Prequatization, differential cohomology and the genus integration

Rui Loja Fernandes

Department of Mathematics
University of Illinois at Urbana-Champaign, USA
2nd Workshop São Paulo J. of Math. Sci.
USP, November 2019

This talk is an exercise based on:

- Ivan Contreras \& RLF, "Genus Integration, Abelianization and Extended Monodromy", arXiv:1805.12043.
- Discussions with Alejandro Cabrera on obstructions to strict deformation quantization.

This talk is an exercise based on:

- Ivan Contreras \& RLF, "Genus Integration, Abelianization and Extended Monodromy", arXiv:1805.12043.
- Discussions with Alejandro Cabrera on obstructions to strict deformation quantization.

Aim:

- relationship between the classical prequantization condition and integration of Lie algebroids

This talk is an exercise based on:

- Ivan Contreras \& RLF, "Genus Integration, Abelianization and Extended Monodromy", arXiv:1805.12043.
- Discussions with Alejandro Cabrera on obstructions to strict deformation quantization.

Aim:

- relationship between the classical prequantization condition and integration of Lie algebroids

Wait!!! Wasn't this solved a long time ago?!

This talk is an exercise based on:

- Ivan Contreras \& RLF, "Genus Integration, Abelianization and Extended Monodromy", arXiv:1805.12043.
- Discussions with Alejandro Cabrera on obstructions to strict deformation quantization.

Aim:

- relationship between the classical prequantization condition and integration of Lie algebroids

> Wait!!! Wasn't this solved a long time ago?!

- M. Crainic, Prequantization and Integrability, J. Sympl. Geom. (2004)

This talk is an exercise based on:

- Ivan Contreras \& RLF, "Genus Integration, Abelianization and Extended Monodromy", arXiv:1805.12043.
- Discussions with Alejandro Cabrera on obstructions to strict deformation quantization.

Aim:

- relationship between the classical prequantization condition and integration of Lie algebroids

> Wait!!! Wasn't this solved a long time ago?!

- M. Crainic, Prequantization and Integrability, J. Sympl. Geom. (2004)
... but this paper assumes manifold is $\mathbf{1}$-connected.

The prequantization condition

- $\omega \in \Omega^{2}(M)$ - closed 2-form
- Group of periods of ω :

$$
\operatorname{Per}(\omega):=\left\{\int_{\sigma} \omega: \sigma \in H_{2}(M, \mathbb{Z})\right\} \subset(\mathbb{R},+)
$$

- Group of spherical periods of ω :

$$
\operatorname{SPer}(\omega):=\left\{\int_{\sigma} \omega: \sigma \in \pi_{2}(M)\right\} \subset \operatorname{Per}(\omega)
$$

The prequantization condition

- $\omega \in \Omega^{2}(M)$ - closed 2-form
- Group of periods of ω :

$$
\operatorname{Per}(\omega):=\left\{\int_{\sigma} \omega: \sigma \in H_{2}(M, \mathbb{Z})\right\} \subset(\mathbb{R},+)
$$

- Group of spherical periods of ω :

$$
\operatorname{SPer}(\omega):=\left\{\int_{\sigma} \omega: \sigma \in \pi_{2}(M)\right\} \subset \operatorname{Per}(\omega)
$$

Definition

(M, ω) satisfies the prequantization condition if $\operatorname{Per}(\omega) \subset \mathbb{R}$ is a discrete subgroup, i.e., if there exists $a \in \mathbb{R}$ such that

$$
\operatorname{Per}(\omega)=a \mathbb{Z} \subset \mathbb{R}
$$

One can also consider the weaker requirement that $\operatorname{SPer}(\omega) \subset \mathbb{R}$ is a discrete subgroup. One of our aims is to understand the differences...

The prequantization condition

Notation:

$$
\mathbb{S}_{a}^{1}:=\mathbb{R} / a \mathbb{Z}
$$

Note that one can have $a=0$ in which case $\mathbb{S}_{0}^{1}=\mathbb{R}$.

The prequantization condition

Notation:

$$
\mathbb{S}_{a}^{1}:=\mathbb{R} / a \mathbb{Z}
$$

Note that one can have $a=0$ in which case $\mathbb{S}_{0}^{1}=\mathbb{R}$.

Theorem (Souriau 1967, Kostant 1970)
Let $\omega \in \Omega_{\mathrm{cl}}^{2}(M)$. There exists a principal \mathbb{S}_{a}^{1}-bundle $\pi: P \rightarrow M$ with connection $\theta \in \Omega^{1}(P, \mathbb{R})$ satisfying $\pi^{*} \omega=\mathrm{d} \theta$ if and only if $\operatorname{Per}(\omega) \subset a \mathbb{Z}$.

The prequantization condition

Notation:

$$
\mathbb{S}_{a}^{1}:=\mathbb{R} / a \mathbb{Z}
$$

Note that one can have $a=0$ in which case $\mathbb{S}_{0}^{1}=\mathbb{R}$.

Theorem (Souriau 1967, Kostant 1970)
Let $\omega \in \Omega_{\mathrm{cl}}^{2}(M)$. There exists a principal \mathbb{S}_{a}^{1}-bundle $\pi: P \rightarrow M$ with connection $\theta \in \Omega^{1}(P, \mathbb{R})$ satisfying $\pi^{*} \omega=\mathrm{d} \theta$ if and only if $\operatorname{Per}(\omega) \subset a \mathbb{Z}$.

- What are the possible such principal \mathbb{S}_{a}^{1}-bundle $\pi: P \rightarrow M$ with connection θ ?

The prequantization condition

Notation:

$$
\mathbb{S}_{a}^{1}:=\mathbb{R} / a \mathbb{Z}
$$

Note that one can have $a=0$ in which case $\mathbb{S}_{0}^{1}=\mathbb{R}$.

Theorem (Souriau 1967, Kostant 1970)
Let $\omega \in \Omega_{\mathrm{cl}}^{2}(M)$. There exists a principal \mathbb{S}_{a}^{1}-bundle $\pi: P \rightarrow M$ with connection $\theta \in \Omega^{1}(P, \mathbb{R})$ satisfying $\pi^{*} \omega=\mathrm{d} \theta$ if and only if $\operatorname{Per}(\omega) \subset a \mathbb{Z}$.

- What are the possible such principal \mathbb{S}_{a}^{1}-bundle $\pi: P \rightarrow M$ with connection θ ?

