Koszul's bracket and Jacobi structures

AISSA WADE

Second Workshop of the São Paulo JMS J.L. Koszul in São Paulo: his work and Legacy November 13-14, 2019

< 口 > < 同 >

< ∃ >

PENN STATE

Aissa Wade

1 Motivations and gaols

- 2 Jacobi structures: definition and examples
- 3 The Koszul bracket of a Jacobi manifold
- 4 The modular vector field of a Jacobi manifold
- 5 Potential Applications

< 口 > < 同 >

< ∃ >

In his seminal paper entitled "crochet de Schouten-Nijenhuis et cohomologie" (Astérisque,1985), Koszul considered a triple (A, ∧, d) consisting of a graded commutative algebra (A = ⊕_{n∈ℤ}Aⁿ, ∧) with unit element 1 together with an odd degree differential operator ∂ : A → A satisfying d(1) = 0 and ∂ ∘ ∂ = 0.

イロト イポト イヨト イヨト

The Koszul's bracket and Jacobi structures

Aissa Wade

- In his seminal paper entitled "crochet de Schouten-Nijenhuis et cohomologie" (Astérisque,1985), Koszul considered a triple (A, ∧, d) consisting of a graded commutative algebra (A = ⊕_{n∈ℤ}Aⁿ, ∧) with unit element 1 together with an odd degree differential operator ∂ : A → A satisfying d(1) = 0 and ∂ ∘ ∂ = 0.
- \blacksquare He then constructed the bracket on ${\cal A}$ as follows:

$$\left[\mathsf{a}, \mathsf{b}
ight]_{\partial} = (-1)^{|\mathsf{a}|} ig(\partial (\mathsf{a} \wedge \mathsf{b}) - \partial \mathsf{a} \wedge \mathsf{b} ig) - \partial (\mathsf{a}) \wedge \mathsf{b}$$

for all $a, b \in A$.

イロト イポト イヨト イヨト

The Koszul's bracket and Jacobi structures

Aissa Wade

- In his seminal paper entitled "crochet de Schouten-Nijenhuis et cohomologie" (Astérisque,1985), Koszul considered a triple (A, ∧, d) consisting of a graded commutative algebra (A = ⊕_{n∈ℤ}Aⁿ, ∧) with unit element 1 together with an odd degree differential operator ∂ : A → A satisfying d(1) = 0 and ∂ ∘ ∂ = 0.
- \blacksquare He then constructed the bracket on ${\cal A}$ as follows:

$$[\mathsf{a},\mathsf{b}]_\partial = (-1)^{|\mathsf{a}|} ig(\partial(\mathsf{a}\wedge\mathsf{b}) - \partial\mathsf{a}\wedge\mathsf{b} ig) - \partial(\mathsf{a})\wedge\mathsf{b}$$

for all $a, b \in A$. This bracket is nowadays called a Gerstenhaber bracket and $(A, [,]_{\partial})$ is a Batalin-Vilkovisky algebra (*BV*-algebra for short).

イロト イボト イヨト イヨト

- In the early nineties, there were a lot of interests in the study of BV-algebras due to their appearance in string theory.
- In 1995, Y. Kosmann-Schwarzbach, observed that BV-algebras already appeared in Koszul's work and she noted some connections with Lie algebroids and Loday algebras.
- In brief, Koszul's paper on the Schouten-Nijenhuis bracket has been the foundation of several important works on various algebraic and geometric structures.

< 口 > < 同 >

< ∃ >

PENN STATE

- In particular, an important tool in Poisson geometry is the modular vector field of a Poisson manifold which, first appeared in Koszul's paper. It was re-discovered by A. Weinstein who introduced the "modular class" of a Poisson manifold.
- On the other hand, Jacobi manifolds are natural generalizations of Poisson manifolds which can be viewed as a bridge between Poisson geometry and contact geometry.

< 口 > < 同 >

< ∃ >

PENN STATE

- In particular, an important tool in Poisson geometry is the modular vector field of a Poisson manifold which, first appeared in Koszul's paper. It was re-discovered by A. Weinstein who introduced the "modular class" of a Poisson manifold.
- On the other hand, Jacobi manifolds are natural generalizations of Poisson manifolds which can be viewed as a bridge between Poisson geometry and contact geometry.
- Simply, a Jacobi structure on a smooth manifold *M* is a Lie bracket on the algebra of smooth functions C[∞](*M*, ℝ) given by a bilinear first order differential operator.

