homeomorphism f : X̃ → X̃ such that π ◦ f = π. The deck
transformations form a group under composition. It follows from uniqueness of liftings that a deck
transformation is uniquely determined by its action on one point. In particular, the only deck
transformation admitting fixed points is the identity. Since a smooth covering map π : M̃ →M is
a local diffeomorphism, in this case the equation π ◦ f = π implies that deck transformations are
diffeomorphisms of M̃ .

An action of a (discrete) group on a topological space (resp. smooth manifold) is a homo-
morphism from the group to the group of homeomorphisms (resp. diffeomorphisms) of the space
(resp. manifold). For a smooth manifold M , we now recall the canonical action of π1(M,p) on its
universal covering M̃ by deck transformations. First we remark that by the lifting criterion, given
q ∈ M and q̃1, q̃2 ∈ π−1(q), there is a unique deck transformation mapping q̃1 to q̃2. Now let γ
be a continuous loop in M based at p representing an element [γ] ∈ π1(M,p). By the remark, it

�1�Ref?
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suffices to describe the action of [γ] on a point p̃ ∈ π−1(p), which goes as follows: lift γ uniquely to
a path γ̃ starting at p̃; then [γ] · p̃ is by definition the endpoint of γ̃, which sits in the fiber π−1(p).
The definiton independs of the choice made, namely, if we change γ to a homotopic curve, we get
the same result. This follows from Theorem 0.2.12 applied to the homotopy, as it is defined on a
square and a square is simply-connected. Since π : M̃ → M is the universal covering, every deck
transformation is obtained in this way from an element of π1(M,p).

As action of a (discrete) group Γ on a topological space X is called free if no nontrivial element
of Γ has fixed points, and it is called proper if any two points x, y ∈ X admit open neighborhoods
U ∋ x, V ∋ y such that { γ ∈ Γ | γU ∩ V 6= ∅ } is finite. The action of π1(M,p) on the universal
covering M̃ by deck transformations has both properties. In fact, we have already remarked it
is free. To check properness, let p̃, q̃ ∈ M̃ . If these points lie in the same orbit of π1(M,p) or,
equivalently, the same fiber of π, the required neighborhoods are the connected components of
π−1(U) containing p̃ and q̃, resp., where U is an evenly covered neighborhood of π(p̃) = π(q̃). On
the other hand, if π(p̃) =: p 6= q := π(p̃), we use the Hausdorff property ofM to find disjoint evenly
covered neighborhoods U ∋ p, V ∋ q and then it is clear that the connected component of π−1(U)
containing p̃ and the connected component of π−1(V ) containing q̃ do the job.

Conversely, we have:

0.2.13 Theorem If the group Γ acts freely and properly on a smooth manifold M̃ , then the quotient
space M = Γ\M̃ endowed with the quotient topology admits a unique structure of smooth manifold
such that the projection π : M̃ →M is a smooth covering.

Proof. The action of Γ on M̃ determines a partition into equivalence classes or orbits, namely
p̃ ∼ q̃ if and only if q̃ = γp̃ for some γ ∈ Γ. The orbit through p̃ is denoted Γ(p̃). The quotient
space Γ\M̃ is also called orbit space.

The quotient topology is defined by the condition that U ⊂ M is open if and only if π−1(U)
is open in M̃ . In particular, for an open set Ũ ⊂ M̃ we have π−1(π(Ũ)) = ∪γ∈Γγ(Ũ), a union of
open sets, showing that π(Ũ) is open and proving that π is an open map. In particular, π maps a
countable basis of open sets in M̃ to a countable basis of open sets in M .

The covering property follows from the fact that Γ is proper. In fact, let p̃ ∈ M̃ . From the
definition of properness, we can choose a neighborhood Ũ ∋ p̃ such that { γ ∈ Γ | γŨ ∩ Ũ 6= ∅ } is
finite. Using the Hausdorff property of M̃ and the freeness of Γ, we can shrink Ũ so that this set
contains the identity only. Now the map π identifies all disjoint homeomorphic open sets γU for
γ ∈ Γ to a single open set π(U) in M , which is then evenly covered.

The Hausdorff property of M also follows from properness of Γ. Indeed, let p, q ∈ M , p 6= q.
Choose p̃ ∈ π−1(p), q̃ ∈ π−1(q) and neighborhoods Ũ ∋ p̃, Ṽ ∋ q̃ such that { γ ∈ Γ | γŨ ∩ Ṽ 6= ∅ }
is finite. Note that q̃ 6∈ Γ(p̃), so by the Hausdorff property for M̃ , we can shrink Ũ so that this set
becomes empty. Since π is open, U := π(Ũ) and V := π(Ṽ ) are now disjoint neighborhoods of p
and q, respectively.

Finally, we construct a smooth atlas for M . Let p ∈ M and choose an evenly covered neigh-
borhood U ∋ p. Write π−1U = ∪i∈I Ũi as in (0.2.10). By shrinking U we can ensure that Ũi is the
domain of a local chart (Ũi, ϕ̃i) of M̃ . Now ϕi := ϕ̃i ◦ (π|Ũi

)−1 : U → Rn defines a homeomorphism

onto the open set ϕ̃i(Ũi) and thus a local chart (U,ϕi) of M . The domains of such charts cover M
and it remains only to check that the transition maps are smooth. So let V be another evenly cov-
ered neighborhood of p with π−1V = ∪j∈I Ṽj and associated local chart ψj := ψ̃j◦(π|Ṽj )

−1 : U → Rn

where (Ṽj , ψ̃j) is a local chart of M̃ . Then

(0.2.14) ψj ◦ ϕ−1
i = ψ̃j ◦ (π|Ṽj )

−1 ◦ π ◦ ϕ̃−1
i
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However, (π|Ṽj )
−1 ◦ π is realized by a unique element γ ∈ Γ in a neighborhood of p̃i = π|−1

Ũi
(p).

Since Γ acts by diffeomorphisms, this shows that the transtion map (0.2.14) is smooth and finishes
the proof. �

0.3 Vector fields

A vector field X on a smooth manifoldM is an assignment of a vectorX(p) in each TpM . Sometimes
we write Xp for X(p). Vector fields are the infinitesimal objects associated to diffeomorphisms in
the following sense. Let ϕt :M →M be a diffeomorphism such that the curve t 7→ ϕt(p) is smooth
for each p. Then Xp := d

dt

∣
∣
t=0

ϕt(p) defines a vector field on M . Conversely, one can integrate
smooth vector fields to obtain diffeomorphisms. Actually, this is the extension of ODE theory to
smooth manifolds that we shall recall below.

We need the notion of smoothness for vector fields. Recall that TM is a smooth manifold, so
a vector field X :M → TM is called smooth simply if this map is smooth.

For practical purposes, we reformulate this notion. Let X be an arbitrary vector field on M .
Given a smooth function f on an open subset U of M , the directional derivative X(f) : U → R is
defined to be the function p ∈ U 7→ Xp(f). Further, if (x1, . . . , xn) is a coordinate system on U ,
we have already seen that { ∂

∂x1
|p, . . . , ∂

∂xn
|p} is a basis of TpM for p ∈ U . It follows that there are

functions ai : U → R such that

(0.3.1) X|U =
n∑

i=1

ai
∂

∂xi
.

0.3.2 Proposition Let X be a vector field on M . Then the following assertions are equivalent:
a. X is smooth.
b. For every coordinate system (U, (x1, . . . , xn)) of M , the functions ai defined by (0.3.1) are

smooth.
c. For every open set V of M and smooth map f : V → R, the function X(f) : V → R is

smooth.

Since ai = X(xi) in (0.3.1), we have

0.3.3 Scholium If X is a smooth vector field on M and X(f) = 0 for every smooth function, then
X = 0.

We now come to the integration of smooth vector fields. Let X be a smooth vector field on M
An integral curve of X is a smooth curve γ : I →M , where I is an open interval, such that

γ̇(t) = X(γ(t))

for all t ∈ I. We write this equation in local coordinates. Suppose X has the form (0.3.1), γi = xi◦γ
and ãi = ai ◦ ϕ−1. Then γ is an integral curve of X in γ−1(U) if and only if

(0.3.4)
dγi
dr

∣
∣
∣
t
= ãi(γ1(t), . . . , γn(t))

for i = 1, . . . , n and t ∈ γ−1(U). Equation (0.3.4) is a system of first order ordinary differential
equations for which existence and uniqueness theorems are known. These, translated into manifold
terminology yield local existence and uniqueness of integral curves for smooth vector fields. More-
over, one can cover M by domains of local charts and piece together the locally defined integral
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curves of X to obtain, for any given point p ∈ M , a maximal integral curve γp of X through p
defined on a possibly infinite interval (a(p), b(p)).

Even more interesting is to reverse the rôles of p and t by setting

ϕt(p) := γp(t)

for all p such that t ∈ (a(p), b(p)).

The smooth dependence of solutions of ODE on the initial conditions implies that for every
p ∈M , there exists an open neighborhood V of p and ǫ > 0 such that the map

(−ǫ, ǫ)× V →M, (t, p) 7→ ϕt(p)

is well defined and smooth. Glueing integral curves one checks that

(0.3.5) ϕs+t = ϕs ◦ ϕt

whenever both hand sides are defined. Obviously ϕ0 is the identity, so ϕt is a diffeomorphism
defined on some open subset of M with inverse ϕ−t. The collection {ϕt} is called the flow of X.
Owing to property (0.3.5), the flow of X is also called the one-parameter local group of locally
defined diffeomorphisms generated by X, and X is called the infinitesimal generator of {ϕt}. If ϕt
is defined for all t ∈ R, the vector field X is called complete. This is equivalent to requiring that
the maximal integral curves of X be defined on the entire R, or yet, that the domain of each ϕt be
M . In this case we refer to {ϕt} as the one-parameter group of diffeomorphisms of M generated
by X.

0.3.6 Examples (a) TakeM = R2 and X = ∂
∂x1

. Then X is complete and ϕt(x1, x2) = (x1+t, x2)

for (x1, x2) ∈ R2. Note that if we replace R2 by the punctured plane R2 \ {(0, 0)}, the domains of
ϕt become proper subsets of M .

(b) Consider the smooth vector field on R2n defined by

X(x1, . . . , x2n) = −x2
∂

∂x1
+ x1

∂

∂x2
+ · · · − x2n

∂

∂x2n−1
+ x2n−1

∂

∂x2n
.

The flow of X is given the linear map

ϕt










x1
x2
...

x2n−1

x2n










=






Rt
. . .

Rt















x1
x2
...

x2n−1

x2n










where Rt is the 2× 2 block
(

cos t − sin t
sin t cos t

)

.

It is clear that X restricts to a smooth vector field X̄ on S2n−1. The flow of X̄ is of course the
restriction of ϕt to S

2n−1. X and X̄ are complete vector fields.

(c) Take M = R and X(x) = x2 ∂
∂x . Solving the ODE we find ϕt(x) =

x
1−tx . It follows that the

domain of ϕt is (−∞, 1t ) if t > 0 and (1t ,+∞) if t < 0. ⋆
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Lie bracket

If X is a smooth vector field on M and f :M → R is a smooth function, the directional derivative
X(f) :M → R is also smooth and so it makes sense to derivate it again as in Y (X(f)) where Y is
another smooth vector field on M . For instance, in a local chart (U,ϕ = (x1, . . . , xn)), we have the
first order partial derivative

∂

∂xi

∣
∣
∣
p
(f) =

∂f

∂xi

∣
∣
∣
p

and the second order partial derivative

(
∂

∂xj

)

p

(
∂

∂xi
(f)

)

=
∂2f

∂xj∂xi

∣
∣
∣
p

and it follows from Schwarz theorem on the commutativity of mixed partial derivatives of smooth
functions on Rn that

(0.3.7)
∂2f

∂xj∂xi

∣
∣
∣
p
=
∂2(f ◦ ϕ−1)

∂rj∂ri

∣
∣
∣
p
=
∂2(f ◦ ϕ−1)

∂ri∂rj

∣
∣
∣
p
=

∂2f

∂xi∂xj

∣
∣
∣
p
,

where id = (r1, . . . , rn) denote the canonical coordinates on Rn.
On the other hand, for general smooth vector fields X, Y on M the second derivative depends

on the order of the vector fields and the failure of the commutativity is measured by the commutator
or Lie bracket

(0.3.8) [X,Y ](f) = X(Y (f))− Y (X(f))

for every smooth function f : M → R. We say that X, Y commute if [X,Y ] = 0. It turns out
that formula (0.3.8) defines a smooth vector field on M ! Indeed, Scholium 0.3.3 says that such
a vector field is unique, if it exists. In order to prove existence, consider a coordinate system
(U, (x1, . . . , xn)). Then we can write

X|U =
n∑

i=1

ai
∂

∂xi
and Y |U =

n∑

j=1

bj
∂

∂xj

for ai, bj ∈ C∞(U). If [X,Y ] exists, we must have

(0.3.9) [X,Y ]|U =
n∑

i=1

(

ai
∂bj
∂xi

− bi
∂aj
∂xi

)
∂

∂xj
,

because the coefficients of [X,Y ]|U in the local frame { ∂
∂xj

}nj=1 must be given by [X,Y ](xj) =

X(Y (xj)) − Y (X(xj)). We can use formula (0.3.9) as the definition of a vector field on U ; note
that such a vector field is smooth and satisfies property (0.3.8) for functions in C∞(U). We finally
define [X,Y ] globally by covering M with domains of local charts: on the overlap of two charts,
the different definitions coming from the two charts must agree by the above uniqueness result; it
follows that [X,Y ] is well defined.

0.3.10 Examples (a) Schwarz theorem (0.3.7) now means [ ∂∂xi ,
∂
∂xj

] = 0 for coordinate vector

fields associated to a local chart.
(b) Let X = ∂

∂x −
y
2
∂
∂z , Y = ∂

∂y +
x
2
∂
∂z , Z = ∂

∂z be smooth vector fields on R3. Then [X,Y ] = Z,
[Z,X] = [Z, Y ] = 0. ⋆
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The proof of the following proposition only uses (0.3.8).

0.3.11 Proposition Let X, Y and Z be smooth vector fields on M . Then
a. [Y,X] = −[X,Y ].
b. If f , g ∈ C∞(M), then

[fX, gY ] = fg[X,Y ] + f(Xg)Y − g(Y f)X.

c. [[X,Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0. (Jacobi identity)

Let f : M → N be a diffeomorphism. For every smooth vector field X on M , the formula
df ◦X ◦ f−1 defines a smooth vector field on N which we denote by f∗X. If the flow is {ϕt}, then
the flow of f∗X is f ◦ ϕt ◦ f−1. More generally, if f :M → N is a smooth map which needs not be
a diffeomorphism, smooth vector fields X on M and Y on N are called f -related if df ◦X = Y ◦ f .
The proof of the next propostion is an easy application of (0.3.8).

0.3.12 Proposition Let f :M →M ′ be smooth. Let X, Y be smooth vector fields on M , and let
X ′, Y ′ be smooth vector fields on M ′. If X and X ′ are f -related and Y and Y ′ are f -related, then
also [X,Y ] and [X ′, Y ′] are f -related.

What is the relation between flows and Lie brackets? In order to discuss that, let X, Y be
smooth vector fields on M with corresponding flows {ϕt}, {ψs}. Fix p ∈M and a smooth function
f defined on a neighborhood of p. We have

[X,Y ]p(f) = Xp(Y f)− Yp(Xf)

=
d

dt

∣
∣
∣
t=0

(Y f)(ϕt(p))−
d

ds

∣
∣
∣
s=0

(Xf)(ψs(p))

=
∂2

∂s∂t

∣
∣
∣
(0,0)

f(ψs(ϕt(p)))−
∂2

∂t∂s

∣
∣
∣
(0,0)

f(ϕt(ψs(p)))

=
∂2

∂t∂s

∣
∣
∣
(0,0)

f(ϕ−t(ψs(ϕt(p))))

=
d

dt

∣
∣
∣
t=0

(
d

ds

∣
∣
∣
s=0

f(ϕ−t ◦ ψs ◦ ϕt(p))
)

=
d

dt

∣
∣
∣
t=0

((ϕ−t)∗Y )p (f)

Note that t 7→ ((ϕ−t)∗Y )p is a smooth curve in TpM . Its tangent vector at t = 0 is called the Lie
derivative of Y with respect to X at p, denoted by (LXY )p, and this defines the Lie derivative
LXY as a smooth vector field on M . The above calculation shows that LXY = [X,Y ].

0.3.13 Proposition X and Y commute if and only if their corresponding flows {ϕt}, {ψs} com-
mute.

Proof. [X,Y ] = 0 if and only if 0 = d
dt

∣
∣
∣
t=0

(ϕ−t)∗Y . Since {ϕt} is a one-parameter group, this

is equivalent to (ϕ−t)∗Y = Y for all t. However the flow of (ϕ−t)∗Y is {ϕ−tψsϕt}, so this means
ϕ−tψsϕt = ψs. �

We know that, for a local chart (U,ϕ), the set of coordinate vector fields { ∂
∂x1

, . . . , ∂
∂xn

} is

linearly independent at every point of U and the ∂
∂xi

pairwise commute. It turns out these two
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conditions locally characterize coordinate vector fields. Namely, we call a set {X1, . . . , Xn} of
smooth vector fields defined on an open set V of M a local frame if it is linearly independent at
every point of V .

0.3.14 Proposition Let {X1, . . . , Xn} be a local frame on V such that [Xi, Xj ] = 0 for all i,
j = 1, . . . , n. Then for every p ∈ V there exists an open neighborhood U of p in V and a local chart
(U,ϕ) whose coordinate vector fields are exactly the Xi.

Proof. Let {ϕit} be the flow of Xi and put F (t1, . . . , tn) := ϕ1
t1 ◦ · · · ◦ ϕntn(p), defined on a

neighborhood of 0 in Rn. Then dF0(ei) = Xi(p) for all i, so F is a local diffeomorphism at 0 by the
inverse function theorem. The local inverse F−1 defines a local chart around p. Finally, ∂

∂xi
= Xi

by Proposition 0.3.13. �

0.4 Lie groups

Lie groups comprise a very important class of examples of smooth manifolds. At the same time,
they are used to model transformation groups of smooth manifolds.

A Lie group G is a smooth manifold endowed with a group structure such that the group
operations are smooth. More concretely, the multiplication map µ : G×G→ G and the inversion
map ι : G→ G are required to be smooth.

0.4.1 Examples (a) The Euclidean space Rn with its additive vector space structure is a Lie
group. Since the multiplication is commutative, this is an example of a Abelian (or commutative)
Lie group.

(b) The multiplicative group of nonzero complex numbers C×. The subgroup of unit complex
numbers is also a Lie group, and as a smooth manifold it is diffeomorphic to the circle S1.

(c) If G and H are Lie groups, the direct product group structure turns the product manifold
G×H into a Lie group.

(d) It follows from (b) and (c) that the n-torus Tn = S1 × · · · ×S1 (n times) is a Lie group. Of
course, Tn is a compact connected Abelian Lie group. Conversely, we will see in Theorem 0.4.13
that every compact connected Abelian Lie group is an n-torus.

(e) If G is a Lie group, the connected component of the identity of G, denoted by G◦, is also
a Lie group. Indeed, G◦ is open in G, so it inherits a smooth structure from G just by restricting
the local charts. Since µ(G◦ ×G◦) is connected and µ(1, 1) = 1, we must have µ(G◦ × G◦) ⊂ G◦.
Similarly, ι(G◦) ⊂ G◦. Since G◦ ⊂ G is an open submanifold, it follows that the group operations
restricted to G◦ are smooth.

(f) Any finite or countable group endowed with the discrete topology becomes a 0-dimensional
Lie group. Such examples are called discrete Lie groups.

(g) We now turn to some of the classical matrix groups. The real general linear group of order
n, which is denoted by GL(n,R), is the group consisting of all nonsingular n × n real matrices.
Denote by M(n,R) the vector space of all n × n real matrices and consider the determinant
function det : M(n,R) → R. Since GL(n,R) consists precisely of the matrices in M(n,R) with
nonzero determinant, we see that GL(n,R) is open in M(n,R) and thus inherits the structure of

a smooth manifold. In the coordinates provided by the canonical identification M(n,R) ∼= Rn2
,

the group operations of GL(n,R) are expressed by rational functions and are thus smooth. Note
that dimGL(n,R) = n2. Similarly, one defines the complex general linear group of order n, which
is denoted by GL(n,C), as the group consisting of all nonsingular n × n complex matrices. Note
that dimGL(n,C) = 2n2.
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We have already encoubtered the orthogonal group O(n) as a closed embedded submanifold of
GL(n,R) in 0.2.9. Since O(n) is an embedded submanifold, it follows from Theorem ?? that the
group operations of O(n) are smooth, and hence O(n) is a Lie group. ⋆

At this juncture, it is convenient to introduce another object. A (real, complex) Lie algebra is
a (real, complex) vector space g endowed with a bilinear operation

[·, ·] : g× g → g

satisfying:

(a) [Y,X] = −[X,Y ] (skew-symmetry); and
(b) [[X,Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0 (Jacobi identity); where X, Y , Z ∈ g.

Of course, a Lie algebra is a nonassociative, in general noncommutative algebra in which the
commutative and associative properties have been replaced by (a) and (b) above. It is clear that
(a) is equivalent to having [X,X] = 0 for all X ∈ g, and that identity (b) only imposes additional
restrictions if X, Y , Z are linearly independent.

0.4.2 Examples (a) LetM be a smooth manifold and consider the infinite-dimensional real vector
space X(M) of all smooth vector fields onM . It follows from Proposition 0.3.11 that X(M) equipped
with the Lie bracket is an infinite-dimensional Lie algebra.

(b) Let V be any vector space and take [·, ·] to be the zero bilinear form. Then V becomes a so
called Abelian Lie algebra.

(c) Let A be any real associative algebra and set [a, b] = ab − ba for a, b ∈ A. It is easy to
see that A becomes a Lie algebra. An important instance of this situation is A = M(n,R); the
associated Lie algebra is sometimes denoted by gl(n,R).

(d) The subset of gl(n,R) consisting of skew-symmetric matrices is closed under the Lie bracket
and hence is a Lie algebra itself, denoted by so(n).

(e) The cross-product × on R3 is easily seen to define a Lie algebra structure.

(f) If V is a two-dimensional vector space and X, Y ∈ V are linearly independent, the conditions
[X,X] = [Y, Y ] = 0, [X,Y ] = X define a Lie algebra structure on V .

(g) If V is a three-dimensional vector space spanned by X, Y , Z ∈ V , the conditions [X,Y ] = Z,
[Z,X] = [Z, Y ] = 0 define a Lie algebra structure on V , called the (3-dimensional) Heisenberg
algebra. It can be realized as a Lie algebra of smooth vector fields on R3 as in example 0.3.10(b).

⋆

One of the most essential features of Lie groups is the existence of translations. Let G be a
Lie group. The left translation defined by g ∈ G is the map Lg : G → G, Lg(x) = gx. It is a
diffeomorphism of G, its inverse being given by Lg−1 . Similarly, the right translation defined by
g ∈ G is the map Rg : G → G, Rg(x) = xg. It is also a diffeomorphism of G, and its inverse is
given by Rg−1 .

The translations in G allow us to consider invariant tensors, the most important case being
that of vector fields. A vector field X on G is called left-invariant if d(Lg)x(Xx) = Xgx for every
g, x ∈ X. This condition is simply dLg ◦ X = X ◦ Lg for every g ∈ G. We can similarly define
right-invariant vector fields, but most often we will be considering the left-invariant type. Since
Lg is a diffeomorphism, the push-out of an arbitrary smooth vector field X on G can be defined as
the vector field Lg∗X = dLg ◦X ◦Lg−1 . In this way, the condition of X to be left-invariant can be
neatly expressed as Lg∗X = X for every g ∈ G.

Let g denote the set of left invariant vector fields on G. It is clear that g is a real vector space.
Moreover, the map X ∈ g 7→ X1 defines a linear isomorphism between g and the tangent space to

15



G at the identity T1G, since any left invariant vector field is completely defined by its value at the
identity. This implies that dim g = dimG. Every left invariant vector field X in G is smooth. This
can be seen as follows. Let f be a smooth function defined on a neighborhood of 1 in G, and let
γ : (−ǫ, ǫ) → G be a smooth curve with γ(0) = 1 and γ′(0) = X1. Then the value of X on f is
given by

Xg(f) = dLg(X1)(f) = X1(f ◦ Lg) =
d

dt

∣
∣
∣
t=0

f(gγ(t)) =
d

dt

∣
∣
∣
t=0

f ◦ µ(g, γ(t)),

and hence, it is a smooth function of g. Since the elements of g are smooth vector fields, the bracket
bewteen any two of them is defined. We end this discussion by observing that the bracket of X,
Y ∈ g is an element of g, for

Lg∗[X,Y ] = [Lg∗X,Lg∗Y ] = [X,Y ],

for every g ∈ G, due to Proposition 0.3.12.
The discussion in the previous paragraph shows that to any Lie group G is naturally associated

a (real) Lie algebra g consisting of the left invariant vector fields on G. This Lie algebra is the
infinitesimal object associated to G and, as we shall see, completely determines its local structure.

0.4.3 Examples (a) Rn and Tn have the same Lie algebra, namely, the n-dimensinal Abelian Lie
algebra.

(b) The Lie algebra of the direct product G×H is the direct sum of Lie algebras g⊕ h.
(c) G and G◦ have the same Lie algebra.
(d) The Lie algebra of a discrete group is {0}.
(e) The Lie algebra of GL(n,R) is gl(n,R) and that of O(n) is so(n). ⋆

The exponential map, subgroups and homomorphisms

Let G be a Lie group, and let g denote its Lie algebra. Given X ∈ g, there exists an integral curve
ϕX : (−ǫ, ǫ) → G of X with ϕ(0) = 1; namely, ϕ′

X(t) = XϕX(t). Since

d

dt

∣
∣
∣
t=0

Lg(ϕX(t)) = d(Lg)1(X1) = Xg,

we have that Lg ◦ ϕX is the unique integral curve of X starting at g. In particular, by taking
g = ϕ(s) with s very close to ǫ, this shows that ϕX can be extended beyond ǫ. It follows that X is
a complete vector field; namely, ϕX is defined on R. Now t 7→ ϕX(s + t) for s ∈ R is an integral
curve of X with initial point ϕX(s), and hence, by the uniqueness of integral curves,

ϕX(s+ t) = ϕX(s)ϕX(t),

for every s, t ∈ R. Because of this, we say that ϕX : R → G is a one-parameter subgroup of G.
The exponential map of G is the map exp : g → G defined by expX = ϕX(1). We have ϕsX(t) =

ϕX(st), because
d
dt |t=0ϕX(st) = sϕ′

X(0) = sX. This implies that ϕX(t) = ϕtX(1) = exp(tX), that
is, every one-parameter subgroup factors through the exponential map.

The exponential map is smooth, as this follows from the smooth dependence of solutions of
ordinary differential equations on initial conditions. Moreover, d exp0 : T0g ∼= g → T1G ∼= g is the
identity, since

d exp0(X) =
d

dt

∣
∣
∣
t=0

exp(tX) = ϕ′
X(0) = X.

Thus, exp is a diffeomorphism from a neighborhood of 0 in g onto a neighborhood of 1 in G.
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0.4.4 Example The exponential map exp : gl(n,R) → GL(n,R) is the exponentiation of matrices:

expA = eA = I +A+
1

2
A2 +

1

3!
A3 + · · ·

for all A ∈ gl(n,R). In fact, for ϕA(t) = etA we have that ϕ′
A(t) = etAA = (dLϕA(t))A is the

left-invariant vector field determined by A, so ϕA is its flow. Similarly for exp : gl(V ) → GL(V )
where V is any real or complex vector space. ⋆

0.4.5 Remark In general, the exponential map is not a global diffeomorphism (take G compact),
not a homomorphism (take G non-Abelian), not surjective (take G = SL(2,R)). We shall see on
page 60 that exp is surjective if G is compact and connected.

The connected component of 1 in G, G◦, is an open subgroup of G. G◦ is generated as a group
by any neighborhood U of 1 (in fact, replace U by U ∩ U−1 in order to have U = U−1; define
V = ∪n≥1U

n and consider the equivalence relation g ∼ g′ if and only if g−1g′ ∈ V ; then the
equivalence classes are open, whence, V = G◦). In particular, G◦ is generated by exp[g]. This fact
has major implications in the relation between g and G.

Let G be a Lie group. A subgroup H of G is called a Lie subgroup of G if H is an (immersed)
submanifold of G, and a Lie group with respect to the operations induced from G. If g is a Lie
algebra, a subspace h of g is called a Lie subalgebra if h is closed under the bracket of g.

It is easy to see that if H is a Lie subgroup of G, then the Lie algebra of h is a Lie subalgebra
of g. Conversely, we have

0.4.6 Theorem (Lie) Let G be a Lie group, and let g denote its Lie algebra. If h is a Lie
subalgebra of g, then there exists a unique connected Lie subgroup H of G such that the Lie algebra
of H is h.

Proof. This follows from the global version of Frobenius theorem. We have that h is a subspace of
T1G. Let D be the left-invariant distribution on G defined by h. Then D is a smooth distribution,
and the fact that h is a subalgebra is equivalent to D being involutive. By Frobenius theorem,
there is a unique maximal integral manifold of D passing through 1, which we call H. Then, for
every h ∈ H, h−1H is also a maximal integral manifold of D passing through 1, which implies
that h−1H = H. It follows that H is a subgroup of G. Finally, the operations induced by G on
H are smooth because H is an integral manifold of an involutive distribution (see Theorem 1.62
in [War83]). �

0.4.7 Remark A closed subgroup H of a Lie group G has a unique structure of Lie subgroup of
G, and the underlying topology must be the induced topology, see [War83, p. 110].

A (Lie group) homomorphism between Lie groups G and H is map ϕ : G → H which is both
a group homomorphism and a smooth map. ϕ is called a isomorphism if, in addition, it is a
diffeomorphism. An automorphism of a Lie group is an isomorphism of the Lie group with itself.
A (Lie algebra) homomorphism between Lie algebras g and h is a linear map Φ : g → h which
preserves brackets. Φ is called a isomorphism if, in addition, it is bijective. An automorphism of a
Lie algebra is an isomorphism of the Lie algebra with itself.
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A homomorphism ϕ : G→ H between Lie groups induces a homomorphism dϕ : g → h between
the corresponding Lie algebras. Indeed, if X is a left invariant vector field on G, let Y be the
unique left invariant vector field on H such that Y1 = dϕ1(X1). Then

Yϕ(g) = d(Lϕ(g))1(Y1) = d(Lϕ(g) ◦ ϕ)1(X1) = d(ϕ ◦ Lg)1(X1) = dϕg(Xg),

so that X and Y |ϕ(G) are ϕ-related. Define Y = dϕ(X). Now, if X ′ ∈ g, then X ′ and ϕ(X ′) are
ϕ-related. Therefore [X,X ′] and [dϕ(X), dϕ(X ′)]|ϕ(G) are ϕ-related and thus

dϕ([X,X ′]) = [dϕ(X), dϕ(X ′)].

This shows that dϕ is a Lie algebra homomorphism.
Let ϕ : G→ H be a homomorphism between Lie groups. Then, for a left invariant vector field

X on G, t 7→ ϕ(expG(tX)) is a one-parameter subgroup of H with d
dt |t=0ϕ(exp

G tX) = dϕ(X). It
follows that

(0.4.8) ϕ ◦ expGX = expH ◦dϕ(X),

for every X. In particular, if K is a Lie subgroup of G, then the inclusion map i : K → G is a Lie
group homomorphism, so that the exponential map of G restricts to the exponential map of K,
and the connected component of K is generated by expG[k], where k is the Lie algebra of K. Since
K is an integral manifold of an involutive distribution (compare Theorem0.4.6), it follows also that

k = {X ∈ g : expG(tX) ∈ K, for all t ∈ R}.

0.4.9 Lemma Let ϕ : G → H be a homomorphism between Lie groups. Consider the induced
homomorphism between the corresponding Lie algebras dϕ : g → h. Then:
a. dϕ is injective if and only if the kernel of ϕ is discrete.
b. dϕ is surjective if and only if ϕ(G◦) = H◦.
c. dϕ is bijective if and only if ϕ is a covering (here we assume G and H connected).

Proof. (a) kerϕ is a closed normal subgroup of G, and its Lie algebra is ker dϕ.
(b) Since ϕ ◦ exp = exp ◦dϕ, and G◦ is generated by exp[g], ϕ(G◦) is the subgroup of H◦

generated by exp[dϕ(g)].
(c) Suppose G, H connected, dϕ : g → h an isomorphism. Then ϕ is surjective by (b). Let U

be a neighborhood of 1 in G such that ϕ : U → ϕ(U) := V is a diffeomorphism. We can choose U
so that U ∩ker dϕ = {1} by (a). Then ϕ−1(V ) = ∪n∈kerϕnU (disjoint union), and, since ϕ◦Ln = ϕ
for n ∈ kerϕ, we also have that ϕ|nU is a diffeomorphism onto V . This shows that ϕ is a covering.
The other half of the statement is clear. �

0.4.10 Theorem Let G1, G2 be Lie groups, and assume that G1 is connected and simply-connected.
Then, given a homomorphism Φ : g1 → g2 between the Lie algebras, there exists a unique homo-
morphism ϕ : G1 → G2 such that dϕ = Φ.

Proof. The graph of Φ, h = {(X,Φ(X)) : X ∈ g1 is a subalgebra of g1 ⊕ g2. Let H be the
subgroup of G1 ×G2 defined by h (Theorem 0.4.6). Consider the projections

Φi : g1 ⊕ g2 → gi, ϕi : G1 ×G2 → Gi,

for i = 1, 2. Since Φ1|h : h → gq is an isomorphism, we have that Φ = Φ2 ◦ (Φ1|h)−1 and
ϕ1 : H → G1 is a covering. Since G1 is simply-connected, ϕ1|H : H → G1 is an isomorphism of Lie
groups, and we can thus define ϕ = ϕ2 ◦ (ϕ1)

−1. This proves the existence part. The uniqueness
part comes from the fact that dϕ = Φ specifies ϕ in a neighborhood of 1 (by using the exponential
map), and G1 is generated by this neighborhood. �
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The adjoint representation

Let G be a Lie group, and denote its Lie algebra by g. The noncommutativity of G is organized
by the adjoint representation. In order to introduce it, let g ∈ G, and define a map Inng : G → G
by Inng(x) = gxg−1. Then Inng is an automorphism of G, which is called the inner automorphism
defined by g. The differential d(Inng) : g → g defines an automorphism of g, which we denote by
Adg. Then

AdgX =
d

dt

∣
∣
∣
t=0

Inn(g)(exp tX) =
d

dt

∣
∣
∣
t=0

g exp tXg−1.

0.4.11 Example In case G = GL(n,R) we have (cf. example 0.4.4)

AdgX =
d

dt

∣
∣
∣
t=0

getXg−1

=
d

dt

∣
∣
∣
t=0

et(gXg
−1)

= gXg−1.

⋆

Now we have a homomorphism

Ad : g ∈ G→ Adg ∈ GL(g),

which is called the adjoint representation of G on g. We have

AdgX = (dLg)1(dRg−1)1X1

= (dRg−1)1(dLg)1X1

= (dRg−1)1(Xg)

= (dR−1
g ◦X ◦Rg)1

=
(
(Rg−1)∗X

)

1

Finally, the differential d(Ad) defines the adjoint representation of g on g:

ad : X ∈ g → adX =
d

dt

∣
∣
∣
t=0

Adexp tX ∈ gl(g).

Since ϕt = Rexp tX is the flow of X, we get

adXY =
d

dt

∣
∣
∣
t=0

Adexp tXY =
d

dt

∣
∣
∣
t=0

(
(Rexp(−tX))∗Y

)

1
= (LXY )1 = [X,Y ].

As an important special case of (0.4.8) we have (recall example 0.4.4)

AdexpX = eadX

for all X ∈ g.

0.4.12 Lemma [X,Y ] = 0 if and only if expX expY = expY expX for all X, Y ∈ g. In that
case, exp(t(X +Y )) = exp tX exp tY for all t ∈ R. It follows that a connected Lie group is Abelian
if and only if its Lie algebra is Abelian.
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Proof. The first assertion is a special case of Proposition 0.3.13 using that ϕt = Rexp tX is
the flow of X and ψs = Rexp sY is the flow of Y . The second one follows from noting that both
t 7→ exp(t(X + Y )) and t 7→ exp tX exp tY are one-parameter groups with initial speed X + Y .
Finally, we have seen that g is Abelian if and only if exp[g] is Abelian, but the latter generates G◦.

�

0.4.13 Theorem Every connected Abelian Lie group G is isomorphic to Rn−k×T k. In particular,
a simply-connected connected Abelian Lie group is isomorphic to Rn and a compact connected
Abelian Lie group is isomorphic to Tn.

Proof. It follows from Lemma 0.4.12 that g is Abelian and exp : g → G is a homomorphism,
where g ∼= Rn as a Lie group, thus exp is a smooth covering by Lemma 0.4.9(c). Hence G is
isomorphic to Rn quotiented by the discrete group ker exp. �

Lie transformation groups

As mentioned above, Lie groups serve to model transformations of manifolds. Let G be a Lie group
and let M be a smooth manifold. A smooth action of G on M , also called a Lie transformation
group, is a homomorphism Φ of G into the group of diffeomorphisms of M such that the map

G×M →M, (g, p) 7→ Φ(g)p

is smooth. We usually write gp for Φ(g)p. In this case one says that G acts on M by diffeomor-
phisms. The isotropy group at p ∈M is the subgroup Gp of G consisting of all elements that fix p,
namely, Gp = { g ∈ G | gp = p }. The orbit through p ∈ M is the subset Gp of points of M that
can be attained from p under the action of G, namely, Gp = { gp | g ∈ G }. Note that the orbits of
an action partition the space into equivalence classes. The quotient space is also called orbit space.

0.4.14 Lemma Let ∼ be an equivalence relation on a topological space X such that the natural
projection π : X → X/ ∼ mapping each x ∈ X to its equivalence class [x] is an open map. Then
the quotient space X/ ∼ is Hausdorff if and only if ∼ is closed in X ×X.

Proof. Note that [x] 6= [y] if and only if (x, y) 6∈ ∼. Also, ∼ is closed if and only if for such
(x, y) there is an open neighborhood in X ×X, which can be assumed of the form V ×W for V ,
W open neighborhoods of x, y in X, resp., which does not meet ∼. However, the existence of such
neighborhoods V , W is the same as separating [x], [y] by open sets since π is continuous and open.

�

An action of G on M is called proper if the induced map

(0.4.15) G×M →M ×M, (g, p) 7→ (gp, p)

is a proper map (compare page 6). It is equivalent to require that for all compact subsets K,
L ⊂M , the set { g ∈ G | gK∩L 6= ∅ } be compact. In this form, one easily sees that this definition
extends the one given previously for discrete groups (see page 9). Note that properness of the
action is automatic if G is a compact Lie group.

0.4.16 Theorem If M is a smooth manifold and G is a Lie group acting freely and properly on M ,
then the quotient space M̄ = G\M endowed with the quotient topology admits a natutal structure
of smooth manifold such that the projection π : M → M̄ is a (surjective) submersion. Moreover
dim M̄ = dimM − dimG.
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Proof. We start by noting that π is an open map, as for an open set V ofM we have π−1(π(V )) =
∪g∈GgV is a union of open sets and thus open. It follows that a projection of a contable basis of
open sets of M yields a countable basis of open sets of M̄ . Moreover, M̄ is Hausdorff since the
range of the proper map (0.4.15) is closed and thus we can apply Lemma 0.4.14.

Fix p ∈M . The map ωp : G→M , ωp(g) = gp is smooth by definition of an action, injective by
freeness of the action and proper by properness of the action. It is also an immersion, as we show
now. Since

ωp ◦ Lg = Φ(g) ◦ ωp

and Lg : G → G, Φ(g) : M → M are diffeomorphisms, it suffices to check that ωp is an immersion
at 1 ∈ G. Let X ∈ g ∼= T1G. Then

X∗
p := dωp(X) =

d

dt

∣
∣
∣
t=0

(exp tX)p

defines a smooth vector field on M whose flow is ϕ̃t = Φ(exp tX), so X∗
p = 0 if and only if the

integral curve through p is constant, namely, Φ(exp tX)p = p for all t ∈ R which, due to freeness,
says that X = 0. Now ωp is a proper injective immersion and hence its image, the orbit Gp, is a
properly embedded submanifold of M .

Let us construct a local chart of M̄ around p̄ = π(p) = Gp ∈ M̄ . There is a local chart (U,ϕ) of
M adapted to Gp around p. Suppose dimM = n+ k, dimGp = n. We may assume that ϕ(p) = 0,
ϕ(U) ⊂ Rn+k = Rn×Rk is a product neighborhood V ×W of 0, where where V = ϕ(U)∩Rn and
W is a neighborhood of 0 in Rk. Define a smooth map F : G ×W → M by F (g, y) = gϕ−1(y).
Then dF(1,0) maps T1G onto Tp(Gp), which equals d(ϕ−1)0(R

n), and it maps T0W = Rk onto

d(ϕ−1)0(R
k). Since d(ϕ−1)0(R

n) + d(ϕ−1)(Rk)0 = TpM , F is a local diffeomorphism at (1, 0). By
shrinkingW and using that F (g, y) = Φ(g)F (1, y), we can ensure that F is a local diffeomorphism at
every point of G×W . Next we claim it is possible to further shrinkW to arrange that F is injective
and thus a diffeomorphism onto its image. Otherwise, there would be sequences (gi), (hi) in G,
(yi), (zi) in W such that yi → 0, zi → 0, giϕ

−1(yi) = hiϕ
−1(zi) but (gi, yi) 6= (hi, zi) for all i. Put

ki := h−1
i gi ∈ G. Since (kiϕ

−1(yi), ϕ
−1(yi)) = (ϕ−1(zi), ϕ

−1(yi)) → (p, p), the (kiϕ
−1(yi), ϕ

−1(yi))
are eventually contained in a compact subset of M ×M and thus, by properness of the action,
the ki are eventually contained in a compact subset of G; by passing to a subsequence, we may
assume that ki → k ∈ G. Now p = lim kiϕ

−1(yi) = kp which implies k = 1 by freeness of the
action. However, this contradicts the local injectivity of F at (1, 0), proving the claim. Now for
U = F (W ) we have a diffeomorphism ψ = F−1 : U → G ×W . Let ψ1 : U → G, ψ2 : U → W
denote the components of ψ. Note that U is a “fibered” neighborhood of Gp in the sense that
the nearby orbits Gq map to fibers of the form G × {y} where y = ψ2(q) ∈ W . Note also that
S := ψ−1({1} ×W ) is a “slice” near Gp in the sense that S meets each orbit in W in exactly one
point. The map ψ is G-equivariant in the sense that ψ(gq) = (gψ1(q), ψ2(q)) for g ∈ G, q ∈ U .
Now ψ2 induces a homeomorphism ψ̄2 : π(U) → W from the open neighborhood π(U) of p̄ in M̄
onto the open neighborhood W of 0 in Rk, which we take as a local chart of M̄ .

We can cover M̄ with local charts of this form. Suppose ψ̄′
2 : π(U ′) → W ′ is another chart

coming from ψ′ = (ψ′
1, ψ

′
2) : U

′ → G×W ′ such that π(U) ∩ π(U ′) 6= ∅. Let y ∈ ψ̄2(π(U) ∩ π(U ′)).
Then ψ̄−1

2 (y) = π(ψ−1(1, y)), so the transition map

ψ̄′
2ψ̄

−1
2 (y) = (ψ̄′

2π)ψ
−1ι(y) = ψ′

2ψ
−1ι(y)

is smooth, where ι(y) = (1, y). This proves that we have a smooth atlas.
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The commutative diagram

M ⊃ U
ψ−−−−→ G×W

π



y



y

M̄ ⊃ π(U) −−−−→
ψ̄2

W

shows that π is a submersion. �

0.4.17 Remarks (a) In the notation of the preceding theorem, the smooth map s : π(U) → M
defined by s(q̄) = ψ−1(1, ψ̄2(q̄)) has image S and satisfies π◦s = idπ(U). A smooth map s : O →M ,
where O is an open set of M̄ , satisfying π◦s = idO is called a (smooth) local section of π :M → M̄ .

(b) The proof of the preceding theorem has indeed revealed more, namely, π : M → M̄ is a
principal G-bundle. A smooth map π : M → B between smooth manifolds is called a principal
G-bundle, where G is a Lie group, if M is equipped with a free, right action of G and B can be
covered by neighborhoods O such that π−1(O) is diffeomorphic to O × G, where fibers of π are
mapped to fibers of O × G → O, and the action of G on M corresponds to its action by right
multiplication on the second factor of O × G. The smooth structure constructed on M̄ in the
theorem is the unique one that makes π :M → M̄ into a smooth principal G-bundle.

(c) A map f̄ : M̄ → N is smooth if and only if f := π ◦ f̄ :M → N is smooth. This essentially
follows from the commutative diagram in the proof.

As the most important application of Theorem 0.4.16, let G be a Lie group and let H be a
closed subgroup. Then H acts on G by right multiplication as follows:

Φ : H ×G→ G, Φ(h)g := Rh−1g

(note that the inverse in h−1 is necessary to have an action “on the left”, as we have defined).
This action is clearly free. It is also proper, because given compact subsets K, L ⊂ G, the set
{h ∈ H | hK ∩ L 6= ∅ } coincides with L−1K ∩ H, which is compact. The orbits of this action
coincide with the co-classes of G module H, namely, gH for g ∈ G. Hence

0.4.18 Theorem If G is a Lie group and H is a closed subgroup of G, then there exists a nat-
ural structure of smooth manifold on the quotient G/H such that the projection G → G/H is a
submersion. Moreover, dimG/H = dimG− dimH.

Let G be a Lie group acting by diffeomorphisms on a smooth manifold M . We say that the
action is transitive if for any p, q ∈ M there exists g ∈ G such that gp = q; equivalently, there is
only one orbit of G in M . In this case, we say that M is homogeneous under G or that M is a
homogeneous space. It is clear that G/H as in Theorem 0.4.18 is always homogeneous under G,
where G acts by left multiplication: given g1H, g2H ∈ G/H, the element g2g

−1
1 maps one point to

the other. Conversely:

0.4.19 Theorem Let G act transitively on M . Then, for any p ∈M , the orbit map ωp : G→M ,
ωp(g) = gp induces a diffeomorphism G/Gp →M .

Proof. Since Gp is a closed subgroup of G, it is a Lie subgroup of G (Remark 0.4.7) and thus
G/Gp is a smooth manifold. As is easy to see, the map ω̄p : gGp ∈ G/Gp 7→ gp ∈M is well defined,
bijective and smooth. As in the proof of Theorem 0.4.16, one shows that ω̄p is an immersion at
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1Gp and thus an immersion everywhere by equivariance. This already implies dimG/Gp ≤ dimM ,
and the image of ω̄p is a submanifold ofM , but the strictly inequality cannot hold as ω̄p is bijective
and the image of a smooth map from a smooth manifold into a strictly higher dimensional smooth
manifold has null measure (this result follows from the statement that the image of a smooth map
Rn → Rn+k with k > 0 has null measure and the second-countability of smooth manifolds). It
follows that ω̄p is a local diffeomorphism and hence a diffeomorphism. �

0.4.20 Corollary The smooth structure in G/H constructed in Theorem 0.4.18 is the unique one
that makes the action of G on G/H by left multiplication smooth.

0.5 Vector bundles ⋆
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C H A P T E R 1

Riemannian manifolds

1.1 Introduction

A Riemannian metric is a family of smoothly varying inner products on the tangent spaces of
a smooth manifold. Riemannian metrics are thus infinitesimal objects, but they can be used to
measure distances on the manifold. They were introduced by Riemann in his seminal work [Rie53]
in 1854. At that time, the concept of a manifold was extremely vague and, except for some known
global examples, most of the work of the geometers focused on local considerations, so the modern
concept of a Riemannian manifold took quite some time to evolve to its present form. We point
out the seemingly obvious fact that a given smooth manifold can be equipped with many different
Riemannian metrics. This is really one of the great insights of Riemann, namely, the separation
between the concepts of space and metric.

This chapter is mainly concerned with examples.

1.2 Riemannian metrics

Let M be a smooth manifold. A Riemannian metric g on M is a smoothly varying family of inner
products on the tangent spaces of M . Namely, g associates to each p ∈ M a positive definite
symmetric bilinear form on TpM ,

gp : TpM × TpM → R,

and the smoothness condition on g refers to the fact that the function

p ∈M 7→ gp(Xp, Yp) ∈ R

must be smooth for every locally defined smooth vector fields X, Y in M . A Riemannian manifold
is a pair (M, g) where M is a differentiable manifold and g is a Riemannian metric on M . Later
on (but not in this chapter), we will often simplify the notation and refer to M as a Riemannian
manifold where the Riemannian metric is implicit.

Let (M, g) be a Riemannian manifold. If (U,ϕ = (x1, . . . , xn)) is a chart of M , a local ex-
pression for g can be given as follows. Let { ∂

∂x1
, . . . , ∂

∂xn } be the coordinate vector fields, and let
{dx1, . . . , dxn} be the dual 1-forms. For p ∈ U and u, v ∈ TpM , we write

u =
∑

i

ui
∂

∂xi

∣
∣
∣
p

and v =
∑

j

vj
∂

∂xj

∣
∣
∣
p
.
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Then, by bilinearity,

gp(u, v) =
∑

i,j

uivjgp

(
∂

∂xi
,
∂

∂xj

)

=
∑

i,j

gij(p)u
ivj ,

where we have set

gij(p) = gp

(
∂

∂xi
,
∂

∂xj

)

.

Note that gij = gji. Hence we can write

(1.2.1) g =
∑

i,j

gij dx
i ⊗ dxj =

∑

i≤j
g̃ij dx

idxj ,

where g̃ii = gii, g̃ij = 2gij if i < j, and dxidxj = 1
2(dx

i ⊗ dxj + dxj ⊗ dxi).

Next, let (U ′, ϕ′ = (x′1, . . . , x′n)) be another chart of M such that U ∩ U ′ 6= ∅. Then

∂

∂x′i
=
∑

k

∂xk

∂x′i
∂

∂xk
,

so the relation between the local expressions of g with respect to (U,ϕ) and (U ′, ϕ′) is given by

g′ij = g

(
∂

∂x′i
,
∂

∂x′j

)

=
∑

k,l

∂xk

∂x′i
∂xl

∂x′j
gkl.

1.2.2 Examples (a) The canonical Euclidean metric is expressed in Cartesian coordinates by
g = dx2 + dy2. Changing to polar coordinates x = r cos θ, y = r sin θ yields that

dx = cos θdr − r sin θdθ and dy = sin θdr + r cos θdθ,

so

g = dx2 + dy2

= (cos2 θdr2 + r2 sin2 θdθ2 − 2r sin θ cos θdrdθ)

+(sin2 θdr2 + r2 cos2 θdθ2 + 2r sin θ cos θdrdθ)

= dr2 + r2dθ2.

(b) A classical example is the surface of revolution parametrized by

x(r, θ) = (a(r) cos θ, a(r) sin θ, b(r)),

where a > 0, b are smooth functions defined on some interval and the generatrix γ(r) = (a(r), 0, b(r))
has ||γ′||2 = (a′)2 + (b′)2 = 1, equipped with the metric g induced from R3. Namely, the tangent
spaces to the surface are subspaces of R3, so we can endow them with inner products just by taking
the restrictions of the Euclidean dot product in R3. The tangent spaces are spanned by the partial
derivatives xr = (∂x∂r ,

∂y
∂r ,

∂z
∂r ), xθ = (∂x∂θ ,

∂y
∂θ ,

∂z
∂θ ), and then g = (xr · xr) dr2 + 2(xr · xθ) drdθ + (xθ ·

xθ) dθ
2. Equivalently, from

dx = a′(r) cos θ dr − a(r) sin θ dθ

dy = a′(r) sin θ dr + a(r) cos θ dθ

dz = b′(r) dr
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we obtain

g = dx2 + dy2 + dz2

= dr2 + a(r)2 dθ2.

⋆

The functions gij are smooth on U and, for each p ∈ U , the matrix (gij(p)) is symmetric and
positive-definite. Conversely, a Riemannian metric in U can be obviously specified by these data.

1.2.3 Proposition Every smooth manifold can be endowed with a Riemannian metric.

Proof. LetM = ∪αUα be a covering ofM by domains of charts {(Uα, ϕα)}. For each α, consider
the Riemannian metric gα in Uα whose local expression ((gα)ij) is the identity matrix. Let {ρα}
be a smooth partition of unity of M subordinate to the covering {Uα}, and define

g =
∑

α

ραgα.

Since the family of supports of the ρα is locally finite, the above sum is locally finite, and hence g
is well defined and smooth, and it is bilinear and symmetric at each point. Since ρα ≥ 0 for all α
and

∑

α ρα = 1, it also follows that g is positive definite, and thus is a Riemannian metric in M . �

The proof of the preceding proposition suggests the fact that there exists a vast array of Rie-
mannian metrics on a given smooth manifold. Even taking into account equivalence classes of
Riemannian manifolds, the fact is that there many uninteresting examples of Riemannian mani-
folds, so an important part of the work of the differential geometer is to sort out relevant families
of examples.

Let (M, g) and (M ′, g′) be Riemannian manifolds. A isometry between (M, g) and (M ′, g′) is
diffeomorphism f : M → M ′ whose differential is a linear isometry between the corresponding
tangent spaces, namely,

gp(u, v) = g′f(p)(dfp(u), dfp(v)),

for every p ∈ M and u, v ∈ TpM . We say that (M, g) and (M ′, g′) are isometric Riemannian
manifolds if there exists an isometry between them. This completes the definition of the category
of Riemannian manifolds and isometric maps. Note that the set of all isometries of a Riemannian
manifold (M, g) forms a group, called the isometry group of (M, g), with respect to the operation
of composition of mappings, which we will denote by Isom(M, g). Here we quote without proof the
following important theorem [MS39].

1.2.4 Theorem (Myers-Steenrod) The isometry group Isom(M, g) of a Riemannian manifold
(M, g) has the structure of a Lie group with respect to the compact-open topology. Its isotropy
subgroup at an arbitrary fixed point is compact. Moreover, Isom(M, g) is compact if M is compact.

The isometry group is a Riemannian-geometric invariant in the sense that if f : (M, g) → (M ′, g)
is an isometry between Riemannian manifolds, then α 7→ f ◦ α ◦ f−1 defines an isomorphism
Isom(M, g) → Isom(M ′, g′).

A local isometry from (M, g) into (M ′, g′) is a smooth map f :M →M ′ satisfying the condition
that every point p ∈M admits a neighborhood U such that the restriction of f to U is an isometry
onto its image. In particular, f is a local diffeomorphism. Note that a local isometry which is
bijective is an isometry.

27



1.3 Examples

The Euclidean space

The Euclidean space is Rn equipped with its standard scalar product. The essential feature of Rn

as a smooth manifold is that, since it is the model space for finite dimensional smooth manifolds, it
admits a global chart given by the identity map. Of course, the identity map establishes canonical
isomorphisms of the tangent spaces of Rn at each of its points with Rn itself. Therefore an
arbitrary Riemannian metric in Rn can be viewed as a smooth family of inner products in Rn. In
particular, by taking the constant family given by the standard scalar product, we get the canonical
Riemannian structure in Rn. In this book, unless explicitly stated, we will always use its canonical
metric when referring to Rn as a Riemannian manifold.

If (x1, . . . , xn) denote the standard coordinates on Rn, then it is readily seen that the local
expression of the canonical metric is

(1.3.1) dx21 + · · ·+ dx2n.

More generally, if a Riemannian manifold (M, g) admits local coordinates such that the local
expression of g is as in (1.3.1), then (M, g) is called flat and g is called a flat metric on M . Note
that, if g is a flat metric on M , then the coordinates used to express g as in (1.3.1) immediately
define a local isometry between (M, g) and Euclidean space Rn.

Riemannian submanifolds and isometric immersions

Let (M, g) be a Riemannian manifold and consider an immersed submanifold ι : N → M . This
means that N is a smooth manifold and ι is an injective immersion. Then the Riemannian metric
g induces a Riemannian metric gN in N as follows. Let p ∈ N . The tangent space TpN can be
viewed as a subspace of TpM via the injective map dιp : TpN → Tι(p)M . We define (gN )p to be
simply the restriction of g to this subspace, namely,

(gN )p(u, v) = gι(p)(dιp(u), dιp(v)),

where u, v ∈ TpN . It is clear that gN is a Riemannian metric. We call gN the induced Riemannian
metric in N , and we call (N, gN ) a Riemannian submanifold of (M, g).

Note that the definition of gN makes sense even if ι is an immersion that is not necessarily
injective. In general, we call gN the pulled-back metric, write gN = ι∗g, and say that ι : (N, gN ) →
(M, g) is an isometric immersion (of course, any immersion must be locally injective). On another
note, an isometry f : (M, g) → (M ′, g′) is a diffeomorphism satisfying f∗(g′) = g.

A very important particular case is that of Riemannian submanifolds of Euclidean space (com-
pare example 1.2.2(b)) Historically speaking, the study of Riemannian manifolds was preceded by
the theory of curves and surfaces in R3. In the classical theory, one uses parametrizations instead
of local charts, and these objects are called parametrized curves and parametrized surfaces since
they usually already come with the parametrization. In the most general case, the parametrization
is only assumed to be smooth. One talks about a regular curve or a regular surface if one wants
the parametrization to be an immersion. Of course, in this case it follows that the parametrization
is locally an embedding. This is good enough for the classical theory, since it is really concerned
with local computations.
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The sphere Sn

The canonical Riemannian metric in the sphere Sn is the Riemannian metric induced by its embed-
ding in Rn+1 as the sphere of unit radius. When one refers to Sn as a Riemannian manifold with its
canonical Riemannian metric, sometimes one speaks of “the unit sphere”, or “the metric sphere”,
or the “Euclidean sphere”, or “the round sphere”. One also uses the notation Sn(R) to specify
a sphere of radius R embedded in Rn+1 with the induced metric. In this book, unless explicitly
stated, we will always use the canonical metric when referring to Sn as a Riemannian manifold.

Product Riemannian manifolds

Let (Mi, gi), where i = 1, 2, denote two Riemannian manifolds. Then the product smooth manifold
M = M1 ×M2 admits a canonical Riemannian metric g, called the product Riemannian metric,
given as follows. The tangent space of M at a point p = (p1, p2) ∈ M1 ×M2 splits as TpM =
Tp1M1 ⊕ Tp2M2. Given u, v ∈ TpM , write accordingly u = u1 + u2 and v = v1 + v2, and define

gp(u, v) = gp1(u1, v1) + gp2(u2, v2).

It is clear that g is a Riemannian metric. Note that it follows from this definition that Tp1M1⊕{0}
is orthogonal to {0} ⊕ Tp2M2. We will sometimes write that (M, g) = (M1, g1)× (M2, g2), or that
g = g1 + g2.

It is immediate to see that Euclidean space Rn is the Riemannian product of n copies of R.

Conformal Riemannian metrics

Let (M, g) be a Riemannian manifold. If f is a nowhere zero smooth function on M , then f2g
defined by

(f2g)p(u, v) = f2(p)gp(u, v),

where p ∈ M , u, v ∈ TpM , is a new Riemannian metric on M which is said to be conformal to g.
The idea behind this definition is that g and f2g define the same angles between pairs of tangent
vectors. We say that (M, g) is conformally flat if M can be covered by open sets on each of which
g is conformal to a flat metric.

A particular case happens if f is a nonzero constant in which f2g is said to be homothetic to g.

The real hyperbolic space RHn

To begin with, consider the Lorentzian inner product in Rn+1 given by

〈x, y〉 = −x0y0 + x1y1 + · · ·+ xnyn,

where x = (x0, . . . , xn), y = (y0, . . . , yn) ∈ Rn+1. We will write R1,n to denote Rn+1 with such
a Lorentzian inner product. Note that if p ∈ R1,n is such that 〈p, p〉 < 0, then the restriction of
〈, 〉 to 〈p〉⊥ (the the orthogonal complement to p with regard to 〈, 〉) is positive-definite (compare
Exercise 15). Note also that the equation 〈x, x〉 = −1 defines a two-sheeted hyperboloid in R1,n.

Now we can define the real hyperbolic space as the following submanifold of R1,n,

RHn = {x ∈ R1,n | 〈x, x〉 = −1 and x0 > 0 },

equipped with a Riemannian metric g given by the restriction of 〈, 〉 to the tangent spaces at its
points. Since the tangent space of the hyperboloid at a point p is given by 〈p〉⊥, the Riemannian
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metric g turns out to be well defined. Actually, this submanifold is sometimes called the hyperboloid
model of RHn (compare Exercises 3 and 4). This model brings about the duality between Sn and
RHn in the sense that one can think of the hyperboloid as the sphere of unit imaginary radius in
R1,n. Of course, as a smooth manifold, RHn is diffeomorphic to Rn.

Flat tori

A lattice Γ in Rn (or, more generally, in a real vector space) is the additive subgroup of Rn

consisting of integral linear combinations of the vectors in a fixed basis. Namely, if {v1, . . . , vn} is
a basis of Rn, then it defines the lattice Γ = {∑n

j=1mjvj | m1, . . . ,mn ∈ Z }. For a given lattice Γ
we consider the quotient group Rn/Γ in which two elements p, q ∈ Rn are identified if q − p ∈ Γ.
We will show that M = Rn/Γ has the structure of a compact smooth manifold of dimension n
diffeomorphic to a product of n copies of S1, which we denote by Tn. Moreover there is a naturally
defined flat metric gΓ on M ; the resulting Riemannian manifold is called a flat torus. We also
denote it by (Tn, gΓ).

Relevant for the topology of M will be the discreteness of Γ as an additive subgroup of Rn,
namely: any bounded subset of Rn meets Γ in finitely many points only. In fact, if p =

∑n
j=1mjvj

is a lattice point viewed as a column vector, then

p =M






m1
...
mn






where M is the (invertible) matrix having the v1, . . . , vn as columns. We obtain

|mi| ≤





n∑

j=1

m2
j





1/2

≤ ||M−1|| ||p||

for all i = 1, . . . , n, where || · || denotes the Euclidean norm. Therefore if we require p to lie in a
given bounded subset of Rn, then there are only finitely many possibilities for the integers mj , and
thus only finitely many such lattice points. Note that discreteness of Γ implies that Γ, and thus
any equivalence class p+ Γ, is a closed subset of Rn.

EquipM with the quotient topology induced by the canonical projection π : Rn →M that maps
each p ∈ Rn to its equivalence class [p] = p+Γ. Then π is continuous. It follows thatM is compact
since it coincides with the image of {∑n

j=1 xjvj | 0 ≤ xj ≤ 1 } under the projection π. Moreover,

π is an open map, as for an open subset W of Rn we have that π−1(π(W )) = ∪γ∈Γ (W + γ) is a
union of open sets and thus open. It follows that the projection of a countable basis of open sets
of Rn is a countable basis of open sets of M . We also see that the quotient topology is Hausdorff.
In fact, given [p], [q] ∈ Rn/Γ, [p] 6= [q], the minimal distance rpq from p to a point in the closed
subset q + Γ is positive. Let Wp, Wq be the balls of radius

rpq
2 centered at p, q, respectively. A

point x ∈ Wp ∩ (Wq + Γ) satisfies d(x, p) < r
2 and d(x, q + γ) < r

2 for some γ ∈ Γ, and therefore
d(p, q+ γ) ≤ d(p, x)+ d(x, q+ γ) < r leading to a contradiction. It follows that Wp ∩ (Wq +Γ) = ∅
and hence π(Wp), π(Wq) are disjoint open neighborhoods of [p], [q], respectively.

We next check that π : Rn → M is a covering. In fact, discreteness of Γ implies that the
minimal distance s from a non-zero lattice point to the origin is positive. Note that s is also the
minimal distance from any given point p ∈ Rn to another point in p + Γ. Let V be the ball of
radius s

2 centered at p. Then V ∩ (V + γ) = ∅ 0for all γ ∈ Γr {0}. Note also that π : V → π(V ) is
continuous, open and injective, thus a homemorphism. Now π−1(π(V )) = ∪γ∈Γ(V +γ) is a disjoint
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union of open sets on each of which π is a homeomorphism onto π(V ), proving that π(V ) is an
evenly covered neighborhood and hence π is a covering map. Since Rn is simply-connected, this is
the universal covering and the fundamental group of M is isomorphic to Γ.

Now we have natural local charts for M defined on any evenly covered neighborhood U = π(V )
as above. Indeed, write π−1U = ∪γ∈Γ(V + γ) and take as chart ϕV = (π|V )−1 : U → V . If
U ′ = π(V ′) is another evenly covered neighborhood as above with U ∩U ′ 6= ∅, consider a connected
component W of U ∩ U ′, take p ∈ V such that [p] ∈W and note that there is a unique γ ∈ Γ such
that p+ γ ∈ V ′. Now τγ ◦ ϕV |W and ϕV ′ |W , where τγ denotes the translation by γ, are both lifts
of the identity map of π(W ) and coincide on [p], hence τγ ◦ϕV |W = ϕV ′ |W (Theorem 0.2.12). This
proves that the transition map ϕV ′ ◦ ϕ−1

V coincides with τγ on W and is thus smooth. In this way
we have defined a smooth atlas for M . The covering map π : Rn → M is smooth and in fact a
local diffeomorphism because π|V composed with ϕV on the left yields as local representation the
identity, so we indeed have a smooth covering. The smooth structure on M is the unique one that
makes π : Rn → M into a smooth covering (this is more than a covering whose covering map is
smooth, compare page 8!).

The transition maps of the above atlas are restrictions of translations of Rn and thus isometries.
In account of this, M acquires a natural quotient Riemannian metric gΓ, which is the unique one
making the covering map π into a local isometry. In fact this requirement implies uniqueness
of gΓ, as it imposes that on an evenly covered neighborhood U = π(V ) as above, the local chart
ϕV = (π|V )−1 must be a local isometry and so gΓ = ϕ∗

V g on U , where g denotes the canonical metric
in Rn. To have existence of gΓ, we need to check that it is well defined, namely, for another evenly
covered neighborhood U ′ = π(V ′) as above with U ∩ U ′ 6= ∅ it holds that ϕ∗

V g = ϕ∗
V ′g on U ∩ U ′.

However, this follows from ϕ∗
V ′g =

(
(ϕV ′ϕ−1

V )ϕV
)∗
g = ϕ∗

V (ϕV ′ϕ−1
V )∗g = ϕ∗

V g as (ϕV ′ϕ−1
V )∗g = g.

Note that gΓ is a flat metric.
As a smooth manifold,M is diffeomorphic to the n-torus Tn. In fact, define a map f : Rn → Tn

by setting

f
( n∑

j=1

xjvj

)

= (e2πix1 , . . . , e2πixn),

where we view S1 as the set of unit complex numbers. Then f is constant on Γ, so it induces a
bijection f̄ :M → Tn. Suitable restrictions of

(e2πix1 , . . . , e2πixn) 7→ (x1, . . . , xn)

define local charts of Tn whose domains cover it. Now f = f̄ ◦ π composed on the left with such
charts of Tn give

∑n
j=1 xjvj 7→ (x1, . . . , xn), the restriction of an invertible linear map. It follows

that f̄ is a local diffeomorphism and hence a diffeomorphism.
We remark that different lattices may give rise to nonisometric flat tori, although they will

always be locally isometric one to the other since they are all isometrically covered by Euclidean
space; in other words, for two given lattices Γ, Γ′, suitable restrictions of the identity map id :
Rn → Rn induce locally defined isometries Rn/Γ → Rn/Γ′.

One way to globally distinguish the isometry classes of tori obtained from different lattices is
to show that they have different isometry groups. To fix ideas, let n = 2, and consider in R2 the

lattices Γ, Γ′ respectively generated by the bases {(1, 0), (0, 1)} and {(1, 0), (12 ,
√
3
2 )}. Then R2/Γ is

called a square flat torus and R2/Γ′ is called an hexagonal flat torus. The isotropy subgroup of the
square torus at an arbitrary point is isomorphic to the dihedral group D4 (of order 8) whereas the
isotropy subgroup of the hexagonal torus at an arbitrary point is isomorphic to the dihedral group
D3. Hence R2/Γ and R2/Γ′ are not isometric. See exercise 9 for a characterization of isometric
flat tori.
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We finish the discussion of this example by noting that we could have introduced the smooth
structure on M and the smooth covering π : Rn → M by invoking Theorem 0.2.13, which we
have avoided only for pedagogical reasons. In fact, the elements of Γ can be identified with the
translations of Rn that they define and, in this way, Γ becomes a discrete group acting on Rn.
Plainly, the action is free. It is also proper, as this follows from the existence of r > 0 such that
d(p, q+Γ) ≥ r if p 6= q and d(p, p+Γr{0}) ≥ r, which was shown above. In the next subsection, we
follow and extend this alternative approach to incorporate the construction of the quotient metric.

Riemannian coverings

A Riemannian covering between two Riemannian manifolds is a smooth covering that is also a
local isometry. For instance, for a lattice Γ in Rn the projection π : Rn → Rn/Γ is a Riemannian
covering.

If M̃ is a smooth manifold and Γ is a discrete group acting freely and properly by diffeomor-
phisms on M̃ , then the quotient space M = Γ\M̃ endowed with the quotient topology admits a
unique structure of smooth manifold such that the projection π : M̃ → M is a smooth covering,
owing to Theorem 0.2.13. If we assume, in addition, that M̃ is equipped with a Riemannian metric
g̃ and Γ acts on M̃ by isometries, then we can show that there is a unique Riemannian metric
g on M , called the quotient metric, so that π : (M̃, g̃) → (M, g) becomes a Riemannian cover-
ing, as follows. Around any point p ∈ M , there is an evenly covered neighborhood U such that
π−1U = ∪i∈I Ũi. If π is to be a local isometry, we must have

g =
(

(π|Ũi
)−1
)∗
g̃

on U , for any i ∈ I. In more pedestrian terms, we are forced to have

(1.3.2) gq(u, v) = g̃q̃i((dπq̃i)
−1(u), (dπq̃i)

−1(v)),

for all q ∈ U , u, v ∈ TqM , i ∈ I, where q̃i = (π|Ũi
)−1(q) is the unique point in the fiber π−1(q) that

lies in Ũi. We claim that this definition of gq does not depend on the choice of point in π−1(q). In
fact, if q̃j is another point in π

−1(q), there is a unique γ ∈ Γ such that γ(q̃i) = q̃j . Since π ◦ γ = π,
the chain rule gives that dπq̃j ◦ dγq̃i = dπq̃i , so

g̃q̃i((dπq̃i)
−1(u), (dπq̃i)

−1(v)) = g̃q̃i((dγq̃i)
−1(dπq̃j )

−1(u), (dγq̃i)
−1(dπq̃j )

−1(v))

= g̃q̃j ((dπq̃j )
−1(u), (dπq̃j )

−1(v)),

since dγq̃i : Tq̃iM̃ → Tq̃jM̃ is a linear isometry, checking the claim. Note that g is smooth since it
is locally given as a pull-back metric.

On the other hand, if we start with a Riemannian manifold (M, g) and a smooth covering
π : M̃ → M , then π is in particular an immersion, so we can endow M̃ with the pulled-back
metric g̃ and π : (M̃, g̃) → (M, g) becomes a Riemannian covering. Let Γ denote the group of
deck transformations of π : M̃ → M . An element γ ∈ Γ satisfies π ◦ γ = π. Since π is a local
isometry, we have that γ is a local isometry, and being a bijection, it must be a global isometry.
Hence the group Γ consists of isometries of M̃ . If we assume, in addition, that π : M̃ → M is a
regular covering (meaning that Γ acts transitively on each fiber of π; this is true, for instance, if
π : M̃ →M is the universal covering), then M is diffeomorphic to the orbit space Γ\M̃ , and since
we already know that π : (M̃, g̃) → (M, g) is a Riemannian covering, it follows from the uniqueness
result of the previous paragraph that g must be the quotient metric of g̃.
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The real projective space RPn

As a set, RPn is the set of all lines through the origin in Rn+1. It can also be naturally viewed as
a quotient space in two ways. In the first one, we define an equivalence relation among points in
Rn+1r{0} by declaring x and y to be equivalent if they lie in the same line, namely, if there exists
λ ∈ R r {0} such that y = λx. In the second one, we simply note that every line meets the unit
sphere in Rn+1 in two antipodal points, so we can also view RPn as a quotient space of Sn and,
in this case, x, y ∈ Sn are equivalent if and only if y = ±x. Of course, in both cases RPn acquires
the same quotient topology.

Next, we reformulate our point of view slightly by introducing the group Γ consisting of two
isometries of Sn, namely the identity map and the antipodal map. Then Γ obviously acts freely and
properly (it is a finite group!) on Sn, and the resulting quotient smooth structure makes RPn into
a smooth manifold. Furthermore, as the action of Γ is also isometric, RPn immediately acquires a
Riemannian metric such that π : Sn → RPn is a Riemannian covering.

The Klein bottle

Let M̃ = R2, let {v1, v2} be a basis of R2, and let Γ be the discrete group of transformations of
R2 generated by the affine linear maps

γ1(x1v1 + x2v2) =

(

x1 +
1

2

)

v1 − x2v2 and γ2(x1v1 + x2v2) = x1v1 + (x2 + 1)v2.

It is easy to see that Γ acts freely and properly on R2, so we get a quotient manifold R2/Γ which is
called the Klein bottle K2. It is a compact non-orientable manifold, since γ1 reverses the orientation
of R2. It follows that K2 cannot be embedded in R3 by the Jordan-Brouwer separation theorem;
however, it is easy to see that it can be immersed there.

Consider R2 equipped with its canonical metric. Note that γ2 is always an isometry of R2, but
so is γ1 if and only if the basis {v1, v2} is orthogonal. In this case, Γ acts by isometries on R2 and
K2 inherits a flat metric so that the projection R2 → K2 is a Riemannian covering.

Riemannian submersions

Let π : M → N be a smooth submersion between two smooth manifolds. Then Vp = ker dπp
for p ∈ M defines a smooth distribution on M which is called the vertical distribution. Clearly,
V can also be given by the tangent spaces of the fibers of π. In general, there is no canonical
choice of a complementary distribution of V in TM , but in the case in which M comes equipped
with a Riemannian metric, one can naturally construct such a complement H by setting Hp to be
the orthogonal complement of Vp in TpM . Then H is a smooth distribution which is called the
horizontal distribution. Note that dπp induces an isomorphism between Hp and Tπ(p)N for every
p ∈M .

Having these preliminary remarks at hand, we can now define a smooth submersion π : (M, g) →
(N, h) between two Riemannian manifolds to be a Riemannian submersion if dπp induces an isom-
etry between Hp and Tπ(p)N for every p ∈M . Note that Riemannian coverings are particular cases
of Riemannian submersions.