The answer is provided by differential cohomology.

Differential cohomology (Cheeger \& Simons)

Definition

A differential character of degree k on M relative to $a \mathbb{Z}$ is a group homomorphism $\chi: Z_{k}(M) \rightarrow \mathbb{S}_{a}^{1}$ for which there exists a closed form $\omega \in \Omega_{\mathrm{cl}}^{k+1}(M)$ such that:

$$
\chi(\partial \sigma)=\int_{\sigma} \omega(\bmod a \mathbb{Z}), \quad \forall \sigma \in C_{k+1}(M) .
$$

$\hat{H}^{k}\left(M, \mathbb{S}_{\mathrm{a}}^{1}\right)=\{$ differential characters of degree $k\}$

Differential cohomology (Cheeger \& Simons)

Definition

A differential character of degree k on M relative to $a \mathbb{Z}$ is a group homomorphism $\chi: Z_{k}(M) \rightarrow \mathbb{S}_{a}^{1}$ for which there exists a closed form $\omega \in \Omega_{\mathrm{cl}}^{k+1}(M)$ such that:

$$
\chi(\partial \sigma)=\int_{\sigma} \omega(\bmod a \mathbb{Z}), \quad \forall \sigma \in C_{k+1}(M) .
$$

$\hat{H}^{k}\left(M, \mathbb{S}_{\mathrm{a}}^{1}\right)=\{$ differential characters of degree $k\}$

- ω is uniquely determined by the differential character χ and $\operatorname{Per}(\omega) \subset a \mathbb{Z}$:

$$
\delta_{1}: \hat{H}^{k}\left(M, \mathbb{S}_{a}^{1}\right) \rightarrow \Omega_{a \mathbb{Z}}^{k+1}(M), \quad \chi \mapsto \omega .
$$

Differential cohomology (Cheeger \& Simons)

Definition

A differential character of degree k on M relative to $a \mathbb{Z}$ is a group homomorphism $\chi: Z_{k}(M) \rightarrow \mathbb{S}_{a}^{1}$ for which there exists a closed form $\omega \in \Omega_{\mathrm{cl}}^{k+1}(M)$ such that:

$$
\chi(\partial \sigma)=\int_{\sigma} \omega(\bmod a \mathbb{Z}), \quad \forall \sigma \in C_{k+1}(M) .
$$

$\hat{H}^{k}\left(M, \mathbb{S}_{a}^{1}\right)=\{$ differential characters of degree $k\}$

- ω is uniquely determined by the differential character χ and $\operatorname{Per}(\omega) \subset a \mathbb{Z}$:

$$
\delta_{1}: \hat{H}^{k}\left(M, \mathbb{S}_{a}^{1}\right) \rightarrow \Omega_{a \mathbb{Z}}^{k+1}(M), \quad \chi \mapsto \omega .
$$

- Choose lift $\tilde{\chi}: C_{k}(M) \rightarrow \mathbb{R}$ and define $c: C_{k+1}(M) \rightarrow \mathbb{R}$ by:

$$
c(\sigma):=\int_{\sigma} \omega-\tilde{\chi}(\partial \sigma) .
$$

Then $c \in Z^{k+1}(M, a \mathbb{Z})$ and $[c] \in H^{k+1}(M, a \mathbb{Z})$ does not depend on $\tilde{\chi}$:

$$
\delta_{2}: \hat{H}^{k}\left(M, \mathbb{S}_{\mathrm{a}}^{1}\right) \rightarrow H^{k+1}(M, a \mathbb{Z}), \quad \chi \mapsto[c] .
$$

Differential cohomology

If $r: H^{k+1}(M, a \mathbb{Z}) \rightarrow H^{k+1}(M, \mathbb{R})$ is the natural map, then: $r([c])=[\omega]$.

Differential cohomology

If $r: H^{k+1}(M, a \mathbb{Z}) \rightarrow H^{k+1}(M, \mathbb{R})$ is the natural map, then: $r([c])=[\omega]$.

Theorem (Cheeger \& Simons, 1985)

There is a short exact sequence:

$$
H^{k}(M, \mathbb{R}) / r\left(H^{k}(M, a \mathbb{Z})\right) \longrightarrow \hat{H}^{k}\left(M, \mathbb{S}_{a}^{1}\right) \xrightarrow{\left(\delta_{1}, \delta_{2}\right)} R^{k+1}(M, a \mathbb{Z})
$$

where:

$$
R^{\bullet}(M, a \mathbb{Z})=\left\{(\omega, u) \in \Omega_{a \mathbb{Z}}^{\bullet}(M) \times H^{\bullet}(M, a \mathbb{Z}):[\omega]=r(u)\right\} .
$$

- Differential cohomology provides a refinement of integral cohomology and differential forms with aZ-periods.
- Differential cohomology has a graded ring structure:

$$
*: \hat{H}^{k}\left(M, \mathbb{S}_{a}^{1}\right) \times \hat{H}^{\prime}\left(M, \mathbb{S}_{a}^{1}\right) \rightarrow \hat{H}^{k+l+1}\left(M, \mathbb{S}_{a}^{1}\right)
$$

and $\left(\delta_{1}, \delta_{2}\right)$ is a ring homomorphism.

Differential cohomology in degree 1

Differential cohomology in degree 1

Example

$\pi: P \rightarrow M$ be a principal \mathbb{S}_{a}^{1}-bundle with connection $\theta \in \Omega^{1}(P, \mathbb{R})$ and curvature $\omega \in \Omega^{2}(M)$:

$$
\pi^{*} \omega=\mathrm{d} \theta
$$

Differential cohomology in degree 1

Example

$\pi: P \rightarrow M$ be a principal \mathbb{S}_{a}^{1}-bundle with connection $\theta \in \Omega^{1}(P, \mathbb{R})$ and curvature $\omega \in \Omega^{2}(M)$:

$$
\pi^{*} \omega=\mathrm{d} \theta
$$

Holonomy of the connection along a loop γ gives an element: $\chi(\gamma) \in \mathbb{S}_{a}^{1}$.

