Semigroups in Semi-simple Lie Groups and Eigenvalues of Second Order Differential Operators on Flag Manifolds

Luiz A. B. San Martin

II Workshop of the São Paulo Journal of Mathematical Sciences: J.-L. Koszul in São Paulo

Luiz A. B. San Martin

Semigroups in Semi-simple Lie Groups and Eigenvalues of Seco

• Let G be a Lie group with Lie algebra \mathfrak{g} and $\Gamma \subset \mathfrak{g}$.

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶

- Let G be a Lie group with Lie algebra \mathfrak{g} and $\Gamma \subset \mathfrak{g}$.
- S_{Γ} = semigroup generated by e^{tX} , $X \in \Gamma$, $t \ge 0$.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Let G be a Lie group with Lie algebra \mathfrak{g} and $\Gamma \subset \mathfrak{g}$.
- S_{Γ} = semigroup generated by e^{tX} , $X \in \Gamma$, $t \ge 0$.
- Find conditions to have

$$S_{\Gamma} = G$$

Controllability problem.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Let G be a Lie group with Lie algebra \mathfrak{g} and $\Gamma \subset \mathfrak{g}$.
- S_{Γ} = semigroup generated by e^{tX} , $X \in \Gamma$, $t \ge 0$.
- Find conditions to have

$$S_{\Gamma} = G$$

Controllability problem.

 Group generation is almost trivial: if and only if Γ generates g. (G connected).

- Let G be a Lie group with Lie algebra \mathfrak{g} and $\Gamma \subset \mathfrak{g}$.
- S_{Γ} = semigroup generated by e^{tX} , $X \in \Gamma$, $t \ge 0$.
- Find conditions to have

$$S_{\Gamma} = G$$

Controllability problem.

- Group generation is almost trivial: if and only if Γ generates g. (G connected).
- Special set $\Gamma = \{X, \pm Y_1, \dots, \pm Y_k\}$. Coming from

$$\frac{dg}{dt} = X(g) + u_1(t) Y_1(g) + \dots + u_k(t) Y_k(g)$$

イロト 不得 トイラト イラト 二日

Some solutions

 Nilpotent and solvable Lie groups. Maximal semigroups can be characterizad.
 Lawson, Hlgert, Hofmann. Neeb, mid 1980's .

向下 イヨト イヨト

Some solutions

 Nilpotent and solvable Lie groups. Maximal semigroups can be characterizad. Lawson, Hlgert, Hofmann. Neeb, mid 1980's .

Complex simple Lie groups: Controllable pairs {X, ±Y} is generic. (± is essencial.)

Kupka-Jurdjevic 1978 - 1981followed by Gauthier, Sallet, El Assoudi and others, 1980's.

There is a recent proof by SM-Ariane Santos, applying topology of flag manifolds.

・ 何 ト ・ ヨ ト ・ ヨ ト

Some solutions

 Nilpotent and solvable Lie groups. Maximal semigroups can be characterizad.

Lawson, Hlgert, Hofmann. Neeb, mid 1980's .

Complex simple Lie groups: Controllable pairs {X, ±Y} is generic. (± is essencial.)
 Kupka-Jurdjevic 1978 - 1981followed by Gauthier, Sallet, El Assoudi and others, 1980's.
 There is a recent proof by SM-Ariane Santos, applying

topology of flag manifolds.

The method for complex groups work for some real ones. E.g. sl(n, Ⅲ).

イロト 不得 トイラト イラト 一日

Some open cases

Complex simple Lie algebras without ± (restricted controls).

・日・ ・ ヨ・ ・ ヨ・

э

Some open cases

- Complex simple Lie algebras without ± (restricted controls).
- g is a normal real form of a complex simple Lie algebra (e.g. sl(n, ℝ), sp(n, ℝ), so(p, q), q = p or q = p + 1). Even for Γ = {X, ±Y}.

・ 同 ト ・ ヨ ト ・ ヨ ト

Some open cases

- Complex simple Lie algebras without ± (restricted controls).
- g is a normal real form of a complex simple Lie algebra (e.g. sl(n, ℝ), sp(n, ℝ), so(p, q), q = p or q = p + 1). Even for Γ = {X, ±Y}.
- Example of conjecture: {X, ±Y} ⊂ sl(n, ℝ) is not controllable if X, Y are symmetric matrices.

