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Problem

I Let G be a Lie group with Lie algebra g and Γ ⊂ g.

I SΓ = semigroup generated by etX , X ∈ Γ , t ≥ 0.

I Find conditions to have

SΓ = G

Controllability problem.

I Group generation is almost trivial: if and only if Γ
generates g. (G connected).

I Special set Γ = {X ,±Y1, . . . ,±Yk}. Coming from

dg

dt
= X (g) + u1 (t)Y1 (g) + · · ·+ uk (t)Yk (g)
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Some solutions

I Nilpotent and solvable Lie groups. Maximal semigroups
can be characterizad.
Lawson, Hlgert, Hofmann. Neeb, mid 1980’s .

I Complex simple Lie groups: Controllable pairs {X ,±Y }
is generic. (± is essencial.)
Kupka-Jurdjevic 1978 - 1981followed by Gauthier, Sallet,
El Assoudi and others, 1980’s.
There is a recent proof by SM-Ariane Santos, applying
topology of flag manifolds.

I The method for complex groups work for some real ones.
E.g. sl(n,H).
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Some open cases

I Complex simple Lie algebras without ± (restricted
controls).

I g is a normal real form of a complex simple Lie algebra
(e.g. sl (n,R), sp (n,R), so (p, q), q = p or q = p + 1).
Even for Γ = {X ,±Y }.

I Example of conjecture: {X ,±Y } ⊂ sl (n,R) is not
controllable if X ,Y are symmetric matrices.
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Global generation

I Global version: A ⊂ G , SA = semigroup generated by A
= {g1 · · · gk : gi ∈ A, k ≥ 1}.

I Group G and probability measure µ on G .
Sµ = semigroup generated by the support of µ.
Contains suppµn ⊂ (suppµ)n

µn = nth convolution power of µ.

I Not originated from control theory. Can be applied to the
controllability problem.
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Analytical and probabilistic tools

I Representations: U on a vector space by operators U (g).
Form the operator

U (µ) v =

∫
G

(U (g) v)µ (dg)

. (Need assumptions on µ to have integrability.)

I Ii(ndepedent).i(dentically).d(istributed) random variables.
Sample space: GN with P = µN

Random variables: ω = (yn) ∈ GN 7→ yn ∈ G .
I Random product: gn = yn · · · y1

P{gn ∈ A} = µn(A). gn stays in Sµ.
I Asymptotic properties of gn are related to iterations

U(µ)n = U(µn).
I Here will focus on the representations.
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Representations of Semi-simple Lie groups

I Iwasawa decomposition G = KAN

I Parabolic induced representations
P = MAN M = centralizer of A in K . Minimal parabolic
subgroup.

I Function spaces
Fλ = {f : G → C : f (gmhn) = eλ(log h)f (g). λ ∈ C.
λ ∈ a∗.
(Special case of f (gmhn) = θ(m)eλ(log h)f (g) with λ
complex and θ : M → C× homomorphism. )

I Representations: Uλ (g) f (x) = f (gx), g , x ∈ G .
Uλ (g) = U (g) restricted to Fλ
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Compact picture

I Each Fλ is in bijection with the function space
FK = {f : K → C} by f ∈ FK 7→ f̃ ∈ Fλ, f̃ (kan) = f (k).

I If F = G/P = K/M , P = MAN , then

Fλ ≈ FF = {f : F→ C} by f̃ (kan) = f (kM).

I Equivalent representations compact picture : F = FK

or F = FF
Uλ (g) f (x) = ρλ (g , x) f (gx), g ∈ G , x ∈ K
K = G/AN viewed as homogeneous space of G .

I Cocycle: ρλ (g , x) = eλ(log h) where gu = khn and
x = ux0.
x0 = 1 · AN = origin of K
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Example: Sl (2,R) or C

I G = Sl (2,R),
K = S1 = SO (2), F = P1

ρλ (g , x) = ‖gx‖p
Up (g) f (x) = ‖gx‖p f (gx) , g ∈ Sl (2,R), x ∈ S1

I Other realization: Homogeneous functions
Fp = {f : R2 → C : f (cx) = cpf (x), c > 0.
Up (g) f (y) = f (gy), g ∈ Sl (2,R), y ∈ R2.
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Back to probabilities

I µ has exponential moments if
∫
ρλ (g , x)µ (dg) <∞ all

x and λ
In this case Uλ (µ) =

∫
Uλ (g)µ (dg) makes sense.