Differential cohomology in degree 1

Example

$\pi: P \rightarrow M$ be a principal \mathbb{S}_{a}^{1}-bundle with connection $\theta \in \Omega^{1}(P, \mathbb{R})$ and curvature $\omega \in \Omega^{2}(M)$:

$$
\pi^{*} \omega=\mathrm{d} \theta
$$

Holonomy of the connection along a loop γ gives an element: $\chi(\gamma) \in \mathbb{S}_{a}^{1}$. Extend χ to any cycle $\gamma+\partial \sigma \in Z_{1}(M)$ by:

$$
\chi(\gamma+\partial \sigma):=\chi(\gamma)+\int_{\sigma} \omega \quad\left(\bmod a \mathbb{Z}_{a}\right) .
$$

Differential cohomology in degree 1

Example

$\pi: P \rightarrow M$ be a principal \mathbb{S}_{a}^{1}-bundle with connection $\theta \in \Omega^{1}(P, \mathbb{R})$ and curvature $\omega \in \Omega^{2}(M)$:

$$
\pi^{*} \omega=\mathrm{d} \theta
$$

Holonomy of the connection along a loop γ gives an element: $\chi(\gamma) \in \mathbb{S}_{a}^{1}$. Extend χ to any cycle $\gamma+\partial \sigma \in Z_{1}(M)$ by:

$$
\chi(\gamma+\partial \sigma):=\chi(\gamma)+\int_{\sigma} \omega \quad\left(\bmod a \mathbb{Z}_{a}\right) .
$$

This defines a differential character $\chi \in \hat{H}^{1}\left(M, \mathbb{S}_{a}^{1}\right)$ with:

- $\delta_{1} \chi=\omega \in \Omega_{a \mathbb{Z}}^{2}(M)$;
- $\delta_{2} \chi \in H^{2}(M, a \mathbb{Z})$ the (integral) Chern class of the bundle.

Differential cohomology in degree 1

Example

$\pi: P \rightarrow M$ be a principal \mathbb{S}_{a}^{1}-bundle with connection $\theta \in \Omega^{1}(P, \mathbb{R})$ and curvature $\omega \in \Omega^{2}(M)$:

$$
\pi^{*} \omega=\mathrm{d} \theta
$$

Holonomy of the connection along a loop γ gives an element: $\chi(\gamma) \in \mathbb{S}_{a}^{1}$. Extend χ to any cycle $\gamma+\partial \sigma \in Z_{1}(M)$ by:

$$
\chi(\gamma+\partial \sigma):=\chi(\gamma)+\int_{\sigma} \omega \quad\left(\bmod a \mathbb{Z}_{a}\right) .
$$

This defines a differential character $\chi \in \hat{H}^{1}\left(M, \mathbb{S}_{a}^{1}\right)$ with:

- $\delta_{1} \chi=\omega \in \Omega_{a \mathbb{Z}}^{2}(M)$;
- $\delta_{2} \chi \in H^{2}(M, a \mathbb{Z})$ the (integral) Chern class of the bundle.

Note: one can have $\delta_{1} \chi=\delta_{2} \chi=0$ with $\chi \neq 0$ (e.g., if $M=\mathbb{S}^{1}$).

Differential cohomology in degree 1

Theorem (Cheeger \& Simons, 1985)

$$
\left\{\begin{array}{c}
\text { principal } \mathbb{S}_{a}^{1} \text {-bundles } \\
\text { with connection }
\end{array}\right\} \longrightarrow \not \longrightarrow \hat{H}^{1}\left(M, \mathbb{S}_{a}^{1}\right)
$$

\{isomorphism classes of principal $\}$ $\left\{\mathbb{S}_{a}^{1}\right.$-bundles with connection $\}$

Differential cohomology in degree 1

Theorem (Cheeger \& Simons, 1985)

$\left.\qquad \begin{array}{c}\text { principal } \mathbb{S}_{a}^{1} \text {-bundles } \\ \text { with connection }\end{array}\right\}$
$\left\{\begin{array}{c}\text { isomorphism classes of principal } \\ \mathbb{S}_{a}^{1} \text {-bundles with connection }\end{array}\right\}$

- Lie groupoid theory leads to a natural section of the horizontal arrow (after a choice of a base point), and hence a simple proof/explanation of the theorem.
- This result generalizes to higher principal bundles and higher degree differential cohomology.

Lie algebroids - the canonical integration

$p: A \rightarrow M$ - Lie algebroid with Lie bracket [,] and anchor $\rho: A \rightarrow T M$

Lie algebroids - the canonical integration

$p: A \rightarrow M$ - Lie algebroid with Lie bracket [,] and anchor $\rho: A \rightarrow T M$

$$
\Pi_{1}(A)=\frac{\{A \text {-paths }\}}{A \text {-homotopies }} \rightrightarrows M\left\{\begin{array}{c}
A \text {-path: algebroid morphism } \\
a: T I \rightarrow A \\
A \text {-homotopy: algebroid morphism } \\
h: T(I \times I) \rightarrow A
\end{array}\right.
$$

Lie algebroids - the canonical integration

$p: A \rightarrow M$ - Lie algebroid with Lie bracket [,] and anchor $\rho: A \rightarrow T M$

$$
\Pi_{1}(A)=\frac{\{A \text {-paths }\}}{A \text {-homotopies }} \rightrightarrows M
$$

A-path: algebroid morphism

$$
a: T I \rightarrow A
$$

A-homotopy: algebroid morphism

$$
h: T(I \times I) \rightarrow A
$$

Lie algebroids - the canonical integration

$p: A \rightarrow M$ - Lie algebroid with Lie bracket [,] and anchor $\rho: A \rightarrow T M$

$$
\Pi_{1}(A)=\frac{\{A \text {-paths }\}}{A \text {-homotopies }} \rightrightarrows M
$$

A-path: algebroid morphism

$$
a: T I \rightarrow A
$$

A-homotopy: algebroid morphism

$$
h: T(I \times I) \rightarrow A
$$

Topological groupoid with structure maps:

- source: $\mathbf{s}([a])=p(a(0))$;
- target: $\mathbf{t}([a])=p(a(1))$;
- product: $[a] \cdot[b]=[a \circ b]$;

Monodromy

For each $x \in M$:

- isotropy Lie algebra: $\mathfrak{g}_{x}=\operatorname{ker} \rho_{x}$;
\checkmark orbit: $\mathcal{O}_{x} \subset M$ such that $T_{y} \mathcal{O}=\operatorname{Im} \rho_{y}$. and there is a monodromy map:

$$
\partial_{x}: \pi_{2}\left(\mathcal{O}_{x}\right) \rightarrow G\left(\mathfrak{g}_{x}\right)
$$

Monodromy

For each $x \in M$:

- isotropy Lie algebra: $\mathfrak{g}_{x}=\operatorname{ker} \rho_{x}$;
- orbit: $\mathcal{O}_{x} \subset M$ such that $T_{y} \mathcal{O}=\operatorname{Im} \rho_{y}$.
and there is a monodromy map:

$$
\partial_{x}: \pi_{2}\left(\mathcal{O}_{x}\right) \rightarrow G\left(\mathfrak{g}_{x}\right)
$$

Theorem (Crainic \& RLF, 2003)

The following statements are equivalent:
(i) A integrates to some Lie groupoid;
(ii) $\Pi_{1}(A)$ is a Lie groupoid;
(iii) The monodromy groups $\mathcal{N}_{x}=\operatorname{Im} \partial_{x}$ are uniformly discrete.