・ 何 ト ・ ヨ ト ・ ヨ ト

Global generation

Global version: A ⊂ G, S_A = semigroup generated by A = {g₁ · · · g_k : g_i ∈ A, k ≥ 1}.

・ 同 ト ・ ヨ ト ・ ヨ ト

Э

Global generation

- Global version: A ⊂ G, S_A = semigroup generated by A = {g₁ · · · g_k : g_i ∈ A, k ≥ 1}.
- Group G and probability measure μ on G.
 S_μ = semigroup generated by the support of μ.
 Contains suppμⁿ ⊂ (suppμ)ⁿ
 μⁿ = nth convolution power of μ.

マボン イラン イラン・ラ

Global generation

- Global version: A ⊂ G, S_A = semigroup generated by A = {g₁ · · · g_k : g_i ∈ A, k ≥ 1}.
- Group G and probability measure μ on G.
 S_μ = semigroup generated by the support of μ.
 Contains suppμⁿ ⊂ (suppμ)ⁿ
 μⁿ = nth convolution power of μ.
- Not originated from control theory. Can be applied to the controllability problem.

Representations: U on a vector space by operators U(g).
 Form the operator

$$U(\mu) v = \int_{G} (U(g) v) \mu(dg)$$

. (Need assumptions on μ to have integrability.)

・ 同 ト ・ ヨ ト ・ ヨ ト

Representations: U on a vector space by operators U(g).
 Form the operator

$$U(\mu) v = \int_{\mathcal{G}} (U(g) v) \mu(dg)$$

. (Need assumptions on μ to have integrability.)
▶ li(ndepedent).i(dentically).d(istributed) random variables. Sample space: G^N with P = μ^N Random variables: ω = (y_n) ∈ G^N → y_n ∈ G.

・ 何 ト ・ ヨ ト ・ ヨ ト

Representations: U on a vector space by operators U(g).
 Form the operator

$$U(\mu) v = \int_{\mathcal{G}} (U(g) v) \mu(dg)$$

. (Need assumptions on μ to have integrability.)

 li(ndepedent).i(dentically).d(istributed) random variables. Sample space: G^N with P = μ^N Random variables: ω = (y_n) ∈ G^N → y_n ∈ G.

► Random product:
$$g_n = y_n \cdots y_1$$

 $P\{g_n \in A\} = \mu^n(A)$. g_n stays in S_μ

- 本部 トイヨト イヨト - ヨ

Representations: U on a vector space by operators U(g).
 Form the operator

$$U(\mu) v = \int_{\mathcal{G}} \left(U(g) v \right) \mu(dg)$$

- . (Need assumptions on μ to have integrability.)
- li(ndepedent).i(dentically).d(istributed) random variables.
 Sample space: G^N with P = μ^N
 Random variables: ω = (y_n) ∈ G^N → y_n ∈ G.
- ▶ Random product: $g_n = y_n \cdots y_1$ $P\{g_n \in A\} = \mu^n(A)$. g_n stays in S_{μ} .
- Asymptotic properties of g_n are related to iterations U(μ)ⁿ = U(μⁿ).

イロト イポト イヨト イヨト 二日

Representations: U on a vector space by operators U(g).
 Form the operator

$$U(\mu) v = \int_{G} (U(g) v) \mu(dg)$$

- . (Need assumptions on μ to have integrability.)
- li(ndepedent).i(dentically).d(istributed) random variables.
 Sample space: G^N with P = μ^N
 Random variables: ω = (y_n) ∈ G^N → y_n ∈ G.
- ▶ Random product: $g_n = y_n \cdots y_1$ $P\{g_n \in A\} = \mu^n(A)$. g_n stays in S_{μ} .
- Asymptotic properties of g_n are related to iterations U(μ)ⁿ = U(μⁿ).

• Iwasawa decomposition G = KAN

• (1) • (2) • (2) •

- Iwasawa decomposition G = KAN
- Parabolic induced representations P = MAN M = centralizer of A in K. Minimal parabolic subgroup.

A (10) × (10) × (10) ×

- Iwasawa decomposition G = KAN
- Parabolic induced representations
 P = MAN M = centralizer of A in K. Minimal parabolic subgroup.

