Structure Equations for *G*-Structures and *G*-Structure Algebroids

Ivan Struchiner

IME - USP

November 13, 2019 Joint work with Rui Loja Fernandes

・ロン ・回と ・ヨン・

Purpose

- Explain the background geometry underlying a type of classification problem in differential geometry.
- Show examples of how to solve the classification problems

(1日) (日) (日)

Purpose

- Explain the background geometry underlying a type of classification problem in differential geometry.
- Show examples of how to solve the classification problems

This talk is based on:

- R.L. Fernandes & I.S., The Classifying Algebroid of a Geometric Structure I, (Trans. of the A.M.S.).
- R.L Fernandes & I.S., The Global Solutions to Cartan's Realization Problem (Arxiv)
- R. Bryant, Bochner-Kähler metrics. J. of Amer. Math. Soc., 14 (2001), 623–715.

(ロ) (同) (E) (E) (E)

Type of Classification Problems

The Classification Problems that we consider are of Finite Type:

・ロン ・回と ・ヨン ・ヨン

Type of Classification Problems

The Classification Problems that we consider are of Finite Type:

- Finite Type problemas are those for which the local isomorphism class of the geometric structure being considered are determined by a finite amount of invariants.
- These are classes of geometric structures which can be described as solutions of an Exterior Differential System of Frobenius Type.

・ 回 と ・ ヨ と ・ ヨ と

Examples

Example (Surfaces of Constant Curvature)

The Gaussian Curvature k of (M, σ) is its only local invariant.

・ロン ・回と ・ヨン・

Examples

Example (Surfaces of Constant Curvature)

The Gaussian Curvature k of (M, σ) is its only local invariant.

Example (Surfaces of Hessian type $\frac{1}{2}(1-k^2)$)

• (M^2, σ) such that $\operatorname{Hess}_{\sigma}(k) = \frac{1}{2}(1-k^2)\sigma$;

• Complete set of local invariants: k, k_1, k_2 , where

$$k_1 = \frac{\partial k}{\partial \theta_1}, \quad k_2 = \frac{\partial k}{\partial \theta_2},$$

$$(\frac{\partial}{\partial \theta_1}, \frac{\partial}{\partial \theta_2})$$
 - Local O.N. Frame of M .

・ロン ・回と ・ヨン ・ヨン

Example: Extremal Kähler Surfaces

• An Extremal Kähler Surface is a Kähler Surface (M, σ, Ω, J) such that the Hamiltonian vector field ξ_k associated to the Gaussian curvature of σ is an infinitesimal symmetry of the Kähler structure:

$$\mathcal{L}_{\xi_k}\sigma = 0, \quad \mathcal{L}_{\xi_k}\Omega = 0, \quad \mathcal{L}_{\xi_k}J = 0.$$

- If *M* is compact these correspond to critical points of the Calabi functional.
- 2-dimensional Böchner-Kähler manifolds.
- There are 2 ℝ-valued functions and one ℂ-valued function that provide a complete set of invariants (to be described soon).

(本部) (本語) (本語) (語)

The geometries we are considering are *G*-structures with connections:

・ロン ・回と ・ヨン・

The geometries we are considering are *G*-structures with connections:

• $\pi: F(M) \to M$: frame bundle of M^n with fiber:

 $\pi^{-1}(x) = \{p : \mathbb{R}^n \to T_x M : \text{ linear isomorphism}\};$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

The geometries we are considering are *G*-structures with connections:

• $\pi: F(M) \to M$: frame bundle of M^n with fiber:

 $\pi^{-1}(x) = \{p : \mathbb{R}^n \to T_x M : \text{ linear isomorphism}\};$

• $G \subset \operatorname{GL}_n(\mathbb{R})$ (in this talk, compact, connected) Lie group;

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で

The geometries we are considering are *G*-structures with connections:

• $\pi: F(M) \to M$: frame bundle of M^n with fiber:

 $\pi^{-1}(x) = \{p : \mathbb{R}^n \to T_x M : \text{ linear isomorphism}\};$

- $G \subset \operatorname{GL}_n(\mathbb{R})$ (in this talk, compact, connected) Lie group;
- a G-structure is a reduction $F_G(M) \subset F(M)$ of the structure group of the frame bundle to G, i.e., a principal G-subbundle;

The geometries we are considering are *G*-structures with connections:

• $\pi: F(M) \to M$: frame bundle of M^n with fiber:

 $\pi^{-1}(x) = \{p : \mathbb{R}^n \to T_x M : \text{ linear isomorphism}\};$

- $G \subset \operatorname{GL}_n(\mathbb{R})$ (in this talk, compact, connected) Lie group;
- a G-structure is a reduction $F_G(M) \subset F(M)$ of the structure group of the frame bundle to G, i.e., a principal G-subbundle;
- $\theta \in \Omega^1(F_G(M), \mathbb{R}^n)$, $\xi \mapsto p^{-1}(d_p \pi(\xi))$: the tautological 1-form;