Prequantization algebroid (Crainic, 2004)

- $\omega \in \Omega_{\mathrm{cl}}^{2}(M)$ has associated algebroid $A_{\omega}:=T M \oplus \mathbb{R}$:

$$
0 \longrightarrow M \times \mathbb{R} \longrightarrow T M \oplus \mathbb{R} \xrightarrow{\rho=\mathrm{pr}} T M \longrightarrow 0
$$

with Lie bracket:

$$
[(X, f),(Y, g)]:=([X, Y], X(g)-Y(f)+\omega(X, Y)) .
$$

Prequantization algebroid (Crainic, 2004)

- $\omega \in \Omega_{\mathrm{cl}}^{2}(M)$ has associated algebroid $A_{\omega}:=T M \oplus \mathbb{R}$:

$$
0 \longrightarrow M \times \mathbb{R} \longrightarrow T M \oplus \mathbb{R} \xrightarrow{\rho=\mathrm{pr}} T M \longrightarrow 0
$$

with Lie bracket:

$$
[(X, f),(Y, g)]:=([X, Y], X(g)-Y(f)+\omega(X, Y)) .
$$

Monodromy:

$$
\partial_{x}: \pi_{2}(M, x) \rightarrow \mathbb{R}, \quad \sigma \mapsto \int_{\sigma} \omega
$$

$\Pi_{1}(A)$ is a Lie groupoid $\quad \Longleftrightarrow \mathrm{SPer} \subset \mathbb{R}$ is discrete.

Prequantization algebroid (Crainic, 2004)

- $\omega \in \Omega_{\mathrm{cl}}^{2}(M)$ has associated algebroid $A_{\omega}:=T M \oplus \mathbb{R}$:

$$
0 \longrightarrow M \times \mathbb{R} \longrightarrow T M \oplus \mathbb{R} \xrightarrow{\rho=\mathrm{pr}} T M \longrightarrow 0
$$

with Lie bracket:

$$
[(X, f),(Y, g)]:=([X, Y], X(g)-Y(f)+\omega(X, Y)) .
$$

Monodromy:

$$
\partial_{x}: \pi_{2}(M, x) \rightarrow \mathbb{R}, \quad \sigma \mapsto \int_{\sigma} \omega
$$

$\Pi_{1}(A)$ is a Lie groupoid $\quad \Longleftrightarrow$ SPer $\subset \mathbb{R}$ is discrete.
The source fiber $\mathbf{t}: \mathbf{s}^{-1}\left(x_{0}\right) \rightarrow M$ is a principal $G_{x_{0}}$-bundle, where $G_{x_{0}}$:

$$
0 \longrightarrow \mathbb{R} / \operatorname{SPer}(\omega) \longrightarrow G_{x_{0}} \longrightarrow \pi_{1}(M) \longrightarrow 0
$$

Prequantization algebroid (continued)

We have the explicit path space description (Crainic, 2004):

$$
P=\frac{\left\{(\gamma, a): \gamma: I \rightarrow M \mathrm{w} / \gamma(0)=x_{0}, a \in \mathbb{R}\right\}}{\sim} \longrightarrow M, \quad[(\gamma, a)] \mapsto \gamma(1)
$$

where \sim is the equivalence relation:

$$
\left(\gamma_{1}, a_{1}\right) \sim\left(\gamma_{2}, a_{2}\right) \quad \Leftrightarrow \quad\left\{\begin{array}{l}
\gamma_{2}-\gamma_{1}=\partial \sigma, \text { for } \sigma: \mathbb{D}^{2} \rightarrow M \\
a_{2}-a_{1}=\int_{\sigma} \omega
\end{array}\right.
$$

Prequantization algebroid (continued)

We have the explicit path space description (Crainic, 2004):

$$
P=\frac{\left\{(\gamma, a): \gamma: I \rightarrow M \mathrm{w} / \gamma(0)=x_{0}, a \in \mathbb{R}\right\}}{\sim} \longrightarrow M, \quad[(\gamma, a)] \mapsto \gamma(1)
$$

where \sim is the equivalence relation:

$$
\left(\gamma_{1}, a_{1}\right) \sim\left(\gamma_{2}, a_{2}\right) \quad \Leftrightarrow \quad\left\{\begin{array}{l}
\gamma_{2}-\gamma_{1}=\partial \sigma, \text { for } \sigma: \mathbb{D}^{2} \rightarrow M \\
a_{2}-a_{1}=\int_{\sigma} \omega
\end{array}\right.
$$

Remarks

- This bundle has a canonical connection $\theta \in \Omega^{1}(P)$ induced from the splitting $A_{\omega}=T M \oplus \mathbb{R}$. It satisfies $\pi^{*} \omega=\mathrm{d} \theta$.

