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2. EXISTENCE OF GEOMETRIC STRUCUTRES versus
GLOBAL ANALYSIS AND HOMOLOGY

2.1. Some open problems

In Finite dimensional Di↵erential Geometry, Riemanniann structure (M, g) and gauge struc-
ture (M,r) are examples of Geometric Structure which exists in every di↵erential manifold
M . Here r is a Koszul connection in the tangent bundle of M .
For many important Geometric structures the question whether a given di↵erential mani-
fold M does admit a given Geometric structure S is widely known to be an open di�cult
problem.
Examples of those open problems are.

(1.1) The existence of symplectic structures in a gven maniflod M .
(1.2) The existence of left invariant symplectic structure in a given Lie group G.
(1.3) The existence of two-sided invariant Riemannian structure in a given Lie group G.

Similar open problems are met in the gauge geometry of tangent vector bundles of smooth
manifolds.

(2.1) The existence of locally flat Koszul connections in the tangent bundle of a given man-
ifold M .
(2.2) The existence of left invariant locally flat connections in a given Lie group G.
(2.3) The existence of two-sided invariant Koszul connections in a given Lie group G.

Mutatis mutandis one faces open existence problems in the Di↵erential Toplogy.

(3.1) The existence of regular Riemannian foliations in a given manifold M
(3.2) The existence of regular symplectic foliations in a given manifold M .
(3.3) The existence of foliations with a prescrbed structure for leaves.

2.2. Motivations

Throughout this talk a Riemannian structure in a smooth manifold M is a couple (M, g)
formed of M and a non degnerate symmetric bilinear form g. A foliation is called regular
if the dimension of leaves in constant.

I go to focus on the question whether a given manifold M does admit (eventually sin-
gular) foliations the leaves of which leaves carry a prescribed structures S. To this aim, I
go to overview some matherials which will be used.
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3. Homological materials

Let us recall that a locaaly flat structure in a smooth manifold M is a couple (M,r) formed
of M and a locally flat Koszul connection r.
The local flatness means the following identities

[X, Y ] = rX Y � rY X,

rX (rY Z ) � rY (rX Z ) = r[X,Y ]Z.

Here X, Y, Z are smooth vector fields and [X, Y ] is the Poisson braacket.

The vector space of smooth vector in M and the vector associative algebra of real valued
smooth functions in M are denoted byA and by C1(M) respectively.
For

� = X1 ⌦ .. ⌦ Xq+1

one put
�i� = .. ⌦ X̂i ⌦ ..

rXi (�i� ) = ⌃j,i .. ⌦ X̂i ⌦ .. ⌦ rXi Xj ⌦ ..

I go the involve the (positively) graded di↵erential vector spaces

(�qCq(r), �KV ),
(�qCq(r), ��).

Here
Cq(r) = HomR(A⌦q, C1(M)),

the di↵erentials
�KV ; �� : Cq(r)! Cq+1(r)

are defined as it follows,
given f 2 Cq(r) and � as above

(2.1) �KV f (� ) = ⌃iq(�1)i[d(f (�i� ))(Xi) � f (rXi (�i� ))]

(2.2) ��f (� ) = ⌃iq+1(�1)i[(d(f (�i� ))(Xi) � f (rXi �i� )]
The operators �KV and �� satisfy the following identities

� � � = 0,

�� � �� = 0.

The derived cohomology spaces are denoted by

HKV (r) = �qHq
KV (r),

H�(r) = �qHq
� (r).
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4. Fundamental Equations

To handle some between the open problems which have been raised, I go to assign two
di↵erential operators to every pair of Koszul Connections defined in the tangent bundle
TM . Now (r,r*) is a pair of Koszul connections (defined in the same tangent bundle
TM).

4.1. The Hessian equation of r

The Hessian di↵erential operator of r assigns a (2,1)-tensor to every vector field X , namely
r

2X which is defined by

(r2X )(Y, Z ) = rY (rZ X ) � rrY Z X.

Let x = (x1, .., xn) be local coordinate functions and let

X = ⌃m
1 Xk �

�xi

r �
�xi

�
�xj
= ⌃k�

k
ij

�
�xk

Let one evalue the principal symbol of X ! r2X ,

(r2X )(
�

�xi
,

�
�xj

) = ⌃�⌦
�
ij

�
�x�

.

Here

⌦�
ij =

�2X �

�xi�xj
+ ⌃k[��

ik
�Xk

�xj
+ ��

jk
�Xk

�xi
� �k

ij
�X �

�xk
] + ⌃k[

���
jk

�xi
+ ⌃m(�m

jk�
k
im � �

m
ij �

�
mk)].