Let (M, g) and (N, h) be Riemannian manifolds. A quite trivial example of a Riemannian
submersion is the projection (M × N, g + h) → (M, g) (or (M × N, g + h) → (N, h)). More
generally, if f is a nowhere zero smooth function on N , the projection from (M ×N, f2g+ h) onto
(N, h) is a Riemannian submersion. In this case, the fibers of the submersion are homothetic but
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not necessarily isometric one to the other. A Riemannian manifold of the form (M ×N, f2g + h)
is called a warped product .

Recall that if M̃ is a smooth manifold and G is a Lie group acting freely and properly on
M̃ , then the quotient space M = G\M̃ endowed with the quotient topology admits a unique
structure of smooth manifold such that the projection π : M̃ → M is a (surjective) submersion
(Theorem 0.4.16). If in addition we assume that M̃ is equipped with a Riemannian metric g̃ and
G acts on M̃ by isometries, then we can show that there is a unique Riemannian metric g on M ,
called the quotient metric, so that π : (M̃, g̃) → (M, g) becomes a Riemannian submersion. Indeed,
given a point p ∈M and tangent vectors u, v ∈ TpM , we set

(1.3.3) gp(u, v) = g̃p̃(ũ, ṽ),

where p̃ is any point in the fiber π−1(p) and ũ, ṽ are the unique vectors in Hp̃ satisfying dπp̃(ũ) = u
and dπp̃(ṽ) = v. The proof that g̃ is well defined is similar to the proof that the quotient metric is
well defined in the case of a Riemannian covering, namely, choosing a different point p̃′ ∈ π−1(p),
one has unique vectors ũ′, ṽ′ ∈ Hp̃′ that project to u, v, but g̃p̃′(ũ

′, ṽ′) gives the same result as
above because p̃′ = Φ(g)p̃ for some g ∈ G, d(Φ(g))p̃ : Hp̃ → Hp̃′ is an isometry and maps ũ, ṽ
to ũ′, ṽ′ respectively. The proof that g̃ is smooth is also similar, but needs an extra ingredient.
Let Pp̃ : Tp̃M̃ → Hp̃ denote the orthogonal projection. It is known that π : M̃ → M admits
local sections, so let s : U → M̃ be a local section defined on an open set U of M . Now we can
rewrite (1.3.3) as

gq(u, v) = g̃s(q)(Ps(q)dsq(u), Ps(q)dsq(v)),

where q ∈ U . Since V as a distribution is locally defined by smooth vector fields, it is easy to check
that P takes locally defined smooth vector fields on TM to locally defined smooth vector fields on
TM . It follows that g is smooth. Finally, the requirement that π be a Riemannian submersion
forces g to be given by formula (1.3.3), and this shows the uniqueness of g.

The complex projective space CPn

The definition of CPn is similar to that of RPn in that we replace real numbers by complex
numbers. Namely, as a set, CPn is the set of all complex lines through the origin in Cn+1, so it can
be viewed as the quotient of Cn+1r{0} by the multiplicative group Cr{0} as well as the quotient
of the unit sphere S2n+1 of Cn+1 (via its canonical identification with R2n+2) by the multiplicative
group of unit complex numbers S1. Here the action of S1 on S2n+1 is given by multiplication of
the coordinates (since C is commutative, it is unimportant whether S1 multiplies on the left or
on the right). This action is clearly free and it is also proper since S1 is compact. Further, the
multiplication Lz : S

2n+1 → S2n+1 by a unit complex number z ∈ S1 is an isometry. In fact, S2n+1

has the induced metric from R2n+2, the Euclidean scalar product is the real part of the Hermitian
inner product (·, ·) of Cn+1 and (Lzx, Lzy) = (zx, zy) = ||z||2(x, y) = (x, y) for all x, y ∈ Cn+1. It
follows that CPn = S2n+1/S1 has the structure of a compact smooth manifold of dimension 2n.
Moreover there is a natural Riemannian metric which makes the projection π : S2n+1 → CPn

into a Riemannian submersion. This quotient metric is classically called the Fubini-Study metric
on CPn.

We want to explicitly construct the smooth structure on CPn and prove that π : S2n+1 → CPn

is a submersion in order to better familiarize ourselves with such an important example. For each
p ∈ CPn, we construct a local chart around p. View p as a one-dimensional subspace of Cn+1 and
denote its Hermitian orthogonal complement by p⊥. The subset of all lines which are not parallel
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to p⊥ is an open subset of CPn, which we denote by CPn r p⊥. Fix a unit vector p̃ lying in the
line p. The local chart is

ϕp : CPn r p⊥ → p⊥, q 7→ 1

(q̃, p̃)
q̃ − p̃,

where q̃ is any nonzero vector lying in q. In other words, q meets the affine hyperplane p̃ + p⊥

at a unique point 1
(q̃,p̃) q̃ which we orthogonally project to p⊥ to get ϕp(q). (Note that p⊥ can

be identified with R2n simply by choosing a basis.) The inverse of ϕp is the map that takes
v ∈ p⊥ to the line through p̃ + v. Therefore, for p′ ∈ CPn, we see that the transition map
ϕp

′ ◦ (ϕp)−1 : { v ∈ p⊥ | v + p̃ 6∈ p′⊥ } → { v′ ∈ p′⊥ | v′ + p̃′ 6∈ p⊥ } is given by

(1.3.4) v 7→ 1

(v + p̃, p̃′)
(v + p̃)− p̃′,

and hence smooth.
Next we prove that the projection π : S2n+1 → CPn is a smooth submersion. Let p̃ ∈ S2n+1.

Since the fibers of π are just the S1-orbits, the vertical space Vp̃ = R(ip̃). It follows that the
horizontal space Hp̃ ⊂ Tp̃S

2n+1 is the Euclidean orthogonal complement of R{p̃, ip̃} = Cp̃ in
C2n+1, namely, p⊥ where p = π(p̃). It suffices to check that dπp̃ is an isomorphism from Hp̃

onto TpCP
n, or, d(ϕp ◦ π)p̃ is an isomorphism from p⊥ to itself. Let v be a unit vector in p⊥.

Then t 7→ cos t p̃+ sin t v is a curve in S2n+1 with initial point p̃ and initial speed v, so using that
(cos t p̃+ sin t v, p̃) = cos t we have

d(ϕp ◦ π)p̃(v) =
d

dt

∣
∣
∣
t=0

(ϕp ◦ π)(cos t p̃+ sin t v)

=
d

dt

∣
∣
∣
t=0

1

cos t
(cos t p̃+ sin t v)− p̃

= v,

completing the check.

One-dimensional Riemannian manifolds

Let (M, g) be a Riemannian manifold and let γ : [a, b] → M be a piecewise C1 curve. Then the
length of γ is defined to be

(1.3.5) L(γ) =

∫ b

a
gγ(t)(γ

′(t), γ′(t))1/2 dt.

It is easily seen that the length of a curve does not change under re-parametrization. Moreover,
every regular curve (i.e. satisfying γ′(t) 6= 0 for all t) admits a natural parametrization given by
arc-length. Namely, let

s(t) =

∫ t

a
gγ(τ)(γ

′(τ), γ′(τ))1/2 dτ.

Then
ds

dt
= gγ(t)(γ

′(t), γ′(t))1/2(t) > 0, so s can be taken as a new parameter, and then

L(γ|[0,s]) = s

and

(1.3.6) (γ∗g)t = gγ(t)(γ
′(t), γ′(t))dt2 = ds2.
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Suppose now that (M, g) is a one-dimensional Riemannian manifold. Then any connected
component of M is diffeomorphic either to R or to S1. In any case, a neighborhood of any point
p ∈ M can be viewed as a regular smooth curve in M and, in a parametrization by arc-length,
the local expression of the metric g is the same, namely, given by (1.3.6). It follows that all the
one-dimensional Riemannian manifolds are locally isometric among themselves.

Lie groups ⋆

The natural class of Riemannian metrics to be considered in Lie groups is the class of Riemannian
metrics that possess some kind of invariance, be it left, right or both. Let G be a Lie group.
A left-invariant Riemannian metric on G is a Riemannian metric with respect to which the left
translations of G are isometries. Similarly, a right-invariant Riemannian metric is defined. A
Riemannian metric on G that is both left- and right-invariant is called a bi-invariant Riemannian
metric.

Left-invariant Riemannian metrics (henceforth, left-invariant metrics) are easy to construct on
any given Lie group G. In fact, given any inner product 〈, 〉 in its Lie algebra g, which we identify
with the tangent space at the identity T1G, one sets g1 = 〈, 〉 and uses the left translations to pull
back g1 to the other tangent spaces, namely one sets

gx(u, v) = g1
(
d(Lx−1)x(u) , d(Lx−1)x(v)

)
,

where x ∈ G and u, v ∈ TxG. This defines a smooth Riemannian metric, since g(X,Y ) is constant
(and hence smooth) for any pair (X,Y ) of left-invariant vector fields, and any smooth vector field
on G is a linear combination of left-invariant vector fields with smooth functions as coefficients. By
the very construction of g, the d(Lx)1 for x ∈ G are linear isometries, so the composition of linear
isometries d(Lx)y = d(Lxy)1 ◦ d(Ly)−1

1 is also a linear isometry for x, y ∈ G. This checks that all
the left-translations are isometries and hence that g is left-invariant. (Equivalently, one can define
g by choosing a global frame of left-invariant vector fields on G and declaring it to be orthonormal
at every point of G.) It follows that the set of left-invariant metrics in G is in bijection with the
set of inner products on g. Of course, similar remarks apply to right-invariant metrics.

Bi-invariant metrics are more difficult to come up with. Starting with a fixed left-invariant
metric g on G, we want to find conditions for g to be also right-invariant. Reasoning similarly as
in the previous paragraph, we see that it is necessary and sufficient that the d(Rx)1 for x ∈ G be
linear isometries. Further, by differentiating the obvious identity Rx = Lx ◦ Inn(x−1) at 1, we get
that

d(Rx)1 = d(Lx)1 ◦Ad(x−1)

for x ∈ G. From this identity, we get that g is right-invariant if and only if the Ad(x) : g → g for
x ∈ G are linear isometries with respect to 〈, 〉 = g1. In this case, 〈, 〉 is called an Ad-invariant
inner product on g.

In view of the previous discussion, applying the following proposition to the adjoint repre-
sentation of a compact Lie group on its Lie algebra yields that any compact Lie group admits a
bi-invariant Riemannian metric.

1.3.7 Proposition Let ρ : G → GL(V ) be a representation of a Lie group on a real vector space
V such that the closure ρ(G) is relatively compact in GL(V ). Then there exists an inner product
〈, 〉 on V with respect to which the ρ(x) for x ∈ G are orthogonal transformations.

Proof. Let G̃ denote the closure of ρ(G) in GL(V ). Then ρ factors through the inclusion
ρ̃ : G̃→ GL(V ) and it suffices to prove the result for ρ̃ instead of ρ. By assumption, G̃ is compact,
so without loss of generality we may assume in the following that G is compact.
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Let 〈, 〉0 be any inner product on V and fix a right-invariant Haar measure dx on G. Set

〈u, v〉 =
∫

G
〈ρ(x)u, ρ(x)v〉0 dx,

where u, v ∈ V . It is easy to see that this defines a positive-definite bilinear symmetric form 〈, 〉
on V . Moreover, if y ∈ G, then

〈ρ(y)u, ρ(y)v〉 =

∫

G
〈ρ(x)ρ(y)u, ρ(x)ρ(y)v〉0 dx

=

∫

G
〈ρ(xy)u, ρ(xy)v〉0 dx

= 〈u, v〉,

where in the last equality we have used that dx is right-invariant. Note that we have used the
compactness of G only to guarantee that the above integrands have compact support. �

In later chapters, we will explain the special properties that bi-invariant metrics on Lie groups
have.

Homogeneous spaces ⋆

It is apparent that for a generic Riemannian manifold (M, g), the isometry group Isom(M, g) is
trivial. Indeed, Riemannian manifolds with large isometry groups have a good deal of symmetries.
In particular, in the case in which Isom(M, g) is transitive on M , (M, g) is called a Riemannian
homogeneous space or a homogeneous Riemannian manifold . Explicitly, this means that given any
two points of M there exists an isometry of M that maps one point to the other. In this case, of
course it may happen that a subgroup of Isom(M, g) is already transitive on M .

Let (M, g) be a homogeneous Riemannian manifold, and letG be a closed subgroup of Isom(M, g)
acting transitively on M . Then the isotropy subgroup H at an arbitrary fixed point p ∈M is com-
pact (cf. exercise 11 of chapter 5) and M is diffeomorphic to the quotient space G/H. In this case,
we also say that the Riemannian metric g on M is G-invariant.

Recall that if G is a Lie group and H is a closed subgroup of G, then there exists a unique
structure of smooth manifold on the quotient G/H such that the projection G → G/H is a sub-
mersion and the action of G on G/H by left translations is smooth. (Theorem 0.4.18). A manifold
of the form G/H is called a homogeneous space. In some cases, one can also start with a homoge-
neous space G/H and construct G-invariant metrics on G/H. For instance, if G is equipped with a
left-invariant metric that is also right-invariant with respect to H, then it follows that the quotient
G/H inherits a quotient Riemannian metric such that the projection G → G/H is a Riemannian
submersion and the action of G on G/H by left translations is isometric. In this way, G/H becomes
a Riemannian homogeneous space. A particular, important case of this construction is when the
Riemannian metric on G that we start with is bi-invariant; in this case, G/H is called a normal
homogeneous space. In general, a homogeneous space G/H for arbitrary G, H may admit several
distinct G-invariant Riemannian metrics, or may admit no such metrics at all.

Let M = G/H be a homogeneous space, where H is the isotropy subgroup at p ∈M . Then the
isotropy representation at p is the homomorphism

(1.3.8) H → O(TpM), h 7→ dhp.

1.3.9 Lemma The isotropy representation of G/H at p is equivalent to the adjoint representation
of H on g/h.
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1.3.10 Proposition a. There exists a G-invariant Riemannian metric on G/H if and only if
the image of the adjoint representation of H on g/h is relatively compact in GL(g/k).

b. In case the condition in (a) is true, the G-invariant metrics on G/H are in bijective corre-
spondence with the AdG(H)-invariant inner products on g/h.

1.4 Exercises

1 Show that the Riemannian product of (0,+∞) and Sn−1 is isometric to the cylinder

C = { (x0, . . . , xn) ∈ Rn+1 | x21 + · · ·+ x2n = 1 and x0 > 0 }.

2 The catenoid is the surface of revolution in R3 with the z-axis as axis of revolution and the
catenary x = cosh z in the xz-plane as generating curve. The helicoid is the ruled surface in
R3 consisting of all the lines parallel to the xy plane that intersect the z-axis and the helix t 7→
(cos t, sin t, t).

a. Write natural parametrizations for the catenoid and the helicoid.
b. Consider the catenoid and the helicoid with the metrics induced from R3, and find the local

expressions of these metrics with respect to the parametrizations in item (a).
c. Show that the local expressions in item (b) coincide, possibly up to a change of coordinates,

and deduce that the catenoid and the helicoid are locally isometric.
d. Show that the catenoid and the helicoid cannot be isometric because of their topology.

3 Consider the real hyperbolic space (RHn, g) as defined in section 1.3. Let Bn be the open unit
ball of Rn embedded in Rn+1 as

Bn = { (x0, . . . , xn) ∈ Rn+1 | x0 = 0 and x21 + · · ·+ x2n < 1 }.

Define a map f : RHn → Bn by setting f(x) to be the unique point of Bn lying in the line joining
x ∈ RHn and the point (−1, 0, . . . , 0) ∈ Rn+1. Prove that f is a diffeomorphism and, setting
g1 = (f−1)∗g, we have that

g1|x =
4

(1− 〈x, x〉)2
(
dx21 + · · ·+ dx2n

)
,

where x = (0, x1, . . . , xn) ∈ Bn. Deduce that RHn is conformally flat.

(Bn, g1) is called the Poincaré ball model of RHn.

4 Consider the open unit ball Bn = { (x1, . . . , xn) ∈ Rn | x21 + · · ·x2n < 1 } equipped with the
metric g1 as in Exercise 3. Prove that the inversion of Rn on the sphere of center (−1, 0, . . . , 0)
and radius

√
2 defines a diffeomorphism f1 from Bn onto the upper half-space

Rn
+ = { (x1, . . . , xn) ∈ Rn | x1 > 0 },

and that the metric g2 = (f−1
1 )∗g1 is given by

g2|x =
1

x21

(
dx21 + · · ·+ dx2n

)
,

where x = (x1, . . . , xn) ∈ Rn
+.

(Rn
+, g2) is called the Poincaré upper half-space model of RHn.
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5 Consider the Poincaré upper half-plane model R2
+ = { (x, y) ∈ R2 | y > 0 } with the metric

g2 =
1
y2

(
dx2 + dy2

)
(case n = 2 in Exercise 4).

(i) Check that the following transformations of R2
+ into itself are isometries:

(a) τa(x, y) = (x+ a, y) for a ∈ R;
(b) hr(x, y) = (rx, ry) for r > 0;

(c) R(x, y) =

(
x

x2 + y2
,

y

x2 + y2

)

.

(d) ρ(x, y) = (−x, y).
(ii) Deduce from (a) and (b) that R+

2 is homogeneous.
(iii) In complex notation, the half-plane model of real hyperbolic space is R2

+ = { z ∈ C | ℑz > 0 }
with the Riemannian metric g = 1

||ℑz||2 dzdz̄. Deduce from (a), (b), (c) and (d) that T (z) =

(az+ b)/(cz+d) for a, b, c, d ∈ R with ad− bc > 0 defines an orientation-preserving isometry
of (R2

+, g).
(iv) Check that lima→∞ τa ◦ ha2 ◦R ◦ τ−a = ρ (pointwise limit). Interpret geometrically.

6 Use stereographic projection to prove that Sn is conformally flat.

7 Consider the parametrized curve

{
x = t− tanh t
y = 1

cosh t

The surface of revolution in R3 constructed by revolving it around the x-axis is called the pseudo-
sphere. Note that the pseudo-sphere is singular along the circle obtained by revolving the point
(0, 1).
a. Prove that the pseudo-sphere with the singular circle taken away is locally isometric to the

upper half plane model of RH2.
b. Show that the Gaussian curvature of the pseudo-sphere is −1.

8 Let Γ be the lattice in Rn defined by the basis {v1, . . . , vn}, and denote by gΓ the Riemannian
metric that it defines on Tn. Show that in some product chart of Tn = S1 × · · · × S1 the local
expression

gΓ =
∑

i,j

〈vi, vj〉 dxi ⊗ dxj

holds, where 〈, 〉 denotes the standard scalar product in Rn.

9 Let Γ and Γ′ be two lattices in Rn, and denote by gΓ, gΓ′ the Riemannian metrics that they
define on Tn, respectively.
a. Prove that (Tn, gΓ) is isometric to (Tn, gΓ′) if and only if there exists an isometry f : Rn → Rn

such that f(Γ) = Γ′. (Hint: You may use the result of exercise 2 of chapter 3.)
b. Use part (a) to see that (Tn, gΓ) is isometric to the Riemannian product of n copies of S1,

each of which of length 1, if and only if Γ is the lattice associated to an orthonormal basis
of Rn.

10 Let Γ be the lattice of R2 spanned by an orthogonal basis {v1, v2} and consider the associated
rectangular flat torus T 2.
a. Prove that the map γ of R2 defined by γ(x1v1+x2v2) = (x1+

1
2)v1−x2v2 induces an isometry

of T 2 of order two.
b. Prove that T 2 double covers a Klein bottle K2.

39



11 Prove that Rn r {0} is isometric to the warped product ((0,+∞)× Sn−1, dr2 + r2g), where r
denotes the coordinate on (0,+∞) and g denotes the standard Riemannian metric on Sn−1.

12 Let G be a Lie group equal to one of O(n), U(n) or SU(n), and denote its Lie algebra by g.
Prove that for any c > 0

〈X,Y 〉 = −c trace (XY ),

where X, Y ∈ g, defines an Ad-invariant inner product on g.

13 Consider the special unitary group SU(2) equipped with a bi-invariant metric induced from
an Ad-invariant inner product on su(2) as in the previous exercise with c = 1

2 . Show that the map

(
α −β̄
β ᾱ

)

7→
(
α
β

)

where α, β ∈ C and |α|2 + |β|2 = 1, defines an isometry from SU(2) onto S3. Here C2 is identified
with R4 and S3 is viewed as the unit sphere in R4.

14 Show that RP 1 equipped with the quotient metric from S1(1) is isometric to S1(12). Show
that CP 1 equipped with the Fubini-Study metric is isometric to S2(12).

15 (Sylvester’s law of inertia) Let B : V × V → R be a symmetric bilinear form on a finite-
dimensional real vector space V . For each basis E = (e1, . . . , en) of V , we associate a symmetric
matrix BE = (B(ei, ej)).
a. Check that B(u, v) = vtEBEuE for all u, v ∈ V , where uE (resp. vE) denotes the column

vector representing the vector u (resp. v) in the basis E.
b. Suppose F = (f1, . . . , fn) is another basis of V such that






e1
...
en




 = A






f1
...
fn




 .

for a real matrix A of order n. Show that BE = ABFA
t.

c. Prove that there exists a basis E of V such that BE has the form





In−i−k 0 0
0 −Ii 0
0 0 0k



 ,

where Im denotes an identity block of order m, and 0m denotes a null block of order m.
d. Prove that there is a B-orthogonal decomposition

V = V+ ⊕ V− ⊕ V0

where B is positive definite on V+ and negative definite on V−, V0 is the kernel of B (the
set of vectors B-orthogonal to V ), i = dimV− and k = dimV0. Prove also that i is the
maximal dimension of a subspace of V on which B is negative definite. Deduce that i and k
are invariants of B. They are respectively called the index and nullity of B. Of course, B is
nondegenerate if and only if k = 0, and it is positive definite if and only if k = i = 0.

e. Check that the Lorentzian metric of R1,n restricts to a positive definite symmetric bilinear
form on the tangent spaces to the hyperboloid modeling RHn.
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1.5 Additional notes

§1 Riemannian manifolds were defined as abstract smooth manifolds equipped with Riemannian
metrics. One class of examples of Riemannian manifolds is of course furnished by the Riemannian
submanifolds of Euclidean space. On the other hand, a very deep theorem of Nash [Nas56] states
that every abstract Riemannian manifold admits an isometric embedding into Euclidean space, so
that it can be viewed as an embedded Riemannian submanifold of Euclidean space. In view of this,
one might be tempted to ask why bother to consider abstract Riemannian manifolds in the first
place. The reason is that Nash’s theorem is an existence result: for a given Riemannian manifold,
it does not supply an explicit embedding of it into Euclidean space. Even if an isometric embedding
is known, there may be more than one (up to congruence) or there may be no canonical one. Also,
an explicit embedding may be too complicated to describe. Finally, a particular embedding is
sometimes distracting because it highlights some specific features of the manifold at the expense of
some other features, which may be undesirable.

§2 From the point of view of foundations of the theory of smooth manifolds, the following
assertions are equivalent for a smooth manifold M whose underlying topological space is assumed
to be Hausdorff but not necessarily second-countable:
a. The topology of M is paracompact.
b. M admits smooth partitions of unity.
c. M admits Riemannian metrics.

In fact, as is standard in the theory of smooth manifolds, second-countability of the topology of
M (together with the Hausdorff property) implies its paracompactness and this is used to prove
the existence of smooth partitions of unity [War83, chapter 1]. Next, Riemannian metrics are
constructed onM by using partitions of unity as we did in Proposition 1.2.3. Finally, the underlying
topology of a Riemannian manifold is metrizable according to Proposition 3.2.3, and every metric
space is paracompact.

§3 The pseudo-sphere constructed in Exercise 7 was introduced by Beltrami [Bel68] in 1868 as a
local model for the Lobachevskyan geometry. This means that the geodesic lines and their segments
on the pseudo-sphere play the role of straight lines and their segments on the Lobachevsky plane.
In 1900, Hilbert posed the question of whether there exists a surface in three-dimensional Euclidean
space whose intrinsic geometry coincides completely with the geometry of the Lobachevsky plane.
Using a simple reasoning, it follows that if such a surface does exist, it must have constant negative
curvature and be complete (see chapter 3 for the notion of completeness).

As early as 1901, Hilbert solved this problem [Hil01] (see also [Hop89, chapter IX]), and in
the negative sense, so that no complete surface of constant negative curvature exists in three-
dimensional Euclidean space. This theorem has attracted the attention of geometers over a number
of decades, and continues to do so today. The reason for this is that a number of interesting
questions are related to it and to its proof. For instance, the occurrence of a singular circle on the
pseudo-sphere is not coincidental, but is in line with Hilbert’s theorem.
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C H A P T E R 2

Connections

2.1 Introduction

Contemplate Rn. Of course, the presence of the identity map as a global chart allows one to
canonically identify the tangent spaces of Rn at its various points with Rn itself. Therefore, a
smooth vector field X in Rn can be viewed simply as a smooth map X : Rn → Rn. Thus, one has
a canonical way of differentiating vector fields in Rn, namely, if X, Y : Rn → Rn are two vector
fields, then the derivative of Y along X is the directional derivative dY (X) = X(Y ).

Whereas a smooth manifold M comes already equipped with a notion of derivative of smooth
maps, there is no canonical way to differentiate vector fields on M . We solve this problem by
considering all possible ways of defining derivatives of vector fields. Any such choice is called a
connection. The name originates from the fact that, at least along a given curve, a connection
provides a way to identify (“connect”) tangent spaces of M at different points; this is the idea of
parallel transport along the curve. A geodesic is then a curve whose velocity vector is constant in
this sense.

The main consequence of the theory of connections for Riemannian geometry is that a Rieman-
nian metric on M uniquely specifies a connection on M , called the Levi-Cività connection. In the
case in which M is a surface in R3, for the Levi-Cività connection on M we recover the derivative
in R3 projected back to M .

Connections can be defined in a variety of ways. We will use the Koszul formalism.

2.2 Connections

Let M be a smooth manifold. A (Koszul) connection in M is an R-bilinear map ∇ : Γ(TM) ×
Γ(TM) → Γ(TM), where we write ∇XY instead of ∇(X,Y ), such that

a. ∇fXY = f∇XY , and

b. ∇X(fY ) = X(f)Y + f∇XY (Leibniz rule)

for every X, Y ∈ Γ(TM) and f ∈ C∞(M).

Let ∇ be a connection in a smooth manifoldM . We want to analyse the dependence of ∇ on its
arguments. To begin with, we claim that, for a given open set U in M , (∇XY )|U depends only on
X|U and Y |U . Indeed, let X ′, Y ′ ∈ Γ(TM) be vector fields satisfying X ′|U = X|U and Y ′|U = Y |U .
Fix p ∈ U . Construct a smooth function f on M with support contained in U and such that f ≡ 1
on some neighborhood V of p with V ⊂ V̄ ⊂ U . Then, using part (a) in the definition of connection
and the fact that fX = fX ′ on M ,

(∇XY )p = f(p)(∇XY )p = (f∇XY )p = (∇fXY )p = (∇fX′Y )p = f(p)(∇X′Y )p = (∇X′Y )p
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This shows that ∇XY = ∇X′Y on U . Next, note that fY = fY ′ on M implies that ∇X(fY ) =
∇X(fY

′), so the Leibniz rule and the facts that f(p) = 1, Xp(f) = 0 imply that (∇XY )p =
(∇XY

′)p. Since p was taken to be an arbitrary point in U , ∇XY = ∇XY
′ on U , and this completes

the check of the claim.

2.2.1 Remark In a moment, we will refine the above discussion and show that, for a given point
p ∈ M , the value of (∇XY )p depends only on Xp and the restriction of Y along a smooth curve
γ : (−ǫ, ǫ) → M with γ(0) = p and γ′(0) = Xp. Indeed, this is a consequence of the expression of
the connection (2.2.4).

Choose a chart (U,ϕ = (x1, . . . , xn)) of M around p. We know from the above that ∇XY |U =
∇X|U (Y |U ). Write

X|U =
∑

j

aj
∂

∂xj
and Y |U =

∑

k

bk
∂

∂xk

for aj , bk ∈ C∞(U). Then, using the defining properties of a connection, in the open set U ,

∇XY = ∇X

(
∑

k

bk
∂

∂xk

)

=
∑

k

X(bk)
∂

∂xk
+ bk∇X

∂

∂xk

=
∑

j,k

aj
∂bk

∂xj
∂

∂xk
+
∑

j,k

ajbk∇ ∂

∂xj

∂

∂xk

=
∑

i,j

aj
∂bi

∂xj
∂

∂xi
+
∑

i,j,k

ajbkΓijk
∂

∂xi
,

where we have set

∇ ∂

∂xj

∂

∂xk
=
∑

i

Γijk
∂

∂xi
.

It follows that the local representation of ∇XY in the chart (U,ϕ) is

(2.2.2) ∇XY =
∑

i




∑

j

aj
∂bi

∂xj
+
∑

j,k

Γijka
jbk




∂

∂xi
.

In particular,

(2.2.3) (∇XY )p =
∑

i




∑

j

aj(p)
∂bi

∂xj
(p) +

∑

j,k

Γijk(p)a
j(p)bk(p)




∂

∂xi

∣
∣
∣
p
.

It is also convenient to rewrite the preceding formula in the following form

(2.2.4) (∇XY )p =
∑

i



Xp(b
i) +

∑

j,k

Γijk(p)a
j(p)bk(p)




∂

∂xi

∣
∣
∣
p
.

Note that this formula involves only the values of the aj , bk at p, and the directional derivatives of
the bi in the direction of Xp, so the claim in Remark 2.2.1 is checked.
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The smooth functions Γijk are called the Christoffel symbols of ∇ with respect to the chosen
chart. The Christoffel symbols of a connection satisfy a complicated transformation rule upon
change of coordinates, which will be used in the proof of Proposition 2.3.1. For the moment, we
just want to remark that the Christoffel symbols can be used to specify a connection locally. For
instance, one could set Γijk identically zero in a given chart and then define a connection for vector
fields on the domain of that chart. Doing this for a family of charts {(Uα, ϕα)} whose domains
cover the manifold, we obtain a family of connections {∇α}. Next, taking a smooth partition of
unity {ρα} subordinate to the covering {Uα}, we can define a global connection in M by setting
∇XY =

∑

α∇α
X(ραY ) for vector fields X, Y on M . This proves that connections exist on any

given manifold.

Rather than insisting on the argument of the preceding paragraph, it is better to use Proposi-
tion 2.2.5 below in order to construct a connection in a given manifold. Indeed, in an n-dimensional
smooth manifold, we need n3 smooth functions Γijk to specify a connection locally, and we need

n2 smooth functions gij to specify a Riemannian metric locally, recall (1.2.1). Even taking into
account equivalence classes of such objects, it is apparent that there exist “more” connections in a
given smooth manifold than the already large amount of available Riemannian metrics. The point
is that, as shown by the next proposition, a Riemannian manifold admits a preferred connection.

2.2.5 Proposition Let (M, g) be a Riemannian manifold. Then there exists a unique connection
∇ in M , called the Levi-Cività connection, such that:

a. Xg(Y, Z) = g(∇XY, Z) + g(Y,∇XZ), and
b. ∇XY −∇YX − [X,Y ] = 0

for all vector fields X, Y , Z ∈ Γ(TM).

Proof. The strategy of the proof is to first use the two conditions in the statement to deduce
a formula for ∇. This formula is called the Koszul formula, and this proves uniqueness. The next
steps, which are easy but tedious and will be skipped, are to use the Koszul formula to define
the connection, and to check that the defined object indeed satisfies the defining conditions of a
connection and the conditions in the statement of this theorem.

Let X, Y and Z be vector fields in M . The so-called permutation trick is to use condition (a)
to write

Xg(Y, Z) = g(∇XY, Z) + g(Y,∇XZ)

Y g(Z,X) = g(∇Y Z,X) + g(Z,∇YX)

−Zg(X,Y ) = −g(∇ZX,Y )− g(X,∇ZY ),

add up these equations, and use condition (b) to arrive at the Koszul formula:

g(∇XY, Z) =

1

2

(
Xg(Y, Z) + Y g(Z,X)− Zg(X,Y ) + g([X,Y ], Z)− g([Y, Z], X) + g([Z,X], Y )

)
(2.2.6)

Note that this formula uniquely defines ∇XY , since Z is arbitrary and g is nondegenerate. �

The condition (a) in Proposition 2.2.5 is usually refered to as saying that the connection ∇ is
compatible with the metric g, or that ∇ is a metric connection. The condition (b) expresses the
fact that the torsion of ∇, which is defined as the left-hand side therein, is null.

Henceforth, in this book, for a given Riemannian manifold, we will always use the Levi-Cività
connection in order to differentiate vector fields.
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2.2.7 Example Consider the upper half-plane R2
+ = { (x, y) ∈ R2 | y > 0 } endowed with the

Riemannian metric g = 1
y2
(dx2 + dy2). In this example, we show a practical method to compute

the Levi-Cività connection of (R2
+, g). Start with g(

∂
∂x ,

∂
∂x) =

1
y2
: differentiate it with respect to y

and use Proposition 2.2.5(a) to write

2g

(

∇ ∂
∂y

∂

∂x
,
∂

∂x

)

=
∂

∂y

(
1

y2

)

= −2
1

y3
,

so

(2.2.8) g

(

∇ ∂
∂y

∂

∂x
,
∂

∂x

)

= − 1

y3
;

similarly, differentiate it with respect to x to get

g

(

∇ ∂
∂x

∂

∂x
,
∂

∂x

)

= 0.

Next, consider g( ∂∂y ,
∂
∂y ) =

1
y2
; differentiation with respect to x and y yields respectively

(2.2.9) g

(

∇ ∂
∂x

∂

∂y
,
∂

∂y

)

= 0, g

(

∇ ∂
∂y

∂

∂y
,
∂

∂y

)

= − 1

y3
.

We use Proposition 2.2.5(b) in the form of

∇ ∂
∂x

∂

∂y
−∇ ∂

∂y

∂

∂x
=

[
∂

∂x
,
∂

∂y

]

= 0,

where the last equality holds because ∂
∂x and ∂

∂y are coordinate vector fields. Now differentiation

of g( ∂∂x ,
∂
∂y ) = 0 gives that

g

(

∇ ∂
∂x

∂

∂x
,
∂

∂y

)

= −g
(
∂

∂x
,∇ ∂

∂x

∂

∂y

)

= −g
(
∂

∂x
,∇ ∂

∂y

∂

∂x

)

=
1

y3
,

where we have used (2.2.8) in the last equality, and it also gives

g

(

∇ ∂
∂y

∂

∂y
,
∂

∂x

)

= −g
(
∂

∂y
,∇ ∂

∂y

∂

∂x

)

= 0,

where we have used the first formula of (2.2.9) in the last equality. Since ∂
∂x and ∂

∂y are orthogonal
everywhere, it easily follows from the above formulas that







∇ ∂
∂x

∂
∂x = 1

y
∂
∂y

∇ ∂
∂x

∂
∂y = − 1

y
∂
∂x

∇ ∂
∂y

∂
∂y = − 1

y
∂
∂y

⋆
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2.3 Parallel transport along a curve

Let (M, g) be a Riemannian manifold, and denote by ∇ its Levi-Cività connection.
A vector field along a curve γ : I → M , I ⊂ R an interval, is a map X : I → TM such that

X(t) ∈ Tγ(t)M for all t. If γ is a smooth curve, the most obvious example of a vector field along γ
is its tangent vector field γ′(t). In general, if γ is an embedding, then any vector field X along γ
can be extended to a smooth vector field in M defined on a neighborhood of the image of γ; if γ is
a proper embedding, X can be extended to a smooth vector field defined on the whole M . On the
other hand, if γ is not a embedding (resp. proper embedding), then there are vector fields along γ
that do not admit such extensions, like in the case of a a curve with self-intersections, or even a
constant curve. A more interesting example is given by taking γ to be the inclusion (0,+∞) → R
and X(t) = 1

t
d
dt .

The set of smooth vector fields along a curve γ : I → M will be denoted Γ(γ∗TM). The
connection ∇ in M induces a derivative of vector fields along γ as follows.

2.3.1 Proposition Let γ : I → M be a smooth curve. Then there exists a unique linear map ∇
dt :

Γ(γ∗TM) → Γ(γ∗TM), called the covariant derivative along γ, satisfying the following conditions:
a. ∇

dt(fX) = df
dtX + f ∇

dtX for every smooth function f : I → R.
b. If X admits an extension to a vector field X̄ defined on an open subset U of M , then

(∇
dt
X

)

(t) = (∇γ′(t)X̄)γ(t)

for every t satisfying γ(t) ∈ U .

Proof. We first prove the uniqueness result. Suppose first that the image of γ lies in the domain
of one chart (U,ϕ = (x1, . . . , xn)). Then we can write γ(t) = (x1(t), . . . , xn(t)), so

γ′(t) =
∑

j

(xj)′(t)
∂

∂xj

∣
∣
∣
γ(t)

.

If X is a vector field along γ, we can also write

X(t) =
∑

k

ak(t)
∂

∂xk

∣
∣
∣
γ(t)

.

Note that, although in general X cannot be extended to a vector field defined on an open set of
M , X is written as a linear combination of vector fields that admit such extensions. So, if we have
a linear map as in the statement, then

∇
dt
X =

∑

k

(ak)′
∂

∂xk
+ ak∇γ′(t)

∂

∂xk

=
∑

i

(ai)′
∂

∂xi
+
∑

j,k

ak(xj)′∇ ∂

∂xj

∂

∂xk

=
∑

i

(ai)′
∂

∂xi
+
∑

i,j,k

ak(xj)′Γijk
∂

∂xi

=
∑

i



(ai)′ +
∑

j,k

Γijk(x
j)′ak




∂

∂xi
(2.3.2)
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In general, one sees by an argument analogous to that used in section 2.2 that (∇dtX)|J depends
only on X|J for any open subinterval J of I, and the image of γ can be covered by finitely many
domains of charts, so the local expressions show that ∇

dt is uniquely defined, if it exists.

In order to prove existence, one uses the local expression to define ∇
dt in the domain of a local

chart. Then, one easily checks that the defined map satisfies the two conditions in the statement.
So far, we have existence on any open subset of M which is contained in the domain of a local
chart, to which we can apply the uniqueness result from the first part of the proof. We finish by
covering M with domains of local charts and noting that the locally defined covariant derivatives
paste together to yield a globally defined object. �

2.3.3 Corollary Let γ : I →M be a smooth curve. Then

d

dt
g(X(t), Y (t)) = g(

(∇
dt
X

)

(t), Y (t)) + g(X(t),

(∇
dt
Y

)

(t))

for all vector fields X, Y ∈ Γ(γ∗TM) and all t ∈ I,

Proof. We can work in the domain of a chart of M , where we can express X and Y as linear
combinations of coordinate vector fields. Then the desired formula follows from the corresponding
formula for the Levi-Cività connection (condition (b) in Proposition 2.2.5). �

A vector field X along a smooth curve γ : I → M is called parallel if ∇
dtX = 0 on I. This

definition can be obviously extended to include curves that are only piecewise smooth.

2.3.4 Proposition Let γ : I →M be a piecewise smooth curve, and let t0 ∈ I. Given a vector v ∈
Tγ(t0)M , there exists a unique parallel vector field X along γ such that X(t0) = v.

Proof. Suppose first that I is compact. The image of γ can be covered by finitely many domains
of charts of M . Thus, without loss of generality, we may assume that the image of γ lies in the
domain of one chart (U,ϕ = (x1, . . . , xn)). Write γ(t) = (x1(t), . . . , xn(t)) and

X(t) =
∑

k

ak(t)
∂

∂xk

∣
∣
∣
γ(t)

.

Then, equation (2.3.2) implies that ∇
dtX = 0 is equivalent to

(2.3.5) (ai)′ +
∑

j,k

Γijk(x
j)′ak = 0

for all i. This is a system of ordinary linear differential equations of first order in the unknowns
a1, . . . , an, which is known to have unique solutions defined on all of I for given initial conditions.
In our case, the initial conditions are given by ak(t0) = dxk(v).

In the general case, we can cover I by the union of a chain of increasing compact intervals,
construct X along each compact interval, and use the uniqueness result to see that so constructed
vector fields piece together to yield a global solution. �

It follows from the proof of the preceding proposition that the map that assigns to a vector
v ∈ Tγ(t0)M a parallel vector field X ∈ Γ(γ∗TM) with X(t0) = v is linear. Evaluating X at
another time t1 gives thus a linear map P γt1,t0 : Tγ(t0)M → Tγ(t1)M which will be called the parallel
translation (or transport) map along γ from t0 to t1.
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2.3.6 Proposition Let γ : I → M be a piecewise smooth curve. Then the parallel translation
maps along γ enjoy the following properties:

a. P γt0,t0 is the identity map of Tγ(t0)M ;
b. P γt2,t1 ◦ P

γ
t1,t0

= P γt2,t0 (chain rule);
c. P γt0,t1 = (P γt1,t0)

−1;
d. P γt1,t0 : Tγ(t0)M → Tγ(t1)M is an isometry;

for every t0, t1, t2 ∈ I.

Proof. Assertions (a), (b) and (c) are immediate. We show that assertion (d) is a consequence
of condition (a) in the definition of the Levi-Cività connection (in fact, it is equivalent to that
condition) as follows. If X is a parallel vector field along γ, then ∇X

dt = 0 along γ, so Corollary 2.3.3
gives

d

dt
g(X(t), X(t)) = 2g(

(∇
dt
X

)

(t), X(t)) = 0,

and the norm of X is constant along γ. �

2.3.7 Example We now use the result of Example 2.2.7 to describe the parallel transport map
along the curve γ(t) = (t, y0) in (R2

+, g), where y0 > 0. Denote by X(t) = a(t) ∂∂x + b(t)
∂
∂y a smooth

vector field along γ, where a, b : R → R are smooth functions. Then

∇
dt
X = a′

∂

∂x
+ a∇ ∂

∂x

∂

∂x
+ b′

∂

∂y
+ b∇ ∂

∂x

∂

∂y

=

(

a′ − b

y0

)
∂

∂x
+

(

b′ +
a

y0

)
∂

∂y
,

so the condition that X be parallel is that

{
a′ = ωb
b′ = −ωa

where ω = y−1
0 . The general solution of this system of first-order ordinary differential equations is

a(t) = a0 cosωt+ b0 sinωt

b(t) = −a0 sinωt+ b0 cosωt

where (a(0), b(0)) = (a0, b0). It follows that

P γt,0

(

a0
∂

∂x
+ b0

∂

∂y

)

= (a0 cosωt+ b0 sinωt)
∂

∂x
+ (−a0 sinωt+ b0 cosωt)

∂

∂y

which is merely rotation in the Euclidean sense at a constant rate; note that the rate ω → ∞
as y0 → 0. ⋆

2.4 Geodesics

Let (M, g) be a Riemannian manifold, and denote by ∇ its Levi-Cività connection.

A smooth curve γ : I → M , I ⊂ R an interval, is called a geodesic if and only if ∇
dtγ

′ = 0
on I. Thus we require that the tangent vector field γ′ be parallel along γ. According to 2.3.6(d),
this implies that the length of γ′ must be constant. We also refer to the latter property as saying
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that γ is a curve parametrized with constant speed or γ is a curve parametrized proportionally to
arc-length. Observe that constant curves are geodesics.

We can get the local expression of the geodesic equation immediately from (2.3.5). Let γ : I →
M be a smooth curve whose image lies in the domain of a chart (U,ϕ = (x1, . . . , xn)) ofM . Writing
γ(t) = (x1(t), . . . , xn(t)), we have that ∇

dtγ
′ = 0 if and only if

(2.4.1) (xi)′′ +
∑

j,k

Γijk(x
j)′(xk)′ = 0

for all i. Note that this is a second order system of non-linear ordinary differential equations in the
unknowns x1, . . . , xn, for which we have a local existence and uniqueness result. Indeed, we quote
the following theorem from [Spi70].

2.4.2 Theorem Consider the second order system of ordinary differential equations

σ′′ = F
(
σ, σ′

)
,

where F : Rn × Rn → Rn is a smooth map, in the unknown σ : I → Rn, I ⊂ R an open
interval. Then, given (x0, a0) ∈ Rn ×Rn, there exists a neighborhood U × V of (x0, a0) and δ > 0
such that, for any (x, a) ∈ U × V , there is a unique solution σx,a : (−δ, δ) → Rn with initial
conditions σx,a(0) = x and σ′x,a(0) = a. Moreover, the map Σ : U × V × (−δ, δ) → M , defined by
Σ(x, a, t) = σx,a(t), is smooth.

It also follows from the theory of ordinary differential equations that any solution of the geodesic
equation (2.4.1) is automatically smooth. Equation (2.4.1) has a particular homogeneity feature
that we explore now. Namely, if γ : (a, b) → M is a solution of (2.4.1), then it is immediate to
check that for every k ∈ R \ {0} the curve η : (ak ,

b
k ) → R (η : ( bk ,

a
k ) → R if k < 0) defined by

η(t) = γ(kt) is also a solution.

2.4.3 Proposition Given p ∈ M , there exists a neighborhood U of p and ǫ > 0 such that, for
any q ∈ U and v ∈ TqM with gq(v, v)

1/2 ≤ ǫ, there is a unique geodesic γv : (−2, 2) → M such
that γv(0) = q and γ′v(0) = v. Moreover, the map Γ : ∪q∈UB(0q, ǫ) × (−2, 2) → M defined by
Γ(v, t) = γv(t) is smooth.

Proof. Let (V, ϕ) be a local chart ofM around p, and consider the map dϕ : TM |V → ϕ(V )×Rn.
The geodesic equation inM corresponds via dϕ to a second order differential equation for curves on
ϕ(V )×Rn, to which we apply Theorem 2.4.2. We deduce that there exists an open neighborhood
W of 0p in TM such that for every v ∈ W there exists a unique geodesic γv : (−δ, δ) → M such
that γv(0) = π(v) and γ′v(0) = v, where π : TM → M is the projection, and γv(t) is smooth on
(v, t) ∈W × (−δ, δ). By continuity of g, we may shrink W and assume that it is of the form

W = { v ∈ TM |U : gπ(v)(v, v)
1/2 < ǫ′ }

for some open neighborhood U of p in M and some ǫ′ > 0 (cf. Exercise 1). The homogeneity of
the geodesic equation referred to above yields that multipliying the length of v by δ/2 makes the
interval of definition of γv to be multiplied by 2/δ. Therefore we can take ǫ = ǫ′δ/2 and we are
done. �

Henceforth, in this book, for p ∈M and v ∈ TpM , we will denote by γv the unique geodesic with
initial conditions γv(0) = p and γ′v(0) = v. Note that the homogeneity of the geodesic equation
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yields that γkv(t) = γv(kt). It follows from Proposition 2.4.3 that there exists an open neighborhood
Ω of the zero section in TM consisting of vectors v such that γv(1) is defined. The exponential map

exp : Ω →M

is defined by setting exp(v) = γv(1). It follows from the last assertion in Proposition 2.4.3 that
the exponential map is smooth. Sometimes we will also write expp = exp |TpM for p ∈ M . Now
γv(t) = γtv(1) = expp(tv) for v ∈ TpM and sufficiently small t.

2.4.4 Proposition Let p ∈M . Then:
a. The exponential map expp maps an open neighborhood of 0p ∈ TpM diffeomorphically onto

an open neighborhood of p in M .
b. There exists an open neighborhood U of p and ǫ > 0 such that, for any q ∈ U , there exists a

unique v ∈ TpM with gp(v, v)
1/2 < ǫ such that expp v = q.

Proof. We compute the differential d(expp)0p : T0p(TpM) → TpM . Recall that expp(tv) =
γtv(1) = γv(t) for v ∈ TpM . Differentiating this equation with respect to t at t = 0 yields that

(2.4.5) d(expp)0p(v) = γ′v(0) = v.

Hence d(expp)0p is the identity, where as usual we have identified T0p(TpM) with TpM . It follows
from the inverse function theorem that expp maps an open neighborhood of 0p in TpM , which can
be taken of the form B(0p, ǫ) for some ǫ > 0, diffeomorphically onto an open neighborhood of p in
M . Parts (a) and (b) follow. �

The neighborhood of p given in the previous proposition is usually called a normal neighborhood
of p. Hence we have that any point in a normal neighborhood of p can be joined to p by a unique
geodesic in that neighborhood. Next, we want to improve this result in the sense of connecting two
movable points in a neighborhood of p by a geodesic. We need a lemma.

2.4.6 Lemma Let π : TM →M be the projection. Then, given p ∈M , the map

Φ : Ω →M ×M, Φ(v) = (π(v), exp(v))

is a local diffeomorphism from an open neighborhood W of 0p in TM onto an open neighborhood of
(p, p) in M ×M .

Proof. The result follows from the inverse function theorem if we can show that dΦ0p :
T0p(TM) → TpM ⊕TpM is an isomorphism. Each vector in the tangent space T0p(TM) is the tan-
gent vector at t = 0 to a curve c in TM passing through 0p at t = 0. First, let c(t) = tv ∈ TM where
v ∈ TpM . Then dΦ0p(c

′(0)) = d
dt

∣
∣
t=0

Φ(c(t)) = d
dt

∣
∣
t=0

(p, expp(tv)) = (0, v) by equation (2.4.5).
Next, let c(t) = 0γ(t) ∈ Tγ(t)M ⊂ TM , where γ is a curve inM with γ(0) = p and γ′(0) = v ∈ TpM .

Then dΦ0p(c
′(0)) = d

dt

∣
∣
t=0

Φ(0γ(t)) =
d
dt

∣
∣
t=0

(γ(t), γ(t)) = (v, v). The two calculations together imply
that dΦ0p is surjective and hence, by dimensional reasons, an isomorphism. �

2.4.7 Proposition Given p ∈M , there exists an open neighborhood U of p and ǫ > 0 such that:
a. For any x, y ∈ U , there exists a unique v ∈ TxM with gx(v, v)

1/2 < ǫ such that expx v = y.
Set γv(t) = expx(tv).

b. The map Ψ : U × U × [0, 1] →M defined by Ψ(x, y, t) = γv(t) is smooth.
c. For all x ∈ U , the map expx is a diffeomorphism from B(0x, ǫ) onto a normal neighborhood

of x containing U .
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Proof. (a) Let W be a neighborhood of 0p in TM such that the map of Lemma 2.4.6 is a
diffeomorphism of W onto a neighborhood of (p, p) in M ×M . By shrinking W , if necessary, we
may assume that W = ∪x∈VB(0x, ǫ) for some open neighborhood V of p and some ǫ > 0. Let
U be a neighborhood of p in M contained in V and such that U × U ⊂ Φ(W ). Then, for any
(x, y) ∈ U × U , there is a unique v ∈ W such that Φ(v) = (x, y), meaning that there is a unique
v ∈ B(0x, ǫ) such that expx v = y.

(b) This follows immediately from the fact that Ψ(x, y, t) = exp(tΦ−1(x, y)).
(c) Since B(0x, ǫ) ⊂ W , the map Φ is a diffeomorphism from B(0x, ǫ) onto its image. But, for

fixed x ∈ U , Φ(v) = (x, expx(v)) for v ∈ B(0x, ǫ). �

The set U in the preceding proposition is a normal neighborhood of each of its points; we will
call such a set U an ǫ-totally normal neighborhood of p. Note that it is not claimed that the geodesic
γv in the proposition is entirely contained in U . In section 6.6, we will prove that we can always
find a possibly smaller totally normal neighborhood of p with that property.

2.4.8 Example In order to complete our analysis of the Riemannian manifold (R2
+, g) of Exam-

ples 2.2.7 and 2.3.7, we now determine its geodesics. So let γ(t) = (x(t), y(t)) be a smooth curve
in R2

+. Then γ
′ = x′ ∂∂x + y′ ∂∂y and

∇
dt
γ′ = x′′

∂

∂x
+ x′

∇
dt

∂

∂x
+ y′′

∂

∂y
+ y′

∇
dt

∂

∂y
.

We also have
∇
dt

∂

∂x
= x′∇ ∂

∂x

∂

∂x
+ y′∇ ∂

∂y

∂

∂x
= −y

′

y

∂

∂x
+
x′

y

∂

∂y
,

and
∇
dt

∂

∂y
= x′∇ ∂

∂x

∂

∂y
+ y′∇ ∂

∂y

∂

∂y
= −x

′

y

∂

∂x
− y′

y

∂

∂y
,

so
∇
dt
γ′ =

(

x′′ − 2
x′y′

y

) ∂

∂x
+
(

y′′ +
x′2 − y′2

y

) ∂

∂y
.

Therefore the geodesic equations are

(2.4.9)

{

x′′ − 2x
′y′

y = 0

y′′ + x′2−y′2
y = 0

Note that x(t) = x0 is a solution of (2.4.9); indeed, the second equation gives that

(
y′

y

)′
=
y′′y − y′2

y2
= 0,

so y(t) = y0e
kt where y0 > 0 and k ∈ R. This shows that the vertical lines are geodesics. Note

that in the parametrization that we obtained, they are defined on all of R.
Next, suppose that γ is a geodesic which is not a vertical line. By the uniqueness result for

geodesics, it follows that x′(t) 6= 0 for all t in the domain of γ. The first equation of (2.4.9) then
gives

x′′

x′
= 2

y′

y

from where we get that
(log |x′|)′ = (2 log y)′
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and hence that

(2.4.10) x′ = cy2

for some real constant c which may be assumed to be positive by reversing the orientation of γ, if
necessary. Of course γ is parametrized with constant speed, which for simplicity we assume is 1;
then 1

y2
(x′2 + y′2) = 1; substituing (2.4.10) gives that

dy

y
√

1− c2y2
= ±dt

Direct integration then yields
arcsech (cy) = ±t− t0,

and changing the initial point we may assume that t0 = 0. Then

(2.4.11) y(t) = Rsech t

where R = c−1 > 0. Finally, equation (2.4.10) implies that

(2.4.12) x(t) = x0 +R tanh t

for some x0 ∈ R. Note that equations (2.4.12) and (2.4.11) are defined on all of R, and they
parametrize the semi-circle of center (x0, 0) and radius R in R2

+.
Any geodesic of (R+

2 , g) is of one of the above types. Indeed, given initial conditions for a
geodesic, it is readily seen that there exists a (unique) vertical line or semi-circle as above satisfying
the given initial conditions. ⋆

2.5 Isometries and Killing fields

It is more or less clear that isometries should preserve any object canonically associated to a
Riemannian manifold. Let (M, g) and (M ′, g′) be Riemannian manifolds, denote by ∇ and ∇′ the
corresponding Levi-Cività connections, and let f : M → M ′ be an isometry. It follows from the
Koszul formula (2.2.6) that f maps ∇ to ∇′ in the sense that

∇′
f∗Xf∗Y = f∗(∇XY )

where X, Y ∈ Γ(TM). In particular, if γ : I →M is a geodesic of (M, g) then f ◦ γ : I →M ′ is a
geodesic of (M ′, g′).

It is interesting to rephrase the last assertion in terms the exponential map. Namely, if f is an
isometry of (M, g), p ∈M and v ∈ TpM lies in the domain of expp, then dfp(v) lies in the domain
of expf(p) and

f(expp(v)) = expf(p)(dfp(v)).

In particular, if p is a fixed point of f then, on a normal neighborhood of p, we can write

f = expf(p) ◦ dfp ◦ exp−1
p ;

namely, exp−1
p defines a local chart on a normal neighborhood of p that linearizes f .

A Killing vector field (sometimes, simply a Killing field) on a Riemannian manifold (M, g) is a
smooth vector field X onM whose local flow {ϕt} consists of local isometries ofM , namely, ϕ∗

t g = g
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wherever defined. By differentiation with respect to t, we immediately see that this condition is
equivalent to the vanishing of Lie derivative of g with respect to X,

LXg = 0,

or equivalently,

(2.5.1) Xg(Y, Z) = g([X,Y ], Z) + g(Y, [X,Z])

for every Y , Z ∈ Γ(TM).

2.5.2 Proposition Let (M, g) be a Riemannian manifold.
a. The set of Killing fields on M form a Lie subalgebra of the Lie algebra of smooth vector fields

on M .
b. A smooth vector field X ∈ Γ(TM) is a Killing field if and only if

g(∇YX,Z) + g(∇ZX,Y ) = 0

for every Y , Z ∈ Γ(TM), i. e. (∇X)p is skew-symmetric as a linear operator on TpM for all
p ∈M .

Proof. (a) The set of Killing fields on M is a subspace of Γ(TM) because LXg = 0 is linear in
X, and closed under the Lie bracket because L[X,Y ] = [LX , LY ] for all X, Y ∈ Γ(TM).

(b) Using that the Levi-Cività connection is compatible with the metric and has no torsion
(Proposition 2.2.5(a) and (b)), equation (2.5.1) is seen to be equivalent to

g(∇XY, Z) + g(Y,∇XZ) = g(∇XY −∇YX,Z) + g(Y,∇XZ −∇ZX),

which implies the result. �

2.5.3 Lemma (Clairault) Let X be a Killing field on a Riemannian manifold. Then, for any
unit speed geodesic γ : I →M , the function

||X|| cos θ

is constant along γ, where θ(t) is the angle between γ′(t) and Xγ(t) for t ∈ I.

Proof. We have
d

dt
g(X, γ′) = g(

∇
dt
X, γ′) + g(X,

∇
dt
γ′) = 0,

where the first term is zero due to 2.5.2(b), and the second one is zero as γ is a geodesic. Hence
g(X, γ′) = ||X|| cos θ is constant along γ. �

Recall that the set Isom(M, g) of all isometries of a Riemannian manifold (M, g) forms a sub-
group of the group of all diffeomorphisms ofM , which has the structure of a Lie group with respect
to the compact-open topology; moreover, the map Isom(M, g) ×M → M is smooth [KN96]. In
particular, if all Killing fields are complete, then the Lie algebra of Isom(M, g) is naturally identified
with the Lie algebra of Killing fields of M .

2.5.4 Remark In chapter 3 we will see that Killing fields are complete if M is e. g. compact. It
follows from exercise 6 of chapter 5 that the dimension of the Lie algebra of Killing fields on M is
bounded by 1

2n(n+ 1), where n = dimM .
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2.6 Induced connections

At this juncture, it is convenient to introduce the following extension of Proposition 2.3.1. We will
be using it especially in the case dimN = 2.

2.6.1 Proposition Let N be a smooth manifold, and let ϕ : N →M be a smooth map. Then there
exists a unique bilinear map ∇ϕ : Γ(TN)× Γ(ϕ∗TM) → Γ(ϕ∗TM), called the induced connection
along ϕ, satisfying the following conditions:
a. ∇ϕ

fXY = f∇ϕ
XY ;

b. ∇ϕ(fY ) = X(f)Y + f∇ϕ
XY ;

c. If Y admits an extension to a vector field Ŷ defined on an open subset U of M , then

(
∇ϕ
XY
)

p
=
(

∇dϕ(Xp)Ŷ
)

ϕ(p)

for every p ∈ ϕ−1(U);
where X ∈ Γ(TN), Y ∈ Γ(ϕ∗TM) and f : N → R is a smooth function.

Proof. Similar to the proof of Proposition 2.3.1. �

2.6.2 Proposition Let ϕ : N →M be a smooth map, let X, Y ∈ Γ(TN) be vector fields in N and
let U , V ∈ Γ(ϕ∗TM) be vector fiels along ϕ. Then the following identities hold:

∇ϕ
X(ϕ∗Y )−∇ϕ

Y (ϕ∗X)− ϕ∗[X,Y ] = 0, and

X g(U, V )− g(∇ϕ
XU, V )− g(∇ϕ

XV, U) = 0.

Proof. One checks that the left-hand sides of both expressions are C∞(M)-linear in the argu-
ments, so it suffices to check the formulae in the case in which X, Y are coordinate vector fields
on N and U , V are restrictions of coordinate vector fields of M along ϕ. In this special case, the
desired results reduce to known properties of the Levi-Civitá connection on M . �

2.7 Connections on vector bundles ⋆

Let E → M be a vector bundle over a smooth manifold M . A (linear) connection on E is an
R-bilinear map ∇ : Γ(TM)× Γ(E) → Γ(E) such that
a. ∇fXξ = f∇Xξ, and
b. ∇X(fξ) = X(f)ξ + f∇Xξ (Leibniz rule)

for every X ∈ Γ(TM), ξ ∈ Γ(E) and f ∈ C∞(M). If, in addition, E is a Riemannian vector
bundle, i.e. it is endowed with an inner product structure 〈·, ·, 〉, then a connection ∇ on E is called
compatible with the metric g if

X〈ξ, η〉 = 〈∇Xξ, η〉+ 〈ξ,∇Xη〉

for all X ∈ Γ(TM), ξ, η ∈ Γ(E).
Similarly to the special case E = TM , an arbitrary connection on E → M has the property

that (∇Xξ)p depends only on the value of X at p and the values of ξ along a given smooth curve
in M which is tangent to Xp at some point.

Finally, if ∇ is a connection on E → M and ϕ : N → M is a smooth map, then there is an
induced connection along ϕ, denoted ∇ϕ, on the induced bundle ϕ∗E → N , in analogy with the
result in Proposition 2.6.1.
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2.8 Examples

The Euclidean space

We claim that the Levi-Cività connection ∇ in Rn coincides with the usual derivative. In fact, let
(x1, . . . , xn) denote the standard global coordinates in Rn. We have that

g

(
∂

∂xi
,
∂

∂xj

)

= δij and

[
∂

∂xi
,
∂

∂xj

]

= 0

for all i, j. Plugging these relations into the Koszul formula (2.2.6) gives that ∇ ∂

∂xi

∂
∂xj

= 0 for all

i, j, namely, all the Christoffel symbols Γijk = 0. If

X =
∑

j

aj
∂

∂xj
and Y =

∑

k

bk
∂

∂xk
,

for aj , bk ∈ C∞(Rn), then, using formula (2.2.2),

∇XY =
∑

i




∑

j

aj
∂bi

∂xj




∂

∂xi
= X(Y ) = dY (X),

proving the claim. We also get, from equation (2.3.5), that a vector field X along a curve γ :
[a, b] →M , given as

X(t) =
∑

k

ak(t)
∂

∂xk

∣
∣
∣
γ(t)

,

is parallel if and only the ak are constant functions, namely, the parallel vector fields in Rn are the
constant vector fields. It follows that the parallel transport map along γ from a to b is given by
the differential of the translation map, that is,

P γb,a = d(τv)γ(a),

where τv is the translation in Rn by the vector v = γ(b)− γ(a), and, in particular, is independent
of the curve γ joining γ(a) and γ(b). Finally, the geodesic equation (2.4.1) in Rn is

(xi)′′ = 0

for all i, so the geodesics are the lines. Hence

expp(v) = p+ v

for p ∈ Rn and v ∈ TpR
n = Rn.

Product Riemannian manifolds

Let (Mi, gi), where i = 1, 2, denote two Riemannian manifols and consider the product Riemannian
manifold (M, g) = (M1, g1)× (M2, g2). Let Ui ∈ Γ(TMi), where i = 1, 2, be arbitrary vector fields.
Of course, U1 and U2 can be identified with vector fields onM , and it follows from the construction
of (M, g) that [U1, U2] = 0 and g(U1, U2) = 0 in M .
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Now, suppose that X, Y , Z ∈ Γ(TM) can be decomposed as X = X1 +X2, Y = Y1 + Y2 and
Z = Z1 + Z2, where Xi, Yi, Zi ∈ Γ(TMi) for i = 1, 2 (not every vector field on M admits such a
decomposition!). Note that

Xg(Y, Z) = X1g1(Y1, Z1) +X2g2(Y2, Z2)

and
g([X,Y ], Z) = g1([X1, Y1], Z1) + g2([X2, Y2], Z2).

It then follows from the Koszul formula (2.2.6) applied three times that

g(∇XY, Z) = g1(∇1
X1
Y1, Z1) + g2(∇2

X2
Y2, Z2)

= g(∇1
X1
Y1 +∇2

X2
Y2, Z),

where ∇ denotes the Levi-Cività connection ofM and ∇i denotes the Levi-Cività connection ofMi

for i = 1, 2. Since g is nondegenerate and any tangent vector toM can be extended to a vector field
Z which decomposes as Z1 + Z2, this calculation yields the following formula for the Levi-Cività
connection of a Riemannian product:

(2.8.1) ∇XY = ∇1
X1
Y1 +∇2

X2
Y2.

It follows from this formula that the Christoffel symbol Γijk of ∇ is zero unless all the three

indices i, j, k correspond to coordinates of the same factor Mℓ, where ℓ = 1 or 2, in which case Γijk
is a function onMℓ and a Christoffel symbol of ∇ℓ. Therefore if γ is a curve inM with components
γ1 in M1 and γ2 in M2, and X is a vector field along γ, then we can decompose X = X1 + X2

where Xi is a vector field along γi, and equation (2.3.2) gives ∇X
dt = ∇X1

dt + ∇X2
dt . In particular, X

is parallel along γ if and only if Xi is parallel along Mi for i = 1, 2. As γ′(t) = γ′1(t) + γ′2(t), in
particular yet, γ is a geodesic if and only if γi is a geodesic of Mi for i = 1, 2.

Riemannian submanifolds and isometric immersions

Let (M, g), (M, g) be Riemannian manifolds, and suppose that ι :M →M is an isometric immer-
sion. We would like to relate the Levi-Cività connections ∇ of M and ∇ of M . Since this is a
local problem, we can work in a neighborhood of a point p ∈M and assume that ι is the inclusion
map. Now the tangent bundle TM is a subbundle of TM |M , the metric g is the restriction of g,
and every vector field on M admits an extension to a vector field on M .

Let X, Y and Z be vector fields on M , and let X, Y and Z be extensions of those vector fields
to vector fields on M . Note that [X,Y ] is an extension of [X,Y ] to a vector field on M . It follows
from two applications of the Koszul formula (2.2.6) that

2g((∇XY )p, Zp) = 2g((∇XY )p, Zp)

= S ±Xp g(Y, Z)± g([X,Y ]p, Zp)

= S ±Xp g(Y , Z)± g([X,Y ]p, Zp)

= 2g((∇XY )p, Zp)

= 2g((∇XY )p, Zp),

where S denotes cyclic summation in X, Y , Z. Since (∇XY )p ∈ TpM and Zp can be any element
of TpM , it follows that

(2.8.2) (∇XY )p = Πp
(
(∇XY )p

)
,
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where Πp : TpM → TpM is the orthogonal projection.

The most important case is that of Riemannian submanifolds of Euclidean space. If M is a
Riemannian submanifold of Rn, then formula (2.8.2) implies that a smooth curve γ in M is a
geodesic of M if and only if its second derivative γ′′ in Rn is everywhere normal to M ; in other
words, the geodesics of M are the “curves with normal acceleration”.

The sphere Sn

Let p ∈ Sn and v ∈ TpS
n. We now determine the unique geodesic γ of Sn with initial conditions

γ(0) = p and γ′(0) = v. If v = 0, then γ is a constant curve, so we may assume that v 6= 0. Since
p and v are orthogonal vectors in Rn+1, they span a 2-dimensional subspace which we denote by
E. Let f : Rn+1 → Rn+1 be the linear reflection on E. Then f is an orthogonal transformation
of Rn+1 and leaves Sn+1 invariant. Now every orthogonal transformation of Rn+1 is an isometry.
Since Sn+1 has the induced metric from Rn+1, f restricts to an isometry of Sn which we denote
by the same letter. Owing to the fact that an isometry maps geodesics to geodesics, the curve
γ̃ = f ◦ γ is a geodesic of Sn. Since f leaves E pointwise fixed, the initial conditions of γ̃ are
γ̃(0) = f(γ(0)) = f(p) = p and γ̃′(0) = f(γ′(0)) = f(v) = v, namely, the same as those of γ.
By the uniqueness of geodesics with given initial conditions, we have that γ̃ = γ, or, what is the
same, f(γ(t)) = γ(t) for all t in the domain of γ. It follows that γ is contained in E and thus must
coincide with the great circle Sn ∩E parametrized with constant speed on its domain of definition.
This argument shows that the great circles are locally geodesics; but then, the great circles are
geodesics.

In particular, the geodesics of Sn parametrized by arc-length are periodic of period 2π. Finally,
we have the formula

expp(v) = cos(||v||)p+ sin(||v||) v

||v||
for v 6= 0.

Riemannian coverings

Let π : (M̃, g̃) → (M, g) be a Riemannian covering.

2.8.3 Proposition The geodesics of (M, g) are the projections of the geodesics of (M̃, g̃), and the
geodesics of (M̃, g̃) are the liftings of the geodesics of (M, g).

Proof. Suppose γ̃ and γ are smooth curves in M̃ , M such that π ◦ γ̃ = γ. Since π is a local
isometry, it maps a sufficiently small arc of γ̃ isometrically onto a small arc of γ. It follows that γ̃
is a geodesic if and only if γ is a geodesic. This shows that the classes of curves described in the
statement of the proposition are indeed geodesics. Now we need only to remark that every smooth
curve in M is the projection of any of its smooth liftings in M̃ , and every smooth curve in M̃ is
the smooth lifting of its projection to M . �

The real projective space

We apply Proposition 2.8.3 to the Riemannian covering map π : Sn → RPn. The geodesics of Sn

have already been determined as being the great circles parametrized with constant speed, so the
geodesics of RPn are the projections of those. In particular, since π identifies antipodal points of
Sn, the geodesics of RPn paramerized by arc-length are periodic of period π.
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Flat tori

Let Γ be a lattice in Rn and consider the induced Riemannian metric gΓ on Tn. We apply Propo-
sition 2.8.3 to the Riemannian covering map π : Rn → (Tn, gΓ) to deduce that the geodesics of
(Tn, gΓ) are simply the projections of the straight lines in Rn. In this way, we see that some
geodesics of (Tn, gΓ) are periodic and some are dense in Tn.

Next, let Γ′ be another lattice in Rn. We have already remarked that (Tn, gΓ) and (Tn, gΓ′)
are generally non-isometric. Nevertheless, there existsa linear transformation f of Rn that maps Γ
to Γ′, and hence induces a diffeomorphism f̄ : Rn/Γ → Rn/Γ′ such that the diagram

Rn f−−−−→ Rn



y



y

Rn/Γ
f̄−−−−→ Rn/Γ′

is commutative. In general, f̄ is not an isometry, but since f maps straight lines to straight lines,
f̄ maps the geodesics of (Tn, gΓ) to the geodesics of (Tn, gΓ′). Hence we get an example of two
non-isometric metrics on the same smooth manifold with the same geodesics.

Lie groups ⋆

Let G be a Lie group and denote its Lie algebra by g. In this example, we will describe the
Levi-Cività connection associated to a bi-invariant metric on G. We start with a definition and a
proposition.

We say that an inner product 〈, 〉 on g is ad-invariant if the identity

(2.8.4) 〈adZX,Y 〉+ 〈X, adZY 〉 = 0

holds for every X, Y , Z ∈ g.

2.8.5 Proposition Every Ad-invariant inner product on g is ad-invariant, and the converse holds
if G is connected.

Proof. Let 〈, 〉 be an inner product on g. It being Ad-invariant means that

(2.8.6) 〈AdgX,AdgY 〉 = 〈X,Y 〉

for every g ∈ G and X, Y ∈ g. In particular, taking g = exp tZ for Z ∈ g and differentiating at
t = 0 yields identity (2.8.4).

Assume now that G is connected and 〈, 〉 is ad-invariant. Then (2.8.4) holds; note that what it
is really saying is that f ′X,Y (0) = 0 for all X, Y ∈ g, where

fX,Y (t) = 〈Adexp tZX,Adexp tZY 〉,

and from this information we will show that fX,Y (t) = fX,Y (0). Indeed, since t 7→ Adexp tZ is a
homomorphism,

fX,Y (t+ s) = fX′,Y ′(t)

where X ′ = Adexp sZX and Y ′ = Adexp sZY . Differentiating this identity at t = 0 gives that
f ′X,Y (s) = f ′X′,Y ′(0) = 0. Since s ∈ R is arbitrary, this implies that fX,Y is constant, as desired.
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So far we have shown that (2.8.6) holds if g lies in the image of exp. But there exists an open
neighborhood U of the identity of G contained in the image of exp, and it is known that U generates
G as a group due to the connectedness of G. Since g 7→ Adg is a homomorphism, this finally implies
that (2.8.6) holds for every g ∈ G. �

Let g be a bi-invariant metric on G. Now we are ready to use the Koszul formula (2.2.6) to
compute the Levi-Cività connection on left-invariant vector fields. Let X, Y , Z ∈ g. Since X and
Y are left-invariant vector fields and g is a left-invariant metric, g(X,Y ) is a constant function on
G. Therefore Zg(X,Y ) = 0. Similarly, Y g(Z,X) = Xg(Y, Z) = 0. Regarding the other terms
of (2.2.6), the preceding proposition shows that g1 is an ad-invariant inner product on g, so

(2.8.7) g([Z,X], Y ) + g(X, [Z, Y ]) = g1(adZX,Y ) + g1(X, adZY ) = 0.

We deduce that

(2.8.8) ∇XY =
1

2
[X,Y ]

for all X, Y ∈ g (this formula shows in particular that ∇XY is also a left-invariant vector field,
but this fact of course also follows from general properties of isometries, cf. section 2.5). An
important application of this formula is that ∇XX = 0 for all ∈ g, and this means that every
one-parameter subgroup of G through the identity is a geodesic. This is also equivalent to saying
that the exponential map of G qua Lie group and the exponential map of G qua Riemannian
manifold (G, g) coincide. It follows from the Hopf-Rinow theorem to be proved in the next chapter
that the exponential map of a compact connected Lie group is surjective, see Theorem 3.3.2 and
Corollary 3.3.6. Of course, the geodesics of G through an arbitrary point are left-translates of
one-parameter subgroups, namely, of the form t 7→ g exp tX for g ∈ G and X ∈ g.

2.9 Exercises

1 Let (M, g) be a Riemannian manifold, consider its tangent bundle TM , and fix a point p ∈M .
Prove that any open neighborhood W of 0p in TM contains a neighborhood of the form

⋃

x∈U
B(0x, ǫ) = { v ∈ TM |U : gπ(v)(v, v)

1/2 < ǫ }

for some open neighborhood U of p in M and some ǫ > 0.

2 Let A, B be nowhere zero smooth functions on R2 and consider the Riemannian metric g =
A2 dx2 +B2 dy2, where x, y are the standard coordinates on R2.
a. Compute the Christoffel symbols of g.
b. Write down the geodesic equations of g.

3 Let (xi) be a system of local coordinates on a smooth manifold M which is equipped with a
connection ∇, and consider the Christoffel symbols Γkij which are defined by ∇ ∂

∂xi

∂
∂xj

=
∑

k Γ
k
ij

∂
∂xk

.