The geometries we are considering are *G*-structures with connections:

• $\pi: F(M) \to M$: frame bundle of M^n with fiber:

 $\pi^{-1}(x) = \{p : \mathbb{R}^n \to T_x M : \text{ linear isomorphism}\};$

- $G \subset \operatorname{GL}_n(\mathbb{R})$ (in this talk, compact, connected) Lie group;
- a G-structure is a reduction $F_G(M) \subset F(M)$ of the structure group of the frame bundle to G, i.e., a principal G-subbundle;
- $\theta \in \Omega^1(F_G(M), \mathbb{R}^n)$, $\xi \mapsto p^{-1}(\mathrm{d}_p \pi(\xi))$: the tautological 1-form;
- $\eta \in \Omega^1(F_G(M), \mathfrak{g})$: a principal bundle connection.

Basics of G-structures

A diffeomorphism $\phi:M_1\to M_2$ lifts to an isomorphism:

 $\phi_*: F(M_1) \to F(M_2).$

Definition

Given G-structures $F_G(M_1)$ and $F_G(M_2)$, a G-equivalence is a diffeomorphism $\phi: M_1 \to M_2$ such that:

 $\phi_*(F_G(M_1)) = F_G(M_2).$

Classical problem:

■ When are two *G*-structures (locally) equivalent?

This encodes the equivalence of many geometric problems.

Basics of G-structures : Examples

Examples:

- Riemannian structures $\iff O_n$ -structures;
- Almost complex structures \iff $GL_n(\mathbb{C})$ -structures;
- Almost symplectic structures \iff Sp_n-structures;
- Almost hermitian structures \iff U_n-structures.

▲圖▶ ▲屋▶ ▲屋▶

The tautological form $\theta \in \Omega^1(F_G(M), \mathbb{R}^n)$, $\xi \mapsto p^{-1}(d_p \pi(\xi))$ controls the equivalence problem and characterises *G*-structures among *G*-principal bundles:

・ロン ・回と ・ヨン ・ヨン

The tautological form $\theta \in \Omega^1(F_G(M), \mathbb{R}^n)$, $\xi \mapsto p^{-1}(d_p \pi(\xi))$ controls the equivalence problem and characterises *G*-structures among *G*-principal bundles:

Proposition

A G-equivariant diffeomorphism $\varphi: F_G(M_1) \to F_G(M_2)$ is an equivalence if and only if $\varphi^* \theta_2 = \theta_1$.

イロン イヨン イヨン イヨン

The tautological form $\theta \in \Omega^1(F_G(M), \mathbb{R}^n)$, $\xi \mapsto p^{-1}(d_p \pi(\xi))$ controls the equivalence problem and characterises *G*-structures among *G*-principal bundles:

Proposition

A G-equivariant diffeomorphism $\varphi: F_G(M_1) \to F_G(M_2)$ is an equivalence if and only if $\varphi^* \theta_2 = \theta_1$.

Proposition

If $P \to M$ is a *G*-principal bundle, and $\tau \in \Omega^1(P, \mathbb{R}^n)$ is a tensorial 1-form, then there exists a unique embedding of principal bundles $\varphi: P \to F(M)$ such that $\varphi^* \theta = \tau$.

(ロ) (同) (E) (E) (E)

The tautological form $\theta \in \Omega^1(F_G(M), \mathbb{R}^n)$, $\xi \mapsto p^{-1}(d_p \pi(\xi))$ controls the equivalence problem and characterises *G*-structures among *G*-principal bundles:

Proposition

A G-equivariant diffeomorphism $\varphi: F_G(M_1) \to F_G(M_2)$ is an equivalence if and only if $\varphi^* \theta_2 = \theta_1$.

Proposition

If $P \to M$ is a *G*-principal bundle, and $\tau \in \Omega^1(P, \mathbb{R}^n)$ is a tensorial 1-form, then there exists a unique embedding of principal bundles $\varphi: P \to F(M)$ such that $\varphi^* \theta = \tau$.

Conclusion: Category of *G*-Structures with equivalences \simeq Category of principal *G*-bundles with tensorial forms.