Prequantization algebroid (continued)

We have the explicit path space description (Crainic, 2004):

$$
P=\frac{\left\{(\gamma, a): \gamma: I \rightarrow M \mathrm{w} / \gamma(0)=x_{0}, a \in \mathbb{R}\right\}}{\sim} \longrightarrow M, \quad[(\gamma, a)] \mapsto \gamma(1)
$$

where \sim is the equivalence relation:

$$
\left(\gamma_{1}, a_{1}\right) \sim\left(\gamma_{2}, a_{2}\right) \quad \Leftrightarrow \quad\left\{\begin{array}{l}
\gamma_{2}-\gamma_{1}=\partial \sigma, \text { for } \sigma: \mathbb{D}^{2} \rightarrow M \\
a_{2}-a_{1}=\int_{\sigma} \omega
\end{array}\right.
$$

Remarks

- This bundle has a canonical connection $\theta \in \Omega^{1}(P)$ induced from the splitting $A_{\omega}=T M \oplus \mathbb{R}$. It satisfies $\pi^{*} \omega=\mathrm{d} \theta$.
- If $\pi_{1}(M)=\{1\}$ then $\operatorname{Per}(\omega)=\operatorname{SPer}(\omega)$ and $G_{x_{0}}=\mathbb{R} / \operatorname{Per}(\omega)$. This gives a principal $\mathbb{R} / \operatorname{Per}(\omega)$-bundle with connection θ satisfying $\pi^{*} \omega=\mathrm{d} \theta$. Note that in this case $\hat{H}^{1}\left(M, \mathbb{S}_{a}^{1}\right) \simeq \Omega_{a \mathbb{Z}}^{2}(M)$.

Prequantization algebroid (continued)

We have the explicit path space description (Crainic, 2004):

$$
P=\frac{\left\{(\gamma, a): \gamma: I \rightarrow M \mathrm{w} / \gamma(0)=x_{0}, a \in \mathbb{R}\right\}}{\sim} \longrightarrow M, \quad[(\gamma, a)] \mapsto \gamma(1)
$$

where \sim is the equivalence relation:

$$
\left(\gamma_{1}, a_{1}\right) \sim\left(\gamma_{2}, a_{2}\right) \quad \Leftrightarrow \quad\left\{\begin{array}{l}
\gamma_{2}-\gamma_{1}=\partial \sigma, \text { for } \sigma: \mathbb{D}^{2} \rightarrow M \\
a_{2}-a_{1}=\int_{\sigma} \omega
\end{array}\right.
$$

Remarks

- This bundle has a canonical connection $\theta \in \Omega^{1}(P)$ induced from the splitting $A_{\omega}=T M \oplus \mathbb{R}$. It satisfies $\pi^{*} \omega=\mathrm{d} \theta$.
- If $\pi_{1}(M)=\{1\}$ then $\operatorname{Per}(\omega)=\operatorname{SPer}(\omega)$ and $G_{x_{0}}=\mathbb{R} / \operatorname{Per}(\omega)$. This gives a principal $\mathbb{R} / \operatorname{Per}(\omega)$-bundle with connection θ satisfying $\pi^{*} \omega=\mathrm{d} \theta$. Note that in this case $\hat{H}^{1}\left(M, \mathbb{S}_{a}^{1}\right) \simeq \Omega_{a \mathbb{Z}}^{2}(M)$.
- If $\pi_{1}(M) \neq\{1\}$, then the short sequence of $G_{x_{0}}$ in general will not split, and one cannot find a principal $\mathbb{R} / \operatorname{SPer}(\omega)$-bundle.

Genus integration

Idea: Replace A-homotopy by A-homology.

Genus integration

Idea: Replace A-homotopy by A-homology.

Definition

An A-homology between A-paths a_{0} and a_{1} is an algebroid map

$$
h: T \Sigma \rightarrow A,
$$

with Σ a compact surface with connected boundary $\partial \Sigma$ such that

$$
\left.h\right|_{T(\partial \Sigma)}=a_{0} \circ a_{1}^{-1} .
$$

Genus integration

Idea: Replace A-homotopy by A-homology.

Definition

An A-homology between A-paths a_{0} and a_{1} is an algebroid map

$$
h: T \Sigma \rightarrow A,
$$

with Σ a compact surface with connected boundary $\partial \Sigma$ such that

$$
\left.h\right|_{T(\partial \Sigma)}=a_{0} \circ a_{1}^{-1} .
$$

Remarks.

- The genus of Σ is not fixed.
- The A-homology class of the A-path a is denoted [[a]]

Genus Integration

$$
\mathcal{H}_{1}(A)=\frac{\{A \text {-paths }\}}{A \text {-homologies }} \rightrightarrows M
$$

Genus Integration

$$
\mathcal{H}_{1}(A)=\frac{\{A \text {-paths }\}}{A \text {-homologies }} \rightrightarrows M
$$

A topological groupoid with structure maps:

- source: $\mathbf{s}([[a]])=p(a(0))$;
- target: $\mathbf{t}([[a]])=p(a(1))$;
- product: $[[a]] \cdot[[b]]=[[a \circ b]]$;

Genus Integration

$$
\mathcal{H}_{1}(A)=\frac{\{A \text {-paths }\}}{A \text {-homologies }} \rightrightarrows M
$$

A topological groupoid with structure maps:

- source: $\mathbf{s}([[a]])=p(a(0))$;
- target: $\mathbf{t}([[a]])=p(a(1))$;
- product: $[[a]] \cdot[[b]]=[[a \circ b]]$;

There is a morphism of topological groupoids:

$$
\Pi_{1}(A) \rightarrow \mathcal{H}_{1}(A), \quad[a] \mapsto[[a]]
$$

Genus Integration

$$
\mathcal{H}_{1}(A)=\frac{\{A \text {-paths }\}}{A \text {-homologies }} \rightrightarrows M
$$

A topological groupoid with structure maps:

- source: $\mathbf{s}([[a]])=p(a(0))$;
- target: $\mathbf{t}([[a]])=p(a(1))$;
- product: $[[a]] \cdot[[b]]=[[a \circ b]]$;

There is a morphism of topological groupoids:

$$
\Pi_{1}(A) \rightarrow \mathcal{H}_{1}(A), \quad[a] \mapsto[[a]]
$$

Basic questions:

- What is the meaning of this genus integration?
- When is $\mathcal{H}_{1}(A)$ smooth?
- If $\mathcal{H}_{1}(A)$ is smooth, what is its Lie algebroid?

Hurewicz for Lie groupoids

The genus integration $\mathcal{H}_{1}(A)$ is the set theoretical abelianization of $\Pi_{1}(A)$

Hurewicz for Lie groupoids

The genus integration $\mathcal{H}_{1}(A)$ is the set theoretical abelianization of $\Pi_{1}(A)$

Theorem (Contreras \& RLF, 2019)
For any Lie algebroid $A \rightarrow M$:

$$
\mathcal{H}_{1}(A)=\frac{\Pi_{1}(A)}{\left(\Pi_{1}(A), \Pi_{1}(A)\right)},
$$

where $\left(\Pi_{1}(A), \Pi_{1}(A)\right)=\bigcup_{x \in M}\left(\Pi_{1}(A)_{x}, \Pi_{1}(A)_{x}\right)$ is the group bundle formed by the isotropies of $\Pi_{1}(A)$.

