9.a aula: 27mar (resumo)

- **9.1** Uma base $E=(\vec{e}_1,\vec{e}_2,\vec{e}_3)$ de \mathbb{V}^3 é chamada de ortonormal se $\vec{e}_i\cdot\vec{e}_j=\delta_{ij}$ ($\delta_{ij}=1$ se i=j e 0 caso contrário ($s\acute{i}mbolo$ de Kronecker)). Neste caso, para $\vec{u}=x_1\vec{e}_1+x_2\vec{e}_2+x_3\vec{e}_3$ e $\vec{v}=y_1\vec{e}_1+y_2\vec{e}_2+y_3\vec{e}_3$ temos que $\vec{u}\cdot\vec{v}=x_1y_1+x_2y_2+x_3y_3=(v)_E^t(u)_E$ e $||\vec{u}||=\sqrt{x_1^2+x_2^2+x_3^2}$. Por exemplo, se $(\vec{v})_E^t=(a\ b\ c)$ então o conjunto de vetores de \mathbb{V}^3 ortogonais a \vec{v} está descrito pela equação linear ax+by+cz=0.
- ${\bf 9.2}$ Suponhamos Eortonormal. Se $\vec{u},\,\vec{v}$ são LI então a área de um paralelogramo definido por esses vetores é

$$\begin{aligned} \operatorname{area}(\vec{u}, \vec{v}) &= \sqrt{||\vec{u}||^2 ||\vec{v}||^2 - (\vec{u} \cdot \vec{v})^2} \\ &= ||\vec{u}|| ||\vec{v}|| \sin \theta \quad (\theta = \angle (\vec{u}, \vec{v})) \\ &= \left(\left| \begin{array}{ccc} x_2 & x_3 \\ y_2 & y_3 \end{array} \right|^2 + \left| \begin{array}{ccc} x_3 & x_1 \\ y_3 & y_1 \end{array} \right|^2 + \left| \begin{array}{ccc} x_1 & x_2 \\ y_1 & y_2 \end{array} \right|^2 \right)^{1/2} \\ &= \left| \left| \det \left(\begin{array}{ccc} x_1 & x_2 \\ y_1 & y_2 \end{array} \right) \right| \quad (\text{se } x_3 = y_3 = 0) \end{aligned}$$

9.3 Suponhamos E ortonormal e positiva. Sejam $(\vec{u})_E^t = (x_1 \ x_2 \ x_3), \ (\vec{v})_E^t = (y_1 \ y_2 \ y_3).$ O produto vetorial desses vetores é o vetor $\vec{u} \times \vec{v}$ com

$$(\vec{u} \times \vec{v})_E^t = \left(\left| \begin{array}{ccc} x_2 & x_3 \\ y_2 & y_3 \end{array} \right| \left| \begin{array}{ccc} x_3 & x_1 \\ y_3 & y_1 \end{array} \right| \left| \begin{array}{ccc} x_1 & x_2 \\ y_1 & y_2 \end{array} \right| \right)$$

- **9.4** Notemos que $||\vec{u} \times \vec{v}|| = \operatorname{area}(\vec{u}, \vec{v})$. Assim $\vec{u} \times \vec{v} = \vec{0}$ se e somente se \vec{u} , \vec{v} são LD. Caso contrário, verificamos que $\vec{u} \times \vec{v} \cdot \vec{u} = \vec{u} \times \vec{v} \cdot \vec{v} = 0$, ou seja, $\vec{u} \times \vec{v}$ tem a direção ortogonal a \vec{u} e \vec{v} , e assim $F = (\vec{u}, \vec{v}, \vec{u} \times \vec{v})$ é uma base. Verificamos também que det $M_{E/F} = ||\vec{u} \times \vec{v}||^2 > 0$, e assim $\vec{u} \times \vec{v}$ tem o sentido que faz com que F seja positiva. Isso caracteriza $\vec{u} \times \vec{v}$ geometricamente em termos de \vec{u} , \vec{v} , e portanto, independentemente da escolha da base E na definição (9.3).
- **Ex. 9.1** Demonstrar que se $\vec{u} \cdot \vec{v} = 0$ e $\vec{u} \times \vec{v} = \vec{0}$ então $\vec{u} = \vec{0}$ ou $\vec{v} = \vec{0}$.
- **Ex. 9.2** Demonstrar que dado um vetor unitário \vec{n} , qualquer vetor \vec{a} pode ser decomposto na forma

$$\vec{a} = (\vec{a} \cdot \vec{n})\vec{n} + \vec{n} \times (\vec{a} \times \vec{n}).$$

1