(ロ) (同) (E) (E) (E)

Connections

Recall that a connection is a 1-form $\omega \in \Omega^1(F_G(M),\mathfrak{g})$ such that

$$R_g^*\omega = \mathrm{Ad}_g^{-1}\omega, \quad \omega(\tilde{\alpha}_p) = \alpha, \quad \forall \alpha \in \mathfrak{g}.$$

Connections

Recall that a connection is a 1-form $\omega\in\Omega^1(F_G(M),\mathfrak{g})$ such that

$$R_g^*\omega = \mathrm{Ad}_g^{-1}\omega, \quad \omega(\tilde{\alpha}_p) = \alpha, \quad \forall \alpha \in \mathfrak{g}.$$

• Torsion of ω : $c: F_G(M) \to \operatorname{Hom}(\wedge^2 \mathbb{R}^n, \mathbb{R}^n)$

 $c(p)(u,v) = \mathrm{d}\theta(\xi_u,\xi_v), \quad \xi_u,\xi_v \in \mathrm{Ker}\omega_p, \quad \theta(\xi_u) = u, \quad \theta(\xi_v) = v.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Connections

Recall that a connection is a 1-form $\omega \in \Omega^1(F_G(M),\mathfrak{g})$ such that

$$R_g^*\omega = \mathrm{Ad}_g^{-1}\omega, \quad \omega(\tilde{\alpha}_p) = \alpha, \quad \forall \alpha \in \mathfrak{g}.$$

• Torsion of ω : $c: F_G(M) \to \operatorname{Hom}(\wedge^2 \mathbb{R}^n, \mathbb{R}^n)$

 $c(p)(u,v) = d\theta(\xi_u,\xi_v), \quad \xi_u,\xi_v \in \operatorname{Ker}\omega_p, \quad \theta(\xi_u) = u, \quad \theta(\xi_v) = v.$

• Curvature of ω : $R: F_G(M) \to \operatorname{Hom}(\wedge^2 \mathbb{R}^n, \mathfrak{g})$ $R(p)(u, v) = d\omega(\xi_u, \xi_v), \quad \xi_u, \xi_v \in \operatorname{Ker}\omega_p, \quad \theta(\xi_u) = u, \quad \theta(\xi_v) = v.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で

Torsion Free Connections

The existence of Torsion free connections on a G-structure is the first (and many times only) obstruction to integrability of the underlying geometric structures:

Torsion Free Connections

The existence of Torsion free connections on a G-structure is the first (and many times only) obstruction to integrability of the underlying geometric structures:

Examples:

- Almost complex structures is complex $\iff F_{\mathrm{GL}_n(\mathbb{C})}(M)$ admits a torsion free connection;
- Almost symplectic structures is symplectic $\iff F_{\mathrm{Sp}_n}(M)$ admits a torsion free connection;
- Almost hermitian structures is Kähler $\iff F_{\mathrm{U}_n}(M)$ admits a torsion free connection.

Structure Equations

Key Remark: $(\theta, \omega)_p : T_pF_G(M) \to \mathbb{R}^n \oplus \mathfrak{g}$ is an isomorphism. We can interpret (θ, ω) as a coframe on $F_G(M)$.

(4回) (1日) (日)

Structure Equations

Key Remark: $(\theta, \omega)_p : T_pF_G(M) \to \mathbb{R}^n \oplus \mathfrak{g}$ is an isomorphism. We can interpret (θ, ω) as a coframe on $F_G(M)$.

Equivalence of *G*-structures with connections is controlled by the structure equations:

$$\begin{cases} d\theta = c \circ \theta \wedge \theta - \omega \wedge \theta \\ d\omega = R \circ \theta \wedge \theta - \omega \wedge \omega \\ \text{Higher order consequences of these equations} \end{cases}$$

・ロン ・回 と ・ 回 と ・ 回 と

Structure Equations: Example 1

Example (Constant Curvature Surfaces: $G = SO_2$)

- Connection $\omega \in \Omega^1(F_{SO_2}(M), \mathfrak{so}_2)$ Levi-Civita connection
- Structure equations:

$$\begin{cases} d\theta^1 = -\theta^2 \wedge \omega \\ d\theta^2 = \theta^1 \wedge \omega \\ d\eta = -k\theta^1 \wedge \theta^2 \\ dk = 0 \end{cases}$$

- $\theta = (\theta^1, \theta^2) \in \Omega^1(F_{SO_2}(M), \mathbb{R}^2)$ is the tautological form of the orthogonal frame bundle
- $k: F_{SO_2}(M) \longrightarrow \mathbb{R}$ is the Gaussian curvature.

・ロン ・回と ・ヨン ・ヨン

Structure Equations: Example 2

Example $((M^2, \sigma)$ such that $\operatorname{Hess}_g k = \frac{1}{2}(1-k^2)\sigma$: $G = \operatorname{SO}_2$)

Structure equations:

$$\begin{cases} \mathrm{d}\theta^1 = -\theta^2 \wedge \omega \\ \mathrm{d}\theta^2 = \theta^1 \wedge \omega \\ \mathrm{d}\eta = -k\theta^1 \wedge \theta^2 \\ \mathrm{d}k = k_1\theta^1 + k_2\theta^2 \\ \mathrm{d}k_1 = \frac{1}{2}(1-k^2)\theta_1 - k_2\omega \\ \mathrm{d}k_2 = \frac{1}{2}(1-k^2)\theta_2 + k_1\omega \end{cases}$$

