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Let G be a connected Lie group, M a G-manifold.
Borel construction:

MG := EG ×G M

where EG is a contractible space on which G acts freely.
Equivariant cohomology of (M,G):

HG(M) := H(MG)

The projection π : MG → EG/G =: BG induces a module
structure H(BG)× HG(M)→ HG(M) by f · ω := π∗(f ) ∪ ω.

Borel Localization: ĤT (M) = ĤT (MT ).

Dirk Töben (UFSCar)

Equivariant Basic Cohomology and Applications



Introduction Riemannian foliations Basic Cohomology K -contact manifolds Borel-type Localization Chern-Simons classes

Two deRham models for smooth actions: Weil and Cartan
model.

Weil model: (
∧

(g∗)⊗ S(g∗)⊗ Ω(M))bas g
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Cartan model:
Smooth torus action T y M.
Infinitesimal action t→ X(M); X 7→ X ∗, where
X ∗(p) = d

dt exp(tX )p
 operators iX := iX∗ ,LX := LX∗ ,d .
Ω(M) is a t-differential graded algebra (dga).
Define the Cartan complex Ωt(M) := S(t∗)⊗ Ω(M)T and the
equivariant differential dt:
Let X1, . . . ,Xn be a basis of t, θ1, . . . , θn be a dual basis of t∗.
Cartan complex Ωt(M) = R[θ1, . . . , θn]⊗ Ω(M)T with

dt(θk ) = 0 dt(ω) = dω +
∑

k

θk ⊗ iXkω
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T -manifold M Riemannian foliation (M,F)

infinitesimal action transverse action
t→ X(M) a→ l(M,F)

DeRham complex basic subcomplex
Ω(M) Ω(M,F )
t-dga a-dga

equivariant cohomology equivariant basic cohomology
Ht(M) Ha(M,F)

t-orbits leaf closures
T -fixed points closed leaves

Dirk Töben (UFSCar)

Equivariant Basic Cohomology and Applications



Introduction Riemannian foliations Basic Cohomology K -contact manifolds Borel-type Localization Chern-Simons classes

Let (M,g) be a complete Riemannian manifold. A Riemannian
foliation is a foliation, whose leaves are locally equidistant.
More precisely:

Definition
Let TF =

⋃
p∈M TpLp be the tangent bundle of the foliation and

νF = TF⊥ its geometric normal bundle. Consider the
transverse metric gT = g|(νF × νF). If LX gT = 0 for every
tangential vector field X , then F is called a Riemannian
foliation.

Example (Homogeneous Foliations)
The (connected components of) orbits of a locally free isometric
action define a Riemannian foliation.
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Example
Consider the T 2-action on S3 ⊂ C2 by

T 2 × S3 →S3

((c1, c2), (z1, z2)) 7→(c1z1, c2z2)

For r ∈ R\{0} consider R→ T 2; t 7→ (e2πit ,e2πirt ). The action

R→ T 2 y S3

is locally free and defines a Riemannian foliation Fr .
Fr is closed ⇐⇒ r ∈ Q. M/Fp/q is a spherical orbifold.
If r ∈ R\Q, then the leaf closures are the T 2-orbits,
M/F r = M/T 2=[0,1].
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(M,F): foliation of codimension q.

Ω∗(M,F) := {ω ∈ Ω∗(M) | iXω = 0,LXω = 0 ∀X ∈ C∞(TF)}.

is a subcomplex of Ω∗(M), i.e.

d(Ω∗(M,F)) ⊂ Ω∗+1(M,F).

H∗(M,F) := H(Ω∗(M,F),d)

is the basic cohomology of (M,F).

Objective: Determine bi := dim H i(M,F), or equivalently, the
Poincaré-polynomial

Pt (M,F) :=

q∑
i=0

bi t i .
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Example (Closed Riemannian Foliation)
Let F be a closed Riemannian foliation (i.e. all leaves are
closed).
=⇒ M/F is a Riemannian orbifold. Then

H∗(M,F) ∼= H∗(M/F)

If F is not closed, then M/F is not even Hausdorff.
Question: What can we say about H∗(M,F)?
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Let l(M,F) be the space of transverse fields, i.e. global
sections of the normal bundle νF that are holonomy-invariant.
Then Ω(M,F) is a l(M,F)-dga.

Consider Killing foliations. Examples: Homogeneous
Riemannian foliations, and Riemannian foliations on
simply-connected manifolds.
For a Killing foliation F there are commuting transverse fields
X1, . . . ,Xk ∈ l(M,F) such that

TpLp = TpLp ⊕ 〈X1(p), . . . ,Xk (p)〉

for all p ∈ M. [Molino, Mozgawa]
X1, . . . ,Xk form an abelian Lie-subalgebra of l(M,F). Thus
Ω(M,F) is a a-dga.
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T -manifold M Killing foliation (M,F)

infinitesimal action transverse action
t→ X(M) a→ l(M,F)

DeRham complex basic subcomplex
Ω(M) Ω(M,F )
k-dga a-dga

equivariant cohomology equivariant basic cohomology
Ht(M) Ha(M,F)

t-orbits leaf closures
T -fixed points closed leaves
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M: complete
F : Killing foliation (e.g. F Riemannian and M 1-connected)
transversely orientable
M/F compact (e.g. M compact).
C: the union of closed leaves.