Hurewicz for Lie groupoids

The genus integration $\mathcal{H}_{1}(A)$ is the set theoretical abelianization of $\Pi_{1}(A)$

Theorem (Contreras \& RLF, 2019)

For any Lie algebroid $A \rightarrow M$:

$$
\mathcal{H}_{1}(A)=\frac{\Pi_{1}(A)}{\left(\Pi_{1}(A), \Pi_{1}(A)\right)},
$$

where $\left(\Pi_{1}(A), \Pi_{1}(A)\right)=\bigcup_{x \in M}\left(\Pi_{1}(A)_{x}, \Pi_{1}(A)_{x}\right)$ is the group bundle formed by the isotropies of $\Pi_{1}(A)$.

Remarks

- $\mathcal{H}_{1}(A)$ need not to be source 1-connected.
- $\mathcal{H}_{1}(A)$ is an example of an abelian groupoid (i.e., isotropy is abelian)
- If $\mathcal{H}_{1}(A)$ is smooth, then its Lie algebroid is abelian, i.e., has abelian isotropy (related to A thorugh abelianization of Lie algebroids)

Extended Monodromy

Question. When is $\mathcal{H}_{1}(A)$ smooth?
Simplifying Assumption: A is transitive Lie algebroid.

Extended Monodromy

Question. When is $\mathcal{H}_{1}(A)$ smooth?
Simplifying Assumption: A is transitive Lie algebroid.
Choose a splitting $\sigma: T M \rightarrow A$ of the anchor:

where $\mathfrak{g}_{x}^{\mathrm{ab}}=\mathfrak{g}_{x} /\left[\mathfrak{g}_{x}, \mathfrak{g}_{x}\right]$ and $A^{\mathrm{ab}}=A /[\mathfrak{g}, \mathfrak{g}]$.

Extended Monodromy

Question. When is $\mathcal{H}_{1}(A)$ smooth?
Simplifying Assumption: A is transitive Lie algebroid.
Choose a splitting $\sigma: T M \rightarrow A$ of the anchor:

where $\mathfrak{g}_{x}^{\mathrm{ab}}=\mathfrak{g}_{x} /\left[\mathfrak{g}_{x}, \mathfrak{g}_{x}\right]$ and $A^{\mathrm{ab}}=A /[\mathfrak{g}, \mathfrak{g}]$.

- curvature 2-form $\Omega \in \Omega^{2}\left(M, \mathfrak{g}^{\mathrm{ab}}\right)$:

$$
\Omega(X, Y):=\left[\sigma^{\mathrm{ab}}(X), \sigma^{\mathrm{ab}}(Y)\right]-\sigma^{\mathrm{ab}}([X, Y] .
$$

- flat connection ∇ on the bundle $\mathfrak{g}^{\text {ab }} \rightarrow M$:

$$
\nabla_{X} \alpha:=\left[\sigma^{\mathrm{ab}}(X), \alpha\right] .
$$

Remark. Two different splittings induce the same connection and the same curvature 2-form.

Extended Monodromy

Let $q: \tilde{M}^{h} \rightarrow M$ be the holonomy cover of M relative to ∇, so $q^{*} \mathfrak{g}^{\text {ab }} \rightarrow \tilde{M}$ is trivial with a canonical trivialization.

Extended Monodromy

Let $q: \tilde{M}^{h} \rightarrow M$ be the holonomy cover of M relative to ∇, so $q^{*} \mathfrak{g}^{\text {ab }} \rightarrow \tilde{M}$ is trivial with a canonical trivialization.

Definition

The extended monodromy homomorphism at $x \in M$ is the homomorphism of abelian groups:

$$
\partial_{x}^{\mathrm{ext}}: H_{2}\left(\tilde{M}^{h}, \mathbb{Z}\right) \rightarrow G\left(\mathfrak{g}_{x}^{\mathrm{ab}}\right), \quad[\gamma] \mapsto \exp \left(\int_{\gamma} q^{*} \Omega\right)
$$

$\mathcal{N}_{x}^{e x t}(A)=\operatorname{Im} \partial_{x}^{\text {ext }}$ is the extended monodromy group at x.

Extended Monodromy

Let $q: \tilde{M}^{h} \rightarrow M$ be the holonomy cover of M relative to ∇, so $q^{*} \mathfrak{g}^{\text {ab }} \rightarrow \tilde{M}$ is trivial with a canonical trivialization.

Definition

The extended monodromy homomorphism at $x \in M$ is the homomorphism of abelian groups:

$$
\partial_{x}^{\mathrm{ext}}: H_{2}\left(\tilde{M}^{h}, \mathbb{Z}\right) \rightarrow G\left(\mathfrak{g}_{x}^{\mathrm{ab}}\right), \quad[\gamma] \mapsto \exp \left(\int_{\gamma} q^{*} \Omega\right)
$$

$\mathcal{N}_{x}^{\text {ext }}(A)=\operatorname{Im} \partial_{x}^{\text {ext }}$ is the extended monodromy group at x.

There is a commutative diagram:

Extended Monodromy

Theorem (Contreras \& RLF, 2019)

Let $A \rightarrow M$ be a transitive Lie algebroid with trivial holonomy:
$\tilde{M}^{h}=M$. The following statements are equivalent:
(a) the genus integration $\mathcal{H}_{1}(A)$ is smooth;
(b) the extended monodromy $\mathcal{N}_{x}^{\text {ext }}(A)$ groups are discrete;
(c) $A^{\text {ab }}$ has an abelian integration.

Extended Monodromy

Theorem (Contreras \& RLF, 2019)

Let $A \rightarrow M$ be a transitive Lie algebroid with trivial holonomy:
$\tilde{M}^{h}=M$. The following statements are equivalent:
(a) the genus integration $\mathcal{H}_{1}(A)$ is smooth;
(b) the extended monodromy $\mathcal{N}_{x}^{\text {ext }}(A)$ groups are discrete;
(c) $A^{\text {ab }}$ has an abelian integration.