 Function spaces
 F_λ = {f : G → C : f (gmhn) = e^{λ(log h)}f (g). λ ∈ C.
 λ ∈ α*.
 (Special case of f (gmhn) = θ(m)e^{λ(log h)}f (g) with λ
 complex and θ : M → C_× homomorphism.)

イロト イポト イヨト イヨト

- Iwasawa decomposition G = KAN
- Parabolic induced representations
 P = MAN M = centralizer of A in K. Minimal parabolic subgroup.
- Function spaces
 F_λ = {f : G → C : f (gmhn) = e^{λ(log h)}f (g). λ ∈ C.
 λ ∈ α*.
 (Special case of f (gmhn) = θ(m)e^{λ(log h)}f (g) with λ
 complex and θ : M → C_× homomorphism.
)
- Representations: $U_{\lambda}(g) f(x) = f(gx), g, x \in G$. $U_{\lambda}(g) = U(g)$ restricted to F_{λ}

イロト イポト イヨト イヨト

• Each F_{λ} is in bijection with the function space $F_{\mathcal{K}} = \{f : \mathcal{K} \to \mathbb{C}\}$ by $f \in F_{\mathcal{K}} \mapsto \tilde{f} \in F_{\lambda}, \tilde{f}(kan) = f(k).$

A (10) > (10)

- ∢ ⊒ ⇒

Each F_λ is in bijection with the function space F_K = {f : K → C} by f ∈ F_K → f̃ ∈ F_λ, f̃ (kan) = f (k).
If F = G/P = K/M, P = MAN, then F_λ ≈ F_F = {f : F → C} by f̃ (kan) = f (kM).

・回り イヨト イヨト

3

Each F_λ is in bijection with the function space F_K = {f : K → C} by f ∈ F_K ↦ f̃ ∈ F_λ, f̃ (kan) = f (k).
If F = G/P = K/M, P = MAN, then F_λ ≈ F_F = {f : F → C} by f̃ (kan) = f (kM).
Equivalent representations **compact picture** : F = F_K or F = F_F U_λ(g) f (x) = ρ_λ(g, x) f (gx), g ∈ G, x ∈ K K = G/AN viewed as homogeneous space of G.

イロト イポト イヨト イヨト 二日

Each F_{λ} is in bijection with the function space $F_{\mathcal{K}} = \{f : \mathcal{K} \to \mathbb{C}\}$ by $f \in F_{\mathcal{K}} \mapsto f \in F_{\lambda}$, f(kan) = f(k). ▶ If $\mathbb{F} = G/P = K/M$, P = MAN, then $F_{\lambda} \approx F_{\mathbb{F}} = \{f : \mathbb{F} \to \mathbb{C}\} \text{ by } \widetilde{f}(kan) = f(kM).$ • Equivalent representations compact picture : $F = F_{\kappa}$ or $F = F_{\mathbb{F}}$ $U_{\lambda}(g) f(x) = \rho_{\lambda}(g, x) f(gx), g \in G, x \in K$ K = G/AN viewed as homogeneous space of G. • Cocycle: $\rho_{\lambda}(g, x) = e^{\lambda(\log h)}$ where gu = khn and $x = ux_0$. $x_0 = 1 \cdot AN = \text{origin of } K$

イロト 不得 トイラト イラト 一日

Example: $SI(2,\mathbb{R})$ or \mathbb{C}

$$\begin{array}{l} \bullet \quad G = \operatorname{Sl}\left(2,\mathbb{R}\right), \\ K = S^{1} = \operatorname{SO}\left(2\right), \ \mathbb{F} = \mathbb{P}^{1} \\ \rho_{\lambda}\left(g,x\right) = \|gx\|^{p} \\ U_{p}\left(g\right) f\left(x\right) = \|gx\|^{p} f\left(gx\right), g \in \operatorname{Sl}\left(2,\mathbb{R}\right), x \in S^{1} \end{array}$$

• Other realization: Homogeneous functions $F_p = \{f : \mathbb{R}^2 \to \mathbb{C} : f(cx) = c^p f(x), c > 0.$ $U_p(g) f(y) = f(gy), g \in \mathrm{Sl}(2, \mathbb{R}), y \in \mathbb{R}^2.$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Example: $Sl(2,\mathbb{R})$ or \mathbb{C}