Theorem (Goertsches-T: Borel-type Localization)
dim H∗(C/F) = dim H∗(C,F) ≤ dim H∗(M,F) =

∑
i bi .

In particular

#components of C ≤ dim H∗(M,F).

Theorem (Caramello-T)

χB(M,F) = χB(C,F|C) = χ(C/F).
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Let f : M → R be a basic Morse-Bott function, whose critical
manifolds are isolated leaf closures. We denote the index of f
at the critical manifold N by λN .

Theorem (Alvarez López)
If M is compact, then

Pt (M,F) ≤
∑

N

tλN Pt (N,F),

where N runs over the critical leaf closures.
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Theorem (Goertsches-T)
A basic Morse-Bott f : M → R, whose critical set is equal to C,
is perfect. That means

Pt (M,F) =
∑

N

tλN Pt (N/F),

where N runs over the connected components of C and λN is
the index of f at N.
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Application to K-contact manifolds (e.g. Sasakian manifolds):

(M2n+1, α, g): compact K-contact manifold.
α: contact form, i.e. α ∧ (dα)n 6= 0 everywhere,
g: adapted Riemannian metric.
R: Reeb field defined by α(R) = 1 and iRdα = 0. It is a
nonvanishing Killing field with respect to g.
 Reeb orbit foliation F . It is a 1-dimensional homogeneous
Riemannian foliation, therefore a Killing foliation.
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R := Reeb field of α .
T := closure of the Reeb flow in Isom(M,g). Then T is a torus
whose Lie algebra t contains R. T -orbits are the closures of the
Reeb orbits.
C := union of the closed Reeb orbits = union of all
1-dimensional T -orbits.
a = t/RR.

Definition (Contact moment map)
For each X ∈ t, we define ΦX : M → R by

ΦX (p) = α(X ∗p ).

Note that ΦX is T -invariant.
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Theorem (Goertsches-Nozawa-T)
For generic X ∈ t, the function ΦX is a perfect basic Morse-Bott
function whose critical set is C:

Pt (M,F) =
∑

N

tλN Pt (N/F).
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Corollary
Assume that C consists of isolated closed Reeb orbits. Then
we get Hodd(M,F) = 0.

Proof.
The indices of the critical leaves, the isolated Reeb orbits, are
even, because the negative spaces are complex.
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Theorem (Goertsches-Nozawa-T)
We have ∑

j

dim H j(C/F) =
∑

j

dim H j(M,F).

In particular, in case the closed Reeb orbits are isolated, their
number is given by dim H∗(M,F).
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0 6= [(dα)]k ∈ H2k (M,F) for all k = 0, . . . ,n.

R[z]/(zn+1) ⊂ H∗(M,F).

Corollary (Rukimbira)
The Reeb flow has at least n + 1 closed orbits.

Corollary
If the Reeb flow has exactly n + 1 closed orbits, then
H∗(M,F) ∼= R[z]/(zn+1) as graded rings.
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Theorem (Goertsches-Nozawa-T)
If (M, α, g) is a compact K -contact (2n + 1)-manifold whose
closed Reeb orbits are isolated, then their number is exactly
n + 1 if and only if M is a real cohomology sphere (i.e.
H∗(M) = H∗(S2n+1)).

Proof.
The Gysin sequence relates H∗(M,F) to H∗(M). It can be used
to show

H∗(M,F) = R[z]/(zn+1) ⇐⇒ H∗(M) = H∗(S2n+1).

0→ H2k+1(M)→ H2k (M,F)
δ→ H2k+2(M,F)→ H2k+2(M)→ 0,
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Theorem (GNT: Duistermaat-Heckman-type theorem)
Let (M, α, g) be a (2n + 1)-dimensional compact K-contact
manifold with only finitely many closed Reeb orbits L1, . . ., LN .
Then the volume of (M,g) is given by

1
2nn!

∫
M
α ∧ (dα)n = (−1)nπ

n

n!

N∑
k=1

lk ·
α|Lk (X ∗)n∏

j β
k
j (X + RR)

,

where lk =
∫

Lk
α is the length of the closed Reeb orbit Lk and

{βk
j }nj=1 ⊂ a∗ are the weights of the transverse isotropy

a-representation at Lk .
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Applications: Calculation of Volume

Deformations of standard Saskian structure on S2n+1

Toric Sasakian manifolds
Homogeneous Sasakian manifolds
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M: compact manifold
F : orientable taut transversely Kähler foliation of dimension
one and complex codimension m with only finitely many closed
leaves L1, . . ., LN .
Assume that ∧m,0ν∗F is trivial as a topological line bundle.∫

M
u1c =

N∑
k=1

(∫
Lk

u1

)
ca|Lk

cm,a(νF ,F)|Lk
,

where c is a basic Chern class of the normal bundle νF of
degree 2m and ca its the corresponding equivariant Chern
class. In particular, in the case where c = cm, we obtain∫

M
u1cm =

∑
k

∫
Lk

u1.
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