•
$$\omega$$
 - Levi-Civita; $\theta = (\theta^1, \theta^2)$ - tautological form;
 $(k, k_1, k_2) : F_{SO_2}(M) \to \mathbb{R}^3.$

イロン イヨン イヨン イヨン

Structure Equations: Example 3

Example (Extremal Kähler Surfaces (M, σ, Ω, J) : $G = U_1$)

Structure equations:

$$\begin{cases} d\theta = -\omega \wedge \theta \\ d\omega = \frac{K}{2} \theta \wedge \bar{\theta} \\ dK = -(\bar{T}\theta + T\bar{\theta}) \\ dT = U\theta - T\omega \\ dU = -\frac{K}{2}(\bar{T}\theta + T\bar{\theta}) \end{cases}$$

• $\omega \in \Omega^1(F_{U_1}(M), \mathbb{C})$ tautological form; $\omega \in \Omega^1(F_{U_1}(M), i\mathbb{R})$ Levi-Civita connection

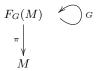
$$(K,T,U): F_{U_1}(M) \to \mathbb{R} \times \mathbb{C} \times \mathbb{R}.$$

イロン イヨン イヨン イヨン

Classification Problem

Given a structure group $G \subset GL_n$ and a set of structure equations of a finite type problem, an integration (or realization) is:

- A manifold M of dimension n
- A G-structure



with tautological form $\theta \in \Omega^1(F_G(M), \mathbb{R}^n)$

• A connection $\omega \in \Omega^1(F_G(M), \mathfrak{g})$

Such that the structure equations are satisfied.

イロン イボン イヨン イヨン 三日

Classification Problem

Given a structure group $G \subset GL_n$ and a set of structure equations of a finite type problem, an integration (or realization) is:

- A manifold M of dimension n
- A G-structure

$$\begin{array}{c|c} F_G(M) & \bigcirc G \\ \pi \\ M \\ M \end{array}$$

with tautological form $\theta \in \Omega^1(F_G(M), \mathbb{R}^n)$

• A connection $\omega \in \Omega^1(F_G(M), \mathfrak{g})$

Such that the structure equations are satisfied.

PROBLEM: Classify all realizations of a finite type problem up to local/global equivalence; Construct examples; Describe the local/global symmetry groups of realizations; etc...

Example: Surfaces of Constant Curvature

If we "dualize" the structure equations for constant curvature surfaces:

$$\left\{ \begin{array}{l} \mathrm{d}\theta^1 = -\theta^2 \wedge \eta \\ \mathrm{d}\theta^2 = \theta^1 \wedge \eta \\ \mathrm{d}\eta = -\kappa\theta^1 \wedge \theta^2 \\ \mathrm{d}\kappa = 0 \end{array} \right. \Longrightarrow \left\{ \begin{array}{l} e_1 = [e_2, e_3] \\ e_2 = [e_3, e_1] \\ e_3 = \kappa[e_1, e_2] \\ \kappa \text{ is constant.} \end{array} \right.$$

we obtain a bundle of Lie algebras $A \to \mathbb{R}$.

• We look for an "SO₂ - integrations", i.e., Lie group H integrating A_{κ} with free and proper SO₂-action:

$\kappa <$	< 0	$A_{\kappa} = \mathfrak{sl}_2$	SL_2	$SL_2/SO_2 \simeq \mathbb{H}(\kappa)$
$\kappa =$	= 0	$A_{\kappa} = \mathfrak{euc}_2$	$\mathbb{R}^2 \ltimes SO_2$	$\mathbb{R}^2 \rtimes \mathrm{SO}_2/\mathrm{SO}_2 \simeq \mathbb{R}^2$
$\kappa >$	> 0	$A_{\kappa} = \mathfrak{so}_3$	SO_3	$SO_3/SO_2 \simeq S^2(\frac{1}{\kappa})$

・ 母 と ・ ヨ と ・ ヨ と

Lie Algebroids

In general we do not get (a bundle of) Lie algebras, but a Lie algebroid:

Definition

A Lie Algebroid is a vector bundle $A \rightarrow X$ with

• a Lie bracket $[\cdot, \cdot]$ on $\Gamma(A)$;

 \blacksquare a bundle map $\rho: A \rightarrow TX$ called the anchor of A

satisfying the Leibniz identity

$$[\alpha,f\beta]=f[\alpha,\beta]+\rho(\alpha)(f)\beta$$

for all $\alpha, \beta \in \Gamma(A)$, and $f \in C^{\infty}(X)$.