イロト イボト イヨト イヨト

- In particular, an important tool in Poisson geometry is the modular vector field of a Poisson manifold which, first appeared in Koszul's paper. It was re-discovered by A. Weinstein who introduced the "modular class" of a Poisson manifold.
- On the other hand, Jacobi manifolds are natural generalizations of Poisson manifolds which can be viewed as a bridge between Poisson geometry and contact geometry.
- Simply, a Jacobi structure on a smooth manifold M is a Lie bracket on the algebra of smooth functions $C^{\infty}(M, \mathbb{R})$ given by a bilinear first order differential operator.
- Jacobi manifolds were introduced independently by Lichnerowicz (1978) and Kirillov (1976).

- In particular, an important tool in Poisson geometry is the modular vector field of a Poisson manifold which, first appeared in Koszul's paper. It was re-discovered by A. Weinstein who introduced the "modular class" of a Poisson manifold.
- On the other hand, Jacobi manifolds are natural generalizations of Poisson manifolds which can be viewed as a bridge between Poisson geometry and contact geometry.
- Simply, a Jacobi structure on a smooth manifold M is a Lie bracket on the algebra of smooth functions $C^{\infty}(M, \mathbb{R})$ given by a bilinear first order differential operator.
- Jacobi manifolds were introduced independently by Lichnerowicz (1978) and Kirillov (1976).

Outline	Motivations and gaols	definition and examples	The Koszul bracket of a Jacobi manifold	The modular
	0000			

Goals

In this talk, our goal is twofold :

PENN STATE

Aissa Wade

Outline	Motivations and gaols	definition and examples	The Koszul bracket of a Jacobi manifold	The modular
	0000			

Goals

- In this talk, our goal is twofold :
 - Firstly, we will explain an extension Koszul's construction from Poisson structures to Jacobi structures.
 - 2 Secondly, we will discuss the modular class of a Jacobi structure.

イロト イ団ト イヨト イヨト

Outline	Motivations and gaols	Jacobi structures: definition and examples	The Koszul bracket of a Jacobi manifold	The modular
		•000		

• For a better understanding of our line bundle approach to Jacobi manifolds, let's start with the special case of a non co-orientable contact structure.

イロト イ団ト イヨト イヨト

Outline Mot	tivations and gaols J	Jacobi structures: •	definition and examples	The Koszul bracket of a Jacobi manifold	The modular
	00	0000			

- For a better understanding of our line bundle approach to Jacobi manifolds, let's start with the special case of a non co-orientable contact structure.
- A contact structure on a smooth manifold M is defined by a co-dimension 1 maximally non-integrable distribution $\xi \subseteq TM$.

イロト イロト イヨト イ

PENN STATE

- For a better understanding of our line bundle approach to Jacobi manifolds, let's start with the special case of a non co-orientable contact structure.
- A contact structure on a smooth manifold *M* is defined by a co-dimension 1 maximally non-integrable distribution ξ ⊆ *TM*. Let *L* := *TM*/ξ be its associated line bundle. The distribution ξ can be equivalently defined by a line bundle-valued 1-form Θ : *TM* → *L* which is viewed as the canonical projection.

イロト イボト イヨト イヨト

- For a better understanding of our line bundle approach to Jacobi manifolds, let's start with the special case of a non co-orientable contact structure.
- A contact structure on a smooth manifold M is defined by a co-dimension 1 maximally non-integrable distribution $\xi \subseteq TM$. Let $L := TM/\xi$ be its associated line bundle. The distribution ξ can be equivalently defined by a line bundle-valued 1-form $\Theta : TM \to L$ which is viewed as the canonical projection. The 1-form Θ defines a non-degenerate Jacobi structure $J : \Lambda^2(\mathfrak{J}^1L) \to L$.