If (x̄i
′

) is another system of local coordinates on M , prove that the following transformation law
holds:

Γ̄k
′

i′j′ =
∑

i,j,k

Γkij
∂xi

∂x̄i′
∂xj

∂x̄j′
∂x̄k

′

∂xk
+
∑

k

∂2xk

∂x̄i′∂x̄j′
∂x̄k

′

∂xk
.

Use this law to check that formula (2.3.2) defines ∇X
dt independently of choice of local chart.
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4 LetM be a Riemannian manifold of dimension n. Given p ∈M , prove that there exists an open
neighborhood U of p, and n smooth vector fields E1, . . . , En defined on U which are orthonormal
at each point of U and such that (∇Ei

Ej)p = 0 for all i, j.

5 Let M be a Riemannian manifold. Suppose X is a smooth vector field along a smooth curve
γ : I →M . If φ : J → I is a diffeomorphism, define the reparametrizations η = γ◦φ and Y = X ◦φ.
a. Show that Y is a smooth vector field along η.
b. Denote by t, s the parameters along γ, η, resp., where t = φ(s), and prove that

(∇
ds
Y

)

(s) =

(∇
dt
X

)

(φ(s))φ′(s)

for s ∈ J , namely, ∇X
ds = ∇X

dt
dt
ds .

c. Deduce that the parallelism of a vector field along a curve does not depend on the parametriza-
tion.

6 Let M be a Riemannian manifold. The goal of this exercise is to characterize the curves on M
that are geodesics up to a reparametrization.
a. Assume γ : I → M is a geodesic, φ : J → I is a diffeomorphism and η : J → M is given by

η = γ ◦ φ. Show that there exists a smooth function f : J → R such that ∇
dtη

′ = fη′.
b. Conversely, suppose that η : J →M is a regular curve (i.e. η′ is nowhere vanishing) satisfying

∇
dtη

′ = fη′ for some smooth function f : J → R, and show that there exists a diffeomorphism
φ : J → I such that γ = η ◦ φ−1 is a geodesic.

7 In this exercise, we describe the geodesics of the real hyperbolic space.
a. Describe the geodesics of M = RHn in the hyperboloid model using a reflection argument

similar to that used in the case of Sn. Namely, show that the geodesic through p ∈ M
with initial unit speed v ∈ TpM is given by γv(t) = cosh t p + sinh t v. Show also that the
(unique, up to reparametrization) geodesic joining two points p, q ∈M is obtained from the
intersection of the 2-plane spanned by p, q in R1,n with the hyperboloid.

b. Use the result of (a) to describe the geodesics of M in Poincaré’s ball and upper half-space
models (cf. exercises 3 and 4 of chapter 1).

c. Check that in the case in which n = 2, the result of (b) coincides with the result of Exam-
ple 2.4.8.

8 Consider the Poincaré upper half-plane model R2
+ = { (x, y) ∈ R2 | y > 0 } with the metric

g = 1
y2

(
dx2 + dy2

)
.

a. Prove that any geodesic of R2
+ is the fixed point set of some isometry. (Hint: Use Exam-

ple 2.4.8 and Exercise 5 of chapter 1; conjugate R by appropriate isometries of the form τa,
hr.) Such isometries deserve to be called reflections. Show that the differential of a reflection
at a fixed point p is a reflection of TpR

2
+ on a straight line.

b. Show that the composition of reflections on two geodesics through the point p = (0, 1) yields
an isometry that fixes that point and induces a rotation on the tangent space. Show also
that any rotation of TpR

2
+ arises in this way. Deduce that the isometry group of R+

2 acts
transitively on the unit tangent bundle (namely, the set of unit tangent vectors).

A Riemannian manifold with the property that its isometry group acts transitively on its unit
tangent bundle is called isotropic.

9 Let (M, g) be an n-dimensional Riemannian manifold.
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a. For any smooth function f : M → R, the gradient of f is the smooth vector field gradf
defined by g((gradf)p, v) = dfp(v) for all v ∈ TpM and all p ∈M . Prove that

grad(f1 + f2) = gradf1 + gradf2 and grad(f1f2) = f1 gradf2 + f2 gradf1

for all smooth functions f1, f2 on M .
b. For any smooth vector field X on M , the divergence of X is the smooth function divX =

trace (v 7→ ∇vX). Prove that

div (X + Y ) = divX + div Y and div (fX) = 〈gradf,X〉+ f divX

for all smooth fuctions f and smooth vector fields X, Y on M .
c. For any smooth function f on M , the Laplacian of f is the smooth function ∆f = div gradf .

The function f is called harmonic is ∆f = 0. Prove that

∆(f1f2) = f1∆f2 + 2〈gradf1, gradf2〉+ f2∆f1

for all smooth functions f1, f2 on M .
d. For any smooth function f on M , the Hessian of f is the (0, 2)-tensor Hess(f) = ∇df . Prove

that
Hess(f)(X,Y ) = X(Y f)− (∇XY )f

and
Hess(f)(X,Y ) = Hess(f)(Y,X)

for all smooth vector fields X, Y on M . Show also that the trace of the Hessian coincides
with the Laplacian.

10 Let g and g̃ = e2ϕg be two conformally related Riemannian metrics on a smooth manifold M .
Prove that their Levi-Cività connections are related by

∇̃XY = ∇XY +X(ϕ)Y + Y (ϕ)X − g(X,Y )gradϕ,

for X, Y ∈ Γ(TM).

11 Let X, Y , Z be Killing vector fields on a Riemannian manifold (M, g), and denote its Levi-
Cività connection by ∇. Check that

2g(∇XY, Z) = g([X,Y ], Z) + g([Y, Z], X)− g([Z,X], Y ).

(Hint: Use Koszul formula (2.2.6), and (2.5.1).)

12 Let M be a smooth manifold equipped with a connection ∇. If γ : (−ǫ, ǫ) → M is a smooth
curve and X is a smooth vector field along γ, prove the following formula:

(∇
dt
X
)

0
= lim

t→0

P γ0,tX(t)−X(0)

t
.

(Hint: Write X as a linear combination of the vectors in a parallel frame along γ.)

13 Let M be a Riemannian manifold and consider its Levi-Cività connection ∇. If X is a smooth
vector field on M and {ϕt} denotes its local flow, and v ∈ TpM , prove the following formula:

∇vX =
∇
dt

∣
∣
∣
t=0

d(ϕt)pv.

(Hint: Use the first identity in Proposition 2.6.2 in order to commute two different derivatives.)
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14 Let X be a Killing field on a Riemannian manifold M . Prove that if p is a critical point of the
function f = ||X||2, then the integral curve of X through p is a geodesic.

15 Let G be a Lie group.
a. Assume G is equipped with a left-invariant (resp. right-invariant) metric. Show that the

right-invariant (resp. left-invariant) vector fields are Killing fields.
b. Assume now G is a connected Lie group with a Riemannian metric such that the right-

invariant (resp. left-invariant) vector fields are Killing fields. Show that the metric is left-
invariant (resp. right-invariant).

16 (Riemannian volume) Let (M, g) be an oriented Riemannian manifold of dimension n. Let E =
(E1, . . . , En) be a positively oriented orthonormal frame on an open subset U (that is, E1, . . . , En
are smooth vector fields defined on U which are orthonormal at each point), and let (θ1, . . . , θn) be
the dual coframe of 1-forms on U . Define the n-form ωE = θ1 ∧ · · · ∧ θn on U .
a. Prove that for another positively oriented orthonormal frame E ′ defined on U ′ we have ωE =

ωE ′ on U ∩ U ′. Deduce that there exists a smooth differential form volM of degree n on M
such that

(volM )p(e1, . . . , en) = 1

for every positively oriented orthonormal basis e1, . . . , en of TpM and all p ∈M . The n-form
volM is called the volume form of (M, g) and the associated measure is called the Riemannian
measure on M associated to g. In case M is compact,

∫

M volM is called the volume of M .
b. Show that for a positively oriented basis v1, . . . , vn of TpM , we have

(volM )p(v1, . . . , vn) =
√

det (gp(vi, vj)).

Deduce that, in local coordinates (U,ϕ = (x1, . . . , xn)),

volM =
√

det(gij) dx
1 ∧ · · · ∧ dxn.

17 Prove that two metrics on a compact 1-dimensional manifold (circle) are globally isometric if
and only if they give the same volume (length).

18 (Divergence theorem) Let M be an oriented Riemannian manifold.
a. Prove that for any smooth vector field

LX(dV ) = (divX) dV

where dV denotes the volume form volM . A vector field is called incompressible if it is
divergence-free. Deduce that a vector field is incompressible if and only if its local flows are
volume preserving.

b. Suppose now Ω is a domain in M with smooth boundary and let ∂Ω be oriented by the
outward unit normal ν. Denote the Riemannian volume form of ∂Ω by dS. Use Stokes’
theorem to show that for any compactly supported smooth vector field X on M we have

∫

Ω
divX dV =

∫

∂Ω
〈X, ν〉 dS

19 (Green identities) Let M be an oriented Riemannian manifold and let Ω be a domain in M as
in exercise 18.
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a. Prove the “integration by parts formula”
∫

Ω
f1∆f2 dV +

∫

Ω
〈grad f1, grad f2〉 dV =

∫

∂Ω
f1
∂f2
∂ν

dS

for any compactly supported smooth functions f1, f2 on M . Deduce the weak maximum
principle: if f is compactly supported and sub- or super-harmonic (i.e. ∆f ≥ 0 or ∆f ≤ 0)
then f is constant. (Hint: first show ∆f = 0; then apply integration by parts to f = f1 = f2
and Ω = M .) Deduce also that the eigenvalues of the Laplacian on a compact oriented
Riemannian manifold are non-positive.

b. Prove that ∫

Ω
(f1∆f2 − f2∆f1) dV =

∫

∂Ω

(

f1
∂f2
∂ν

− f2
∂f1
∂ν

)

dS

for any compactly supported smooth functions f1, f2 on M . Deduce that if f1 and f2 are two
eigenfunctions of the Laplacian on a compact oriented Riemannian manifold M associated to
different eigenvalues λ1, λ2, resp., then f1 and f2 are orthogonal in the sense that

∫

M f1f2 dV =
0.

2.10 Additional notes

§1 The development of the idea of connection presented here, usually called an affine connec-
tion�1�, took some time to evolve to that form. Starting around 1868, Elwin Christoffel became
interested in the theory of invariants and wrote six papers on that topic. In these, he introduced
the Christoffel symbols and solved the local equivalence problem for quadratic differential forms by
essentially introducing the Riemann-Christoffel curvature tensor. These results influenced Gregorio
Ricci-Curbastro in Padua to begin his investigations in 1884 on quadratic differential forms. In
four papers between 1888 and 1892, Ricci-Curbastro exposed the technique of absolute differential
calculus, a new invariant formalism originally constructed to deal with the transformation theory
of partial differential equations, which he used to study the transformation theory of quadratic
differential forms. A pupil of him, Tulio Levi-Cività, wrote a dissertation, published in 1893, where
he developed the calculus of tensors including covariant differentiation, building on ideas from
Ricci-Curbastro and Lie’s then recently appeared theory of transformation groups. In 1900, Ricci
(using this name for the first time instead of his full name) jointly with Levi-Cività published a
fundamental paper [RL00] in which preface they state:

”The algorithm of absolute differential calculus, the instrument matériel of the methods
. . . can be found complete in a remark due to Christoffel. But the methods themselves
and the advantages they offer have their raison d’être and their source in the intimate
relationships that join them to the notion of an n-dimensional variety, which we owe to
the brilliant minds of Gauss and Riemann. . . . Being thus associated in an essential way
with V n, it is the natural instrument of all those studies that have as their subject such
a variety, or in which one encounters as a characteristic element a positive quadratic
form of the differentials of n variables or of their derivatives.”

When in 1915 Albert Einstein used tensor calculus to explain his theory of relativity, Levi-Cività
initiated and kept mathematical correspondence with him until 1917. In that year, inspired by Ein-
stein’s general theory of relativity, Levi-Cività made what is probably his most important contri-
bution to mathematics: the introduction of the concept of parallel displacement. His book [Lev05]

�1�?
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on absolute diferential calculus, originally a collection of lecture notes in Italian, also contains
applications to general relativity.

Soon it was realized that connections existed independently of the Riemannian metric. Between
the years of 1918 and 1923, Hermann Weyl’s efforts towards the unification of electromagnetism
and gravitation brought in new ideas and placed the concept of parallel displacement of a tangent
vector at the base of the definition of an affine connection on a smooth manifold. Tensor calculus
was systematized by Jan Schouten (who discovered the idea of parallel displacement independently
in 1918) in his book Ricci-Kalkül in 1924 (entirely rewritten in 1954). At the same time, Élie
Cartan introduced in the 1920’s projective and conformal connections and, more generally, a new
concept of a connection on a manifold. However, at that time, Cartan faced difficulty trying to
express notions for which there was no truly suitable language. In [Ehr51], Charles Ehresmann
gave a rigorous global definition of a Cartan connection as a special case of a more general notion
of connection on a principal bundle, today called an Ehresmann connection or simply a connection,
which is mostly considered to be the definitive one. The axiomatic approach to affine connections
that we use in this book is due to Jean-Louis Koszul (cf. [Nom54]). For more details on the history
of connections, see the introduction of [Str34]. For the general theory of connections on principal
bundles, see [KN96].

§2 The idea of parallel displacement is a simple though deep notion in geometry. Consider a
2-sphere Σ touching a 2-plane π at a point p. Now let Σ roll over π so that the touching point traces
a curve γ in Σ, and let q be the endpoint of γ. Suppose v is a vector tangent to π at p. Of course,
there is a unique vector v′ which is tangent to π at q and parallel to v in the plane. The parallelism
of Levi-Cività says that v′, regarded as vector tangent to Σ at q, is the parallel displacement of v,
regarded as a vector tangent to Σ at p, along γ. More generally, one can replace Σ by a 2-surface
and let it roll over π to define the parallel displacement of vectors on Σ.
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C H A P T E R 3

Completeness

3.1 Introduction

Geodesics of Riemannian manifolds were defined in section 2.4 as solutions to a second order
ordinary diferential equation that, in a sense, means that they have acceleration zero, or, so to
say, that they are the “straightest” curves in the manifold. On the other hand, the geodesics of
Euclidean space are the lines, and it is known that line segments are the shortest curves between its
endpoints. One of the goals of this chapter is to propose an alternative characterization of geodesics
in Riemannian manifolds as the “shortest” curves in the manifold. As we will see soon, in a general
Riemannian manifold we cannot expect this property to hold globally, but only locally.

To begin with, we prove the Gauss lemma and use it to introduce a metric space structure in
the Riemannian manifold in order to be able to talk about distances and curves that minimize
distance. The proposed characterization as the locally minimizing curves then follows easily from
some results of section 2.4. Next, a natural question is how far a geodesic can minimize distance.
The appropriate category of Riemannian manifolds in which to consider this question is that of
complete Riemannian manifolds, namely, Riemannian manifolds whose geodesics can be extended
indefinitely. In this context, we prove our first global result which is the fundamental Hopf-Rinow
theorem. Finally, the question of how far a geodesic can minimize distance brings us to the notion
of cut-locus.

Throughout this chapter, we let (M, g) denote a connected Riemannian manifold.

3.2 The metric space structure

As a preparation for the introduction of the metric space structure, we prove the Gauss lemma
and use it to show that the radial geodesics emanating from a point and contained in a normal
neighborhood are the shortest curves among the piecewise smooth curves with the same endpoints.

So fix a point p ∈ M . By Proposition 2.4.4, there exist ǫ > 0 and an open neighborhood U of
p in M such that expp : B(0p, ǫ) → U is a diffeomorphism. Then we have a diffeomorphism

f : (0, ǫ)× Sn−1 → U \ {p}, f(r, v) = expp(rv),

where Sn−1 denotes the unit sphere of (TpM, gp). Note that γv(t) = f(t, v) if |t| < ǫ.

3.2.1 Lemma (Gauss, local version) The radial geodesic γv is perpendicular to the hyperspheres
f({r} × Sn−1) for 0 < r < ǫ. It follows that

f∗g = dr2 + h(r,v)
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where h(r,v) is the metric induced on Sn−1 from f : {r} × Sn−1 →M .

Proof. For a smooth vector field X on Sn−1, we denote by X̃ = f∗X the induced vector field

on U . Also, we denote by ∂
∂r the coordinate vector field on (0, ǫ) and set ∂̃

∂r = f∗ ∂
∂r . Next, note

that γ′v(r) =
∂̃
∂r |f(r,v) and that every vector tangent to S(p, r) := f({r} × Sn−1) at f(r, v) is of the

form X̃|f(r,v) for some smooth vector field X on Sn−1. In view of that, the problem is reduced to

proving that g(X̃, ∂̃∂r ) = 0 at f(r, v). With this is mind, we start computing

d

dr
g

(

X̃,
∂̃

∂r

)

= g

(

∇ ∂̃
∂r

X̃,
∂̃

∂r

)

+ g

(

X̃,∇ ∂̃
∂r

∂̃

∂r

)

= g

(

∇X̃

∂̃

∂r
,
∂̃

∂r

)

=
1

2
X̃ g

(

∂̃

∂r
,
∂̃

∂r

)

= 0,

where we have used the following facts: the compatibility of ∇ with g, ∇ ∂̃
∂r

∂̃
∂r = 0 since γv is

a geodesic, ∇ ∂̃
∂r

X̃ − ∇X̃
∂̃
∂r = [ ∂̃∂r , X̃] = f∗[ ∂∂r , X] = 0 and g

(
∂̃
∂r ,

∂̃
∂r

)

= 1. Now we have that

g(X̃, ∂̃∂r ) = 0 is constant as a function of r ∈ (0, ǫ). Hence

g

(

X̃,
∂̃

∂r

)
∣
∣
∣
f(0,v)

= lim
r→0

g

(

X̃,
∂̃

∂r

)
∣
∣
∣
f(r,v)

= 0

due to the fact that X̃|f(r,v) = d(expp)rv(rXv) goes to 0 as r → 0.

Regarding the last assertion in the statement, the above result shows that in the expression of
f∗g there are no mixed terms, namely, no terms involving both dr and coordinates on Sn−1, and

g
(
∂̃
∂r ,

∂̃
∂r

)

= 1 shows that the coefficient of dr2 is 1. �

3.2.2 Proposition Let p ∈M , and let ǫ > 0 be such that U = expp(B(0p, ǫ)) is a normal neighbor-
hood of p. Then, for any x ∈ U , there exists a unique geodesic γ of length less than ǫ joining p and
x. Moreover, γ is the shortest piecewise smooth curve in M joining p to x, and any other piecewise
smooth curve joining p to x with the same length as γ must coincide with it, up to reparametrization.

Proof. We already know that there exists a unique v ∈ TpM with gp(v, v)
1/2 < ǫ and expp v = x.

Taking γ to be γv : [0, 1] →M , it is clear that the length of γ is less than ǫ.

Next, let η be another piecewise curve joining p to x. We need to prove that L(γ) ≤ L(η),
where the equality holds if and only if η and γ coincide, up to reparametrization. Without loss of
generality, we may assume that η is defined on [0, 1] and that η(t) 6= p for t > 0. There are two
cases:

(a) If η is entirely contained in U , then we can write η(t) = f(r(t), v(t)) for t > 0. In this case,
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due to the Gauss lemma 3.2.1:

L(η) =

∫ 1

0
gη(t)(η

′(t), η′(t))1/2 dt

=

∫ 1

0

(
r′(t)2 + h(r(t),v(t))(v

′(t), v′(t))
)1/2

dt

≥
∫ 1

0
|r′(t)| dt

≥ |r(1)− lim
t→0

r(t)|
= L(γ).

(b) If η is not contained in U , let

t0 = inf{ t | η(t) 6∈ U }.

Then, using again the Gauss lemma:

L(η) ≥ L(η|[0,t0]) ≥
∫ t0

0
|r′(t)| dt ≥ r(t0) = ǫ > L(γ).

In any case, we have L(η) ≥ L(γ). If L(η) = L(γ), then we are in the first case and r′(t) > 0,
v′(t) = 0 for all t, so η is a radial geodesic, up to reparametrization. �

For points x, y ∈M , define

d(x, y) = inf{L(γ) | γ is a piecewise smooth curve joining x and y }.

Note that the infimum in general need not be attained. This happens for instance in the case
in which M = R2 \ {(0, 0)} and we take x = (−1, 0), y = (1, 0); here d(x, y) = 2, but there is no
curve of length 2 joining these points.

3.2.3 Proposition We have that d is a distance on M , and it induces the manifold topology in M .

Proof. First notice that the distance of any two points is finite. In fact, since a manifold is
locally Euclidean, the set of points of M that can be joined to a given point by a piecewise smooth
curve is open. This gives a partition of M into open sets. By connectedness, there must be only
one such set.

Next, we remark that d(x, y) = d(y, x), since any curve can be reparametrized backwards. Also,
the triangular inequality d(x, y) ≤ d(x, z)+d(z, y) holds by juxtaposition of curves, and d(x, x) = 0
holds by using a constant curve.

In order to have that d is a distance, it only remains to prove that d(x, y) > 0 for x 6= y. Choose
ǫ > 0 such that U = expx(B(0x, ǫ)) is a normal neighborhood of x; since expx : B(0x, ǫ) → U is
diffeomorphism, by decreasing ǫ, if necessary, we may assume that y 6∈ U . If γ is any piecewise
smooth curve joining x to y, and t0 = inf{ t | γ(t) 6∈ U }, then L(γ) ≥ L(γ|[0,t0]) ≥ ǫ, where the
second inequality is a consequence of Proposition 3.2.2. It follows that d(x, y) > 0.

Now that we have d is a distance, we remark that the same Proposition 3.2.2 indeed implies
that, in the normal neighborhood U of x, namely for 0 < r < ǫ, the distance spheres

S(x, r) := { z ∈M | d(z, x) = r }
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coincide with the geodesic spheres

{expx(v) | gx(v, v)1/2 = r }.

In particular, the distance balls

B(x, r) := { z ∈M | d(z, x) < r }

coincide with the geodesic balls expx(B(0x, r)). Since the former make up a system of fundamental
neighborhoods of x for the topology of (M,d), and the latter make up a system of fundamental
neighborhoods of x for the manifold topology of M , and x ∈ M is arbitrary, it follows that the
topology induced by d coincides with the manifold topology of M . �

Combining results of Propositions 2.4.7 and 3.2.2, we now have the following proposition.

3.2.4 Proposition Let p ∈ M , and let ǫ > 0 be such that U is an ǫ-totally normal neighborhood
of p as in Proposition 2.4.7. Then, for any x, y ∈ U , there exists a unique geodesic γ of length less
than ǫ joining x and y; moreover, γ depends smoothly on x and y. Finally, the length of γ is equal
to the distance between x and y, and γ is the only piecewise smooth curve in M with this property,
up to reparametrization.

Proof. The first part of the statement is just a paraphrase of Proposition 2.4.7. The second one
follows from Proposition 3.2.2. �

We say that a piecewise smooth curve γ : [a, b] →M is minimizing if L(γ) = d(γ(a), γ(b)).

3.2.5 Lemma Let γ : [a, b] → M be a minimizing curve. Then the restriction γ|[c,d] to any
subinterval [c, d] ⊂ [a, b] is also minimizing.

Proof. Suppose, on the contrary, that γ is not minimizing on [c, d]. This means that there is
a piecewise smooth curve η from γ(c) to γ(d) that is shorter than γ|[c,d]. Consider the piecewise
smooth curve ζ : [a, b] →M constructed by replacing γ|[c,d] by η, namely,

ζ(t) =







γ(t) if t ∈ [a, c],
η(t) if t ∈ [c, d],
γ(t) if t ∈ [d, b].

Then ζ is a piecewise smooth curve from γ(a) to γ(b) and it is clear that ζ is shorter than γ, which
is a contradiction. Hence, γ is minimizing on [c, d]. �

We can now state the promised characterization of geodesics as the locally minimizing curves.

3.2.6 Theorem (Geodesics are the locally minimizing curves) A piecewise smooth curve γ :
[a, b] →M is a geodesic up to reparametrization if and only if every sufficiently small arc of it is a
minimizing curve.

Proof. Just by continuity, every sufficiently small arc of γ is contained in a ǫ-totally normal
neighborhood U of some point of M . But the length of a curve in U of realizes the distance
between the endpoints of the curve if and only if that curve is a geodesic, up to reparametrization,
by Proposition 3.2.4. Since being a geodesic is a local property, the result is proved. �

Since geodesics are smooth, it follows from Lemma 3.2.5 and Theorem 3.2.6 that a minimizing
curve must be smooth.
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3.3 Geodesic completeness and the Hopf-Rinow theorem

A Riemannian manifold M is called geodesically complete if every geodesic of M can be extended
to a geodesic defined on all of R. For instance, Rn satisfies this condition since its geodesics are
lines, but Rn minus one point does not. A more interesting example is the upper half-plane:

{(x, y) ∈ R2 | y > 0}.

This manifold is not geodesically complete with respect to the Euclidean metric dx2+dy2, but it is
so with respect to the hyperbolic metric 1

y2
(dx2 + dy2) (cf. example 2.4.8 of chapter 2). Of course,

an equivalent way of rephrasing this definition is to say that M is geodesically complete if and only
if expp is defined on all of TpM , for all p ∈M .

We will use the following lemma twice in the proof of the Hopf-Rinow theorem.

3.3.1 Lemma Let (M, g) be a connected Riemannian manifold. Let x, y ∈ M be distinct points
and let S be the geodesic sphere of radius δ and center x in (M,d). Then, for sufficiently small
δ > 0, there exists z ∈ S such that

d(x, z) + d(z, y) = d(x, y).

Proof. If δ > 0 is sufficiently small so that the ball B(0x, δ) is contained in an open set where
expx is a diffeomorphism onto its image, then S = expx(S(0x, δ)), where S(0x, δ) is the sphere of
center 0x and radius δ in (TxM, gx). It will also be convenient to assume that δ < d(x, y). Since S
is compact, there exists a point z ∈ S such that d(y, S) = d(y, z).

If γ is a piecewise smooth curve from x to y parametrized on [0, 1], as d(x, y) > δ, we have that
γ meets S at a point γ(t), and then

L(γ) = L(γ|[0,t]) + L(γ|[t,1])
≥ d(x, γ(t)) + d(γ(t), y)

≥ d(x, z) + d(z, y).

This implies that d(x, y) ≥ d(x, z)+ d(z, y). The thesis now follows from the triangle inequality. �

Historically speaking, it is interesting to notice that the celebrated Hopf-Rinow theorem was
only proved in 1931 [HR31]. For ease of presentation, we divide its statement into two parts.
The proof of (3.3.2) presented below is due to de Rham [dR73] and is different from the original
argument in [HR31].

3.3.2 Theorem (Hopf-Rinow) Let (M, g) be a connected Riemannian manifold.

a. Let p ∈ M . If expp is defined on all of TpM , then any point of M can be joined to p by a
minimizing geodesic.

b. If M is geodesically complete, then any two points of M can be joined a minimizing geodesic.

The converse of item (b) in the theorem is false, as can be seen simply by taking M to be an
open ball (or any convex subset) of Rn with the induced metric.

Proof of Theorem 3.3.2. Plainly, it is enough to prove assertion (a) as this assertion implies the
other one. So we assume that expp is defined on all of TpM , and we want to produce a minimizing
geodesic from p to a given point q ∈M . Roughly speaking, the idea of the proof is to start from p
with a geodesic in the “right direction”, and then to prove that this geodesic eventually reaches q.
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By Lemma 3.3.1, for sufficiently small δ > 0, there exists p0 in a normal neighborhood of p such
that

d(p, p0) = δ and d(p, p0) + d(p0, q) = d(p, q).

Let v ∈ TpM be the unit vector such that expp(δv) = p0, and consider γ(t) = expp(tv). We have
that γ is a geodesic defined on all of R. We will prove that γ(d(p, q)) = q.

Let I = { t ∈ [0, d(p, q)] | d(p, q) = t + d(γ(t), q) }. We already know that 0, δ ∈ I, so I is
nonempty. Let T = sup I. Since the distance d : M ×M → R is a continuous function, I is a
closed set, and thus contains T . Note that the result will follow if we can prove that T = d(p, q).
So suppose that T < d(p, q). Then we can apply Lemma 3.3.1 to the points γ(T ) and q to find
ǫ > 0 and q0 ∈M such that

(3.3.3) d(γ(T ), q0) = ǫ and d(γ(T ), q0) + d(q0, q) = d(γ(T ), q).

Hence

d(p, q0) ≥ d(p, q)− d(q0, q)

= d(p, q)−
(
d(γ(T ), q)− d(γ(T ), q0)

)

=
(
d(p, q)− d(γ(T ), q)

)
+ d(γ(T ), q0)

= T + ǫ,(3.3.4)

since T ∈ I. Let η be the unique unit speed minimizing geodesic from γ(T ) to q0. Since the
concatenation of γ|[0,T ] and η is a piecewise smooth curve of length T + ǫ joining p to q0, it follows
from estimate (3.3.4) that d(p, q0) = T + ǫ. Now the concatenation is a minimizing curve, so by
Lemma 3.2.5 and Theorem 3.2.6 it must be a geodesic, thence, smooth. Due to the uniqueness of
geodesics with given initial conditions, η must extend γ|[0,T ] as a geodesic, and therefore γ(T + ǫ) =
η(ǫ) = q0. Using this and equations (3.3.3), we finally get that

d(q, γ(T + ǫ)) + T + ǫ = d(q, q0) + d(γ(T ), q0) + T = d(γ(T ), q) + T = d(p, q),

and this implies that T + ǫ ∈ I, which is a contradiction. Hence the supposition that T < d(p, q)
is wrong and the result follows. �

3.3.5 Theorem (Hopf-Rinow) Let (M, g) be a connected Riemannian manifold. Then the fol-
lowing assertions are equivalent:
a. (M, g) is geodesically complete.
b. For every p ∈M , expp is defined on all of TpM .
c. For some p ∈M , expp is defined on all of TpM .
d. Every closed and bounded subset of (M,d) is compact.
e. (M,d) is complete as a metric space.

Proof. The assertions that (a) implies (b) and (b) implies (c) are obvious. We start the proof
showing that (c) implies (d). LetK be a closed and bounded subset ofM . SinceK is bounded, there
exists R > 0 such that supx∈K{d(p, x)} < R. For every q ∈ K, there exists a minimizing geodesic γ
from p to q by assumption and the first part of Theorem 3.3.2. Note that L(γ) = d(p, q) < R. This
shows that K ⊂ expp(B(0p, R)). Now K is a closed subset of compact set and thus compact itself.

The proof that (d) implies (e) is a general argument in the theory of complete metric spaces.
In fact, any Cauchy sequence in (M,d) is bounded, hence contained in a closed ball, which must be
compact by (d). Therefore the sequence admits a convergent subsequence, and thus it is convergent
itself, proving (e).
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Finally, let us show that (e) implies (a). This is maybe the most relevant part of the proof of
this theorem. So assume that γ is a geodesic of (M, g) parametrized with unit speed. The maximal
interval of definition of γ is open by Theorem 2.4.2 on the local existence and uniqueness of solutions
of second order differential equations; let it be (a, b), where a ∈ R ∪ {−∞} and b ∈ R ∪ {+∞}.

We claim that γ is defined on all of R. Suppose, on the contrary, that b < +∞. Choose a
sequence (tn) in (a, b) such that tn 1 b. Since

d(γ(tm), γ(tn)) ≤ L(γ|[tm,tn]) = tn − tm

for n > m, the sequence (γ(tn)) is a Cauchy sequence and thus converges to a point p ∈M by (e).
Let U be a totally normal neighborhood of p given by Proposition 2.4.7 such that every unit speed
geodesic starting at a point in U is defined at least on the interval (−ǫ, ǫ), for some ǫ > 0. Choose
n so that |tn − b| < ǫ

2 and γ(tn) ∈ U . Then tn + ǫ > b+ ǫ
2 and the geodesic γ can be extended to

(a, tn + ǫ), which is a contradiction. Hence b = +∞. Similarly, one shows that a = −∞, and this
finishes the proof of the theorem. �

We call the attention of the reader to the equivalence of statements (a) and (e) in Theorem 3.3.5.
Because of it, hereafter we can say unambiguously that a Riemannian manifold is complete if it
satisfies either one of assertions (a) or (e). The following are immediate corollaries of the Hopf-
Rinow theorem.

3.3.6 Corollary A compact Riemannian manifold is complete.

Recall that the diameter of a metric space (M,d) is defined to be

diam(M) = sup{ d(x, y) | x, y ∈M }

3.3.7 Corollary A complete Riemannian manifold of bounded diameter is compact.

As an application of the concept of completeness, we prove the following proposition which will
be used in Chapter 6.

3.3.8 Proposition Let π : (M̃, g̃) → (M, g) be a local isometry.
a. If π is a Riemannian covering map and (M, g) is complete, then (M̃, g̃) is also complete.
b. If (M̃, g̃) is complete, then π is a Riemannian covering map and (M, g) is also complete.

Proof. (a) Let γ̃ be a geodesic in M̃ . Then the curve γ in M defined by γ = π ◦ γ̃ is a geodesic
of M by Proposition 2.8.3. In view of the completeness of M , γ is defined on all of R. Again by
Proposition 2.8.3, γ̃ is a lifting of γ, so γ̃ can be extended to be defined on all of R, proving that
M̃ is geodesically complete.

(b) Let p ∈ M . We need to construct an evenly covered neighborhood p in M . Suppose
that π−1(p) = { p̃i ∈ M̃ | i ∈ I }, where I is some index set. We can choose r > 0 such that
expp : B(0p, r) → B(p, r) is a diffeomorphism, where B(p, r) denotes the open ball in M of center p

and radius r. Set U = B(p, r2) and Ũi = B(p̃i,
r
2); these are open sets in M , M̃ , respectively. Since

π is a local isometry by assumption, we have

(3.3.9) π ◦ expp̃i = expp ◦ dπp̃i
for all i ∈ I. Next, we use the assumption that (M̃, g̃) is geodesically complete for the first time (it
will be used again below). It implies via the Theorem of Hopf-Rinow that any point in Ũi can be
joined to p̃i by a minimizing geodesic, and hence

(3.3.10) expp̃i

(

B
(

0p̃i ,
r

2

))

= Ũi
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for all i (note that the direct inclusion is always valid, so we actually used the assumption only to
get the reverse inclusion). This, put together with (3.3.9), gives that π(Ũi) = U for all i, hence the
diagram

(3.3.11)

B(0p̃i ,
r
2)

expp̃i−−−−→ Ũi

dπp̃i



y



yπ

B(0p,
r
2) −−−−→

expp
U

is commutative and ⋃

i∈I
Ũi ⊂ π−1(U)

for all i. Since expp ◦ dπp̃i : B(0p̃i ,
r
2) → U is injective, (3.3.9) and (3.3.10) indeed imply that

π : Ũi → U

is injective; as it is already surjective and a local diffeomorphism, this implies that it is a diffeo-
morphism. We also claim that the Ũi for i ∈ I are pairwise disjoint. Indeed, if there is a point
q ∈ Ũi ∩ Ũj , then

d(p̃i, p̃j) ≤ d(p̃i, q) + d(q, p̃j) <
r

2
+
r

2
= r,

so p̃j ∈ B(p̃i, r). But one sees that π is injective on B(p̃i, r) in the same way as we saw that π is
injective on Ũi. It follows that p̃i = p̃j and hence i = j.

It remains to show that π−1(U) ⊂ ∪i∈I Ũi. Let q̃ ∈ π−1(U). Set π(q̃) = q ∈ U . By our choice of
r, there is a unique v ∈ TqM such that ||v|| < r

2 and p = expq v. Let ṽ = (dπq̃)
−1(v) ∈ Tq̃M̃ . The

geodesic γ̃(t) = expq̃(tṽ) is defined on R since (M̃, g̃) is complete. Now

π ◦ γ̃(1) = π ◦ expq̃(ṽ) = expπ(q̃)((dπ)q̃(ṽ)) = expq v = p,

so γ̃(1) = p̃i0 for some i0 ∈ I. Since ||ṽ|| < r
2 , we have that q̃ = γ̃(0) ∈ B(p̃i0 ,

r
2) = Ũi0 , as desired.

Now that we know that π is a Riemannian covering, the completeness of M follows from that
of M̃ and Proposition 2.8.3. �

We close this section by proving that Killing fields on complete Riemannian manifolds are
complete. To get a feeling for this result, it is instructive to think what happens when we remove a
point from a 2-sphere: here the algebra of Killing fields is still isomorphic to so(3), but the isometry
group just consists of rotations around the point, hence its Lie algebra is isomorphic to so(2).

3.3.12 Proposition Let M be a complete Riemannian manifold. Then any Killing field on M is
complete as a vector field. It follows that the Lie algebra of Killing fields on M is isomorphic to
the Lie algebra of the isometry group of M .

Proof. Let X be a Killing field on M , and let γ : (a, b) → M be an integral curve of X with
b < +∞. In order to prove that X is complete, it suffices to show that γ can be extended to (a, b].
In fact formula (2.5.1) implies that Xg(X,X) = 0, whence ||γ′|| is a constant c. Therefore for t1,
t2 ∈ (a, b), t1 < t2, we have

d(γ(t1), γ(t2)) ≤ L(γ|[t1,t2]) = c(t2 − t1).

Then it follows from the completeness of M that limt→b− γ(t) exists, as desired.
We have proved that Killing fields are infinitesimal generators of (global) one-parameter sub-

groups of isometries of M . The second assertion follows. �
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3.4 Cut locus

Consider the following facts that we have already discussed: every geodesic is locally minimizing
(Theorem 3.2.6); a minimizing geodesic remains minimizing when restricted to a subinterval of its
domain (Lemma 3.2.5); in a complete Riemannian manifold, the domain of any geodesic can be
extended to all of R. In view of this, a natural question can be posed now: how far is a geodesic
in a complete Riemannian manifold minimizing? This is the motivation to introduce the concept
of cut locus. We start with a lemma.

3.4.1 Lemma Let M be a connected Riemannian manifold. Let γ : I →M be a geodesic, where I
is an open interval, and let [a, b] ⊂ I.
a. If there exists another geodesic η of the same length as γ|[a,b] from γ(a) to γ(b), then γ is not

minimizing on [a, b+ ǫ] for any ǫ > 0.
b. If (M, g) is complete and no geodesic from γ(a) to γ(b) is shorter than γ|[a,b], then γ is

minimizing on [a, b].

Proof. (a) Consider the piecewise smooth curve ζ : [a, b+ ǫ] →M defined by

ζ(t) =

{
η(t) if t ∈ [a, b],
γ(t) if t ∈ [b, b+ ǫ].

Since η and γ are distinct geodesics, ζ is not smooth at t = b. It follows that ζ is not minimizing on
[a, b+ ǫ]. Since γ and ζ have the same length on [a, b+ ǫ], this implies that neither γ is minimizing
on this interval.

(b) If M is complete, there exists a minimizing geodesic ζ from γ(a) to γ(b) by the Hopf-Rinow
theorem. Since no geodesic from γ(a) to γ(b) is shorter than γ, ζ and γ have the same length, so
γ is also minimizing. �

Henceforth, in this section, we assume that M is a complete Riemannian manifold. Fix a point
p ∈M . For each unit tangent vector v ∈ TpM , we define

(3.4.2) ρ(v) = sup{ t > 0 | d(p, γv(t)) = t }.

Of course, ρ(v) can be infinite. Notice that the set in the right hand side is a closed interval.
It is immediate from the definition that γv is minimizing on [0, t] if 0 < t ≤ ρ(v), and γv is not
minimizing on [0, t] if t > ρ(v). It follows from Lemma 3.4.1 that γv is the unique minimizing
geodesic from p to γv(t) if 0 < t < ρ(v). One proves that ρ is a continuous function from the unit
tangent bundle UM of M into (0,+∞] (see exercise 15 in chapter 5); as usual, the topology we are
considering in (0,+∞] is such that a system of local neighborhoods of the point +∞ is given by
the complements in (0,+∞] of the compact subsets of (0,+∞).

The injectivity radius at p is defined to be

injp(M) = { inf ρ(v) | v ∈ UpM },

where UpM denotes the unit sphere of TpM . By compactness of UpM , it follows that there exists
v0 ∈ UpM such that injp(M) = ρ(v0). Note that injp(M) ∈ (0,+∞]. Also, the injectivity radius of
M is defined to be

inj(M) = inf
p∈M

injp(M).

One can show that p ∈ M 7→ injp(M) ∈ (0,+∞] is a continuous function (see exercise 15 of
chapter 5).
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In the case in which M is compact, its diameter is finite, so no geodesic can be minimizing past
t = diam(M). Hence ρ(v) is finite for every unit vector v ∈ TpM , and it follows that ρ is bounded
and inj(M) is finite and positive. In case M is non-compact and complete, it can happen that
inj(M) = 0 (cf. exercise 19).

The tangential cut locus of M at p is defined as the subset of TpM given by

Cp = { ρ(v)v ∈ TpM | v ∈ TpM, ||v|| = 1 }.

The cut locus of M at p is defined as the subset of M given by

Cut(p) = exppCp = { γv(ρ(v)) | v ∈ TpM, ||v|| = 1 }.

We will also consider the star-shaped open subset of TpM given by

Dp = { tv ∈ TpM | 0 ≤ t < ρ(v), v ∈ TpM , ||v|| = 1 }.

Notice that ∂Dp = Cp and injp(M) = d(p,Cut(p)) (possibly infinite).

3.4.3 Proposition Let M be a complete Riemannian manifold. Then, for every p ∈ M , we have
a disjoint union

M = expp(Dp)∪̇Cut(p).

Proof. Given x ∈M , by the Hopf-Rinow theorem there exists a minimizing unit speed geodesic
γv joining p to x, where v ∈ TpM and ||v|| = 1. As γv is minimizing on [0, d(p, x)], we have that
ρ(v) ≥ d(p, x). This implies that d(p, x)v ∈ Dp∪Cp, thence x = expp(d(p, x)v) ∈ expp(Dp)∪Cut(p)
proving that M = expp(Dp) ∪ Cut(p).

On the other hand, suppose that x ∈ expp(Dp) ∩ Cut(p). Then x ∈ expp(Dp) means that there
exists a minimizing unit speed geodesic γ : [0, a] →M with γ(0) = p, γ(a) = x and γ is minimizing
on [0, a + ǫ] for some ǫ > 0. On the other hand, x ∈ Cut(p) means that there exists a minimizing
unit speed geodesic η : [0, b] →M with η(0) = p, η(b) = x and η is not minimizing past b. It follows
that γ and η are distinct. We reach a contradiction by noting that γ cannot be minimizing past a
by Lemma 3.4.1(a). Hence such an x cannot exist, namely, expp(Dp) ∩ Cut(p) = ∅. �

We already know that expp is injective on Dp. We will see in Corollary 5.5.4 that expp is a
diffeomorphism of Dp onto its image. It follows that, if M is compact, expp(Dp) is homeomorphic
to an open ball in Rn, and M is obtained from Cut(p) by attaching an n-dimensional cell via the
map expp : Cp → Cut(p). In particular, Cut(p) is a strong deformation retract of M \ {p}:�1�one
simply pushes M \ {p} out to Cut(p) along the geodesics emanating from p.

3.5 Examples

Empty cut-locus

In the case of Rn and RHn, we already know that the geodesics are defined on R, so these
Riemannian manifolds are complete (see exercise 7 of chapter 2 for the geodesics of RHn). We also
know that there is a unique geodesic segment joining two given distinct points; since by the Hopf-
Rinow theorem there must be a minimizing geodesic joining those two points, that geodesic segment
must be the minimizing one. It follows that any geodesic segment is minimizing and hence the cut-
locus of any point is empty. This situation will be generalized in chapter 6 (cf. Corollary 6.5.3).

�1�Mention implications for the topology of M .
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Sn and RPn

In the case of Sn, the geodesics are the great circles, so they are defined on R, even if they are all
periodic. Therefore Sn is complete. Let p ∈ Sn. A unit speed geodesic γ starting at γ(0) = p is
minimizing before it reaches the antipodal point γ(π) = −p because γ is the only geodesic joining
p to γ(t) for t ∈ (0, π). If t = π + ǫ for some small ǫ > 0, then there is a shorter geodesic η joining
p to γ(t) which has η′(0) = −γ′(0). It follows that Cut(p) = {−p}.

In the case of RPn, the geodesics are the projections of the geodesics of Sn under the double
covering π : Sn → RPn. Let p̄ = π(p). Given two distinct unit speed geodesics γ1, γ2 in Sn

starting at p, the smallest t > 0 for which we can have γ1(t) = −γ2(t) is t = π/2, namely, the
parameter value at which γ1 and γ2 reach the equator Sn−1 of Sn (note that this happens only if
−γ′2(0) = γ′1(0)). It follows that any unit speed geodesic in RPn is minimizing until time π/2; it is
also clear that such a geodesic is not minimizing past time π/2. It follows that Cut(p̄) is the image
of the equator Sn−1 ⊂ Sn under π, and is thus isometric to RPn−1.

Rectangular flat 2-tori

The next example we consider is a rectangular 2-torus R2/Γ, where Γ is spanned by an orthogonal
basis {v1, v2} of R2. We want to describe Cut(p̄), where p̄ = π(p) for some p ∈ R2 and π : R2 →
R2/Γ is the projection. For simplicity, assume p = 1

2(v1 + v2); this entails no loss of generality as
R2/Γ is homogeneous. Then p is the center of the rectangle R = { a1v1 + a2v2 ∈ R2 | 0 ≤ a1, a2 ≤
1 }. If x̄ = π(x) for some x ∈ R2, then the geodesics joining p̄ to x̄ are exactly the projections of
the line segments in R2 joining p to a point in x+Γ. It follows that if γ is a line in R2 starting at
p and γ̄ = π ◦ γ is the corresponding geodesic in R2/Γ starting at p̄, then γ̄ is minimizing before
γ goes out of R, and not afterwards. It follows that expp(Dp̄) = π(intR) and Cut(p̄) = π(∂R) is
homeomorphic to the bouquet of two circles S1 ∨ S1.

Riemannian submersions and CPn

We first describe the behavior of geodesics with regard to Riemannian submersions. Let π : M̃ →M
be a Riemannian submersion, and denote by H the associated horizontal distribution in M̃ . A
smooth curve in M is called horizontal if it is everywhere tangent to H.

3.5.1 Proposition Let π : M̃ →M be a Riemannian submersion.

a. We have that π is distance-nonincreasing (or non-expanding), namely,

d(π(x̃), π(ỹ)) ≤ d(x̃, ỹ)

for every x̃, ỹ ∈ M̃ .

b. Let γ be a geodesic of M . Given p̃ ∈ π−1(γ(0)), there exists a unique locally defined horizontal
lift γ̃ of γ with γ̃(0) = p̃, and γ̃ is a geodesic of M̃ .

c. Let γ̃ be a geodesic of M̃ . If γ̃′(0) is a horizontal vector, then γ̃′(t) is horizontal for every t
in the domain of γ̃ and the curve π ◦ γ̃ is a geodesic of M of the same length as γ̃.

d. If M̃ is complete, then so is M .

Proof. (a) If γ̃ is a piecewise smooth curve on M̃ joining x̃ and ỹ, then the curve π ◦ γ̃ on M is
also piecewise smooth and joins π(x̃) and π(ỹ). Moreover, L(π ◦ γ̃) ≤ L(γ̃), because the projection
dπ : TM̃ → TM kills the vertical components of vectors and preserves the horizontal ones. It
follows that d(π(x̃), π(ỹ)) ≤ d(x̃, ỹ).
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(b) If γ is constant, there is nothing to be proven, so we can assume that γ is an immersion.
Then there is ǫ > 0 such that N = γ(−ǫ, ǫ) is an embedded submanifold of M . Since π is a
submersion, the pre-image Ñ = π−1(N) is an embedded submanifold of M̃ . Now there is a smooth
function φ : Ñ → (−ǫ, ǫ) such that π(x̃) = γ(φ(x̃)) for every x̃ ∈ N . Using this function, we can
define a smooth horizontal vector field on Ñ by setting

(3.5.2) X̃x̃ = (dπx̃|Hx̃
)−1(γ′(φ(x̃))).

Given p̃ ∈ π−1(γ(0)) ∈ Ñ , let γ̃ be the integral curve of X̃ such that γ̃(0) = p̃. Then γ̃ is a
horizontal curve locally defined around 0, and π ◦ γ̃ = γ because of (3.5.2). It remains to see that
γ̃ is a geodesic. Indeed, using Theorem 3.2.6 and (a) we have that for every t0 in the domain of γ̃,
there exists δ > 0 such that

L(γ̃|[t0,t0+h]) = L(γ|[t0,t0+h]) = d(γ(t0), γ(t0 + h)) ≤ d(γ̃(t0), γ̃(t0 + h))

for 0 < h < δ, and there is a similar formula for −δ < h < 0. It follows that γ̃ is locally minimizing.
Since ||γ̃′|| = ||γ|| is a constant, γ̃ is already parametrized proportionally to arc-length, hence it is
a geodesic.

(c) Let γ̃ be a geodesic of M̃ such that γ̃′(t0) is horizontal for some t0 in the domain of γ̃. Put
p̃ = γ̃(t0) and suppose γ is the geodesic of M with initial conditions γ(t0) = π(p̃) and γ′(t0) =
dπp̃(γ̃

′(t0)). Using (b), we have a horizontal lift η̃ of γ with η̃(t0) = p̃, locally defined around t0,
which is also a geodesic of M̃ . Since γ̃′(t0) and η̃′(t0) are both horizontal vectors, they coincide and
it follows that γ̃ and η̃ coincide on an open interval around t0; on this interval, γ̃′ is horizontal and
π ◦ γ̃ is a geodesic. From the fact that the set of points in the domain of γ̃ where γ̃′ is horizontal
is closed, we deduce that γ̃′ is horizontal wherever it is defined and π ◦ γ̃ is a geodesic everywhere.
The assertion about the lengths of γ̃ and γ plainly follows from the fact that dπx̃ : Hx̃ → Tπ(x̃)M

is a linear isometry for x̃ ∈ M̃ .

(d) Let γ be a geodesic of M . By (b), γ admits a horizontal lift γ̃ which turns out to be defined
on R due to the completeness of M̃ . It follows from (c) that π ◦ γ̃ is a geodesic of M defined on R,
which must clearly extend γ. Hence M is complete. �

In the preceding proposition, it can happen that M is complete but M̃ is not. This happens
for instance if π is the inclusion of a proper open subset of Rn into Rn.

Next we turn to the question of describing the cut-locus of CPn. Consider the Riemannian
submersion π : S2n+1 → CPn where as usual we view S2n+1 as the unit sphere in Cn+1. Note
that CPn is complete by Proposition 3.5.1(d). Let p̃ ∈ S2n+1. Since the fibers of π are just the
S1-orbits, the vertical space Vp̃ = R(ip̃). It follows that the horizontal space Hp̃ ⊂ Tp̃S

2n+1 is
the orthogonal complement of R{p̃, ip̃} = Cp̃ in C2n+1. In view of the proposition, the unit speed
geodesics of CPn starting at p = π(p̃) are of the form γ(t) = π(cos tp̃+sin tṽ), where ṽ is orthogonal
to p̃ and ip̃. It follows that geodesics are defined on R and periodic of period π.

We agree to retain the above notations and consider another unit speed geodesic starting at p̃,
η(t) = π(cos tp̃+ sin tũ), where ũ ∈ Hp̃. Starting at t = 0, cos tp̃+ sin tṽ and cos tp̃+ sin tũ become
linearly dependent over C for the first time at t = π (if ṽ, ũ are linearly independent over C) or at
t = π/2 (if ṽ, ũ are linearly dependent over C). This means that γ and η meet for the first time at
t = π in the first case and at t = π/2 in the second one. It follows that γ is minimizing on [0, t0]
for t0 ≤ π/2. By using Lemma 3.4.1, It also follows that γ is not minimizing on [0, t0] for t0 > π/2.

It follows from the discussion in the previous paragraph that Dp = B(0p,
π
2 ) and a typical point

in Cut(p) is of the form γ(π2 ) = π(ṽ), where ṽ is a unit vector in Hp̃. Since the unit sphere of Hp̃

is isometric to S2n−1, Cut(p) = π(S2n−1) turns out to be isometric to CPn−1.
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3.6 Additional notes

§1 Let (X, d) be a connected metric space and define the length of a continuous curve γ : [a, b] → X
to be the supremum of the lengths of all “polygonal paths” inscribed in γ that join γ(a) to γ(b),
namely,

L(γ) = sup
P

n∑

i=1

d(γ(ti−1), γ(ti)),

where P : a = t0 < t1 < · · · < tn = b runs over all subdivisions of the interval [a, b]. A curve is
called rectifiable if its length is finite. Now (X, d) is called a length space if the distance between
any two points can be “almost” realized by the length of a continuous curve joining the two points,
namely, for every x, y ∈ X,

d(x, y) = inf
γ
L(γ),

where γ runs over the set of all continuous curves joining x to y. Any piecewise smooth curve in a
connected Riemannian manifold is rectifiable and its length in this sense coincides with its length in
the sense of (1.3.5). It follows that the underlying metric space of a connected Riemannian manifold
is a length space, but length spaces of course form a much larger class of metric spaces involving
no a priori differentiability properties. Many concepts and results of Riemannian geometry admit
generalizations to the class of length spaces. For instance, geodesics in length spaces are defined
to be the continuous, locally minimizing curves, and one proves that if (X, d) is a complete locally
compact length space, then any two points are joined by a minimizing geodesic. There is a distance
in the set of isometry classes of compact metric spaces called the Gromov-Hausdorff distance which
turns it into a complete metric space itself (for noncompact spaces, a slightly more general notion
of distance is used), and length spaces form a closed subset in this topology. In this sense, length
spaces appear as limits of Riemannian manifolds. For an introduction to general length spaces,
see [BBI01].

§2 Next, we give an interesting class of examples of length spaces. Namely, one starts with a
connected Riemannian manifold (M, g) of dimension n equipped with a smooth distribution D of
dimension k, where 1 < k < n, and, for x, y ∈ M , declares d(x, y) = infγ L(γ) where the infimum
is taken over the piecewise smooth curves γ joining x to y such that γ′ is tangent to D whenever
defined. If D is sufficiently generic, in the sense that iterated brackets of arbitrary length of locally
defined sections of D span TM at every point, then one shows that d is finite and (M,d) is a length
space. Note that in this definition we have only used the restriction of g to the sections of D. A triple
(M,D, g) where M is a smooth manifold, D is a bracket-generating smooth distribution as above
and g is a smoothly varying choice of inner products on the fibers of D is called a sub-Riemannian
manifold, and the associated length space (M,d) is called a Carnot-Carathéodory space; such spaces
appear for instance in mechanics with non-holonomic constraints and geometric control theory. A
very interesting feature of a Carnot-Carathéodory space is that its Hausdorff dimension is always
stricly bigger than its manifold dimension. For further reading about sub-Riemannian geometry,
we recommend [BR96, Mon02].

3.7 Exercises

1 Let (M, g) be a connected Riemannian manifold and consider the underlying metric space
structure (M,d). Prove that any isometry f of (M, g) is distance-preserving, that is, it satisfies the
condition that d(f(x), f(y)) = d(x, y) for every x, y ∈M .

2 Describe the isometry group G of Rn:
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a. Show that G is generated by orthogonal transformations and translations.
b. Show that G is isomorphic to the semidirect product O(n)⋉Rn, where

(B,w) · (A, v) = (BA,Bv + w)

for A, B ∈ O(n) and v, w ∈ Rn.
(Hint: Use the result of the previous exercise.)

3 Prove that every isometry of the unit sphere Sn of Euclidean space Rn+1 is the restriction of a
linear orthogonal transformation of Rn+1. Deduce that the isometry group of Sn is isomorphic to
O(n+ 1). What is the isometry group of RPn?

4 Prove that every isometry of the hyperboloid model of RHn is the restriction of a linear
Lorentzian orthochronous transformation of R1,n. Deduce that the isometry group of RHn is
isomorphic to O+(1, n).

5 A ray in a complete Riemannian manifold M is a unit speed geodesic γ : [0,+∞) → R such
that d(γ(0), γ(t)) = t for all t ≥ 0. We say that the ray γ emanates from γ(0).

Let M be a complete Riemannian manifold and assume that M is noncompact. Prove that, for
every p ∈M , there exists a ray γ emanating from p.

6 A line in a complete Riemannian manifold M is a unit speed geodesic γ : R → M such that
d(γ(t), γ(s)) = |t − s| for all t, s ≥ 0. Also, M is called connected at infinity if for every compact
set K ⊂ M there is a compact set C ⊃ K such that any two points in M \ C can be joined by a
curve in M \K. If M is not connected at infinity, we say that M is disconnected at infinity.

LetM be a complete Riemannian manifold and assume thatM is noncompact and disconnected
at infinity. Prove that M contains a line.

7 Prove that the following assertions for a Riemannian manifold M are equivalent:
a. M is complete.
b. There exists p ∈M such that the function x 7→ d(p, x) is a proper function on M .
c. For every p ∈M , the function x 7→ d(p, x) is a proper function on M .

8 A smooth curve γ : I → M in a Riemannian manifold M defined on an interval I ⊂ R is said
to be divergent if the image of γ does not lie in any compact subset of M .

Prove that a Riemannian manifold is complete if and only if every divergent curve in M has
infinite length.

9 Prove that on any smooth manifold a complete Riemannian metric can be defined.

10 Let M be a smooth manifold with the property that it is complete with respect to any Rie-
mannian metric in it. Prove that M must be compact. (Hint: Use the results of exercises 5
and 8.)

11 Describe the cut locus of a point in an hexagonal flat 2-torus. Note that its homeomorphism
type is different from that of the cut locus of a point in a rectangular flat 2-torus (compare Exam-
ples 3.5).

12 Let Mi be complete Riemannian manifolds, where i = 1, 2.
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a. Show that the product Riemannian manifold M1 ×M2 is also complete.
b. Let pi ∈ Mi, where i = 1, 2. Show that the cut locus of (p1, p2) in M1 ×M2 is given by
(
Cut(p1)×M2

)
∪
(
M1 × Cut(p2)

)
.

13 A Riemannian manifold M is called homogeneous if given any two points of M there exists an
isometry of M that maps one point to the other.

Prove that a homogeneous Riemannian manifold is complete.

14 A Riemannian manifold M is called two point-homogeneous if given any two equidistant pairs
of points of M there exists an isometry of M that maps one pair to the other.

Prove that a Riemannian manifold is two point-homogeneous if and only if it is isotropic.

15 Let f , g : M → N be local isometries between Riemannian manifolds where M is connected.
Assume there exists p ∈ M such that f(p) = g(p) = q and dfp = dgp : TpM → TqN . Prove
that f = g. (Hint: Show that the set of points of M where f and g coincide up to first order is
closed and open.)

16 Let γ : (a, b) →M be a smooth curve in a Riemannian manifold M . Prove that

||γ′(t)|| = lim
h→0

d
(
γ(t+ h), γ(t)

)

|h|

for t ∈ (a, b). (Hint: Use a normal neighborhood of γ(t).)

17 Let M be a compact Riemannian manifold of dimension at least two. Prove that the following
assertions are equivalent:
a. M is simply-connected;
b. Cut(p) is simply-connected for all p ∈M ;
c. Cut(p) is simply-connected for some p ∈M .

18 Prove that a bounded vector field on a complete Riemannian manifold is complete.

19 LetM be the quotient of the Poincaré upper half-plane R2
+ by the discrete group of isometries

generated by τ1(x, y) = (x + 1, y) (cf. exercise 5 of chapter 1). Show that inj(M) = 0. (Hint:
Proposition 2.8.3).

20 Let π :M → N be a smooth submersion and fix a complementary subbundle H to the vertical
bundle V = ker dπ in TM . Prove that any smooth curve in N locally admits a horizontal smooth
lift. (Hint: Work in a coordinate system on which π has the standard form of submersions, and
express the condition that a smooth curve in M is the horizontal lift of a given smooth curve in N
as a system of linear ordinary differential equations.)
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C H A P T E R 4

Curvature

4.1 Introduction

The curvature of a plane curve is the measure of change of the direction of the curve. Assuming
the curve parametrized by arc-length and expressing this direction as a unit tangent vector along
the curve exhibits the (unsigned) curvature as the modulus of the second derivative of the curve.
In the case of a surface in R3, Gauss had already shown how to measure curvature: this is the rate
of change of the normal direction of the surface. Locally, one chooses a unit normal vector field and
differentiates it at a point as a map into the unit sphere. Since the surface is two-dimensional, the
result is now a map, namely a linear endomorphism of the tangent space at that point. This turns
out to be symmetric, hence diagonalizable overR. Its eigenvalues are called the principal curvatures
λ1 and λ2. They represent the extreme values of the curvatures of the plane curves given by the
normal sections to the surface. Equivalently, one can look at 2H = λ1 + λ2 and K = λ1λ2. The
second expression is called the Gaussian curvature and, according to Gauss’ celebrated theorema
egregium, has an intrinsic meaning in the sense that it can be expressed solely in terms of the
coefficients of the metric in a coordinate system.

Riemann generalized Gauss’ results and explained how to define the curvature of a Riemannian
manifold M . Here the dimension of M is at least two, so we start by selecting a 2-plane E
contained in TpM . Exponentiating a small neighborhood of 0p in E gives a piece of surface S
through p contained in M . The curvature of M at E is defined to be the Gaussian curvature of S
at p. This gives the sectional curvature function.

As it is, this definition cannot be very useful: it is difficult to compute and, especially, it does
not reflect relations between the sectional curvatures of neighboring planes. After Riemann, the
matter took a few decades more of study to be settled, until tensor calculus entered the scene.

Throughout this chapter, (M, g) denotes a Riemannian manifold and ∇ denotes its Levi-Cività
connection.

4.2 The Riemann-Christoffel curvature tensor

The curvature tensor is the tri-linear map R : Γ(TM)× Γ(TM)× Γ(TM) → Γ(TM) given by

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

It is an easy consequence of the Leibniz rule for ∇ that R is C∞(M)-linear on each argument. As
in the case of connections, this suffices to show that the value of R(X,Y )Z at p depends only on
Xp, Yp, and Zp. Hence we have a tri-linear map

Rp : TpM × TpM × TpM → TpM.
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The following are the fundamental symmetries of this map. For ease of notation and when there
is no danger of confusion, hereafter we sometimes write 〈, 〉 for g.

4.2.1 Proposition (algebraic properties of the curvature tensor) We have that
a. R(X,Y )Z = −R(Y,X)Z
b. 〈R(X,Y )Z,W 〉 = −〈R(X,Y )W,Z〉
c. 〈R(X,Y )Z,W 〉 = 〈R(Z,W )X,Y 〉
d. R(X,Y )Z +R(Y, Z)X +R(Z,X)Y = 0 (first Bianchi identity)

for every X, Y , Z, W ∈ Γ(TM).

Proof. (a) This is clear from the definition.
(b) We compute

〈R(X,Y )Z,Z〉 = 〈∇X∇Y Z,Z〉 − 〈∇Y∇XZ,Z〉 − 〈∇[X,Y ]Z,Z〉
= X〈∇Y Z,Z〉 − 〈∇Y Z,∇XZ〉

−
(
Y 〈∇XZ,Z〉 − 〈∇XZ,∇Y Z〉

)
− 1

2
[X,Y ]〈Z,Z〉

=
1

2
XY 〈Z,Z〉 − 1

2
Y X〈Z,Z〉 − 1

2
[X,Y ]〈Z,Z〉

= 0,

where we have used several times the compatibility of the Levi-Cività connection with the metric.
The identity follows.

(d) We compute

R(X,Y )Z +R(Y, Z)X +R(Z,X)Y = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

+∇Y∇ZX −∇Z∇YX −∇[Y,Z]X

+∇Z∇XY −∇X∇ZY −∇[Z,X]Y

= ∇X(∇Y Z −∇ZY )−∇[X,Y ]Z

+∇Y (∇ZX −∇XZ)−∇[Y,Z]X

+∇Z(∇XY −∇YX)−∇[Z,X]Y

= ∇X [Y, Z]−∇[Y,Z]X

+∇Y [Z,X]−∇[Z,X]Y

+∇Z [X,Y ]−∇[X,Y ]Z

= [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]]

= 0,

where we have used the fact that the Levi-Cività connection is torsionless several times, and the
Jacobi identity in the last line.

(c) We use (a), (b) and (d) to compute

〈R(X,Y )Z,W 〉 = −〈R(Y, Z)X,W 〉 − 〈R(Z,X)Y,W 〉
= 〈R(Y, Z)W,X〉+ 〈R(Z,X)W,Y 〉
= −〈R(Z,W )Y,X〉 − 〈R(W,Y )Z,X〉 − 〈R(X,W )Z, Y 〉 − 〈R(W,Z)X,Y 〉
= 2〈R(Z,W )X,Y 〉+ 〈R(W,Y )X +R(X,W )Y, Z〉
= 2〈R(Z,W )X,Y 〉 − 〈R(Y,X)W,Z〉
= 2〈R(Z,W )X,Y 〉 − 〈R(X,Y )Z,W 〉,
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which gives the result. �

Let p ∈M and let E ⊂ TpM be a 2-plane. The sectional curvature of M at E is defined to be

K(E) = K(x, y) =
−〈Rp(x, y)x, y〉

||x||2||y||2 − 〈x, y〉2 ,

where {x, y} is a basis of E. One checks that this expression does not depend on the choice of basis
of E as follows. It is very easy to see that K(y, x), K(λx, y) (λ 6= 0), K(x + y, y) are all equal to
K(x, y). But one can get from {x, y} to any other basis of E by performing a number of times the
simple transformations

{
x 7→ y
y 7→ x

,

{
x 7→ λx
y 7→ y

,

{
x 7→ x+ y
y 7→ y

.

4.2.2 Proposition We have the following identity

〈Rp(x, y)z, w〉

=
1

6

∂2

∂α∂β
(〈Rp(x+ αz, y + βw)(x+ αz), y + βw〉 − 〈Rp(x+ αw, y + βz)(x+ αw), y + βz〉) ,

where x, y, z, w ∈ TpM .

Proof. By direct computation. �

It is important to remark that the identity in the preceding proposition is proved using only the
algebraic properties of the curvature tensor. Of course, the next corollary is of an algebraic nature
as well.

4.2.3 Corollary The sectional curvature function E 7→ K(E) and the metric at a point p deter-
mine the curvature tensor at p.

A Riemannian manifold (M, g) of dimension n ≥ 2 is said to have constant curvature κ if
for every point p ∈ M and every 2-plane E ⊂ TpM , the sectional curvature at E equals κ. A
Riemannian manifold (M, g) of dimension n ≥ 2 is called flat if it has constant curvature κ and
κ = 0. This terminology is consistent with the one introduced in section 1.3: since local isometries
must preserve the sectional curvature (see end of this section), a Riemannian manifold locally
isometric to Euclidean space must have vanishing sectional curvatures; conversely, we will see in
chapter 6 that a Riemannian manifold with vanishing sectional curvatures is locally isometric to
Euclidean space. A one-dimensional Riemannian manifold is also called flat, although its tangent
spaces do not contain 2-planes, since in this case we have R ≡ 0 by Proposition 4.2.1(a). A
Riemannian manifold is said to have positive curvature (resp. negative curvature) if the sectional
curvature function is positive (resp. negative) everywhere.

If dimM = 2, then a 2-plane E must coincide with TpM , and then we have a scalar-valued
function K(p) = K(TpM), which can be shown to coincide with the Gaussian curvature of M in
the case in which M is a surface in R3 equipped with the induced metric (cf. Add. notes §2).

Next, suppose that dimM ≥ 3. In this case, we say that M has isotropic curvature at a point
p if K(E) = κp for every 2-plane E ⊂ TpM , where κp is a real constant. From the definition of
sectional curvature, we have that

〈Rp(x, y)x, y〉 = −κp
(
||x||2||y||2 − 〈x, y〉2

)
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for all p ∈M and x, y ∈ TpM . Set

〈R0
p(x, y)z, w〉 = −〈x, z〉〈y, w〉+ 〈x,w〉〈y, z〉,

where p ∈ M and x, y, z, w ∈ TpM . Then R0 is a tensor that has the same symmetries as R.
Corollary 4.2.3 implies that

(4.2.4) Rp = κpR
0
p.

Obviously, a Riemannian manifold with constant curvature has isotropic curvature at all points.
It is a result due to Schur that the converse is true in dimensions at least 3.

4.2.5 Lemma (Schur) Let M be a connected Riemannian manifold. If M has isotropic curvature
at all points and dimM ≥ 3, then it has constant curvature.

We will prove the above lemma in section 4.4. Note that the curvature tensor of a Riemannian
manifold of constant curvature satisfies identity (4.2.4) where κp does not depend on p. We also
remark that local isometries must preserve the curvature tensor in the following sense, as is easily
seen by using arguments from section 2.5. If f :M → N is a local isometry between two Riemannian
manifolds, then

(4.2.6) Rf(p)(dfp(Xp), df(Yp))dfp(Zp) = dfp(Rp(Xp, Yp)Zp)

for every p ∈ M and every X, Y , Z ∈ Γ(TM). Of course, it also follows that K(df(E)) = K(E)
for every 2-plane E contained in TpM and every p ∈M .

4.2.7 Remark Let ϕ : N →M be a smooth map, let X, Y ∈ Γ(TN) be vector fields in N and let
U ∈ Γ(ϕ∗TM) be a vector field along ϕ. Recall the induced connection along ϕ that was introduced
in Proposition 2.6.1. Then one can check that the following identity holds:

R(ϕ∗X,ϕ∗Y )U = ∇ϕ
X∇

ϕ
Y U −∇ϕ

Y∇
ϕ
XU −∇ϕ

[X,Y ]U.

4.3 The Ricci tensor and scalar curvature

One can say that the Riemann curvature tensor contains so much information about the Riemannian
manifold that it makes sense to consider also some simpler tensors derived from it, and these are
the Ricci tensor and the scalar curvature.

The Ricci tensor Ric at a point p ∈M is the bilinear map Ricp : TpM × TpM → R given by

Ricp(x, y) = trace (v 7→ −Rp(x, v)y),

where x, y ∈ TpM . Note that the Ricci tensor is defined directly in terms of the curvature tensor
without involving the metric. It follows immediately from the symmetries of the curvature tensor
given by Proposition 4.2.1 that Ric is symmetric, namely,

Ricp(x, y) = Ricp(y, x)

for x, y ∈ TpM and p ∈ M . So the Ricci tensor is of the same type as the metric tensor g, and
it makes sense to compare the two. An Einstein manifold is a Riemannian manifold whose Ricci
tensor is proportional to the metric. If dimM ≥ 3, it follows from Exercise 4 that the constant
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of proportionality is independent of the point, and hence the condition is that there exists λ ∈ R
such that

Ric = λ g.

Riemannian manifolds satisfying Ric = 0 are called Ricci-flat. Of course, a Riemannian manifold
of constant sectional curvature is Einstein, and a flat Riemannian manifold is Ricci-flat.

We can also use the metric to view the Ricci tensor at p ∈M as a linear map TpM → TpM by
setting

〈Ric(x), y〉 = Ric(x, y).

for x, y ∈ TpM . Then it makes sense to take the trace of Ric: the scalar curvature is the smooth
function scal :M → R given by

scal(p) = traceRicp,

where p ∈M .

Fix a point p ∈M and an orthonormal basis {e1, . . . , en} of TpM . Then

Ricp(x, y) = −
n∑

j=1

〈R(x, ej)y, ej〉,

where x, y ∈ TpM . In particular, if x is a unit vector, we can assume that e1 = x and then

(4.3.1) Ricp(x, x) =
n∑

j=2

K(x, ej).

The quadratic form (4.3.1) is sometimes called the Ricci curvature; of course, its values on the unit
sphere of TpM completely determine the Ricci tensor at p, and (4.3.1) shows that Ricp(x, x) is the
(unnormalized) average of the sectional curvatures of the 2-planes containing x. We also have that

scal(p) =
n∑

i=1

Ricp(ei, ei) =
∑

i 6=j
K(ei, ej) = 2

∑

i<j

K(ei, ej),

and this equation shows that the scalar curvature at p is the (unnormalized) average of the sectional
curvatures of the 2-planes in TpM .

4.4 Covariant derivative of tensors ⋆

At this juncture, we feel like it is time to discuss how to differentiate tensors on a manifold. If M
is a Riemannian manifold, there is a canonical way of differentiating smooth vector fields on M ,
namely, this is given by the Levi-Cività connection ∇. Viewing vector fields as tensor fields of type
(1, 0), we can prove that ∇ naturally extends to connections on all tensor bundles T (r,s)M . Denote
by c : T (r,s)M → T (r−1,s−1)M an arbitrary contraction.

4.4.1 Proposition There is a unique family of connections on the tensor bundles T (r,s)M for r,
s ≥ 0, still denoted by ∇, such that the following conditions hold for X ∈ Γ(TM):

a. ∇Xf = Xf for f ∈ C∞(M) = Γ(T (0,0)M);
b. ∇XY for Y ∈ Γ(TM) is the covariant derivative associated to the Levi-Cività connection;
c. ∇X commutes with contractions, that is, ∇Xc(T ) = c(∇XT ) for T ∈ Γ(T (r,s)M) with r,
s > 0;
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d. ∇X is a derivation, that is, ∇X(T ⊗ T ′) = ∇XT ⊗ T ′ + T ⊗ ∇XT
′ for T ∈ Γ(T (r,s)M) and

T ′ ∈ Γ(T (r′,s′)M).

Proof. One first proves uniqueness, as follows. Let X ∈ Γ(TM) and assume ∇X is defined and
satisfies the conditions in the statement. Using the same argument as in Subsection 2.2, for an
open subset U of M we see that if two tensor fields T , T ′ ∈ Γ(T (r,s)M) coincide on U then ∇XT
and ∇XT

′ also coincide on U .
It is now enough to show that ∇X(T |U ) is uniquely defined. Write T is a coordinate system

(U, x1, . . . , xn) as

T |U =
∑

ai1···irj1···js
∂

∂xi1
⊗ · · · ∂

∂xir
⊗ dxj1 ⊗ · · · dxjs ,

where ai1···irj1···js ∈ C∞(U). The Leibniz rule (d) then gives a formula for ∇X(T |U ) is terms of the
action of ∇X on functions, vector fields and 1-forms; the first two cases are taken care by (a) and
(b), so we need only show that ∇Xω is uniquely defined for a 1-form ω on M . For that purpose,
let Y ∈ Γ(TM) and compute, using (a), (b), (c) and (d):

∇Xω(Y ) = c(∇Xω ⊗ Y )

= c(∇X(ω ⊗ Y )− ω ⊗∇XY )

= ∇Xc(ω ⊗ Y )− ω(∇XY )

= ∇X(ω(Y ))− ω(∇XY ),

where c denotes the obvious contraction. Since the last line of this equation is C∞(M)-linear with
respect to Y , yields ∇Xω as a 1-form.