Remarks

- An abelian integration of A^{ab} is a Lie groupoid integrating $A^{\text {ab }}$ whose isotropy is abelian.
- An algebroid with abelian isotropy may not have any abelian integration.

Prequantization algebroid revisited

The prequantization algebroid $A_{\omega}:=T M \oplus \mathbb{R}$ has trivial holonomy ($\tilde{M}^{h}=M$) and abelian isotropy $\left(A^{\text {ab }}=A\right.$):

Hence:
$\Pi_{1}(A)$ is a Lie groupoid $\quad \Longleftrightarrow \quad \mathrm{SPer} \subset \mathbb{R}$ is discrete
$\mathcal{H}_{1}(A)$ is a Lie groupoid $\Longleftrightarrow \operatorname{Per} \subset \mathbb{R}$ is discrete.

Prequantization algebroid revisited

The prequantization algebroid $A_{\omega}:=T M \oplus \mathbb{R}$ has trivial holonomy ($\tilde{M}^{h}=M$) and abelian isotropy $\left(A^{\text {ab }}=A\right.$):

Hence:
$\Pi_{1}(A)$ is a Lie groupoid $\quad \Longleftrightarrow \mathrm{SPer} \subset \mathbb{R}$ is discrete
$\mathcal{H}_{1}(A)$ is a Lie groupoid $\Longleftrightarrow \operatorname{Per} \subset \mathbb{R}$ is discrete.

Note: In general, $A \neq A^{\mathrm{ab}}$ and $\tilde{M}^{h} \neq M$, so the relation between monodromy and extended monodromy is more complicated.

Prequantization algebroid revisited (continued)

The source fiber of $\mathcal{H}_{1}(A)$ is a principal $G_{x_{0}}$-bundle $\mathbf{t}: \mathbf{s}^{-1}\left(x_{0}\right) \rightarrow M$ where $G_{x_{0}}$:

$$
0 \longrightarrow \mathbb{R} / \operatorname{Per}(\omega) \longrightarrow G_{x_{0}} \longrightarrow H_{1}(M, \mathbb{Z}) \longrightarrow 0
$$

Prequantization algebroid revisited (continued)

The source fiber of $\mathcal{H}_{1}(A)$ is a principal $G_{x_{0}}$-bundle $\mathbf{t}: \mathbf{s}^{-1}\left(x_{0}\right) \rightarrow M$ where $G_{x_{0}}$:

$$
0 \longrightarrow \mathbb{R} / \operatorname{Per}(\omega) \longrightarrow G_{x_{0}} \longrightarrow H_{1}(M, \mathbb{Z}) \longrightarrow 0
$$

- $G_{x_{0}}=\left(\Omega\left(M, x_{0}\right) \times \mathbb{R}\right) / \sim$ where $\left(\gamma_{1}, a_{1}\right) \sim\left(\gamma_{2}, a_{2}\right)$ if and only if $\gamma_{2}-\gamma_{1}=\partial \sigma$ and $a_{2}-a_{1}=\int_{\sigma} \omega$, for some $\sigma \in C_{2}(M)$.

Prequantization algebroid revisited (continued)

The source fiber of $\mathcal{H}_{1}(A)$ is a principal $G_{x_{0}}$-bundle $\mathbf{t}: \mathbf{s}^{-1}\left(x_{0}\right) \rightarrow M$ where $G_{x_{0}}$:

$$
0 \longrightarrow \mathbb{R} / \operatorname{Per}(\omega) \longrightarrow G_{x_{0}} \longrightarrow H_{1}(M, \mathbb{Z}) \longrightarrow 0
$$

- $G_{x_{0}}=\left(\Omega\left(M, x_{0}\right) \times \mathbb{R}\right) / \sim$ where $\left(\gamma_{1}, a_{1}\right) \sim\left(\gamma_{2}, a_{2}\right)$ if and only if $\gamma_{2}-\gamma_{1}=\partial \sigma$ and $a_{2}-a_{1}=\int_{\sigma} \omega$, for some $\sigma \in C_{2}(M)$.
- Since $H_{1}(M, \mathbb{Z})$ is abelian and $\mathbb{R} / \operatorname{Per}(\omega)$ is a divisible group, this sequence always splits!
- A splitting is the same thing as a choice of differential character

$$
\chi: Z_{1}(M) \rightarrow \mathbb{R} / \operatorname{Per}(\omega) \quad \text { with } \delta_{1} \chi=\omega .
$$

It realizes $H_{1}(M, \mathbb{Z})$ as a subgroup of $G_{x_{0}}$.

Prequantization algebroid revisited (continued)

After choice of splitting, i.e., of a differential character

$$
\chi: Z_{1}(M) \rightarrow \mathbb{R} / \operatorname{Per}(\omega)
$$

so that $H_{1}(M, \mathbb{Z}) \subset G_{x_{0}}$, we have the quotient groupoid:

$$
\mathcal{H}_{1}\left(A_{\omega}\right) / H_{1}(M, \mathbb{Z})
$$

Prequantization algebroid revisited (continued)

After choice of splitting, i.e., of a differential character

$$
\chi: Z_{1}(M) \rightarrow \mathbb{R} / \operatorname{Per}(\omega)
$$

so that $H_{1}(M, \mathbb{Z}) \subset G_{x_{0}}$, we have the quotient groupoid:

$$
\mathcal{H}_{1}\left(A_{\omega}\right) / H_{1}(M, \mathbb{Z})
$$

A source fiber $\mathcal{P}_{\chi, \chi_{0}}:=\mathbf{s}^{-1}\left(x_{0}\right) \xrightarrow{\mathbf{t}} M$ of this quotient is a principal $\mathbb{R} / \operatorname{Per}(\omega)$-bundle with natural connection θ satisfying $\pi^{*} \omega=\mathrm{d} \theta$:

Prequantization algebroid revisited (continued)