This expression looks awful, nevertheless from the viewpoint of both the Syernberg Ge-
ometry and the Spencer formalism, it allow to see that the d↵erential operator X ! r2X
is of type 2 and is involutive. Since the involutivity yields the formal integrability, the
equation

r
2X = O

is formally integrable.

Lemma 4.1. The sheaf J(r) of solutions of the equation

r
2X = 0

is a sheaf of real associative algbera whose product is defined by r

Let KOSS be the convex set of symmetric Koszul connections in TM .
At x 2 M let Jr(x) ⇢ TxM be the vector which spanned by the valued at x of sections of
J(r). One define the following numerical geometric invariants

rb(M,r) = max
x2M
{dim(M) � dim(Jr(x)} ,

and
rb(M) = max

r2KOSS

rb(r)
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4.2. The Gauge equation

The space (2,1)- tensors in a smooth manifold M is denoted by T 2
1 (M).

The vector bundle of infinitesimal gauge transformations of TM is denoted by G(TM).
For every pair of Koszul connections, (r,r*), theT 2

1 (M)-valued di↵erential operator

G(TM) 3 �! Drr*(�)

is defined by
Drr

*
� = r*

� � � � � r

Let X, Y be vector fields,

Drr*�(X, Y ) = r*
X �(Y ) � �(rX Y )

We denote by J(rr*) the sheaf of solutions of the equation

Drr*� = 0.

4.3. The Amari-Chentsov Formalism

We have raised open (existence) problm in the di↵erental topology. Remind that a Rie-
mannian foliation in M is a couple (M, g) where g is a symmetric bilinear form subject to
the following requirements.

(r.1) The rank of g is constant.
(r.2) If a vector filed X is a section of the kernel of g then

LX g = 0,

Here LX g is the Lie derivative of g in the direction X .

Mutatis mutandis a symplectic foliation in M is a couple (M?�) where � is a closed di↵er-
ential 2-form subject to the following requirements

(s.1) The rank of � is constant.
(s.2) If a vector field X is a section ofthe kernel of � then

LX � = 0.

According to the Amari-Rao-Chentsov formalism evry Riemannian metric tensor g is a
symmetry of the a�ne space of the convex set of Koszul connections in TM . Given such a
connection r its image rg under the metric tensor g is defined by

g(rg
X Y, Z ) = Xg(Y, Z ) � g(Y,rX Z )

We go to focus on global sections of the sheaf

J(rrg)

If both r and rg are symmetric, viz torsion free, the triple (M, g,r) is called a statistical
manifold.
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Let � be an infinitesimal gauge transformation of the vector bundle TM . To � one assigns
two other infinitesimal gauge transformations of TM , namely  and  * which are defined
as it follow.

g( (X ), Y ) =
1
2 (g(�(X ), Y ) + g(X, �(Y ))).

g( * (X ), Y ) =
1
2 (g(�(X ), Y ) � g(X, �(Y )))

Theorem 4.2. If � is a section of the sheaf J(rrg then so are  and  * . Further if g is
positive definite one has the g-orthogonal decoposition

TM = Ker( ) � Im( ).

TM = Ker( *) � Im( *).

Now we involve global sections of the sheaf J(rrg) to introduce new numerical invari-
ants

(3.2.1) (rd)(g,r) = max
�2J(rrg)

[max
x2M
{dim(M) � rank( (x))}]

(3.2.2) rd(r) = max
g

�
rd(r, g)

 

(3.2.3) sd(g,r) = max
�2J(rrg)

[max
x2M

n
dim(M) � rank( *(x))

o
]

(3.2.4) sd(r) = max
g

�
sd(g,r)

 

(3.2.5) sd(M) = max
r2KOSS(M)

�
sd(r)
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4.4. Links with the de Rham algebra

Henceforth we will be concerned with global section of the sheaf J(rrg.
We go to point out some exact sequences which are linked with some between the open
existence problems that I have listed.

Given a Koszul connection r in TM the vector sheaf of r-parallel symmetric (2,0)-tensors
is denoted by

S
r

2 (M),

The sheaf of r-parallel skew symmetric (2,0)-tensors is denoted by

⌦r2 (M)

Definition 4.3. A Hessian cocycle in a locally flat structure (M,r) is a non degenerate
symmetric 2-cocyle in C(r, �KV )
A compact locally flat structure (M,r) is called hyperbolic if C(r), �KV contains a positive
definite exact 2-cocycle g, viz g = �KV � with � 2 C1(r)
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4.5. Some canonical sequences

I go to focus on a few sequences and leur usefulness. The following notation is used:

H2
dR(M) is the 2nd space of de Rham cohomology of M .