I µ is exposed (étalée) if intSµ 6= ∅ .
Uλ (µ) is compact on C (K ) .
discrete spectra with finite dimensional spectral spaces
rλ = spectral radius of Uλ (µ)
is an eigenvalue
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Result

I Sµ = G if and only if the map λ 7→ rλ is analytic.

I When Sµ 6= G points of nonanalyticity are obtained from
the structure of Sµ (flag type).
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Continuous time version

I Application to controllability of Γ = {X ,±Y1, . . . ,±Yk}.
SΓ = semigroup generated by etX , X ∈ Γ , t ≥ 0

I Related to

dg

dt
= X (g) + u1 (t)Y1 (g) + · · ·+ uk (t)Yk (g)

I Associated Itô stochastic differential equation

dg = X (g) dt +
k∑

j=1

Yj (g) ◦ dWj .
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Continuous time: Solutions and semigroups

I One-parameter semigroup of measures (under
convolution): µt = Pt (1, ·) = transition probability of the
solution starting at 1.
µt+s = µt ∗ µs

I By the support theorem (Strook-Varadhan-Kunita)

clSΓ = cl
⋃
t≥0

suppµt
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Continuous time version: Operators

I One-parameter semigroup of operators: Uλ (µt).

I Lλf (x) = d
dt |t=0

(Uλ(µt)f ) (x)

I Lλ = X + 1
2

∑k
i=1 Y

2
i

second order operator acting on smooth functions

I Uλ (Lλ) = Uλ (X ) + 1
2

∑k
i=1 Uλ (Yi)

2

infinitesimal representation of the universal envelopping
algebra
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Infinitesimal generator: Compact picture

I Uλ (g) f (x) = ρλ (g , x) f (gx)

I Second order operator on flag manifold
Lλ = L̃ + 1

2

∑m
j=1 λ

(
qYj

)
Ỹj + λ (qX ) + 1

2

∑m
j=1 λ

(
rYj

)
+

1
2

∑m
j=1

(
λ
(
qYj

))2

L̃ = X̃ + 1
2

∑m
j=1 Ỹ

2
j

I qX (x) = Xa (1, x) = d
dt

a
(
etX , x

)
t=0

I rY (x) = Ỹ qY (x) = Y 2a (1, x)

I X̃ = vector field induced by X ∈ g
a(g , x) = log ρ(g , x)
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Ỹj + λ (qX ) + 1

2

∑m
j=1 λ

(
rYj

)
+

1
2

∑m
j=1

(
λ
(
qYj

))2

L̃ = X̃ + 1
2

∑m
j=1 Ỹ
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Controllability: Preliminaires

I intSΓ 6= ∅ if and only if Γ generates g. (Lie algebra rank
condition.)

I SΓ = G if and only if Sµt = G , t > 0.

I rλ (t) = spectral radius of Uλ (µt)
Lλ has a largest eigenvalue γλ
rλ (t) = etγλ
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Controllability: Theorem

I Under the Lie algebra rank condition SΓ = G if and only
if λ 7→ γλ is everywhere analytic.

I Spectra Lλ (infinitesimal data) ←→ Controllability
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Semigroups in Sl (2,R)

Facts:

I Let S ⊂ Sl (2,R) be a semigroup with intS 6= ∅. Then
S = Sl (2,R) if and only if S acts transitively on the
projective line P1.

I When S 6= Sl (2,R) (intS 6= ∅) there exists a unique
proper closed subset C ⊂ P1 such that clSx = C for all
x ∈ C . (Invariant control set.)

I There exists c > 0 such that

‖gx‖
‖x‖

> c [x ] ∈ C .
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Operators in the invariant control set

I Assume Sµ 6= Sl (2,R) and let C ⊂ P1 be its invariant
control set.

I Define

UC
p (µ) f (x) =

∫
G

ρp (g , x) f (gx)µ (dg)

=

∫
G

‖gx‖p

‖x‖p
f (gx)µ (dg)

for the operator restricted to the Banach space of
continuous functions C (C ).
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Facts about the operators

I UC
p (µ) are positive compact operators in C (C ).

I Spectral radius rCp of UC
p (µ) is a (maximal) eigenvalue

with multiplicity 1.
Because there is a strictly positive eigenfunction by
irreducibility: clSµx = C all x ∈ C .