After choice of splitting, i.e., of a differential character

$$
\chi: Z_{1}(M) \rightarrow \mathbb{R} / \operatorname{Per}(\omega)
$$

so that $H_{1}(M, \mathbb{Z}) \subset G_{x_{0}}$, we have the quotient groupoid:

$$
\mathcal{H}_{1}\left(A_{\omega}\right) / H_{1}(M, \mathbb{Z})
$$

A source fiber $\mathcal{P}_{\chi, x_{0}}:=\mathbf{s}^{-1}\left(x_{0}\right) \xrightarrow{\mathbf{t}} M$ of this quotient is a principal $\mathbb{R} / \operatorname{Per}(\omega)$-bundle with natural connection θ satisfying $\pi^{*} \omega=\mathrm{d} \theta$:

$$
P_{\chi, x_{0}}=\frac{\left\{(\gamma, a): \gamma: I \rightarrow M \mathrm{w} / \gamma(0)=x_{0}, a \in \mathbb{R} / \operatorname{Per}(\omega)\right\}}{\sim} \longrightarrow M
$$

where \sim is now the equivalence relation:

$$
\left(\gamma_{1}, a_{1}\right) \sim\left(\gamma_{2}, a_{2}\right) \quad \Leftrightarrow \quad\left\{\begin{array}{l}
\gamma_{2}-\gamma_{1} \in Z_{1}(M) \\
a_{2}-a_{1}=\chi\left(\gamma_{2}-\gamma_{1}\right)
\end{array}\right.
$$

Prequantization algebroid revisited (continued)

After choice of splitting, i.e., of a differential character

$$
\chi: Z_{1}(M) \rightarrow \mathbb{R} / \operatorname{Per}(\omega)
$$

so that $H_{1}(M, \mathbb{Z}) \subset G_{x_{0}}$, we have the quotient groupoid:

$$
\mathcal{H}_{1}\left(A_{\omega}\right) / H_{1}(M, \mathbb{Z})
$$

A source fiber $\mathcal{P}_{\chi, x_{0}}:=\mathbf{s}^{-1}\left(x_{0}\right) \xrightarrow{\mathbf{t}} M$ of this quotient is a principal $\mathbb{R} / \operatorname{Per}(\omega)$-bundle with natural connection θ satisfying $\pi^{*} \omega=\mathrm{d} \theta$:

$$
P_{\chi, x_{0}}=\frac{\left\{(\gamma, a): \gamma: I \rightarrow M \mathrm{w} / \gamma(0)=x_{0}, a \in \mathbb{R} / \operatorname{Per}(\omega)\right\}}{\sim} \longrightarrow M
$$

where \sim is now the equivalence relation:

$$
\left(\gamma_{1}, a_{1}\right) \sim\left(\gamma_{2}, a_{2}\right) \quad \Leftrightarrow \quad\left\{\begin{array}{l}
\gamma_{2}-\gamma_{1} \in Z_{1}(M) \\
a_{2}-a_{1}=\chi\left(\gamma_{2}-\gamma_{1}\right)
\end{array}\right.
$$

- This also appears in a recent preprint of Diez, Janssens, Neeb and Vizman, but should be classical...

Conclusion and other on-going exercises

The genus integration produces a natural section

$$
\left\{\begin{array}{c}
\text { marked } \\
\text { principal } \mathbb{S}_{a}^{1} \text {-bundles } \\
\text { with connection }
\end{array}\right\} \xrightarrow{<} \hat{H}^{1}\left(M, \mathbb{S}_{a}^{1}\right)
$$

Conclusion and other on-going exercises

The genus integration produces a natural section

$$
\left\{\begin{array}{c}
\text { marked } \\
\text { principal } \mathbb{S}_{a}^{1} \text {-bundles } \\
\text { with connection }
\end{array}\right\} \xrightarrow{<\hat{H}^{1}\left(M, \mathbb{S}_{a}^{1}\right) .}
$$

Remarks

- Extend this approach to higher degree differential characters in $\hat{H}^{k}\left(M, \mathbb{S}_{a}^{1}\right)$ (important, e.g., for ring structure)

Conclusion and other on-going exercises

The genus integration produces a natural section

$$
\left\{\begin{array}{c}
\text { marked } \\
\text { principal } \mathbb{S}_{a}^{1} \text {-bundles } \\
\text { with connection }
\end{array}\right\} \xrightarrow{\ll \hat{H}^{1}\left(M, \mathbb{S}_{a}^{1}\right) .}
$$

Remarks

- Extend this approach to higher degree differential characters in $\hat{H}^{k}\left(M, \mathbb{S}_{a}^{1}\right)$ (important, e.g., for ring structure)
- Construct analogues of genus integration for n-Lie algebroids and L_{∞}-algebroids

Conclusion and other on-going exercises

The genus integration produces a natural section

$$
\left\{\begin{array}{c}
\text { marked } \\
\text { principal } \mathbb{S}_{a}^{1} \text {-bundles } \\
\text { with connection }
\end{array}\right\} \xrightarrow{ } \hat{H}^{1}\left(M, \mathbb{S}_{a}^{1}\right)
$$

Remarks

- Extend this approach to higher degree differential characters in $\hat{H}^{k}\left(M, \mathbb{S}_{a}^{1}\right)$ (important, e.g., for ring structure)
- Construct analogues of genus integration for n-Lie algebroids and L_{∞}-algebroids
- Extend this approach to torus bundles, symplectic torus bundles, etc.

Conclusion and other on-going exercises

The genus integration produces a natural section

$$
\left\{\begin{array}{c}
\text { marked } \\
\text { principal } \mathbb{S}_{a}^{1} \text {-bundles } \\
\text { with connection }
\end{array}\right\} \xrightarrow{<\hat{H}^{1}\left(M, \mathbb{S}_{a}^{1}\right) .}
$$

Remarks

- Extend this approach to higher degree differential characters in $\hat{H}^{k}\left(M, \mathbb{S}_{a}^{1}\right)$ (important, e.g., for ring structure)
- Construct analogues of genus integration for n-Lie algebroids and L_{∞}-algebroids
- Extend this approach to torus bundles, symplectic torus bundles, etc.
- Extend to the non-abelian case

Conclusion and other on-going exercises

The genus integration produces a natural section

$$
\left\{\begin{array}{c}
\text { marked } \\
\text { principal } \mathbb{S}_{a}^{1} \text {-bundles } \\
\text { with connection }
\end{array}\right\} \xrightarrow{<\hat{H}^{1}\left(M, \mathbb{S}_{a}^{1}\right) .}
$$

Remarks

- Extend this approach to higher degree differential characters in $\hat{H}^{k}\left(M, \mathbb{S}_{a}^{1}\right)$ (important, e.g., for ring structure)
- Construct analogues of genus integration for n-Lie algebroids and L_{∞}-algebroids
- Extend this approach to torus bundles, symplectic torus bundles, etc.
- Extend to the non-abelian case