(a)

- For a better understanding of our line bundle approach to Jacobi manifolds, let's start with the special case of a non co-orientable contact structure.
- A contact structure on a smooth manifold M is defined by a co-dimension 1 maximally non-integrable distribution $\xi \subseteq TM$. Let $L := TM/\xi$ be its associated line bundle. The distribution ξ can be equivalently defined by a line bundle-valued 1-form $\Theta : TM \to L$ which is viewed as the canonical projection. The 1-form Θ defines a non-degenerate Jacobi structure $J : \Lambda^2(\mathfrak{J}^1L) \to L$.

(a)

Outline	Motivations and gaols	Jacobi structures: definition and examples	The Koszul bracket of a Jacobi manifold	The modular
		0000		

• More generally, a Jacobi structure on M is given by a line bundle $L \to M$ and a Lie bracket $\{\cdot, \cdot\} : \Gamma(L) \times \Gamma(L) \to \Gamma(L)$ which is a bi-derivation, that is a derivation with respect to each entry.

The Koszul's bracket and Jacobi structures

Image: A math a math

PENN STATE

• More generally, a **Jacobi structure** on *M* is given by a line bundle $L \rightarrow M$ and a Lie bracket $\{\cdot, \cdot\} : \Gamma(L) \times \Gamma(L) \rightarrow \Gamma(L)$ which is a bi-derivation, that is a derivation with respect to each entry.

Definition: By a derivation of *L*, we mean an \mathbb{R} -linear operation $\Delta : \Gamma(L) \to \Gamma(L)$ satisfying:

$$\Delta(fe) = f\Delta(e) + (\sigma(\Delta) \cdot f)e,$$

where $\sigma(\Delta)$ is the symbol of Δ . Derivations of *L* can be identified with infinitesimal isomorphisms of *L*.

< □ > < 同 > < 回 > < Ξ > < Ξ

PENN STATE

ons and gaois Jacobi struct	res: definition and examples	ne Noszul bracket of a Jacol	or manifold i ne modula	ar '
0000				

Trivial line bundle

Let M be a smooth manifold. Consider $L: M \times \mathbb{R} \to M$. The first jet bundle of L is $\mathfrak{J}^1L = \mathcal{T}^*M \oplus \mathbb{R}$. A Jacobi structure for the trivial line bundle is given by a pair (Π, E) formed by a bivector field Π and a vector field E satisfying the relations:

$$[\Pi,\Pi] = 2E \wedge \Pi \qquad \text{and} \quad [E,\Pi] = 0$$

Penn State

Image: A math a math

Aissa Wade

Outline	Motivations and gaols	Jacobi structures: definition and examples	The Koszul bracket of a Jacobi manifold	The modular
		0000		

Trivial line bundle

Let M be a smooth manifold. Consider $L: M \times \mathbb{R} \to M$. The first jet bundle of L is $\mathfrak{J}^1 L = \mathcal{T}^* M \oplus \mathbb{R}$. A Jacobi structure for the trivial line bundle is given by a pair (Π, E) formed by a bivector field Π and a vector field E satisfying the relations:

$$[\Pi,\Pi] = 2E \wedge \Pi \qquad \text{and} \quad [E,\Pi] = 0$$

Let $\{f,g\} := \Pi(df, dg) + gE(f) - fE(g)$ for all smooth functions f, g. We obtain a Lie algebra structure on $C^{\infty}(M)$.

イロト 不得 トイヨト イヨト

Outline	Motivations and gaols	Jacobi structures:	definition and examples	The Koszul bracket of a Jacobi manifold	The modular
		0000			

Trivial line bundle

Let M be a smooth manifold. Consider $L: M \times \mathbb{R} \to M$. The first jet bundle of L is $\mathfrak{J}^1 L = \mathcal{T}^* M \oplus \mathbb{R}$. A Jacobi structure for the trivial line bundle is given by a pair (Π, E) formed by a bivector field Π and a vector field E satisfying the relations:

$$[\Pi,\Pi] = 2E \wedge \Pi \qquad \text{and} \quad [E,\Pi] = 0$$

Let $\{f, g\} := \Pi(df, dg) + gE(f) - fE(g)$ for all smooth functions f, g. We obtain a Lie algebra structure on $C^{\infty}(M)$. This was Lichnerowicz's definition for Jacobi structures. When E = 0, we recover the Poisson structure case.