• Other realization: Homogeneous functions $F_p = \{f : \mathbb{R}^2 \to \mathbb{C} : f(cx) = c^p f(x), c > 0.$ $U_p(g) f(y) = f(gy), g \in \mathrm{Sl}(2, \mathbb{R}), y \in \mathbb{R}^2.$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Back to probabilities

• μ has exponential moments if $\int \rho_{\lambda}(g, x) \mu(dg) < \infty$ all x and λ In this case $U_{\lambda}(\mu) = \int U_{\lambda}(g) \mu(dg)$ makes sense.

・ 同 ト ・ ヨ ト ・ ヨ ト

Э

Back to probabilities

- μ has exponential moments if ∫ ρ_λ (g, x) μ (dg) < ∞ all x and λ
 In this case U_λ (μ) = ∫ U_λ (g) μ (dg) makes sense.
 μ is exposed (étalée) if int S_μ ≠ Ø.
 - $U_{\lambda}(\mu)$ is compact on C(K). discrete spectra with finite dimensional spectral spaces r_{λ} = spectral radius of $U_{\lambda}(\mu)$ is an eigenvalue

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

• $S_{\mu} = G$ if and only if the map $\lambda \mapsto r_{\lambda}$ is analytic.

Luiz A. B. San Martin Semigroups in Semi-simple Lie Groups and Eigenvalues of Seco

イロン 不同 とうほう 不同 とう

3

When S_µ ≠ G points of nonanalyticity are obtained from the structure of S_µ (flag type).

・ 同 ト ・ ヨ ト ・ ヨ ト

Continuous time version

• Application to controllability of $\Gamma = \{X, \pm Y_1, \dots, \pm Y_k\}$. S_{Γ} = semigroup generated by e^{tX} , $X \in \Gamma$, $t \ge 0$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Continuous time version

- Application to controllability of $\Gamma = \{X, \pm Y_1, \dots, \pm Y_k\}$. S_{Γ} = semigroup generated by e^{tX} , $X \in \Gamma$, $t \ge 0$
- Related to

$$\frac{dg}{dt} = X(g) + u_1(t) Y_1(g) + \dots + u_k(t) Y_k(g)$$

Associated Itô stochastic differential equation

$$dg = X(g) dt + \sum_{j=1}^{k} Y_j(g) \circ dW_j.$$

• (1) • (

Continuous time: Solutions and semigroups

► One-parameter semigroup of measures (under convolution): µ_t = P_t (1, ·) = transition probability of the solution starting at 1.

 $\mu_{t+s} = \mu_t * \mu_s$

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ……

Continuous time: Solutions and semigroups

► One-parameter semigroup of measures (under convolution): µ_t = P_t (1, ·) = transition probability of the solution starting at 1.

 $\mu_{t+s} = \mu_t * \mu_s$

By the support theorem (Strook-Varadhan-Kunita)

$$\mathrm{cl}S_{\Gamma} = \mathrm{cl}\bigcup_{t\geq 0}\mathrm{supp}\mu_t$$

Continuous time version: Operators

• One-parameter semigroup of operators: $U_{\lambda}(\mu_t)$.

Continuous time version: Operators

One-parameter semigroup of operators: U_λ (μ_t).
 L_λf (x) = d/dt |t=0 (U_λ(μ_t)f)(x)
 L_λ = X + 1/2 Σ^k_{i=1} Y²_i second order operator acting on smooth functions

Continuous time version: Operators

• One-parameter semigroup of operators: $U_{\lambda}(\mu_t)$.

$$L_{\lambda}f(x) = \frac{d}{dt}_{|t=0} (U_{\lambda}(\mu_t)f)(x)$$

$$\blacktriangleright L_{\lambda} = X + \frac{1}{2} \sum_{i=1}^{k} Y_i^2$$

second order operator acting on smooth functions

• $U_{\lambda}(L_{\lambda}) = U_{\lambda}(X) + \frac{1}{2} \sum_{i=1}^{k} U_{\lambda}(Y_{i})^{2}$ infinitesimal representation of the universal envelopping algebra