・ロト ・回ト ・ヨト ・ヨト

Lie Algebroids

- $\operatorname{Im}(\rho) \subset TX$ is a singular integrable distribution \implies Leaves of A in X
- $\operatorname{Ker} \rho_x \subset A_x$ is a Lie algebra: Isotropy Lie algebra

Lie Algebroids

- $\operatorname{Im}(\rho) \subset TX$ is a singular integrable distribution \implies Leaves of A in X
- $\operatorname{Ker}\rho_x \subset A_x$ is a Lie algebra: Isotropy Lie algebra

Proposition: (Consequence of Koszul's Formula for d)

Let $A \to X$ be a vector bundle. There is a one to one correspondence between Lie algebroid structures on A and derivations $d: \Gamma(\wedge^{\bullet}A^*) \to \Gamma(\wedge^{\bullet+1}A^*)$ such that $d^2 = 0$.

Lie Algebroids

- $\operatorname{Im}(\rho) \subset TX$ is a singular integrable distribution \implies Leaves of A in X
- $\operatorname{Ker}\rho_x \subset A_x$ is a Lie algebra: Isotropy Lie algebra

Proposition: (Consequence of Koszul's Formula for d)

Let $A \to X$ be a vector bundle. There is a one to one correspondence between Lie algebroid structures on A and derivations $d: \Gamma(\wedge^{\bullet}A^*) \to \Gamma(\wedge^{\bullet+1}A^*)$ such that $d^2 = 0$.

Conclusion

Necessary conditions to for existence of G-realizations:

$$d^2 = 0 \implies$$
 Lie algebroid!

Ivan Struchiner Structure Equations for G-Structures and G-Structure Algebro

G-Structure Algebroids

The Lie algebroids appearing in classification problems have extra structure. They come equipped with:

- A principal *G*-action;
- A tensorial 1-form $\theta \in \Gamma(A^*) \otimes \mathbb{R}^n$;
- A connection 1-form $\omega \in \Gamma(A^*) \otimes \mathfrak{g}$;

▲□→ ▲ 国 → ▲ 国 →

G-Structure Algebroids in Normal Form

- As a vector bundle $A \to X$ is always trivial with fiber $\mathbb{R}^n \oplus \mathfrak{g}$;
- X comes equipped with an action of G;
- The natural inclusion

$$i: X \ltimes \mathfrak{g} \longrightarrow A = X \times (\mathbb{R}^n \oplus \mathfrak{g})$$

is a Lie algebroid morphism. It determines an action of ${\cal G}$ on ${\cal A}$ by inner automorphisms.

The bracket is given on constant sections by

$$[(u,\alpha),(v,\beta)](x) = (\alpha \cdot v - \beta \cdot u - c(x)(u,v), [\alpha,\beta]_{\mathfrak{g}} - R(x)(u,v))$$

where

(1日) (日) (日)

G-Structure Algebroids in Normal Form II

- $c: X \to \operatorname{Hom}(\wedge^2 \mathbb{R}^n, \mathbb{R}^n)$ is a *G*-equivariant map called the torsion of (A, θ, ω) ;
- $R: X \to \operatorname{Hom}(\wedge^2 \mathbb{R}^n, \mathfrak{g})$ is a *G*-equivariant map called the curvature of (A, θ, ω) ;
- The anchor of A takes the form

$$\rho_x(u,\alpha) = F(x,u) + \psi(x,\alpha),$$

where $F: X \times \mathbb{R}^n \to TX$ is a *G*-equivariant bundle map and $\psi: X \times \mathfrak{g} \to TX$ is the infinitesimal action map associated to the *G* action on *X*.

(ロ) (同) (E) (E) (E)

Example: Hessian Curvature – (M^2, g) such that $\text{Hess}_g \kappa = \frac{1}{2}(1 - \kappa^2)g$

$$\begin{cases} d\theta^{1} = -\theta^{2} \wedge \eta \\ d\theta^{2} = \theta^{1} \wedge \eta \\ d\eta = -\kappa\theta^{1} \wedge \theta^{2} \\ d\kappa = \kappa_{1}\theta^{1} + \kappa_{2}\theta^{2} \\ d\kappa_{1} = \frac{1}{2}(1-\kappa^{2})\theta_{1} - \kappa_{2}\eta \\ d\kappa_{2} = \frac{1}{2}(1-\kappa^{2})\theta_{2} + \kappa_{1}\eta \end{cases} \Longrightarrow \begin{cases} [\alpha_{2}, \beta] = \alpha_{1} \\ [\beta, \alpha_{1}] = \alpha_{2} \\ [\alpha_{1}, \alpha_{2}] = \kappa\beta \\ \rho(\alpha_{1}) = \kappa_{1}\partial_{\kappa} + \frac{1}{2}(1-\kappa^{2})\partial_{\kappa_{1}} \\ \rho(\alpha_{2}) = \kappa_{2}\partial_{\kappa} + \frac{1}{2}(1-\kappa^{2})\partial_{\kappa_{2}} \\ \rho(\beta) = -\kappa_{2}\partial_{\kappa_{1}} + \kappa_{1}\partial_{\kappa_{2}} \end{cases}$$

Where $X = \mathbb{R}^3$ with coordinates $(\kappa, \kappa_1, \kappa_2)$; $A = X \times (\mathbb{R}^2 \oplus \mathfrak{so}_2) = X \times \mathbb{R}^3$ with basis of sections $\alpha_1, \alpha_2, \beta$; The SO₂ action on X is induced by $\rho(\beta)$: rotation around the κ axis.