イロト 不得 トイヨト イヨト

outline motivations and gaois sacobi stractares, actinition and examples the rosser bracket of a sacobi manifold	
o ocoo ocoo o	

Trivial line bundle

Let M be a smooth manifold. Consider $L: M \times \mathbb{R} \to M$. The first jet bundle of L is $\mathfrak{J}^1 L = \mathcal{T}^* M \oplus \mathbb{R}$. A Jacobi structure for the trivial line bundle is given by a pair (Π, E) formed by a bivector field Π and a vector field E satisfying the relations:

$$[\Pi,\Pi] = 2E \wedge \Pi \qquad \text{and} \quad [E,\Pi] = 0$$

Let $\{f, g\} := \Pi(df, dg) + gE(f) - fE(g)$ for all smooth functions f, g. We obtain a Lie algebra structure on $C^{\infty}(M)$. This was Lichnerowicz's definition for Jacobi structures. When E = 0, we recover the Poisson structure case. The bracket on sections of L is obtained from the relation:

$$\{(df, f), (dg, g)\} = (d\{f, g\}, \{f, g\}).$$

Projective spaces.

Let g be a real Lie algebra. Consider M = ℝP(g*) the projective space and let L → M be the tautological space. There is an inclusion ι : g → Γ(L) such that:

$$\iota(\mathbf{v}) = \lambda_{\mathbf{v}}, \quad ext{with} \quad \lambda_{\mathbf{v}}(\mathbf{r}) = \ell_{\mathbf{v}}|_{\mathbf{r}}, \quad \forall \mathbf{r} \subseteq \mathfrak{g}^*$$

where $\ell_v : \mathfrak{g} \to \mathbb{R}$ is the linear function corresponding to v. In this case, the Jacobi bracket on $\Gamma(L)$ is given by

$$J(\lambda_{\mathbf{v}},\lambda_{\mathbf{w}})=\lambda_{[\mathbf{v},\mathbf{w}]}.$$

イロト イ団ト イヨト イヨト

PENN STATE

Aissa Wade

Atiyah Lie algebroid and Jacobi brackets

In other words, derivations of *L* are sections of the Lie algebroid $DL \rightarrow M$ called the gauge (or Atiyah) Lie algebroid of *L*. Its anchor map is the symbol and its Lie bracket is the commutator of derivations and let $\mathfrak{J}^1 L$ be the first jet bundle of *L*. We have the vector bundle isomorphisms:

 $DL \simeq \operatorname{Hom}(\mathfrak{J}^1L, L)$ and $\mathfrak{J}^1L \simeq \operatorname{Hom}(DL, L)$.

< ロ > < 同 > < 三 > < 三 >

PENN STATE

Aissa Wade

Atiyah Lie algebroid and Jacobi brackets

In other words, derivations of *L* are sections of the Lie algebroid $DL \rightarrow M$ called the gauge (or Atiyah) Lie algebroid of *L*. Its anchor map is the symbol and its Lie bracket is the commutator of derivations and let \mathfrak{J}^1L be the first jet bundle of *L*. We have the vector bundle isomorphisms:

$$DL \simeq \operatorname{Hom}(\mathfrak{J}^1L, L)$$
 and $\mathfrak{J}^1L \simeq \operatorname{Hom}(DL, L)$.

Remark: A Jacobi manifold $(M, L, \{, \cdot, \cdot\})$ is completely defined by its associated 2-form $J : \Gamma(\Lambda^2(\mathfrak{J}^1L)) \to \Gamma(L)$ given by:

$$\{\lambda,\mu\}=J(j^1\lambda,j^1\mu),$$

for all $\lambda, \mu \in \Gamma(L)$.

• For a line bundle $L \to M$, we know that DL is a transitive Lie algebroid. Let $(\Omega_L^{\bullet}(M) := (\Gamma(\wedge^{\bullet}(DL)^* \otimes L), d_{DL})$ be the de Rham complex (with coefficients in L) associated with DL.

Penn State

イロト イボト イヨト イヨ

• For a line bundle $L \to M$, we know that DL is a transitive Lie algebroid. Let $(\Omega_L^{\bullet}(M) := (\Gamma(\wedge^{\bullet}(DL)^* \otimes L), d_{DL})$ be the de Rham complex (with coefficients in L) associated with DL. The cochains will be called an L-valued Atiyah k-form.