伺下 イヨト イヨト

通 とう ほ とう ほう

通 とう ほ とう ほう

回 とう モン・ モン

$$\begin{array}{l} \bullet \quad U_{\lambda}\left(g\right)f\left(x\right) = \rho_{\lambda}\left(g,x\right)f\left(gx\right) \\ \bullet \quad \text{Second order operator on flag manifold} \\ L_{\lambda} = \widetilde{L} + \frac{1}{2}\sum_{j=1}^{m}\lambda\left(q_{Y_{j}}\right)\widetilde{Y}_{j} + \lambda\left(q_{X}\right) + \frac{1}{2}\sum_{j=1}^{m}\lambda\left(r_{Y_{j}}\right) + \\ \frac{1}{2}\sum_{j=1}^{m}\left(\lambda\left(q_{Y_{j}}\right)\right)^{2} \\ \widetilde{L} = \widetilde{X} + \frac{1}{2}\sum_{j=1}^{m}\widetilde{Y}_{j}^{2} \\ \bullet \quad q_{X}\left(x\right) = Xa\left(1,x\right) = \frac{d}{dt}a\left(e^{tX},x\right)_{t=0} \\ \bullet \quad r_{Y}\left(x\right) = \widetilde{Y}q_{Y}\left(x\right) = Y^{2}a\left(1,x\right) \end{array}$$

通 とう ほ とう ほう

通 とう ほ とう ほう

Controllability: Preliminaires

int S_Γ ≠ Ø if and only if Γ generates g. (Lie algebra rank condition.)

Controllability: Preliminaires

int S_Γ ≠ Ø if and only if Γ generates g. (Lie algebra rank condition.)

•
$$S_{\Gamma} = G$$
 if and only if $S_{\mu_t} = G$, $t > 0$.

Controllability: Preliminaires

int S_Γ ≠ Ø if and only if Γ generates g. (Lie algebra rank condition.)

•
$$S_{\Gamma} = G$$
 if and only if $S_{\mu_t} = G$, $t > 0$.

•
$$r_{\lambda}(t) = \text{spectral radius of } U_{\lambda}(\mu_t)$$

 L_{λ} has a largest eigenvalue γ_{λ}
 $r_{\lambda}(t) = e^{t\gamma_{\lambda}}$

Controllability: Theorem

Under the Lie algebra rank condition S_Γ = G if and only if λ → γ_λ is everywhere analytic.

向下 イヨト イヨト

Controllability: Theorem

- Under the Lie algebra rank condition S_Γ = G if and only if λ → γ_λ is everywhere analytic.
- ▶ Spectra L_{λ} (infinitesimal data) \longleftrightarrow Controllability

Semigroups in $Sl(2,\mathbb{R})$

Facts:

Let S ⊂ Sl(2, ℝ) be a semigroup with intS ≠ Ø. Then S = Sl(2, ℝ) if and only if S acts transitively on the projective line ℙ¹.

Semigroups in $Sl(2,\mathbb{R})$

Facts:

- Let S ⊂ Sl(2, ℝ) be a semigroup with intS ≠ Ø. Then S = Sl(2, ℝ) if and only if S acts transitively on the projective line ℙ¹.
- When S ≠ Sl(2, ℝ) (intS ≠ Ø) there exists a unique proper closed subset C ⊂ ℙ¹ such that clSx = C for all x ∈ C. (Invariant control set.)

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

Semigroups in $Sl(2, \mathbb{R})$

Facts:

- Let S ⊂ Sl(2, ℝ) be a semigroup with intS ≠ Ø. Then S = Sl(2, ℝ) if and only if S acts transitively on the projective line ℙ¹.
- When S ≠ Sl(2, ℝ) (intS ≠ Ø) there exists a unique proper closed subset C ⊂ ℙ¹ such that clSx = C for all x ∈ C. (Invariant control set.)
- There exists c > 0 such that

$$\frac{\|gx\|}{\|x\|} > c \qquad [x] \in C.$$

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Operators in the invariant control set

Assume S_µ ≠ Sl(2, ℝ) and let C ⊂ ℙ¹ be its invariant control set.

Operators in the invariant control set

Assume S_µ ≠ Sl(2, ℝ) and let C ⊂ ℙ¹ be its invariant control set.