I p 7→ rCp is analytic in the real line.
By pertubation theory of compact operators:
multiplicity 1 =⇒ analyticity.
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Facts about the operators

I γC (p) = log rCp is a convex function:

γC (p) = lim
1

n
log

∫
‖gx‖p

‖x‖p
µn (dg) any x ∈ C

= lim
1

n
log
∥∥(UC

p

)n∥∥ .
Moment Lyapunov Exponent

I By Gelfand formula r (T ) = limn ‖T n‖1/n and
‖T‖ = supx |T1(x)| if T is a positive operator.
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Shape of γC (p)

I γ′C (0) > 0:

γ′C (0) = lim
1

n
log
‖gnx‖p

‖x‖p

Top Lyapunov exponent (gn = random product)

I
lim

p→−∞
γC (p) < 0

Property of the semigroup: ‖gx‖‖x‖ > c if g ∈ Sµ and

[x ] ∈ C .
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Shape of γC (p)

I .
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Operators in P1

I Up (µ), rp = spectral radius, γ (p) = log rp

I If Sµ 6= G there is no irreducibility. Existence of strictly
positive eigenfunction and multiplicity 1 of rp is not
immediate.

I If p ∈ (−1,+∞) then there exists an eigenfunction fp,
Up (µ) = rpfp with f > 0 in P1:

fp (x) =

∫
P1

|cos θ (x , y)|p νp (dy)

where νp is an eigenmeasure. Integrability is ensured only
at p > −1.
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Shape of γ(p)

I If p ∈ (−1,+∞) then rp has multiplicity one and

γ (p) = lim
1

n
log

∫
‖gx‖p

‖x‖p
µn(dg) = γC (p).

I The adjoint of Up (µ) in L2 (P1) is

Up (µ)∗ = U−p−2

(
µ−1
)

symmetry around −1. (µ−1 = ι∗ (µ), ι (g) = g−1)

I The shape of γ (p) in the interval (−∞,−1) is
symmetric-like to the shape in (−1,+∞).
Applied to µ−1
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Shape of γ(p)

I .

I Analyticity fails at −1.
And multiplicity is bigger thant 1.
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Semi-simple groups in general

I Key words: flag type of a semigroup with nonempty
interior.

I As in dim 2 in any flag manifold FΘ of g there is a unique
invariant control set CΘ (clSx = CΘ for all x ∈ CΘ).

I There are flag manifolds where CΘ is contractible.
hnC shrinks to a point.

I The maximal one with this property is the flag type FΘ(S)

of S (intS 6= ∅ and S 6= G ).
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Semi-simple groups in general

I In FΘ(S) there is the cocycle ρωΘ(S)
(g , x) defined by

g∗m = ρωΘ(S)
(g−1, x)m where m is the unique

K -invariant measure.

I For the operators UpωΘ(S)
(µ) the behaviour of the spectral

radius γ (p) = log rpωΘ(S)
is analogous to the dim 2 case.

I Hence λ 7→ rλ fails to be analytic at λ = −ωΘ(S).

I Lack of analyticity is read by the flag type of Sµ|.
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Comments

I This work was started with the objective of developing
measure theoretic (probabilistic) tools to study
semigroups in semi-simple Lie groups. The methods to
study semigroups S with intS are mainly topological.
Having a measure theoretic approach may open the
possibility to study more general classes of semigroups
and eventually get the concept of flag type of a
semigroup in a more general context. For example Zariski
dense semigroups in algebraic groups and eventually

I The results obtained relating controllability (flag type) to
spectral radii suggest applications of differential operator
theory to controllability. Up to now only applications in
the other direction.
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Examples of operators dim 2

I X =

(
1 0
0 −1

)
, Y =

(
0 −1
1 0

)
θ ∈ P1 = S1

λ = pλ1

Lp =
d2

dθ2
+ sin θ

d

dθ
+ p cos θ.

I X =

(
1 0
0 −1

)
, Y =

(
0 1
1 0

)
.

Lp = senθ
d

dθ
+ cos2 θ

d2

dθ2
− sen2θ

2

d

dθ

+psenθ
d

dθ
+ p

(
cos θ + cos2 θ

)
+ p2sen2θ.
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Examples of operators dim 2

I X =

(
1 0
0 −1

)
, Y =

(
0 1
1 0

)
coordinate system t 7→ [(cosh t, sinh t)]:

d2

dt2
+

(
p

2 sinh 2t

cosh 2t
− 2 sinh 2t

)
d

dt

+p
1

cosh 2t
+ p

4

cosh2 t
+ p2 2 sinh2 2t

cosh2 2t
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