イロト イボト イヨト イヨ

- For a line bundle $L \to M$, we know that DL is a transitive Lie algebroid. Let $(\Omega_L^{\bullet}(M) := (\Gamma(\wedge^{\bullet}(DL)^* \otimes L), d_{DL})$ be the de Rham complex (with coefficients in L) associated with DL. The cochains will be called an L-valued Atiyah k-form.
- For every $\eta \in \Omega_L^k(M)$, we denote the interior product by η as follows:

$$\iota_{\eta} \colon \Omega_{L}^{n}(M) \to \Omega_{L}^{n-k}(M), \qquad \iota_{\eta}(\alpha) = \eta \rfloor \alpha,$$

Using the Lie derivative $\partial_{\eta} = [d_{DL}, \iota_{\eta}]$, one gets the Cartan formulas

$$[\partial_{\eta}, d_{DL}] = 0, \qquad [\iota_{\alpha}, \iota_{\beta}] = 0, \qquad [\partial_{\alpha}, \partial_{\beta}] = \partial_{[\alpha, \beta]}$$

イロト イボト イヨト イヨト

Definition: The Koszul bracket associated with a tensor $J \in \Gamma((\Lambda^2(\mathfrak{J}^1 L))^* \otimes L)$ is the bilinear operation: $[\cdot, \cdot]_J : \Lambda^2 \Omega_L[1] \to \Omega_L[1]$ defined by: $\forall \alpha \in \Omega_L^p(M), \forall \beta \in \Omega_L^q(M)$

$$[\alpha,\beta]_J = (-1)^p (\partial_J (\alpha \wedge \beta) - \partial_J (\alpha) \wedge \beta) - \alpha \wedge \partial_J (\beta).$$

イロト イポト イヨト イヨト

Penn State

Definition: The Koszul bracket associated with a tensor $J \in \Gamma((\Lambda^2(\mathfrak{J}^1 L))^* \otimes L)$ is the bilinear operation: $[\cdot, \cdot]_J : \Lambda^2 \Omega_L[1] \to \Omega_L[1]$ defined by: $\forall \alpha \in \Omega_L^p(M), \forall \beta \in \Omega_L^q(M)$ $[\alpha, \beta]_J = (-1)^p (\partial_J(\alpha \land \beta) - \partial_J(\alpha) \land \beta) - \alpha \land \partial_J(\beta).$

Using the relation $\partial_{J} = [d_{DL}, \iota_{J}]$, one gets:

イロト 不得 トイヨト イヨト

Definition: The Koszul bracket associated with a tensor $J \in \Gamma((\Lambda^2(\mathfrak{J}^1 L))^* \otimes L)$ is the bilinear operation: $[\cdot, \cdot]_J : \Lambda^2 \Omega_L[1] \to \Omega_L[1]$ defined by: $\forall \alpha \in \Omega_L^p(M), \forall \beta \in \Omega_L^q(M)$ $[\alpha, \beta]_J = (-1)^p(\partial_J(\alpha \wedge \beta) - \partial_J(\alpha) \wedge \beta) - \alpha \wedge \partial_J(\beta).$

Using the relation $\partial_{J} = [d_{DL}, \iota_{J}]$, one gets:

$$\begin{split} [\alpha,\beta]_{J} &= -(-1)^{p} \Big(\iota_{J} d_{DL} (\alpha \wedge \beta) - d_{DL} \iota_{J} (\alpha \wedge \beta) \Big) \\ &+ (-1)^{p} \Big(\iota_{J} d_{DL} (\iota_{J} \alpha) \wedge \beta - \iota_{J} (d\alpha) \wedge \beta \Big) \\ &- \alpha \wedge \iota_{J} (d\beta) + \alpha \wedge d_{DL} (\iota_{J} (\beta)). \end{split}$$

