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... but this paper assumes manifold is 1-connected.
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The prequantization condition

o w € Q*(M) - closed 2-form
» Group of periods of w:

Per(w) = {/ wio e HoM, Z)} C (R+)

» Group of spherical periods of w:

/w 1o € m(M)} C Per(w)

o

SPer(w) = {

Definition
(M,w) satisfies the prequantization condition if Per(w) C R is
a discrete subgroup, i.e., if there exists a € R such that

Per(w) = aZ C R.

One can also consider the weaker requirement that SPer(w) C R is a
discrete subgroup. One of our aims is to understand the differences...
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The prequantization condition

Notation:
St :=R/aZ

Note that one can have a = 0 in which case S§ = R.

~

Theorem (Souriau 1967, Kostant 1970)

Let w € Q2 (M). There exists a principal S}-bundle 7 : P — M

with connection § € Q'(P,R) satisfying 7*w = df if and only if
Per(w) C aZ.

» What are the possible such principal Sl-bundle 7 : P — M with
connection 67

The answer is provided by differential cohomology.
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Differential cohomology (Cheeger & Simons)

Definition
A differential character of degree k on M relative to aZ is a
group homomorphism x : Zx(M) — S} for which there exists a

closed form w € Q™ (M) such that:

x(0o) = /w (mod aZ), Vo € Cxi1(M).

H*(M,St) = {differential characters of degree k}

» w is uniquely determined by the differential character x and Per(w) C aZ:
61 HY(M,SY) — QN (M),  x - w.

» Choose lift ¥ : C«(M) — R and define ¢ : C11(M) — R by:
(o) = / w — (90).

Then ¢ € Z¥"(M, aZ) and [c] € H*"}(M, aZ) does not depend on %:
&« A(M,S3) — H*" (M, aZ), x> [c].
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If r: H*Y(M, aZ) — H*T1(M,R) is the natural map, then: r([c]) = [w].



Differential cohomology
If r: H*Y(M, aZ) — H*T1(M,R) is the natural map, then: r([c]) = [w].

Theorem (Cheeger & Simons, 1985)

There is a short exact sequence:

H (M, R)/r(H¥(M, aZ)) —> A%(M, S) % Rk+1 (M, a2)

where:

R*(M, aZ) = {(w, u) € Q2 (M) x H*(M, aZ) : [w] = r(u)}.

- Differential cohomology provides a refinement of integral cohomology and
differential forms with aZ-periods.
- Differential cohomology has a graded ring structure:

w0 HY(M,S%) x A'(M, S%) — A1 (M, Sh)

and (41, 2) is a ring homomorphism.
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Differential cohomology in degree 1

Example

7 : P — M be a principal Sl-bundle with connection 6 € Q'(P,R) and
curvature w € Q*(M):
T w = db.

Holonomy of the connection along a loop 7 gives an element: x(v) € SL.
Extend x to any cycle v+ do € Z;(M) by:

x(y + 90) == x(v) + / w (mod aZ,).

g

This defines a differential character y € A'(M,SL) with:

> d1x =w € Q2,(M);

> Syx € H?>(M, aZ) the (integral) Chern class of the bundle.
Note: one can have §;y = dox = 0 with x # 0 (e.g., if M = S).
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Differential cohomology in degree 1

Theorem (Cheeger & Simons, 1985)

{principa/ Si—bundles} HY(M,S})
with connection

—

{isomorphism classes of principal}
Sk-bundles with connection

» Lie groupoid theory leads to a natural section of the horizontal
arrow (after a choice of a base point), and hence a simple
proof/explanation of the theorem.

» This result generalizes to higher principal bundles and higher degree
differential cohomology.
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Lie algebroids - the canonical integration

p: A— M — Lie algebroid with Lie bracket [, ] and anchor p: A — TM

A-path: algebroid morphism

nan) . Apats) a: Tl = A
1(A)= —F———
seiiensiioiss A-homotopy: algebroid morphism
heT(Ix1)— A
’ Topological groupoid with
/ structure maps:
. > source: s([a]) = p(a(0));
1 d > target: t([a]) = p(a(1));
! e

7 > product: [a] - [b] = [a o b];




Monodromy

For each x € M:
» isotropy Lie algebra: g, = ker py;
» orbit: O, C M such that 7,0 =Imp,.

and there is a monodromy map:

Ox : 71-2((9)<) — G(gx)



Monodromy

For each x € M:
» isotropy Lie algebra: g, = ker py;
» orbit: O, C M such that T,0 =Imp,.

and there is a monodromy map:

Ox : 71-2((9)<) — G(gx)

Theorem (Crainic & RLF, 2003)

The following statements are equivalent:

(i) A integrates to some Lie groupoid;
(i) M(A) is a Lie groupoid;

(i) The monodromy groups N, = Im 0, are uniformly discrete.