G-Structure Algebroid for EK-Surfaces

$$\bullet X = \mathbb{R} \times \mathbb{C} \times \mathbb{R};$$

•
$$A = X \times (\mathbb{C} \oplus \mathfrak{u}(1));$$

• U(1)-action on X:

$$(K, T, U)g = (K, g^{-1}T, U), \quad g \in U(1),$$

associated to the infinitesimal action $\psi: X \times \mathfrak{u}(1) \to TX$:

$$\psi(\alpha)|_{(K,T,U)} = (0, -\alpha T, 0), \quad \alpha \in \mathfrak{u}(1).$$

Bracket:

$$[(z,\alpha), (w,\beta)]|_{(K,T,U)} := (\alpha w - \beta z, -\frac{K}{2}(z\bar{w} - \bar{z}w)),$$

Anchor:

$$\rho(z,\alpha)|_{(K,T,U)} := \left(-T\bar{z} - \bar{T}z, Uz - \alpha T, -\frac{K}{2}T\bar{z} - \frac{K}{2}\bar{T}z\right).$$

Classification Problem Revisited

If (P, θ, ω) is a *G*-structure with connection, then $TP \to P$ is a *G*-structure algebroid with torsion $c = c_{\omega}$ and curvature $R = R_{\omega}$.

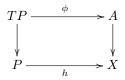
・ロン ・回 と ・ 回 と ・ 回 と

Classification Problem Revisited

If (P, θ, ω) is a *G*-structure with connection, then $TP \to P$ is a *G*-structure algebroid with torsion $c = c_{\omega}$ and curvature $R = R_{\omega}$.

If $(A,\theta,\omega)\to X$ is the G-structure algebroid corresponding to a finite type classification problem for G-structures with connections the there is a 1-1 correspondence

 $\{$ Solutions of the problem $\} \longleftrightarrow \{G$ -structure algebroid morphisms $\}$



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で

Idea :)

We can construct morphisms by considering Maurer-Cartan forms on the associated global objects (Lie groupoids with extra structure).

(1日) (日) (日)

Idea :)

We can construct morphisms by considering Maurer-Cartan forms on the associated global objects (Lie groupoids with extra structure).

Example

- The Maurer-Cartan form $\omega_{MC} \in \Omega^1(G, \mathfrak{g})$ is a Lie algebroid morphism $\omega_{MC} : TG \to \mathfrak{g}$;
- A map $\phi: TP \to \mathfrak{g}$ is a morphism iff it satisfies the M-C equation;
- Every morphism ϕ is locally the pull-back of $\omega_{\rm MC}$ (universal property).

Idea :)

We can construct morphisms by considering Maurer-Cartan forms on the associated global objects (Lie groupoids with extra structure).

Example

- The Maurer-Cartan form $\omega_{MC} \in \Omega^1(G, \mathfrak{g})$ is a Lie algebroid morphism $\omega_{MC} : TG \to \mathfrak{g}$;
- A map $\phi: TP \to \mathfrak{g}$ is a morphism iff it satisfies the M-C equation;
- Every morphism ϕ is locally the pull-back of $\omega_{\rm MC}$ (universal property).

We must consider M-C forms on Lie groupoids!

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

G-Structure Groupoids

Let $G \subset \operatorname{GL}_n$.

A G-Structure Groupoid is a Lie groupoid $\Gamma \rightrightarrows X$ with a (right) locally free and proper G-action such that $s(\gamma \cdot g) = s(\gamma)$,

$$(\gamma_1\gamma_2)\cdot g = (\gamma_1\cdot g)\gamma_2,$$

and a **tautological** (s-foliated) **1-form** $\Theta \in \Omega^1_s(\Gamma, \mathbb{R}^n)$, where Θ is

- **Right invariant**: $R^*_{\gamma}\Theta = \Theta$;
- *G*-equivariant: $\Psi_g^* \Theta = g^{-1} \cdot \Theta$;
- Strongly Horizontal:
 - $\Theta_\gamma(\xi)=0\quad \text{iff}\quad \xi=(\alpha_{\varGamma})|_\gamma, \,\,\text{for some}\,\,\alpha\in\mathfrak{g}.$

G-Structure Groupoids with Connections

A **Connection** on a *G*-structure groupoid $\Gamma \rightrightarrows X$ is a (*s*-foliated) 1-form $\Omega \in \Omega^1_s(\Gamma, \mathbb{R}^n)$ which satisfies:

- **Right invariant**: $R^*_{\gamma}\Omega = \Omega$;
- *G*-equivariant: $\Psi_g^*\Omega = \operatorname{Ad}_{g^{-1}} \cdot \Omega;$

• Vertical:
$$\Omega_{\gamma}(\alpha_{\Gamma}) = \alpha$$
 for all $\alpha \in \mathfrak{g}$.