For the existence, one first defines for ω ∈ Γ(T (0,s)M)

∇Xω(X1, . . . , Xs)

= X(ω(X1, . . . , Xs))−
s∑

i=1

ω(X1, . . . ,∇XXi, . . . , Xs).

Next, for T ∈ Γ(T (r,s)M), note that T (ω1, . . . , ωr) ∈ Γ(T (0,s)M) for ωi, . . . , ωr ∈ Γ(T ∗M), so we
can define

∇XT (ω1, . . . , ωr)

= ∇X(T (ω1, . . . , ωr))−
r∑

i=1

T (ω1, . . . ,∇Xωi, . . . , ωs).

We leave to the reader to check that this definition satisfies (c) and (d). �

As a first application of Proposition 4.4.1, we view g as a tensor field of type (0, 2) and note that
the condition that the Levi-Cività connection be compatible with the metric (Proposition 2.2.5(b))
can be restated as simply saying that ∇g = 0, since

∇Xg(Y, Z) = Xg(Y, Z)− g(∇XY, Z)− g(Y,∇XZ).

This is referred to as the parallelism of the metric.
As another application of the Proposition 4.4.1, we prove the second Bianchi identity in Propo-

sition 4.4.3 below. Since R is C∞(M)-linear in each variable, we can view it as a tensor field of
type (1, 3), namely,

Γ(TM)⊗ Γ(TM)⊗ Γ(TM)⊗ Γ(T ∗M) → R
(X,Y, Z, ω) → ω(R(X,Y )Z).
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Conversely, ∇XR, as a tensor of type (1, 3), can be viewed as a map

Γ(TM)⊗ Γ(TM)⊗ Γ(TM) → Γ(TM).

It now follows from the definition of ∇X acting on Γ(T (1,3)M) that we have

(4.4.2) ∇XR(Y, Z)W = ∇X(R(Y, Z)W )−R(∇XY, Z)W −R(Y,∇XZ)W −R(Y, Z)∇XW.

4.4.3 Proposition (Second Bianchi identity) We have that

(4.4.4) ∇XR(Y, Z)W +∇YR(Z,X)W +∇ZR(X,Y )W = 0

for every X, Y , Z, W ∈ Γ(TM).

Proof. Dropping the W in (4.4.2) and using the identity R(X,Y ) = [∇X ,∇Y ]−∇[X,Y ], we get

∇XR(Y, Z) = [∇X , R(Y, Z)]−R(∇XY, Z)−R(Y,∇XZ)

= [∇X , [∇Y ,∇Z ]]− [∇X ,∇[Y,Z]]−R(∇XY, Z)−R(Y,∇XZ)

= [∇X , [∇Y ,∇Z ]]−∇[X,[Y,Z]] −R(X, [Y, Z])−R(∇XY, Z)−R(Y,∇XZ).

Summing this formula with the other two obtained by cyclic permutation of (X,Y, Z), we see that
the first two terms on the right hand side cancel out because of the Jacobi identity, and invoking
the relation ∇XY − ∇YX = [X,Y ] also makes remaining terms also disappear. The identity is
proved. �

Finally, we use the second Bianchi identity to prove Lemma 4.2.5.

Proof of Lemma 4.2.5. We view κp = κ(p) as a function on M . Note that formula (4.2.4)
implies that this function is smooth. We use that formula to get

∇XR(Y, Z)W = (Xκ)R0(Y, Z)W + κ∇XR
0(Y, Z)W.

Summing over the cyclic permutations of (X,Y, Z), we have

(Xκ)R0(Y, Z)W + (Y κ)R0(Z,X)W + (Zκ)R0(X,Y )W = 0

by an application of the second Bianchi identity (4.4.4) to R and R0 (note that the latter is the
curvature tensor of a space of constant curvature). Let X be an arbitrary unit vector field. As
dimM ≥ 3, we can select Y , Z so that {X,Y, Z} is orthonormal. Also, put W = Y . Then

Xκ = 0.

The connectedness of M implies that κ is constant, as desired. �

4.4.5 Remark The musical isomorphisms are defined as follows. For each vector field X on the
Riemannian manifold (M, g), one can define the differential 1-form ω given by ω(Y ) = g(X,Y ).
Note that smoothness of g implies that ω is indeed smooth, and non-degeneracy of g at each
point implies that this defines an isomorphism between spaces of sections ♭ : Γ(TM) → Γ(T ∗M),
the flat , so that ω = X♭. The inverse isomorphism is naturally called the sharp, denoted ♯, so
that X = ω♯. The flat and sharp isomorphisms extend to define isomorphisms Γ(T (r,s)M) →
Γ(T (r′,s′)M) for r + s = r′ + s′ and, as is easily seen, the parallelism of the metric implies that
these isomorphisms commute with the covariant derivatives on Γ(T (r,s)M) and Γ(T (r′,s′)M). As
an example, the curvature tensor R can be viewed as a (0, 4) tensor, namely, R(X,Y, Z,W ) =
W ♭(R(X,Y )Z) = g(R(X,Y )Z,W ).
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4.5 Examples

Flat manifolds

Euclidean space is flat, since

R(X,Y )Z = X(Y (Z))− Y (X(Z))− [X,Y ](Z) = 0.

Since local isometries must preserve the curvature, it follows that the tori Rn/Γ are also flat.

Sn and RPn

Since Sn is a Riemannian submanifold of Rn+1, for its Levi-Cività connection we have that

(4.5.1) ∇XY = X(Y )− 〈X(Y ),p〉p,

where X, Y ∈ Γ(TSn) and we have denoted by p the position vector. It follows that

∇X∇Y Z = X(∇Y Z)− 〈X(∇Y Z),p〉p
= XY (Z)− 〈XY (Z),p〉p− 〈Y (Z), X〉p− 〈Y (Z),p〉X

−〈XY (Z),p〉p+ 〈XY (Z),p〉p+ 〈Y (Z), X〉p
= XY (Z)− 〈XY (Z),p〉p+ 〈Z, Y 〉X

where we have used that 〈Y (Z),p〉 = −〈Z, Y p〉 = −〈Z, Y 〉 since 〈Z,p〉 = 0. Therefore,

(4.5.2) R(X,Y )Z = 〈Y, Z〉X − 〈X,Z〉Y.

Comparing with (4.2.4) shows we have proved that Sn has constant curvature 1. Since RPn is
isometrically covered by Sn, it also has constant curvature 1.

RHn

Consider the hyperboloid model of RHn sitting inside the Lorentzian space R1,n. Although the
metric in the ambient space is now Lorentzian, the Levi-Cività connection of RHn is given by a
formula very similar to (4.5.1), namely, the tangential component of the ambient derivative:

∇XY = X(Y ) + 〈X(Y ),p〉p.

Indeed, one cheks easily that this formula specifies a connection on RHn that satisfies the defining
conditions for the Levi-Cività connection. A computation very similar to that in the case of Sn

thus gives that

(4.5.3) R(X,Y )Z = −〈Y, Z〉X + 〈X,Z〉Y.

Hence RHn has constant curvature −1.

Riemannian products

Let (M, g) = (M1, g1) × (M2, g2) be a Riemannian product. It follows immediately from the
description of the Levi-Cività connection on M for decomposable vector fields (2.8.1) that the
curvature tensor of M is given by

Rp(x, y)z = R1
p1(x1, y1)z1 +R2

p2(x2, y2)z2,
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where x, y, z ∈ TpM for p = (p1, p2) ∈ M1 ×M2, x = x1 + x2, y = y1 + y2, z = z1 + z2 are
the decompositions relative to the splitting TpM = Tp1M1 ⊕ Tp2M2, and R

i denotes the curvature
tensor of M i.

In particular,

g(Rp(x1, y2)x1, y2) = g1(R
1
p1(x1, 0)x1, 0) + g2(R

2
p2(0, y2)0, y2) = 0.

This shows that a mixed plane in M , i.e. a plane with nonzero components in both M1 and M2,
has sectional curvature equal to zero. It also shows that the product of two positively curved
Riemannian manifolds has non-negative curvature.

Riemannian submersions and CPn �

Let π : (M̃, g̃) → (M, g) be a Riemannian submersion and consider the splitting TM̃ = H⊕V into
the horizontal and vertical distributions. A vector field X̃ on M̃ is called:

• horizontal if X̃p̃ ∈ Hp̃ for all p̃ ∈ M̃ ;
• vertical if X̃p̃ ∈ Vp̃ for all p̃ ∈ M̃ ;
• projectable if, for fixed p ∈M , dπ(X̃p̃) is independent of p̃ ∈ π−1(p);
• basic if it is horizontal and projectable.

Note that if X̃ is a smooth projectable vector field on M̃ , then it defines a smooth vector field X
on M by setting Xp = dπ(Xp̃) for any p̃ ∈ π−1(p); in this case, X̃ and X are π-related. It also
follows from the definitions that a vertical vector field is projectable and, indeed, a vector field on
M̃ is vertical if and only if it is π-related to 0.

If X is a smooth vector field on M , it is clear that there exists a unique basic vector field X̃ on
M̃ such that X̃ and X are π-related; the vector field X̃ is necessarily smooth and it is called the
horizontal lift of X.

4.5.4 Lemma Let X̃, Ỹ be horizontal lifts of X, Y ∈ Γ(TM), resp., and let U ∈ Γ(TM̃) be a

vertical vector field. Then the vector fields [X̃, Ỹ ]− [̃X,Y ] and [U, X̃] are vertical.

Proof. Since U is π-related to 0 and X̃ is π-related to X, we have that [U, X̃] is π-related to
[0, X] = 0. A similar argument proves the other assertion. �

The next proposition describes the Levi-Cività connection ∇̃ of M̃ in terms of the Levi-Cività
connection ∇ of M . Denote by (·)v the vertical component of a vector field on M̃ .

4.5.5 Proposition Let π : (M̃, g̃) → (M, g) be a Riemannian submersion. If X, Y ∈ Γ(TM) with
horizontal lifts X̃, Ỹ ∈ Γ(TM̃), then

∇̃X̃ Ỹ = ∇̃XY +
1

2
[X̃, Ỹ ]v.

Proof. Apply the Koszul formula (2.2.6) to g̃(∇̃X̃ Ỹ , Z̃), where Z̃ is the horizontal lift of Z ∈
Γ(TM). Since dπ restricted to each Hp̃ is a linear isometry onto TpM for p = π(p̃),

X̃p̃g̃(Ỹ , Z̃) = Xpg(Y, Z).

Also, by the first assertion of Lemma 4.5.4,

g̃p̃([X̃, Ỹ ], Z̃) = gp([X,Y ], Z).
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Hence

(4.5.6) g̃p̃(∇̃X̃ Ỹ , Z̃) = gp(∇XY, Z) = g̃p̃(∇̃XY , Z̃).

Next, apply the Koszul formula to g̃(∇̃X̃ Ỹ , U), where U ∈ Γ(TM̃) is vertical. Since g̃(X̃, Ỹ ) is

constant along the fibers of π, Ug̃(X̃, Ỹ ) = 0. Using the second assertion of Lemma 4.5.4 yields
that

(4.5.7) g̃(∇̃X̃ Ỹ , U) =
1

2
g̃([X̃, Ỹ ], U).

The desired result is equivalent to (4.5.6) and (4.5.7). �

The next proposition relates the sectional curvatures of M and M̃ .

4.5.8 Proposition Let π : (M̃, g̃) → (M, g) be a Riemannian submersion. If X, Y ∈ Γ(TM) is
an orthonormal pair with horizontal lifts X̃, Ỹ ∈ Γ(TM̃), then

K(X,Y ) = K̃(X̃, Ỹ ) +
3

4
||[X̃, Ỹ ]v||2.

Proof. We start by observing that for a vertical vector field U on M̃ ,

g̃(∇̃X̃U, Ỹ ) = −g̃(U, ∇̃X̃ Ỹ ) = −1

2
g̃(U, [X̃, Ỹ ]v)

by Proposition 4.5.5, and

g̃(∇̃U X̃, Ỹ ) = g̃(∇̃X̃U, Ỹ ) + g̃([U, X̃], Ỹ ) = g̃(∇̃X̃U, Ỹ ),

by Lemma 4.5.4. Using these identities and (4.5.5) a few times, we have

∇̃X̃∇̃Ỹ X̃ = ∇̃X̃

(

∇̃YX
)

+
1

2
∇̃X̃

(

[Ỹ , X̃]v
)

= ˜∇X∇YX +
1

2
[X̃, ∇̃YX]v − 1

2
∇̃X̃

(

[X̃, Ỹ ]v
)

,

and

g̃(∇̃X̃∇̃Ỹ X̃, Ỹ ) = g̃( ˜∇X∇YX, Ỹ )− 1

2
g̃(∇̃X̃ [X̃, Ỹ ]v, Ỹ )

= g(∇X∇YX,Y ) +
1

4
||[X̃, Ỹ ]v||2

Similarly

g̃(∇̃Ỹ ∇̃X̃X̃, Ỹ ) = g̃(∇̃Ỹ ∇̃XX, Ỹ ) = g(∇Y∇XX,Y ),

and

g̃(∇̃[X̃,Ỹ ]X̃, Ỹ ) = g̃(∇̃
[̃X,Y ]

X̃, Ỹ ) + g̃(∇̃[X̃,Ỹ ]vX̃, Ỹ )

= g(∇[X,Y ]X,Y )− 1

2
||[X̃, Ỹ ]v||2.

It follows that

g̃(R̃(X̃, Ỹ )X̃, Ỹ ) = g(R(X,Y )X,Y )− 3

4
||[X̃, Ỹ ]v||2,
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and this clearly implies the desired formula. �

We now apply the above results to the question of computing the sectional curvature of CPn.
Consider as usual the Riemannian submersion π : M̃ = S2n+1 →M = CPn. We will first define a
complex structure on each tangent space to M .�1� Since the horizontal space Hp̃ ⊂ Tp̃S

2n+1, for
p̃ ∈ S2n+1, is the orthogonal complement of R{p̃, ip̃} = Cp̃ in C2n+1, it follows that Hp̃ is a complex
vector subspace of Cn+1. We transfer the complex structure of Hp̃ to TpM , where p = π(p̃), by
conjugation with the isometry dπp̃|Hp̃

: Hp̃ → TpM , namely we set

Jpv = dπp̃ ◦ J0 ◦ (dπp̃|Hp̃
)−1(v) = dπ(iṽ),

where J0 : R2n+2 → R2n+2 is the standard complex structure on R2n+2 that allows us to identify
R2n+2 ∼= Cn+1, and ṽ is the horizontal lift of v at p̃. Let us check that Jp is well defined in the
sense that if we had started with a different point p̃′ ∈ π−1(p), we would have gotten the same
result. Indeed p̃′ = zp̃ for some z ∈ S1. Denote by ϕz : Cn+1 → Cn+1 the multiplication by z.
Then π ◦ ϕz = π which, via the chain rule, yields that dπp̃′ ◦ ϕz = dπp̃ and hence

dπp̃′ ◦ J0 ◦ (dπp̃′ |Hp̃′
)−1 = dπp̃ ◦ ϕz ◦ J0 ◦ ϕz−1 ◦ (dπp̃|Hp̃

)−1

= dπp̃ ◦ J0 ◦ (dπp̃|Hp̃
)−1,

since ϕz maps Hp̃ onto Hp̃′ . Next, it is clear that

J2
p = −idTpM ,

so Jp introduces on TpM the structure of a complex vector space. It is also easy to see that Jp is
a linear isometry because

g(Jpv, Jpw) = g̃(iṽ, iw̃) = g̃(ṽ, w̃) = g(v, w),

where v, w ∈ TpM and ṽ, w̃ ∈ Hp̃ are their corresponding lifts, and we have used the fact that
multiplication by i is an isometry of Cn+1. Now consider Jp for varying p ∈ CPn. If X is a smooth
vector field on CPn, then, plainly, JX = dπ(iX̃), and this implies that also JX is a smooth vector
field on CPn. Hence J is a smooth tensor field of type (1, 1) on CPn. Next, we introduce the
vertical vector field ξ by putting

(4.5.9) ξ(p̃) =
d

dθ

∣
∣
∣
θ=0

(eiθp̃) = ip̃ = J0(p̃).

Note that ξ is a smooth, unit vector field on S2n+1. Then X̃(ξ) = J0(X̃) = iX̃, so using the
expression of the Levi-Cività connection in S2n+1 (4.5.1), we have

∇̃X̃ξ = X̃(ξ)− 〈X̃(ξ),p〉p
= iX̃ − 〈iX̃,p〉p
= iX̃,

�1�For a real vector space V , a complex structure is an endomorphism J : V → V such that J2 = −idV . A complex
structure J on V allows one to view V as a complex vector space with half the real dimension of V , namely, one puts
(a+ ib)v = av + bJv for all a, b ∈ R, v ∈ V . A complex structure on V can exist only if the dimension of V is even
(since (det J)2 = (−1)dimV ), in which case there are many such structures, for the general linear group of V acts on
the set of complex strutures by conjugation. Finally, if V is an Euclidean space, a complex structure J on V is called
orthogonal if J is an orthogonal transformation. The standard complex structure of R2n is given by J0(x, y) = (−y, x)
for all x, y ∈ R

n, so that the complex vector space (R2n, J0) is isomorphic to C
n via (x, y) 7→ x+ iy.
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as iX̃ is tangent to the sphere. Therefore

g̃(ξ, [X̃, Ỹ ]v) = 2g̃(ξ, ∇̃X̃ Ỹ ) (by Proposition 4.5.5)

= −2g̃(∇̃X̃ξ, Ỹ )

= −2g̃(iX̃, Ỹ )

= −2g(JX, Y ).

Since ξ is a unit vector field, in view of Proposition 4.5.8, we finally have that

(4.5.10) K(X,Y ) = 1 + 3〈JX, Y 〉2.

In particular, the sectional curvatures of CPn lie between 1 and 4. Further, the sectional curvature
of a 2-plane E is 4 (resp. 1) if and only if E is complex (resp. totally real).�2� On the other hand,
if we change the metric on CPn to the quotient metric coming from the Riemannian submersion
π : S2n+1(2) → CPn where S2n+1(2) denotes the sphere of radius 2, then its sectional curvatures
will lie between 1

4 and 1 (cf. exercise 2).
For a general even-dimensonal smooth manifold M , a smooth tensor field J of type (1, 1)

satisfying J2
p = −idTpM for all p ∈ M is called an almost complex structure. If J is an almost

complex structure on M , a Riemannian metric g on M is called a Hermitian metric if Jp is a linear
isometry of TpM with respect to gp for all p ∈ M . If, in addition, J is parallel (∇J ≡ 0) with
respect to the Levi-Cività connection of (M, g), then (M, g, J) is called an almost Kähler manifold.

A complex manifold is an even dimensional smooth manifold M admitting a holomorphic atlas,
namely, an atlas whose transition maps are holomorphic maps between open sets of Cn, after
identifying R2n ∼= Cn. It is easy to see that a holomorphic atlas allows one to transfer the complex
structure of R2n to the tangent spaces of M so that a complex manifold automatically inherits
a canonical almost complex structure. Not all almost complex structures on a smooth manifold
are obtained from a holomorphic atlas in this way and the ones that do are called integrable.
The celebrated Newlander-Nirenberg theorem supplies a criterium for the integrability of almost
complex structures, similar to the Frobenius theorem. An almost Kähler manifold with integrable
complex structure is called a Kähler manifold. An introduction to the theory of complex manifolds
is [Wel08].

We come back to the Riemannian submersion π : S2n+1 → CPn and the almost complex
structure J on CPn. Note first that Cn is obviously a complex manifold and indeed a Kähler
manifold: for vector fields X, Y : Cn → Cn the Levi-Cività connection ∇Cn

X Y = dY (X), so the
chain rule yields

∇Cn

X (J0Y ) = d(J0 ◦ Y )(X) = dJ0 ◦ dY (X) = J0∇Cn

X Y

and hence ∇Cn
J0 = 0. Now J0 restricts to an endomorphism of H and the Levi-Cività connection

of S2n+1 is obtained from ∇Cn
by orthogonal projection, so

∇̃X̃(J0Ỹ ) = J0∇̃X̃ Ỹ

from which it follows that
∇X(JY ) = J∇XY,

for all X, Y ∈ Γ(TCPn). This proves that the almost complex structure of CPn is parallel. That
CPn is a Kähler manifold finally follows from the fact that the transition maps (1.3.4) of the
smooth atlas constructed in chapter 1 are holomorphic.

�2�A subspace E of an Euclidean vector space V with orthogonal complex structure J is called totally real (resp. com-

plex ) if J(E) ⊥ E (resp. J(E) ⊂ E).
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Lie groups

Let G be a Lie group equipped with a bi-invariant metric. In this example, we will compute the
sectional curvatures of G. Denote by g the Lie algebra of G. Any 2-plane E contained in TgG,
g ∈ G, is spanned by Xg, Yg for some X, Y ∈ g, so K(E) = K(Xg, Yg). Further, since left-
translations are isometries, we can write K(Xg, Yg) = K(X,Y ) unambiguously. Next, recall the
formula (2.8.8) for the covariant derivative. It yields

∇X∇YX =
1

2
[X,∇YX] =

1

4
[X, [Y,X]] =

1

4
[[X,Y ], X],

∇Y∇XX = 0,

∇[X,Y ]X =
1

2
[[X,Y ], X],

hence

(4.5.11) R(X,Y )X = −1

4
[[X,Y ], X].

Assuming that {X,Y } is orthonormal and using (2.8.7), we finally get that

(4.5.12) K(X,Y ) =
1

4
||[X,Y ]||2.

We conclude that G has nonnegative curvature. Let X ∈ g be a unit vector and let {E1, . . . , En}
be an orthonormal basis of g with E1 = X. Due to (4.3.1), we also have

Ric(X,X) =
n∑

j=2

K(X,Ej) =
1

4

n∑

j=2

||[X,Ej ]||2.

It follows that G has positive Ricci curvature in case its center is discrete. We can also rewrite the
preceding equation as

Ric(X,X) = −1

4

n∑

j=2

g([[X, [X,Ej ]], Ej) = −1

4

n∑

j=2

g(ad2XEj , Ej) = −1

4
trace (ad2X).

Thus, by bilinearity and polarization,

(4.5.13) −4Ric(X,Y ) = trace (adX ◦ adY )

for every X, Y ∈ g.
For a general Lie group G, the right-hand side of equation (4.5.13) defines a bilinear symmetric

form Bg on g called the Killing form (or Cartan-Killing form) of g, and one easily checks that

Bg(adZX,Y ) +Bg(X, adZY ) = 0

for every X, Y , Z ∈ g. If, in addition, G is compact and the center of g is trivial, then one shows
that −Bg is also positive definite [Hel78, Prop. 6.6]. Assuming further that G is connected, it
follows by Proposition 2.8.5 and the discussion in chapter 1 that −Bg induces a bi-invariant metric
on G. Hence, in the special case in which the bi-invariant metric on G comes from the Killing form,
equation (4.5.13) shows that the Ricci tensor is a multiple of the metric tensor, and G is thus an
Einstein manifold.
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4.6 Additional notes

§1 We make a small digression into the classical theory of surfaces in R3, see e.g. [Car76], and prove
the following proposition.

4.6.1 Proposition Let M be a regular surface in R3 equipped with the induced metric. Then the
sectional curvature and the Gaussian curvature of M coincide at each point p ∈M .

Proof. Let x : U → M be a parametrization, where U is an open subset of R2. We have
that {xu,xv} span the tangent plane to M at each point. The smooth functions E = 〈xu,xu〉,
F = 〈xu,xv〉, G = 〈xv,xv〉 are the coefficients of the first fundamental form of M (the induced
Riemannian metric). The unit normal vector field is given by

N =
xu × xv

||xu × xv||
.

This defines the Gauss map N : M → S2. Its differential at p ∈ M is a symmetric linear map
dNp : TpM → TpM which is represented in the basis {xu,xv} by the matrix

(
e f
f g

)

.

Using the Christoffel symbols, we can write

xuu = Γ1
11xu + Γ2

11xv + eN

xuv = Γ1
12xu + Γ2

12xv + fN

xvv = Γ1
22xu + Γ2

22xv + gN

The sectional curvature of M is given by

K(xu,xv) =
−〈R(xu,xv)xu,xv〉

||xu||2||xv||2 − 〈xu,xv〉2

= −〈∇xu∇xvxu −∇xv∇xuxu,xv〉
EG− F 2

,

since [xu,xv] = 0. The Levi-Cività connection ∇ is just the tangential component of the derivative
in R3, so ∇xvxu = (xvu)

⊤ = Γ1
12xu + Γ2

12xv and

∇xu∇xvxu =
(
(Γ1

12)uxu + Γ1
12xuu + (Γ2

12)uxv + Γ2
12xuv

)⊤

=
(
(Γ1

12)u + Γ1
12Γ

1
11 + Γ2

12Γ
1
12

)
xu +

(
(Γ2

12)u + Γ1
12Γ

2
11 + (Γ2

12)
2
)
xv.

Similarly, one computes that

∇xv∇xuxu =
(
(Γ1

11)v + Γ1
11Γ

1
12 + Γ2

11Γ
1
22

)
xu +

(
(Γ2

11)v + Γ1
11Γ

2
12 + Γ2

11Γ
2
22

)
xv.

It follows from formulas (5) and (5a) in [Car76, section 4.3] that K(xu,xv) equals the Gaussian
curvature of M . We realize that this proof is really a restatement of the proof of the Theorema
Egregium. In chapter 7, we will present an alternative way of proving this proposition. �

§2 Curvature, in any of its manifestations, is the single most important invariant in Riemannian
geometry. It is a local invariant that severely restricts the possibilities for local isometries of a
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Riemannian manifold; this is partially reflected in the fact that the group of global isometries of a
Riemannian manifold is a finite-dimensional Lie group. At the same time, it is really the presence
of curvature that gives rise to the huge variety of non-equivalent Riemannian metrics on a given
smooth manifold that we can see. The curvature tensor and its covariant derivatives are indeed
the only Riemannian invariants if one demands that they be algebraic invariants stemming from
the connection. However, if one requires only tensors that are invariant under isometries — the so-
called natural tensors — then there is not even hope of achieving a classification without imposing
further restrictions [Eps75].

§3 Does the curvature determine the metric? This is a very natural question, and an interest-
ing result of Kulkarni [Kul70] asserts that diffeomorphisms preserving the sectional curvature are
isometries if the sectional curvature is not constant and the dimension is bigger than 3. On the
other hand, it is important to realize that the curvature tensor, in general, does not determine
the metric, even given that for n > 3 the dimension of the space of (pointwise) curvature tensors
n2(n2−1)

12 is much larger than the dimension of the (pointwise) metric tensors n(n−1)
2 . Indeed, there

are many examples of nonisometric Riemannian manifolds admitting diffeomorphisms that preserve
the respective curvature tensors. Of course, the difference between the curvature tensor and the
sectional curvature is that the latter involves the metric.

4.7 Exercises

1 Let M be an n-dimensional Riemannian manifold of constant curvature κ. Compute that

Ric = (n− 1)κg and scal = n(n− 1)κ.

2 Let g and ḡ be two Riemannian metrics in the smooth manifold M such that ḡ = λg for a
constant λ > 0. Show that the curvature tensor, the sectional curvature, the Ricci tensor and
the scalar curvature of the Riemannian manifolds (M, ḡ) and (M, g) are related by the following
equations:

R = R, K = λ−1K, Ric = Ric and scal = λ−1scal.

3 Use the symmetries of the curvature tensor to show that the Ricci tensor determines the curva-
ture tensor in a Riemannian manifold of dimension 3.

4 Let M be a connected Einstein manifold of dimension at least 3. Prove that the constant of
proportionality is independent of the point. Deduce Lemma 4.2.5 from this result.

5 Let M be a Riemannian manifold with the property that for any two points p, q ∈ M , the
parallel transport map from p to q along a piecewise smooth curve γ joining p to q does not depend
on γ. Prove that M must be flat.

6 As a partial converse to the previous exercise, suppose M is a flat manifold, p, q ∈ M , and γ0,
γ1 are two smooth curves joining p to q. Prove that if γ0 and γ1 are smoothly homotopic with the
endpoints fixed, then the parallel transport maps from p to q along γ0 and along γ1 coincide.

7 Prove that the curvature tensor of CPn is

R(X,Y )Z = −〈X,Z〉Y + 〈Y, Z〉X + 〈X, JZ〉JY − 〈Y, JZ〉JX + 2〈X, JY 〉JZ

for vector fields X, Y , Z on CPn. (Hint: Use formula (4.5.10).)
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8 Prove that the curvature tensor and the Ricci tensor of a Kähler manifold (M, g, J) satisfy the
following identities:

R(X,Y )J = JR(X,Y ), R(JX, JY ) = R(X,Y ) and Ric(JX, JY ) = Ric(X,Y ),

for all vector fields X and Y on M .

9 Let J be an almost complex structure on a smooth manifold M , and suppose g is an Hermitian
metric onM . Define the 2-form ω onM by the formula ω(X,Y ) = g(JX, Y ) for all X, Y ∈ Γ(TM).
Prove that J is parallel if and only if ω is closed.

10 Prove that the curvature tensor of a Riemannian manifold satisfies the following identities:
a. For tangent vectors x, y, z and w, we have

6〈R(x, y)z, w〉 = 〈R(x, y + z)(y + z), w〉 − 〈R(x, y − z)(y − z), w〉
+〈R(y, x− z)(x− z), w〉 − 〈R(y, x+ z)(x+ z), w〉

b. For tangent vectors a, b, c, we have

4〈R(a, b)a, c〉 = 〈R(a, b+ c)a, b+ c〉 − 〈R(a, b− c)a, b− c〉

Deduce an alternative proof of Corollary 4.2.3.

11 Extend the notion of parallel transport along a curve to tensors of type (r, s).

12 Show that a Riemannian manifold with parallel Ricci tensor must have constant scalar curva-
ture.

13 Let ϕ : N → M be a smooth map, let X, Y ∈ Γ(TN) be vector fields in N and let U ,
V ∈ Γ(ϕ∗TM) be vector fiels along ϕ. Prove that

R(ϕ∗X,ϕ∗Y )U = ∇ϕ
X∇

ϕ
Y U −∇ϕ

X∇
ϕ
Y U −∇ϕ

[X,Y ]U

where R denotes the curvature tensor ofM and ∇ϕ denotes the induced connection along ϕ. (Hint:
Imitate the argument in the proof of Proposition 2.6.2.)

14 LetM be a Riemannian manifold with Levi-Cività connection∇. Fix a point p ∈M and vector
fields X, Y , Z ∈ Γ(TM) such that Xp, Yp are linearly independent. Construct local coordinates
(x1, . . . , xn) around p such that xi(p) = 0 for al i and ∂

∂x1
|p = Xp,

∂
∂x2

|p = Yp. Let γt be the closed
curve in M given by the boundary of the “square” 0 ≤ x1 ≤ t, 0 ≤ x2 ≤ t, xi = 0 for i > 2, run
in the counter clockwise orientation, and denote by P t : TpM → TpM the parallel translation map
along γt. Prove the formula

Rp(X,Y )Z = lim
t→0+

1

t2
(P tZp − Zp).

(Hint: Use exercise 12 of chaper 2.) This exercise somehow refines exercises 5 and 6, and indicates
that R measures the dependence of parallelism on the path.

15 Let G be a compact connected Lie group. Show that G admits a biinvariant metric with
positive sectional curvature if and only if it is isomorphic to SU(2) or SO(3). (Hint: Recall that
the rank of G is the dimension of a maximal torus subgroup of G; it is independent of the maximal
torus. A compact connected Lie group with rank one ı̃s isomorphic to SU(2) or SO(3) [BtD95,
p. 185].)
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C H A P T E R 5

Variational calculus

5.1 Introduction

We continue to study the problem of minimization of geodesics in Riemannian manifolds that was
started in chapter 3. We already know that geodesics are the locally minimizing curves. Also,
long segments of geodesics need not be minimizing, and the study of this phenomenon in complete
Riemannian manifolds motivates the definition of cut locus.

Herein we take a different standpoint in that we consider finite segments of curves. Namely,
consider a complete Riemannian manifoldM . Given two points p, q ∈M , the Hopf-Rinow theorem
ensures the existence of at least one minimizing geodesic γ joining p and q. It follows that γ is
a global minimum for the length functional L defined in the space of piecewise smooth curves
joining p and q. Of course, the calculus approach to finding global minima of a function is to
differentiate it, compute critical points and decide which of them are local minima by using the
second derivative. In our case, the apparatus of classical calculus of variations can be applied to
carry out this program.

To begin with, we show that the critical points of the length functional in the space of piecewise
smooth curves joining p and q are exactly the geodesic segments, up to reparametrization. The main
result of this chapter is the Jacobi-Darboux theorem that gives a necessary and sufficient condition
for a geodesic segment between p and q to be a local minimum for L. In order to prove this
theorem, we introduce Jacobi fields and conjugate points. Finally, we study the relation between
the concepts of cut locus and conjugate locus. These results will be generalized in chapter 7, where
we will prove the Morse index theorem.

Throughout this chapter, (M, g) denotes a Riemannian manifold.

5.2 The energy functional

Instead of working with the length functional L, we will be working with the energy functional E,
which will be defined in a moment. The reason for that is that the critical point theory of E is very
much related to the one of L and, from a variational calculus point of view, E is easier to work
with than L.

The energy of a piecewise smooth curve γ : [a, b] →M is defined to be

E(γ) =
1

2

∫ b

a
||γ′(t)||2 dt.

The factor 1/2 in this expression is a normalization constant and it is not very important.
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It is interesting to note that, in contrast to L, E is not invariant under reparametrizations of
the curve. On the one hand, this points out the fact that E is not a geometrical invariant like L.
On the other hand, this can be seen as an advantage since, as we will soon see, critical points of E
come already equipped with a very specific parametrization.

5.2.1 Lemma Let γ : [a, b] →M be a piecewise smooth curve, and let γ(a) = p and γ(b) = q.
a. If γ is minimizing, that is L(γ) = d(p, q), then γ is a geodesic, up to reparametrization.
b. If γ minimizes the energy in the space of piecewise smooth curves defined on [a, b] and joining
p and q, then γ is a minimizing geodesic.

Proof. (a) If γ is minimizing, then it is locally minimizing (Lemma 3.2.5) and hence a geodesic
(Theorem 3.2.6).

(b) In the space of continuous functions [a, b] → R, consider the scalar product 〈f, g〉 =
∫ b
a f(t)g(t) dt. The Cauchy-Schwarz inequality says that 〈f, g〉2 ≤ ||f ||2||g||2 with the equality
holding if and only if {f, g} is linearly dependent. Applying this to f = ||γ′|| and g = 1 yields that

(∫ b

a
||γ′(t)|| dt

)2

≤ (b− a)

∫ b

a
||γ′(t)||2 dt,

and hence

(5.2.2) L(γ)2 ≤ 2E(γ)(b− a)

with the equality holding if and only if γ is parametrized with constant speed. Let η be any
piecewise smooth curve defined on [a, b] and joining p and q, and assume that it is parametrized
with constant speed. By assumption E(γ) ≤ E(η), so using (5.2.2)

L(γ)2 ≤ 2E(γ)(b− a) ≤ 2E(η)(b− a) = L(η)2.

Since the length of a curve does not depend on its parametrization, this shows that γ is a minimizing
curve. Due to the result of (a), γ is a geodesic, up to reparametrization. Finally, we observe that γ
must be parametrized with constant speed for otherwise it would not minimize the energy by the
same (5.2.2) and the condition of equality thereto pertaining. �

5.3 Variations of curves

A variation of a piecewise smooth curve γ : [a, b] →M is a continuous map H : [a, b]×(−ǫ, ǫ) →M ,
where ǫ > 0, such that H(s, 0) = γ(s) for all s ∈ [a, b], and there exists a subdivision

a = s0 < s1 < · · · < sn = b

such that H|[si−1,si]×(−ǫ,ǫ) is smooth for all i = 1, . . . , n. For each t ∈ (−ǫ, ǫ), the curve

t 7→ H(s, t)

will be denoted by γt. We say that H is a variation with fixed endpoints if H is a variation satisfying

H(a, t) = γt(a) = γ(a) and H(b, t) = γt(b) = γ(b)

for every t ∈ (−ǫ, ǫ). A variation H is called smooth if H : [a, b]× (−ǫ, ǫ) →M is smooth. Finally,
we say that H is a variation through geodesics if H is a variation such that γt is a geodesic for
every t ∈ (−ǫ, ǫ).
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For a variationH of a piecewise smooth curve γ : [a, b] →M , we will denote by∇ the connection
induced along H according to Proposition 2.6.1, and we will consider the following vector fields
along H:

∂̄

∂t
= dH

(
∂

∂t

)

and
∂̄

∂s
= dH

(
∂

∂s

)

.

Note that
∂̄

∂s
= γ′t

may be discontinuous at s = si. On the other hand, ∂̄
∂t and ∇ ∂

∂t

∂̄
∂t are continuous vector fields;

this is true because [a, b] × (−ǫ, ǫ) = ∪ni=1[si−1, si] × (−ǫ, ǫ) is a decomposition into a finite union
of closed subsets, and the restrictions of those vector fields to [si−1, si]× (−ǫ, ǫ) are continuous for
i = 1, . . . , n. Hence we have that

Y =
∂̄

∂t

∣
∣
∣
t=0

is a piecewise smooth vector field along γ called the variational vector field associated to H. Con-
versely, we have the following result.

5.3.1 Lemma Given a piecewise smooth vector field Y along a piecewise smooth curve γ : [a, b] →
M , there exists a piecewise smooth variation H of γ whose associated variational vector field is Y .

Proof. Set H(s, t) = expγ(s)(tY (s)). Since the interval [a, b] is compact, we can find ǫ > 0 such
that H is well defined on [a, b]× (−ǫ, ǫ), and

∂̄

∂t

∣
∣
∣
t=0

= d(expγ(s))0γ(s)(Y (s)) = Y (s).

�

5.3.2 Proposition (First variation of energy) Let γ : [a, b] →M be a piecewise smooth curve,
and let H be a variation of γ with associated variational vector field Y . Then

(5.3.3)
d

dt

∣
∣
∣
t=0

E(γt) =
n∑

i=1

〈Y, γ′〉
∣
∣
∣

s−i

s+i−1

−
∫ b

a
〈Y,∇ ∂

∂s
γ′〉 ds.

Proof. Consider first the case in which γ and H are smooth. Then the integrand of

E(γt) =
1

2

∫ b

a
〈γ′t, γ′t〉 ds =

1

2

∫ b

a
〈 ∂̄
∂s
,
∂̄

∂s
〉 ds

is smooth and we can compute
d

dt
E(γt) by differentiation under the integral sign, namely,

d

dt
E(γt) =

1

2

∫ b

a

∂

∂t
〈 ∂̄
∂s
,
∂̄

∂s
〉 ds

=

∫ b

a
〈∇ ∂

∂t

∂̄

∂s
,
∂̄

∂s
〉 ds(5.3.4)

=

∫ b

a
〈∇ ∂

∂s

∂̄

∂t
,
∂̄

∂s
〉 ds

=

∫ b

a

∂

∂s
〈 ∂̄
∂t
,
∂̄

∂s
〉 − 〈 ∂̄

∂t
,∇ ∂

∂s

∂̄

∂s
〉 ds.
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Here we have used that ∇ ∂
∂t

∂̄
∂s−∇ ∂

∂s

∂̄
∂t = H∗[ ∂∂t ,

∂
∂s ] = 0, according to Proposition 2.6.2. Evaluating

the above formula at t = 0 gives the desired formula in the case in which γ and H are smooth:

d

dt

∣
∣
∣
t=0

E(γt) = 〈Y, γ′〉
∣
∣
∣

b−

a+
−
∫ b

a
〈Y,∇ ∂

∂s
γ′〉 ds.

The formula in the general case is obtained from this one by observing that the energy is additive
over a union of subintervals. �

5.3.5 Proposition (Critical points of E) Let γ : [a, b] → M be a piecewise smooth curve. We
have that

d

dt

∣
∣
∣
t=0

E(γt) = 0

for every variation with fixed endpoints if and only if γ is a geodesic.

Proof. In the class of variations with fixed endpoints, we have that Y (a) = Y (b) = 0, so
formula (5.3.3) can be rewritten as

(5.3.6)
d

dt

∣
∣
∣
t=0

E(γt) = −
n−1∑

i=1

〈Y, γ′〉
∣
∣
∣

s+i

s−i

−
∫ b

a
〈Y,∇ ∂

∂s
γ′〉 ds.

If γ is a geodesic, then ∇̄ ∂
∂s
γ′ = 0 and γ′ is continuous, so both terms in (5.3.6) vanish proving one

direction of the proposition.
Conversely, suppose that 0 = d

dt

∣
∣
t=0

E(γt) = 0 for every variation with fixed endpoints. Let
f : [a, b] → R be a smooth function such that f(s) > 0 if s 6= si and f(si) = 0 for i = 0, . . . , n,
and set Y = f∇̄ ∂

∂s
γ′. Then Y is a piecewise smooth vector field along γ (note that Y is indeed

continuous at si) with Y (a) = Y (b) = 0, and so it defines via Lemma 5.3.1 a variation {γt} with

fixed endpoints for which (5.3.6) gives that 0 = −
∫ b
a f ||∇ ∂

∂s
γ′||2 ds. This already implies that γ

is a geodesic on (si−1, si) for i = 1, . . . , n. Since γ|[si−1,si] is smooth by assumption, it follows that

∇ ∂
∂s
γ′|si = 0 in the sense of side derivatives.

Next, we take Y to be a smooth vector field along γ satisfying Y (a) = Y (b) = 0 and Y (si) =
γ′(s+i )− γ′(s−i ) for i = 1, . . . , n− 1. Substituting into (5.3.6) now gives that 0 = −∑n−1

i=1 ||γ′(s+i )−
γ′(s−i )||2. This of course implies that γ is of class C1. Since we already know that γ|[si−1,si] is a
geodesic for i = 1, . . . , n, this implies that these restrictions are segments of the same geodesic γ
defined on [a, b] by the uniqueness result (Proposition 2.4.3). �

5.3.7 Corollary (Critical points of L) Let γ : [a, b] → M be a piecewise smooth curve. We
have that

d

dt

∣
∣
∣
t=0

L(γt) = 0

for every variation with fixed endpoints if and only if γ is a geodesic, up to reparametrization.

Proof. Let γ̃ = γ ◦ϕ be a reparametrization of γ with constant speed, where ϕ : [a, b] → [a, b] is
an orientation-preserving diffeomorphism. Given a variation H with fixed endpoints of γ, we define
a variation H̃ of γ̃ by setting H̃(s, t) = H(ϕ(s), t), and we denote γ̃t(s) = H̃(s, t) = (γt ◦ ϕ)(s).
Of course L(γt) = L(γ̃t), so we may assume without loss of generality that γ is parametrized with
constant speed from the outset. Now

d

dt
L(γt) =

∫ b

a

∂

∂t
〈 ∂̄
∂s
,
∂̄

∂s
〉1/2 ds = 1

2

∫ b

a
〈 ∂̄
∂s
,
∂̄

∂s
〉−1/2 ∂

∂t
〈 ∂̄
∂s
,
∂̄

∂s
〉 ds.
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Evaluating at t = 0 and using that ||γ′|| is a constant k 6= 0 gives that

d

dt

∣
∣
∣
t=0

L(γt) =
1

2k

∫ b

a

∂

∂t

∣
∣
∣
t=0

〈 ∂̄
∂s
,
∂̄

∂s
〉 ds = 1

k

d

dt

∣
∣
∣
t=0

E(γt).

This shows that L and E have the same critical points, up to reparametrization. Thus the desired
result is an immediate consequence of Proposition 5.3.5. �

5.3.8 Proposition (Second variation of energy) Let γ : [a, b] → M be a geodesic, and let H
be a piecewise smooth variation of γ with associated variational vector field Y . Then

(5.3.9)
d2

dt2

∣
∣
∣
t=0

E(γt) = 〈∇ ∂
∂t

∂̄

∂t

∣
∣
∣
t=0

, γ′〉
∣
∣
∣

b

a
+

∫ b

a
||Y ′||2 + 〈R(γ′, Y )γ′, Y 〉 ds,

where Y ′ = ∇Y
ds .

Proof. Starting with formula (5.3.4), we compute that

d2

dt2
E(γt) =

∫ b

a

∂

∂t
〈∇ ∂

∂t

∂̄

∂s
,
∂̄

∂s
〉 ds

=

∫ b

a

∂

∂t
〈∇ ∂

∂s

∂̄

∂t
,
∂̄

∂s
〉 ds

=

∫ b

a
〈∇ ∂

∂t
∇ ∂

∂s

∂̄

∂t
,
∂̄

∂s
〉+ 〈∇ ∂

∂s

∂̄

∂t
,∇ ∂

∂t

∂̄

∂s
〉 ds

=

∫ b

a
〈∇ ∂

∂s
∇ ∂

∂t

∂̄

∂t
,
∂̄

∂s
〉+ 〈R( ∂̄

∂t
,
∂̄

∂s
)
∂̄

∂t
,
∂̄

∂s
〉+

∣
∣
∣

∣
∣
∣∇ ∂

∂s

∂̄

∂t

∣
∣
∣

∣
∣
∣

2
ds

=

∫ b

a

∂

∂s
〈∇ ∂

∂t

∂̄

∂t
,
∂̄

∂s
〉 − 〈∇ ∂

∂t

∂̄

∂t
,∇ ∂

∂s

∂̄

∂s
〉+ 〈R( ∂̄

∂s
,
∂̄

∂t
)
∂̄

∂s
,
∂̄

∂t
〉+

∣
∣
∣

∣
∣
∣∇ ∂

∂s

∂̄

∂t

∣
∣
∣

∣
∣
∣

2
ds

In the fourth equality, we used that ∇ ∂
∂t
∇ ∂

∂s

∂̄
∂t −∇ ∂

∂s
∇ ∂

∂t

∂̄
∂t = R( ∂̄∂t ,

∂̄
∂s)

∂̄
∂t , according to exercise 13

of chapter 4. Evaluating this formula at t = 0 yields that

d2

dt2

∣
∣
∣
t=0

E(γt) =

∫ b

a

∂

∂s
〈∇ ∂

∂t

∂̄

∂t

∣
∣
∣
t=0

, γ′〉 − 〈∇ ∂
∂t

∂̄

∂t

∣
∣
∣
t=0

, γ′′〉+ 〈R(γ′, Y )γ′, Y 〉+ ||Y ′||2 ds

Since γ′ and ∇ ∂
∂t

∂̄
∂t are continuous and γ′′ = 0, this proves the desired formula. �

5.4 Jacobi fields

Throughout this section, we fix a geodesic γ : [0, ℓ] → M . The second variation formula (5.3.9)
defines a quadratic form on the space of piecewise smooth vector fields along γ vanishing at 0 and
ℓ whose associated symmetric bilinear form I is called the index form and is clearly given by

I(X,Y ) =

∫ ℓ

0
〈X ′, Y ′〉+ 〈R(γ′, X)γ′, Y 〉 ds,

where X ′ = ∇X
ds , Y ′ = ∇Y

ds . Let 0 = s0 < s1 < · · · < sn = ℓ be a subdivision of [0, ℓ] such that
X and Y are smooth on [si−1, si] for i = 1, . . . , n. Since 〈X ′, Y ′〉 = 〈X,Y ′〉′ − 〈X,Y ′′〉 on each
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[si−1, si], we can write

I(X,Y ) =
n∑

i=1

∫ si

si−1

〈X,Y ′〉′ ds+
∫ ℓ

0
−〈X,Y ′′〉+ 〈R(γ′, Y )γ′, X〉 ds

=
n∑

i=1

〈X,Y ′〉
∣
∣
∣

s−i

s+i−1

+

∫ ℓ

0
〈−Y ′′ +R(γ′, Y )γ′, X〉 ds

= −
n−1∑

i=1

〈Y ′(s+i )− Y ′(s−i ), X〉+
∫ ℓ

0
〈−Y ′′ +R(γ′, Y )γ′, X〉 ds(5.4.1)

A Jacobi field along γ is a smooth vector field Y along γ (not necessarily vanishing at the
endpoints of γ) such that

(5.4.2) −Y ′′ +R(γ′, Y )γ′ = 0.

Hence the space of Jacobi fields along γ vanishing at the endpoints of γ is contained in the kernel
of I as a bilinear form; it is easy to show that these spaces in fact coincide by using ideas very
similar to the ones in the proof of Proposition 5.3.5 (cf. exercise 2). Equation (5.4.2) is called the
Jacobi equation along γ.

Next, denote by J the space of all Jacobi fields along γ. It is obvious that J is a vector space.
It is also a very simple matter to check that the smooth vector fields along γ given by Y0(s) = γ′(s)
and Y1(s) = sγ′(s) belong to J . The next proposition shows that a Jacobi field Y along γ, being
a solution of a second-order linear ordinary differential equation, is completely determined by its
initial conditions Y (0) ∈ TpM and Y ′(0) ∈ TpM . It follows that J is a finite-dimensional vector
space and dimJ = 2dimM .

5.4.3 Proposition Let γ : [0, ℓ] →M be a geodesic, and put γ(0) = p.

a. Given u, v ∈ TpM , there exists a unique Jacobi field Y ∈ J such that Y (0) = u and Y ′(0) = v.

b. If X, Y ∈ J , then the function 〈X ′, Y 〉 − 〈X,Y ′〉 is constant on [0, ℓ]. It follows that
〈γ′(s), Y (s)〉 = as+ b for some constants a, b ∈ R and s ∈ [0, ℓ].

Proof. (a) Select an orthonormal basis {e1, . . . , en} of TpM with e1 = γ′(0) and extend it to
an orthonormal frame {E1, . . . , En} of parallel vector fields along γ; since γ is a geodesic, E1 = γ′.
Let Y be a smooth vector field along γ. Then we can write Y =

∑n
i=1 fiEi, where fi : [0, ℓ] → R

are smooth functions. In these terms, the Jacobi equation (5.4.2) is

n∑

i=1

−f ′′i Ei + fiR(γ
′, Ei)γ′ = 0.

Taking the inner product of the left-hand side with Ej yields that

−f ′′j +
n∑

i=2

〈R(γ′, Ei)γ′, Ej〉fi = 0

for j = 1, . . . , n. This is a system of second-order ordinary linear differential equations for which
the standard theorems of existence and uniqueness of solutions apply, hence the result.
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(b) In order to prove the constancy of the function, it suffices to differentiate it along γ:

(〈X ′, Y 〉 − 〈X,Y ′〉)′ = (〈X ′′, Y 〉+ 〈X ′, Y ′〉)− (〈X ′, Y ′〉+ 〈X,Y ′′〉)
= 〈R(γ′, X)γ′, Y 〉 − 〈X,R(γ′, Y )γ′〉
= 0,

where we have used the Jacobi equation (5.4.2) and the symmetry of R (Proposition 4.2.1(c)).

Finally, in order to get the last assertion, take X = γ′ in the function. Then 〈γ′, Y ′〉 = 〈γ′, Y 〉′
is a constant. It follows that 〈γ′, Y 〉 has the required form. �

Proposition 5.4.3(b) shows that Y ∈ J satisfies 〈γ′(s), Y (s)〉 = as + b for all s ∈ [0, ℓ] where
a = 〈γ′(0), Y ′(0)〉 and b = 〈γ′(0), Y (0)〉. Writing

Y = (Y − aY1 − bY0) + bY0 + aY1

shows that there exists a splitting

J = J ⊥ ⊕RY0 ⊕RY1,

where J ⊥ is the subspace of Jacobi fields along γ that are always orthogonal to γ′, namely,

J ⊥ = {Y ∈ J | 〈Y (s), γ′(s)〉 = 0 for all s ∈ [0, ℓ] }.

Since Y0 and Y1 always belong to J , it is the subspace J ⊥ that can give us effective information
about the geodesic γ, if any.

The next proposition refines the information of Lemma 5.3.1. It also points out the fact that
the Jacobi fields along a geodesic somehow control the behaviour of the nearby geodesics.

5.4.4 Proposition Let γ : [0, ℓ] → M be a geodesic. If H is a smooth variation of γ through
geodesics, then the associated variational vector field Y is a Jacobi field along γ. On the other
hand, every Jacobi field Y along γ is the variational vector field associated to a variation H of γ
through geodesics.

Proof. Suppose first that H is a smooth variation of γ through geodesics and let Y = ∂̄
∂t

∣
∣
t=0

be

the associated variational vector field. Then, ∇ ∂
∂s

∂̄
∂s = 0, so using exercise 13 of chapter 4,

∇ ∂
∂s
∇ ∂

∂s

∂̄

∂t
= ∇ ∂

∂s
∇ ∂

∂t

∂̄

∂s
= ∇ ∂

∂t
∇ ∂

∂s

∂̄

∂s
+R(

∂̄

∂s
,
∂̄

∂t
)
∂̄

∂s
= R(

∂̄

∂s
,
∂̄

∂t
)
∂̄

∂s
.

Evaluating this formula at t = 0 gives that Y ′′ = R(γ′, Y )γ′, and hence, Y is a Jacobi field.

Suppose now that Y is a Jacobi field along γ. We construct a variation H of γ as follows. Take
any smooth curve η satisfying η(0) = γ(0) and η′(0) = Y (0). Let X0 and X1 be the parallel vector
fields along η such that X0(0) = γ′(0) and X1(0) = Y ′(0), and let X(t) = X0(t) + tX1(t). Finally,
set H(s, t) = expη(t)(sX(t)).

By construction, H is a variation through geodesics, so ∂̄
∂t

∣
∣
t=0

= dH( ∂∂t)
∣
∣
t=0

is a Jacobi field

along γ by the first part of this proof. Let us compute the initial conditions of ∂̄
∂t

∣
∣
t=0

at s = 0.
Since H(0, t) = η(t), we have

∂̄

∂t

∣
∣
∣
t=0
s=0

= η′(0) = Y (0).
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Moreover,
∂̄

∂s

∣
∣
∣
s=0

= d(expη(t))0η(t)(X(t)) = X(t),

so

∇ ∂
∂s

∂̄

∂t

∣
∣
∣
t=0
s=0

= ∇ ∂
∂t

∂̄

∂s

∣
∣
∣
t=0
s=0

= X ′(0) = X1(0) = Y ′(0).

Since ∂̄
∂t

∣
∣
t=0

and Y are Jacobi fields along γ having the same initial conditions at s = 0, they are
equal, and this finishes the proof of the proposition. �

5.4.5 Scholium Consider a point p ∈ M and two tangent vectors u, v ∈ TpM . Let γ be the
geodesic γ(s) = expp(sv), and let Y be the Jacobi field along γ satisfying Y (0) = 0 and Y ′(0) = u.
Then

Y (s) = d(expp)sv(su)

for all s in the domain of γ.

Proof. This proof is contained in the proof of second assertion in the statement of Proposi-
tion 5.4.4. Indeed, using the notation from that proof, η is the constant curve at p, X0 is the con-
stant vector field γ′(0) = v andX1 is the constant vector field Y

′(0) = u, soH(s, t) = expp(s(v+tu))
and

Y (s) =
∂̄

∂t

∣
∣
∣
(s,0)

= d(expp)sv(su),

as desired. �

5.4.6 Example In special cases, knowledge of the Jacobi fields can be used to compute the sec-
tional curvature. Recall the surface of revolution inR3 as in Example 1.2.2(b). Note that the merid-
ians θ = const. are geodesics by the reflection argument used in the case of Sn (cf. page 58). By ro-
tational symmetry, it suffices to compute the sectional curvature along the meridian γ(s) = ϕ(s, 0).
We produce a variation of γ by using nearby meridians, namely H(s, t) = x(s, t). In this case the

Jacobi field is Y (s) = ∂̄
∂t

∣
∣
(s,0)

= xθ(s, 0) = f(s) ∂∂y . Note that {γ′, ∂∂y} is a parallel orthonormal

frame along γ. Therefore the Jacobi equation (5.4.2) is −f ′′(s) − K(s)f(s) = 0, where K is the
Gaussian curvature along the parallel x(s, ·). Hence K = −f ′′/f .

5.5 Conjugate points

Let γ(s) = expp(sv) be a geodesic in M , where p ∈M and v ∈ TpM . A point γ(s0), where s0 > 0,
is called a point conjugate to p along γ or a conjugate point of p along γ if there exists a nontrivial
Jacobi field Y along γ such that Y (0) = 0 and Y (s0) = 0; the parameter value s0 is called a
conjugate value. In this case, we also have that p is conjugate to γ(s0) along γ

−1, so we sometimes
say that p and γ(s0) are conjugate points along γ. A point q ∈ M is called a point conjugate to p
if q is conjugate to p along some geodesic emanating from p. The set of all points of M conjugate
to p is called the conjugate locus of p.

If q = γ(s0) is conjugate to p along γ(s) = expp(sv), and Y is a Jacobi field along γ such that
Y (0) = 0 and Y (s0) = 0, then Y is everywhere perpendicular to γ′ by Proposition 5.4.3(b). Even
more interesting, Y ′(0) lies in the kernel of the map d(expp)s0v as it follows from Scholium 5.4.5.
Hence, the points conjugate to p are exactly the critical values of expp. The multiplicity of q as a
point conjugate to p along γ is the dimension of the kernel of d(expp)s0v.
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Intuitively speaking, the meaning of q being a conjugate point of p along a geodesic γ is that
some nearby geodesics emanating from p must meet γ at q at least in the infinitesimal sense. Before
proceeding with the main result of this section, we prove two lemmas.

5.5.1 Lemma (Gauss, global version) Consider a point p ∈ M , two tangent vectors u, v ∈
TpM , and the geodesic γ(s) = expp(sv). Then

gγ(s)
(
d(expp)sv(u), d(expp)sv(v)

)
= gp(u, v).

Proof. Note the right-hand-side in the formula is the value at s = 0 of the left-hand-side
of it. Note also that d(expp)sv(v) = γ′(s). Next, let Y denote the Jacobi field along γ with
initial conditions Y (0) = 0 and Y ′(0) = u. On the one hand, we know from Scholium 5.4.5
that d(expp)sv(u) = 1

sY (s) for s 6= 0. On the other hand, decompose u = λv + u1, where u1
is perpendicular to v, and let Y0, Y1 be the Jacobi fields along γ vanishing at s = 0 such that
Y ′
0(0) = λv and Y ′

1(0) = u1. Then Y0(s) = λsγ′(s) and Y (s) = Y0(s) + Y1(s) = λsγ′(s) + Y1(s), so,
if s 6= 0,

gγ(s)
(
d(expp)sv(u), d(expp)sv(v)

)
= gγ(s)

( 1

s
Y (s), γ′(s)

)

= λgγ(s)
(
γ′(s), γ′(s)

)
+

1

s
gγ(s)

(
Y1(s), γ

′(s)
)
.

The first term in the last line of the above calculation is λgp(v, v) = gp(u, v), since the length of the
tangent vector of a geodesic is constant. The second term in there is zero by Proposition 5.4.3(b)
because Y1(0) and Y

′
1(0) are perpendicular to γ′(0), and this proves the formula. �

5.5.2 Lemma Consider a point p ∈ M , and a tangent vector v ∈ TpM . Let ϕ : [0, 1] → TpM
denote the radial segment ϕ(s) = sv, and let ψ : [0, 1] → TpM be an arbitrary piecewise smooth
curve joining the origin 0 to v. Then

L(expp ◦ψ) ≥ L(expp ◦ϕ) = ||v||.
Proof. Without loss of generality, we may assume that ψ(s) 6= 0 for s > 0. In the case in which

ψ is smooth, write ψ(s) = r(s)u(s) where r : (0, 1] → (0,+∞) and u : (0, 1] → Sn−1 are smooth,
and Sn−1 denotes the unit sphere of (TpM, gp). Then

ψ′(s) = r′(s)u(s) + r(s)u′(s)

with 〈u(s), u′(s)〉 = 0. Applying Gauss lemma 5.5.1 twice in the following computation,

||(expp ◦ψ)′(s)||2 = ||d(expp)ψ(s)(ψ′(s))||2

= (r′(s))2 ||d(expp)ψ(s)(u(s))||2
︸ ︷︷ ︸

=||u(s)||2=1

+(r(s))2||d(expp)ψ(s)(u′(s))||2

≥ (r′(s))2,

we get that

L(expp ◦ψ) ≥
∫ 1

0
|r′(s)| ds ≥ |r(1)− lim

s→0+
r(s)| = ||v||.

In the general case, we repeat the argument above over each subinterval where ψ is smooth and
add up the estimates. �

Next, we prove the main result of this chapter. It gives a sufficient condition and a necessary
condition for a geodesic segment to be locally minimizing is the space of curves with the same
endpoints.
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5.5.3 Theorem (Jacobi-Darboux) Let γ : [0, ℓ] → M be a geodesic segment parametrized with
unit speed and with endpoints γ(0) = p and γ(ℓ) = q.

a. If there are no points conjugate to p along γ, then there exists a neighborhood V of γ in the C0-
topology (or uniform topology) in the space of piecewise smooth curves parametrized on [0, ℓ]
and joining p to q such that E(η) ≥ E(γ) and L(η) ≥ L(γ) for every η ∈ V . Moreover, if
L(η) = L(γ) for some η ∈ V , then η and γ differ by a reparametrization.

b. If γ(s0) is conjugate to p along γ for some s0 ∈ (0, ℓ), then there exists a variation {γt} of γ
with fixed endpoints such that E(γt) < E(γ) and L(γt) < L(γ) for sufficiently small t.

Proof. Put γ′(0) = v and define ϕ : [0, ℓ] → TpM by ϕ(s) = sv. By assumption, ϕ(s) is a regular
point of expp for s ∈ [0, ℓ]. Since ϕ([0, ℓ]) is compact, we can cover it by a union ∪ki=1Wi of open
balls Wi ⊂ TpM such that expp is a diffeomorphism of Wi onto an open subset Ui ⊂ M . Choose
a subdivision 0 = s0 < s1 < . . . < sk = ℓ such that ϕ([si−1, si]) ⊂ Wi for all i. Let V be the open
ball centered at γ of radius ǫ > 0, namely, V consists of the piecewise smooth curves η : [0, ℓ] →M
joining p to q and satisfying d(η(s), γ(s)) < ǫ for s ∈ [0, ℓ]. We take ǫ so that η([si−1, si]) ⊂ Ui for
η ∈ V and i = 1, . . . , k. Note that expp(Wi−1 ∩Wi) is an open neighborhood of γ(si−1) contained
in Ui−1 ∩ Ui. We further decrease ǫ, if necessary, so as to obtain that η(si−1) ∈ expp(Wi−1 ∩Wi)
for η ∈ V and i = 2, . . . , k.

For each η ∈ V , we lift η to a piecewise smooth curve ψ in TpM as follows. Define

ψ(s) = (expp |W1)
−1(η(s)) for s ∈ [0, s1].

Note that ψ(0) = 0. Assume that ψ has already been defined on [0, si−1] for some 2 ≤ i ≤ k such
that it satisfies expp(ψ(s)) = η(s) for s ∈ [0, si−1] and ψ(si−1) ∈ Wi−1. Note that these conditions
imply that

expp(ψ(si−1)) = η(si−1) ∈ expp(Wi−1 ∩Wi),

so ψ(si−1) ∈Wi. Hence

ψ(s) = (expp |Wi
)−1(η(s)) for s ∈ [si−1, si]

continuously extends ψ to [0, si]. This completes the induction step and shows that ψ can be defined
on [0, ℓ]. Since η(ℓ) ∈Wk, we have ψ(ℓ) = ℓv. By Lemma 5.5.2,

L(η) = L(expp ◦ψ) ≥ L(expp ◦ϕ) = L(γ).

Moreover, since d(expp)ψ(s) is injective for s ∈ [0, ℓ], the proof of the lemma shows that the inequality
is sharp unless u is constant and r′ is nonnegative in the notation of that proof, that is, η coincides
with γ up to reparametrization. As for the assertion concerning the energy, we observe that

E(η) ≥ 1

2ℓ
L(η)2 ≥ 1

2ℓ
L(γ)2 = E(γ)

by the Cauchy-Schwarz inequality (5.2.2). This proves part (a).

(b) By assumption, there exists a nontrivial Jacobi field Y along γ such that Y (0) = Y (s0) =
0. Owing to the non-triviality of Y , Y ′(s0) 6= 0. Let Z1 be the parallel vector field along γ
with Z1(s0) = −Y ′(s0), construct a smooth function θ : [0, ℓ] → R such that θ(0) = θ(ℓ) = 0
and θ(s0) = 1, and set Z(s) = θ(s)Z1(s). Also, extend Y to a piecewise smooth vector field on
[0, ℓ] by putting Y |[s0,ℓ] = 0, and set Yα(s) = Y (s) + αZ(s) for s ∈ [0, ℓ] and α ∈ R.
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Now Yα is a piecewise smooth vector field along γ which is everywhere normal to γ′ and vanishes
at 0 and ℓ. Consider a variation with fixed endpoints {γt} with associated variational vector field Yα.
Then

I(Yα, Yα) = I(Y, Y ) + 2αI(Y, Z) + α2I(Z,Z)

= −2α〈Y ′(s+0 )− Y ′(s−0 ), Z(s0)〉+ α2I(Z,Z)

= −2α||Y ′(s−0 )||2 + α2I(Z,Z)

< 0,

where α > 0 is chosen sufficiently small so as to ensure the last inequality. Hence E(γt) < E(γ) for
sufficiently small t. Also,

L(γt)
2 ≤ 2ℓE(γt) < 2ℓE(γ) = L(γ)2,

and this completes the proof. �

As a corollary of the theorem of Jacobi-Darboux 5.5.3, we have the following refinement of
Proposition 3.4.3.

5.5.4 Corollary Let M be a complete Riemannian manifold. Then, for each p ∈M , the exponen-
tial map

expp : Dp →M \ Cut(p)
is a diffeomorphism.

Proof. We have already seen that expp(Dp) =M \Cut(p). Theorem 5.5.3 implies that a geodesic
γv : [0,+∞) → M , where v ∈ TpM and ||v|| = 1, does not minimize L past a conjugate point, so
a conjugate point along γv, if existing, must occur at a parameter value s0 ≥ ρ(v). It follows that
expp is a local diffeomorphism at sv for s ∈ [0, ρ(v)). Since v is an arbitrary unit tangent vector
at p, this shows that expp is a local diffeomorphism on Dp. It remains only to check that expp
is injective on Dp. But this is clear since any point in expp(Dp) can be joined to p by a unique
minimal geodesic as was already observed right after the proof of Proposition 3.4.3. �

The first conjugate point to p along a geodesic γ(s) = expp(sv), where p ∈M and v ∈ TpM , is
γ(s1), where s1 is the smallest positive parameter value such that γ(s1) is conjugate to p along γ
(note that the first conjugate point to p along a geodesic cannot belong to a normal neighborhood
of p; we will see in Corollary 7.5.5 that the set of conjugate points to p along γ is discrete). It also
follows from the theorem of Jacobi-Darboux 5.5.3 that the first conjugate point to p along γ cannot
occur before the cut point; in particular, the conjugate locus of a point is empty if its cut locus is
empty. The following proposition gives more information.

5.5.5 Proposition Let M be a complete Riemannian manifold, and let p ∈ M . Then a point q
belongs to the cut locus Cut(p) if and only if one of the following non-mutually exclusive assertions
is true:
a. There exist at least two distinct minimizing geodesics joining p to q.
b. The point q is the first conjugate point to p along a minimizing geodesic.

In particular, q ∈ Cut(p) if and only if p ∈ Cut(q).

Proof. By Lemma 3.4.1 and Theorem 5.5.3, we already know that the conditions in the statement
are sufficient for q to belong to Cut(p). Conversely, suppose that q ∈ Cut(p). Then we can write
q = expp(ρ(v)v) for some unit vector v ∈ TpM with ρ(v) < +∞. In particular, γ(s) = expp(sv),
where 0 ≤ s ≤ ρ(v), is a minimal geodesic joining p to q. Choose a sequence (sj) of real numbers
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such that sj % ρ(v). For each j, there exists a minimal geodesic γj joining p to γ(sj), say γj(s) =
expp(swj), where wj ∈ TpM and ||wj || = 1. Let dj = d(p, γ(sj)), so that γj(dj) = γ(sj). Since
sj > ρ(v), we have that γ|[0,sj ] is not minimal so that dj < sj .

Next, by compactness of the unit sphere in TpM and by passing to a subsequence if necessary,
we may assume that (wj) converges to a unit vector w ∈ TpM . Since the distance d is continuous,
dj = d(p, γ(sj)) → d(p, γ(ρ(v))) = ρ(v). By taking the limit as j → +∞ in γ(sj) = γj(dj) =
expp(djwj), we get that q = expp(ρ(v)w). Now there are two cases to be considered.

If w 6= v, then η(s) = expp(sw) is a minimizing geodesic joining p to q and η 6= γ, so we are
in situation (a). On the other hand, if w = v, then we already have that expp(djwj) = γ(sj) =
expp(sjv) for all j, where djwj → ρ(v)v and sjv → ρ(v)v. It follows that expp is not locally injective
at ρ(v)v, so ρ(v)v is a singular point of expp. Hence q = expp(ρ(v)v) is conjugate to p along γ.
Since γ is minimizing on [0, ρ(v)], q must be the first conjugate point to p along γ, and we are in
situation (b).

For the last assertion, one needs to note that conditions (a) and (b) are symmetric in p and q.
This is clear for (a) and follows from Theorem 5.5.3(b) for (b). �

All possibilities given by Proposition 5.5.5 for a point q ∈ Cut(p) can indeed occur: both (a)
and (b); (a) and not (b); (b) and not (a). Comparing the examples in the sequel with the examples
of section 3.5, one immediately finds situations in which the first two possibilities occur. However,
the third possibility — in which q is the first conjugate point along a minimizing geodesic γ and
there is no other minimizing geodesic from p to q — is not so easy to detect. The Heisenberg group
(consisting of upper triangular real matrices of size 3 with 1’s along the diagonal) equipped with
some left-invariant metric provides such an example [Wal97, p. 352].

5.5.6 Remark It also follows from Corollary 5.5.4 and Proposition 5.5.5 that the injectivity radius
injp(M) at p ∈ M can be characterized as the supremum of radii of open balls centered at p on
which expp is injective. This allows to extend the definition of injp(M) to the case in which M is
not complete: in this case injp(M) is defined as the supremum of radii of open balls centered at p
on which expp is defined and injective. It follows easily that inj(M) = 0 if M is incomplete.

5.6 Examples

Flat manifolds

For a flat manifold, R ≡ 0, so the Jacobi equation is Y ′′ = 0. Hence Jacobi fields along a geodesic
γ have the form Y (s) = sE1(s) + E2(s), where E1 and E2 are parallel vector fields along γ. For
instance, a Jacobi field Y along a geodesic γ in Euclidean space Rn is of the form Y (s) = u+ sv,
where u, v ∈ Rn. If Tn is a flat torus and π : Rn → Tn denotes the corresponding Riemannian
covering, then a Jacobi field along the geodesic π ◦ γ in Tn is of the form Ȳ (s) = dπγ(s)(Y (s)) =
dπγ(s)(u) + sdπγ(s)(v).

In particular, in a flat manifold there are no conjugate points, so any geodesic segment is a local
minimum for L. Note that in a flat torus there are infinitely many geodesics with given endpoints
p and q, and generically (meaning the case in which q 6∈ Cut(p)) only one of them is a global
minimum.

Manifolds of nonzero constant curvature

Consider first the unit sphere Sn. If γ is a unit speed geodesic and Y is a Jacobi field along γ
which is everywhere perpendicular to γ′, then formula (4.5.2) says that R(γ′, Y )γ′ = −Y , so the
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Jacobi equation is Y ′′ = −Y . It follows that Y (s) = cos sE1(s) + sin sE2(s), where E1 and E2

are parallel vector fields along γ which are perpendicular to γ′ (Note that a parallel vector field
along γ which is perpendicular to γ′ is nothing but a constant vector field on the surrounding Rn+1

which is perpendicular to the 2-plane spanned by γ(0) and γ′(0).) In particular, if Y vanishes at
s = 0, then E1 = 0. Assuming Y is nontrivial, that is, E2 6= 0, then the conjugate values are
s = π, 2π, 3π, . . .. Therefore the first conjugate point of p = γ(0) along γ is −p, so that the first
conjugate locus coincides with the cut locus; since Y ′(0) can be any vector perpendicular to γ′(0),
the multiplicity of −p is n− 1. Note also that p is conjugate to itself along γ.

Consider now RPn. Since it has the same curvature tensor as Sn, it has also the same Jacobi
equation, the same Jacobi fields and the same conjugate values. However, the difference to Sn is
that now the first conjugate point γ(π) along a geodesic γ coincides with γ(0), so the first conjugate
point occurs after the cut point γ(π2 ). In particular, a geodesic of length π

2 + ǫ, ǫ > 0 small, is a
local minimum for L, but not a global one.

The case of RHn is similar to that of Sn. By (4.5.3), the Jacobi equation is Y ′′ = Y , so the
Jacobi fields along a geodesic γ have the form Y (s) = cosh sE1(s) + sinh sE2(s), where E1 and E2

are parallel vector fields along γ which are perpendicular to γ′. In particular, if Y vanishes at s = 0,
then E1 = 0. Assuming Y is nontrivial, that is, E2 6= 0, there are no conjugate values. Hence the
conjugate locus of a point is empty. Of course, this result is in line with the remark after the proof
of Corollary 5.5.4 since we already knew that the cut locus of RHn is empty.

CPn

Owing to Proposition 3.5.1, the geodesics of CPn are the projections of the horizontal geodesics
of S2n+1 with respect to the Riemannian submersion π : S2n+1 → CPn. Let γ̃(s) = cos sp̃+ sin sṽ
be a horizontal geodesic of S2n+1, where p̃ ∈ S2n+1 and ṽ ∈ Hp̃ is a unit vector, and consider
the geodesic γ = π ◦ γ̃ of CPn. It follows that the Jacobi fields along γ are projections of some
Jacobi fields along γ̃. Note that whereas a Jacobi field along γ is associated to a variation of γ̃
through horizontal geodesics, this does not imply that the associated Jacobi field along γ̃ must
be horizontal. In the following, we want to describe the conjugate points along γ, so we need to
describe the Jacobi fields along γ that vanish at s = 0 and are everywhere orthogonal to γ′.

Consider first the variation through horizontal geodesics

H̃0(s, t) = eit · γ̃(s) = cos s(cos tp̃+ sin t(ip̃)) + sin s(cos tṽ + sin t(iṽ)).