Prequantization algebroid (Crainic, 2004)

e w € Q% (M) has associated algebroid A, := TM & R:

0 M xR TMOR 2 TM ——0

with Lie bracket:

(X, £), (Y, 8)] := ([X, Y], X(g) = Y(f) + w(X, Y)).
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Prequantization algebroid (Crainic, 2004)

e w € Q% (M) has associated algebroid A, := TM & R:

0 M x R TMoR 2L TM — 0
with Lie bracket:
(X, 1), (Y, 8)] == ([X, Y], X(g) = Y(f) + w(X, Y)).

Monodromy:
Ox :m(M,x) >R, o~ /w

MM (A) is a Lie groupoid <= SPer C R is discrete.

The source fiber t : s71(xg) — M is a principal G,,-bundle, where G,:

0 —— R/ SPer(w) Gy, m1(M) 0



Prequantization algebroid (continued)
We have the explicit path space description (Crainic, 2004):

{(v,a):v: 1 = Mw/ v(0) = x0,a € R}

~

P = — M7 [(’77 a)] = 7(1)7

where ~ is the equivalence relation:

Y2 — 1 = 0o, for o : D? — M,

(’Yl:al) ~ (72’ 32) At { ay —a; = fgw.




Prequantization algebroid (continued)
We have the explicit path space description (Crainic, 2004):

P = {(773):7:I%MW/W(O):XMQGR}

~

— M7 [(’77 a)] = 7(1)7
where ~ is the equivalence relation:

Y2 — 1 = 0o, for o : D? — M,

(71,31)’\*(’72,32) ~ { 32—31:fa_w.

Remarks

» This bundle has a canonical connection 6 € Q*(P) induced from the
splitting A, = TM @ R. It satisfies m*w = d6.



Prequantization algebroid (continued)
We have the explicit path space description (Crainic, 2004):

p {(v,a) :v:1— Mw/ ~(0) = x0,a € R} M, [(7,8)] = (D),

~

where ~ is the equivalence relation:

v¥2 — 1 = Oo, for o : D?> — M,
(n,a1) ~ (12, 2) & { p—a=[ w

Remarks
» This bundle has a canonical connection 6 € Q*(P) induced from the
splitting A, = TM @& R. [t satisfies m*w = d6.
» If w1 (M) = {1} then Per(w) = SPer(w) and Gy, = R/ Per(w). This gives
a principal R/ Per(w)-bundle with connection ¢ satisfying 7w = df.
Note that in this case H*(M,S}) ~ Q2,(M).



Prequantization algebroid (continued)
We have the explicit path space description (Crainic, 2004):

P = {(773):’7:I%MW/W(O):XMQGR}

~

— M, (v, a)] = (1),

where ~ is the equivalence relation:

v¥2 — 1 = Oo, for o : D?> — M,
(n,a1) ~ (12, 2) & { p—a=[ w

Remarks

» This bundle has a canonical connection 6 € Q*(P) induced from the
splitting A, = TM @& R. [t satisfies m*w = d6.

» If w1 (M) = {1} then Per(w) = SPer(w) and Gy, = R/ Per(w). This gives
a principal R/ Per(w)-bundle with connection ¢ satisfying 7w = df.
Note that in this case H*(M,S}) ~ Q2,(M).

> If (M) # {1}, then the short sequence of Gy, in general will not split,
and one cannot find a principal R/ SPer(w)-bundle.
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Genus integration
Idea: Replace A-homotopy by A-homology.