Define

$$U_{\rho}^{C}(\mu) f(x) = \int_{G} \rho_{\rho}(g, x) f(gx) \mu(dg)$$
$$= \int_{G} \frac{\|gx\|^{p}}{\|x\|^{p}} f(gx) \mu(dg)$$

for the operator restricted to the Banach space of continuous functions C(C).

- 同下 - 三下 - 三下

• $U_p^C(\mu)$ are positive compact operators in $\mathcal{C}(C)$.

Luiz A. B. San Martin Semigroups in Semi-simple Lie Groups and Eigenvalues of Seco

- $U_{p}^{C}(\mu)$ are positive compact operators in C(C).
- Spectral radius r^C_p of U^C_p (μ) is a (maximal) eigenvalue with multiplicity 1.

Because there is a strictly positive eigenfunction by irreducibility: $clS_{\mu}x = C$ all $x \in C$.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

- $U_p^C(\mu)$ are positive compact operators in $\mathcal{C}(C)$.
- Spectral radius r_p^C of $U_p^C(\mu)$ is a (maximal) eigenvalue with multiplicity 1.

Because there is a strictly positive eigenfunction by irreducibility: $clS_{\mu}x = C$ all $x \in C$.

p → *r*^C_p is analytic in the real line.
 By pertubation theory of compact operators: multiplicity 1 ⇒ analyticity.

$$\gamma_{C}(p) = \log r_{p}^{C} \text{ is a convex function:}$$

$$\gamma_{C}(p) = \lim \frac{1}{n} \log \int \frac{\|gx\|^{p}}{\|x\|^{p}} \mu^{n}(dg) \quad \text{any } x \in C$$

$$= \lim \frac{1}{n} \log \|(U_{p}^{C})^{n}\|.$$

Moment Lyapunov Exponent

A (10) > (10)

→ ∃ →

•
$$\gamma_C(p) = \log r_p^C$$
 is a convex function:

$$\gamma_{C}(p) = \lim \frac{1}{n} \log \int \frac{\|gx\|^{p}}{\|x\|^{p}} \mu^{n}(dg) \quad \text{any } x \in C$$
$$= \lim \frac{1}{n} \log \|(U_{p}^{C})^{n}\|.$$

Moment Lyapunov Exponent

▶ By Gelfand formula $r(T) = \lim_n ||T^n||^{1/n}$ and $||T|| = \sup_x |T1(x)|$ if T is a positive operator.

▲ 同 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Shape of $\gamma_{C}(p)$

$$\gamma_{C}^{\prime}\left(0
ight)=\limrac{1}{n}\lograc{\left\Vert g_{n}x
ight\Vert ^{p}}{\left\Vert x
ight\Vert ^{p}}$$

Top Lyapunov exponent $(g_n = random product)$

イロン イボン イモン イモン 三日

Shape of $\gamma_{C}(p)$

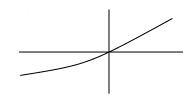
$$\gamma_{C}^{\prime}\left(0
ight)=\limrac{1}{n}\lograc{\left\Vert g_{n}x
ight\Vert ^{p}}{\left\Vert x
ight\Vert ^{p}}$$

Top Lyapunov exponent (g_n = random product)

$$\lim_{p\to-\infty}\gamma_{C}\left(p\right)<0$$

Property of the semigroup: $\frac{\|gx\|}{\|x\|} > c$ if $g \in S_{\mu}$ and $[x] \in C$.

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ



Luiz A. B. San Martin Semigroups in Semi-simple Lie Groups and Eigenvalues of Seco

・ロト ・回ト ・ヨト ・ヨト

æ,

Operators in \mathbb{P}^1

•
$$U_{p}(\mu)$$
, $r_{p} = \text{spectral radius}$, $\gamma(p) = \log r_{p}$

Luiz A. B. San Martin Semigroups in Semi-simple Lie Groups and Eigenvalues of Seco

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ -

æ,

Operators in \mathbb{P}^1

- $U_{p}(\mu)$, $r_{p} = \text{spectral radius}$, $\gamma(p) = \log r_{p}$
- If S_µ ≠ G there is no irreducibility. Existence of strictly positive eigenfunction and multiplicity 1 of r_p is not immediate.