イロト 不得 トイヨト イヨト

Aissa Wade

Lemma: Let (M, L, J) be a Jacobi manifold with its associated bundle map J^{\sharp} : $\mathfrak{J}^{1}L \to DL$ defined by $\iota_{J^{\sharp}\alpha}(\beta) = J(\alpha, \beta)$, for all $\alpha, \beta \in \Gamma(\mathfrak{J}^{1}L)$. Then, one has:

$$\iota_{J}(\alpha \wedge d_{DL}\beta) = \iota_{J^{\sharp}(\alpha)}(d_{DL}\beta) + \alpha \wedge \iota_{J}(d_{DL}\beta)$$

and the Koszul bracket in $\Omega^1_L(M)$ can be express as follows:

$$[\alpha,\beta]_J = \partial_{J^{\sharp}(\alpha)}\beta - \partial_{J^{\sharp}(\beta)}\alpha - d_{DL}\iota_J(\alpha \wedge \beta), \quad \forall \ \alpha,\beta \in \Omega^1_L(M)$$

イロン イ団 と イヨン イヨン

PENN STATE

Theorem: Let (M, L, J) be a Jacobi manifold. Its algebra of Atiyah forms $(\Omega_L^{\bullet}(M), \wedge)$ equipped with the Koszul bracket is a Batalin-Vilkovisky (BV for short) algebra with generator $\partial_J = [d_{DL}, \iota_J].$

Aissa Wade

Penn State

< □ > < 同 > < Ξ > <</p>

If (M, L, J) is a Jacobi manifold, there is an associated Lie algebroid (ℑ¹L, [·, ·]_J, ρ), where the anchor map is ρ = σ ∘ J[♯]. Moreover, we have the complex :

$$0 \xrightarrow{d_J} \Gamma(L) \xrightarrow{d_J} \Gamma(DL) \xrightarrow{d_J} \Gamma(\wedge^2 (\mathfrak{J}^1 L)^* \otimes L) \to \cdots$$

where

$$d_J(A) = [J,A]_{_{SN}},$$
 for any $A \in \Gamma(\wedge^k(\mathfrak{J}^1L)^* \otimes L).$

< □ > < 同 > < Ξ > <</p>

If (M, L, J) is a Jacobi manifold, there is an associated Lie algebroid (ℑ¹L, [·, ·]_J, ρ), where the anchor map is ρ = σ ∘ J[♯]. Moreover, we have the complex :

$$0 \xrightarrow{d_J} \Gamma(L) \xrightarrow{d_J} \Gamma(DL) \xrightarrow{d_J} \Gamma(\wedge^2 (\mathfrak{J}^1 L)^* \otimes L) \to \cdots$$

where

$$d_J(A) = [J, A]_{SN},$$

イロト イポト イヨト イヨト

PENN STATE

for any $A \in \Gamma(\wedge^k (\mathfrak{J}^1 L)^* \otimes L)$.

Here [·, ·]_{SN} is the Schouten Nijenhuis bracket on the graded commutative algebra ⊕[∞]_{k=0}Γ(Λ^k(ℑ¹L)^{*} ⊗ L).

If (M, L, J) is a Jacobi manifold, there is an associated Lie algebroid (ℑ¹L, [·, ·]_J, ρ), where the anchor map is ρ = σ ∘ J[♯]. Moreover, we have the complex :

$$0 \xrightarrow{d_J} \Gamma(L) \xrightarrow{d_J} \Gamma(DL) \xrightarrow{d_J} \Gamma(\wedge^2 (\mathfrak{J}^1 L)^* \otimes L) \to \cdots$$

where

$$d_J(A) = [J,A]_{SN},$$

for any $A \in \Gamma(\wedge^k (\mathfrak{J}^1 L)^* \otimes L)$.

- Here [·, ·]_{SN} is the Schouten Nijenhuis bracket on the graded commutative algebra ⊕[∞]_{k=0}Γ(Λ^k(ℑ¹L)^{*} ⊗ L).
- We have a cohomology operator since

$$d_J \circ d_J(A) = [J, [J, A]_{SN}]_{SN} = 0$$

A D > A D > A D > A D >

PENN STATE

for all $A \in \Gamma(\wedge^k (\mathfrak{J}^1 L)^* \otimes L)$.

Aissa Wade

Assume dim M = n and the vector bundle $\Gamma(\wedge^{n+1}(DL)^* \otimes L)$ has a nowhere vanishing smooth section Ω .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = 釣�?