The associated Jacobi field is
Ỹ0(s) = iγ̃(s),

and it coincides with the restriction of the vertical vector field (4.5.9) along γ̃. Of course, the
corresponding variation of γ is trivial and, accordingly, Ỹ0 projects down to a trivial Jacobi field
along γ.

Next, consider an arbitrary Jacobi field Ỹ along γ̃ associated to a variation through horizontal
geodesics and with the property that it projects down to a Jacobi field Y along γ such that Y (0) = 0
and 〈Y, γ′〉 ≡ 0. We already know that Ỹ (s) = cos sẼ1(s)+sin sẼ2(s) for some parallel vector fields
E1, E2 along γ̃. The condition that 0 = Y (0) = dπp̃(Ỹ (0)) imposes that Ỹ (0) must be vertical,
namely, a multiple of ip. Since Ỹ0 projects down to zero and the Jacobi fields along a geodesic
form a vector space, we can add a suitable multiple of Ỹ0 to Ỹ and assume that Ỹ (0) = 0. Now
Ẽ1 = 0 and Ỹ (s) = sin sẼ2(s). We must have 〈Ỹ , γ̃′〉 ≡ 0, so Ẽ2(s) is a constant vector ũ ∈ R2n+2

orthogonal to p̃ and ṽ. A variation associated to Ỹ is

H̃(s, t) = cos s p̃+ sin s(cos t ṽ + sin t ũ).
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Note that γ̃t is horizontal if and only if γ̃′t(0) = cos tṽ+sin tũ is orthogonal to ip̃ if and only if ũ ⊥ ip̃.
We compute

〈Ỹ (s), iγ̃(s)〉 = 〈sin s ũ, cos s(ip̃) + sin s(iṽ)〉
= sin2 s〈ũ, iṽ〉.

Now there are two cases. If ũ ⊥ iṽ, then Ỹ is a horizontal vector field and the corresponding Jacobi
field is Y (s) = sin sU(s), where U(s) is the parallel vector field along γ with U(0) = dπp̃(ũ); the
space of such Jacobi fields is 2n− 2-dimensional and the associated conjugate values are multiples
of π. On the other hand, if ũ = iṽ, then the horizontal component of Ỹ is

Ỹ (s)− sin2 s(iγ̃(s)) = sin s(iṽ)− sin2 s(cos s(ip̃) + sin s(iṽ))

= sin s(cos s2(iṽ)− sin s cos s(ip̃))

= sin s cos s(iγ̃′(s)).

In this case, Y (s) = sin s cos s(Jγ′(s)) = 1
2 sin 2s(Jγ

′(s)); the space of such Jacobi fields is one-
dimensional and the associated conjugate values are multiples of π/2. Finally, it follows from our
considerations that the first conjugate locus of a point coincides with the cut locus.

Lie groups

Let G be a Lie group equipped with a bi-invariant metric. In this example, we will describe the
conjugate locus of a point in G. By homogeneity, it suffices to compute the conjugate locus of the
identity. Denote by g the Lie algebra of G. Any geodesic through 1 has the form γ(t) = exp tX for
some X ∈ g. Let {E1, . . . , En} be a basis of g. Consider the Jacobi equation −Y ′′+R(γ′, Y )γ′ = 0
along γ. Write Y (t) =

∑n
i=1 yi(t)Ei where yi are smooth functions on R. Note that γ′(t) =

d(Lγ(t))1γ
′(0) = Xγ(t). Then

Y ′′ =
∑

i

y′′i Ei + 2y′i∇XEi + yi∇X∇XEi,

and
R(γ′, Y )γ′ = R(X,Y )X =

∑

i

yiR(X,Ei)X.

A simple calculation using formulae (2.8.8) and (4.5.11) yields that the Jacobi equation along γ
has the form

(5.6.1)
d2

dt2
Y + adX

d

dt
Y = 0.

Recall that adX is a skew-symmetric endomorphism of g ∼= T1G with respect to the metric at the
identity, so there exists an adX -invariant orthogonal decomposition

g = V0 ⊕
r⊕

j=1

Vj

where V0 is the kernel of adX and for j = 1, . . . , r we have dimVj is even and the eigenvalues of
adX on Vj are ±iλj , λj 6= 0. Now the general solution of (5.6.1) has the form

(5.6.2) Y (t) = C + Y0t+
r∑

j=1

cos(λjt)Yj +
sin(λjt)

λj
adXYj
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where Yj ∈ Vj for j = 0, . . . , r and C ∈ g. Therefore the space of Jacobi fields vanishing at t = 0 is
spanned by

Y0t− Yj + cos(λjt)Yj +
sin(λjt)

λj
adXYj

where Yj ∈ Vj for j = 1, . . . , r. This Jacobi field can vanish again only if Y0 = 0; in this case, it
is periodic and vanishes exactly when t is a multiple of 2π/λj . We finally deduce that the points
conjugate to 1 along γ are γ(2πk/λj), where k ∈ Z, with multiplicity dimVj . In particular, the
multiplicity of a conjugate point is always even.

5.7 Additional notes

§1 One can recover the results of this chapter by replacing variational calculus by standard calculus
on infinite-dimensional smooth manifolds as follows. To begin with, it is necessary to consider a
larger class of curves to work with, namely, the absolutely continuous curves γ : [a, b] →M joining
p to q with square-integrable ||γ′||. This is a metric space with respect to the distance

d(γ1, γ2) = sup
t∈[a,b]

d(γ1(t), γ2(t)) +

(∫ b

a
||γ′1(s)− γ′2(s)||2 ds

)1/2

.

Plainly, E and L are continuous functions with respect to this distance. Next, there is a natural
way of endowing this space with the structure of a smooth Hilbert manifold. We will not discuss
the details of this construction, for which the interested reader is referred to [Kli95, § 2.3] or [PT88,
ch. 11]. It turns out that E becomes a smooth function and the first and second variation formulas
correspond to its first two derivatives. The main results of this chapter can then be fashioned in
the context of Morse theory in Hilbert spaces.

§2 In 1921-30, in the three editions of Blaschke’s book [Bla30], it was discussed the problem of
whether it is true that a closed surface in R3 with the property that the first conjugate locus of
any point reduces to a single point must be isometric to S2; he called surfaces with this property
wiedersehens surfaces. Blaschke studied a number of features of these surfaces and showed, among
other things, that: they can be equivalently defined by requiring that the first conjugate point
always occurs at the same distance; all of their geodesics are closed and of the same length (hence
their name in German); they are homeomorphic to S2. Of course, if we admit abstract 2-dimensional
Riemannian manifolds, then RP 2 also shares this property. In 1963, L. Green [Gre63] proved
that S2 and RP 2 are indeed the only examples. Later, the work of Weinstein [Wei74], Berger-
Kazdan [BK80] and Yang [Yan80] extended this result to all dimensions proving that a simply-
connected n-dimensional wiedersehens manifold is isometric to Sn.

§3 More generally, it is natural to ask to which extent the conjugate locus structure restricts the
topological, differentiable or metric structure of a n-dimensional Riemannian manifold M [War67].
The case of empty conjugate locus will be discussed in the additional notes of chapter 6. The
case in which the first tangential conjugate locus of every point p ∈ M is a round hypersphere in
(TpM, gp) of the same radius is exactly the subject of §2 above. Consider now the case in which
the first tangential conjugate locus of every p is a round sphere in TpM of the same radius but
the multiplicity of the corresponding conjugate points is possibly less than maximal. Namely, we
assume that there exists a number ℓ > 0 and an integer k between 1 and n− 1 such that, for every
p ∈M and every geodesic starting at p, the first conjugate point of p occurs at distance ℓ and has
multiplicity k; such a manifold is called an Allamigeon-Warner manifold [Bes78, chap. 5]. We have
already seen that Sn and CPn are examples of simply-connected Allamigeon-Warner manifolds;
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other examples are the quaternionic projective spaces HPn and the Cayley projective plane CaP 2,
manifolds that we will discuss later in this book (indeed, we will see that the spheres Sn and the
compact projective spaces RPn, CPn, HPn, CaP 2 are collectively known as the compact rank one
symmetric spaces). Non-simply-connected examples are given by quotients of those; for instance,
RPn and lens spaces.

§4 A somehow more specialized condition on a manifold is requiring that the cut-locus structure
of each point be similar to that of a compact rank one symmetric space; see [Bes78, chap. 5]. Namely,
for distinct points p and q in a complete Riemannian manifold M , the link from p to q is the subset
Λ(p, q) of the unit sphere UqM of TqM comprised of vectors of the form −γ′(d(p, q)) ∈ TqM , where
γ : [0, d(q, p)] → M is a unit speed minimizing geodesic joining p to q. A compact Riemannian
manifold M is called a Blaschke manifold if for every p ∈ M and q ∈ Cut(p), the link Λ(p, q) is a
great sphere of UqM ; here it is not required that the tangential cut-locus at a point is a round sphere,
but this follows from the definition. It is known that a Blaschke manifold is Allamigeon-Warner,
and both concepts are equivalent in the simply-connected case. Note that Λ(p, q) equals UqM
for Sn, it consists of two antipodal points of UqM for RPn, and it consists of a great circle of UqM
for CPn. One sees that Λ(p, q) is a great 3-sphere of UqM for HPn and a great 7-sphere of UqM
for CaP 2. The Blaschke conjecture asserts that every Blaschke manifold is isometric to a compact
rank one symmetric space. This is one of the famous yet open problems in geometry, with many
partial results proved. The book [Bes78] contains a discussion of this conjecture as well as more
general discussions of Riemannian manifolds all of whose geodesics are closed; see [Rez94] for a
more recent bibliography.

5.8 Exercises

1 Let γ : [a, b] → M be a geodesic parametrized with unit speed in a Riemannian manifold M ,
and let H be a piecewise smooth variation of γ with associated variational vector field Y . Show
that

d2

dt2

∣
∣
∣
t=0

L(γt) = 〈∇ ∂
∂t

∂

∂t

∣
∣
∣
t=0

, γ′〉
∣
∣
∣

b

a
+

∫ b

a
||Y ′||2 + 〈R(γ′, Y )γ′, Y 〉 − 〈Y ′, γ′〉2 ds

= 〈∇ ∂
∂t

∂

∂t

∣
∣
∣
t=0

, γ′〉
∣
∣
∣

b

a
+

∫ b

a
||Y ′

⊥||2 + 〈R(γ′, Y⊥)γ′, Y⊥〉 ds,

where Y⊥ = Y − 〈Y, γ′〉γ′ is the normal component of Y .

2 Let γ : [0, ℓ] → M be a geodesic in a Riemannian manifold M . Consider the index form I on
the space of piecewise smooth vector fields along γ vanishing at 0 and ℓ. Prove that the kernel of I
consists precisely of the Jacobi fields along γ vanishing at 0 and ℓ. (Hint: Use the formula (5.4.1),
and for a given element Y in the kernel of I, choose suitable elements X as it was done in the proof
of Proposition 5.3.5).

3 Let γ : [0, ℓ] → M be a geodesic in a Riemannian manifold M . Extend the definition of the
index form I to the space of piecewise smooth vector fields along γ non-necessarily vanishing at the
endpoints. Prove that if γ is a minimizing geodesic, X is a smooth vector field along γ, and Y is a
Jacobi vector field along γ with the same values as X at the endpoints, then I(X,X) ≥ I(Y, Y ).

4 Let N1 and N2 be two closed submanifolds of a complete Riemannian manifold M . Assume
that one of N1, N2 is properly embedded.
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a. Prove that there exist points p1 ∈ N1 and p2 ∈ N2 such that d(N1, N2) = d(p1, p2).
b. Prove that there exists a geodesic γ of M joining p1 and p2 and that L(γ) = d(N1, N2).
c. Prove that γ is perpendicular to N1 (resp. N2) at p1 (resp. p2). (Hint: Use the first variation

formula.)

5 Let γ : [a, b] → M be a geodesic in a Riemannian manifold, and let γ(a) = p and γ(b) = q.
Prove that if p and q are not conjugate along γ, then given u ∈ TpM and v ∈ TqM , there exists a
unique Jacobi field J along γ such that J(a) = u and J(b) = v.

6 Let M be a Riemannian manifold, and let X be a Killing field on M .

a. If γ is a geodesic in M , prove that the restriction J = X ◦ γ of X to a vector field along γ is
a Jacobi field.

b. If M is complete and p ∈M , prove that X is completely determined by the values of X(p) ∈
TpM and (∇X)p ∈ End(TpM).

c. Deduce from part (b) that the dimension of the Lie algebra of Killing fields on M , and hence
(due to Proposition 3.3.12) dim Isom(M), is bounded by 1

2n(n+ 1), where n = dimM .
d. Show that if dim Isom(M) attains the maximal value given in part (c) then M has constant

curvature.

7 Let M be a Riemannian manifold and let X be a Killing field on M . Prove that

∇U∇VX −∇∇UVX +R(X,U)V = 0

for all smooth vector fields U and V on M . (Hint: Use Exercise 6(a).)

8 Let (M, g) be a Riemannian manifold, fix p ∈ M , u, v ∈ TpM , and consider the geodesics γu,
γv with the corresponding initial conditions. Prove that

d(γu(t), γv(t))
2 = ||u− v||2t2 +O(t3),

for sufficiently small t, where O(t3) denotes a term such that O(t3)/t2 → 0 as t→ 0. (Hint: Work
in a totally normal neighborhood U of p and consider the variation through geodesics {ηt}, where
ηt : [0, 1] → U is the minimizing geodesic from γu(t) to γv(t).)

9 Let (M, g) and (M ′, g′) be Riemannian manifolds, and let d and d′ be the associated distances,
respectively. Show that a distance-preserving map f : M → M ′ (cf. exercise 1 of chapter 3) is
smooth and a local isometry. (Hint: use a normal neighborhood combined with exercise 8 for the
smoothness, and exercise 16 to prove it is a local isometry.) Conclude that if f is in addition
surjective, then it is a global isometry.

10 Let M be a Riemannian manifold and consider its isometry group G = Isom(M). It is known
that the compact-open topology and the topology of uniform convergence on compact sets coincide
on G [Mun00, §46]. Prove that the topology of pointwise convergence, given by gn → g if and only
if gn(p) → g(p) in M for all p ∈M , also coincides with those topologies.

11 Let M be a complete Riemannian manifold and consider a closed subgroup of its isometry
group Isom(M), with the topology of pointwise convergence. Prove that the isotropy group Gp is
compact, for all p ∈ M . (Hint: For a given sequence {gn} ⊂ Gp, find a convergent subsequence of
{(dgn)p} ⊂ O(TpM).)
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12 Let (M, g) be a Riemannian manifold, fix p ∈M and choose an orthonormal basis {e1, . . . , en}
of TpM . Let ǫ > 0 be such that expp : B(0p, ǫ) ⊂ TpM → M is a diffeomorphism onto its image
U , and use it to define a local coordinates x1, . . . , xn around p. Let v ∈ TpM be a unit vector and
consider the geodesic t 7→ expp(tv). Show that the coefficients of the metric in this chart admit
expansions

gij(expp tv) = δij + 〈R(v, ei)v, ej〉
t2

3
+ O(t3),

where 1 ≤ i, j ≤ n, 0 < t < ǫ, and O(t3) denotes a term such that O(t3)/t2 → 0 as t → 0. (Hint:

Use the result of Scholium 5.4.5.) In particular, deduce that gij(p) = δij ,
∂gij
∂xk

(p) = 0 and Γkij(p) = 0
for all i, j, k. These are the so-called Riemann’s normal coordinates.

13 Let (M, g) be a compact Riemannian manifold.
a. Prove that if the Ricci tensor of M is negative definite everywhere, then the isometry

group Iso(M, g) is finite. (Hint: Use exercise 7 and the divergence theorem (exercise 18
in chapter 4) to show that there are no nontrivial Killing fields on M .)

b. Prove that if the Ricci tensor ofM is negative semi-definite everywhere, then any Killing field
is parallel.

14 Let G be a Lie group equipped with a bi-invariant metric. Use exercise 15 of chapter 2 and
exercise 6(a) above to show that the restriction of a left-invariant or right-invariant vector field
along a geodesic γ is a Jacobi field. Check that not every Jacobi field along γ has the form J1+J2,
where J1 = X1 ◦ γ, J2 = X2 ◦ γ, X1 is left-invariant and X2 is right-invariant.

15 Let M be a complete Riemannian manifold.
a. Prove that the “cut-distance” function ρ : UM → (0,+∞] is upper semi-continuous. (Hint:

For vi → v, prove that lim sup ρ(vi) ≤ ρ(v) using the continuity of the distance function d
on M ×M).

b. Now use the completeness of M to prove that ρ is continuous. (Hint: for vi → v, prove that
lim inf ρ(vi) ≥ ρ(v) using ideas from the proof of Proposition 5.5.5.)

c. Deduce from part (b) that the injectivity radius injp depends continously on p.
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C H A P T E R 6

Applications

6.1 Introduction

In this chapter, we collect a few basic and important theorems of Riemannian geometry that we
prove by using the concepts introduced so far. We also introduce some other important techniques
along the way.

We start by discussing manifolds of constant curvature. If one agrees that curvature is the main
invariant of Riemannian geometry, then in some sense the spaces of constant curvature should be
the simplest models of Riemannian manifolds. It is therefore very natural to try to understand
those manifolds. Since curvature is a local invariant, one can only expect to get global results by
further imposing other topological conditions.

Next we turn to the relation between curvature and topology. This a central and recurring
theme for research in Riemannian geometry. One of its early pioneers was Heinz Hopf in the 1920’s
who asked to what extent the existence of a Riemannian metric with particular curvature properties
restricts the topology of the underlying smooth manifold. Since then the subject has expanded so
much that the scope of this book can only afford a glimpse at it.

It is worthwhile pointing out that not only the theorems in this chapter are part of a central
core of results in Riemannian geometry, but also the arguments and techniques in the proofs can
be applied in more general contexts to a wealth of other important problems in geometry.

6.2 Space forms

A complete Riemannian manifold with constant curvature is called a space form. If M is a space
form, its universal Riemannian covering manifold M̃ is a simply-connected space form by Proposi-
tion 3.3.8. Moreover, M is isometric to M̃/Γ with the quotient metric, where Γ is a free and proper
discontinuous subgroup of isometries of M̃ , see section 1.3. So the classification of space forms can
be accomplished in two steps, as follows:
a. Classification of the simply-connected space forms.
b. For each simply-connected space form, classification of the subgroups of isometries acting

freely and properly discontinuously.
In this section, we will prove the Killing-Hopf theorem that solves part (a) in this program. Despite
a lot being known about part (b), it is yet an unsolved problem, and we include a brief discussion
about it after the proof of the theorem.

We first prove a local result.

6.2.1 Theorem Fix k ∈ R. Then any two Riemannian manifolds of constant curvature k of the
same dimension are locally isometric.
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Proof. Let M , M̃ be two Riemannian manifolds of constant curvature k. Fix points p ∈ M ,
p̃ ∈ M̃ and choose a linear isometry f : TpM → Tp̃M̃ . Choose open balls U ⊂ TpM , Ũ ⊂ Tp̃M̃
with Ũ = f(U) that determine normal neighborhoods V = expp(U), Ṽ = expp̃(Ũ). Now we have a

diffeomorphism F : V → Ṽ given by

U
f−−−−→ Ũ

expp



y



yexpp̃

V −−−−→
F

Ṽ

namely, F ◦expp = expp̃ ◦f . Note that F (p) = p̃ and dFp = f . We shall prove that F is an isometry.

We need to prove that dFq : TqM → Tq̃M̃ is a linear isometry, where q ∈ V is arbitrary
and q̃ = F (q). Write q = γv(t0) where γv is the radial geodesic from p with initial unit velocity
v ∈ TpM and t0 ∈ [0, ǫ). We orthogonally decompose TqM = Rγ′v(t0) ⊕ W , where W is the
orthogonal complement, and similarly Tq̃M̃ = Rγ′ṽ(t0)⊕ W̃ , where ṽ = f(v).

Note F ◦ γv is the geodesic γṽ in M̃ , so by the chain rule

||dFq(γ′v(t0))|| = ||γ′ṽ(t0)|| = ||ṽ|| = ||v|| = ||γ′v(t0)||.

Furthermore, by the Gauss lemma 5.5.1 (or 3.2.1), d(expp)t0v : TpM → TqM sends the orthogonal

decomposition TpM = Rv ⊕ (Rv)⊥ to the orthogonal decomposition TqM = Rγ′v(t0) ⊕W , and
similarly for d(expp̃)t0ṽ. It follows that dFq sends the orthogonal decomposition TqM = Rγ′v(t0)⊕W
to Tq̃M̃ = Rγ′ṽ(t0)⊕ W̃ . It remains only to check that dFq restricts to an isometry W → W̃ .

It is here and only here that we use the assumption on the sectional curvatures. Let u ∈ TpM
be orthogonal to v and let ũ = f(u) ∈ Tp̃M̃ . Extend u, ũ to parallel vector fields U , Ũ along γv,
γṽ, respectively. On one hand, the Jacobi fields Y , Ỹ along γv, γṽ, resp., with initial conditions
Y (0) = Ỹ (0) = 0, Y ′(0) = u, Ỹ ′(0) = ũ are given by Y (t) = d(expp)tv(tu), Ỹ (t) = d(expp̃)tṽ(tũ),
due to Scholium 5.4.5. On the other hand, the Jacobi equation along a geodesic in a space of
constant curvature k is given by Y ′′ + kY = 0. It follows that

Y (t) =







sin(
√
kt)√
k

U(t), if k > 0,
sinh(

√
−kt)√

−k U(t), if k < 0,

tU(t), if k = 0,

and Ỹ (t) =







sin(
√
kt)√
k

Ũ(t), if k > 0,
sinh(

√
−kt)√

−k Ũ(t), if k < 0,

tŨ(t), if k = 0.

In any case
||Ỹ (t)|| = ||Y (t)||.

Since Y (t0) ∈W is an arbitrary vector and

dFq(Y (t0)) = dFq
(
d(expp)t0v(t0u)

)

= d(expp̃)tṽ(t0f(u))

= Ỹ (t0),

it follows that dFq :W → W̃ is an isometry, and this finishes the proof. �

If (M, g) is a space form of curvature k, then, for a positive real number λ, (M,λg) is a space
form of curvature λ−1k, see Exercise 2 in chapter 4. Therefore, the metric g can be normalized so
that k becomes equal to one of 0, 1, or −1.

6.2.2 Theorem (Killing-Hopf) Let M be a simply-connected space form of curvature k and
dimension bigger than one. Then M is isometric to:
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a. the Euclidean space Rn, if k = 0;
b. the real hyperbolic space RHn, if k = −1;
c. the unit sphere Sn, if k = 1.

Proof. Let M̃ be Rn, RHn or Sn according to whether k = 0, −1 or 1. Fix p̃ ∈ M̃ , p ∈ M
and choose a linear isometry f : Tp̃M̃ → TpM . As in the proof of Theorem 6.2.1, this data can be
used to define an isometry F : Ṽ → V with F (p̃) = p and dFp̃ = f , where V , Ṽ are certain normal
neighborhoods of p, p̃. We shall see that F can be extended to an isometry M̃ →M .

Consider first the case k = 0 or −1. Since the cut locus of a point in Rn or RHn is empty,
we can take Ṽ = M̃ as a normal neighborhood, and using the completeness of M , extend F
to a map M̃ → M by the same formula, namely, F ◦ expp̃ = expp ◦f . Note, however, that in

principle F does not have to be a diffeomorphism, because f(Tp̃M̃) = TpM does not in principle
exponentiate to a normal neighborhood of p. Nevertheless, the proof of Theorem 6.2.1 (using the
global Gauss lemma 5.5.1) carries through to show that F is a local isometry. Since M̃ is complete,
Proposition 3.3.8(b) can be applied to yield that F is a Riemannian covering map and hence, since
M is assumed to be simply-connected, F must be an isometry.

Consider now k = 1. Here the above argument yields a local isometry F : Ṽp̃ → M , where
Ṽp̃ = Sn \ {−p̃} is the maximal normal neighborhood of p̃. To finish, we choose another point
q̃ ∈ Sn \ {p̃,−p̃} and construct a similar local isometry G : Ṽq̃ → Sn, with initial data G(q̃) = F (q̃)
and dGq̃ = dFq̃, where Vq̃ = Sn\{−q̃}. By exercise 15 of chapter 3, F and G can be pasted together
to define a local isometry Sn →M . The rest of the proof is as above, using the completeness of Sn

and the simple-connectedness of M . �

Depending on the context in which one is interested, it is possible to find in the literature other
proofs of Theorem 6.2.2 different from the above one. The argument that we chose to use, based
on Jacobi fields, works in a more general context, and can be used to prove a generalization of this
theorem (cf. exercise 14).

Next, we discuss the case of non-simply-connected space forms. In the flat case, the main result
is the following theorem.

6.2.3 Theorem (Bieberbach) A compact flat manifold M is finitely covered by a torus.

Namely, Bieberbach showed that the translational part of the fundamental group π1(M), viewed
as a subgroup of Isom(Rn) = O(n) ⋉Rn (n = dimM), is a torsion free finitely generated normal
Abelian subgroup Γ of rank n and finite index, so there is a finite covering

π1(M)/Γ → Rn/Γ → Rn/π1(M) =M.

(For an example, review the contents of exercise 10 of chapter 1.) The complete classification of
compact flat Riemannian manifolds is known only in the cases n = 2, 3; see [Wol84, Cha86, Szc12]
for proofs of Bieberbach’s theorem and these classifications.

Next we consider non-simply-connected space forms of positive curvature. In even dimensions,
the only examples are the real projective spaces, as the following result shows.

6.2.4 Theorem An even-dimensional space form of positive curvature is isometric either to S2n

or to RP 2n.

Proof. We know thatM = S2n/Γ, where Γ is a subgroup ofO(2n+ 1) acting freely and properly
discontinuously on S2n. Since this action is free, if an element of Γ admits a +1-eigenvalue then it
must be the identity id. Recall that the eigenvalues of an orthogonal transformation are unimodular
complex numbers, and the non-real ones must occur in complex conjugate pairs.
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Next, let γ ∈ Γ. Then γ2 ∈ SO(2n+ 1), and since 2n+ 1 is odd, γ2 admits an eigenvalue +1,
thus γ2 = id. This implies that all the eigenvalues of γ are ±1. If γ 6= id, it follows that all the
eigenvalues of γ are −1, namely, γ = −id. Hence Γ = {id} or Γ = {±id}. �

The odd-dimensional space forms of positive curvature have been completely classified by J.
Wolf [Wol84]. Here we just present a very rich family of examples.

6.2.5 Example (Lens spaces) Let p, q be relatively prime integers. The lens space Lp;q is the
quotient Riemannian manifold S3/Γ, where we view

S3 = { (z1, z2) ∈ C2 | |z1|2 + |z2|2 = 1 },

and Γ is the cyclic group of order p generated by the element

tp;q(z1, z2) = (ωz1, ω
qz2),

where ω is a pth root of unity. Note that L2;1 = RP 3. More generally, let q2, . . . , qn be integers
relatively prime to an integer p. The lens space Lp;q2,...,qn is the quotient Riemannian manifold
S2n−1/Γ, where we view

S2n−1 = { (z1, . . . , zn) ∈ C2 | |z1|2 + · · ·+ |zn|2 = 1 },

and Γ is the cyclic group of order p generated by the element

tp;q2,...,qn(z1, z2, . . . , zn) = (ωz1, ω
q2z2, . . . , ω

qnzn).

Of course, a lens space is a non-simply-connected space form of positive curvature. The 3-
dimensional lens spaces were introduced by Tietze in 1908. In general, lens spaces are important
in topology because they provide examples of non-homeomorphic compact manifolds which are
homotopy-equivalent (see [Mun84, §40, §69]). Historywise they can thus be seen as representing
the birth of geometric topology of manifolds as distinct from algebraic topology. ⋆

A space form of negative curvature is called a hyperbolic manifold. Of course, a hyperbolic
manifold is isometric to the quotient of RHn by a group of isometries Γ acting freely and proper
discontinously. A compact orientable surface of genus g ≥ 2 admits many hyperbolic metrics,
which are constructed as follows. It is a theorem of Radó [Rad24] that any compact surface is
homeomorphic to the identification space of a polygon whose sides are identified in pairs. In
particular, a compact orientable surface Sg of genus g is realized as a regular 4g-sided polygon P
with a certain identification of the sides. The vertices of P are all identified to one point, so in
order to get a smooth surface it is necessary that the sum of the inner angles of P be 2π. Note
that P cannot be taken to be an Euclidean polygon, for in that case the sum of the inner angles
is known to be (4g − 2)π > 2π for g ≥ 2. Instead, we construct P as a regular polygon in the
ball model B2 of RH2 having the center at (0, 0) and with the sides being geodesic segments. In
this case, by the Gauss-Bonnet theorem the sum of the inner angles is (4g − 2)π − A, where A
denotes the area of P . It is clear that there exist such polygons in D2 with arbitrary diameter, and
that A varies continuously with the diameter, between zero (when the diameter is near zero) and
(4g − 2)π (when the angles are near zero). Since (4g − 2)π > 2π, it follows from the intermediate
value theorem that it is possible to construct P such that the sum of the inner angles is 2π. Next
one sees that the identifications between pairs of sides can be realized by isometries of D2 such
that these isometries generate a discrete subgroup Γ of the isometry group of D2 acting freely and
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properly discontinuously. This shows that Sg = D2/Γ admits a hyperbolic metric. Further, it
is known that the hyperbolic metric on Sg for g ≥ 2 is not unique. It is a classical result that
there exist natural bijections between the following sets of structures on a compact oriented surface
Sg: conformal classes of Riemannian metrics; complex structures compatible with the orientation;
hyperbolic metrics (see e.g. [Jos06]). The moduli space Mg of Sg is the space of equivalence classes
of hyperbolic metrics on Sg, where two hyperbolic metrics belong to the same class if and only
if they differ by a diffeomorphism of Sg. It turns out that Mg is not a manifold: singularities
develop exactly at the hyperbolic metrics admitting nontrivial isometry groups. For this reason,
Teichmüller introduced a weaker equivalence relation on the space of hyperbolic metrics on Sg by
requiring two of them to be equivalent if they differ by a diffeomorphism which is homotopic to the
identity; the Teichmüller space Tg of Sg is the resulting space of equivalence classes. It is known
that Tg admits the structure of a smooth manifold of dimension 6g − 6 if g ≥ 2 [EE69].

In the higher dimensional case, it is much more difficult to construct hyperbolic metrics, and
most of the progress in this direction has been made in the 3-dimensional case, see [Thu97]; in
this dimension “most” manifolds admit hyperbolic metrics, as a consequence of the geometrization
theorem conjectured by Thurston and proved by Perelman.

6.3 Synge’s theorem

We will use the following lemma in the proofs of Synge’s and Preissmann’s theorems. It is easy to
see that the compactness assumption in it is essential.

6.3.1 Lemma (Cartan) Let M be a compact Riemannian manifold. Assume that M is not
simply-connected. Then every nontrivial free homotopy class C of loops contains a closed geodesic
of minimal length in C.

Proof. We first claim that since M is compact, it is possible to find ǫ > 0 such that any two
points of M within distance less than ǫ can be joined by a unique minimizing geodesic, and this
geodesic depends smoothly on its endpoints. Indeed, cover M by finitely many balls B(pi, ǫi/2)
where pi ∈M , ǫi > 0, and B(pi, ǫi) is a δi-totally normal ball for some δi > 0 as in Proposition 2.4.7,
for i = 1, . . . , k. Take ǫ = mini{1

2ǫi, δi}. If d(x, y) < ǫ for points x, y ∈ M , then x ∈ B(pi0 , ǫi0/2)
for some i0, and then

d(y, pi0) ≤ d(y, x) + d(x, pi0) < ǫ+
ǫi0
2

≤ ǫi0 .

Hence x, y ∈ B(pi0 , ǫi0) with d(x, y) < δi0 , so the claim follows from the quoted proposition.
Let ℓ be the infimum of the lengths of the piecewise smooth curves in C, and take a minimizing

sequence (ηj) in C such that each ηj is parametrized on [0, 1] with constant speed. Since (ηj) is a
minimizing sequence, L = supj L(ηj) is finite. Choose a subdivision 0 = t0 < t1 < . . . < tn = 1
with ti − ti−1 < ǫ/2L for i = 1, . . . , n. Then

d(ηj(ti−1), ηj(t)) ≤
∫ t

ti−1

||η′j(t)|| dt ≤ L(ti − ti−1) <
ǫ

2

for ti−1 ≤ t ≤ ti. This estimate allows us to replace each curve ηj by the broken geodesic γj joining
the points ηj(0), ηj(t1), . . . , ηj(1). For every j, γj is homotopic to ηj ; this can be seen as follows.
Owing to

d(γj(t), ηj(t)) ≤ d(γj(t), γj(ti−1)) + d(ηj(ti−1), ηj(t)) <
ǫ

2
+
ǫ

2
= ǫ

for ti−1 ≤ t ≤ ti, we can construct a smooth homotopy from ηj |[ti−1,ti] into γj |[ti−1,ti] by using the
shortest geodesic from ηj(t) to γj(t).
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It is clear that L(γj) ≤ L(ηj), so (γj) is also a minimizing sequence in C. Using again the
compactness of M , we can select a subsequence of (γj), denoted by the same symbol, such that
(γj(ti)) converges to a point pi as j → ∞ for all i. It follows that (γj) converges in the C1-topology
to the broken geodesic γ joining the pi. It is clear that γ belongs to C and has length ℓ. Since γ is
of minimal length in C, it is locally minimizing. By Theorem 3.2.6, γ is a geodesic. �

In the case of a simply connected compact Riemannian manifold, it is still true that there exists
at least one closed geodesic (Lyusternik-Fet [LF51]). More specifically, in the case of S2, it is known
that every Riemannian metric must admit at least 3 geometrically distinct simple closed geodesics
(Lyusternik-Schnirelmann [LŠ47]).

6.3.2 Theorem (Synge) An even-dimensional orientable compact Riemannian manifold M of
positive sectional curvature must be simply connected.

We remark that each one the hypotheses in the statement of Synge’s theorem is important.
In fact, the following manifolds are not simply-connected: RP 2 is even-dimensional, compact and
positively curved, but nonorientable; RP 3 is compact, orientable and positively curved, but odd-
dimensional; a flat 2-torus is even-dimensional, compact and orientable, but not positively curved.

However, there is a far-reaching generalization of Synge’s theorem that replaces compact-
ness with completeness and dismisses the assumptions on the dimension and orientability (cf.
Add. note §4).

Proof of Theorem 6.3.2. Suppose, on the contrary, that M is not simply-connected and let C
denote a nontrivial free homotopy class of loops. By Lemma 6.3.1, there exists a closed geodesic
γ : [0, ℓ] → M , parametrized with unit speed, such that L(γ) = ℓ = infη∈C L(η). Let p = γ(0) =
γ(ℓ), and denote by P : TpM → TpM the parallel translation map along γ from 0 to ℓ. Fix an
orientation of M . Since the parallel translation maps along γ from 0 to t, for 0 ≤ t ≤ ℓ, join P to
the identity map of TpM , we have that P is orientation-preserving. Since γ is a geodesic, γ′(0) is a
fixed vector of P . Now P , being an isometry, leaves the orthogonal complement 〈γ′(0)〉⊥ invariant.
Since the dimension of this subspace is odd, it contains a nonzero vector y that is fixed under
P . Let Y be the parallel vector field along γ that extends y, and construct a variation {γt} of γ
through closed curves with associated variational vector field given by Y . Since M is positively
curved, 〈R(Y, γ′)Y, γ′〉 < 0. Using the variation formulas (5.3.3) and (5.3.9), we get that

d

dt

∣
∣
∣
t=0

E(γt) = 0 and
d2

dt2

∣
∣
∣
t=0

E(γt) < 0.

Then, for t sufficiently small, we have that E(γt) < E(γ) and

L(γt)
2 ≤ 2ℓ E(γt) < 2ℓE(γ) = L(γ)2,

and this contradicts the fact that γ is of minimal length in C. Hence C cannot exist and M is
simply-connected. �

6.3.3 Corollary An even-dimensional compact Riemannian manifold M of positive sectional cur-
vature has fundamental group of order at most two.

Proof. We may assume M is non-orientable. Let M̃ be the orientable double cover of M . Then
M̃ is connected and satisfies the hypotheses of Synge’s theorem 6.3.2, so it is simply connected.
The result follows. �

It follows from Corollary 6.3.3 that there exists no Riemannian metric of positive sectional
curvature in RPm × RPn if m + n is even. Indeed, otherwise this manifold would satisfy the
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hypotheses of the corollary but its fundamental group is isomorphic to Z2 ⊕Z2. It is interesting to
compare this example with the fact that the nonexistence of a positively curved Riemannian metric
in S2 × S2 is still an unsettled question (see Add. note 5).

6.4 Bonnet-Myers’ theorem

The following result is an elementary example of a comparison theorem in Riemannian geometry.
Note that the right-hand side in (6.4.2) is exactly the Ricci curvature of the sphere Sn(R).

6.4.1 Theorem (Bonnet-Myers) Let M be a complete Riemannian manifold of dimension n.
Assume there exists a constant R > 0 such that

(6.4.2) Ric(v, v) ≥ n− 1

R2
g(v, v)

for every v ∈ TM . Then

(6.4.3) diam(M) ≤ diam(Sn(R)) = πR.

In particular, M is compact and has finite fundamental group π1(M).

Proof. Recall that diam(M) = sup{ d(x, y) | x, y ∈ M }. We will show that the distance of
two given points p, q ∈ M is bounded above by πR. Since M is complete, there exists a minimal
geodesic γ : [0, L] → M with unit speed and such that γ(0) = p and γ(L) = q. Because γ is
minimal, I(Y, Y ) ≥ 0 for all vector fields Y along γ vanishing at the endpoints. We will use this
remark below for some suitable vector fields.

Select an orthonormal basis {e1, . . . , en} of TpM with e1 = γ′(0), and extend it to parallel
orthonormal frame {E1, . . . , En} along γ; of course, E1 = γ′. Set

Yi(s) = sin
πs

L
Ei(s)

for i = 2, . . . , n. Then

I(Yi, Yi) =

∫ L

0
−〈Y ′′

i , Yi〉+ 〈R(γ′, Yi)γ′, Yi〉 ds

=

∫ L

0
sin2

πs

L

(
π2

L2
+ 〈R(γ′, Ei)γ′, Ei〉

)

ds.

Noting that each Yi vanishes at the endpoints of γ, we have

0 ≤
n∑

i=2

I(Yi, Yi) =

∫ L

0
sin2

πs

L

(

(n− 1)
π2

L2
− Ric(γ′, γ′)

)

ds

≤ (n− 1)

(
π2

L2
− 1

R2

)∫ L

0
sin2

πs

L
ds,

using the assumption on the Ricci curvature. This proves that d(p, q) = L ≤ πR. We conclude
that diam(M) ≤ πR.

The other assertions in the statement can now be easily verified. The manifold M is complete
and bounded, thus, in view of Corollary 3.3.7, compact. Let M̃ denote the Riemannian universal
covering manifold ofM . Since M̃ is complete and satisfies the same estimate on the Ricci curvature
as M , the previous results imply that M̃ is compact, forcing π1(M) to be finite. This completes
the proof of the theorem. �
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6.4.4 Corollary No compact nontrivial product manifold S1×M admits a metric of positive Ricci
curvature.

6.4.5 Remark The assumption about the Ricci curvature in the statement of the Bonnet-Myers
theorem cannot be relaxed in the sense of requiring that the Ricci curvature only be positive, as
the following example shows. The two-sheeted hyperboloid

{ (x, y, z) ∈ R3 | x2 + y2 − z2 = −1 }

with the metric induced from R3 is complete, non-compact, and has Gaussian curvature at a point
(x, y, z) given by (x2 + y2 + z2)−2, which, despite being positive, goes to zero as the point tends to
infinity. The paraboloid of revolution is another example. ⋆

6.4.6 Remark Cheng’s rigidity theorem states that equality in (6.4.3) holds only ifM is isometric
to Sn(R) [Esc87].

6.5 Nonpositively curved manifols

One of the main features of nonpositively curved manifols is the abundance of convex functions.
Recall that a continuous function f : I → R defined on an interval I is called convex if f((1 −
t)x + ty) ≤ (1 − t)f(x) + tf(y) for every t ∈ (0, 1) and x, y ∈ I. If f is of smooth, this condition
is equivalent to requiring that its second derivative f ′′ ≥ 0. In the case of a continous function f
on a complete Riemannian manifold M , we say that f is convex if its restriction f ◦ γ is convex for
every geodesic γ of M . Strict convexity is defined analogously by replacing the inequalities above
by the strict inequalities. Our point of view in this section is that most of the important results
about the geometry of manifolds with nonpositive curvature can be derived by using appropriate
convex functions on the manifold.

We will use the following remark in the proof of Lemma 6.5.1. If a convex function admits two
global minima, then a geodesic connecting these two points also consists of global minima of the
function. In fact, the function restricted to the geodesic is convex, and this implies that it cannot
have bigger values on the interior of the segment than at the endpoints forcing it to be constant
along the geodesic segment. A similar argument shows that any local minimum of a convex function
on a complete Riemannian manifold must in fact be a global one.

6.5.1 Lemma Let γ be a geodesic in a Riemannian manifold M . If the sectional curvature along
γ is nonpositive, then there are no conjugate points along γ.

Proof. Let Y be a Jacobi field along γ. We claim that the fuction f = ||Y ||2 is convex. In order
to prove this, we recall the Jacobi equation −Y ′′ +R(γ′, Y )γ′ = 0 and differentiate f twice to get

f ′′ = 2(〈Y ′′, Y 〉+ ||Y ′||2)
= 2(〈R(γ′, Y )γ′, Y ) + ||Y ′||2)
≥ 0,

in view of the assumption on the curvature; this proves the claim. Now if f(t1) = f(t2) = 0 for
some t1 < t2, then f |[t1,t2] ≡ 0, whence Y is trivial. Hence there are no conjugate points along γ. �

6.5.2 Theorem (Hadamard-Cartan) Let M be a complete Riemannian manifold with nonpos-
itive sectional curvature. Then, for every point p ∈M , the exponential map expp : TpM →M is a
smooth covering. In particular, M is diffeomorphic to Rn if it is simply-connected.
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Proof. Fix a point p ∈ M . In view of Lemma 6.5.1, we know that expp : TpM → M is a local
diffeomorphism. This being so, we may endow TpM with the pull-back metric g̃ = exp∗p g. Since a
local isometry maps geodesics to geodesics, the geodesics of (TpM, g̃) through the origin 0p are the
straight lines, thus, defined on all of R due to the completeness of M . In view of Theorem 3.3.5(c),
this implies that (TpM, g̃) is complete. Now expp is a covering because of Proposition 3.3.8(b), and
the last assertion in the statement is obvious. �

A complete simply-connected manifold of nonpositive sectional curvature is called a Hadamard
manifold .

6.5.3 Corollary LetM be a Hadamard manifold. Then, given p, q ∈M , there is a unique geodesic
joining p to q.

Proof. Let γ be a geodesic joining p to q. Consider the diffeomorphism expp : TpM → M . Then
exp−1

p ◦γ is the straight line in TpM joining the origin and exp−1
p (q), as in the proof of Theorem 6.5.2,

and this proves the uniqueness of γ. �

In particular, the preceding corollary implies that the cut-locus of an arbitrary point in a
Hadamard manifold is empty.

The Hadamard-Cartan theorem says that the universal covering manifold of a complete Rie-
mannian manifold M of nonpositive sectional curvature is Rn. Since Rn is contractible, the higher
homotopy groups πi(M), where i ≥ 2, are all trivial. Consequently, the topological information
about M is contained in its fundamental group π1(M) (see also Add. note §5). In the sequel, we
prove some classical results about the fundamental group of nonpositively curved manifolds. We
start with a lemma.

6.5.4 Lemma Let M be a Hadamard manifold. Then, for any point p ∈ M , the function fp :
M → R given by fp(x) =

1
2d(p, x)

2 is smooth and strictly convex.

Proof. Fix a point p ∈ M . Denote by γx : [0, 1] → M the unique geodesic parametrized with
constant speed joining p to x. Plainly, γx is minimizing, so

fp(x) =
1

2
L(γx)2 = E(γx) =

1

2
||γx′(0)||2 = 1

2
|| exp−1

p (x)||2,

showing that fp is smooth.
Next, let η be a geodesic; we intend to verify that f ◦ η is strictly convex. For that purpose, we

set γt = γη(t) and invoke the second variation formula (5.3.9) to write:

d2

dt2

∣
∣
∣
t=0

(fp ◦ η)(t) =
d2

dt2

∣
∣
∣
t=0

E(γt)

= 〈∇ ∂
∂t

∂̄

∂t

∣
∣
∣
t=0

, γ′〉
∣
∣
∣

1

0
+

∫ 1

0
||Y ′||2 + 〈R(γ′, Y )γ′, Y 〉 ds.

(6.5.5)

Since the variational vector field Y = ∂̄
∂t |t=0 vanishes at s = 0 and ∇ ∂

∂t

∂̄
∂t

∣
∣
s=1
t=0

= η′′(0) = 0, the first

term in the sum is zero; the assumption on the curvature and the fact that Y is nonzero imply that
the second term there is positive. We conclude that f is strictly convex. �

6.5.6 Remark We can get more refined information about the second derivatives of fp. It im-
mediately follows from the Cauchy-Schwarz inequality that a smooth function f : [0, 1] → R with
f(0) = 0 must satisfy the inequality

∫ 1
0 (f

′)2 ds ≥ f(1)2. Retaining the notation in the proof of

125



Lemma 6.5.4, we write Y (s) =
∑

i ai(s)Ei(s) for smooth functions ai : [0, 1] → R and an orthonor-
mal frame {Ei} of parallel vectors along γ0. Then

∫ 1

0
||Y ′||2 ds =

∑

i

∫ 1

0
(ai)

′2 ds

≥
∑

i

ai(1)
2

= ||Y (1)||2
= ||η′(0)||2.

Together with (6.5.5), this shows that (see exercise 9 in chapter 4)

Hess(fp) ≥ g

at every point of M , as bilinear symmetric forms. ⋆

Lemma 6.5.4 allows one to give a notion of geometric center of a finite set of points of a
Hadamard manifold. For that purpose, two remarks are in order. First, we note that a non-negative
strictly convex proper function has a unique minimum. In fact, because of properness, there must
a minimum. If there were two minima, the function would be strictly convex when restricted to
a geodesic joining the two minima, and this would imply that the function has smaller values on
the interior of this segment than at the endpoints, contradicting the fact that the endpoints are
minima. The second remark is that the maximum of any number of strictly convex functions is
still strictly convex, as one sees easily. Now, given a finite set of points p1, . . . , pk in a Hadamard
manifold, the center of the set {p1, . . . , pk} is defined to be the uniquely defined minimum of the
non-negative strictly convex proper function

x 7→ max{fp1(x), . . . , fpk(x)}.

Note that the center of p1, . . . , pk is the center of a closed ball containing those points of minimal
radius among the closed balls containing those points (it does not have to coincide with the “center
of mass” in the case of Euclidean space).

6.5.7 Theorem (Cartan) Let M be a Hadamard manifold. Then any isometry of finite order of
M has a fixed point.

Proof. Let ϕ be an isometry of M of order k ≥ 1. For an arbitrary point p ∈M , set q to be the
center of mass of the finite set {p, ϕ(p), . . . , ϕk−1(p)}. This means that q is the unique minimum
of the function

f(x) = max{fp(x), fϕ(p)(x), . . . , fϕk−1(p)(x)}.

Since ϕk(p) = p and ϕ is distance-preserving,

f(ϕ(q)) =
1

2
max

{
d(p, ϕ(q))2, d(ϕ(p), ϕ(q))2, . . . , d(ϕk−1(p), ϕ(q))2

}

=
1

2
max

{
d(ϕk−1(p), q)2, d(p, q)2, . . . , d(ϕk−2(p), q)2

}

= f(q),

which shows that also ϕ(q) is a minimum of f . Hence, ϕ(q) = q. �
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6.5.8 Corollary Let M be a complete Riemannian manifold of nonpositive sectional curvature.
Then the fundamental group of M is torsion-free.

Proof. The Riemannian universal covering M̃ of M is a Hadamard manifold, and the elements
of π1(M) act on M̃ as deck transformations, thus, without fixed points; Theorem 6.5.7 implies that
they cannot have finite order. �

Before proving the next theorem, we recall some facts about the relation between the funda-
mental group π1(M,p) and the set of free homotopy classes of loops, which we denote by [S1,M ],
for a connected manifold M and p ∈M .

6.5.9 Lemma The ‘forgetful’ map F : π1(M,p) → [S1,M ], which is obtained by ignoring base-
points, sets up a one-to-one correspondence between [S1,M ] and the set of conjugacy classes in
π1(M,p).

Proof. First we remark that F is onto. In fact, let ζ1 : [0, 1] → M be a loop in M , with
ζ1(0) = ζ1(1) = q, representing a class in [S1,M ]. Since M is arcwise connected, there is a
continuous path c joining p to q. Then ζt := c|[t,1] · ζ · (c|[t,1])−1 is a continuous homotopy between
ζ0 and ζ1, and ζ0 lies in the image of F .

Next, if γ, η are loops based at p then F [η ·γ ·η−1] = F [η] ·F [γ] ·F [η−1] = F [η−1] ·F [η] ·F [γ] =
F [γ], where for the second equality we cyclically permute the order of concatenation by changing
the basepoint. This proves that F is constant on conjugacy classes.

Conversely, let γ0, γ1 : [0, 1] → M be loops based at p with F [γ0] = F [γ1]. This means
there is a homotopy γt between those curves without necessarily preserving basepoints. The curve
c(t) = γt(0) = γt(1) traces out the path taken by the basepoints and thus is a loop. Now the
concatenation γ̃t := c|[0,t] · γt · (c|[0,t])−1 is a homotopy from γ0 to c · γ1 · c−1 preserving basepoints.

�

6.5.10 Lemma Let γ, η be loops in M based at p, q, respectively. Then the classes [γ] = [η] in
[S1,M ] if and only if [γ] ∈ π1(M,p) and [η] ∈ π1(M, q) act by the same deck transformation on the
universal cover M̃ .

Proof. Let ζ be a curve joining p to q. Then ζ · η · ζ−1 is in the same free homotopy class as
η. Using Lemma 6.5.9, by concatenating ζ with a loop at p, we may assume that [ζ · η · ζ−1] = [γ]
in π1(M,p). The desired result follows from the standard relation between the fundamental group
and deck transformations. �

6.5.11 Theorem (Preissmann) Let M be a compact Riemannian manifold of negative sectional
curvature. Then every nontrivial Abelian subgroup of its fundamental group is infinite cyclic.

Proof. We can assume that M is not simply-connected. Let M̃ be the Riemannian universal
covering of M , and let ϕ ∈ π1(M) an element different from the identity which we view as an
isometry of M̃ . Recall that ϕ acts on M̃ without fixed points. The fundamental remark is that
the displacement function f : M̃ → R given by f(x) = d(x, ϕ(x)) is smooth and convex. For the
purpose of proving this claim, consider the function Φ : TM →M×M , given by Φ(v) = (x, expx(v))
for v ∈ TxM , that was introduced in Lemma 2.4.6. Since M̃ is a Hadamard manifold, we easily
see that Φ is well defined and a global diffeomorphism. Now d : M̃ × M̃ \ ∆M̃ → R is given by

d(x, y) = gx(Φ
−1(x, y),Φ−1(x, y))1/2, so it is also smooth; here ∆M̃ denotes the diagonal of M̃ . This

proves that f is smooth. In order to prove the convexity of f , we resort to the second variation
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formula of the length given in exercise 1 of chapter 5. Let η be a geodesic; similarly to in (6.5.5),
we can write

(6.5.12)
d2

dt2

∣
∣
∣
t=0

(f ◦ η)(t) =
∫ 1

0
||Y ′

⊥||2 + 〈R(γ′, Y⊥)γ′, Y⊥〉 ds ≥ 0,

where γt is the geodesic joining η(t) to ϕ(η(t)), Y is the variational vector field along γ0 and

Y⊥ denotes its normal component, and we have used that ∇ ∂
∂t

∂̄
∂t

∣
∣
t=0

is equal to η′′(0) = 0 and

(ϕ ◦ η)′′(0) = 0 for s = 0 and 1, respectively. Although f is not strictly convex, we can derive more
refined information from formula (6.5.12). Since M̃ has negative curvature, the equality holds
in (6.5.12) if and only if Y is a constant multiple of γ′, so at any given point x ∈ M̃ , f is stricly
convex in any direction different from the direction of the geodesic joining x to ϕ(x).

Next, we introduce a definition. An axis of ϕ is a geodesic of M̃ that is invariant under ϕ.
Note that ϕ cannot reverse the orientation of an axis γ for otherwise the midpoint of the geodesic
segment between γ(t) and ϕ(γ(t)) would be a fixed point of ϕ for any t ∈ R. Hence the restriction
of ϕ to γ must be translation along it:

ϕ(γ(t)) = γ(t+ t0)

for some t0 ∈ R and all t ∈ R. The number t0 will be called the period of ϕ along the axis γ. For
later reference, we also note that

f(ϕ(x)) = d(ϕ(x), ϕ2(x)) = d(x, ϕ(x)) = f(x)

for every x ∈ M̃ .
Now we give three important properties of axes. The first one is that f is constant along an

axis γ of ϕ. Indeed,
f(γ(t+ t0)) = f(ϕ(γ(t))) = f(γ(t))

for all t ∈ R, where t0 is the period of γ. It follows that f ◦ γ is convex and periodic, and it is easy
to see that such a function must be constant. The second one is that an axis of ϕ is a set of minima
of f . This follows immediately from the formula of the first variation of length and (6.5.12). The
last one is that if f is constant on a geodesic segment xy for points x 6= y, then the supporting
geodesic γ of that segment is an axis of ϕ. Indeed, f is not stricly convex along xy, so γ must
coincide with the geodesic joining x and ϕ(x). It follows that ϕ(x) lies in the image of γ. Similarly,
ϕ(y) lies in the image of γ. Since a geodesic in M̃ is uniquely defined by two points on it, γ must
be an axis of ϕ.

The next step is to prove that ϕ admits one and only one axis, up to reparametrization and
reorientation. Note that the value f at a point x ∈ M̃ is the length of the unique geodesic in
M̃ joining x to ϕ(x). Such geodesics project to geodesics loops in M , with the same length, all
lying in the same free homotopy class of loops in M , independent of the point x, according to
Lemma 6.5.10. Since M is compact, f admits a global minimum p ∈ M̃ by Lemma 6.3.1. Since
f(ϕ(p)) = f(p), we have that ϕ(p) is also a global minimum. By convexity, f is constant along the
geodesic segment joining p and ϕ(p); let γ be the unit speed geodesic that supports this segment.
By the above, γ is an axis of ϕ. Now the points in the image of γ comprise a set of minima at each
point of which f is strictly convex in any direction different from γ. It follows that there cannot
be another axis.

Finally, suppose that H is an Abelian subgroup of π1(M), and that ϕ belongs to H and has γ
as an axis as above. Since the elements of H commute with ϕ, they map γ to a geodesic which is
invariant under ϕ; by the above uniqueness result, γ is an axis for all the elements of H. Consider
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now the period map H → R. This map is clearly an injective homomorphism, thus its image is a
subgroup of R isomorphic to H. It is not difficult to see that every subgroup of R is either infinite
cyclic or dense. Since the orbits of H on M̃ are discrete, H must be infinite cyclic. �

6.5.13 Corollary No compact nontrivial product manifold M ×N admits a metric with negative
sectional curvature.

Proof. Suppose, on the contrary, that M ×N supports a metric of negative sectional curvature.
By the Hadamard-Cartan theorem 6.5.2, its universal covering, which is the product of the universal
coverings M̃ of M and Ñ of N , is contractible. Since a compact manifold can never be contractible
(unless it is a point), neither M̃ nor Ñ is compact. In particular, neither M nor N is simply-
connected. Now π1(M) and π1(N) are both non-trivial, and as subgroups of π1(M × N), each
of its elements have infinite order by Corollary 6.5.8. We deduce that π1(M) and π1(N) contain
infinite cyclic groups H and K, respectively. But then H ×K is a non-trivial Abelian subgroup of
π1(M ×N) which is not cyclic, contradicting Preissmann’s theorem. This proves the corollary. �

6.5.14 Remark An isometry ϕ of a Hadamard manifold M̃ can be of three types. Let f be the
displacement function associated to ϕ as in Preissmann’s theorem 6.5.11. Then ϕ is said to be:

a. elliptic if f attains the value zero (i.e. ϕ admits a fixed point);

b. hyperbolic if f attains a positive minimum;

c. parabolic if f attains no minimum.

The argument in Preissmann’s theorem proves that a hyperbolic isometry of a Hadamard manifold
admits an axis (which is unique in the case in which the curvature of M̃ is negative).

6.6 Rauch’s theorem

In this section we present a version of Rauch’s theorem, which is another example of comparison
theorem in Riemannian geometry, and derive as an application the existence of convex neighbor-
hoods in Riemannian manifolds.

6.6.1 Theorem (Rauch) Let γ : [0, ℓ] → M be a unit speed geodesic in a Riemannian manifold
M and assume that the sectional curvatures of M along γ are bounded above by a real constant
κ. If Y is a Jacobi field along γ which is always orthogonal to γ′, then the function ||Y || along γ
satisfies the differential inequality

(6.6.2) ||Y ||′′ + κ||Y || ≥ 0

on the complement of the zero set of Y on (0, ℓ).

Moreover, if ψ denotes the solution on [0, ℓ] of the differential equation

ψ′′ + κψ = 0, ψ(0) = ||Y ||(0), ψ′(0) = ||Y ||′(0),

and ψ does not vanish on (0, ℓ), then Y does not vanish on (0, ℓ) and

(6.6.3)

( ||Y ||
ψ

)′
≥ 0 and ||Y || ≥ ψ

on (0, ℓ).
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Finally, the first inequality in (6.6.3) is an equality at s0 for some s0 ∈ (0, ℓ) if and only if the
sectional curvatures K(γ′, Y ) = κ along [0, s0] and there exists a parallel unit vector field E along
γ for which

Y (t) = ψ(t)E(t)

along [0, s0].

Proof. We differentiate ||Y || twice along γ to obtain

||Y ||′ = 〈Y ′, Y 〉
||Y ||

and

||Y ||′′ =

(
||Y ′||2 + 〈Y ′′, Y 〉

)
||Y || − 〈Y ′, Y 〉2/||Y ||

||Y ||2

=
||Y ′||2||Y ||2 − 〈Y ′, Y 〉2

||Y ||3 +
1

||Y || 〈R(γ
′, Y )γ′, Y 〉

≥ −κ||Y ||,

where we have used the Jacobi equation, the Cauchy-Schwarz inequality and the assumption that
the sectional curvature of the plane spanned by γ′, Y is bounded above by κ, proving the differential
inequality.

Moreover, if ψ is as in the statement, then

( ||Y ||
ψ

)′
=

||Y ||′ψ − ||Y ||ψ′

ψ2
,

where the numerator satisfies

(||Y ||′ψ − ||Y ||ψ′)(0) = 0

by the assumptions, and

(
||Y ||′ψ − ||Y ||ψ′)′ = ||Y ||′′ψ − ||Y ||ψ′′ ≥ 0

on (0, s0) by the differential inequality, where s0 > 0 is the first parameter value where Y (s0) = 0.
It follows that the numerator is also non-negative, proving that (||Y ||/ψ)′ ≥ 0 on [0, s0]. Since

lims→0+
||Y (s)||
ψ(s) = 1, this implies that ||Y || ≥ ψ on [0, s0]. Finally, the assumption that ψ does not

vanish on (0, ℓ) shows that s0 ≥ ℓ.

If we have equality in the first equation in (6.6.3) for some s0 ∈ (0, ℓ), then we have equality on
all of (0, s0], which implies ||Y || = ψ on all of [0, s0]. Write Y = ψE where ||E|| = 1 along γ. Then
Y ′ = ψ′E + ψE′. We have equality in (6.6.2), which implies K(γ′, Y ) = κ and also equality in the
Cauchy-Schwarz inequality above, meaning that Y and Y ′ are linearly dependent at every point of
(0, s0]; hence E is parallel along γ|[0,s0]. �

The following corollary of Rauch’s theorem is attributed to M. Morse (1930) and I. J. Schönberg
(1932), and is a strengthening of Lemma 6.5.1.

6.6.4 Corollary Let γ : [0, ℓ] → M be a unit speed geodesic in a Riemannian manifold M and
assume that the sectional curvatures of M along γ are bounded above by a positive real constant κ.
Then the first conjugate point of γ(0) along γ can only occur at s ≥ π/

√
κ.
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Proof. Let Y be a Jacobi field along γ with Y (0) = 0; by rescaling, we may assume ||Y ||′(0) = 1.

In Rauch’s theorem, we have ψ(s) = sin(
√
κs)√
κ

, and ||Y (s)|| ≥ sin(
√
κs)√
κ

> 0 for s < π/
√
κ. �

6.6.5 Lemma Let p be a point in a Riemannian manifold and choose a sufficiently small r > 0
such that B(p, r) is a normal neighborhood of p and r < π

2
√
κ
, where κ is the supremum of sectional

curvatures of M at points in a given compact neighborhood of p, and we interpret π
2
√
κ
as +∞ in

case κ ≤ 0. If η : [0, 1] → B(p, r) is a geodesic segment, then the function f(t) = d(p, η(t)) has at
most one critical point for t ∈ (0, 1), and such a critical point must be a point of minimum.

Proof. It suffices to prove that any critical point t0 ∈ (0, 1) of f is a point of minimum. Construct
a smooth variation through geodesics {γt} where γt : [0, ℓ] → B(p, r) is the unique constant speed
geodesic joining p to η(t) and γt0 has unit speed. Note that ℓ < r < π

2
√
κ
. The variational vector

field Y is a Jacobi field orthogonal to γ′ at the endpoints, and thus everywhere. By the second
variation formula of length (exercise 1 of chapter 5),

d2

dt2

∣
∣
∣
t=t0

L(γt) = 〈∇ ∂
∂t

∂

∂t

∣
∣
∣
t=0

, γ′〉
∣
∣
∣

ℓ

0
+

∫ ℓ

0
||Y ′||2 + 〈R(γ′, Y )γ′, Y 〉 ds.

Since γt(0) = p for all t, and t 7→ γt(ℓ) = η(t) is a geodesic, the first term on the right-hand

side vanishes. In case κ ≤ 0, this already shows that d2

dt2
|t=t0L(γt) > 0 and hence t0 is a point of

minimum. Otherwise κ > 0 and, using ||Y ′||2 = 〈Y, Y ′〉′ − 〈Y, Y ′′〉 and the Jacobi equation, we can
write

d2

dt2

∣
∣
∣
t=t0

L(γt) = 〈Y ′(ℓ), Y (ℓ)〉.

By Rauch’s theorem 6.6.1,
||Y ||′
||Y || ≥ ψ′

ψ

on (0, ℓ), where ψ(s) = sin(
√
κs) ||Y ||′(0)√

κ
. It follows that

〈Y ′(ℓ), Y (ℓ)〉 = ||Y ||′(ℓ)||Y (ℓ)|| ≥ ψ′(ℓ)
ψ(ℓ)

||Y (ℓ)||2 = √
κ cot(

√
κℓ)||Y (ℓ)||2 > 0,

which proves that t0 is a point of minimum. �

In Proposition 2.4.7, we proved the existence of a totally normal neighborhood U of any point
in a Riemannian manifold, namely, any two points in U can be connected by a unique minimizing
geodesic. We next show that U can be chosen so that the minimizing geodesic lies entirely in U .

A subset C of a Riemannian manifold M is called strongly convex if every two points p, q lying
in the topological closure C̄ can be connected by a unique minimizing geodesic η : [0, 1] →M and
η(0, 1) ⊂ C. J. H. C. Whitehead proved in 1932 that any point in any Riemannian manifold is the
center of a sufficiently small open metric ball which is strongly convex. Recall that the injectivity
radius inj as a function on a Riemannian manifold, namely, the distance of a point to its cut locus,
is a continuous function.

6.6.6 Theorem (Whitehead) Let p be a point in a Riemannian manifold. Fix a compact neigh-
borhood K of p in M , let ι denote the infimum of inj over K, and let κ denote the supremum of
sectional curvatures at points in K. If r < 1

2 min{ π√
κ
, ι} and B(p, r) ⊂ K, then B(p, r) is strongly

convex; here we interpret π√
κ
as +∞ in case κ ≤ 0.
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Proof. Let q, q′ ∈ B̄(p, r). Then d(q, q′) ≤ 2r < ι, so there is a unique minimizing geodesic
γ; [0, 1] → M connecting q to q′ and γ depends continuously on q, q′. Choose ǫ > 0 such that
r + ǫ < 1

2 min{πκ , ι}, and put

Vr+ǫ = { (q, q′) ∈ B̄(p, r)× B̄(p, r) | γ(0, 1) ⊂ B(p, r + ǫ) }.

This set is clearly non-empty, and also open in B̄(p, r) × B̄(p, r) since γ depends continuously on
its endpoints. Owing to Lemma 6.6.5,

(6.6.7) γ(0, 1) ⊂ B(p, r) for all (q, q′) ∈ Vr+ǫ.

Again by continuous dependence of γ on its endpoints, we have that (q, q′) ∈ V̄r+ǫ implies γ[0, 1] ⊂
B̄(p, r) ⊂ B(p, r + ǫ), therefore V̄p+ǫ ⊂ Vr+ǫ, which means that Vr+ǫ is closed. By connectedness,
Vr+ǫ = B̄(p, r)× B̄(p, r), and we finish the proof by referring to (6.6.7). �

The convexity radius at p is the supremum (which may be +∞) of all r ∈ R such that, for all
η < r, the geodesic ball B(p, η) is strongly convex. The convexity radius of M is the infimum of
convexity radii at all points of M . For instance, the convexity radius of the sphere is π/2.

6.7 Additional notes

§1 The Gauss-Lobatchevsky-Bolyai discovery of hyperbolic geometry in the early nineteenth century
finally pointed out the impossibility of proving Euclid’s fifth postulate from the other postulates of
Euclidean geometry. In 1868, Beltrami proved the consistency of hyperbolic geometry by realizing
it as the intrinsic geometry of a well known surface in Euclidean 3-space — the so-called pseudo-
sphere — which has constant negative curvature. In his Habilitationsvortrag of 1854 in which
Riemann laid the foundations of Riemannian geometry were also exhibited examples of metrics
of arbitrary constant curvature. Based on Riemann’s ideas, Beltrami published another article
in 1869 in which he discussed spaces of constant curvature in arbitrary dimensions. In this way,
the non-Euclidean geometries were for the first time incorporated into the realm of Riemannian
geometry. In 1890, Klein drew attention to Clifford’s 1873 discovery of a 2-torus — nowadays known
as the Clifford torus — sitting in S3 with constant zero curvature and formulated the problem of
classifying Riemannian manifolds of arbitrary constant curvature in arbitrary dimensions. The
problem, referred to as the Clifford-Klein space forms problem, was extensively studied by Killing
in an article in 1891 and a book in 1893, and then again by Heinz Hopf in 1925 culminating in
Theorem 6.2.2.

§2 The argument in the proof of the Hadamard-Cartan theorem 6.5.2 shows that if there is a
point in a simply-connected Riemannian manifold possessing no conjugate points, then the manifold
is diffeomorphic to Euclidean space. Eberhard Hopf [Hop48] proved that a compact Riemannian
manifold M without conjugate points satisfies the inequality

∫

M
scal ≤ 0

where the integral is taken with respect to the canonical Riemannian measure (exercise 16 of
chapter 4), and the equality holds if and only if M is flat. In the 2-dimensional case, the left-hand
side equals 2π times the Euler characteristic of M by the Gauss-Bonnet theorem. It follows from
E. Hopf’s result that a metric without conjugate points on T 2 must be flat. It was a long standing
conjecture that the same result should be also valid for the higher dimensional tori. In 1994, Burago
and Ivanov [BI94] finally settled the conjecture in the positive sense.
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§3 Techniques from geometric analysis have been proved to be very powerful in dealing with
problems involving curvature in Riemannian manifolds. We would like to mention two spectacular
instances of this fact. In 1960, Yamabe [Yam60] tried to deform conformally a given Riemannian
metric g on a manifold M into a metric f · g of constant scalar curvature, where f is an unknown
positive smooth function onM . If n = dimM = 2, this is a classical result and amounts to showing
that M admits isothermal coordinates [Jos06], so he was dealing with the case n ≥ 3. There was
a problem with Yamabe’s arguments, though, and the question became the Yamabe problem. In
order to find f , one needs to solve the nonlinear partial differential equation

∆f +
n− 2

4(n− 1)
scal(M, g) = f

n+2
n−2 .

This is an extremely difficult question in analysis because the exponent of f is exactly the “critical
exponent” in regard to which the standard Sobolev embedding theorems do not apply. The problem
was eventually solved through the work of of Aubin [Aub76] and Schoen [Sch84]. Thanks to
contributions by other mathematicians, the Yamabe problem is today almost completely understood
and it is known that the set of metrics of constant scalar curvature in a given conformal class of
metrics is an infinite-dimensional space if n > 2. See [Aub98] for these results in book form.

Deformation techniques like that concerning the Yamabe problem are used to prove the existence
of several objects in geometry. An interesting approach is to consider deformations on the level of
the space of Riemannian metrics on a given smooth manifold M . For instance, Hamilton [Ham82]
introduced the following normalized Ricci flow equation in the space of Riemannian metrics on a
compact n-dimensional manifold M :

d

dt
g(t) = −2Ric(g(t)) + 2

τ

n
g(t),

where Ric(g(t)) denotes the Ricci curvature of the metric g(t), and τ denotes the integral of the
scalar curvature of g(t). The fixed points of this equation are the metrics of constant Ricci cur-
vature. One considers t as time and studies the equation as an initial value problem for a fixed
Riemannian metric g0 = g(0) on M . Hamilton proved that if n = 3 and the Ricci curvature
of g0 is positive, then the Ricci flow converges smoothly to a metric of constant Ricci curvature.
In particular, the manifold is diffeomorphic to a spherical space form. At that time, this was a
very interesting application of Riemannian geometry to provide a partial answer to a long-standing
open problem in topology, the so called Poincaré conjecture: Is every simply-connected compact
3-dimensional manifold homeomorphic to S3? The difficulty in using Hamilton’s method to prove
the full Poincaré conjecture was that if one removes the assumption that Ric(g0) > 0, then the Ricci
flow develops finite-time singularities that impede the convergence to a nice metric, and those sin-
gularities were not completely understood. As it turns out, Perelman was able to overcome those
analytic difficulties. He extended Hamilton’s results and in particular proved the full Poincaré
conjecture (see e.g. [MT06]).

§4 A subset C of a Riemannian manifold is called totally convex if for all p, q ∈ C and every
geodesic γ in M joining p to q, we have that γ is contained in C; in particular, every totally convex
submanifold is totally geodesic (cf. section 7.4). We can now state a far-reaching generalization
of the theorem of Synge 6.3.2 proved by J. Cheeger and D. Gromoll in 1972: (Soul’s Theorem) A
complete non-compact Riemannian n-manifold M contains a compact totally convex submanifold
S with 0 ≤ dimS < n, called a soul, such that M is diffeomorphic to the total space of the
normal bundle νS; further, if M has positive curvature then a soul of M is given by a point and
M is diffeomorphic to Rn. It follows that M has the homotopy type of a compact manifold. For
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instance, if M is the cilinder x2 + y2 = 1 in R3, then a soul is the circle z = 0; in the case of the
paraboloid of revolution in R3, a soul is given by the vertex, but no other points are souls. In 1978
V. Sharafutdinov constructed a retraction from M to any of its souls S, which is a non-expanding
map, and hence established that any two souls of M are isometric to each other. In 1993 G.
Perelman proved that the Sharafutdinov retraction is a submersion, from which follows that the
soul must be a point if all sectional curvatures are positive already at one point.

§5 In contrast to the flexibility exhibited by a hyperbolic surface, where there is a whole de-
formation space of hyperbolic metrics (cf. section 6.2), Mostow’s rigidity theorem asserts that for
complete hyperbolic manifolds M and N of dimension at least 3 and finite volume (in particular,
compact), if there is an isomorphism between the fundamental group π1(M) → π1(N) then it is
induces by an isometry M → N . It follows that the volume of a compact hyperbolic manifold of
dimension at least 3 is a topological invariant. Many complements of knots and links in S3 can
be given hyperbolic metrics with finite volume, so in such a case the volume of the hyperbolic
metric is a topological invariant of knot or link. Mostow’s theorem can also be applied to show
that the isometry group of a compact hyperbolic manifold is always finite, and isomorphic to the
group of outer automorphisms of the fundamental group (i.e. automorphism group modulo the
inner automorphisms). There are now several proofs of Mostow’s theorem, see e.g. [Rat06].

§6 A famous, open conjecture of Heinz Hopf asserts that S2 × S2 does not admit a metric
of positive sectional curvature. Indeed, known examples of simply-connected compact manifolds
with positive sectional curvature are relatively rare (owing to the Bonnet-Myers theorem 6.4.1, the
non-simply-connected examples are quotients of the simply-connected ones by finite subgroups of
isometries). The standard examples are the compact rank one symmetric spaces (see Add. notes ?
of chapter ?). Apart from these, the homogeneous examples have been classified by Wallach [Wal72]
in the odd-dimensional case and by Bérard-Bergery [BB76] in the even dimensional case. These
examples occur only in dimensions 6, 7, 12, 13 and 24, and are due to Berger, Wallach and Allof-
Wallach. The only other examples known are given by biquotients G//H. Here G is a Lie group
equipped with a bi-invariant metric and H is subgroup of G×G acting on G by (h1, h2)·g = h1gh

−1
2 .

This action is always proper and isometric, and if it is also free, then the quotient space is a manifold
denoted byG//H. In this case, there is a unique metric onG//H making the projectionG→ G//H
into a Riemannian submersion and it follows from Proposition 4.5.8 that G//H has always non-
negative curvature. More generally, one can also construct bi-quotients by considering left-invariant
metrics on G more general than the bi-invariant ones. It turns out that the only known examples
of positively curved biquotients occur in dimensions 6, 7 and 13, and these are due to Eschenburg
and Bazaikin. There is no general classification of positively curved biquotients. See [Zil07] for a
recent survey on these results and related ones.

6.8 Exercises

1 Some definitions: a Riemannian manifold M is called locally homogeneous is any two points
admit isometric neighborhoods. The local isotropy group of M at a point p is the group of germs of
isometries defined on connected neighborhoods of p; note that this group is well defined in view of
exercise 15 of chapter 3. Finally, M is called locally 3-point homogeneous if for any two points p0,
p′0 there exist connected neighborhoods U , U ′ of p0, p′0, resp., such that given two triples (p, q, r),
(p′, q′, r′) of points in U , U ′, resp., with d(p, q) = d(p′, q′), d(q, r) = d(q′, r′), d(r, p) = d(r′, p′), there
exists a distance-preserving map f : U →M that maps the first triple to the second one.

