MAT122 e MAT2116 – Álgebra Linear Lista de Exercícios 5 - 24/04/2008

Prof. Claudio Gorodski

- 1. Qual é a curva-imagem do círculo $x^2 + y^2 = 1$ pela transformação linear $\mathbf{R}^2 \to \mathbf{R}^2$ definida pela matriz $A = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$?
- 2. Escrever a matriz 3 por 3 que representa as transformação do \mathbb{R}^3 que:
 - a. projeta todo vetor sobre o plano xy;
 - b. reflete todo vetor em relação ao plano xy;
 - c. roda o plano xy de 90 graus e deixa o eixo z fixo.
- 3. Escreva a matriz A 4 por 4 que representa uma permutação cíclica: (x_1, x_2, x_3, x_4) é transformado em (x_2, x_3, x_4, x_1) . Verifique diretamente que $A^3 = A^{-1}$.
- 4. Escreva uma matriz A 4 por 3 que representa o "right shift": cada vetor (x_1, x_2, x_3) é transformado em $(0, x_1, x_2, x_3)$. Exiba também uma matriz B 3 por 4 para o "left shift" que leva (x_1, x_2, x_3, x_4) em (x_2, x_3, x_4) . Como são as matrizes AB e BA?
- 5. Seja P_3 o espaço vetorial dos polinômios de grau no máximo 3 mais o vetor nulo. Seja S o subespaço de V formado pelos vetores p satisfazando $\int_0^1 p(x)dx = 0$. Verifique que p é um subespaço de V e calcule uma base e a dimensão de S.
- 6. Calcular os comprimentos e o produto escalar de x = (1, 4, 0, 2) e y = (2, -2, 1, 3).
- 7. Existem vetores em ${f R}^2$ que são LI mas não mutualmente ortogonais? Justifique.
- 8. Calcular todos os vetores de \mathbb{R}^3 que são simultaneamente ortogonais aos vetores (1,1,1) e (1,-1,0).
- 9. Calcule uma base para o núcleo de

$$A = \left(\begin{array}{ccc} 1 & 0 & 2 \\ 1 & 1 & 4 \end{array}\right)$$

- e verifique diretamente que ele é ortogonal ao espaço-de-linhas de A. Dado x = (3,3,3), decomponha x em suas componentes x_r ao longo do espaço-de-linhas e x_n ao longo do núcleo.
- 10. Mostre que $x y \perp x + y$ se e somente se ||x|| = ||y||.
- 11. Decida sobre a veracidade das asserções:
 - a. Se V é ortogonal a W, então W^{\perp} é ortogonal a V^{\perp} .
 - b. Se U é ortogonal a V e V é ortogonal a W, então U é ortogonal a W.
- 12. Seja S o subespaço de \mathbf{R}^4 definido pela equação $x_1 + x_2 + x_3 + x_4 = 0$. Escreva uma base para o subespaço S^{\perp} .