(本間) (本語) (本語) (語)

G-Structure Groupoids with Connections

A **Connection** on a *G*-structure groupoid $\Gamma \rightrightarrows X$ is a (*s*-foliated) 1-form $\Omega \in \Omega^1_s(\Gamma, \mathbb{R}^n)$ which satisfies:

- **Right invariant**: $R^*_{\gamma}\Omega = \Omega$;
- *G*-equivariant: $\Psi_g^*\Omega = \operatorname{Ad}_{g^{-1}} \cdot \Omega;$
- Vertical: $\Omega_{\gamma}(\alpha_{\Gamma}) = \alpha$ for all $\alpha \in \mathfrak{g}$.

G-structure groupoids with connections give rise to families of G-structures with connection:

$$\begin{array}{c|c}
s^{-1}(x) & & & \\
 & \pi \\
 & & \\
s^{-1}(x)/G
\end{array}$$

- 本部 とくき とくき とうき

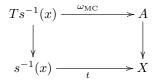
Solutions to Realization Problem

The Lie algebroid of a $G\text{-structure groupoid }(\Gamma,\Theta,\Omega)\rightrightarrows X$ is a G-structure algebroid;

・ロト ・回ト ・ヨト ・ヨト

Solutions to Realization Problem

The Lie algebroid of a G-structure groupoid $(\Gamma, \Theta, \Omega) \rightrightarrows X$ is a G-structure algebroid;



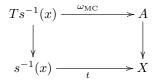
is a morphism of G-structure algebroids, where

$$(\omega_{\mathrm{MC}})_{\gamma}(\xi) = d_{\gamma}R_{\gamma^{-1}}(\xi) \in A_{t(\gamma)}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で

Solutions to Realization Problem

The Lie algebroid of a G-structure groupoid $(\Gamma, \Theta, \Omega) \rightrightarrows X$ is a G-structure algebroid;



is a morphism of G-structure algebroids, where

$$(\omega_{\mathrm{MC}})_{\gamma}(\xi) = d_{\gamma}R_{\gamma^{-1}}(\xi) \in A_{t(\gamma)}$$

These solutions are universal

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で

Integrability of G-Structure Algebroids I

- Not every Lie algebroid is isomorphic to the Lie algebroid of a Lie groupoid. If A = Lie(G) we say that A is integrable;
- Not every G-structure algebroid is isomorphic to the Lie algebroid of a G-structure groupoid (even when A is integrable). If (A, θ) = Lie(Γ, Θ) we say that (A, θ) is G-integrable;

(4回) (注) (注) (注) (注)

Integrability of G-Structure Algebroids II

- (A, θ) is G-integrable if and only if it is integrable and there exists Γ integrating A such that the action map
 i g κ X → A integrates to a groupoid morphism
 i G κ X → Γ. there are explicit (and computable!)
 obstructions for this.
- If (A, θ) is G-integrable then there exists a canonical G-structure groupoid Σ_G(A) ⇒ X which integrates A and is characterised by π₁(s⁻¹(x)/G) = {1}. This groupoid covers any other G-integration of A.

(ロ) (同) (E) (E) (E)

Main Results: Local Existence of Solutions

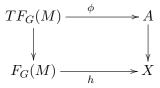
Theorem (R. Fernandes, I.S.)

Let $(A, \theta) \to X$ be a *G*-structure algebroid and $x \in X$. Then there exists a *G*-invariant open neighbourhood $U \subset L_x$ such that $A|_U$ is *G*-integrable.

(本間) (本語) (本語)

Main Results: Local Existence of Solutions

Consequence: If $A \to X$ is the *G*-structure algebroid of a finite type classification problem, then for each $x \in X$ there exists a realization

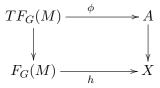


such that $x \in \text{Im}(h)$.

→ □ → → 三 → → 三 → つくで

Main Results: Local Existence of Solutions

Consequence: If $A \to X$ is the *G*-structure algebroid of a finite type classification problem, then for each $x \in X$ there exists a realization



such that $x \in \text{Im}(h)$.

The moduli space (stack) of germs of solutions to the classification problem up to isomorphism is represented by $G \ltimes X \rightrightarrows X$.