Penn State

Aissa Wade

- Assume dim M = n and the vector bundle $\Gamma(\wedge^{n+1}(DL)^* \otimes L)$ has a nowhere vanishing smooth section Ω .
- Observe that the map $\Omega^{\sharp} : \Gamma(\wedge^{k}(\mathfrak{J}^{1}L)^{*} \otimes L) \to \Omega_{L}^{n-k+1}(M)$ is an isomorphism and we denote its inverse by $\Omega^{\flat} : \Omega_{L}^{n-k+1}(M) \to \Gamma(\wedge^{k}(\mathfrak{J}^{1}L)^{*} \otimes L).$

< □ > < 同 > < 回 > < Ξ > < Ξ

- Assume dim M = n and the vector bundle $\Gamma(\wedge^{n+1}(DL)^* \otimes L)$ has a nowhere vanishing smooth section Ω .
- Observe that the map Ω[♯] : Γ(∧^k(ℑ¹L)^{*} ⊗ L) → Ω^{n-k+1}_L(M) is an isomorphism and we denote its inverse by Ω[♭] : Ω^{n-k+1}_L(M) → Γ(∧^k(ℑ¹L)^{*} ⊗ L).
- Define the bundle map

$$D_{\Omega}: \Gamma(\wedge^{k}(DL)^{*} \otimes L) \to \Omega_{L}^{k-1}(M), \qquad D_{\Omega}(A) = \Omega^{\flat} \circ d_{DL} \circ \Omega^{\sharp}(A)).$$

< □ > < 同 > < 回 > < Ξ > < Ξ

- Assume dim M = n and the vector bundle $\Gamma(\wedge^{n+1}(DL)^* \otimes L)$ has a nowhere vanishing smooth section Ω .
- Observe that the map Ω[♯] : Γ(∧^k(ℑ¹L)^{*} ⊗ L) → Ω^{n-k+1}_L(M) is an isomorphism and we denote its inverse by Ω[♭] : Ω^{n-k+1}_L(M) → Γ(∧^k(ℑ¹L)^{*} ⊗ L).
- Define the bundle map

$$D_{\Omega}: \Gamma(\wedge^{k}(DL)^{*} \otimes L) \to \Omega_{L}^{k-1}(M), \qquad D_{\Omega}(A) = \Omega^{\flat} \circ d_{DL} \circ \Omega^{\sharp}(A)).$$

イロト イボト イヨト イヨト

PENN STATE

Theorem: The element $D_{\Omega}(J) \in \Gamma(L)$ is a 1-cocycle in the above cohomology complex, that is, $[J, D_{\Omega}(J)]_{SN} = 0$.

- Assume dim M = n and the vector bundle $\Gamma(\wedge^{n+1}(DL)^* \otimes L)$ has a nowhere vanishing smooth section Ω .
- Observe that the map Ω[♯] : Γ(∧^k(ℑ¹L)^{*} ⊗ L) → Ω^{n-k+1}_L(M) is an isomorphism and we denote its inverse by Ω[♭] : Ω^{n-k+1}_L(M) → Γ(∧^k(ℑ¹L)^{*} ⊗ L).
- Define the bundle map

$$D_{\Omega}: \Gamma(\wedge^{k}(DL)^{*} \otimes L) \to \Omega_{L}^{k-1}(M), \qquad D_{\Omega}(A) = \Omega^{\flat} \circ d_{DL} \circ \Omega^{\sharp}(A)).$$

Theorem: The element $D_{\Omega}(J) \in \Gamma(L)$ is a 1-cocycle in the above cohomology complex, that is, $[J, D_{\Omega}(J)]_{SN} = 0$.

Definition: The modular vector field is the vector field is the symbol of the derivation $D_{\Omega}(J)$, that is, $\sigma(D_{\Omega}(J))$.

Future plans

We plan to use the Koszul bracket for Jacobi manifolds to study

- 1 Deformations of Jacobi structures
- 2 Formality of Koszul bracket for Jacobi manifolds (following Fiorenza and Manetti)

The modular class could be useful in the study of normal forms of Jacobi structures in low dimensions.

< ≣ ►

PENN STATE

Outline	Motivations and gaols	definition and examples	The Koszul bracket of a Jacobi manifold	The modular

THANK YOU !

・ロト ・四ト ・ヨト ・ヨト 三日

Penn State

Aissa Wade