<ロ> (四) (四) (三) (三) (三)

Operators in \mathbb{P}^1

- $U_{p}(\mu)$, $r_{p} = \text{spectral radius}$, $\gamma(p) = \log r_{p}$
- If S_µ ≠ G there is no irreducibility. Existence of strictly positive eigenfunction and multiplicity 1 of r_p is not immediate.
- If $p \in (-1, +\infty)$ then there exists an eigenfunction f_p , $U_p(\mu) = r_p f_p$ with f > 0 in \mathbb{P}^1 :

$$f_{p}(x) = \int_{\mathbb{P}^{1}} \left| \cos \theta \left(x, y \right) \right|^{p} \nu_{p} \left(dy \right)$$

where ν_p is an eigenmeasure. Integrability is ensured only at p>-1.

Shape of $\gamma(p)$

▶ If $p \in (-1, +\infty)$ then r_p has multiplicity one and

$$\gamma(p) = \lim \frac{1}{n} \log \int \frac{\|gx\|^p}{\|x\|^p} \mu^n(dg) = \gamma_c(p).$$

イロン イボン イモン イモン 三日

Shape of $\gamma(p)$

• If $p \in (-1, +\infty)$ then r_p has multiplicity one and

$$\gamma\left(p
ight) = \lim rac{1}{n} \log \int rac{\|g\mathbf{x}\|^p}{\|\mathbf{x}\|^p} \mu^n(dg) = \gamma_C(p).$$

• The adjoint of $U_p(\mu)$ in $L^2(\mathbb{P}^1)$ is

$$U_{p}\left(\mu
ight)^{*}=U_{-p-2}\left(\mu^{-1}
ight)$$

symmetry around -1. $(\mu^{-1} = \iota_*(\mu), \iota(g) = g^{-1})$

Shape of $\gamma(p)$

▶ If $p \in (-1, +\infty)$ then r_p has multiplicity one and

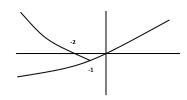
$$\gamma\left(p
ight) = \lim rac{1}{n} \log \int rac{\left\|gx
ight\|^p}{\left\|x
ight\|^p} \mu^n(dg) = \gamma_C(p).$$

• The adjoint of $U_p(\mu)$ in $L^2(\mathbb{P}^1)$ is

$$U_{p}\left(\mu\right)^{*}=U_{-p-2}\left(\mu^{-1}\right)$$

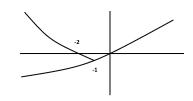
symmetry around -1. $(\mu^{-1} = \iota_*(\mu), \iota(g) = g^{-1})$

► The shape of \(\gamma\) (p) in the interval (-∞, -1) is symmetric-like to the shape in (-1, +∞). Applied to \(\mu^{-1}\)



æ,





Analyticity fails at -1.
 And multiplicity is bigger thant 1.

Key words: flag type of a semigroup with nonempty interior.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Key words: flag type of a semigroup with nonempty interior.
- As in dim 2 in any flag manifold 𝔽_Θ of 𝔅 there is a unique invariant control set C_Θ (clSx = C_Θ for all x ∈ C_Θ).
- ► There are flag manifolds where C_Θ is contractible. hⁿC shrinks to a point.

A (10) × (10) × (10) ×

- Key words: flag type of a semigroup with nonempty interior.
- As in dim 2 in any flag manifold 𝔽_Θ of 𝔅 there is a unique invariant control set C_Θ (clSx = C_Θ for all x ∈ C_Θ).
- ► There are flag manifolds where C_Θ is contractible. hⁿC shrinks to a point.
- The maximal one with this property is the flag type F_{Θ(S)} of S (intS ≠ Ø and S ≠ G).

・ロト ・回 ト ・ヨト ・ヨト

In F_{Θ(S)} there is the cocycle ρ_{ω_{Θ(S)}} (g, x) defined by g_{*}m = ρ_{ω_{Θ(S)}} (g⁻¹, x) m where m is the unique K-invariant measure.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- In F_{Θ(S)} there is the cocycle ρ_{ω_{Θ(S)}} (g, x) defined by g_{*}m = ρ_{ω_{Θ(S)}} (g⁻¹, x) m where m is the unique K-invariant measure.
- For the operators $U_{p\omega_{\Theta(S)}}(\mu)$ the behaviour of the spectral radius $\gamma(p) = \log r_{p\omega_{\Theta(S)}}$ is analogous to the dim 2 case.