Let M be a complete Riemannian manifold of dimension n. Prove that the following assertions
are equivalent:
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a. M has constant sectional curvature.
b. M is locally homogeneous, and its local isotropy group at any point is isomorphic to O(n).

In addition, prove that these assertions imply that M is locally 3-point homogeneous. (Hint: Use
the Cosine Law in spaces of constant curvature.)

2 Prove that an odd-dimensional compact Riemannian manifold of positive sectional curvature is
orientable.

3 Let M be a complete Riemannian manifold. Prove that each homotopy class of curves with
given endpoints in M contains a unique geodesic.

4 Consider the ball model Dn of RHn and let ϕ be an isometry of RHn.
a. Prove that ϕ uniquely extends to a homeomorphism of the closed ball Dn. (Hint: Use

exercise 4 of chapter 3.)
b. Prove that ϕ is hyperbolic if and only if its extension to Dn admits exactly two fixed points

and those lie in the boundary Sn−1.
c. Prove that ϕ is parabolic if and only if its extension to Dn admits exactly one fixed point

and that lies in the boundary Sn−1.

5 In the notation of exercise 5 of chapter 1, assume that the isometry T of the upper-half-plane
is not the identity and prove that it is hyperbolic, elliptic or parabolic according to whether (a −
d)2 + 4bc is positive, negative or zero, respectively.

6 Let G be an Abelian subgroup of the fundamental group of a spherical space form M . Prove
that G is cyclic.

7 An isometry ϕ of a Riemannian manifold M is called a Clifford translation if the associated
displacement function x 7→ d(x, ϕ(x)) is constant. Prove that:
a. The Clifford translations for Rn are just the ordinary translations.
b. The only Clifford translation of RHn is the identity transformation.
c. A linear transformation A ∈ O(n+ 1) is a Clifford translation of Sn if and only if there is a

unimodular complex number λ such that half the eigenvalues of A are λ and the other half
are λ̄.

8 Let M be a Hadamard manifold. Prove that an isometry ϕ of M is a Clifford translation
(cf. exercise 7) if and only if the vector field X on M given by expp(Xp) = ϕ(p) is parallel.

9 Extend Preissmann’s theorem 6.5.11 to show that every solvable subgroup of the fundamental
group of a compact Riemannian manifold of negative curvature must be infinite cyclic.

10 Let M be a Hadameard manifold, and let H be a compact group group of isometries of M .
a. Fix a left-invariant Haar measure dµ(h) on H. (this is just a left-invariant volume form on

H; left-invariance says that
∫

H f(h) dµ(h) =
∫

H f(h
′h) dµ(h) for all h′ ∈ H). For each p ∈ m,

check that the function

F (x) =

∫

H
d2(hp, x) dµ(h)

is strictly convex.
b. From part (a), F has a unique point of minimum p̄, called the center of the orbit Hp. Check

that p̄ is a fixed point of H.
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11 In this exercise, we prove that a compact homogeneous Riemannian manifold M whose Ricci
tensor is negative semidefinite everywhere is isometric to a flat torus.
a. Use exercise 13 of chapter 5 to show that the identity component of the isometry group of M

is Abelian.
b. Check that M can be identified with an n-torus equipped with a left-invariant Riemannian

metric.
c. Show that an n-torus equipped with a left-invariant Riemannian metric admits a global

parallel orthonormal frame and hence is flat.

12 A Riemannian manifold M is called locally symmetric if every point p ∈ M admits a normal
neighborhood V and an isometry ϕ : V → V such that ϕ(p) = p and dϕp = −id.
a. Show that space forms and Lie groups with bi-invariant metrics are locally symmetric. (Hint:

for the second example, use group inversion.)
b. Prove that the curvature tensor of a locally symmetric manifold is parallel. (Hint: Use the

version of equation (4.2.6) for ∇R.)

13 Let M be a Riemannian manifold with curvature tensor R.
a. Prove that R is parallel if and only if for every smooth curve γ in M and parallel vector fields

X, Y , Z, W along γ we have that 〈R(X,Y )Z,W 〉 is constant.
b. Prove that if R is parallel then the Jacobi equation along a geodesic has constant coefficients

in a suitable basis. (Hint: For a geodesic γ, diagonalize the self-adjoint operator R(γ′, ·)γ′).)

14 In this exercise, we prove the converse of the result of exercise 12(a).
a. Let M and M̃ be a Riemannian manifolds with parallel curvature tensors. Suppose there

are points p ∈ M , p̃ ∈ M̃ and a linear isometry f : TpM → Tp̃M̃ that takes any 2-plane in
TpM to a 2-plane in Tp̃M̃ with the same sectional curvature. Prove that there exists normal
neighborhoods V , Ṽ of p, p̃, resp., and an isometry F : V → Ṽ such that F (p) = p̃ and
dFp = f . (Hint: combine the idea in the proof of Theorem 6.2.1 with exercise 13(b)).

b. Prove that a Riemannian manifold with parallel curvature tensor is locally symmetric. (Hint:
Apply part (a) to M = M̃ and f = −id.)
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C H A P T E R 7

Submanifold geometry

7.1 Introduction

In this chapter, we study the extrinsic geometry of Riemannian manifolds. Historically speaking, the
field of Differential Geometry started with the study of curves and surfaces in R3, which originated
as a development of the invention of infinitesimal calculus. Later investigations considered arbitrary
dimensions and codimensions. Our discussion in this chapter is centered in submanifolds of spaces
forms.

A most fundamental problem in submanifold geometry is to discover simple (sharp) relationships
between intrinsic and extrinsic invariants of a submanifold. We begin this chapter by presenting
the standard related results for submanifolds of space forms, with some basic applications. Then
we turn to the Morse index theorem for submanifolds. This is a very important theorem that can
be used to deduce information about the topology of the submanifold. Finally, we present a brief
account of the theory of isoparametric submanifolds of space forms, which in some sense are the
submanifolds with the simplest local invariants, and we refer to [BCO16, ch. 4] for a fuller account.

7.2 The fundamental equations of the theory of isometric immersions

The first goal is to introduce a number of invariants of the isometric immersion. From the point
of view of submanifold geometry, it does not make sense to distinguish between two isometric
immersions of M into M that differ by an ambient isometry. We call two isometric immersions
f : (M, g) → (M, g) and f ′ : (M, g′) → (M, g) congruent if there exists an isometry ϕ of M such
that f ′ = ϕ ◦ f . In this case,

g′ = f ′∗g = f∗ϕ∗g = f∗g = g.

Because of this, the induced metric is considered to be one of the basic invariants of an isometric
immersion, and it is sometimes referred to as the first fundamental form of the immersion.

Due to the fact that our first considerations are local, we may assume that f is an embedding;
for simplicity, we assume that f is the inclusion. In this case, for every point p ∈ M , the tangent
space TpM is a subspace of TpM and the metric gp is the restriction of gp. Consider the g-ortohognal
bundle decomposition

TM = TM ⊕ TM⊥,

and denote by (·)⊤ and (·)⊥ the respective projections. According to (2.8.2), the Levi-Civita
connections ∇ and ∇ of M and M , respectively, are related by

∇XY = (∇XY )⊤,
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where X and Y are vector fields onM and X, Y are arbitrary extensions to vector fields onM . The
second fundamental form of the immersion f is the bilinear form B : Γ(TM)×Γ(TM) → Γ(TM⊥)
given by

B(X,Y ) = ∇XY −∇XY

= (∇XY )⊥,

where X, Y ∈ Γ(TM) and X, Y ∈ Γ(TM) are arbitrary local extensions of X, Y . In order to check
that the definition of B(X,Y ) does not depend on the choice of local extensions, choose other ones

X
′
, Y

′ ∈ TM . Then

(∇XY −∇XY )− (∇
X

′Y
′ −∇XY ) = ∇

X−X′Y −∇
X

′(Y
′ − Y ).

Note that the right hand side vanishes at a point p ∈ M . Indeed, the first term is zero because
X

′
p = Xp = Xp, and the second term is zero because Y

′
= Y = Y along a curve in M tangent to

X
′
p = Xp (cf. Remark 2.2.1). The second fundamental form is another one of the basic invariants

of an isometric immersion. The orthogonal decomposition

(7.2.1) ∇XY = ∇XY +B(X,Y )

is called the Gauss formula.
We agree to retain the above notation and make some remarks about B. First, observe that

B(X,Y ) = B(Y,X). This is because

B(X,Y )−B(Y,X) = ∇XY −∇XY −∇YX +∇YX

= [X,Y ]− [X,Y ]

= 0

on M , where we have used the fact that [X,Y ] is a local extension of [X,Y ]. Next, note that it
follows from the first defining condition of ∇ that B is C∞(M)-linear in the first argument; now it
is a consequence of its symmetry that B is C∞(M)-linear also in the second argument. Therefore,
for p ∈M , B(X,Y )p depends only on Xp and Yp. So there is a bilinear symmetric form

Bp : TpM × TpM → TpM
⊥

given by Bp(u, v) = B(U, V )p where u, v ∈ TpM , and U , V are arbitrary extensions of u, v to
local vector fields on M . If ξ ∈ TpM

⊥, the Weingarten operator , also called shape operator of the
immersion f at ξ, is the self-adjoint linear endomorphism

Aξ : TpM → TpM,

given by

〈Aξ(u), v〉 = 〈B(u, v), ξ〉,
where u, v ∈ TpM . The eigenvalues of the Weingarten operator at ξ are called principal curvatures
at ξ. Now the following lemma is proved by a simple computation.

7.2.2 Lemma Let ξ̂ ∈ Γ(TM⊥) be a local extension of ξ to a normal vector field. Then

Aξ(u) = −(∇uξ̂)
⊤.
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Proof. We have that

〈Aξ(u), v〉 = 〈B(u, v), ξ〉 = 〈∇UV , ξ̂〉p = −〈V ,∇U ξ̂〉p = −〈v,∇uξ̂〉.
The result follows. �

The normalized trace of the second fundamental form

H =
1

n
tr(B),

where n = dimM , is called the mean curvature vector of M . Note that n〈ξ,H〉 is the sum of
the principal curvatures of M along ξ. A minimal submanifold is a submanifold with vanishing
mean curvature. Minimal submanifolds are exactly the critical points of the volume functional
(cf. exercise 16 of chapter 4) with respect to compactly supported variations. There is a vast
literature devoted to them, especially in the case of minimal surfaces, which can be traced back at
least to Euler and Lagrange. The minimal surface equation translates in coordinates to perhaps
the best of all studied quasi-linear elliptic PDE, in terms of qualitative properties and explicit
global solutions. For good introductions to minimal submanifolds, see [Law80, Sim83]. A classical
reference to minimal surfaces is [Oss86]; a more recent one is [CM11].

Let us now turn to the last important invariant of an isometric immersion. Consider again the
g-orthogonal splitting TM = TM ⊕ TM⊥. The bundle TM⊥ → M is called the normal bundle
of the isometric immersion; it is also sometimes denoted by νM → M . The connection in TM
defines a connection ∇⊥ in TM⊥, called the normal connection of the immersion, via the following
formula,

∇⊥
Xξ = (∇Xξ)

⊥,

where ξ ∈ Γ(TM⊥) and X ∈ Γ(TM). It is a simple matter now to derive the Weingarten formula

(7.2.3) ∇Xξ = −Aξ(X) +∇⊥
Xξ;

indeed, we have
∇⊥
Xξ = (∇Xξ)

⊥ = ∇Xξ − (∇Xξ)
⊤ = ∇Xξ +Aξ(X),

by Lemma 7.2.2, checking the equation. The normal connection is the third and last basic invariant
of an isometric immersion that we wanted to mention.

Next, we want to state the fundamental equations involving the basic invariants of an isometric
immersion. These are respectively called the Gauss, Codazzi-Mainardi and Ricci equations. At
this juncture, we recall that the covariant derivative of the second fundamental form is given by

(∇⊥
XB)(Y, Z) = ∇⊥

X(B(Y, Z))−B(∇XY, Z)−B(Y,∇XZ)

(cf. section 4.4), and the normal curvature of the immersion is given by

R⊥(X,Y )ξ = ∇⊥
X∇⊥

Y ξ −∇⊥
Y∇⊥

Xξ −∇⊥
[X,Y ]ξ,

where X, Y , Z ∈ Γ(TM) and ξ ∈ Γ(TM⊥).

7.2.4 Proposition (Fundamental equations of an isometric immersion) The first and sec-
ond fundamental forms and the normal connection of an isometric immersion f : (M, g) → (M, g)
satisfy the following equations:

〈R(X,Y )Z,W 〉 = 〈R(X,Y )Z,W 〉
+ 〈B(X,Z), B(Y,W )〉 − 〈B(X,W ), B(Y, Z)〉 (Gauss equation)

(R(X,Y )Z)⊥ = (∇⊥
XB)(Y, Z)− (∇⊥

YB)(X,Z) (Codazzi-Mainardi equation)

〈R(X,Y )ξ, η〉 = 〈R⊥(X,Y )ξ, η〉 − 〈[Aξ, Aη]X,Y 〉 (Ricci equation)
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where X, Y , Z, W ∈ Γ(TM) and ξ, η ∈ Γ(TM⊥).

Proof. We first use the Gauss and Weingarten formulae (7.2.1), (7.2.3) to write

∇X∇Y Z = ∇X∇Y Z +∇X(B(Y, Z))

= ∇X∇Y Z +B(X,∇Y Z) +∇⊥
X(B(Y, Z))−AB(Y,Z)X.

Then

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

= ∇X∇Y Z +B(X,∇Y Z) +∇⊥
X(B(Y, Z))−AB(Y,Z)X

−∇Y∇XZ −B(Y,∇XZ)−∇⊥
Y (B(X,Z)) +AB(X,Z)Y

−∇[X,Y ]Z −B(∇XY, Z) +B(∇YX,Z)

= R(X,Y )Z +AB(X,Z)Y −AB(Y,Z)X

+∇⊥
XB(Y, Z)−∇⊥

YB(X,Z).

The tangential component of this equation is

(R(X,Y )Z)⊤ = R(X,Y )Z +AB(X,Z)Y −AB(Y,Z)X,

which is equivalent to the Gauss equation; the normal component is exactly the Codazzi-Mainardi
equation.

Next, we use again the Gauss and Weingarten formulae to write

∇X∇Y ξ = ∇X∇⊥
Y ξ −∇XAξY

= ∇⊥
X∇⊥

Y ξ −A∇⊥

Y ξ
X −∇XAξY −B(X,AξY ).

Then

R(X,Y )ξ = ∇X∇Y ξ −∇Y∇Xξ −∇[X,Y ]ξ

= ∇⊥
X∇⊥

Y ξ −A∇⊥

Y ξ
X −∇XAξY −B(X,AξY )

−∇⊥
Y∇⊥

Xξ +A∇⊥

Xξ
Y +∇YAξX −B(Y,AξX)

−∇⊥
[X,Y ]ξ +Aξ∇XY −Aξ∇YX

= R⊥(X,Y )ξ +B(AξX,Y )−B(X,AξY )

−(∇XAξ)Y + (∇YAξ)X.

It is easy to see that the tangential component of this equation yields again the Codazzi-Mainardi
equation; we claim that the normal component is equivalent to the Ricci equation. In fact, it gives

〈R(X,Y )ξ, η〉 = 〈R⊥(X,Y )ξ, η〉+ 〈B(AξX,Y ), η〉 − 〈B(X,AξY ), η〉,

where

〈B(AξX,Y ), η〉 − 〈B(X,AξY ), η〉 = 〈AξX,AηY 〉 − 〈AξY,AηX〉
= 〈AηAξX,Y 〉 − 〈AξAηX,Y 〉
= −〈[Aξ, Aη]X,Y 〉.

This completes the proof of the proposition. �
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7.2.5 Corollary If (M, g) is a space form of curvature κ, then the fundamental equations for an
isometric immersion f : (M, g) → (M, g) are given by:

〈R(X,Y )Z,W 〉 = −κ(〈X,Z〉〈Y,W 〉 − 〈Y, Z〉〈X,W 〉)
− 〈B(X,Z), B(Y,W )〉+ 〈B(X,W ), B(Y, Z)〉 (Gauss equation)(7.2.6)

(∇⊥
XB)(Y, Z) = (∇⊥

YB)(X,Z) (Codazzi-Mainardi equation)(7.2.7)

〈R⊥(X,Y )ξ, η〉 = 〈[Aξ, Aη]X,Y 〉, (Ricci equation)(7.2.8)

where X, Y , Z, W ∈ Γ(TM) and ξ, η ∈ Γ(TM⊥).

Proof. The equations follow from the fact that the curvature tensor of (M, g) is given by

R(X,Y )Z = −κ(〈X,Z〉Y − 〈Y, Z〉X),

see the end of section 4.2. �

7.2.9 Theorem (Fundamental theorem of submanifold geometry) Let M be an n-dimen-
sional manifold. Assume that we are given a Riemannian metric g on M , a rank k vector bundle
E over M endowed with a Riemannian metric and a compatible connection ∇′, and a symmetric
E-valued tensor field B′ on TM such that they satisfy the Gauss, Codazzi-Mainardi and Ricci
equations for some real number κ. Then, for each point p ∈M , there exists an open neighbourhood
U of p inM and an isometric immersion f from U into the simply-connected space form of constant
curvature κ and dimension n+ k such that g is the induced metric on U , E|U is isomorphic to the
normal bundle of f , and B′ and ∇′ correspond respectively to the second fundamental form and
the normal connection of f . Moreover, the isometric immersion f is locally uniquely defined up to
congruence. If, in addition, M is assumed to be simply-connected, then the open set U can be taken
to be all of M and f is uniquely defined up to congruence (however, in this case, f needs not be a
global embedding).

Proof. For simplicity, we prove the result for the case κ = 0 only. Define

A′ : Γ(E) → Γ(End(TM)), 〈A′
ξX,Y 〉 = 〈B′(X,Y ), ξ〉

where X, Y ∈ Γ(TM), ξ ∈ Γ(E). Consider the rank n+k Riemannian vector bundle Ē = TM⊕E,
and define a connection ∇̄ on Ē as follows:

∇̄XY = ∇XY +B′(X,Y ) and ∇̄Xξ = −A′
ξX +∇′

Xξ

for all X, Y ∈ Γ(TM), ξ ∈ Γ(E), where ∇ denotes the Levi-Cività connection of (M, g). It is
easy to see that ∇̄ is compatible with the Riemannian metric on Ē. One laboriously checks that
the Gauss, Codazzi-Mainardi and Ricci compatibility equations precisely express the fact that ∇̄
is flat, namely, its curvature R̄ vanishes everywhere. Therefore we can find a parallel orthonormal
frame ξ1, . . . , ξn+k of Ē defined on an open neighborhood U of p inM (cf. exercise 2). Consider the
1-forms θ1, . . . , θn+k on M defined by θi(X) = 〈ξi, X〉 for all X ∈ Γ(TM), where the inner product
is taken in Ē. We compute for X, Y ∈ Γ(TM):

dθi(X,Y ) = X(θi(Y ))− Y (θi(X))− θi([X,Y ])

= 〈∇̄Xξi, Y 〉+ 〈ξi, ∇̄XY 〉 − 〈∇̄Y ξi, X〉 − 〈ξi, ∇̄XY 〉 − 〈ξi, [X,Y ]〉
= 〈ξi,∇XY 〉+ 〈ξi, B′(X,Y )〉 − 〈ξi,∇XY 〉 − 〈ξi, B′(Y,X)〉 − 〈ξi, [X,Y ]〉
= 0,
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where we have used that each ξi is ∇̄-parallel, B′ is symmetric and ∇ is torsionless. By shrinking
U , if necessary, we can find smooth functions f1, . . . , fn+k on U such that dfi = θi for all i. We
claim that f = (f1, . . . , fn+k) : U → Rn+k has the required properties.

For all X ∈ Γ(TM |U ), we have

〈df(X), df(X)〉 =
n+k∑

i=1

dfi(X)2

=
n+k∑

i=1

θi(X)2

=
n+k∑

i=1

〈ξi, X〉2Ē

= ||X||2Ē
= g(X,X),

since ξ1, . . . , ξn+k is orthonormal, which shows that f is an isometric immersion. Next, define a
bundle isomorphism F : Ē|U → f∗TRn+k|U by sending ξi to the ith element ei of the canonical
frame of Rn+k. Note that

df(X) =
n+k∑

i=1

〈ξi, X〉ei =
n+k∑

i=1

〈ξi, X〉F (ξi) = F

(
n+k∑

i=1

〈ξi, X〉ξi
)

= F (X)

for all X ∈ Γ(TM), namely, F maps TM onto df(TM). By construction, F maps a parallel
orthonormal frame to a parallel orthonormal frame, so it preserves the metric and the connection.
It follows that F maps E to the normal bundle νM and

F (∇̄XY ) = DF (X)F (Y ), and F (∇̄Xξ) = DF (X)F (ξ)

for X, Y ∈ Γ(TM) and ξ ∈ Γ(E), where D denotes the Levi-Cività connection of Rn+k; taking
the tangent and normal components yields that F maps B′ and ∇′ respectively to the second
fundamental form and normal connection of f . This finishes the proof of the local existence result.

Suppose next f = (f1, . . . , fn+k) : U → Rn+k is a given isometric immersion defined on a
neighborhood U of p in M such that E|U is isomorphic to the normal bundle of f , and B′ and
∇′ correspond respectively to the second fundamental form and the normal connection of f . We
first claim f is necessarily obtained from the above construction. Indeed, let Ē := f∗TRn+k

be the vector bundle over U which is induced along f , namely, whose sections are exactly the
vector fields aong f . Then {ξi := f∗(ei)} is a parallel orthonormal frame in Ē and the induced
connection on Ē is flat. The assumptions on f and E|U imply that there is a bundle isomorphism
Ē ∼= TM |U ⊕ E|U preserving metrics and connections. Finally, dfi(X) = 〈df(X), ei〉 = 〈X, ξi〉 for
all i and all X ∈ Γ(TM). Now for the uniqueness, note that if U is connected, the frame {ξi} is
uniquely determined up to an orthogonal transformation of Ēp ∼= Rn+k, and the functions fi are
uniquely determined up to an additive constant by the condition dfi(·) = 〈ξi, ·〉, so f is uniquely
determined up to a rigid motion of Rn+k. Note that this result can be rephrased as saying that
the immersion f : U → Rn+k for U connected is uniquely specified by the initial values at p, that
is f(p) ∈ Rn+k and dfp ∈ Hom(TpM,Rn+k).

Finally, assume M is simply-connected. Then we can take U =M . Hence f is globally defined
on M . �
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7.3 The hypersurface case

Suppose that the codimension of M in M is one, and that both of these manifolds are oriented.
Then a globally defined unit normal vector field ν can be defined on M ; fix such ν. Then the
second fundamental form can be viewed as real valued. Let p ∈ M . As the Weingarten operator
Ap = Aνp : TpM → TpM is self-adjoint, there exists a basis of TpM consisting of eigenvectors
of Ap with corresponding eigenvalues λ1(p), . . . , λn(p), where n = dimM . This defines functions
λ1, . . . , λn on M which are called the principal curvatures of M . The multiplicity of a principal
curvature is the dimension of the corresponding eigenspace of Ap. The symmetric functions on the
principal curvatures are invariants of the isometric immersion, up to sign in case of the symmetric
functions of odd order (since the unit normal is unique up to sign only). Two significant instances
of this invariants are the mean curvature

H :=
1

n
trace (A) =

1

n
(λ1 + · · ·+ λn),

and the Gauss-Kronecker curvature

K := det(A) = λ1 · · ·λn.

We specialize even more to the case in which M = Rn+1. Then the tangent spaces of Rn+1 at
its various points are canonically identified with Rn+1 itself. The Gauss map of the immersion is
the smooth map

g :M → Sn,

where g(p) is the unit vector νp ∈ Sn ⊂ Rn+1. Under the identifications, we can write

TνpS
n = (Rνp)

⊥ = TpM.

It follows that the derivative of the Gauss map can be considered as a map dgp : TpM → TpM . Let
u ∈ TpM , and choose a smooth curve γ : (−ǫ, ǫ) →M with γ(0) = p and γ′(0) = u. Then

dgp(u) =
d

dt

∣
∣
∣
t=0

(ν ◦ γ)(t)

= ∇uν

= (∇uν)
⊤(7.3.1)

= −Ap(u),

where we have used that 〈ν,∇uν〉 = 0 and Lemma 7.2.2.
Let ui, uj be eigenvectors of Ap of unit length associated to principal curvatures λi(p), λj(p),

respectively; we may assume ui and uj are orthogonal (this is automatic if λi(p) 6= λj(p)). Then
the Gauss equation (7.2.6) yields that the sectional curvature of the plane spanned by ui, uj is

(7.3.2) −〈Rp(ui, uj)ui, uj〉 = 〈Bp(ui, ui), Bp(uj , uj)〉 = λiλj .

In the case n = 2, we recover (compare Proposition 4.6.1):

7.3.3 Theorem (Theorema Egregium of Gauss) The Gaussian curvature of a surface in R3

is an intrinsic invariant; namely, it depends only on the first fundamental form (Riemannian
metric).

We close this section with an application that will be later generalied.
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7.3.4 Theorem (Hadamard’s convexity theorem) Let f : M → Rn+1 be an immersion of a
compact connected smooth manifold of dimension n ≥ 2. Assume that the induced Riemannian
metric on M has positive sectional curvature. Then M is diffeomorphic to Sn, f is an embedding,
and f(M) is a convex hypersurface (namely, the (smooth) boundary of a convex body) in Rn+1.

Proof. The positivity of the sectional curvature implies via the Gauss formula (7.3.2) that the
product of any two principal curvatures has always the same sign. It follows that all principal
curvatures have the same sign, namely, the second fundamental form is definite as a symmetric
bilinear form, for any choice of normal vector at any point. This shows that we can continuously
choose a unit normal vector field ξ along f such that Aξ is definite positive at all points (in
particular, M is already orientable). Owing to equation (7.3.1), this implies that the Gauss map
g : M → Sn is a local diffeomorphism. Since M is compact and Sn is simply-connected, indeed g
is a global diffeomorphism.

Next, for a fixed unit vector v ∈ Sn ⊂ Rn+1 we consider the height function hv : M → R
defined by hv(x) = 〈f(x), v〉 for x ∈ M . It is clear that (gradhv)p is the orthogonal projection of
v into df(TpM), so p is a critical point of hv if and only if v ∈ νpM := df(TpM)⊥ if and only if
v = ±ξp; this proves that hv has exacly two critical points, as g is a diffeomorphism. Moreover, for
a critical point p and X, Y ∈ Γ(TM), we have (cf. exercise 9 of chapter 4):

Hess(hv)(X,Y )p = Xp(Y (hv))

= Xp〈df(Y ), v〉
= 〈∇f

Xp
df(Y ), v〉

= 〈AvX,Y 〉p.

Since Av is definite, any critical point is isolated and a local maximum or local minimum. Since
hv must have a global maximum and a global minimum by compacteness of M , we deduce that for
every v ∈ Sn the height function hv has exactly two critical points and

minhv ≤ hv(x) ≤ max hv

where the first (resp. second) equality occurs if and only if x is the point of global minimum (resp.
maximum). We deduce that f is injective and f(M) is the boundary of a convex body. �

7.4 Totally geodesic and totally umbilic submanifolds

A submanifold M of a Riemannian manifold M̄ is called totally geodesic at a point p ∈ M if the
second fundamental form B vanishes at p, and it is called simply totally geodesic if B vanishes
everywhere.

7.4.1 Proposition For a submanifold M of M̄ , the following assertions are equivalent:
a. M is totally geodesic in M̄ ;
b. every geodesic of M is a geodesic of M̄ ;
c. the geodesic γv of M̄ with initial velocity v ∈ TM is contained in M for small time (and

hence is a geodesic in M).

Proof. Since B is symmetric, M is totally geodesic in M̄ if and only B(X,X) = 0 for all
X ∈ Γ(TM) if and only if B(v, v) = 0 for all v ∈ TM . Gauss’s formula (7.2.1) says that this is
the case if and only if ∇̄XX = ∇XX for all X ∈ Γ(TM). If this equation is true, plainly every
geodesic in M will be a geodesic in M̄ . Conversely, assume every geodesic in M is a geodesic in
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M̄ . Given 0 6= v ∈ TpM , let γv be the geodesic in M with γ′v(0) = v. Extend γ′v to a smooth
vector field X ∈ Γ(TM) defined on a neighborhood of p. Since γv is also a geodesic of M̄ , we have
∇̄XX = 0 = ∇XX. This proves the equivalence between (a) and (b). Next, if (b) holds, then the
uniqueness of geodesics for given initial conditions says that all geodesics of M̄ initially tangent
to M come from geodesics of M , which implies (c). Finally, ∇XX is the tangential component
of ∇̄XX for X ∈ Γ(TM), so a geodesic of M̄ which is contained in M is a geodesic of M , which
finishes the proof of the equivalence between (b) and (c). Note that the geodesic γv as in (c) is
entirely contained in M , if M is complete. �

7.4.2 Corollary A connected complete totally geodesic submanifold M of a Riemannian manifold
M̄ is completely characterized by TpM for any given p ∈M .

Proof. In fact, it follows from the Hopf-Rinow theorem and Proposition 7.4.1 that M =
expM̄p (TpM), where expM̄ denotes the exponential map of M̄ . �

It is common knowledege that ‘most’ Riemannian manifolds do not admit totally geodesic
submanifolds (even locally), but a full proof of this result has first appeared only in [MW19]
(and only for Riemannian manifolds of dimension different from 3!). In contrast, totally geodesic
submanifolds of space forms are abundant.

7.4.3 Proposition (Totally geodesic submanifolds of space forms) The connected complete
totally geodesic submanifolds of:
a. Rn are the affine subspaces;
b. Sn are the great subspheres, namely, intersections of Sn with linear subspaces of Rn+1;
c. RHn are the intersections of hyperboloid model with linear subspaces of R1,n.

Proof. (a) Affine subspaces are clearly totally geodesic in Rn. Since a totally geodesic subman-
ifold is completely determined by its tangent space at a point, there can be no other examples. (b)
Great circles of the subsphere are great circles of Sn, so this is a totally geodesic submanifold. The
rest follows as in (a). The proof of (c) is similar. �

A submanifold M of a Riemannian manifold M̄ is called umbilic in the direction of a normal
vector ξ if the Weingarten operator Aξ is a multiple of the identity operator, and it is called totally
umbilic if every normal vector is umbilic; the latter property is equivalent to having

(7.4.4) B(X,Y ) = g(X,Y )H

for all X, Y ∈ Γ(TM), where H is the mean curvature vector. This equation is equivalent to

〈AξX,Y 〉 = 〈X,Y 〉〈ξ,H〉
for all ξ ∈ Γ(νM), X, Y ∈ Γ(TM). Note that the minimal totally umbilic submanifolds are
precisely the totally geodesic submanifolds. A totally umbilic submanifold with non-zero parallel
mean curvature is called an extrinsic sphere.

7.4.5 Proposition A totally umbilic submanifold of dimension at least two in a space form is an
extrinsic sphere.

Proof. Differentiate (7.4.4) with respect to Z ∈ Γ(TM) and use ∇g = 0 to get to get
(∇⊥

ZB)(X,Y ) = g(X,Y )∇⊥
ZH. Now the Codazzi equation 7.2.4 says that

g(X,Y )∇⊥
ZH = g(Z, Y )∇⊥

XH.

Since dimM ≥ 2, we can choose Y ⊥ Z and X = Y to deduce ∇⊥
ZH = 0. Since Z is arbitrary, H

is parallel. �
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7.4.6 Proposition (Totally umbilic submanifolds of space forms) The connected complete
non-totally geodesic totally umbilic submanifolds of dimension at least two in:

a. Rn are the round spheres;
b. Sn are the small subspheres, namely, intersections of Sn with non-linear affine subspaces of

Rn+1;
c. RHn are the intersections of hyperboloid model with non-linear affine subspaces of R1,n.

Proof. (a) Let ι : M → Rn be a connected non-totally geodesic totally umbilic submanifold of
Euclidean space with dimM ≥ 2. Then B = g H and ∇⊥H = 0. For X ∈ Γ(TM), we compute

∇̄X

(

ι+
H

||H||2
)

= X − 1

||H||2AHX = 0.

Connectedness of M implies that it is contained in the hypersphere of radius 1/||H|| and center
p + 1

||H||2H(p) for any p ∈ M . If M has codimension one and is complete, it must coincide with

that hypersphere. If M has higher codimension, note that Aξ = 0 for ξ ⊥ H. This implies that a
parallel normal vector field which is orthogonal to H at one point must be constant. It follows that
M is contained in the affine subspace containing p and parallel to the linear subspace spanned by
TpM and H(p), for all p ∈M . Now if M is complete then it coincides with the intersection of the
above hypersphere with this affine subspace.

(b) Let ι : M → Sn be a connected non-totally geodesic totally umbilic submanifold of the
sphere with dimM ≥ 2. Let θ = arccot ||H|| ∈ (0, π/2]. For X ∈ Γ(TM), denoting the Levi-Cività
connection of Sn by ∇̄, we compute

∇̄X

(

cos θι+ sin θ
H

||H||

)

= (cos θ − ||H|| sin θ)X = 0.

If M is connected, this proves that M lies in the geodesic hypersphere of Sn of radius θ and center
n := cos θp + sin θH(p)

||H|| , for any p ∈ M . If M has codimension one and is complete, then it must
coincide with this hypersphere, which is also the intersection of Sn with the affine hyperplane of
Rn+1 with normal n and distance cos θ from the origin.

If M has higher codimension, let ξ ⊥ H(p) and extend it to a parallel normal vector field ξ̂
along M in Sn. Then, for all X ∈ Γ(TM),

X(ξ̂) = ∇̄X ξ̂ + 〈X(ξ̂), ι〉ι = −AξX − 〈ξ̂, X〉ι = 0,

since Aξ = 0, showing that ξ̂ is constant in Rn+1. This implies that M is contained in the
hyperplane ξ⊥. Another way to argue: note that for all X ∈ Γ(TM),

X

(

sin θι− cos θ
H

||H||

)

= (sin θ + cos θ||H||)X ∈ Γ(TM)

and

X(Y ) = ∇̄XY + 〈X(Y ), ι〉ι = ∇XY + 〈X,Y 〉(H − ι)

for Y ∈ Γ(TM). This implies that the span of TpM and sin θ p− cos θ H(p)
||H|| = sin θ(p−H(p)) is a

constant subspace E of Rn+1 along M . Either way, we deduce from the completeness of M that it
coincides with the intersection of Sn with the affine subspace p+ E of Rn+1.

(c) Similar to case (b), but replacing trigonometric functions by their hyperbolic brothers and
Euclidean space by Lorentzian space. �
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Osculating spaces

Let M be a submanifold of a Riemannian manifold M̄ . The submanifold M is called full or
substantial in M̄ if M is not contained in a totally geodesic submanifold of M̄ of dimension smaller
than dim M̄ ; otherwise we say that the codimension can be reduced, or that there is a reduction
of the codimension of M . The smallest number to which the codimension can be reduced is called
the substantial codimension of M in M̄ .

In order to study the substantial codimension of submanifolds, we discuss a bit about osculating
spaces. The k-th osculating space to M at p ∈M , for k = 1, 2, . . ., is the subspace Ok

p(M) of TpM̄
spanned by the first k derivatives at 0 of all smooth curves γ : (−ǫ, ǫ) → M with γ(0) = p. Here
the higher derivatives of γ are defined by

γ′′ =
∇̄
dt
γ′, γ′′′ =

∇̄
dt
γ′′, etc.

Clearly, O1
p(M) = TpM and there is an increasing chain of subspaces

(7.4.7) O1
p(M) ⊂ O2

p(M) ⊂ · · · ⊂ TpM̄

for all p ∈M . It follows from the Gauss equation that

∇̄
dt
γ′ =

∇
dt
γ′ +B(γ′, γ′)

where B denotes the second fundamental form of M in M̄ . Since B is symmetric, the subspace
of νpM spanned by the image of Bp coincides with the subspace spanned by the image of Bp
restricted to the diagonal of TpM . We deduce that O2

p(M) is spanned by O1
p(M) and the image of

Bp. Similarly, one sees that Ok
p(M) is spanned by all vectors of the form

X1|p, ∇̄X1X2|p, . . . , ∇̄X1 · · · ∇̄Xk−1
Xk|p

for X1, . . . , Xk ∈ Γ(TM). The k-th normal space N k
p (M) of M in M̄ is the orthogonal complement

of Ok
p(M) in Ok+1

p (M), so that

Ok
p(M)

⊥
⊕N k

p (M) = Ok+1
p (M).

Note that v ⊥ N 1
p (M) if and only if the Weingarten operator Av = 0.

If dimOk
p(M) is independent of p ∈M , then the collection of k-th osculating spaces to M at all

points can be made into a vector subbundle Ok(M) of the vector bundle TM̄ |M ; if this is true for
all k, then also the collection of k-th normal spaces to M at all points can be made into a vector
subbundle N k(M) of the normal bundle νM .

7.4.8 Lemma For each p ∈M , the chain (7.4.7) stabilizes at some k0 ≥ 2 (which may depend on
p), namely,

Ok0−1
p (M) ( Ok0

p (M) = Ok0+1
p (M) = · · ·

If k0 does not depend on p, then Ok0(M) is a parallel subbundle of TM̄ |M and N 1(M) ⊕ · · · ⊕
N k0−1(M) is a parallel subbundle of νM .
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Proof. The chain stabilizes simply by dimensional reasons. An arbitrary smooth section ξ of
Ok(M) is a sum of terms of the form f∇̄X1 · · · ∇̄Xk−1

Xk, where f ∈ C∞(M). Since

∇̄X(f∇̄X1 · · · ∇̄Xk−1
Xk) = X(f)∇̄X1 · · · ∇̄Xk−1

Xk + f∇̄X∇̄X1 · · · ∇̄Xk−1
Xk,

we see that ∇̄Xξ ∈ Γ(Ok+1(M)) for all X ∈ Γ(TM). Now if k0 does not depend on p, then
∇̄XΓ(Ok0(M)) ⊂ Γ(Ok0(M)) for all X ∈ Γ(TM), which is to say that Ok0(M) is invariant under
parallel transport in TM̄ |M . This is equivalent to having that N 1(M)⊕· · ·⊕N k0−1(M) is invariant
under parallel transport in νM , which means that it is a parallel subbundle. �

In the remainder of this section, we assume that M̄ is a space form.

7.4.9 Theorem (Erbacher) Let M be an m-dimensional connected Riemannian submanifold of
a space form M̄ . If L is a ∇⊥-parallel subbundle of νM containing N 1(M), and ℓ is the rank of
L, then there is a totally geodesic submanifold N of M̄ of dimension m+ ℓ that contains M .

Proof. We consider separately the instances of space forms. The first case is M̄ = Rn. Fix
p ∈M . It suffices to show thatM is contained in the affine subspace p+TpM⊕Lp for some p ∈M .
Let γ be any piecewise smooth curve in M̄ emanating from p and take any parallel normal vector
field ξ along γ such that ξ(0) ⊥ Lp. Since L is parallel along γ, we have that ξ(t) ⊥ Lγ(t) for all t.
In particular, ξ(t) ⊥ N 1

γ(t)(M), so the Weingarten equation says that ∇̄
dtξ ≡ 0, namely, ξ is constant

in Rn along γ. Since γ is arbitrary and M is connected, this means that M is contained in the
orthogonal complement to the vector ξ(0). Since ξ(0) is an arbitrary vector in νpM ∩L⊥

p , this case
is done.

Consider next the case M̄ = Sn(1); we reduce it to the previous case as follows. View M as a
submanifold of Rn+1 and consider the augmented vector bundle L̂ over M where L̂p = Lp ⊕R p
for all p ∈ M . Note that L̂ is a subbundle of the normal bundle ν̂M of M in Rn+1 that contains
the first normal bundle N̂ 1(M) of M in M̄ . Let ∇̂⊥ be the normal connection on ν̂M . Both ∇̂⊥

and ∇⊥ are induced by ∇̄, so they coincide on νM . Given that L is ∇⊥-parallel and the position
vector p is ∇̂⊥-parallel, we see that L̂ is ∇̂-parallel. By the previous case, M is contained in
(p+ TpM ⊕ L̂p) ∩ Sn(1) for some p ∈M , which is isometric to Sm+ℓ(1), as p+ L̂p = L̂p is a linear
subspace of dimension ℓ+ 1 of Rn+1.

In case M̄ = RHn, by using the hyperboloid model the proof follows arguments similar to those
in the previous two cases, where we use the canonical connection of Lorentz space R1,n. Indeed,
as in the second case we view M as a submanifold of R1,n and extend L to a subbundle L̂ of the
normal bundle ν̂M of M in R1,n by adding the position vector field p. We then prove, as in the
first case, that M is contained in an affine subspace of R1,n whose linear part, owing to 〈p,p〉 = 1,
is a Lorentz subspace isometric to R1,ℓ

7.5 Focal points and the Morse index theorem

In this subsection, we state and prove the Morse index theorem for submanifolds of Riemannian
manifolds. The discussion herein extends that in chapter 5 and, specially, Theorem 7.5.4 generalizes
Theorem 5.5.3.

Let M be a submanifold of a Riemannian manifold M̄ . The restriction of the exponential map
of M̄ to the normal bundle of M is called the normal exponential map of M :

exp⊥ : νM → M̄.

A critical value of exp⊥ is called a focal point of M . Note that this concept reduces to that of a
conjugate point, in case M is a point.
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7.5.1 Remark By the Sard-Brown theorem (see [Mil97]), the set of focal points of a submanifold
has Lebesgue measure zero and hence is a nowhere dense set.

7.5.2 Proposition A point q ∈ M̄ is a focal point of a submanifold M if and only if there exists
a geodesic γ : [0, 1] → M̄ with γ(0) = p ∈M , γ(1) = q, γ′(0) = ξ ∈ νpM and a Jacobi field J along
γ such that J(0) = u ∈ TpM , J ′(0) +Aξu ∈ νpM , and J(1) = 0.

Proof. The point q is a critical value of exp⊥ if and only if it is in the image, namely, q = exp⊥ ξ
for some ξ ∈ νpM and some p ∈M , and the kernel of d(exp⊥)ξ is non-zero. Consider the geodesic
γ(s) = expp(sξ) for s ∈ [0, 1]. Take a non-zero vector in ker d(exp⊥)ξ represented by a smooth

curve ξ̂ : (−ǫ, ǫ) → νM , where ξ̂(0) = ξ. This defines a smooth variation of γ through geodesics
orthogonal to M :

H(s, t) = exp⊥c(t)(sξ̂(t))

where c(t) ∈M is the footpoint of ξ̂(t) and (s, t) ∈ [0, 1]× (−ǫ, ǫ). The associated variational vector
field is a Jacobi field J along γ. Its initial conditions are (compare the proof of Proposition 5.4.4):

J(0) =
∂̄

∂t

∣
∣
∣
t=0
s=0

= c′(0) =: u,

and
∂̄

∂s

∣
∣
∣
s=0

= d(expc(t))0c(t)(ξ̂(t)) = ξ̂(t),

so

J ′(0) = ∇ ∂
∂s

∂̄

∂t

∣
∣
∣
t=0
s=0

= ∇ ∂
∂t

∂̄

∂s

∣
∣
∣
t=0
s=0

= ∇̄uξ̂ = −Aξu+∇⊥
u ξ̂,

completing the proof. �

A geodesic γ in a Riemannian manifold M̄ which is perperndicular to a submanifold M at a
point p ∈ M is called an M -geodesic. A variational vector field along an M -geodesic which is
associated to a variation through M -geodesics is called an M -Jacobi field. It follows from the proof
of Proposition 7.5.2 that the space of M -Jacobi fields along an M -geodesic γ is the space of Jacobi
fields J along γ that satisfy the initial conditions

J(0) ∈ TpM and J ′(0) +AξJ(0) ∈ νpM,

where p = γ(0) and ξ = γ′(0). The multiplicity of a focal point q = γ(s0) to M along γ is the
dimension of the kernel of d(exp⊥)s0ξ, which is also the dimension of the space of M -Jacobi fields
along γ that vanish at s0.

The Morse index theorem

Let M be a submanifold in a Riemannian manifold M̄ . Fix a unit speed M -geodesic γ : [0, ℓ] → M̄
with γ(0) = p ∈M . Denote by V the space of piecewise smooth vector fields Y along γ that satisfy
the boundary conditions:

Y (0) ∈ TpM, Y ′(0) +AξY (0) ∈ νpM and Y (ℓ) = 0,

where ξ = γ′(0). Consider the index form I on V given by

I(X,Y ) = −〈AξX,Y 〉0 +
∫ ℓ

0
〈X ′, Y ′〉+ 〈R(γ′, X)γ′, Y 〉 ds.
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Note that d2

dt2
|t=0E(γt) = I(Y, Y ) for a variation of γ whose associated variational vector field Y

lies in V . It is not difficult to see that the kernel of I precisely consists of the M -Jacobi fields along
γ that vanish at ℓ.

7.5.3 Lemma Choose any subdivision 0 = s0 < s1 < · · · < sn = ℓ such that γ|[si−1,si] is minimizing
for i = 1, . . . , n, γ(s1) is not focal to M along γ, and γ(si−1), γ(si) are not conjugate along γ for
i = 2, . . . , n. Then there is a I-orthogonal, vector space direct sum

V = V+ ⊕ V−

where:
• V+ is the subspace of V consisting of vector fields vanishing at s0, . . . , sn−1;
• V− is the subspace of V consisting of vector fields X that restrict to Jacobi fields along [si−1, si]
for all i = 1, . . . , n.

Moreover, I is positive definite on V+. It follows that the index (resp. nullity) of I on V is equal
to the index (resp. nullity) of I on V−; in particular, it is finite.

Proof. Let X ∈ V . Since γ(s1) is not focal to M and γ(si−1) and γ(si) are not conjugate points
for i ≥ 2 along γ, we can find Y ∈ V− such that Y (si) = X(si) for all i = 0, . . . , n (exercise 5 of
chapter 5). Then X − Y ∈ V+. Clearly, V+ ∩ V− = {0}.

Also, for Y ∈ V− and Z ∈ V+, we have that Y is a Jacobi field (hence smooth) along γ|[si−1,si]

for i = 1, . . . , n, so integration by parts allows us to rewrite the index form on V as (compare 5.4.1)

I(Y, Z) = −〈AξY, Z〉0 − 〈Y ′, Z〉0+ +
n−1∑

i=1

〈Y ′, Z〉|s
+
i

s−i
+

∫ ℓ

0
〈−Y ′′ +R(γ′, Y )γ′, Z〉 ds.

Since Z(si) = 0 for i = 0, . . . , n− 1, this formula shows that I(Y, Z) = 0.
Next we prove that I is positive definite on V+. Let Z ∈ V+. Since γ|[si−1,si] is a minimizing

geodesic and Z is the variational vector field associated to a variation that keeps γ(si−1) and γ(si)
fixed for i = 1, . . . , n, we get that I(Z,Z) ≥ 0. Suppose now, in addition, that I(Z,Z) = 0. For all
Z̃ ∈ V+ we have

0 ≤ I(Z + αZ̃, Z + αZ̃) = 2αI(Z, Z̃) + α2I(Z̃, Z̃)

for all α ∈ R, which implies that I(Z, Z̃) = 0. Therefore Z is I-orthogonal to V+, and since it was
already I-orthogonal to V−, we deduce that Z is a Jacobi field along γ. It follows that Z = 0.

The remaining assertions follow from the fact that V− is finite-dimensional. �

7.5.4 Theorem (Morse) Let M be a submanifold in a Riemannian manifold M̄ . Fix a unit speed
M -geodesic γ : [0, ℓ] → M̄ with γ(0) = p ∈M . Then the index of I : V ×V → R is finite and equals
the sum of the multiplicities of focal points to M along γ of the form γ(s) for some 0 < s < ℓ.

7.5.5 Corollary The set of focal points along an M -geodesic is discrete.

Consider the restriction γs := γ|[0,s] for s ∈ [0, ℓ], the corresponding decomposition Vs = V+
s ⊕V−

s

as in Lemma 7.5.3, the associated index form Is, and its index λ(s). The proof of Theorem 7.5.4 is a
consequence of Lemmata 7.5.6, 7.5.7, 7.5.8 and 7.5.10, in which we prove that λ is a left-continuous
function with jumps precisely at the focal points.

7.5.6 Lemma λ(s) = 0 for sufficiently small s > 0.

Proof. This follows from the fact that γs is minimizing for sufficiently small s > 0. �
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7.5.7 Lemma λ(s) is a non-decreasing function of s ∈ [0, ℓ].

Proof. For s′ < s′′, we can view Vs′ ⊂ Vs′′ via the embedding

W 7→W, where W (s) =

{
W (s), if 0 ≤ s ≤ s′;

0, if s′ ≤ s ≤ s′′;

and then Is′ is the restriction of Is′′ to Vs′ , implying the result. �

7.5.8 Lemma Given s ∈ (0, ℓ], we have λ(s− ǫ) = λ(s) for sufficiently small ǫ > 0.

Proof. Choose a subdivision of [0, ℓ] as in Lemma 7.5.3 such that s ∈ (si−1, si] for some
i = 1, . . . , n. Since λ(s) = 0 for s ∈ (0, s1], we may assume i ≥ 2. Since γ(s1) is not focal
to M along γ, d(exp⊥)s1ξ : Ts1ξ(νM) → Tγ(s1)M̄ is an isomorphism, where ξ = γ′(0), so given
u ∈ Tγ(s1)M̄ , there exists a unique M -Jacobi field along γs1 whose value at s1 is u. This, together
with exercise 5 of chapter 5, shows that

(7.5.9) V−
s′

∼= Tγ(s1)M̄ ⊕ · · · ⊕ Tγ(si−1)M̄ =: U

for all s′ ∈ (si−1, s]. Note that λ(s′) is the index of Is′ on U . Since Is′ , as a bilinear form on U ,
depends continuously on s′, Is′ is negative definite on any subspace of U on which Is is negative
definite, for sufficiently small s− s′ > 0. This implies λ(s′) ≥ λ(s) for sufficiently small s− s′ > 0,
and hence the desired result in view of Lemma 7.5.7. �

7.5.10 Lemma Given s ∈ (0, ℓ), let ν(s) denote the nullity of Is. Then λ(s+ ǫ) = λ(s) + ν(s) for
sufficiently small ǫ > 0.

Proof. Choose a subdivision of [0, ℓ] as in Lemma 7.5.3 such that s ∈ (si−1, si) for some i =
1, . . . , n. Again, we may assume i ≥ 2. Consider Is′ as a bilinear form on U for s′ ∈ [s, si), where U
is given as in (7.5.9). Note that Is is positive definite on a subspace of dimension dimU−λ(s)−ν(s).
By continuity, also Is′ is positive definite on that subspace for sufficiently small s′−s > 0. Therefore
λ(s+ ǫ) ≤ λ(s) + ν(s) for sufficiently small ǫ > 0.

To prove the reverse inequality, we start with linearly independent vector fields X1, . . . , Xλ(s)

in Vs spanning a subspace on which Is is negative definite. Extend these vector fields over γs+ǫ
by setting them equal to zero on [s, s + ǫ] as in Lemma 7.5.7. If ǫ > 0 is sufficiently small, these
extensions span a subspace of dimension λ(s) of Vs+ǫ on which Is+ǫ is negative definite.

Next, by hypothesis we can find ν(s) linearly independent M -Jacobi fields Y1, . . . , Yν(s) along
γs vanishing at s; extend them over γs+ǫ by zero. By making use of the technique of the theorem of
Jacobi-Darboux 5.5.3, we can produce perturbations Ỹ1, . . . , Ỹν(s) ∈ Vs+ǫ that span a subspace on
which Is+ǫ is negative definite. Since X1, . . . , Xλ(s), Y1, . . . , Yν(s) were clearly linearly independent,

we can also take the perturbations so that X1, . . . , Xλ(s), Ỹ1, . . . , Ỹν(s) are linearly independent.
This completes the proof the lemma and of Theorem 7.5.4. �

7.6 Theory of isoparametric submanifolds

We say a Riemannian submanifold M of a space form M̄ has constant principal curvatures if
the principal curvatures along any locally defined parallel normal vector field are constant. If, in
addition, M has flat normal bundle, then it is called an isoparametric submanifold of M̄ . Note that
in case M has codimension one, both conditions reduce to simply requiring that M has constant
principal curvatures. In view of the Fundamental Theorem 7.2.9, isoparametric submanifolds are
sometimes said to be the submanifolds having the “simplest” local invariants.
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Basic structure

Let M be an isoparametric submanifold of a space form M̄ . Since the normal bundle is flat
(R⊥ ≡ 0), the Ricci equation (7.2.8) yields that, for every p ∈ M , {Aξ | ξ ∈ νpM } is a commu-
tative family of symmetric endomorphisms of TpM , hence simultaneously diagonalizable, say, with
pairwise distinct eigenvalues λ1(ξ), . . . , λg(ξ) and common eigenspaces E1(p), . . . , Eg(p). Since the
principal curvatures λ1(ξ), . . . , λg(ξ) are constant along any extension of ξ to a parallel normal
vector field, we obtain g mutually orthogonal Frobenius distributions E1, . . . , Eg on M such that
TM =

⊕g
i=1Ei; each Ei is called a curvature distribution. The dimension of Ei is called a multi-

plicity. The restriction of λi to νpM is a linear functional, so there exists vi(p) ∈ νpM such that
λi(ξ) = 〈ξ, vi(p)〉 for all ξ ∈ νpM . This way we obtain g smooth normal vector fields v1, . . . , vg
along M , called curvature normals, which moreover are parallel, as:

〈∇⊥
Xvi, ξ〉 = X〈vi, ξ〉 − 〈vi,∇⊥

Xξ〉 = X(λi(ξ)) = 0,

for every parallel normal vector field ξ and X ∈ Γ(TM). Now for each ξ ∈ νM , the corresponding
Weingarten operator satisfies

(7.6.1) Aξ|Ei
= 〈ξ, vi〉 idEi

for i = 1, . . . , g; equivalently,

(7.6.2) B(Xi, Yj) = 〈Xi, Yj〉 vi

for all Xi ∈ Ei, Yj ∈ Ej and i, j = 1, . . . , g. It follows from (7.6.1) that the case g = 1 precisely
corresponds to the class of totally umbilic submanifolds of M̄ . Note that the substantial codimen-
sion of M equals the number of linearly independent curvature normals; this number is called the
rank of M . We will always assume that M is full in M̄ , that is, not contained in a proper totally
geodesic submanifold. It then follows that the curvature normals of M span the normal space at
each point.

Another fundamental invariant ofM is the covariant derivative of the second fundamental form.
By taking derivatives and using the parallelism of the metric and the curvature normals, we obtain
from (7.6.2) that

(7.6.3) ∇Xi
B(Yj , Zk) = 〈∇Xi

Yj , Zk〉 (vj − vk)

for all Xi ∈ Ei, Yj ∈ Ej , Zk ∈ Ek and i, j, k = 1, . . . , g. The Codazzi equation (7.2.7) is the
symmetry of ∇B in all three arguments, which owing to (7.6.3), gives

〈∇Zk
Xi, Yj〉 (vi − vj) = 〈∇Xi

Yj , Zk〉 (vj − vk) = 〈∇YjZk, Xi〉 (vk − vi).

Taking i = j 6= k (in case g ≥ 2) in the first equality shows that ∇Xi
Yi ∈ Γ(Ei) for all Xi, Yi ∈ Ei,

namely, each curvature distribution Ei is auto-parallel ; it follows that it is involutive and thus, by
Frobenius theorem, integrable. Again, by auto-parallelism of Ei, its leaf through a point p ∈ M ,
denoted Si(p), is a totally geodesic submanifold of M . It follows from (7.6.1) that Si(p) is a totally
umbilic submanifold of M̄ . In particular, in case vi = 0 the distribution Ei is called the nullity
distribution and its leaves are totally geodesic in M̄ .

We will be mostly concerned with the case of isoparametric submanifolds of Euclidean space.
That this case contains the case of isoparametric submanifolds of spheres is the subject of the next
proposition (see also Proposition 7.6.12).
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7.6.4 Proposition A Riemannian submanifold M of the unit sphere Sn of Rn+1 is a rank k
isoparametric submanifold of Sn if and only if it is a rank k isoparametric submanifold of Rn+1.

Proof. Let M be a submanifold of Sn. Every normal vector field ξ to M in Sn is also a normal
vector field in Rn+1. On the other hand, a normal vector field η to M in Rn+1 can be written
η = ξ − fp, where ξ is the component of η tangential to Sn, p is the position vector, and f is a
smooth function on M .

We will use the Weingarten formula. Denote by A, Â the Weingarten operators of M , and by
∇⊥, ∇̂⊥ the normal connections of M , viewed as a submanifold of Sn, Rn+1, respectively. Denote
by ∇ the Levi-Cività connection of Sn and take X ∈ Γ(TM). Note that

∇Xξ = X(ξ)− 〈X(ξ),p〉p = X(ξ),

since 〈X(ξ),p〉 = −〈ξ,X(p)〉 = −〈ξ,X〉 = 0. It follows that

−ÂηX + ∇̂⊥
Xη = X(η)

= X(ξ)−X(f)p− fX

= ∇Xξ −X(f)p− fX

= −AξX +∇⊥
Xξ −X(f)p− fX.

Comparing tangent and normal components, we obtain that

∇̂⊥
Xη = ∇⊥

Xξ −X(f)p and ÂηX = AξX + fX.

We deduce from these equations that η is ∇̂⊥-parallel if and only if ξ is ∇⊥-parallel and f is
constant; and, in this case, the eigenvalues of Âη are of the form λi(ξ) + µ, where λi(ξ) is an
eigenvalue of Aξ and µ is a constant, with the same eigenspaces. Note that the curvature normals
vi, v̂i of M as an isoparametric submanifold of Sn, Rn+1, resp., are related by v̂i = vi − p. �

Parallel foliation

Let M be an isoparametric submanifold of a space form M̄ . For a fixed parallel normal vector field
ξ, a fundamental construction is the parallel map

πξ :M → M̄, πξ(x) = exp⊥ ξ(x),

namely, the restriction of the normal exponential map along ξ. For simplicity, in the sequel we
assume M̄ = Rn+k, where n = dimM .

Now πξ(x) = x + ξ(x) for x ∈ M . Using the canonical parallelism of Rn+k, the differential of
this map is id− Aξ, so its kernel is

⊕{Ei | 〈ξ, vi〉 = 1}. Since πξ has constant rank, its image Mξ

is a submanifold of M̄ of dimension n − dimker d(πξ)p for p ∈ M . The map πξ : M → Mξ is a
submersion, and Mξ is called a parallel manifold in case dimMξ = n, or a focal manifold in case
dimMξ < n. We thus see that the focal set of M , namely the subset of M̄ consisting of all focal
points of M along normal geodesics, decomposes into focal manifolds, and Mξ is a focal manifold
precisely if ker dπξ is non-zero, in which case πξ is called a focal map.

Since π := πξ : M → Mξ is a submersion, there is an orthogonal decomposition TM = H⊕ V ,
where Vp = ker dπp and dπp : HpM → Tπ(p)(Mξ) is an isomorphism. Since dπp = id − Aξ, we can
view TpM = Tπ(p)(Mξ) and then νπ(p)(Mξ) = νpM ⊕ Vp.
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7.6.5 Lemma The connected components of the level sets of π : M → Mξ are totally geodesic
submanifolds of M . Moreover, the Weingarten operators of M preserve the decomposition TM =
H⊕ V.

Proof. The first assertion is to be a consequence of the Codazzi equation (7.2.7); cf. third
equality below. Let U , V ∈ Γ(V), X ∈ Γ(H). Since ∇⊥ξ = 0, AξU = U , AξV = V , and using that
Aξ is a self-adjoint operator, we have:

〈∇UV,X〉 = 〈∇U (AξV ), X〉
= 〈(∇UAξ)V +Aξ(∇UV ), X〉
= 〈(∇XAξ)V, U〉+ 〈∇UV,AξX〉
= 〈∇X(AξV )−Aξ(∇XV ), U〉+ 〈∇UV,AξX〉
= 〈∇UV,AξX〉,

proving that 〈∇UV, dπ(X)〉 = 0 and hence that V is auto-parallel.

Further, since ξ is parallel, the Ricci equation (7.2.8) says that the Weingarten operators of M
at p commute with Aξp . Therefore they commute with dπp and thus preserve its kernel Vp, for all
p ∈M . Since they are symmetric endomorphisms of TpM , they also preserve Hp. �

7.6.6 Remark In fact, it is not hard to show that any component of the level set π−1(π(p)) in
Lemma 7.6.5 is an isoparametric submanifold of νp̂Mξ, where p̂ = p+ ξ(p) (cf. Exercise 16). Using
as a tool the normal holonomy of focal manifolds, one can work harder and see that those level
sets are connected and indeed homogeneous isoparametric submanifolds [BCO16, § 4.3.3]. These
are called slices of the given isoparametric submanifold.

Any smooth curve in Mξ admits a locally defined lifting to a horizontal smooth curve in M
(cf. exercise 20 of chaper 3). Let γ : [a, b] → M be a horizontal smooth curve and put γ̂ = π ◦ γ.
Since νγ(t)M ⊂ νγ̂(t)Mξ for all t, any normal vector field η to M along γ can be also considered as
a normal vector field η̂ to Mξ aong γ̂.

7.6.7 Proposition (Tube formula) For v ∈ νpM ⊂ νπ(p)Mξ, let Âv denote the Weingarten
operator of Mξ. Then

Âv = Av ◦ ((idTpM −Aξp)|Hp)
−1.

Proof. Using the canonical parallelism of Rn+k and the Weingarten formula (7.2.3), we can
write

−Âη̂(t)γ̂′(t) +∇⊥
γ̂′(t)η̂ = η̂′(t) = η′(t) = −Aη(t)γ′(t) +∇⊥

γ′(t)η,

where ∇̂⊥ denotes the normal connection of Mξ. Since γ is horizontal, we know from Lemma 7.6.5

that Aη(t)γ
′(t) ∈ Hγ(t) = Tγ̂(t)(Mξ). It follows that Aη(t)γ

′(t) = Âη̂(t)γ̂
′(t). Now we need only

remark that γ̂′(t) = dπγ(t)(γ
′(t)) = γ′(t)−Aξ(γ(t))γ

′(t). �

7.6.8 Corollary The submanifold Mξ has constant principal curvatures. Moreover, if Mξ is a
parallel manifold (dimMξ = dimM), then it is isoparametric.

Proof. It follows from the tube formula that the principal curvatures of Mξ at v ∈ νπ(p)Mξ are
of the form

λi(v)

1− λi(ξp)
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for i = 1, . . . , g, where the λi are the principal curvatures ofM . ThereforeMξ has constant principal
curvatures.

It also follows from the proof of Proposition 7.6.7 that ∇⊥
γ̂′(t)η̂ = ∇⊥

γ′(t)η. In case dimMξ =

dimM , we have νπ(p)(Mξ) = νpM implying that R̂⊥ = R⊥ = 0. �

For p ∈M , denote by FM (p) the subset of M̄ consisting of focal points of M relative to p. Note
that FM (p) consists of the points q ∈ p+ νpM such that dπq−p = id−Aq−p has not full rank.

7.6.9 Corollary If Mξ is a parallel manifold, then p+ νpM = p̂+ νp̂Mξ and FM (p) = FMξ
(p̂) for

all p ∈M , where p̂ = p+ ξ(p).

Proof. The first assertion is a consequence of the facts that νpM = νp̂Mξ and p̂ ∈ p+ νpM . For
the second one, the tube formula (7.6.7) yields that

id− Âq−p̂ = (id−Aξ(p) −Aq−p̂)(id−Aξ(p))
−1

= (id−Aq−p)(id−Aξ(p))
−1,

for all q ∈ p + νpM , whence we see that id − Âq−p̂ is invertible if and only if so is id − Aq−p, as
desired. �

The Coxeter group

We next describe the Coxeter group associated to a complete isoparametric submanifold M of
Euclidean space.

The affine normal space p + νpM meets the focal set FM (p) along the union of the affine
hyperplanes Hi(p) = p+ { ξ ∈ νpM | 〈ξ, vi(p)〉 = 1 } corresponding to non-zero curvature normals,
called focal hyperplanes with respect to p. For each focal hyperplaneHi(p), the orthogonal reflection
of p+ νpM on the hyperplane Hi(p) will be denoted by r̃pi . We will show that the group generated
by all the r̃pi is a finite Coxeter group.

Recall that, in general, an (abstract) Coxeter group is a finitely presented group

〈r1, . . . , rn | (rirj)mij = 1〉
where mii = 1 and mij ≥ 2 if i 6= j, and the condition mij = ∞ means that no relation of the
form (rirj)

m is imposed. The number n is called the rank of the Coxeter group. In 1934, H.
S. M. Coxeter proved that every finite group generated by orthogonal reflections on hyperplanes
in an Euclidean space is a Coxeter group, whereas in 1935 he proved that every finite Coxeter
group admits a faithful representation as group generated by reflections on an Euclidean space and
classified the finite Coxeter groups. They fall into: three families of increasing rank An, Bn, Dn;
one family of rank two, I2(p); and six exceptional groups, E6, E7, E8, F4, H3 and H4.

Note that for each non-zero curvature normal vi of M , the leaf Si(p) of Ei passing through p is

the hypersphere in p+Ei(p)+R vi(p) of center ci(p) = p+ vi(p)
||vi||2 and radius 1/||vi||. Let ai :M →M

denote the map that restricts to the antipodal map of Si(x) for all x ∈M . Namely, ai is given by
the parallel map πηi where ηi = 2 vi

||vi||2 . This shows that ai is an involutive diffeomorphism of M

(but not an isometry).
From the fact that the normal bundle is globally flat�1�, for p, q ∈ M we have a well-defined

parallel transport map τp.q : νpM → νqM . Let τ̃p,q : p + νpM → q + νqM the associated affine
parallel transport map. The parallelism of the curvature normals in fact implies that

(7.6.10) τ̃p,q(FM (p)) = FM (q).
�1�!
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7.6.11 Lemma For all p ∈M and i = 1, . . . , g, it holds that

r̃pi (p) = ai(p) and r̃pi = τ̃p,ai(p).

Proof. The first assertion follows from the fact that vi(p) points in the radial direction of
Si(p). To prove the second one, first consider the parallel transport from p to ai(p) in the normal
bundle to Si(p) in p + R vi(p) ⊕ Ei(p); this map clearly takes vi(p) to vi(ai(p)) = −vi(p). Since
p+R vi(p)⊕Ei(p) is totally geodesic in M̄ and Si(p) is invariant under the Weingarten operators of
M , it follows from the Weingarten formula that the above map is the restriction of τ̃p,ai(p). Finally,
if ξ is a normal vector field to M along a curve γ in Si(p), which is parallel and everywhere normal
to vi(p), then, due to (7.6.1),

∇̄ξ
dt

= −Aξ(t)γ′(t) +
∇̄⊥ξ
dt

= −〈ξ(t), vi(γ(t))〉 γ′(t) = 0,

namely, ξ is constant in M̄ . This shows that τ̃p,ai(p) is the identity on vi(p)
⊥, and finishes the proof.

�

In view of Corollary 7.6.9, equation (7.6.10), ai(p) = πηi(p), and M =Mηi , we now have that

τ̃p,ai(p)(FM (p)) = FM (ai(p))

= FMηi
(πηi(p))

= FM (p)

for all p ∈ M . Due to Lemma 7.6.11, this says that r̃pi acts on p + νpM by permuting the focal
hyperplanes Hi(p). Since there are only finitely many focal hyperplanes, this implies that the group
W p generated by all the r̃pi is finite. Owing to the above quoted result of Coxeter, we deduce that
W p is a Coxeter group, called the Coxeter group of M at p. Note that the dependence on the point
p ∈M is not very important, since τ̃p,q conjugates W

p to W q, so the conjugation class is uniquely
defined and denoted simply by W . It is also usual to see W as a Coxeter group acting on the
linear space νpM . Note that the rank of W as a Coxeter group is the same as the rank of M as an
isoparametric submanifold.

Decomposition theorems

Let M be a connected complete isoparametric submanifold of Euclidean space. The following
remark is very important for the results in this subsection. Since the Coxeter group W associated
toM is a finite group of orthogonal transformations of p+νpM , it must have a fixed point (namely,
the center of mass of any orbit). This means that there is a non-zero vector in

⋂

iHi(p), so a non-
zero parallel normal vector field ζ such that 〈ζ, vi〉 = 0 for all non-zero curvature normals vi.

7.6.12 Proposition A connected complete isoparametric submanifold M of M̄ = Rn admits a
splitting M = N × E0 such that N = M ∩ E⊥

0 is an isoparametric submanifold (of the same rank
as M) of a sphere of dimension n− dimE0, and E0 is the nullity distribution of M . Moreover, M
and N have the same Weyl group.

Proof. We denote the zero curvature normal by v0, if it is present. Let ζ be a parallel normal
vector field such that 〈ζ, vi〉 = 1 for all i 6= 0, as above. The differential of the parallel map
πζ has kernel equal to D =

⊕

i 6=0Ei. By Lemma 7.6.5, this distribution is auto-parallel. Since
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TM = D⊕E0 is an orthogonal decomposition, we have∇XU ∈ Γ(E0) forX ∈ Γ(D) and U ∈ Γ(E0).
As a curvature distribution, E0 is auto-parallel, so the Gauss formula yields

∇̄XU = ∇XU ∈ Γ(E0)

for X ∈ Γ(TM) and U ∈ Γ(E0), which implies that the distribution E0 is constant along M as a
subspace of Euclidean space; since M is complete, the leaf of the distribution through p ∈M is the
affine subspace p+ E0.

Since M is ruled by affine subspaces parallel to the constant subspace E0, it immediately
follows that M = N ×E0 where N =M ∩E⊥

0 and N is connected. It remains to be seen that N is
isoparametric in E⊥

0 . Note that TN = D|N and νN = νM |N . Since E⊥
0 is totally geodesic in M̄ ,

we see from the Weingarten formula that the normal connection of M in M̄ restricts to the normal
connection of N in E⊥

0 , and the Weingarten operators of M (leave N invariant and) restrict to the
Weingarten operators of N . We deduce that N is isoparametric in E⊥

0 . Since dπη(TN) = 0 and N
is connected, the map πζ is a constant c, which gives that N is contained in the sphere of center c
and radius ||ζ|| in E⊥

0 .

The last assertion is true because the nullity distribution does not contribute to the Weyl group.
�

7.6.13 Corollary For a connected complete isoparametric submanifold M of Rn, the following
are equivalent:

a. All curvature normals are non-zero.

b. M is contained in a round sphere of Rn.

c. M is compact.

Proof. In the notation of the proposition: if all curvature normals are non-zero, then M = N is
contained in a sphere; complete isoparametric submanifolds of Euclidean space are always closed,
so they are compact if contained in a sphere; by the proposition, M can be compact only if E0 is
trivial. �

Let M̄1 and M̄2 be Riemannian manifolds, and let Mi be a submanifold of M̄i for i = 1, 2. The
extrinsic product ofM1 andM2 is the productM1×M2 viewed as a submanifold of the Riemannian
product M̄1 × M̄2.

An isoparametric submanifold M of Euclidean space Rn is said to be reducible if M is the
extrinsic product of isoparametric submanifolds Mi ⊂ Rni for i = 1, 2 (n = n1 + n2), where M1,
M2 are not points; note that in this case the Coxeter group of M is the product of the Coxeter
groups of M1 and M2. Otherwise, we say that M is irreducible.

Let W denote a Coxeter group faithfully represented as a group generated by reflections acting
on an Euclidean space V . The groupW is called reducible if there exists a non-trivial decomposition
V = V1 ⊕ V2 into W -invariant subspaces. Note that in this case W is isomorphic to a product
W1 ×W2 where Wi is a Coxeter group acting on Vi, for i = 1, 2.

7.6.14 Proposition Let M be a compact isoparametric submanifold of Rn with Coxeter group W .
Then M is reducible if and only if W is reducible.

Proof. Assume W is reducible, namely, W =W1 ×W2 where Wi acts on Rni and n = n1 + n2.
We want to prove that M is reducible. By applying a translation, we may assume that M passes
through the origin of Rn. Owing to Corollary 7.6.13, we know that all curvature normals of M are
non-zero.
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The set of generators of W splits as a union of the set of generators of W1 and those of W2;
there is a corresponding splitting of the set of curvature normals into two sets V1 and V2. Note
that these two sets V1 and V2 of vectors are mutually orthogonal. Let ζ be a parallel normal vector
field to M in Rn such that 〈ζ, vi〉 = 1 for every curvature normal vi. Decompose ζ = ζ1 + ζ2 where
ζi lies in the span of Vi. Then, for each i = 1, 2, the number 〈ζi, vj〉 equals 1 or 0 according to
whether vj lies in Vi or not.

Define the distributions Di = ker(id−Aζi) and νiM =
∑

vj∈Vi
Rvj , and put Vi = Di ⊕ νiM for

i = 1, 2. Note that there is a g- and B-orthogonal decomposition TM = D1 ⊕ D2, where each Di

is parallel in M and invariant under its Weingarten operators. We claim that V1 is constant as a
subspace of Rn along M . Let X ∈ Γ(TM), Y ∈ Γ(D1), ξ ∈ Γ(ν1M). We easily compute that

∇̄X(Y + ξ) = ∇XY +B(X,Y )−AξX +∇⊥
Xξ

lies in Γ(V1), proving the claim. Similarly, V2 is constant as a subspace of Rn along M . Let Rni be
the linear subspace of Rn given by Vi at the origin 0 ∈ M for i = 1, 2. Then Rn = Rn1 ⊕Rn2 =
Rn1 × Rn2 , and we put Mi = M ∩ Rni for i = 1, 2; note that Mi is the integral manifold of Di

through the origin. Similarly to the above computation, we easily see that D1 is constant as a
subspace of Rn along M ∩ ({p1} × Rn2) for p1 ∈ M1, and D2 is constant as a subspace of Rn

along M ∩ (Rn1 × {p2}) for p2 ∈M2. It follows that the integral manifolds of D1 (resp. D2) are all
of the form M1 + p2 =M ∩ V1 (resp. p1 +M2 =M ∩ V2), which gives that M =M1 ×M2.