7

Definition
An A-homology between A-paths ap and a; is an algebroid map

h: TE — A,

with ¥ a compact surface with connected boundary 0¥ such that

-1
h|T(az) =4 © al o

Remarks.
/ - The genus of X is not fixed.
- The A-homology class of the

m“‘" A-path a is denoted [[4]]
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A topological groupoid with structure maps:
> source: s([[a]]) = p(a(0));
> target: t([[a]]) = p(a(1));
> product: [[a]] - [[b]] = [[a © b]];
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A topological groupoid with structure maps:
> source: s([[a]]) = p(a(0));
> target: t([[a]]) = p(a(1));
> product: [[a]] - [[b]] = [[a © b]];

There is a morphism of topological groupoids:

M(A) = Hi(A),  [a] = [[a]



Genus Integration

Ha(A) = {A-paths}

=——— =M
A-homologies =

A topological groupoid with structure maps:
> source: s([[a]]) = p(a(0));
> target: t([[a]]) = p(a(1));
> product: [[a]] - [[b]] = [[a © b]];
There is a morphism of topological groupoids:
M(A) = Hi(A),  [a] = [[a]
Basic questions:
» What is the meaning of this genus integration?
» When is H;(A) smooth?
» If H1(A) is smooth, what is its Lie algebroid?
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Theorem (Contreras & RLF, 2019)
For any Lie algebroid A — M:

M (A)
(M (A), M (A))’

where (I1(A), M(A)) = U,en(IM(A)x, M(A)x) is the group
bundle formed by the isotropies of [1;(A).

Hi(A) =




Hurewicz for Lie groupoids
The genus integration #H;(A) is the set theoretical abelianization of /1;(A)

7~

=

Theorem (Contreras & RLF, 2019)
For any Lie algebroid A — M:

M (A)
(M (A), M (A))’

where (I1(A), M(A)) = U,en(IM(A)x, M(A)x) is the group
bundle formed by the isotropies of [1;(A).

Hi(A) =

Remarks

» H,(A) need not to be source I-connected.
» H,(A) is an example of an abelian groupoid (i.e., isotropy is abelian)

» If H1(A) is smooth, then its Lie algebroid is abelian, i.e., has abelian
isotropy (related to A thorugh abelianization of Lie algebroids)
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(o2 //
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0 5 gab S Aab

where g2® = g, /[gx, 9x] and A = A/[g, g].



Extended Monodromy

Question. When is 71(A) smooth?

Simplifying Assumption: A is transitive Lie algebroid.
Choose a splitting o : TM — A of the anchor:

0 g A—LsTMm 0

P Ve
L/ Jab

0 5 gab S Aab

where g2” = g, /[g:, 8] and A** = A/[g, g].
» curvature 2-form Q € Q2(M, g°b):

Q(X,Y) = [0*(X),o™(Y)] — o*([X, Y].
» flat connection V on the bundle g** — M:
Vxa = [0*P(X), a].

Remark. Two different splittings induce the same connection and the
same curvature 2-form.
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Let g : M" — M be the holonomy cover of M relative to V, so q*g®® — M is
trivial with a canonical trivialization.
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Let g : M" — M be the holonomy cover of M relative to V, so q*g®® — M is
trivial with a canonical trivialization.
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Definition
The extended monodromy homomorphism at x € M is the
homomorphism of abelian groups:

8 Hy(1h, Z) > G(a), [] > exp ( / q*sz) |
Y

NZHA) = Tm 0% is the extended monodromy group at x.




Extended Monodromy

Let g : M" — M be the holonomy cover of M relative to V, so q*g®® — M is
trivial with a canonical trivialization.

7~

Definition
The extended monodromy homomorphism at x € M is the
homomorphism of abelian groups:

8 Hy(1h, Z) > G(a), [] > exp ( / q*sz) |
Y

NZHA) = Tm 0% is the extended monodromy group at x.

\.

There is a commutative diagram:

(M, x) =2 G(g,)

: |

Ha(M", Z) —— G(g2") = G(gx)™"



Extended Monodromy

Theorem (Contreras & RLF, 2019)

Let A— M be a transitive Lie algebroid with trivial holonomy:
M" = M. The following statements are equivalent:

(a) the genus integration H1(A) is smooth;
(b) the extended monodromy N¢*(A) groups are discrete;

(c) A® has an abelian integration.




Extended Monodromy

Theorem (Contreras & RLF, 2019)

Let A— M be a transitive Lie algebroid with trivial holonomy:
M" = M. The following statements are equivalent:

(a) the genus integration H1(A) is smooth;
(b) the extended monodromy N¢*(A) groups are discrete;

(c) A® has an abelian integration.

\

Remarks

» An abelian integration of A*" is a Lie groupoid integrating A*"
whose isotropy is abelian.

» An algebroid with abelian isotropy may not have any abelian
integration.