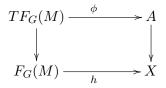
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

The existence of global (complete) solutions dependes on integrability of the *G*-structure algebroid $A \rightarrow X$.

- 4 回 2 - 4 □ 2 - 4 □

The existence of global (complete) solutions dependes on integrability of the *G*-structure algebroid $A \rightarrow X$.

Assume $G \subset O_n$ so that completeness is metric (there is a more general definition). If



is a complete realization then Im(h) = L is a leaf of A.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Theorem (R.L. Fernandes, I.S.)

There exists a complete realization of A covering a leaf $L \subset X$ if and only if $A|_L$ is G-integrable.

- 4 回 2 - 4 □ 2 - 4 □

Theorem (R.L. Fernandes, I.S.)

There exists a complete realization of A covering a leaf $L \subset X$ if and only if $A|_L$ is G-integrable.

Global Moduli Space: If the *G*-structure algebroid $A \to X$ of a finite type classification problem for *G*-structures with connections is *G*-integrable, then the canonical *G*-integration $\Sigma_G(M) \rightrightarrows X$ represents the moduli space (stack) of simply connected and complete solutions of the classification problem.

▲圖▶ ▲屋▶ ▲屋▶

Back to Examples: Classification of EK-Surfaces

Conditions	$U(1)$ -frame bundle: $\mathbf{s}^{-1}(x)$	Solutions: $s^{-1}(x)/U(1)$
K = 0	$\mathrm{SO}(2)\ltimes\mathbb{R}^2$	\mathbb{R}^2
K = c > 0	\mathbb{S}^3	\mathbb{S}^2
K = c < 0	SO(2, 1)	\mathbb{H}^2
$\Delta = 0, c_1 = c_2 = 0$	$(\mathbb{R}^2 imes \mathbb{R})/\mathbb{Z}$	\mathbb{R}^2
$\Delta=0,\ c_2<0$	$\mathbb{R}^2\times \mathbb{S}^1$	\mathbb{R}^2
$\Delta=0,\ c_2>0$	$(\mathbb{R}^2 imes \mathbb{R})/\mathbb{Z}$ or $(\mathbb{R}^2 imes \mathbb{S}^1)$	\mathbb{R}^2
$\Delta < 0$	$\mathbb{R}^2 \times \mathbb{S}^1$	\mathbb{R}^2
$\Delta > 0$	$\mathbb{R}^2 \times \mathbb{S}^1$	

Ivan Struchiner

Structure Equations for G-Structures and G-Structure Algebra

æ

Hessian Type - Reading Geometry from the Leaves

Surfaces (M, σ) such that $\operatorname{Hess}_{\sigma}(k) = \frac{1}{2}(1 - k^2)\sigma$. The associated

classifying Lie algebroid is $A = \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}^3$, with Lie bracket and anchor:

$$\begin{aligned} [\alpha_1, \alpha_2] &= -k\beta \quad [\alpha_1, \beta] = \alpha_2 \quad [\alpha_2, \beta] = -\alpha_1 \\ \rho(\alpha_1) &= k_1 \frac{\partial}{\partial k} + \frac{1}{2}(1 - k^2) \frac{\partial}{\partial k_1} \\ \rho(\alpha_2) &= k_2 \frac{\partial}{\partial k} + \frac{1}{2}(1 - k^2) \frac{\partial}{\partial k_2} \\ \rho(\beta) &= -k_2 \frac{\partial}{\partial k_1} + k_1 \frac{\partial}{\partial k_2}. \end{aligned}$$

(日) (四) (王) (王) (王)

Metrics of Hessian Curvature - Geometry from Leaves

Computing the obstructions (infinitesimal G-monodromy):

Orbit foliation of A: level sets of

$$F(k_1, k_2, k) := k_1^2 + k_2^2 + \frac{1}{3}k^3 - k$$

・ロト ・回ト ・ヨト ・ヨト

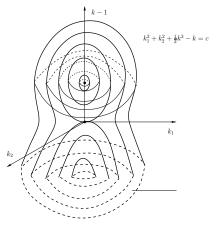
Metrics of Hessian Curvature - Geometry from Leaves

Computing the obstructions (infinitesimal G-monodromy):

Orbit foliation of A: level sets of

$$F(k_1, k_2, k) := k_1^2 + k_2^2 + \frac{1}{3}k^3 - k$$

- At the two fixed points (0,0,1) and (0,0,-1), there are solutions (constant curvature metrics);
- In the region filled by spheres there does not exist a G-integration for almost every leaf (but there exists G-integrations on some spheres);
- Over every other leaf in the other regions there exist G-integrations.



・ロト ・日本 ・モート ・モート

Thank you!

◆□ > ◆□ > ◆臣 > ◆臣 > ○

ъ