As in the proof of Proposition 7.6.12, one sees that Mi is (compact) isoparametric in Rni .
The submanifolds M1 and M2 are integral manifolds of the auto-parallel distributions D1 and D2,
therefore they are totally geodesic submanifolds of M . Note that the normal bundle of Mi in Vi is
the restriction of νiM to Mi, so the Coxeter group of Mi is indeed Wi. �

We gather from Propositions 7.6.12 and 7.6.14 that every complete isoparametric submanifold
of Euclidean space splits an extrinsic product of its Euclidean factor and a number of irreducible
compact isoparametric submanifolds (with irreducible Coxeter groups).

7.7 Examples and classification of isoparametric submanifolds

Isoparametric hypersurfaces

From Proposition 7.6.12 we recover Levi-Cività [LC37] and B. Segre’s[Seg38] result that the number
g of principal curvatures of an isoparametric hypersurface of Euclidean space is at most two, and
it is either a hyperplane, a hypersphere or the boundary of a tube of constant radius around an
affine subspace. Cartan extended Segre’s bound on g to hyperbolic spaces and obtained a similar
classification. In fact, Cartan studied isoparametric hypersurfaces systematically in a remarkable
series of four papers [Car38, Car39a, Car39b, Car40] during the years 1938-40, and pointed out that
isoparametric hypersurfaces in spheres are much more interesting and difficult objects of study.

From Proposition 7.6.14 we see that an isoparametric hypersurface in Sn(1) with g = 2 must
be a product Sm1(r1) × Sm2(r2), where r

2
1 + r22 = 1; the family {Sm1(cos t) × Sm2(sin t)}t∈[0,π/2]

comprises an isoparametric family in the unit sphere Sn, where n = m1 +m2 + 1. The principal
curvatures are easily seen to be

λ1 = cot t, λ2 = − tan t = cot(t+
π

2
),

with (arbitrary) multiplicities m1 and m2. In particular, the focal hypersurfaces are points, corre-
sponding t = 0 and t = π/2, and t = π/4 is the only parameter value corresponding to a minimal
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hypersurface; this hypersurface was found by W. K. Clifford in 1873 and is today known as the
Clifford torus. Note that this foliation is the orbital foliation obtained from the standard action of
SO(m1 + 1)× SO(m2 + 1) on Rm1+1 ×Rm2+1.

Cartan constructed four examples of isoparametric foliations in spheres with g = 3, all with
uniform multiplicity equal to 1, 2, 4 or 8, and then proved that there are no other examples with
g = 3. Those hypersurfaces are all homogeneous. The simplest example lives in the unit sphere
in the 5-dimensional Euclidean vector space V of traceless real symmetric 3× 3 matrices equipped
with the inner product 〈X,Y 〉 = tr(XY ), which we describe as follows. There is an action of the
Lie group G = SO(3) on V given by conjugation, namely, g ·X = gXg−1 for g ∈ G and X ∈ V .
The isoparametric foliation of the unit sphere S4 of V consists of conjugation classes of matrices of
norm 1. The conjugation class of X ∈ S4 is a compact submanifold; indeed it is the image of the
immersion

g ∈ SO(3) 7→ gXg−1 ∈ S4

which becomes injective after factoring SO(3) by the centralizer ZG(X) of X, which is a closed
subgroup. Each symmetric matrix is conjugate to a diagonal matrix, so we can parametrize such
classes by diagonal matrices. The centralizer of a diagonal (resp. arbitrary) matrix is discrete if
and only if the matrix has pairwise distinct entries (resp. eigenvalues). Consider the following
orthonormal basis of V :

e1 =
1√
6





1 0 0
0 1 0
0 0 −2



 , e2 =
1√
2





1 0 0
0 −1 0
0 0 0



 ,

e3 =
1√
2





0 1 0
1 0 0
0 0 0



 , e4 =
1√
2





0 0 1
0 0 0
1 0 0



 , e5 =
1√
2





0 0 0
0 0 1
0 1 0



 .

Then the diagonal matrices in S4 can be parametrized by the geodesic

γ(t) = cos te1 + sin te2.

The matrix γ(t) has distinct eigenvalues if and only if t 6= kπ/3 for k ∈ Z; for such a value of t, the
conjugation class (orbit) Mt is 3-dimensional, and the tangent space Tγ(t)Mt is spanned by e3, e4,
e5. In fact, denote by Eij the matrix with coefficient 1 at position (i, j) and 0 elsewhere, and put
Xij = Eij − Eji. The one-parameter subgroup

gs =





cos s sin s 0
− sin s cos s 0

0 0 1





of SO(3) yields the following tangent vector at p = γ(t):

d

ds

∣
∣
∣
s=0

gspg
−1
s = X12p− pX12

= [X12, γ(t)]

=
1√
6
cos t[X12, E11 + E22 − 2E33] +

1√
2
sin t[X12, E11 − E22]

= (−2 sin t)e3;

we call this vector X12p. Similarly,

X23p = (−2 sin t)e4, X13p = (−2 sin t)e5.
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Now
ξ = −γ′(t) = sin te1 − cos te2

is a unit normal vector to Mt in S
4. We extend ξ to a normal vector field along s 7→ gsp by putting

ξ(s) = dgs(ξ) = gsξ and then

Aξ(e3) =
−1

2 sin t
Aξ(X12p)

=
1

2 sin t
(∇̄X12pξ)

⊥

=
1

2 sin t

(
d

ds

∣
∣
∣
s=0

gsξg
−1
s

)⊤

=
1

2 sin t
(+ sin t[X12, e1]− cos t[X12, e2])

= cot t e3.

Similarly,

Aξ(e4) = cot(t+
π

3
)e4 and Aξ(e5) = cot(t+

2π

3
)e5.

Therefore the principal curvatures are

λ1 = cot t, λ2 = cot(t+
π

3
), λ3 = cot(t+

2π

3
),

with corresponding curvature distributions spanned by e3, e4 and e5, respectively. Note thatMπ/6 is
a minimal hypersurface of S4, called the Cartan hypersurface. Any conjugation class meets γ(t) for
some t ∈ [0, π/3], since we can always permute the eigenvalues of a diagonal matrix by conjugating
it by a suitable orthogonal matrix (called a permutation matrix !). The interior points γ(t) for
t ∈ (0, π/3) have pairwise distinct eigenvalues and hence discrete centralizers, namely, the group of
diagonal matrices with ±1 entries. The endpoints γ(0) and γ(π/3) are matrices with an eigenvalue
of multiplicity two, so its centralizers are larger, namely, the block subgroups S(O(2)O(1)) and
S(O(1)O(2)) of SO(3), respectively. The focal manifolds M+ =M0 and M− =Mπ/3 are antipodal
Veronese surfaces diffeomorphic toRP 2. In particular, the multiplicities of the isoparametric family
{Mt}t∈[0,π/3] are m1 = m2 = 1.

There is a beautiful, unified way to generalize the above example to include all examples with
g = 3 discovered by Cartan. The standard embeddings of the projective spaces FPn, where F is
one of the four normed division algebras over R, namely, R, C, H (quaternions) and Ca (Cayley
numbers; here n must be 2), are constructed as follows. Let V be the space Hermǫ(n,F) be the
space of n× n Hermitian matrices with coefficients in F and constant trace ǫ; ǫ is usually taken to
be equal to 0 or 1. A one-dimensional subspace of Fn+1 is identified with the orthogonal projection
onto it, namely, an idempotent element in V ; this realizes FPn as the real algebraic smooth variety
M+ = {x ∈ V | x2 = x }. Note that dimFPn = dn and dimV = (n−1)(dn+2)/2, where d = 1, 2,
4 or 8, according to F = R, C, H or Ca. The squared Euclidean norm in V is ||x||2 = trace(x2),
so M+ is contained in the unit sphere S(V ) of V . It can be shown that the tubes of constant
radius r ∈ [0, π/3] around M+ in S(V ) comprise an isoparametric foliation of S(V ), where the
tube with r = π/3 corresponds to the antipodal embedding M− = −M+ of FPn, and M± are
the focal manifolds. These foliations are respectively homogeneous under the compact Lie groups
G = SO(n), SU(n), Sp(n) and F. The representations of the group G on V are given in the first
three cases by ρ(g)x = gxg∗, where x ∈ V , g ∈ G and x∗ denotes the transpose conjugate matrix
of x, and in the fourth case by the 26-dimensional representation of F.
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Later Cartan discusses the case g = 4 and shows there are only two examples where the
multiplicities of principal curvatures are all equal, namely, one in S5 and one in S9. Towards the
end of his third paper on the subject, Cartan asks three questions, one of which asking whether every
isoparametric hypersurface in a sphere is homogeneous. It is clear that any orbit of codimension one
in Sn of a closed subgroup of SO(n+ 1) has constant principal curvatures and is thus isoparametric.
Hsiang and Lawson [HL71] classified connected closed subgroups of SO(n+ 1) whose principal
orbits have codimension one in Sn. It turns out that the actions of such groups which are maximal
connected, in the sense that they are not contained in a larger connected group with the same
orbits, precisely coincide with the isotropy representations of symmetric spaces of rank two. Takagi
and Takahashi [TT72] refer to [HL71] and note that it implies a classification of homogeneous
isoparametric hypersurfaces in spheres. They relate the geometric invariants to the invariants of
the corresponding symmetric spaces and list their multiplicities. In particular, they find examples
with g = 4 and different multiplicities, for instance the orbits of the isotropy representation of the
oriented Grassmann manifold of two-planes in Rn+3 is an isoparametric submanifold of S2n+1 with
g = 4 and multiplicities m1 = 1, m2 = n− 1.

After Cartan, the subject of isoparametric hypersurfaces in spheres remained dormant until
the work of Takagi and Takahashi, and the short note of Nomizu [Nom73], in which he proved
that the focal manifolds of an isoparametric family are always minimal submanifolds. Around the
same time, Münzner did very influential work, published in the two papers [Mue80, Mue81] much
later in 1981-2. In the first paper, he proved that there are exactly two focal manifolds. In the
second paper, using delicate topological arguments based on the fact that a compact isoparametric
submanifold of a sphere decomposes the sphere into a union of two closed ball bundles over the
focal manifolds, Münzner proved the striking result that the only possible values of g are 1, 2, 3, 4
and 6, namely, the same values obtained from the homogeneous examples.

In 1975, Ozeki and Takeuchi [OT75] surprised the community of researchers in the field by
exhibiting examples of inhomogeneous isoparametric hyperusfaces in spheres. These examples
were later systematized and generalized by Ferus, Karcher and Münzner [FKM81], who associated
examples with g = 4 to representations of Clifford algebras, most of which are inhomogeneous.

The classification problem of isoparametric hypersurfaces in spheres starts with the determi-
nation of the possible multiplicities (m1,m2). Cartan had already solved the problem for g ≤ 3.
In case g = 6, Abresch [Abr83] proved that only (1, 1) and (2, 2) are possible; note that indeed
there are homogeneous examples with those multiplicities. The case g = 4 was the most involved
and, after the efforts of many mathematicians, it was finally completed by Stolz [Sto99] who, in a
topological tour de force, proved that the possibilities are exactly those that appear either in the
homogeneous examples or in the Clifford examples of Ferus, Karcher and Münzner.

Isoparametric hypersurfaces with g = 6 and (m1,m2) = (1, 1) must indeed be homogeneous
by the work of Dorfmeister and Neher [DN85]. Their proof depends on an intricate algebraic
calculation, and it seems very difficult to extend their approach to the case (m1,m2) = (2, 2). More
recently, the work of Cecil, Chi and Jensen [CCJ07], Immervoll [Imm08] and Chi [Chi12] shows
that isoparametric hypersurfaces with g = 4 must be either homogeneous or one of the known
inhomogeneous examples, with the possible exception of (m1,m2) = (7, 8).

There have been attempts to simplify Dorfmeister-Neher’s result and to extend it to the case
(g,m1,m2) = (6, 2, 2) [Miy09, Miy13, Miy15, Sif16].

General structure of isoparametric hypersurfaces of spheres

Let M be a compact isoparametric hypersurface of Sn+1. For p ∈ M and a unit normal vector
ξ ∈ νpM , consider the normal geodesic γ(t) = cos t p + sin t ξ for t ∈ [0, 2π]. Then γ meets the
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parallel and focal manifolds orthogonally. Since the codimension of M in Rn+2 is two, in this case
the Coxeter group is a dihedral group Dg (with 2g elements) with g ≥ 3 in case M is irreducible,
or Z2 × Z2 = D2 or Z2 = D1 otherwise. It follows that the multiplicities satisfy the periodicity
condition mi = mi+2 (indices modulo g); in particular, M has uniform multiplicities if g is odd.
It also implies that the focal distances are equidistributed along the image of γ, and hence the
principal curvatures can be written (cf. Exercise 13)

cot d, cot

(

d+
π

g

)

, . . . , cot

(

d+ (g − 1)
π

g

)

.

Isoparametric submanifolds

Palais and Terng [PT87] extended Takagi and Takahashi’s remark to state that the principal orbits
of the isotropy representation of a symmetric space are compact isoparametric submanifolds, see
chapter ??. In the same paper, using the classification of Dadok [Dad85] they also characterized
the compact homogeneous isoparametric submanifolds of Euclidean space as being exactly those
orbits. There remained the inhomogeneous isoparametric submanifolds to be understood. In 1991,
invoking the theory of Tits buildings, Thorbergsson proved the deep result that every compact
connected full irreducible isoparametric submanifold of Euclidean space with codimension at least
3 is homogeneous, showing thus that the FKM-examples are the only inhomogeneous ones, always
in codimension 2. Thorbergsson’s theorem has been reproved by Olmos [Olm93] using canonical
connections and normal holonomy, and by Heintze and Liu [HL99]; the latter proof in fact also
applies to the infinite dimensional case, cf. add. notes.

Marked Coxeter graph

Let M be a connected compact full isoparametric submanifold of an Euclidean sphere. It follows
from equation (7.6.2) that the focal hyperplanes in p+ νpM together with the multiplicities mi =
dimEi for i = 1, . . . , g, determine the second fundamental form, as an abstract symmetric bilinear
form, up to passing to a parallel submanifold. In turn, the focal hyperplanes are already determined
by the Weyl group, up to scaling of the ambient metric. Thus the Weyl group together with the
multiplicities essentially determine the second fundamental form; such data is usually encoded in
the form of a Coxeter graph with multiplicities, as follows.

Let W be the Coxeter group of M acting on p+ νpM for some p ∈M . A connected component
of the complement of the union of the focal hyperplanes in p+ νpM is called a Weyl chamber. The
Coxeter graph of W is constructed by fixing a Weyl chamber C and taking as vertices the walls
of C, i.e. hyperplanes bounding C. Note that these correspond to the generators r1, . . . , rn of W .
Associated to each wall is a curvature distribution and the corresponding multiplicity, which we
write on top of the vertex; this is the marking. Since the multiplciities are preserved under the
action of W , the marking already determines all multiplicities. The two vertices corresponding to
generators ri and rj are linked by an edge if and only if the corresponding walls are not perpen-
dicular, in which case we write the number mij on top of the edge (recall that (rirj)

mij = 1 is a
relation in W ; for simplicity, in case mij = 3 one usually writes nothing and the number 3 remains
implicit). It turns out that W is irreducible if and only if its Coxeter graph is connected; in this
case C is a simplicial cone and its Coxeter graph has n = dim νp vertices. The isomorphism type
of the Coxeter graph is independent of the chosen Weyl chamber, as W acts simply transitively on
the set of Weyl chambers, and determines W up to isomorphism. The Coxeter graph together with
the marking is called the marked Coxeter graph of the isoparametric submanifold.
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Type Diagram Multiplicities

An, n ≥ 2 ❡ ❡ ❡♣ ♣ ♣

m m m

m = 1, 2, 4

A2
❡ ❡

8 8

−

(BC)n, n ≥ 2 ❡ ❡ ❡ ❡♣ ♣ ♣

m1 m1 m1 m2

m1 m2

1 k
2 2, 2k + 1
4 1, 5, 4k + 3

(BC)3 ❡ ❡ ❡

8 8 1

−
(BC)2 ❡ ❡

9 6

−

Dn, n ≥ 4 ❡ ❡ ❡

❡

❡

♣ ♣ ♣ ��

❅❅

m m m
m

m

m = 1, 2

F4
❡ ❡ ❡ ❡

1 1 m m

m = 1, 2, 4, 8

❡ ❡ ❡ ❡

2 2 2 2

−
G2

❡ ❡

m m

m = 1, 2

E6

❡ ❡ ❡ ❡ ❡

❡

m m m m m

m

m = 1, 2

E7

❡ ❡ ❡ ❡ ❡ ❡

❡

m m m m m m

m

m = 1, 2

E8

❡ ❡ ❡ ❡ ❡ ❡ ❡

❡

m m m m m m m

m

m = 1, 2

Table 7.7.1: Coxeter graphs of homogeneous isoparametric submanifolds.

Recall that the connected compact full isoparametric hypersurfaces of Euclidean spaces are
exactly the round hyperspheres of arbitrary radius, which have Coxeter graph of type A1. Münzner’s
result quoted above says that the number g of principal curvatures of M is 1, 2, 3, 4 or 6. It follows
that a rank 2 compact isoparametric submanifold of Euclidean space has Coxeter group of type
A1, A1 × A1, A2, B2 or G2. Due to Remark 7.6.6, for a compact isoparametric submanifold M of
rank n ≥ 3, any subgraph of the Coxeter graph of M which is obtained by removing some vertices
of the graph of M and all edges linking to those vertices is the Coxeter graph of some slice of
M . This fact shows that the admissible Coxeter graphs (groups) of isoparametric submanifolds if
Euclidean space are An (n ≥ 1), Bn (n ≥ 2), Dn (n ≥ 4), En (n = 6, 7, 8), F4 and G2. These
are called crystallographic Coxeter groups, since they leave invariant a lattice. They are also called
Weyl groups, since they appear in the theory of compact semisimple Lie algebras. In Table 7.7.1
we also list the possible multiplicities but only in the homogeneous case.

The following rigidity result shows that a homogeneous isoparametric submanifold M is com-
pletely characterized by the values of the second fundamental form B and its covariant derivative
∇B at one point p ∈ M . It is almost true that M is already determined by B, for the only ex-
ception are the adjoint orbits of the compact Lie groups Spin(2n+ 1) and Sp(n), whose marked
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Coxeter graphs are isomorphic (with uniform multiplicity 2). For this reason, the theorem is more
interesting in the infinite dimensional case, where it is also valid [GH12].

7.7.1 Theorem (Gorodski-Heintze) LetM andM ′ be two connected complete full homogeneous
isoparametric submanifolds of Euclidean spaces V and V ′, respectively. Assume there is an isometry
f : V → V ′ and points p ∈ M , p′ ∈ M ′ such that f(p) = p′, dfp(TpM) = Tp′M

′, dfp(Bp(u, v)) =
B′
p′(dfp(u), dfp(v)) and dfp(∇uB(v, w)) = ∇dfp(u)B

′
p′(dfp(v), dfp(w)), for all u, v, w ∈ TpM , where

B and B′ denote the second fundamental forms of M and M ′, respectively. Then f(M) =M ′.

7.8 Additional notes

§1 In complex analysis of one variable, Liouville’s theorem says that a bounded entire function is
constant. Bernstein (1915-17) proved an analogous result in differential geometry, namely, if the
graph of a function f : R2 → R of class C2 is a minimal surface in R3, then the graph is a plane.
He then posed the classical Bernstein problem, namely, whether the same result also holds for real
functions of n > 2 variables. In terms of differential equations:

(Classical) Bernstein problem: Let the function f : Rn → R of class C2 be a
solution of

n∑

i=1

∂

∂xi

(

∂f/∂xi
√

1 + ||gradf ||2

)

= 0.

Must f be a linear function?

Part of the importance of the Bernstein problem is that it has a direct bearing on the existence
of minimal cones and singularities of minimal hypersurfaces in Rn+1. The answer to the problem
was proved to be affirmative in the cases n = 3 by de Giorgi (1965), n = 4 by Almgren (1966), and
n ≤ 7 by Simons (1968), and apparently there was some hope to extend the result to all dimensions.
However, in 1969 Bombieri, de Giorgi and Giusti [EBG69] constructed a counter-example for n = 8,
which yields a counter-example in each dimension n > 8 by a standard construction, closing the
problem. The complete solution of the Bernstein problem turned out to involve a good deal of
geometric measure theory and non-linear analysis.

§2 Let M be an isoparametric submanifold of M̄ = Rn+k. Using the Coxeter group associated
toM in an essential way, Terng proved in [Ter85] thatM is the level set of a so called isoparametric
map F : Rn+k → Rk, namely, a map F = (F1, . . . , Fk) admitting regular values and such that:
(i) the Laplacians ∆Fi are constant along the level sets of F , for i = 1, . . . , k;
(ii) The inner products 〈gradFi, gradFj〉 are constant along the level sets of F , for all i, j =

1, . . . , k;
(iii) The Lie brackets [gradFi, gradFj ] are linear combinations with constant coefficients of

gradF1, . . . , gradFk

along the level sets of F , for all i, j = 1, . . . , k.
(In case k = 1, conditions (i) and (ii) were classically referred to as expressing the constancy of the
differential parameters ∆F1 and ||gradF1||2 of F1 along its level sets, hence the name isoparametric.
Condition (iii) is a kind of integrability and is void in case k = 1.) Moreover, Terng showed that F
can be taken polynomial. It follows that every connected isoparametric submanifold of Euclidean
space is an open subset of a complete properly embedded isoparametric submanifold, which in
addition is a real algebraic submanifold of Euclidean space. It is easy to check that, conversely, the
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regular level sets of an arbitrary isoparametric map are isoparametric submanifolds. The regular
levels of F are exactly the parallel manifolds ofM , and the singular levels are the focal manifolds of
M . The resulting partition of M̄ is called an isoparametric foliation, and it provides an important
example of singular Riemannian foliation [Ale04].�2�.

§3 The theory of isoparametric submanifolds of Euclidean space was extended to separable
Hilbert spaces by Terng in [Ter89]. The local differential geometry of submanifolds in Euclidean
spaces generalizes without much effort to Hilbert space. One is thus tempted to use the same
definition, namely, constancy of principal curvatures along parallel normal vector fields and flat
normal bundle. This works if one restricts to the category of proper Fredholm submanifolds of
Hilbert space, that is, those submanifolds of Hilbert space whose normal exponential map is a proper
Fredholm map. In practice, this says that such submanifolds have finite codimension and compact
(self-adjoint) Weingarten operators. Terng generalized the whole structure theory of isoparametric
submanifolds to Hilbert space, including the Coxeter group, which is now an (infinite) affine Weyl
group. The structure is now more involved also for the reason that the distribution of nullity
does not have to split off. On one hand, there is a remarkable family of examples of isoparametric
foliations of Hilbert space coming from isotropy representations of (infinite-dimensional) affine Kac-
Moody symmetric spaces. On the other hand, examples of FKM-type can be also be constructed
in Hilbert space (without resorting to polynomials!, though [TT95]). Thorbergsson’s theorem was
extended to Hilbert space by Heintze and Liu, who proved that a connected complete full irreducible
isoparametric submanifold of Hilbert space of rank at least 2 is extrinsically homogeneous [HL99];
however, little is known about the group acting transitively on that submanifold. The classification
problem, even in the homogeneous case, is wide open, for there is no standard theory of infinite-
dimensional Lie groups and their affine representations that one can apply. A recent contribution
is [GH12], which characterizes such manifolds by the values of the second fundamental form B
and its covariant derivative ∇B at one point (cf. Theorem 7.7.1), and proposes a strategy to the
classification, namely, first obtain restrictions on ∇B (those on B are already known) and then
compare with the known examples.

7.9 Exercises

�3�

1 Let V be an inner product space. For a basis (v1, . . . , vn) of V , let A be the matrix of a
linear transformation T : V → V in that basis. Consider also the matrices B = (〈Tvi, vj〉) and
G = (〈vi, vj〉). Prove that At = BG−1.

2 Let E be a rank k vector bundle over a smooth manifold M endowed with a Riemannian metric
and a compatible connection ∇E .

a. Show that if ∇E is flat, then given p ∈ M there is a neighborhood U of p and a parallel
orthonormal frame s1, . . . , sk of E defined on U .

b. Show that if, in addition, M is simply-connected, the neighborhood U can be taken to be
equal to M .

3 Let f : M2 → R3 be an isometric immersion of a surface, consider the frame of vector fields
∂
∂x1

, ∂
∂x2

along f and the corresponding coefficients gij of the induced Riemannian metric.

�2�Globally flat normal bundle
�3�Normal bundle; normal connection; normal component of equation.
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a. Show that the coefficients of the second fundamental form of f are given by

bij = det

(
∂2f

∂xi∂xj
,
∂f

∂x1
,
∂f

∂x2

)

· det(gkℓ)−1/2,

with respect to some choice of unit normal vector field ξ.
b. Deduce that the Gaussian curvature

K = detAξ =
det(bij)

det(gij)

and the mean curvature

H = trAξ =
g11b22 − 2g12b12 + g22b11

det(gij)
.

4 a. Let γ : (a, b) → R3, ξ : (a, b) → S2(1) be smooth curves. A parametrized surface of the
form f(u, v) = γ(u) + vξ(v) is called a ruled surface. Investigate sufficient conditions for f to
be an immersion. Compute that

K =
−(γ′ · ξ′)2

||(γ′ + vξ′)× ξ||2 .

Deduce that the plane, cilinder and cone are flat surfaces.
b. For the helicoid

f(u, v) = (v cosu, v sinu, au)

(a > 0), show that

(7.9.1) K(u, v) =
−a2

(a2 + v2)2

and that it is a minimal surface. Deduce its principal curvatures. It is not difficult to show
that the plane and the helicoid are the only complete ruled minimal surfaces in R3.

5 a. Let γ : (a, b) → R2 be a smooth curve. A parametrized surface of the form f(u, v) =
(γ1(v) cosu, γ1(v) sinu, γ2(v)), where γ1, γ2 are the components of γ, is called a surface of
revolution. Show that

K =
γ′2(γ

′
1γ

′′
2 − γ′2γ

′′
1 )

γ1((γ′1)
2 + (γ′2)

2)2)
.

In particular K = −γ′′1/γ1 in case γ is parametrized by arc-length.
b. For the torus of revolution

f(u, v) = ((R+ r cos v) cosu, (R+ r cos v) sinu, r sin v)

(R > r > 0), show that

K =
cos v

r(R+ r cos v)
.

c. For the catenoid

f(u, v) = (a cosh(v/a) cosu, a cosh(v/a) sinu, v)
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(a > 0), show that

(7.9.2) K(u, v) =
−1

a2 cosh4(v/a)

and that it is a minimal surface. It is not difficult to see that the only complete minimal sur-
faces of revolution in R3 are the plane and the catenoid. Interpret formulae (7.9.1) and (7.9.2)
in view of exercise 2 of chapter 1.

6 LetM be a surface in R3 given as the pre-image of a regular value of a smooth map f : U → R,
where U is an open subset of R3. Show that the second fundamental form of M is given by

B(u, v) =
1

||(grad f)p||
Hess (f)(u, v)

for some choice of unit normal vector field, where p ∈M and u, v ∈ TpM .

7 (The Beez-Killing theorem) a. Let S, T : V → V be self-adjoint linear operators on an
Euclidean vector space V . Suppose that rank(S) ≥ 3 and Λ2S = Λ2T : Λ2V → Λ2V . Prove
that S = ±T .

b. Let M be a (not necessarily complete) connected Riemannian manifold of dimension n and
suppose f : M → Rn+1 is an isometric immersion such that the rank of the second funda-
mental form is at least 3 at every point. Prove that f is rigid.

8 Let M ⊂ N ⊂ P be a chain of Riemannian submanifolds. Prove that if M is totally geodesic in
N and N is totally geodesic in P , then M is totally geodesic in P .

9 Prove that each connected component of the fixed point set of an isometry of a Riemannian
manifold is a properly embedded totally geodesic submanifold. Generalize the result to the fixed
point set of a group of isometries.

10 Prove that the totally geodesic submanifolds of RPn are the images of totally geodesic sub-
manifolds of Sn under the projection π : Sn → RPn. Deduce that the complete totally geodesic
submanifolds of RPn are isometric to RP k for some 0 ≤ k ≤ n; in particular, the cut-locus of a
point in RPn is a totally geodesic hypersurface isometric to RPn−1.

11 Consider the projection π : S2n+1 \ {0} → CPn. Prove that there are exactly two kinds of
complete totally geodesic submanifolds of CPn: (i) π(V ∩ S2n+1), where V is a complex subspace
of Cn+1; and (ii) π(W ∩ S2n+1), where W is a totally real subspace of C2n+1. Deduce that the
complete totally geodesic submanifolds of CPn are isometric to CP k or to RP k for some 0 ≤ k ≤ n;
in particular, the cut-locus of a point in CPn is a totally geodesic submanifold isometric to CPn−1.

12 Let Mn be a Riemannian submanifold of Rn+k. Fix a point p ∈ M and a normal vector
ξ ∈ νpM . In this exercise we establish a canonical isomorphism Tξ(νM) ∼= TpM ⊕ νpM .
a. Given u ∈ TpM , consider a smooth curve γ : (−ǫ, ǫ) → M with γ(0) = p, γ′(0) = u and take

the parallel transport ξ̂ of ξ along γ. Show that this defines a linear map TpM → Tξ(νM),
and that this map is injective.

b. Given η ∈ νpM , consider the line s 7→ ξ + sη in νpM . Show that it defines a linear map
νpM → Tξ(νM), and that this map is injective.

c. Show that TpM and νpM viewed as subspaces of Tξ(νM) meet only at 0. Deduce the above
claim.

167



13 Let Mn be a Riemannian submanifold of M̄ = Rn+k. Consider the normal exponential map
exp⊥ : νM → Rn+k mapping ξ ∈ νpM to p+ ξ.
a. Use exercise 12 to represent the differential d(exp⊥)ξ : TpM ⊕ νpM → TpM ⊕ νpM as

(
id−Aξ 0

0 id

)

.

b. Assume ξ is a unit vector and prove that q = p + tξ is a focal point of multiplicity m of M
along the normal line through ξ if and only if 1/t is an eigenvalue of Aξ of multiplicity m.
Deduce that d is a focal distance ofM along ξ if and only if 1/d is a principal curvature of Aξ.

c. Generalize the above to other space forms to prove that: in Sn+k, d is a focal distance of M
along ξ if and only if cot d is a principal curvature of Aξ; in RHn+k, d is a focal distance
of M along ξ if and only if coth d is a principal curvature of Aξ.

d. In case M̄ = Sn+k, note that d is a focal distance of M along ξ if and only π − d is a focal
distance of M along −ξ.

14 (The Morse index theorem for submanifolds of Euclidean space) LetM be a Rieman-
nian submanifold of M̄ = Rn. For q ∈ Rn, consider the square distance function

Lq :M → R, Lq(x) =
1

2
||x− q||2.

a. Prove that grad(Lq)p = (p − q)⊤. Deduce that p ∈ M is a critical point of Lq if and only if
v = q − p ∈ νpM .

b. Let p ∈ M be a critical point of Lq and v = q − p ∈ νpM . Prove that Hess(Lq)p = I − Av
(exercise 9 of chapter 4).

c. The nullity of Lq at a critical point p is defined to be the nullity of the symmetric bilinear
form Hess(Lq)p; such a critical point p is called non-degenerate if the nullity of Lq at p is zero.
Use Exercise 13 to deduce that the nullity of Lq at a critical point p equals the multiplicity
of q as a focal point of M along the geodesic segment pq. Deduce that p is non-degenerate as
a critical point of Lq if and only if q is a non-focal point of M along the geodesic segment pq.

d. The index ind(Lq)p of Lq at a critical point p is defined to be the index of the symmetric
bilinear form Hess(Lq)p. Show that ind(Lq)p =

∑

t∈(0,1) ker(I − t Av), where v = q − p.
Combine this result with part (c) to deduce that ind(Lq)p equals the sum of the multiplicities
of p+ tv as a focal point to M for t ∈ (0, 1).

e. Check that this result is a specialization of the Morse index theorem 7.5.4 to the case of
Euclidean submanifolds.

15 Let M be a submanifold of a Riemannian manifold M̄ . Prove that the kth-osculating space
Ok
p(M) of M at a point p ∈ M is spanned by the k-th derivatives at 0 of all smooth curves

γ : (−ǫ, ǫ) → M with γ(0) = p. (Hint: Consider the reparametrizations γ(ϑ(t)) where ϑ is a
polynomial function with ϑ(0) = 0.)

16 Let M be a complete isoparametric submanifold of Euclidean space M̄ = Rn. Fix a parallel
normal vector field ξ along M . Consider πξ : M → Mξ and let p̂ ∈ Mξ. Prove that the con-
nected components of the level set π−1(p̂) are compact isoparametric submanifolds of νp̂(Mξ), with
curvature normals given exactly by those curvature normals vi of M that satisfy 〈ξ, vi〉 = 1.
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C H A P T E R 8

Isometric actions

In this chapter we extend and refine the discussion about Lie transformation groups in chapter 0.

8.1 Lie group actions

Let G be a Lie group, and let M be a smooth manifold. A left action of G on M is a smooth
mapping

Φ : G×M →M

satisfying the following conditions:
(a) Φ(1, p) = p;
(b) Φ(g′g, p) = Φ(g′,Φ(g, p));

for every p ∈ M , and g, g′ ∈ G. A right action of G on M is defined analogously, except that one
replaces condition (b) in the above definition by
(b’) Φ(g′g, p) = Φ(g,Φ(g′, p)).

One can pass from a left (resp. right) action Φ of G on M to a right (resp. left) action Ψ by
setting Ψ(g, p) = Φ(g−1, p). Therefore, when working with a single action of a Lie group on a
smooth manifold, it is no loss of generality to assume that this action is a left action. Most of the
time we will be dealing with left actions. Right actions appear naturally in some contexts, though,
and especially when we happen to have two simultaneous actions on the same manifold, one left,
and one right. In any event, we make the convention that an action of G on M means a left action,
unless explicitly stated.

Suppose Φ is an action of a Lie group G on smooth manifold M . For each g ∈ G, define a
smooth map

ϕg :M →M, ϕg(p) = Φ(g, p).

Then the defining conditions of an action are equivalent to the following ones:
(c) ϕ1 = idM ;
(d) ϕg′g = ϕg′ ◦ ϕg;

where g, g′ ∈M . It is an immediate consequence of the above that, for every g ∈ G,

ϕg−1 = ϕ−1
g

so that ϕg is a diffeomorphism of G. Now we can say that the map

g 7→ ϕg

is a group homomorphism from G into the group Diff(M) of all diffeomorphisms of M . However,
if one wanted to make this map into a Lie group homomorphism, then it would be necessary to
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introduce a structure of infinite-dimensional smooth manifold on Diff(M), as this space is not a
finite-dimensional manifold in a natural way. This indeed can be done under some assumptions
on M , but we do not have interest in it, since we are considering only finite-dimensional smooth
manifolds and Lie groups in this book. A short and good introductory reference about infinite-
dimensional Lie groups is [Mil84].

Let g denote the Lie algebra of G. Given an action g ∈ G 7→ ϕg ∈ Diff(M), the elements of g
induce smooth vector fields onM as follows. For each X ∈ g, consider the associated one-parameter
subgroup t 7→ exp(tX) of G. For each p ∈M , ϕexp(tX)(p) is a smooth curve in M ; define X∗(p) to
be its tangent vector at t = 0, namely,

X∗(p) =
d

dt

∣
∣
∣
t=0

ϕexp(tX)(p).

It is clear that X∗ is a smooth vector field on M , and that its flow is given by {ϕexp(tX)}. The
map X 7→ X∗ is a linear map from g into Γ(TM) which turns out to be a Lie algebra skew-
homomorphism, namely:

8.1.1 Lemma With the above notations,

[X∗, Y ∗] = −[X,Y ]∗,

for every X, Y ∈ g.

Proof. Let f be a smooth function on M , let p ∈M , and consider the smooth functions

F (r, s, t) = f(exp(rX) exp(sY ) exp(tX)p)

and

G(s, t) = F (−t, s, t),
respectively defined on R3 and R2. Then

(8.1.2)

∂2G

∂s∂t
(0, 0) =

∂2F

∂s∂t
(0, 0, 0)− ∂2F

∂r∂s
(0, 0, 0)

= X∗
p (Y

∗f)− Y ∗
p (X

∗f)

= [X∗, Y ∗]p(f).

On the other hand,

exp(−tX) exp(sY ) exp(tX) = exp(sAdexp(−tX)Y ),

so

∂G

∂s
(0, t) =

d

ds

∣
∣
∣
s=0

f(exp(sAdexp(−tX)Y )p)

= (Adexp(−tX)Y )∗p(f),

and

(8.1.3)
∂2G

∂t∂s
(0, 0) = −[X,Y ]∗p(f).

Comparing (8.1.2) and (8.1.3) yields the desired result. �
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�1�

Let Φ and Ψ denote actions of the Lie group G on the smooth manifoldsM and N , respectively.
A smooth map f :M → N is called equivariant with respect to the actions of G on M and N if

f(Φ(g, p)) = Ψ(g, f(p)),

for every p ∈M , g ∈ G. A subset A ⊂M is called invariant if Φ(g, p) ∈ A for every p ∈ A, g ∈ G.
A simplification of the notation is in order. Whenever we will be working with one single action,

and there will be no possibility of confusion, we will agree to denote an action of G on M simply
by (G,M)�2� and we will denote ϕg(p) simply by gp. So suppose a action (G,M) is given. The
orbit through a point p ∈M is the following subset of M :

Gp = { gp ∈M | g ∈ G };

the isotropy subgroup at p ∈M is the following subgroup of G:

Gp = { g ∈ G | gp = p }.

It is indeed obvious that Gp is a subgroup of G. Owing to the continuity of the action, it is also
true that Gp is a closed subgroup of G. It follows that Gp is Lie subgroup of G with the induced
topology (cf. Remark 0.4.7); furthermore, denoting the Lie algebra of by gp, we have

gp = {X ∈ g | X∗
p = 0 };

and, as is very easy to check, the various isotropy subgroups at points of the same orbit are conjugate
among themselves, namely,

(8.1.4) Ggp = gGpg
−1,

for every p ∈M and g ∈ G. Next, we introduce the smooth map

ωp : G→M ωp(g) = gp,

called the orbit map through p. Plainly, the image of the orbit map ωp is the orbit Gp, and ωp
induces a bijection between the quotient space G/Gp and the orbit Gp; denote by ωp the quotient
map:

G
ωp
> M

G/Gp

∨ ω̄p

>

More can be said. The orbit map ωp satisfies the equation

ωp ◦ Lg = ϕg ◦ ωp,

for every g ∈ G. Since Lg and ϕg are diffeomorphisms, it follows that ωp has constant rank. Since
d(ωp)1(X) = X∗

p , the kernel of ωp coincides with gp. Now, Gp being a closed subgroup of G, we
have that G/Gp admits a unique structure of smooth manifold such that the projection G→ G/Gp

�1�Mention integration problem?
�2�Use other symbol?
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is a submersion (cf. (0.4.18)) and, as such, G/Gp is called a homogeneous space of the Lie group G.
Since the tangent space T[Gp](G/Gp) is canonically isomorphic to the quotient g/gp, it follows that
ωp is an immersion of G/Gp into M . Hence, Gp acquires an structure of immersed submanifold of
M . It is clear that the tangent space

(8.1.5) Tp(Gp) = im d(ωp)1 = {X∗
p ∈ TpM | X ∈ g }.

A natural question that one can pose now is to ask when the orbits of a action (G,M) will be
embedded submanifolds ofM . This is equivalent to requiring that the various orbit maps be proper
maps, and is an immediate consequence of the following topological assumption on the action. We
say that (G,M) is a proper action if the map

̺ : G×M →M ×M, (g, x) 7→ (gx, x)

is a proper map. As is easily seen, all the isotropy subgroups of a proper action are compact. Note
also that the properness of an action (G,M) is automatic if G is a compact Lie group.

The orbits of an action (G,M) can also be thought of determining an equivalence relation R
in M : two points of M are declared to belong to the same equivalence class if and only if they lie
in the same orbit. Note that R is exactly the image of the map ̺. The set of equivalence classes
is called the orbit space, and is denoted by G\M . The orbit space, equipped with the quotient
topology, becomes a topological space. This topology is Hausdorff if the action (G,M) is proper.
Indeed, in this case, R is closed in M ×M . Let p, q ∈M be such that Gp 6= Gq. Then (p, q) 6∈ R,
so we can find open subsets U , V of M such that (p, q) ∈ U × V ⊂ (M ×M) \ R, whence GU
and GV are disjoint neighborhoods of Gp and Gq in G\M , respectively, proving that this space is
Hausdorff.

8.2 Orbit types and slices

We assume henceforth that (G,M) is a proper action. Then the orbits are embedded submanifolds,
the isotropy subgroups are compact and the orbit space is Hausdorff. The orbit space G\M in fact
carries a much finer structure than that, which we start to explain now.�3� It is useful to partition
the set of orbits into orbits of the same “type”. Here type may stand for different things, but
it is natural to say that two orbits are of the same type if and only if they are equivariantly
diffeomorphic. A completely equivalent formulation is the following. For every closed subgroup
H ⊂ G, denote by (H) the conjugation class of H. There is a map

Gp 7→ (Gp)

that associates to every orbit the conjugation class of the isotropy subgroup of a point in that
orbit; this map is well defined in view of relation (8.1.4). The conjugation class (Gp) is called the
orbit type of the orbit Gp. Of course, the conjugation classes of closed subgroups of G are partially
ordered via the inclusion, namely, if (H1) and (H2) are two such conjugation classes, set

(H1) 4 (H2)

if and only if H2 is conjugated to a subgroup of H1. An orbit Gp is called principal and its orbit
type is called principal if this orbit type is locally maximal with respect to this order. This means
that there exists a neighborhood of Gp in G\M consisting of orbits whose isotropy types are not

�3�Elaborate later.

172



strictly larger than (Gp), or, equivalently, there exists a neighborhood U of p in M such that, for
each q ∈ U , the relation (Gp) 4 (Gq) holds only if (Gp) = (Gq). Note that principal isotropy types
do exist: since the isotropy subgroups are compact, it suffices to select an isotropy subgroup of
minimal dimension and with the smallest possible number of connected components. The elements
of M that lie in a principal orbit are called regular points of the action, and the other elements
of M are called singular points of the action. Note that, strictly speaking, it is not clear yet from
this definition that the set of regular points is open, because it might happen that (Gq) and (Gp)
are not comparable for some points q ∈ U .

If all orbits of an action (G,M) are of the same type (H), it is not difficult to see that G\M
is a smooth manifold and M is equivariantly diffeomorphic to a G/H-fiber bundle over G\M
(cf. Lemma 8.2.2(e)), which of course is trivial if the base is contractible. The partition into orbit
types is much more interesting in case there exist nonprincipal orbits. The structure of the partition
is somehow determined by what happens near the singular points. A slice at a point p ∈ M for
the action (G,M) is a submanifold S of M of the form S = r−1(p), where r : U → Gp is a smooth
equivariant map, U is an invariant open neighborhood of Gp, and the restriction of r to Gp is the
identity map. The equivariance of r implies that

drq(X
∗
q ) = X∗

r(q),

for every X ∈ g, q ∈ U ; it follows that r must be a submersion and that

(8.2.1) dimS + dimGp = dimM.

The equivariance of r also implies that gS is a slice at gp for (G,M) and that U = GS.

8.2.2 Lemma (Localization principle) Let (G,M) be a proper action, and assume that S is a
slice at p ∈M for (G,M). Then:

a. We have that p ∈ S and GpS ⊂ S. It follows that the action of G on M restricts to an action
of Gp on S.

b. If gS ∩ S 6= ∅ for some g ∈ G, then g ∈ Gp. It follows that Gs ⊂ Gp for every s ∈ S. In
particular, Gs = Gp for every s ∈ S if p is a regular point relative to (G,M).

c. Let s1, s2 ∈ S. If the orbits Gps1 and Gps2 have the same isotropy type relative to (Gp, S),
then the orbits Gs1 and Gs2 have the same isotropy type relative to (G,M).

d. Let s ∈ S. Then the codimension of the Gp orbit of s in S is equal to the codimension of the
G-orbit of s in M .

e. The set U is an open invariant neighborhood of Gp and there is an identification of quotient
spaces U/G = S/Gp under which principal orbits of Gp in S map to principal orbits of G
on U .

Proof. (a) Since p ∈ Gp, r(p) = p, implying p ∈ S. If g ∈ Gp and q ∈ S, owing to the
equivariance of r,

r(gq) = gr(q) = gp = p.

Thus gq ∈ S, which verifies that GpS ⊂ S.

(b) Since r is equivariant, r(gS) = {gp}. So, if q ∈ gS ∩S, then r(q) = p and r(q) = gp, whence
gp = p, proving the first assertion. The other assertions are immediate consequences of this one.

(c) First, we prove the following claim: if s ∈ S, then Gs = (Gp)s. In fact, Gp ⊂ G immediately
implies that (Gp)s ⊂ Gs, and the reverse inclusion (Gp)s ⊃ Gs is a consequence of part (b), proving
the claim. Now, let s1, s2 ∈ S. The assumption says that (Gp)s1 = Gs1 and (Gp)s2 = Gs2 are
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conjugate as subgroups of Gp; a fortiori, these are conjugate as subgroups of G as well, proving the
assertion.

(d) By the argument in part (c), Gs = (Gp)s. Using relation (8.2.1), we compute the codimen-
sion of Gs in M as follows:

dimM − dimGs = dimS + dimGp− dimGs

= dimS + (dimG− dimGp)− (dimG− dimGs)

= dimS − dimGp + dim(Gp)s

= dimS − dimGp(s)

This proves the assertion.
(e) The existence of U is part of the definition of slice. Since S ⊂ U and Gp ⊂ G, every Gp-orbit

in S is contained in a unique G-orbit in U , so there is an injective map S/Gp → U/G. This map is
surjective, because, as U = GS, every G-orbit in U contains an element of S. Hence S/Gp = U/G.
For the purpose of proving the last assertion, let s ∈ S be a regular point relative to (Gp, S). Then
the Gp-orbits in a small neighborhood V of Gps in S have the same orbit-type as Gps (compare
Corollary 8.2.3). Owing to part (c) in this proof, GV is a neighborhood of Gs where the orbits
where the G-orbits have the same orbit-type as Gs. Hence, s is a regular point relative to (G,M). �

A immediate consequence of part (b) of Lemma 8.2.2 is the following corollary.

8.2.3 Corollary (Lower semi-continuity of orbit types) If S is a slice at p ∈M , then

(Gp) 4 (Gq)

for every q ∈ GS. If, in addition, p is a regular point of the action, then (Gp) = (Gq) for every
q ∈ GS, namely, the principal orbits are exactly the points of G\M where the orbit-type is locally
constant.

The existence of slices for proper actions was proved by Palais [Pal61] (see also [?, Thm. 2.3.3]),
but we will not dwell into that. It is much easier to construct slices in the case we start with a
proper and isometric action, as we shall see in the next section.

We close this section by introducing some important terminology. An action of a Lie group on
a vector space is called linear if the elements of the group act by linear transformations. A linear
action is also called a representation. If, in addition, the vector space is equipped with an inner
product and the elements of the group act by orthogonal transformations, then the action is called
an orthogonal representation. Later, we will use the following easy to check facts: the orbit-type
of a linear action on a vector space is constant along the lines through the origin minus the origin;
an orthogonal representation on a vector space restricts to an isometric action on the unit sphere
of the vector space.

8.2.4 Remark Under the hypothesis of Lemma 8.2.2, the converse of part (c) is not true, namely,
it may happen that Gs1 and Gs2 have the same isotropy type relative to (G,M) but Gps1 and
Gps2 do not have the same isotropy type relative to (Gp, S). In other words, it may happen that
Gs1 and Gs2 are conjugate in G but are not conjugate in Gp. The following example is due to
Michor [Mic97]. Let G be the semi-direct product Z2 ⋉ (S1 × S1) where the nontrivial element of
Z2 acts on S1 × S1 by permutation of the factors, and let M be the disjoint union of two copies of
C×C�4�

�4�Finish this.
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8.3 Isometric actions and the principal orbit type theorem

An action Φ : G ×M → M , where G is a Lie group and M is a Riemannian manifold, is called
isometric if ϕg is an isometry of M for every g ∈ G. An arbitrary action of a compact Lie
group on a complete Riemannian manifold can be made into an isometric action by a standard
averaging process using an invariant Haar measure on the group: namely, one starts with an
arbitrary Riemannian metric on the manifold, applies Proposition 1.3.7 to each tangent space, and
notes that the resulting family of inner products is smooth. More generally, a proper action of an
arbitrary Lie group can be also made isometric if one admits the existence of slices.

Although the theory of Lie group actions can be developed in greater generality, from now on we
will deal only with proper and isometric actions. The reason is that we are ultimately interested in
Riemannian manifolds, and, moreover, the assumption that actions are always isometric simplifies
many of the proofs. So, throughout this section, we let Φ : G×M →M denote a proper isometric
action of a Lie group G on a Riemannian manifold.

We first note that the induced vector fields X∗ on M , where X belongs to the Lie algebra of G,
are Killing fields. This is because the flow of X∗ is {ϕexp(tX)} and the ϕg for g ∈ G are isometries
of M . The following lemma is very useful.

8.3.1 Lemma Let (G,M) be an isometric action of a Lie group G on a Riemannian manifold,
and let γ be a geodesic in M . If γ is perpendicular to an orbit at one point, then it is perpenducular
to every orbit it meets.

Proof. Suppose that γ(t0) is perpendicular to G(γ(t0)) for some t0 in the domain of γ. In view
of (8.1.5), for every X in the Lie algebra of G, the equation

〈γ′(t), X∗
γ(t)〉 = 0

holds when t = t0. The equation thus holds for every t by Clairault’s Lemma 2.5.3. Again, in view
of (8.1.5), γ(t) is perpendicular to G(γ(t)) for every t, as desired. �

The first theorem that we are going to prove in this section is an existence result of slices. To
begin with, we need to introduce some concepts. If N is a submanifold of M , we denote by νN the
normal bundle of N , and set

ν(N ; ǫ) = { v ∈ νpN | p ∈ N, ||v|| < ǫ },
where ǫ > 0. Denote by exp⊥ : νN →M the restriction of the exponential map ofM to the normal
bundle of N . A tubular neighborhood of N is an open neighborhood U of N the form exp⊥(ν(N ; ǫ)),
where ǫ > 0 is such that exp⊥ is a diffeomorphism from ν(N ; ǫ) onto its image.

8.3.2 Lemma Let N be an orbit Gp, where p ∈M . Then exp⊥(ν(Gp; ǫ)) is a tubular neighnorhood
of Gp for sufficiently small ǫ > 0.

Proof. A computation very similar to that in the proof of Lemma 2.4.6 shows that exp⊥ is a
local diffeomorphism at the point 0p ∈ νp(N). It follows that exp⊥ is a diffeomorphism from a
neighborhood W of 0p in ν(N) onto its image. As in exercise 1 of chapter 2, one shows that W
contains a neighborhood of the form ∪x∈Vpνx(N ; δ), where Vp is a neighborhood of p in N and
δ > 0. Since N is an embedded submanifold of M , it has the induced topology, so we may assume
that Vp = B(p, δ′)∩N , where B(p, δ′) denotes the ball inM of center p and radius δ′ > 0 sufficiently
small. We deduce that

(8.3.3) exp⊥ is a diffeomorphism on
⋃

x∈B(p,δ′)∩N
νx(N ; δ)
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Of course, we also have that

(8.3.4) exp⊥ is a local diffeomorphism on νp(N ; δ).

Since N is an orbit of G and G acts by isometries on M , we have that exp⊥ is an equivariant
map. Therefore fact (8.3.4) holds for p replaced by any point of N with the same δ. It follows that
exp⊥ is a local diffeomorphism on ν(N ; δ). Now, let ǫ = min{ δ2 , δ

′

2 }; we claim that exp⊥(ν(N ; ǫ))
is a tubular neighborhood of N . Indeed, we already know that exp⊥ is a local diffeomorphism on
ν(N ; ǫ); it only remains to show that exp⊥ is injective on that set. For that purpose, suppose that
there exist q, q′ ∈ N and v ∈ νq(N ; ǫ), v′ ∈ νq′(N ; ǫ) with exp⊥ v = exp⊥ v′. Then, denoting by d
the distance in M , we have that

d(q, q′) ≤ d(q, exp⊥ v) + d(exp⊥ v′, q′) ≤ ||v||+ ||v′|| < 2ǫ = δ′.

This shows that q′ ∈ B(q, δ′) ∩N . Again, N is an orbit of G and the group G acts by isometries,
so fact (8.3.3) holds for p replaced by q with the same δ′. We conclude that v = v′, as desired. �

Next, fix a point p ∈M and suppose that g ∈ Gp. Since the action is isometric and gp = p, the
differential d(ϕg)p is a linear isometry from TpM onto itself. Consider the subspace Tp(Gp) ⊂ TpM .
Any element of Tp(Gp) is of the form X∗

p , for some X ∈ g. Since

d(ϕg)p(X
∗
p ) =

d

dt

∣
∣
∣
t=0

ϕg(ϕexp(tX)(p))

=
d

dt

∣
∣
∣
t=0

ϕg exp(tX)g−1(p)

=
d

dt

∣
∣
∣
t=0

ϕexp(tAdgX)(p)

= (AdgX)∗p

is also an element of TpM , this shows that Tp(Gp) is invariant under d(ϕg)p. Consequently, its
orthogonal complement νp(Gp) is also invariant under d(ϕg)p. Denote by O(νp(Gp)) the group of
orthogonal transformations of νp(Gp). The orthogonal representation

Gp → O(νp(Gp)), g 7→ d(ϕg)p

is called the slice representation at p. Note that the slice representation restricts to an action of
Gp on the normal open ǫ-ball νp(Gp; ǫ) ⊂ νp(Gp) for every ǫ > 0.

8.3.5 Theorem (Normal slice theorem) Let (G,M) be a proper isometric action, and fix p ∈
M . Then there exists ǫ > 0 such that:

a. The exponential map of M maps ν(Gp; ǫ) equivariantly and diffeomorphically onto an invari-
ant tubular neighborhood U of Gp.

b. We have that the set Sp defined to be exp⊥p (νp(Gp; ǫ)) is a slice at p, called the normal slice
at p, and U = GSp.

c. There is an identification of orbit spaces U/G = νp(Gp; ǫ)/Gp under which principal orbits of
Gp in νp(Gp; ǫ) correspond to principal orbits of G on U .

d. There is a G-equivariant diffeomorphism Φ : G ×Gp νp(Gp) → U mapping [1, 0] to p (cf. ex-
ercise 7).
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Proof. The existence of ǫ > 0 as in part (a) is proved in Lemma 8.3.2. Now exp⊥ is a
diffeomorphism from ν(Gp; ǫ) onto U , so we put

r = π ◦ (exp⊥ |ν(Gp;ǫ))−1 : U → Gp,

where π : ν(Gp) → Gp denotes the bundle projection. It is clear that r is a smooth equivariant
map that restricts to the identity on Gp, and r−1(p) = Sp. This proves part (b). For part (c),
recall that it is proved in Lemma 8.2.2(d) that U/G = Sp/Gp. Since exp⊥p : νp(Gp, ǫ) → Sp is an
equivariant diffeomorphism, we also have that Sp/Gp = νp(Gp; ǫ)/Gp; the result follows. Finally,
in part (d) the map

Φ[g, v] =

{

g expp

(
2ǫ
π

arctan ||v||
||v|| v

)

if v 6= 0,

gp if v = 0,

satisfies the conditions. �

8.3.6 Proposition Let (G,M) be a proper isometric action. Then the slice representation at a
point p ∈M is trivial if and only if the orbit Gp is a principal orbit.

Proof. The slice representation being trivial means that every element of Gp acts as the identity
on νp(Gp). In particular, every Gp-orbit in νp(Gp; ǫ) is a principal orbit. If follows from the normal
slice theorem 8.3.5 that the Gp-orbit type in the normal slice Sp is constant near p, and therefore
the G-orbit type in U is constant near p. Hence p is a regular point. �

Now we come to the main result in this section.

8.3.7 Theorem (Principal orbit type theorem) Let (G,M) be a proper isometric action of a
Lie group G on a connected Riemannian manifold M . Then there exists a unique principal orbit
type. Furthermore, the union Mreg of all the principal orbits is open and dense in M , and the
quotient space Mreg/G is connected.

Proof. We divide the proof into several claims.
(a) The set Mreg is open in M . If p is a regular point and S is a slice at p, then GS consists

entirely of regular points by Corollary 8.2.3, and this is an open neighborhood of Gp.
(b) The set Mreg is dense in M . Let V be an arbitrary open subset of M . Owing to the

compactness of the isotropy subgroups of G, we can choose a point p ∈ V whose isotropy subgroup
Gp has the smallest possible dimension and, among the isotropy subgroups of points in U with the
same dimension as Gp, has the minimum number of connected components. Let S be a slice at
p. Of course, GS ∩ V is a neighborhood of p. For every q ∈ GS ∩ V , Corollary 8.2.3 implies that
(Gp) 4 (Gq). This means that Gq is conjugate to a subgroup of Gp, so dimGq ≤ dimGp; by the
choice of p, this must be an equality. Similarly, Gq and Gp have the same number of connected
components. We conclude that Gq = Gp. We have shown that (Gq) = (Gp) for every q ∈ GS ∩ V ,
thus p is a regular point. Hence V contains regular points.

(c) The set of principal orbitsMreg/G is connected. Given two principal orbits Gp and Gq, there
exists a minimal geodesic γ joining them, perpendicular to both orbits at its endpoints (compare
exercise 4 of chapter 5). Without loss of generality, we may assume that γ is defined on [0, 1] and
γ(0) = p, γ(1) = q. By Corollary 8.3.6, Gp ⊂ Gγ(t) for all t ∈ [0, 1]. If the inclusion is strict for
some t0 ∈ (0, 1), say there is g ∈ Gγ(t0) \Gp, then γ|[0, t0]∪ g ◦ γ|[t0, 1] is a broken geodesic joining
Gp and Gq which is of the same length as γ. This is a contradiction as a broken geodesic cannot
be minimal. It follows that γ(t) is a regular point for t ∈ [0, 1], proving the arcwise connectedness
of Mreg/G.
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(d) Uniqueness of principal orbit-type. This is now easy to prove. The principal orbit-types
correspond exactly to the orbits in Mreg/G. Since Mreg/G consists of orbits whose orbit-type is
locally constant by Corollary 8.2.3, and Mreg/G is connected, there can be only one orbit-type in
Mreg/G.

This finishes the proofs of all assertions in the statement of the theorem. �

A consequence of the principal orbit-type theorem 8.3.7 is that the unique principal orbit-type
of a proper isometric action majorates all of of the other orbit-types. An isotropy subgroup repre-
senting the principal orbit-type can be characterized as being an isotropy subgroup of the action
having the minimum dimension and having the smallest possible number of connected components
among the isotropy subgroups of that dimension. It follows that the principal orbits in a slice
correspond to principal orbits in the manifold. It also follows that all the principal orbits are equiv-
ariantly diffeomorphic (cf. exercise 1) and, in particular, have the same dimension. The common
codimension of the principal orbits of a proper isometric action is called the co-homogeneity of the
action. A nonprincipal orbit of the same dimension as a principal orbit is called an exceptional
orbit , and a nonprincipal orbit of smaller dimension is called a singular orbit.

8.3.8 Remark It follows from Lemma 8.2.2, parts (d) and (e), that the cohomogeneity of a proper
isometric action is equal to the cohomogeneity of any slice representation. This often furnishes an
inductive algorithm to compute the cohomogeneity of a proper and isometric action.

8.4 The stratification by orbit types ⋆

In general, a stratification of a topological space M (M does not need to be a manifold) is a locally
finite partition of M into a family of locally closed submanifolds Mi (i ∈ I), called the strata, such
that, for each i ∈ I, the closure M̄i consists of Mi together with a number of lower dimensional
submanifolds in the family. We now explain how a proper isometric action of a Lie group G on a
complete Riemannian manifold M induces a natural stratification of M .

Let (H) be an orbit type of the action. We introduce some notation:

MH = H-fixed point set;

M(H) = {x ∈M : (Gx) = (H)};
MH = {x ∈M : Gx = H} =M(H) ∩MH .

Then MH is a closed totally geodesic submanifold of M (cf. exercise 4), and MH is open in MH .
Denote by N(H) the normalizer of H in G. Then N(H) acts on MH (with kernel H) and on MH .
The map

G×MH →M, (g, p) 7→ gp

has image M(H), and induces an identification of M(H) with the total space of the bundle

G×N(H) MH → G/N(H)

with fiberMH (cf. exercise 7). This shows thatM(H) is a G-invariant submanifold ofM (in general

nonclosed, but locally closed since it is open inM(H)), each connected component of which is called
a stratum of type (H).

8.4.1 Proposition The partition of M into orbit types is locally finite.
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Proof. Indeed, by Lemma 8.2.2(c), it suffices to check it for the normal slice at a point. In the
linearized normal slice, orbit types are constant along radial lines, so the linearized normal slice
has at most one orbit type more than its restriction to the unit sphere (namely, the origin). By
induction on the dimension of M , the partition of the unit sphere into orbit types is locally finite,
and hence is finite as the sphere is compact. �

Next we describe the closure of a stratum.

8.4.2 Proposition The closure MH is a union of components of MH .

Proof. Since the components of MH are open in MH , MH can only meet components of MH

that meetMH . Let β be such a component and fix p ∈ β∩MH . Given q ∈ β, there is a (minimizing)
geodesic γ in β joining q to p, say γ(t) = expq(tv) with v ∈ (TqM)H . Note that (Gq)v = H, because
any element of Gq fixing v must also fix p, but Gp = H. Now Gexpq(tv)

= H for t > 0, proving

that q ∈MH . �

8.4.3 Proposition Let X be a component of M(H). Then X̄ is the union of X with a certain
number of lower dimensional strata.

Suppose p ∈ X̄ ⊂M(H), write K = Gp, and let U be a tubular neighborhood around Gp. Then
U ∩X 6= ∅. Therefore (K) 4 (H). Let S be the normal slice at p so that U = GS. By assumption,
there is a sequence pn ∈ X ∩ U such that pn → p. Write pn = gn expp(vn), for gn ∈ G and
vn ∈ νp(Gp), where gn → 1 and vn → 0. Note that Kvn = Kexpp(vn)

= Gexpp(vn)
, so (Kvn) = (H)

for all n.
Given q ∈ S ∩ M(K), we can write q = expp(v) for some v ∈ νp(Gp)

K . It is obvious that

Kvn+v = Kvn . Now qn := gn expp(vn + v) → q and Gexpp(vn+v)
= Kvn+v, so qn ∈ M(H) for all n.

We have shown that U ∩M(K) ⊂ X̄. This proves that X̄ contains every component of M(K) that
it meets.

Suppose Y is a component of M(K) with Y ⊂ X̄ and (K) ≺ (H); we may assume H ( K.

Then dimY = dimG − dimK + dimV K , where V is a linear normal slice at a point in Y ∩MK

(cf. Theorem 8.3.5(d)), and dimX = dimG ×K V(H) = dimG − dimK + dimV(H). Note that

V(H) = V K × ((V K)⊥)(H), and ((V K)⊥)(H) contains at least one radial direction in (V K)⊥, so that

dim((V K)⊥)(H) ≥ 1,x and hence dimX > dimY . This finishes the proof. �

8.4.4 Proposition Each M(H) is a minimal submanifold of M .

Proof. Since G acts on M(H) is G-invariant by extrinsic isometries, the mean curvature vector
X ofM(H) is equivariant, in the sense that dg(Xp) = Xgp for all p ∈M(H) and g ∈ G. In particular,

X is H-fixed alongMH . On the other hand, if p ∈MH then TpM(H) = Tp(Gp)⊕νp(Gp)H , implying
that νp(M(H)) does not contain nonzero H-fixed vectors. Hence X = 0 along MH , and thus X = 0
along M(H) by equivariance. �

Propositions 8.4.1 and 8.4.3 show that there is a stratification of M by orbit types. Next we
explain how this induces a stratification of the orbit space M∗ :=M/G.

If S is a (normal) slice at p, then a tubular neighborhood of the orbit Gp can also be described
as G×Gp S. If p is a regular point, the Gp-action on S is trivial so a tubular neighborhood GS is
just a product Gp×S. In particular, if (G,M) has a single orbit type (H), every orbit is principal,
so every p ∈M admits a neighborhood GS and a local trivialization GS ≈ G/H × S showing that
M∗ = G\M is a smooth manifold and the projection M → M̄ is a submersion and a G/H-bundle.
There is a unique Riemannian metric on M∗ that turns M → M∗ into a Riemannian submersion.
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Since M(H) is a G-manifold with one orbit type only, namely (H), we can apply this argument and
deduce thatM∗

(H) := π(M(H)) =M(H)/G is a smooth manifold, and it carries a Riemannian metric
so that π : M(H) → M∗

(H) is a Riemannian submersion. The connected components of M∗
(H), for

all the orbit types (H), will be called strata of M̄ . Note that for each component X of M∗
(H), we

have that π−1(X) is the union of k components of M(H), where k is the number of components of
G/H. The facts that any stratum in M∗ is locally closed, and that its closure is the union of itself
with a number of lower dimensional strata follow from the corresponding statements for the strata
of M and the fact that π is an open map (cf. exercise 8). This yields the stratification of M∗, and
π :M →M∗ becomes a “stratified Riemannian submersion”.

The metric space structure

Let (G,M) be a proper isometric action, whereM is assumed connected. The set of manifold points
of M∗ is open and dense, but M∗ is, in general, not a manifold. For this reason, it is interesting to
consider a natural metric space structure on M∗.

Let x, y ∈M∗. Define the distance d(x, y) to be the distance between the G-orbits π−1(x) and
π−1(y) in M . Since the G-action is proper, its orbits are properly embedded submanifolds of M ,
and therefore d(x, y) > 0 for x 6= y. It is now clear that d defines a structure of metric space onM∗.

8.4.5 Remark Note that d(x, y) is equal to the length of a geodesic ofM joining a point in π−1(x)
to a point in π−1(y), which is horizontal in the sense that it is orthogonal to every G-orbit that it
meets (cf. exercise 4 of chapter 5 and Lemma 8.3.1); the initial point of the geodesic in one of the
two orbits can be any chosen point, by G-invariance, but this determines the endpoint in the other
orbit.

8.4.6 Proposition If (G,M) is a proper and isometric action, and M is a connected and complete
Riemannian manifold, then (M∗, d) is a separable complete locally compact metric space.

Proof. Since π is an open map and M is separable, also M∗ is separable.

We next claim that for each x ∈ M∗ there is δ > 0, depending on x, such that the closed ball
B[x, δ] is compact. Indeed, let p ∈ π−1(x) and take ǫ > 0 such that B(p, ǫ) is a normal open ball
around p. Let δ ∈ (0, ǫ). It is clear that π(B[p, δ]) ⊂ B[x, δ], simply by continuity of π. The reverse
inclusion follows from Remark 8.4.5, so that π(B[p, δ]) ⊂ B[x, δ]. Recall that B[p, δ] is compact by
the Hopf-Rinow; the claim follows.

The claim implies that M∗ is locally compact. It also implies that M∗ is complete. In fact, a
given Cauchy sequence eventually stays in a compact B[x, δ] for some x ∈M∗, and hence converges
to a point in there. �

8.4.7 Remark (M∗, d) is also a finite dimensional metric space, and indeed the topological di-
mension of M∗ equals the cohomogeneity c of (G,M). In fact, let H be a principal isotropy group
of (G,M). Then M∗

(H) is open in M∗ and a smooth manifold of dimension dimM(H)−dimG/H =

dimM − dimG/H = c (since M(H) ≈M∗
(H) ×G/H), so dimM∗

(H) ≥ c. To finish, the basic fact in
dimension theory of metric spaces that we need is that, if a metric space X is the union of two sub-
sets of dimension less than or equal to k, one of which is closed, then dimX ≤ k [HW41, p. 32]. Now
M∗ =M∗

(H) ∪ (M∗ \M∗
(H)) and M

∗ \M∗
(H) is closed, so we need to show that dim(M∗ \M∗

(H)) ≤ c.

In turn, this inequality follows from the more general result dimM∗
(K) \M∗

(K) < dimM∗
(K) for any

orbit type (K).
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We claim that for a locally closed subset C of M∗ we have

dimC = max{dimC ∩M∗
(L) | L is a subgroup of G}.

To prove this claim, it suffices to work locally. Locally there are only finitely many orbit types,
and we can proceed by induction on the number of orbit types occuring in C. Let L0 ⊂ G be such
that M∗

(L0)
occurs in C and is maximal with respect to ≺. Then C ∩M∗

(L0)
is open in C and, by

the basic fact, dimC ≤ max{dimC ∩M∗
(L0)

, dimC \M∗
(L0)

}. By induction,

dimC \M∗
(L0)

= max{dimC ∩M∗
(L) | (L) 6= (L0)},

and we are done.
We apply the claim to C =M∗

(K) \M∗
(K) to deduce that

dimM∗
(K) \M

∗
(K) = max{dimM∗

(K) ∩M
∗
(L) | (L) 6= (K)}

< dimM∗
(K),

since M∗
(K) \M∗

(K) is a union of lower dimensional strata.

8.5 Polar actions

A proper isometric action of a Lie group G on a complete Riemannian manifold M is called polar
if there exists a complete connected immersed submanifold�5� Σ of M which intersects all the
orbits and such that Σ is perpendicular to every orbit it meets. Such a submanifold is called
a section. Polar actions and sections have been considered in one or another form by Bott and
Samelson [BS58], Conlon [Con71], Szenthe [Sze84], Dadok [Dad85], Palais and Terng [PT87], and,
more recently, by other researchers working in the field. We will review some of their contributions
in the course of this section.

A number of basic properties of polar actions is listed in Lemma 8.5.2 below. First, we prove a
related result about general proper isometric actions.

8.5.1 Lemma Let (G,M) be a proper isometric action. Then, for every p ∈ M , the subset
expp(νp(Gp)) meets all the orbits of G.

Proof. Fix an arbitrary orbit N of G. Since the action is proper, N is an embedded, thus closed
submanifold of M . By Exercise 4 of Chapter 5, there exists a minimal geodesic γ : [0, 1] → M
joining p to N , γ(0) = p, and γ is perpendicular to N at γ(1); set q = γ(1). Due to Lemma 8.3.1,
γ is perpendicular to Gp at p. Therefore q = expp(γ

′(0)) where γ′(0) ∈ νp(Gp). This proves that
expp(νp(Gp)) meets N at q. �

8.5.2 Lemma Let (G,M) be a polar action. Then:
a. If Σ is a section of (G,M) and g ∈ G, then gΣ is a section of (G,M). In other words, any

G-translate of a section is a section.
b. There exists a section of (G,M) through every point of M .
c. The dimension of a section of (G,M) equals the co-homogeneity of the action.
d. Any section of (G,M) contains a dense subset consisting of regular points of the action.
e. A section of (G,M) is totally geodesic in M .

�5�Do note about non-injective immersions.
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f . There exists a unique section of (G,M) through a regular point p ∈ M , and it is given by
expp(νp(Gp)).

g. If Σ1 and Σ2 are two sections of (G,M), then there exists g ∈ G such that gΣ1 = Σ2. In
other words, any two sections differ by an element of the group.

Proof. (a) If Σ meets a given orbit N at a point p, then gΣ meets N at the point gp. This
shows that gΣ meets all the orbits. Moreover, if gΣ meets N at a point q, then it is perpendicular
there, because Σ meets N at g−1q and this is perpendicular and G acts by isometries. It follows
that gΣ satisfies the two defining conditions of a section.

(b) Let Σ be a section of (G,M). Given p ∈ M , the orbit Gp meets Σ in a point gp for some
g ∈ G by the definition of a section. Then g−1Σ is a section by (a) and p ∈ g−1Σ.

(c) Let Σ be a section. Then

TpΣ ⊂ νp(Gp)

for every p ∈ Σ by definition of a section. Denote by Σr the open set of regular points of Σ.
Since dim νp(Gp) equals the co-homogeneity of (G,M) for p ∈ Σr, the above inclusion implies
that dimΣ is not larger than this co-homogeneity. Recall the submersion π : Mreg → Mreg/G.
Since Σ intersects all the orbits, the restriction π|Σr : Σr → Mreg/G is surjective. It follows that
dimΣr ≥ dimMreg/G. Since dimMreg/G is equal to the co-homomogeneity of (G,M), we conclude
that dimΣ is also equal to this co-homogeneity.

(d) It is clear that the set of regular points in Σ is open. Suppose, on the contrary, that
there exists an open subset V of Σ that does not contain regular points of (G,M). Let p ∈ V
be a point whose isotropy subgroup Gp has the minimum dimension and the smallest number of
connected components among the points in V . By Corollary 8.2.3, (Gp) = (Gq) for q ∈ V . It
follows that GV ≈ Gp× V is a submanifold of M . If S is the normal slice at p, then TpS = νp(Gp)
and Tp(GV ) = Tp(Gp) ⊕ TpΣ. It follows that GV is transversal to S at p. By shrinking V , we
can assume S ∩ GV is a submanifold W , where dimW = dimΣ. Gp cannot fix all the points of
S because p is not regular, but it fixes all the points of W , so the co-homogeneity of (Gp, S) is
at least dimW + 1 = dimΣ + 1 (cf. exercise 5). This is also the co-homogeneity of (G,M) by
Theorem 8.3.5(c), which contradicts part (c).

(e) Let Σ be a section. By part (d), Σr is dense in Σ. Thus, by continuity, it suffices to prove
that the second fundamental form of Σ in M vanishes along Σr. Let p ∈ Σr and consider a normal
vector u ∈ νpΣ. Since p is a regular point, νpΣ = Tp(Gp), so we can find an element X in the Lie
algebra of G such that X∗

p = u. Owing to the polarity of the action, X∗ is perpendicular to Σ.
Therefore the Weingarten operator A of Σ can be written as 〈Auv, v〉 = −〈∇vX

∗, v〉 = 0 for all
v ∈ TpM , where we have used that X∗ is a Killing field. Hence A vanishes along Σr, as we wanted.

(f) Let p ∈ M be a regular point and let Σ be a section through p. We have seen that
TpΣ = νp(Gp) and Σ is totally geodesic, so Σ ⊃ expp(TpΣ) = expp(νp(Gp)). For the converse
inclusion, let q ∈ Σ. By part (e) and completeness of Σ, there exists a minimal geodesic of M ,
γ : [0, 1] → Σ, with γ(0) = p and γ(1) = q. Then q = expp(γ

′(0)) where γ′(0) ∈ TpΣ, proving that
Σ ⊂ expp(TpΣ) = expp(νp(Gp)).

(g) Let p ∈ Σ1 be a regular point. There exists g ∈ G such that gp ∈ Σ2. Now gΣ1 and Σ2 are
two sections through the regular point gp, so they must coincide by part (f). �

The next result shows that the property of being polar is inherited by the slice representations.