Prequantization algebroid revisited

The prequantization algebroid A, := TM & R has trivial holonomy
(Mh" = M) and abelian isotropy (A*" = A):

7T2(M,X)

15

HQ(M,Z)WR [o]—— [ w

X

Hence:

M1(A) is a Lie groupoid <= SPer C R is discrete
H1(A) is a Lie groupoid <= Per C R is discrete.



Prequantization algebroid revisited

The prequantization algebroid A, := TM & R has trivial holonomy
(Mh" = M) and abelian isotropy (A*" = A):

7T2(M,X)

15

Hz(M7Z)WR [o]—— [ w

X

Hence:

M1(A) is a Lie groupoid <= SPer C R is discrete
H1(A) is a Lie groupoid <= Per C R is discrete.

Note: In general, A % A*P and M" # M, so the relation between
monodromy and extended monodromy is more complicated.



Prequantization algebroid revisited (continued)

The source fiber of H;(A) is a principal G,,-bundle t : s71(xo) = M
where Gy:

0 ——R/Per(w) —— G, —> Hi(M,Z) ——0



Prequantization algebroid revisited (continued)

The source fiber of H;(A) is a principal G,,-bundle t : s71(xo) = M
where Gy:

0 ——R/Per(w) —— G, —> Hi(M,Z) ——0

> G, = (QM,x0) x R)/ ~ where (71, a1) ~ (72, a2) if and only if
Yo —y1 =00 and ay — a; = fgw, for some o € G(M).



Prequantization algebroid revisited (continued)

The source fiber of H;(A) is a principal G,,-bundle t : s71(xo) = M
where Gy:

0 ——R/Per(w) —— G, —> Hi(M,Z) ——0

> G, = (QM,x0) x R)/ ~ where (71, a1) ~ (72, a2) if and only if
Y2 —71 =00 and a; — a1 = [ w, for some 0 € G(M).

» Since H;(M,Z) is abelian and R/ Per(w) is a divisible group, this
sequence always splits!

» A splitting is the same thing as a choice of differential character
X : Z1(M) = R/ Per(w) with 61} = w.

It realizes Hy(M,Z) as a subgroup of G,,.



Prequantization algebroid revisited (continued)
After choice of splitting, i.e., of a differential character

X : Z1(M) = R/ Per(w)
so that H1(M,Z) C G,,, we have the quotient groupoid:
H1(AL)/Hi(M,Z).
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X : Z1(M) = R/ Per(w)
so that H1(M,Z) C G,,, we have the quotient groupoid:
H1(AL)/Hi(M,Z).

A source fiber Py, := s *(xo) —%5 M of this quotient is a principal
R/ Per(w)-bundle with natural connection 6 satisfying 7*w = d6:



Prequantization algebroid revisited (continued)
After choice of splitting, i.e., of a differential character

X : Z1(M) = R/ Per(w)
so that H1(M,Z) C G,,, we have the quotient groupoid:
H1(AL)/Hi(M,Z).

A source fiber Py, := s *(xo) —%5 M of this quotient is a principal
R/ Per(w)-bundle with natural connection 6 satisfying 7*w = d6:

7

Pyy = {(v,a) :v:1— Mw/ ~(0) = x0,a € R/ Per(w)} M

~

)
where ~ is now the equivalence relation:

Y2 —m € Li(M)

,d ~ )@ =
(71, a1) ~ (72, a2) { ay —a; = X(72 —71)




Prequantization algebroid revisited (continued)
After choice of splitting, i.e., of a differential character

X : Z1(M) = R/ Per(w)
so that H1(M,Z) C G,,, we have the quotient groupoid:
H1(AL)/Hi(M,Z).

A source fiber Py, := s *(xo) —%5 M of this quotient is a principal
R/ Per(w)-bundle with natural connection 6 satisfying 7*w = d6:

7

Pyy = {(v,a) :v:1— Mw/ ~(0) = x0,a € R/ Per(w)} M

~

)
where ~ is now the equivalence relation:

Y2 —m € Li(M)

,d ~ )@ =
(71, a1) ~ (72, a2) { ay —a; = X(72 —71)

» This also appears in a recent preprint of Diez, Janssens, Neeb and
Vizman, but should be classical...
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Remarks

» Extend this approach to higher degree differential characters
in H*(M,S}) (important, e.g., for ring structure)



Conclusion and other on-going exercises

7~

The genus integration produces a natural section
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