周 ト イヨ ト イヨ ト 二 ヨ

- In F_{Θ(S)} there is the cocycle ρ_{ω_{Θ(S)}} (g, x) defined by g_{*}m = ρ_{ω_{Θ(S)}} (g⁻¹, x) m where m is the unique K-invariant measure.
- For the operators $U_{p\omega_{\Theta(S)}}(\mu)$ the behaviour of the spectral radius $\gamma(p) = \log r_{p\omega_{\Theta(S)}}$ is analogous to the dim 2 case.
- Hence $\lambda \mapsto r_{\lambda}$ fails to be analytic at $\lambda = -\omega_{\Theta(S)}$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

- In F_{Θ(S)} there is the cocycle ρ_{ω_{Θ(S)}} (g, x) defined by g_{*}m = ρ_{ω_{Θ(S)}} (g⁻¹, x) m where m is the unique K-invariant measure.
- For the operators $U_{p\omega_{\Theta(S)}}(\mu)$ the behaviour of the spectral radius $\gamma(p) = \log r_{p\omega_{\Theta(S)}}$ is analogous to the dim 2 case.
- Hence $\lambda \mapsto r_{\lambda}$ fails to be analytic at $\lambda = -\omega_{\Theta(S)}$.
- Lack of analyticity is read by the flag type of $S_{\mu|}$.

マロト イヨト イヨト ニヨ

<u>Comments</u>

This work was started with the objective of developing measure theoretic (probabilistic) tools to study semigroups in semi-simple Lie groups. The methods to study semigroups S with intS are mainly topological. Having a measure theoretic approach may open the possibility to study more general classes of semigroups and eventually get the concept of flag type of a semigroup in a more general context. For example Zariski dense semigroups in algebraic groups and eventually

Comments

- This work was started with the objective of developing measure theoretic (probabilistic) tools to study semigroups in semi-simple Lie groups. The methods to study semigroups S with intS are mainly topological. Having a measure theoretic approach may open the possibility to study more general classes of semigroups and eventually get the concept of flag type of a semigroup in a more general context. For example Zariski dense semigroups in algebraic groups and eventually
- The results obtained relating controllability (flag type) to spectral radii suggest applications of differential operator theory to controllability. Up to now only applications in the other direction.

Examples of operators dim 2

$$X = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, Y = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \qquad \theta \in \mathbb{P}^1 = S^1$$
$$\lambda = p\lambda_1$$

$$L_p = \frac{d^2}{d\theta^2} + \sin\theta \frac{d}{d\theta} + p\cos\theta.$$

イロト イヨト イヨト イヨト

э

Examples of operators dim 2

$$X = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, Y = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \qquad \theta \in \mathbb{P}^1 = S^1$$
$$\lambda = p\lambda_1$$
$$L_p = \frac{d^2}{d\theta^2} + \sin\theta \frac{d}{d\theta} + p\cos\theta.$$
$$X = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, Y = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$
$$L_p = \sin\theta \frac{d}{d\theta} + \cos^2\theta \frac{d^2}{d\theta^2} - \frac{\sin 2\theta}{2} \frac{d}{d\theta}$$
$$+ p\sin\theta \frac{d}{d\theta} + p(\cos\theta + \cos^2\theta) + p^2 \sin^2\theta.$$

Luiz A. B. San Martin

Semigroups in Semi-simple Lie Groups and Eigenvalues of Seco

臣

Examples of operators dim 2

►
$$X = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
, $Y = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
coordinate system $t \mapsto [(\cosh t, \sinh t)]$:

$$\frac{d^2}{dt^2} + \left(p\frac{2\sinh 2t}{\cosh 2t} - 2\sinh 2t\right)\frac{d}{dt}$$
$$+p\frac{1}{\cosh 2t} + p\frac{4}{\cosh^2 t} + p^2\frac{2\sinh^2 2t}{\cosh^2 2t}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○ ■ ○ ○ ○ ○