8.5.3 Proposition Let (G,M) be a polar action, and let p ∈M . Then the slice representation at
p is also polar. In fact, if Σ is a section of (G,M) through p, then TpΣ is a section of (Gp, νp(Gp)).
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Proof. Set K = Gp and V = νp(Gp) for convenience. We first verify the assertion about the co-
homogeneity. The co-homogeneity of the slice representation is the same as that of the slice action
of K on the normal slice S at p. Let s ∈ S be a regular point of (K,S). In view of Lemma 8.2.2(e),
s is a regular point of (G,M), so by part (d) of the same lemma, the co-homogeneity of (K,S) is
equal to that of (G,M). This shows that TpΣ has the right dimension of a section of (K,V ).

We claim that TpΣ contains regular points of (K,V ). In fact, let ξ be a principal orbit of G,
and choose a connected component β of ξ ∩Σ. Let γ be a minimal geodesic in Σ from γ(0) = p to
γ(1) ∈ β. Then γ′(0) ∈ TpΣ is a regular point of (K,V ) by exercise 3. Next, if we can prove that
TpΣ is perpendicular to Kv for every v ∈ Σ, this will finish the proof, for it will follow that, for a
(K,V )-regular point w ∈ TpΣ, TpΣ coincides with the normal space of Kw in V , and hence TpΣ
meets all the K-orbits in V owing to Lemma 8.5.1.

So let v ∈ Σ. The Lie algebra k consists of the elements of g such that X∗
p = 0. We also have

that k induces Killing fields on V via the action (K,V ); denote them with ()∗∗. The tangent space
TvKv is spanned by the vectors X∗∗

v ∈ V , where X ∈ k. Let u ∈ TpΣ. In view of the formula in
exercise 13 of chapter 2,

〈X∗∗
v , u〉 = 〈(∇vX

∗)p, u〉 = −〈AX∗
p
v, u〉 = 0.

This shows that Kv is perpendicular to TpΣ and completes the proof. �

8.5.4 Corollary Let (G,M) be a polar action, and let p ∈M . Then the isotropy subgroup Gp acts
transitively on the set of sections of (G,M) through p.

Proof. Let Σ1 and Σ2 be two sections containing the point p. According to Proposition 8.5.3, the
slice representation (Gp, νp(Gp)) is polar and TpΣ1, TpΣ2 are two of its sections. By Lemma 8.5.2(a),
there exists g ∈ Gp such that dgp(TpΣ1) = TpΣ2. Since Σ1 and Σ2 are totally geodesic, this implies
that gΣ1 = Σ2, as wished. �

Let (G,M) be a proper isometric action. By the normal slice theorem, locally, the study of the
orbit space near an orbit Gp is reduced to the study of the orbit space of the action of Gp on the
normal slice Sp. Next, we explain how this reduction can be done globally in the case in which
(G,M) is a polar action.

Let (G,M) be a polar action, and let Σ be a section. Denote by N(Σ) the normalizer of Σ in
G, namely, the subgroup of G consisting of the elements that restrict to isometries of Σ. Then the
action of G on M restricts to an action of N(Σ) on Σ. In the following, it will be interesting to
consider the effectivized action of N(Σ) on Σ; we say an action is effective if the only group element
that acts as the identity map is the identity element in the group. For that purpose, denote by
Z(Σ) the centralizer of Σ in G, namely, the subgroup of G consisting of the elements that restrict
to the identity on Σ. Take any regular point p ∈ Σ. It is obvious that Z(Σ) ⊂ Gp, and the reverse
inclusion is a consequence of Proposition 8.3.6. In particular, Z(Σ) = Gp is a closed subgroup of G.
Note also that N(Σ) is a subgroup of the normalizer of Gp in G, N(Σ) ⊂ NG(Gp).

The generalized Weyl group of the polar action (G,M) with respect to the section Σ is defined
to be the quotient group

W (Σ) = N(Σ)/Z(Σ).

In the following proposition we collect a number of properties related to the generalized Weyl group.

8.5.5 Proposition Let (G,M) be a polar action admitting a section Σ.
a. The generalized Weyl group W (Σ) is a discrete closed subgroup of N(Gpr)/Gpr, for some

principal isotropy group Gpr of (G,M). In particular, W (Σ) acts properly on Σ.
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b. The inclusion ι : Σ →M induces a map ῑ : Σ/W (Σ) →M/G, which takes a N(Σ)-orbit of a
point in Σ to the G-orbit of that point. This map is is a homeomorphism between the quotient
topological spaces.

c. For every p ∈ Σ, Gp ∩ Σ =W (Σ)p.
d. If Σ1 and Σ2 are sections, then there exists an isomorphism between the generalized Weyl

groups W (Σ1) and W (Σ2) which is uniquely defined up to an inner automorphism of W (Σ1).

Proof. (a) Let p ∈ Σ be a regular point and write Gp = Gpr. Let S be the normal slice at
p. Then S is an open neighborhood of p in Σ. The continuity of the action implies that gp ∈ S
for an element g ∈ N(Σ) sufficiently close to the identity of N(Σ). Since Gp is a principal orbit,
Proposition 8.3.6 says that S meets every orbit near p at a unique point�6�, so gp = p, namely,
g ∈ Gp = Z(Σ). This argument thus shows that Z(Σ) contains an open neighborhood of the
identity in N(Σ), and this is equivalent to saying that Z(Σ) is an open subgroup of N(Σ). Hence
the quotient N(Σ)/Z(Σ) is a discrete Lie group. Now every discrete subgroup of a Hausdorff
topological group is closed (cf. exercise 6). The properness of the W (Σ)-action on Σ is immediate
from this and the properness of the G-action on M .

(b) Since Σ meets all the orbits of G in M , this map is surjective. We claim that the map ῑ is
also injective. In order to prove this claim, suppose that p, q ∈ Σ lie in the same G-orbit; we need
to prove that they lie in the same N(Σ)-orbit, too. We can write q = gp for some g ∈ G. Then
q lies in gΣ, so Σ and gΣ are two sections through the point q. By Corolllary 8.5.4, there exists
h ∈ Gq such that hgΣ = Σ. It follows that q = hq = hgp where hg ∈ N(Σ), and this proves the
claim.

We already know that ῑ is a continous and bijective map, so now we need only to prove that it is
an open map. For that purpose, let U be an open set of Σ/W (Σ) and denote by πΣ : Σ → Σ/W (Σ)
and πM : M → M/G the projections. By the definition of quotient topology, we know that
π−1
Σ (U) is open and we want to show that this implies that π−1

M ῑ(U) is open. Since G acts by
homeomorphisms on M , this is a consequence of the following relation that we prove in the sequel:

π−1
M ◦ ῑ(U) = Gπ−1

Σ (U).

In fact, we have that a point p ∈M belongs to the left hand side if and only if πM (p) ∈ ῑ(U), and
this means that πM (p) = ῑ(πΣ(q)) = πM (ι(q)) for some q ∈ π−1

Σ (U). But the latter is equivalent
to having p lying in the same G-orbit as a point q ∈ π−1

Σ (U), which is exactly the meaning that
p ∈ G pi−1

Σ (U).

(c) One inclusion is obvious, and the other one is the injectivity of the map ῑ proved in part (b).

(d) By Lemma 8.5.2(g), there exists an element g ∈ G such that gΣ1 = Σ2. It is easy to see that
gN(Σ1)g

−1 = N(Σ2) and gZ(Σ1)g
−1 = Z(Σ2). So the conjugation by g induces an isomorphism

W (Σ1) → W (Σ2). If g′ ∈ G is another element satisfying g′Σ1 = Σ2, then g−1g′ ∈ N(Σ1), so
this element defines an inner automorphism of W (Σ1) and the conjugations by g and g′ induce
isomorphisms W (Σ1) →W (Σ2) that differ by that inner automorhism. �

Recall the metric space structures on M/G and Σ/W , where W =W (Σ) (cf. section 8.4).

8.5.6 Proposition The map ῑ : Σ/W (Σ) →M/G is an isometry of metric spaces.

Proof. The map ῑ is non-expanding (or 1-Lipschitz), namely,

d(ῑ(x), ῑ(y)) ≤ d(x, y)

�6�Elaborate results there
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for all x, y ∈ Σ/W , since every geodesic in Σ is a geodesic in M .

Next we show that the restriction of ῑ to Σ∩Mreg is injective. Write N = N(Σ) for convenience,
and assume ῑ(x) = ῑ(y) for some x, y ∈ Σ∩Mreg/N . Then x = Np, y = Nq for some p, q ∈ Σ∩Mreg

and q = gp for some g ∈ G. Now Σ, g−1Σ are two sections through the regular point p and thus
they coincide. We deduce that g ∈ N and hence x = y.

In view of the continuity of ῑ and the denseness of G-regular points in Σ, to finish the proof we
need only show that ῑ is an isometry on Σ∩Mreg. In fact let x = Np, y = Nq where p, q ∈ Σ∩Mreg.
The minimizing geodesic γ in M from p to Gq is entirely contained in Σ. Let r ∈ Σ ∩ Gq be the
endpoint of γ. Clearly γ minimizes the distance from Np to Nr. Since Gr = Gq, by the argument
in the previous paragraph we have Nr = Nq. Hence d(ῑ(x), ῑ(y)) = length(γ) = d(x, y) as desired.

�

Recall that a Riemannian orbifold is a length space locally isometric to the quotient of a Rie-
mannian manifold by a finite group of isometries [Lan20]. For a section Σ of a polar action (G,M),
the generalized Weyl group W (Σ) is a discrete group acting properly on Σ (Proposition 8.5.5(a)),
and its isotropy subgroups are thus finite. It follows from Propostion 8.5.6 that the orbit space of
a polar action is a Riemannian orbifold.

8.6 Submanifold geometry of orbits of polar actions

The orbits of polar actions on complete Riemannian manifolds have remarkable geometrical proper-
ties as submanifolds. In the special case of polar representations of compact Lie groups on Euclidean
spaces, even more interesting is the fact that their orbits can be characterized by those submanifold
geometry properties.

Let (G,M) denote a proper and isometric action of a Lie group on a complete Riemannian
manifold. Let N = Gp be a principal orbit of (G,M) and consider the normal bundle ν(N) of N
in M . A normal vector v ∈ νp(N) admits an extension to a normal vector field v̂ ∈ Γ(ν(N)) by
putting

v̂(gp) = dgp(v)

for every g ∈ G. Note that v̂ is well defined, for if g′ ∈ G is another element with gp = g′p, then
g−1g′ lies in the isotropy Gp, and, since the slice representation at p is trivial by Proposition 8.3.6,
we have that

dg′p(v) = dgp ◦ d(g−1g′)p(v) = dgp(v).

A normal vector field on N constructed in this way is called an equivariant normal vector field.

One important consequence of this construction is that an orthonormal basis of the vector space
νp(N) can be extended to a global smooth orthonormal frame field of ν(N), so the normal bundle of
a principal orbit is topologically trivial. Another interesting consequence is that we can recover the
other orbits from N by using equivariant normal vector fields if we assume that M is connected.
In fact, owing to the completeness of M , for any G-orbit N ′, there exists a minimal geodesic
γ : [0, 1] → M joining p to N ′, γ(0) = p, and γ is perpendicular to N ′ at γ(1); set p′ = γ(1) ∈ N ′.
The geodesic must also be perpendicular to Gp by Lemma 8.3.1, so we can write γ(t) = expp(tv)
for some v ∈ νp(N), and thus p′ = expp(v). Since G acts by isometries on M , for g ∈ G we have
that

gp′ = g expp(v) = expgp(dgp(v)) = expgp(v̂(gp)),

and hence

N ′ = Gp′ = { expq(v̂(q)) | q ∈ N } = G expp(v̂(p)).

185



We conclude that the other orbits of G are obtained from N by exponentiating equivariant normal
vector fields on N .

If N is an orbit of (G,M), recall that the normal bundle ν(N) is equipped with the normal
connection ∇⊥. It is interesting to compare the equivariant normal vector fields in N with ∇⊥-
parallel normal vector fields, as the following proposition shows.

�7�

8.6.1 Proposition Let (G,M) be a proper isometric action of a Lie group on a connected complete
Riemannian manifold M . Then, the equivariant normal vector fields on the principal orbits are
parallel with respect to the normal connection if and only if (G,M) is locally polar.

Proof. Suppose first that (G,M) is locally polar. Fix a regular point p ∈ M , set N to be
the principal orbit Gp, and consider an equivariant normal vector field v̂ along N . We need to
show that ∇⊥

u v̂ = 0 for every u ∈ TpN . There is X ∈ g such that X∗
p = u. Define g(t) =

exp(tX) ∈ G for t ∈ R. Put also η(t) = g(t)p ∈ N and v = v̂(p) ∈ νp(N). Since v̂ is equivariant,
v̂(η(p)) = (dg(t))pv. Consider the variation through geodesics normal to N given by H(s, t) =
g(t) · expp(sv) = expη(t)(sv̂(η(t))). For each fixed s, t 7→ H(s, t) is a curve in the orbit Gγ(s),
where γ(s) = expp(sv). Therefore the associated variational vector field is a Jacobi field J along γ
which is everywhere tangent to the G-orbits. In particular J(0) = η′(0) = u ∈ TpN and, if s0 is
sufficiently small, q = expp(s0v) is a regular point and J(s0) is tangent to Gγ(s0). Let now Σ be
an integral manifold of the distribution of normal spaces to the principal orbits passing through p,
and take a smaller s0 > 0, if necessary, so that the geodesic segment γ|[0,s0] is entirely contained

in Σ. Decompose J = Jh + Jv according to the tangent and normal components to Σ. Since Σ
is totally geodesic, also Jh is a Jacobi field. Now Jh(0) = Jh(s0) = 0. By taking an even smaller
s0 > 0, we may assume γ(s0) is not a conjugate point of p along γ, which implies that Jh = 0. Now
J ′(0) = ∇uv̂ = −Avu+∇⊥

u v̂ has no component normal to N , which says that ∇⊥
u v̂ = 0, as wished.

Conversely, suppose now that every equivariant normal vector field on a principal orbits is
parallel with respect to the normal connection. We will prove that the distribution ν of normal
spaces to the principal orbits is auto-parallel, in the sense that ∇ξη lies in ν for sections ξ, η of
ν, so that ν is closed under Lie brackets, and hence integrable by Frobenius theorem. Indeed, for
every X ∈ g and p ∈M a regular point, we have

〈∇ξpη,X
∗
p 〉 = −〈ηp,∇ξpX

∗〉 = 〈ηp,∇⊥
X∗

p
ξ − [X∗, ξ]p〉.

Note that the left hand-side is tensorial in ξ, so we may assume ξ is equivariant along the prin-
cipal orbit Gp. This gives ∇⊥

X∗
p
ξ = 0, by our assumption. Moreover, [X∗, ξp] = (LX∗ξ)p =

d
dt

∣
∣
t=0

d(exp(−tX))ξexp(tX)p =
d
dt

∣
∣
t=0

ξp = 0, again by equivariance of ξ. This finishes the proof. �

As an application of Proposition 8.6.1, we prove:

8.6.2 Proposition The principal orbits of a polar representation of a compact connected Lie group
are compact isoparametric submanifolds of Euclidean space. Conversely, every homogeneous com-
pact isoparametric submanifold of Euclidean space is a principal orbit of a polar representation of
a compact connected Lie group.

Proof. Let (G, V ) be a polar representation of a compact Lie group G on an Euclidean space
V , and let N = Gp be a principal orbit. Choose an orthonormal basis ξ1, . . . , ξk of νp(N), and

extend each vector ξi to an equivariant normal vector field ξ̂i on N . In view of Proposition 8.6.1,

�7�Define locally polar.
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each ξ̂i is parallel with respect to the normal connection ∇⊥ in ν(N). Having that ξ̂1, . . . , ξ̂k is a
global parallel orthonormal frame in ν(N), we immediately get that the normal curvature R⊥ is
zero, namely, ν(N) is flat. It is also clear that for g ∈ G, the Weingarten operators of N satisfy
Adg(v) = dg ◦Av ◦ dg−1 for v ∈ νp(N). It follows that the principal curvatures along an equivariant
normal vector field along N are constant, and hence also along a parallel normal vector field. This
shows that N is isoparametric.

Conversely, suppose N is a compact homogeneous isoparametric submanifold of an Euclidean
space V . Let G be the identity component of the subgroup of Isom(V ) = O(V ) ⋉ V consisting of
isometries of V that preserve N . Then G is a closed connected subgroup of Isom(V ), and hence a
Lie group acting transitively on N . The compactness of G follows from the compactness of N .

Owing to Lemma 7.4.8 and Erbacher’s Theorem 7.4.9, we may assume N is full in V . It follows
that the curvature normals v1, . . . , vg of N span the normal space at each point. For any p ∈ N ,
v ∈ νp(N), and g ∈ G, the Weingarten operators Av and Adg(v) have the same eigenvalues. It
follows that 〈v, vi(p)〉 = 〈dg(v), vσ(i)(gp)〉 = 〈v, (dg)−1vσ(i)(gp)〉 for some permutation σ of 1, . . . , g.
Since G is connected, this permutation must be the identity, and hence all curvature normals are
equivariant vector fields. We deduce that the slice representation at a point in N is trivial, so
that N is a principal orbit of G. Since the curvature normals are parallel, we also deduce that
equivariant normal vector fields along N are parallel.

The other orbits of G on V are obtained by exponentiating equivariant normal vector fields
along N ; since these are also parallel, the principal orbits of G coincide with the parallel manifolds
of N , and hence are also compact homogeneous isoparametric submanifolds of V . By the argument
above, equivariant normal vector fields along any principal orbit of G are parallel. Due to Propo-
sition 8.6.1, (G, V ) is locally polar. Now a leaf of the principal horizontal distribution in totally
geodesic in V and hence open in an affine subspace Σ, which indeed must be a linear subspace since
{0} is an orbit. It is easily seen that Σ is a section of (G, V ), and this representation is thus polar.

�

8.7 Symmetric spaces

A (Riemannian) symmetric space is a Riemannian manifold M such that every x ∈ M is the
center of a “reflection”, in the sense that one can find an isometry sx of M such that sx(x) = x
and d(sx)x : TxM → TxM is −id. It follows immediately from exercise 15 of chapter 3 that sx
is involutive, in the sense that s2x = id. Note also that, if γv is the geodesic with γv(0) = x and
γ′v(0) = v for some v ∈ TxM , then sx ◦ γv = γ−v, so sx restricts to the geodesic reflection on some
normal neighborhood of x.

Transvections

Let M be a symmetric space, fix x ∈M and a geodesic γ with γ(0) = x. For each t in the domain
of γ, denote sγ(t) =: st; the isometry pt := st/2 ◦ s0 is a called a transvection along γ (at x).

8.7.1 Proposition Let γ : (−ǫ, ǫ) →M be a geodesic through p = γ(0).

a. The transvection pt induces translation along the curve γ, that is, pt(γ(t0)) = γ(t+ t0). More
generally, pt induces parallel transport on vectors along γ, in the sense that if v ∈ Tγ(t0)M
then X(t) = (dpt−t0)γ(t0)(v) is a parallel vector field along γ.

b. The transvections {pt} along γ form a local one-parameter group of isometries of M , namely,
pt+t′ = ptpt′ . whenever both hand sides are defined.
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c. The transvection pt depends only on γ but not on the chosen initial point x = γ(0). In other
words, s t

2
s0 = st0+ t

2
st0.

Proof. a. We have pt(γ(t0)) = s t
2
s0(γ(t0)) = s t

2
(γ(−t0)) = γ(t + t0). In the proof of the

second assertion, we are going to use the fact that isometries act on vector fields by push-forward
taking parallel vector fields to parallel vector fields. The assertion follows from the fact that
if an isometry maps a geodesic to itself, up to a translation in the parameter, then it maps a
parallel vector field along that geodesic to itself, up to a translation in the parameter. More
formally, assume that t0 = 0 for simplicity of notation. We want to show that X(t) = (dpt)x(v)
is parallel along γ. Let Y denote the parallel vector field along γ such that Y (0) = v. Fix
t1. Then Z(t) = (dpt1)γ(t−t1)(Y (t − t1)) ∈ Tγ(t)M is a parallel vector field along γ. Note that
Z(t1) = (dpt1)x(v) = X(t1). Since t1 is arbitrary, this completes the proof of a.

b. An isometry is determined by its differential at one point. Moreover, the composition
of parallel transports along two adjacent segments of γ equals the parallel transport along the
justaposed segment, so the result follows from part a.

c. Use part b. to write pt = pt+2t0p−2t0 = s t
2
+t0

s0s−t0s0. It is clear that for a isometry g, the

conjugation gsxg
−1 = sgx. Applying this to g = s0 = g−1 yields that s0s−t0s0 = st0 , as desired. �

It follows from Proposition 8.7.1 that each geodesic determines a unique local one-parameter
group of transvections along it.

8.7.2 Proposition A connected symmetric space must be homogeneous and complete.

Proof. Define an equivalence relation on M by declaring that two points are equivalent in case
there is an isometry of M mapping one point to the other. The existence of transvections implies
that the equivalence class of a point contains a normal neighborhood of it, and hence equivalence
classes are open. By connectedness ofM , there must be exactly one equivalence class, which means
that M is homogeneous.

Now every homogeneous manifold is complete (cf. exercise 13 in chapter 3). �

Recall that the Myers-Steenrod Theorem states that isometry groupG of a Riemannian manifold
M , equipped with the compact-open topology, has a natural structure of Lie group such that the
action of G on M is smooth and represents its Lie algebra g as the Lie algebra of Killing vector
fields on M . It is also worth recalling that convergence of a sequence of isometries in G in the
compact-open topology is equivalent to pointwise convergence in M . Finally, the isotropy group
Gx at a point x ∈M is compact.

Suppose now that M is a symmetric space. Let G be the identity component of the isometry
group of G. Fix a base-point x in M , and let K denote the isotropy group of G at x. Then
M = G/K. For every one-parameter group of transvections {pt} originating at x, there is a
corresponding Killing vector field Y whose value at y ∈ M is Y (y) = d

dt

∣
∣
t=0

pty; such a Y is called
an infinitesimal transvection at x.

8.7.3 Proposition A Killing vector field Y is an infinitesimal transvection at x if and only if
(∇Y )x = 0. It follows that the bracket of two infinitesimal transvections vanishes at x.

Proof. Let {pt} be the transvection one-parameter group at x that Y generates and take any

curve η(s) passing through x at s = 0. For the first assertion, it suffices to prove that ∇(Y ◦η)
ds |s=0 = 0.

Since the Levi-Cività connection is torsionless,

(8.7.4)
∇
ds

d

dt
ptη(s) =

∇
dt

d

ds
ptη(s) =

∇
dt
(dpt)η(s)η

′(s).
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By Proposition 8.7.1(a), the vector field (dpt)xη
′(0) is parallel along γ(t) = pt(x). Since Y (η(s)) =

d
dt |t=0ptη(s), evaluating eqn. (8.7.4) at s = t = 0 yields one direction of the claim.

Conversely, assume (∇Y )x = 0, take γ to be the geodesic with γ(0) = x, γ′(0) = Yx, and
consider the infinitesimal transvection Z at x along γ. Then Y = Z, due to exercise 6 of chapter 5.

The last assertion follows from [Y1, Y2] = ∇Y1Y2 −∇Y2Y1. �

Denote the Lie algebras of G andK by g and k, respectively, and denote the space of infinitesimal
transvections at x by p.

8.7.5 Proposition There is a vector space direct sum g = k+ p, where

[k, k] ⊂ k, [k, p] ⊂ p, [p, p] ⊂ k.

Proof. Every Killing field Z on M decomposes as a sum of Killing fields X + Y , where Y ∈ p

is the infinitesimal transvection such that Yx = Zx, and X = Z − Y vanishes at x and thus X ∈ k.
Further, a Killing field Z with Zx = (∇Z)x = 0 is identically zero. This proves the existence of the
direct sum. The first inclusion is just the statement that k is a Lie subalgebra of g. In order to see the
second inclusion, let k ∈ K and let pt be a transvection along γ at x, with Y = d

dt |t=0pt. Then kptk
−1

is clearly the transvection along k ◦ γ at x. Since dk(Yk−1y) = dk
(
d
dt |t=0ptk

−1y
)
= d

dt |t=0kptk
−1y,

we see that k∗Y = dk ◦ Y ◦ k−1 is an infinitesimal transvection at x. For X ∈ k, take ku = expuX
so that

[X,Y ]y =

(
d

du

∣
∣
∣
u=0

AdkuY

)

y

=
∇
du

d

dt

∣
∣
∣
u=0
t=0

kuptk
−1
u y

=
d

du

∣
∣
∣
u=0

dku(Yk−1
u y).

This shows [X,Y ] = d
du |u=0(ku)∗Y ∈ p. The last inclusion is proved in Proposition 8.7.3. �

Curvature

The calculation of the curvature of symmetric spaces was already known to Cartan. Let M be a
symmetric space with Levi-Cività connection ∇ and curvature tensor R.

8.7.6 Lemma Let M be a locally symmetric space and fix x ∈ M . Let X be an infinitesinal
transvection at x and let Y be any vector field defined on a neighborhood of x. Then (∇XY )x =
(LXY )x.

Proof. Let {pt} denote the local one-parameter group of local transvection generated by X.
Since pt induces parallel transport of vectors along the geodesic γ(t) = pt(x), we have

(LXY )x =
d

dt

∣
∣
∣
t=0

dp−t(Xγ(t))

=
d

dt

∣
∣
∣
t=0

P γ0,t(Xγ(t))

= (∇XY )x,

where P γt1,t0 denotes parallel transport along γ from t0 to t1. �
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8.7.7 Proposition Let M be a locally symmetric space, x ∈M and X, Y , Z ∈ TxM . Then

(8.7.8) Rx(X,Y )Z = −[[X,Y ], Z]x,

where on the right-hand side we use the infinitesimal transvection induced by the corresponding
tangent vector.

Proof. Let γ be the geodesic with initial speed Xx ∈ TxM . Since Y is a Killing field, its
restriction along γ is a Jacobi field. Therefore, using ∇

dt to denote the covariant derivative along γ,

R(X,Y )X =

(∇
dt

∇
dt
Y

) ∣
∣
∣
t=0

=

(∇
dt
[X,Y ]γ(t)

)

t=0

(by Lemma 8.7.6)

= [X, [X,Y ]]γ(0) (idem)

= −[[X,Y ], X]x.

The proof is finished by recalling that the sectional curvature determines the curvature tensor and
that the right-hand side of (8.7.8) has the symmetries of the curvature tensor. �

Locally symmetric spaces

A locally symmetric space is a Riemannian manifold M such that the geodesic reflection at any
point x ∈ M is an isometry defined on a normal neighborhood of x onto itself (cf. exercise 12 of
chapter 6). From exercises 12, 13 and 14 of chapter 6, one deduces:

8.7.9 Proposition A Riemannian manifold is locally symmetric if and only if the curvature tensor
of its Levi-Cività connection is parallel, ∇R = 0.

Every symmetric space is plainly a locally symmetric space. On the other hand, it is a conse-
quence of the Cartan-Ambrose theorem [CE75] that the geodesic symmetries in a simply-connected
complete locally symmetric space can be extended to global isometries, so that it becomes a sym-
metric space. It follows that every complete locally symmetric space is isometrically covered by a
global symmetric space, namely, its universal Riemannian covering.

Symmetric pairs and involutive Lie algebras

Let M be a symmetric space. Owing to Proposition 8.7.2, M is a homogeneous space G/K, where
G is the identity component of the isometry group of M and K is the isotropy group of a chosen
basepoint x. Since s2x = idM , conjugation by the symmetry sx induces an involutive automorhism
σ of G, namely, σ(g) = sxgs

−1
x . If k ∈ K, then sxks

−1
x is an isometry of M that fixes x and has the

same differential at x as k; hence sxks
−1
x = k. This implies that K is contained in the fixed point

set Gσ. On the other hand, the Lie algebra of Gσ is the fixed point set of dσ on the Lie algebra g

of G. If X ∈ g is such that dσ(X) = X, then σ(exp tX) = exp tX for all t ∈ R, which implies that
sx and exp tX commute. Now (exp tX)x is a fixed point of sx. Since x is an isolated fixed point of
sx, we deduce that (exp tX)x = x for small t > 0 and thus Xx = 0. This proves that X ∈ k, and
hence the identity component (Gσ)0 ⊂ K.

Let G be a connected Lie group and let K be a closed subgroup. The pair (G,K) is a called a
(Riemannian) symmetric pair if there exists an involutive automorphism σ of G such that (Gσ)0 ⊂
K ⊂ Gσ (equivalently, K is open in Gσ) and, in addition, the group AdG(K) is a compact group
of linear transformations of g.
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8.7.10 Proposition Let (G,K) be a symmetric pair. Then there is a G-invariant Riemannian
metric on G/K such that it is a symmetric space.

Proof. We have (Gσ)0 ⊂ K ⊂ Gσ for some involution σ of G. Let g = k+p be the ±1-eigenspace
decomposition of dσ. If k ∈ K and Y ∈ p, then dσAdkY = Adσ(k)dσY = Adk(−Y ) = −AdkY ,
showing that p is AdG(K)-invariant. Since AdG(K) is a compact group of linear transformations
of g, there is an invariant inner product on p. The projection π : G→ G/K yields an isomorphism
π∗ : p ∼= Tx(G/K), which is equivariant with respect to the adjoint action of K on p and the
isotropy representation of K on Tx(G/K). Indeed, for k ∈ K and Y ∈ p,

π∗(AdkY ) = π∗

(
d

dt

∣
∣
∣
t=0

k exp tY k−1

)

=
d

dt

∣
∣
∣
t=0

π(k exp tY k−1)

=
d

dt

∣
∣
∣
t=0

k exp tY · x
= dkx(Yx)

= dkx(π∗Y ),

as desired. Now the AdG(K)-invariant inner product on p induces a K-invariant inner product on
Tx(G/K), which we use to define a G-invariant Riemannian metric on G/K.

Put x = 1K and define sx(gK) = σ(g)K. For Y ∈ p, we have

dsx(Yx) =
d

dt
|t=0sx exp(tY )x

=
d

dt
|t=0σ(exp(tY ))x

=
d

dt
|t=0 exp(tdσY )x

=
d

dt
|t=0 exp(−tY )x

= −Yx.

This shows that d(sx)x = −id, and that d(sx)x is a linear isometry of Tx(G/K). Using that
sx ◦ g = σ(g) ◦ sx and g, σ(g) ∈ G are isometries of G/K, we see that sx is an isometry everywhere.
Since G/K is homogeneous, this already implies that G/K is a symmetric space. �

8.7.11 Remark (i) For the symmetric space G/K constructed in Proposition 8.7.10, the action
of G by left-multiplication on G/K need not be effective. The kernel Z of this action is the largest
normal subgroup of G contained in K. One obtains an effective presentation by dividing by Z,
namely, G/K = G′/K ′ where G′ = G/Z and K ′ = K/Z.

(ii) If (G,K) is a symmetric pair and g = k + p as in Proposition 8.7.10, there is a bijective
correspondence between G-invariant Riemannian metrics on the symmetric space G/K and AdK-
invariant inner products on p.

A (Riemannian) symmetric pair (G,K) gives rise on the Lie algebra level to an (orthogonal)
involutive Lie algebra: this is a pair (g, s), where g is a Lie algebra, s is an involutive automorphism
of g, and the fixed point set k of s is a compactly embedded subalgebra of g, in the sense that the
group of inner automorphisms of g generated by k is compact.
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Let (g, s) be an involutive Lie algebra, and write g = k+ p for the ±1-eigenspace decomposition
of s. By assumption there are adk-invariant inner products on p, and sometimes one specifies
one such inner product B and call the triple (g, s, B) an orthogonal involutive Lie algebra, or
OIL-algebra, for short.

Given an OIL-algebra (g, s, B), where g = k+ p under s, one can construct a symmetric pair as
follows. Let G̃ be the simply-connected Lie group with Lie algebra g, and let K̃ be the connected
subgroup of G̃ with Lie algebra k. Then (G̃, K̃) is a symmetric pair. If one assumes in the definition
of OIL-algebra that k does not contain an ideal of g, then the largest normal subgroup Z̃ of G̃
which is contained in K̃ is discrete, and we obtain an effective presentation of a simply-connected
symmetric space G̃/K̃ = G′/K ′ where G′ = G̃/Z̃, K ′ = K̃/Z̃ have resp. Lie algebras g, k. Note
that B defines a K ′-invariant inner product on TxM , where x = 1K ′, that extends to a G′-invariant
Riemannian metric on M .

8.7.12 Example There is a symmetric pair (SU(n+ 1),S(U(1) × U(n))), where σ is given by

conjugation by the matrix

(−1
1
. . .

1

)

. The associated symmetric space is complex projective

space CPn = SU(n+ 1)/S(U(1) × U(n)). More generally, if we conjugate by
(

−Ip
Iq

)

, where

p+q = n+1, we obtain the complex Grassmannian Grp(C
n+1) of p-planes in Cn+1 as a symmetric

space.

Types and duality

Let M = G/K be a symmetric space where G is the connected isometry group of M and (g, s, B)
is the OIL-algebra at x ∈M . Write g = k+ p for the decomposition into ±1-eigenspaces of s.

The symmetric space M is called of Euclidean type is [p, p] = 0. Recall that a Lie algebra is
called semisimple if its Killing form is nondegenerate. If g is semisimple and its Killing form Bg is
negative (resp. positive) definite on p, then M is called of compact type (resp. noncompact type).

8.7.13 Lemma a. Bg is negative definite on k.

b. M is of Euclidean type if and only if Bg = 0 on p.

Proof. (a) Let X ∈ k. Then Bg(X,X) = tracek(ad
2
X) + tracep(ad

2
X). Since k is the Lie algebra

of a compact Lie group, there is an ad-invariant inner product on k, with respect to which adX is
a skew-symmetric emdomorphism of k and has thus purely imaginary eigenvalues; it follows that
ad2X has negative eigenvalues on k. Similarly, B is adX -invariant and therefore ad2X has negative
eigenvalues on p. Now Bg(X,X) ≤ 0. In addition, Bg(X,X) = 0 is and only if all eigenvalues of
adX are zero, which is to say that X lies in the center of g. Then the multiples of X form an ideal
of g contained in k, and hence X = 0.

(b) If M is of Euclidean type then [p, p] = 0. For Y1, Y2 ∈ p, this implies that Bg(Y1, Y2) =
tracek(adY1 ◦ adY2) + tracep(adY1 ◦ adY2) = 0. In fact the first term on the right hand-side is zero
because [Y1, [Y2, X]] ∈ [Y2, p] = 0 for X ∈ k, and the second term is clealy zero. Conversely, suppose
that Bg = 0 on p, and let Y1, Y2 ∈ p. Then Bg([Y1, Y2], [Y1, Y2]) = Bg(Y1, [Y2, [Y1, Y2]]) = 0 because
Y1, [Y2, [Y1, Y2]] ∈ p. By part (a) we get that [Y1, Y2] = 0. �

Cartan duality establishes a pairing between simply-connected symmetric spaces of compact and
noncompact type. We first contruct the dual OIL-algebra to (g, s, B). Consider the complexification
gc = g ⊗R C. Note that g∗ := k +

√
−1p is a real subalgebra of gc. There is a natural involution
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s∗ of g∗, with ±1-eigenspaces k∗ = k and p∗ =
√
−1p. We complete the definition of dual OIL-

algebra (g, s, B)∗ = (g∗, s∗, B∗) by setting B∗(
√
−1X,

√
−1Y ) = B(X,Y ) for X, Y ∈ p. Note that

(g, s, B)∗∗ = (g, s, B).
Now we say that simply-connected symmetric spaces are dual one to the other if they have dual

OIL-algebras.

8.7.14 Proposition A simply-connected symmetric space M is of compact (resp. noncompact)
type if and only if its dual M∗ is of noncompact type (resp. compact) type.

Proof. Let (g, s, B) be the OIL-algebra of M . Then g is semisimple, which is to say that Bg

is nondegenerate. The Killing form of gc is the complexification of Bg, so, as a complex bilinear
symmetric form, it has the same matrix as Bg, on a basis (over C) consisting of elements of g.
It follows that Bgc is also nondegenerate. Since gc is also the complexification of g∗, the same
argument yields that g∗ is semisimple. Now we have just to note that

Bg∗(
√
−1X,

√
−1) = Bgc(

√
−1X,

√
−1Y )

= −Bgc(X,Y ) (by C-bilinearity of Bgc)

= −Bg(X,Y )

for X, Y ∈ p. �

8.7.15 Example The Cartan dual of Sn is RHn.

Irreducibility

Let M be a simply-connected symmetric space. By the de Rham decomposition theorem, there is
a Riemannian product decomposition of M and the identity component of its isometry group:

M =M0 ×M1 × · · · ×Mk, Isom(M)0 ∼= Isom(M0)
0 × · · · × Isom(Mk)

0,

where M0 is an Euclidean space (with the flat metric), and the Mi for i = 1, . . . , k are simply-
connected complete Riemannian manifolds which are irreducible, in the sense that the holonomy
group Holxi(Mi) at a point xi ∈Mi acts irreducibly on TxiMi.

�8� Every geodesic γ ofM emanating
from x = (x0, . . . , xk) is the product γ0×· · ·×γk of geodesics γi emanating from xi. It follows that
the geodesic symmetry of M at x is also decomposed as a product sx = sx0 × · · · × sxk , and hence
each factor Mi is a symmetric space.

We say a symmetric space is irreducible if it is holonomy irreducible.

8.7.16 Proposition Let M be an irreducible symmetric space with dimM ≥ 2, fix x ∈M , denote
its OIL-algebra at x by (g, s, B), and write g = k+ p under s. Then:
a. g is semisimple and [p, p] = k.
b. The Lie algebra of Holx(M) is isomorphic to k, and its action on TxM is equivalent to the

adjoint action of k on p.
c. M is either of compact type or of noncompact type.

8.7.17 Proposition An irreducible symmetric space of compact (resp. noncompact) type has non-
negative (resp. nonpositive) sectional curvature.

�8�The holonomy group Holx(M) of a Riemannian manifold M at a point x ∈ M is defined to be the subgroup of
O(TxM) generated by parallel transport along piecewise smooth loops at x. It is a Lie group.
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Proof. We apply formula (8.7.8). Note first that, by irreducibility, there is a real number λ 6= 0
such that B = λBg on p, and λ < 0 (resp. λ > 0) if M is of compact (resp. noncompact type).
Now, given a 2-plane E ⊂ TxM for some x ∈M , we take infinitesimal transvections X, Y ∈ p such
that Xx, Yx is an orthonormal basis of E. Then

K(E) = −B(R(X,Y )X,Y )

= B([[X,Y ], X], Y )

= λBg([[X,Y ], X], Y )

= λBg([X,Y ], [X,Y ]) (by adk-invariance of Bg),

and the result follows, as Bg is negative definite on k. �

Totally geodesic submanifolds

In stark contrast to general Riemannian manifolds, we shall see that symmetric spaces posses an
abundance of totally geodesic submanifolds.

Let M be a symmetric space. Fix a base-point x ∈ M and denote by (g, s, B) the associated
OIL-algebra. Recall that the geodesics ofM through x are of the form t 7→ exp(tX)·x forX ∈ TxM .

8.7.18 Proposition Let M be a symmetric space. Then every totally geodesic submanifold N has
an induced structure of locally symmetric space.

Proof. Let y ∈ N . The symmetry sy of M reverses geodesics through y and thus leaves N
invariant. Hence sy restricts to a symmetry of N . �

A subspace s of a Lie algebra is called a Lie triple system if [[X,Y ], Z] ∈ s for every X, Y ,
Z ∈ s.

8.7.19 Theorem Let M be a symmetric space. The connected complete totally geodesic subman-
ifolds of M passing through x are precisely of the form exp[s] · x, where s ⊂ p is a Lie triple
system.

Proof. Suppose N is a totally geodesic submanifold of M passing through x. Let s ⊂ p be
the subspace corresponding to TxN ⊂ TxM . Due to total-geodesicness, the curvature tensor of M
restricts to that of N . By Proposition 8.7.7, we get [[s, s], s] ⊂ s, hence s is a Lie triple system. If
N is complete and connected, every one of its points can be joined to x by a (minimizing) geodesic.
It follows that N = exp[s] · x.

Conversely, suppose s ⊂ p is a Lie triple system. Then h = [s, s] + s is a subalgebra of g, by the
Jacobi identity. Denote by H the associated connected subgroup of G. Then the orbit N = H(x)
is a connected homogeneous submanifold of M such that the induced Riemannian metric is H-
invariant. If X ∈ s, then the geodesic t 7→ exp(tX) · x of M is contained in N . It follows that N
is totally geodesic at x; hence, owing to homogeneity, it is totally geodesic everywhere. It is now
obvious that N is complete and N = exp[s] · x. �

Examples of complete totally geodesic submanifolds are more interesting if they are closed.

8.7.20 Proposition A maximal connected complete totally geodesic submanifold of a symmetric
space is properly embedded.
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Proof. LetM = G/K be a symmetric space where K = Gx, and let N = exp[s] ·x be a maximal
totally geodesic submanifold as in Theorem 8.7.19. Then s is a maximal LTS of g contained in p.

Put h̃ = Nk(s) + s, where Nk(s) is the normalizer of s in k. Maximality of the LTS s implies
that h̃ is a self-normalizing Lie subalgebra of g. In fact let X ∈ g normalize h̃ and decompose
X = Xk +Xp, where Xk ∈ k and Xp ∈ p. Then, for all Y ∈ s, [Xk, Y ] + [Xp, Y ] = [X,Y ] ∈ h̃, so
[Xk, Y ] ∈ h̃ ∩ p = s, implying that Xk ∈ Nk(s) ⊂ h̃. Therefore Xp normalizes h̃. If Xp 6= 0, we can
enlarge s by adjoining Xp, which contradicts the maximality of s.

It follows that the corresponding connected subgroup H̃ is the connected normalizer of h̃ in G.
In particular, H̃ is a closed subgroup of G. Since N = H̃(x), the desired result follows. �

Although the determination of totally geodesic submanifolds is reduced to an algebraic problem,
it has only been accomplished in low rank or under additional hypothesis. In particular, the work
of Chen and Nagano [CN78] is noteworthy for the geometric ideas introduced (see also [Kle10], for
an approach based on restricted root systems).

A symmetric space admits a totally geodesic submanifold of codimension one only in case it has
constant curvature. The minimal codimension of a totally geodesic submanifold of a symmetric
space was investigated by Onishchik and, recently, it has been computed for almost all irreducible
symmetric spaces by Berndt and Olmos [BO18].

Maximal flats and rank

Let M = G/K be a symmetric space where G is the connected isometry group of M and (g, s, B)
is the OIL-algebra at x ∈M . Write g = k+ p for the decomposition into ±1-eigenspaces of s.

A complete connected totally geodesic flat submanifold of M will be simply called a flat. A flat
is said to be maximal if it is not properly contained in another flat. It follows from Theorem 8.7.19
and Proposition 8.7.7 that a maximal flat through x has the form F = exp[a]x where a is maximal
Abelian subspace of p. Notice that a maximal Abelian subspace of p is the same as a maximal
subalgebra of p, as [p, p] ⊂ k. A maximal Abelian subalgebra of p is called a Cartan subspace of p.

8.7.21 Proposition Let a and a′ be two Cartan subspaces of p. Then there exists k ∈ K such that
Adka = a′.

It follows from Proposition 8.7.21 that all the maximal flats of M are conjugate and hence have
the same dimension. This number is called the rank of the symmetric space.

8.7.22 Proposition A maximal flat F of M is a properly embedded submanifold. If M is of
compact (resp. noncompact) type, then F is isometric to a flat torus (resp. flat Euclidean space).

Proof. We have F = Ax and A = exp[a] is the connected Abelian subgroup of G with Lie
algebra some Cartan subspace a. F is properly embedded if A is closed in G. In fact, the closure
Ā is also a connected Abelian group with Lie algebra contained in p (because the involution σ of
G satisfies σ(g) = g−1 for g ∈ A and thus for g ∈ Ā). Hence Ā = A. If M is of compact type, F is
a compact homogeneous flat manifold, thus isometric to a torus. If M is of noncompact type, the
exponential map expx : TxR

n → M is a diffeomorphism and the result follows (cf. Corollary ??).
�

Polar actions on symmetric spaces

�9�

�9�Weyl group. Singular hyperplanes. Examples of symmetric spaces.
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8.8 Variationally complete actions

In 1958, Bott and Samelson [BS58] introduced the concept of variational completeness for isometric
group actions and developed powerful Morse theoretic arguments to compute the homology and
cohomology of orbits of variationally complete actions. An action is variationally complete grosso

modo if it produces enough Jacobi fields along geodesics to determine the multiplicities of focal
points to the orbits. More precisely, a proper isometric action (G,M) is called variationally complete
if, for every orbit N , every N -geodesic γ, and every N -Jacobi field J along γ giving rise to a focal
point as in Proposition 7.5.2, there exists X in the Lie algebra of G such that J is the restriction
of the Killing field X∗ along the geodesic γ.

A polar action with flat sections is sometimes called hyperpolar.

8.8.1 Theorem (Conlon) Every hyperpolar action of a compact Lie group on a complete Rie-
mannian manifold is variationally complete.

Proof. Suppose (G,M) is a hyperpolar action of a compact Lie group G on a complete Rie-
mannian manifold. Let N = Gp be a fixed orbit and let q be a focal point of N along a geodesic
γ : [0, ℓ] → M with γ(0) = p and γ(ℓ) = q. Then there exists a Jacobi field J along γ satisfying
J(0) ∈ TpN , J ′(0)+Aγ̇(0)J(0) ∈ νpN and J(ℓ) = 0; denote by V the space of Jacobi fields satisfying
the first two of these conditions, and note that dimV = dimM .

Fix t0 ∈ (0, ℓ) such that r = γ(t0) is a regular point for the action of G and r is not a focal
point of N . There exists a unique section Σ of (G,M) passing through r. Of course, Σ is flat and
contains the image of γ. Since r is not a focal point of N , the map J ∈ V 7→ J(t0) ∈ TzM is a
linear isomorphism.

Decompose J = Jh + Jv where Jh is the orthogonal projection of J on Σ. Due to the total-
geodesicness of Σ, both Jh and Jv are Jacobi fields along γ. Since Jh vanishes at t = 0 and t = ℓ
and Σ is flat, we have Jh ≡ 0. Since r is a regular point, Jv(t0) ∈ Tr(Gr). Let X ∈ g be such that
X∗
r = Jv(t0). Owing to X∗ ◦ γ ∈ V , we have X∗ ◦ γ = Jv = J , finishing the proof. �

It was proved in [GT00], by means of classification, that a variationally complete representa-
tion is orbit-equivalent to the isotropy representation of a symmetric space, and hence is polar.
In [DO01], a direct proof of this result was provided. Since the idea of the proof is very simple and
geometric, we present it in the sequel.

8.8.2 Theorem (Di Scala-Olmos) A variationally complete representation of a compact Lie
group G on an Euclidean space V is polar.

Proof. Let p ∈ V be a regular point so that N = Gp is a principal orbit. A standard argument
shows that Σ := νpN meets all orbits (a minimizing geodesic from any given orbit to N must meet
N orthogonally, and hence has a G-translate entirely contained in Σ, which will also meet the given
orbit).

Choose ξ ∈ νpN such that the Weingarten operator Aξ has all eigenvalues nonzero. This is
possible, since Ap = −id, and indeed the set of such vectors is open and dense in νpN . Consider
the geodesic γ(s) = p + sξ, normal to N , and fix s1 > 0 such that N1 = Gq, q = γ(s1), is also
a principal orbit. Due to the assumption of variational completeness, q is not a focal point of N
along γ. We will show that TpN = TqN1 as subspaces of V .

Each eigenvector u ∈ TpN of Av, with corresponding eigenvalue λ 6= 0, gives rise to a Jacobi field

J(s) = (1− λs)u along the geodesic γ(s) = p+ sξ, associated to the variation γt(s) = c(t) + sξ̂(t),
where c is a smooth curve in N with c(0) = p and c′(0) = u, and ξ̂ is the parallel extension of ξ to
a normal vector field along c. Since J(0) = u ∈ TpN and J( 1λ) = 0, the assumption of variational
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completeness yields a Killing vector field X induced by G such that X ◦ γ = J . In particular,
J(s) ∈ Tγ(s)(Gγ(s)) for all s. Since q is not a focal point of N along γ, s1 6= 1

λ and therefore
u ∈ TqN1. As the eigenvectors of Aξ span TpN , this shows TqN1 = TpN .

We have seen that Σ is orthogonal to all principal orbits passing through an open and dense
subset of itself. By a continuity argument, Σ is orthogonal to every orbit it meets. This finishes
the proof. �

An isometric action of a compact Lie group on a compact symmetric space can be lifted to a
proper and Fredholm action of a Hilbert-Lie group on a Hilbert space via the so-called “holonomy
map”, see [TT95]. This idea was combined with the basic idea of the proof of Theorem 8.8.2 to
prove the following result in [GT02]:

8.8.3 Theorem (Gorodski-Thorbergsson) A variationally complete action of a compact Lie
group on a compact symmetric space is hyperpolar.

The following result was proved in [LT07] and generalizes Theorems 8.8.2 and 8.8.3. The main
tool of the proof is Wilking’s transversal Jacobi equation [Wil07, Theorem 9].

8.8.4 Theorem (Lytchak-Thorbergsson) A variationally complete action on a complete Rie-
mannian manifold with nonnegative sectional curvature is hyperpolar.

A quick review of Morse theory

The basic idea of Morse theory is to recover the topology of a manifold from the structure of the set
of critical points of generic smooth functions on the manifold. Here ’topology’ refers to homotopy
type and diffeomorphism type.

�10�

We follow the discussion in [Bot82]. Let M be a smooth n-manifold. A proper smooth function
f :M → R is called a Morse function if all of its critical points are nondegenerate, in the sense that
the Hessian at the point is nondegenerate as a symmetric bilinear form. Morse’s lemma says that
if p is a nondegenerate critical point of f , then M admits local coordinates (x1, . . . , xn) around p
with respect to which f is represented by f(p)−x21−· · ·−x2k+x2k+1+ · · ·+x2n. Here the integer k is
the number of negative eigenvalues of Hessp(f), and is called the index of f at the critical point p.
Nondegenerate critical points are plainly isolated. It follows that a Morse function can have only
finitely may critical values in any compact interval [a, b] ⊂ R. Also, Morse functions form am open
and dense subset of functions on M in the C2-topology, even adding the requirement that there is
at most one point in each critical level of the function.

Let f be a Morse function onM . Consider the sublevelsMa = {f < a} of f for a ∈ R. The first
basic deformation lemma says that Ma and M b (a < b) are diffeomorphic if there are no critical
values in the interval [a, b]: one simply pushes down in the direction of steepest descent, namely,
uses the flow of the negative gradient of f . On the other hand, the second deformation lemma says
that if p is the only critical point of f in f−1(a, b), then M b is obtained from Ma by attaching an
n-handle of index k, that is, a thickened k-cell:

M b ≈Ma ∪α ek × en−k,

where ei denotes an i-cell and α : ∂ek × en−k → ∂Ma is the attaching map. In particular, M b has
the homotopy type of Ma with a k-cell attached:

M b ≃Ma ∪ ek.
�10�Figure
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The Morse inequalities can be seen as a quantitative way of addresing the change in homotopy
type as we pass from one sublevel to another one. Let Mf =

∑

i νi(f)t
i be the Morse polynomial of

f , where νi(f) denotes the number of critical points of index i of f , and let P(M) =
∑

i βi(M ;F)ti

be the Poincaré polynomial of M , where βi(M ;F) denotes the ith Betti number of M with respect
to coefficients in the field F, that is, the dimension of the homology group Hi(M ;F) as a vector
space over F. The Morse inequalities state that

Mf − P(M) = (1 + t)Q(t),

where Q is a polynomial with nonnegative integer coefficients.
In order to prove the inequalities, suppose p is the only critical point in f−1(a, b), and p is

nondegenerate of index k. We clearly have

∆Mf = Mb
f −Ma

f = tk,

where Mb
f , Ma

f denote the Morse polynomials of f restricted to M b, Ma, respectively. On the
other hand, we claim that the difference

∆P(M) = P(M b)− P(Ma)

can fall into two cases:
(i) ∆P(M) = tk; or
(ii) ∆P(M) = −tk−1.

Once this is taken for granted, the Morse inequalities for M b,

Mb
f − P(M b) = (1 + t)Qb(t),

follow from by induction from those for Ma, by noting that

∆(Mf − P(M)) = 0 or tk−1(1 + t),

so that the Qb −Qa is a polynomial with integer coefficients.
Checking the claim is indeed a standard, intuitive argument in homology theory. Since M b has

the homotopy type of Ma with a k-cell ek attached, in passing from Ma to M b the only possible
changes in homology occur in dimensions k − 1 and k. In the first case, the boundary ∂ek of the
attaching cell is a (k − 1)-sphere in Ma that does bound a chain in Ma, which we can cap with
ek to create a new nontrivial homology class in M b, so this corresponds to alternative (i). In the
second case, ∂ek does not bound a chain in Ma, so ek has as boundary the nontrivial cycle ∂ek in
Ma, whose homology class in M b is thus killed and we are in alternative (ii).

Note that the alternative (i) holds for all critical points of f if and only if the Morse inequalities
for f are in fact equalities. In this case the Morse function f has precisely the minimum number
of critical points that the topology allows, and is referred to as a perfect Morse function on M ; in
general, this depends on the choice of field coefficients F.

It is also useful to interpret the Morse inequalities in terms of the homology sequence of the
pair (M b,Ma):

. . .→ Hk+1(M
b,Ma)

︸ ︷︷ ︸

= 0

→ Hk(M
a) → Hk(M

b)

→ Hk(M
b,Ma)

︸ ︷︷ ︸

= F

∂∗→ Hk−1(M
a) → Hk−1(M

b) → Hk−1(M
b,Ma)

︸ ︷︷ ︸

= 0

→ . . .
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We are in altrnative (i) exacly when the map ∂∗ is zero and Hk(M
b) ∼= Hk(M

a) ⊕ F. Thus the
Morse inequalities are equalities when

(8.8.5) Hk(M
b) → Hk(M

b,Ma)

is surjective, whenever a < b.

Morse theory of submanifolds

The motivation of Bott and Samelson to consider variationally complete actions of G on M was
to construct an explicit basis of cycles in the Z2-homology of the path space Ω(M ; q,N), where
N is an arbitrary G-orbit, q ∈ M , and the paths start at q and end at a point in N . Herein we
will discuss the special case of variationally complete representations, where the ambient space is
a Euclidean space and thus contractible.

Let N be a properly embedded submanifold of a Euclidean space V and let q be some point in
V . Then we define the distance function Lq : N → R from q to N by setting Lq(p) = ||p − q||2.
It follows that Lq is a non-negative proper function since N is properly embedded. Hence it is
possible to apply Morse theory to Lq. We say that N is F-taut or simply taut if Lq is perfect with
respect to the field F whenever Lq is a Morse function, see [Cec97]. The concept of tautness can
be extended to submanifolds of complete Riemannian manifolds, see [TT97], but we will not need
that here. We will say that an orthogonal representation ρ : G→ O(V ) of a compact Lie group G
is F-taut or simply taut if the the orbits of G are F-taut submanifolds of V .

Theorem 8.8.7 was proved in [BS58] for general isometric actions of compact Lie groups. In
order to prove it, we need a lemma.

8.8.6 Lemma An orthogonal representation (G, V ) is variationally complete if and only if every
orbit Gp has the following property: if q is a focal point of Gp relative to p with multiplicity k > 0,
then k = dimGqp.

Proof. We first assume that ρ is variationally complete. Let q = γ(1) be a focal point of N = Gp
with multiplicity k along the line segment pq. Let JN be the space of N -Jacobi fields along the line
segment pq that vanish at t = 1. Then dimJN = k. The action of Gq on pq induces variations of it
whose variational vector fields are contained in J , and are called Killing-Jacobi fields. Let us denote
by K the subspace of J that consists of Killing-Jacobi fields. It follows that dimK = dimGqξ ≤ k
where ξ is the tangent vector of pq. We now prove that dimGqξ = k. Let {γs} be a variation of
γ = γ0 through geodesic segments such that all γs meet the orbit N orthogonally for t = 0 and
the Jacobi field J of the variation along γ vanishes for t = 1. Then J is an N -Jacobi field which is
tangent to the orbits through p and q. By the assumption of variational completeness, there is a
Killing field X∗ on M induced by the G-action such that J = X∗ ◦ γ. Hence J ∈ K, and it follows
that K = J . Thus dimGqp = dimGqξ = k.

To prove the converse, we have to show that dimGqξ = k for all focal points q implies that
(G, V ) is variationally complete. This is equivalent to show that a Jacobi field J that vanishes in
a point q and is tangent to an orbit Gp in p is induced by the group action. We let the symbols J
and K have the same meaning as in the first part of the proof. We have to show that K = J . This
is clear since dimJ = k and dimK = dimGqξ = k. �

8.8.7 Theorem (Bott-Samelson) Let (G, V ) be a variationally complete representation of the
compact Lie group G on the Euclidean space V . Then (G, V ) is Z2-taut.
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Proof. Fix a G-regular point q ∈ V such that Lq is a Morse function and therefore has only
finitely many critical points on M with pairwise distinct critical values. For each critical point
p ∈ M , we shall construct a compact manifold Γp of dimension less than or equal to the index of
Lq at p and a smooth map hp : Γp → M . Under the assumption of variational completeness we
will show that the dimension of Γp is equal to the index of Lq at p and that, for each k,

⊕php∗ :
⊕

p

Hk(Γp) → Hk(M)

is an isomorphism, where F = Z2 and p runs through all the critical points of Lq on M such that
the index of Lq at p equals k. This will imply that the Morse inequalities for Lq are equalities,
i. e. M is taut.

So fix a critical point p of Lq of index k lying on the level c of f . Let f1, . . . , fr be the focal points
of M on the segment qp in focal distance decreasing order and let m1, . . . ,mr be their respective
multiplicities. Note that H = Gq is a principal isotropy group. We have that qp is perpendicular
to M at p, therefore it is also perpendicular to Gq at q, so that H fixes the segment qp pointwise.
Next let the r-fold product Hr act on the product manifold Gf1 × . . .×Gfr by the rule

g · h = (g1h1, h
−1
1 g2h2, h

−1
2 g3h3, . . . , h

−1
r−1grhr),

where g = (g1, . . . , gr) ∈ Gf1 × . . . × Gfr and h = (h1, . . . , hr) ∈ Hr. Let Γp be the quotient
manifold under this action, namely, Γp = Gf1 ×H Gf2 ×H . . . ×H Gfr/H, and define hp : Γp → M
by h[(g1, . . . , gr)] = g1 . . . grp. It is immediate that hp is well-defined. Notice that Γp is the total
space of an iterated fiber bundle that can be identified with the space of polygonal paths from p
to g1 . . . grp with vertices grp, gr−1grp, . . . , g2 . . . gr−1grp for (g1, . . . , gr) ∈ Gf1 × . . . × Gfr . We
compute:

dimΓp = (dimGf1 − dimH) + · · ·+ (dimGfr − dimH)

= m1 + · · ·+mr (by variational completeness and Lemma 8.8.6)

= k (by the Morse’s index theorem 7.5.4).

Since Γp is a compact manifold of dimension k, it follows that Hk(Γp) = Z2. Moreover, it is easy
to see that hp(1, . . . , 1) = p, hp(Γp) ⊂ M c, hp(Γp) ∩ f−1(c) = {p}, and that hp is an immersion
near (1, . . . , 1) ∈ Gf1 × . . . × Gfr . Now, locally in a Morse chart centered at p, the image hp(Γp)
is transversal to the ascending cell so that we can deform it into the descending cell ek. Therefore
hp∗ : Hk(Γp) → Hk(M

c,M c−ǫ) is surjective for some sufficiently small ǫ > 0. Finally, factorize

Hk(Γp) → Hk(M
c) → Hk(M

c,M c−ǫ)

to get the surjectivity of (8.8.5). �

Kuiper made the following observation in greater generality in [Kui61].

8.8.8 Theorem (Kuiper) Let M be a compact connected F-taut full submanifold of an Euclidean
space V . Then there is p ∈M such that the second osculating space O2

p(M) = V .

Proof. Let Lq : M → R be a Morse distance function for some q ∈ V . Since M is connected
and taut, Lq has exactly one point of local minimum p ∈ M . Suppose, to the contrary, that
O2
p(M) 6= V . Then there is ξ ∈ νpM such that the Weingarten operator Aξ = 0. Due to exercise ??

of chapter 7, η = q − p ∈ νpM and Hessp(Lq) = I − Aη is definite positive. Now η + tξ ∈ νpM
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and Hessp(Lq+tξ) = I −Aη+tξ is definite positive for t ∈ R. This implies that p is a local minimum
of Lq+tξ. Since M is substantial, there is x ∈ M such that 〈ξ, x〉 6= 〈ξ, p〉. Now we can choose a
suitable t ∈ R such that

Lq+tξ(x)− Lq+tξ(p) = ||x||2 − ||p||2 − 2〈q, x− p〉 − 2t〈ξ, x− p〉
< 0,

and Lq+tξ is a Morse function. This implies that Lq+tξ has at least two local minima and is not
thus perfect, which contradicts the tautness of M . �

If M is an orbit of an orthogonal representation (G, V ), dimO2
p(M) = V is constant for p ∈M ,

and the condition on the second osculating space in Theorem 8.8.8 is independent of the point.
Further, for an irreducible representation (G, V ) (cf. exercise ??), all orbits are full submanifolds
of V . Define an irreducible representation (G, V ) to be of class O2 if all non-trivial orbits have
second osculating space equal to V . The condition on the second osculating space was expressed in
terms of the weight system of the representation to arrive at a list of candidates of representations
of class O2 in [GT00, GT03]. From this list it was obtained the following classification result.

8.8.9 Theorem (Gorodski-Thorbergsson) An irreducible representation (G, V ) of a compact
connected Lie group on an Euclidean space V is taut if and only if it is polar or it is one of the
three irreducible representations of cohomogeneity three (n ≥ 2):

SO(2)× Spin(9) (standard)⊗R (spin)
U(2)× Sp(n) (standard)⊗C (standard)

SU(2)× Sp(n) (standard)3 ⊗H (standard)

This classification was extended to reducible representations of simple Lie groups in [Gor08].

8.9 Additional notes

§1 We have seen that an action of a Lie group G on a smooth manifold M breaks up the manifold
into the disjoint union of immersed submanifolds, namely, the orbits of G in M . If, in addition,
the action of G on M is isometric with respect to some Riemannian metric, then Lemma 8.3.1 says
that the foliation of M by the orbits of G enjoys an additional property regarding geodesics. This
is a particular instance of a more general situation, which we explain now. A singular foliation F
in a smooth manifold M is a partition of M into submanifolds, called the leaves of F , satisfying
the following condition: for every leaf L, every point p ∈ L and every tangent vector v ∈ TpL, there
exists a smooth vector field X ∈ Γ(TM) such that X(p) = v and X everywhere tangent to the
leaves of F . A singular Riemannian foliation F in a smooth manifoldM is a singular foliation with
the additional property that a geodesic perpendicular to one leaf remains perpendicular to every
leaf it meets. Many of the results that we will prove for foliations by orbits of isometric actions of
Lie groups can be investigated in the context of singular Riemannian foliations. We will not discuss
them sistematically in this text, but rather refer the reader to [Mol88, ?, ?].

§2 Due to Proposition 8.5.6, the action of (W (Σ),Σ) can also be seen as a “reduction” of the
action (G,M) to a discrete group action, namely, one can recover the same orbit space from a much
simpler action of a discrete group action. It easily follows from O’Neill’s equation (Proposition 4.5.8)
a that a proper and isometric action admits a reduction to a discrete group if and only if it is a
locally polar action.
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Consider for instance the case of an orthogonal representation (G, V ). In invariant theory, if
(H,W ) is a reduction of (G, V ), that is, W/H is isometric to V/G, it is a natural question to ask if
the invariant rings of these representations are isomorphic. In some special cases this question has
an affirmative answer, namely, polar representations (by Chevalley’s theorem) and the reduction to
the principal isotropy group (by Luna-Richardson’s theorem [LR79]). In [AR15] it is shown that the
answer is also positive in case the isometry preserves the codimension of the orbits. The reduction
principle for orthogonal representations was stated in [Str94]. In [GL14] a systematic study of
reductions of orthogonal representations was initiated, going much beyond polar representations.

§3 Classification of polar actions.

8.10 Exercises

1 Let (G,M) be a proper action. For p, q ∈M , show that (Gq) 4 (Gp) if and only if there exists
a G-equivariant submersion G(p) → G(q).

2 Let (G,M) be a proper action. For p ∈ M , check that G(p) is an exceptional orbit if and only
if the the slice representation at q is non-trivial and has discrete orbits.

3 Let (G,M) be a proper isometic action. Prove that the following assertions are equivalent:
(a) v ∈ νq(Gq) is Gq-regular.
(b) There exists ǫ > 0 such that expq(tv) is G-regular for 0 < t < ǫ.
(c) expq(t0v) is G-regular for some t0 > 0.

(Hint: Use the normal slice theorem 8.3.5).

4 Let (G,M) be a proper isometric action, and consider the fixed point set of G on M , MG =
{p ∈M | gp = p for all g ∈ G}.
a. Prove that each connected component of MG is a totally geodesic properly embedded sub-

manifold of M .
b. If, in addition, M is orientable, check that MG is also orientable.

5 Let (G,M) be a proper isometric action. Suppose this action is non-transitive, so that there is
more than one orbit. Show that the cohomogeneity of (G,M) is bounded below by dimMG + 1.

6 Recall that a topological group is a group G endowed with a topology with respect to which the
group operations are continuous.

Let G be a Hausdorff topological group and let H be a discrete subgroup (that is, a subgroup
of G which becomes a discrete topological space with the induced topology). Prove that H is
closed in G. (Hint: Given x ∈ G \ H, consider the map G × G → G, (g, g′) 7→ g(g′)−1 to find a
neighborhood U of x such that U ∩H has at most one element.)

7 a. Let G be a Lie group, and consider a closed subgroupH of G. Suppose ρ is a representation
of H on a finite-dimensional real vector space V . Define G×H V to be the quotient space of
G× V be the equivalence relation

(gh−1, v) ∼ (g, ρ(h)v) for all h ∈ H

(check that this is indeed an equivalence relation). The equivalence class of (g, v) is usually
denoted by [g, v]. Prove that G ×H V has a structure of real vector bundle over G/H, with
fiber V ). Check also that the projection G×H V → G/H is G-equivariant; in this sense, this
is called a homogeneous vector bundle.
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b. Suppose G = SO(n+ 1), H = SO(n), and V is the standard representation of H on Rn.
Show that G×H V can be identified with the tangent bundle TSn.

c. In general, for a homogeneous spaceM = G/H, and V the isotropy representation, show that
G×H V is TM .

8 Let f : X → Y be an open continuous map between topological spaces. Show that f−1(A) =
f−1(Ā) for every subset A of Y .

9 An orthogonal representation (G, V ) is called irreducible if the only G-invariant subspaces of V
are {0} and V . Show that all nontrivial orbits of an irreducible representation (G, V ) are full
submanifolds of V .

10 Given a symmetric space M = G/K, where G is connected, consider the associated OIL-
algebra (g, s, B), where B is specified by the inner product on T1K(G/K), and apply to (g, s, B)
the construction of a simply-connected symmetric space M̃ as in the text. Prove that there is a
Riemannian covering M̃ →M .

11 Prove that every symmetric space M of Euclidean type is isometric to T k × Rn−k, where
0 ≤ k ≤ n = dimM).

12 Let (G, V ) be an irreducible representation of a Lie group G on a real (resp. complex) vector
space. Prove that any two G-invariant inner products (resp. Hermitian products) on V differ by a
multiplicative constant. (Hint: Diagonalize 〈, 〉2 with respect to 〈, 〉1, that is, find a 〈, 〉1-orthonormal
basis of V whose Gram matrix of 〈, 〉2-inner products is diagonal.)

13 Prove that an irreducible symmetric space is an Einstein manifold.

203



204



Bibliography

[Abr83] U. Abresch, Isoparametric hypersurfaces with four or six principal curvatures, Math. Ann. 264
(1983), 283–302.

[Ale04] M. M. Alexandrino, Singular Riemannian foliations with sections, Illinois J. Math. 48 (2004), no. 4,
1163–1182.

[AR15] M. M. Alexandrino and M. Radeschi, Isometries between leaf spaces, Geom. Dedicata 174 (2015),
193–201.
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topologie (espaces fibrés), Bruxelles, 1950, Georges Thone, Liége; Masson et Cie., Paris, 1951,
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Index

ǫ-totally normal neighborhood, 52

action, 20, 169
co-homogeneity, 178
invariant subset, 171
isometric, 175
isotropy group, 20
isotropy subgroup, 171
left, 169
linear, 174
orbit, 20, 171
exceptional, 178
lower semi-continuity of orbit type, 174
principal, 172
tangent space, 172
type, 172

orbit map, 171
orbit space, 20, 172
polar, 178
proper, 20, 172
regular point, 173
right, 169
section, 178
singular point, 173
slice, 173
slice representation, 176
smooth, 20
transitive, 22

adjoint representation
of Lie algebra, 19
of Lie group, 19

Allamigeon-Warner manifold, 113
almost complex structure, 94
almost Kähler manifold, 94

Bianchi identity
first, 84
second, 88

biquotient, 133
Blaschke

conjecture, 114
manifold, 114

Cartan hypersurface, 160

Cartan-Killing form, 95
center of mass, 126
Clifford torus, 159
Clifford translation, 134
Codazzi-Mainardi equation, 139
complex projective space, 34
complex structure, 93
conjugate locus, 106
conjugate point, 106

first, 109
conjugate value, 106
connection, 43

Christoffel symbols, 45
covariant derivative along a curve, 47
induced, 55
Levi-Cività, 45
Koszul formula, 45

normal, 139
on vector bundle, 55

convex function, 124
strictly, 124

convexity
radius, 132
strong, 131

coordinate vector, 3
covering

smooth, 8
topological, 7

covering transformation, 8
Coxeter

graph, 162
group, 156
reducible, 157

curvature
distribution, 152
Gauss-Kronecker, 143
mean, 143
normal, 139, 152
Ricci, 87
scalar, 87
sectional, 85
tensor, 83

cut locus, 76
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deck transformation, 8
diameter, 73
diffeomorphism, 2

local, 2
differential of a map, 5
displacement function, 127
divergence, 62

embedding, 6
energy, 99
equivariant

map, 171
normal vector field, 182

Euclidean space, 28
exponential map, 51

normal, 148
extrinsic product, 157
extrinsic sphere, 145

first fundamental form, 137
flat isomorphism, 89
flat torus, 30
focal

hyperplane, 155
manifold, 153
map, 153
point, 148
set, 153

formula
tube, 154
Weingarten, 139

Fubini-Study metric, 34
fundamental group, 7

Gauss
equation, 139
formula, 138
lemma, 67, 107
map, 143

geodesic, 49
equation, 50
is locally minimizing, 70
local existence and uniqueness, 50

gradient, 62
Green identities, 63

Hadamard manifold, 125
harmonic

function, 62
height function, 144
Heisenberg algebra, 15
Hermitian metric, 94
Hessian, 62
homogeneous space, 22
hyperbolic manifold, 120

immersion, 5
index form, 103
injectivity radius, 75
isometric immersion, 28

congruent, 137
isometry group, 27
isotropy group, 20
isotropy representation, 37

Jacobi
equation, 104
field, 104

Kähler manifold, 94
Killing form, 95
Killing vector field, 53
Klein bottle, 33

Laplacian, 62
lens space, 120
Lie algebra, 15
Lie bracket, 12
Lie group, 14

exponential map, 16
homomorphism, 17

local section, 22

manifold
smooth, 1

map
differential, 5
proper, 6
smooth, 2

mean curvature, 139
musical isomorphisms, 89

normal bundle, 139
normal exponential map, 148
normal neighborhood, 51
nullity distribution, 152

orbit, 20
orbit space, 20
osculating space, 147

parallel
manifold, 153
transport, 48

Poincaré conjecture, 133
principal curvatures, 138, 143

real hyperbolic space, 29
real projective space, 33
representation, 174

orthogonal, 174
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Ricci
equation, 139
flow, 133

Riemannian covering, 32
Riemannian manifold, 25

as metric space, 69
complete, 73
conformally flat, 29
geodesically complete, 71
homogeneous, 37
isotropic, 61
normal homogeneous, 37
submanifold, 28

Riemannian measure, 63
Riemannian metric, 25

bi-invariant, 36
conformal, 29
existence, 27
flat, 28
homothetic, 29
induced, 28
left-invariant, 36
product, 29, 56
pulled-back, 28
right-invariant, 36

Riemannian submersion, 33

Schur lemma, 86
second fundamental form, 138
shape operator, 138
sharp isomorphism, 89
singular foliation, 183

leaf, 183
Riemannian, 184

smooth manifold, 1
homogeneous, 22

space form, 117
sphere, 29
strongly convex, 131
submanifold

k-th normal space, 147
k-th osculating space, 147
embedded, 2
extrinsic product, 157
full, 147
immersed, 5
isoparametric, 151
irreducible, 157
multiplicity, 152
rank, 152
reducible, 157

minimal, 139
substantial, 147
substantial codimension, 147

totally geodesic, 144
totally umbilic, 145
with constant principal curvatures, 151

submersion, 6
symmetric space, 182

tangent bundle, 5
tangent space, 3
Teichmüller space, 121
tensor

curvature, 83
Ricci, 86

theorem of
Bieberbach, 119
Bonnet-Myers, 123
Cartan, 126
convexity of Hadamard, 144
divergence, 63
Erbacher, 148
Gauss, Egregium, 143
Gorodski-Heintze, 164
Hadamard-Cartan, 124
Hopf-Rinow, 71
inverse function, 5
Jacobi-Darboux, 108
Killing-Hopf, 119
Morse, 150
Myers-Steenrod, 27
normal slice, 176
Preissmann, 127
principal orbit type, 177
Rauch, 129
submanifold geometry, fundamental, 141
Synge, 122
Whitehead, 131

totally normal neighborhood, see ǫ-totally normal neigh-
borhood

tube formula, 154
tubular neighborhood, 175

variation of curve, 100
first variation of energy, 101
second variation of energy, 103
variational vector field, 101

vector field
f -related, 13
flow, 11
incompressible, 63
integral curve, 10
Lie bracket, 12

volume form, 63

warped product, 34
weak maximum principle, 64
Weingarten
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formula, 139
operator, 138

Weyl group
generalized, 180

wiedersehens surfaces, 113

Yamabe problem, 132
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