In a locally flat structure (M,r), H2
KVS(r) is the subspace of cohomology class [g] 2

H2
KV (r) which are represente by a symmetric cocycle g.

We consider the mapping ⇤ which sends every 2-cohcain � 2 C2(r) to its skew symmetry
part

⇤(X, Y ) =
1
2 (�(X, Y ) � �(Y, X ))

Assume that � is a 2-cocycle of the cochain complex C(r), �KV ), then ⇤ is a de Rham
closed di↵erential 2-form. That yields a canonical linear mapping

H2
KV (r)! H2

dR(M)

Thus in a locally flat structure (M,r) the following sequences are exact

(exs.1) 0! H2
KVS(r)! H2

KV (r)! H2
dR(M)

(exs.2) 0! H2
dR(M)! H2�(r)! Sr2 (M)! 0.

Before pursuing I remind that a couple (M,r) where r is Koszul connection in TM is called
a gauge structure in M .

Proposition 4.4. In a gauge structure (M,r) every Riemannian metric tensor g gives rise
to a caninical splitting short exact sequence

0! ⌦r2(M)! J(rrg)! Sr2 (M)! 0.
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4.6. The canonical Koszul class of Riemannian foliations and symplectic foliations

Let G be a Lie subalgebra of the Lie algebra of smooth vector fields in a manifold M . The
vector space of (2,1)-tensors T2

1 (M) is a left G-module under the Lie derivative LX , X 2 G.

If r is a Koszul connection in TM the linear mapping

G 3 X ! kG(X ) = LXr 2 T2
1 (M)

is a Chevalley-Eilenrg cocycle whose cohomology class

[kG] 2 H1
CE(G, T2

1 (M))

does not depend on the choice of r.

Proposition 4.5. Suppose that [kG] vanishes. Then
either

dim(G) = 0
or

0 < dim(G) < 1.

I go implement Proposition 3.5 to Riemannian foliations and to symplectic foliations.

Let (M, g) be a Riemannian foliation and (M,⌦) be a symplectic foliation. Their kernels
are denoted by Kg and by K� respectively. The Lie algebra of sections of those kernels are
denoted by Gg and by G� respectively. Thus we get the canonical Koszul classes

[kg
1] 2 H1

CE(Gg, T2
1 (M)),

[k�
1] 2 H1

CE(G�, T2
1 (M))

Therefore the following statements are straightforward corallaries of Proposition 3.5

Corollary 4.6. Given a Riemannian foliation (M, g) the following assertions are equiva-
lent.

(3.6.1) [kg
1] = 0.

(3.6.2) Gg = 0.

Mutatis mutandis we obtain

Corollary 4.7. Given a symplectic foliation (M, �) the following assertions are equivalent.

(3.7.1) [k�
1] = 0.

(3.7.2) G� = 0.

In the next I keep the notation as in Corollary 3.7 and I put

KS
1(M) =

�
(�, [k�

1])
 

A couple (�, [k�
1]) is called trivial if the cohomology class [k�

1] vanishes.
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5. A few quantitative results

I go to impliment the materials we just introduced. The aim is to resolve the open existems
problem for a few geometric structures.

Between the numerical invariants which are introduced in section 3 some are characteristic
obstructions to the existence of a specific geometric structure. I go to list a few examples.

5.1. Locally flat geometry

Theorem 5.1. In a finite dimensional smooth manifold M the following assertions are
equivalents
(a1.1) M admits a�nely flat structures.
(a1.2) M admits locally flat structures.
(a1.3) rb(M) = 0.

5.2. Symplectic geometry

Theorem 5.2. In a even dimensional smooth manifold M the following assertion are equiv-
alent.
(a2.1) M admit symplectic strur// (a.2.2) sd(M) = 0.

5.3. The di↵erential topology

Proposition 5.3. In every symmetric gauge structure (M,r)
(a3.1) Sr2 (M) is the sheaf of r-geodesic Riemannian foliations in M .
(a3.2) ⌦r2 (M) is a sheaf of r-geodesic symplectic foliations in M .
(a3.3) Every Riemannian foliation is deduced from a short exact sequence

0! ⌦r2 (M)! J(rrg)! Sr2 (M)

By involving the canoncal Koszul classes of symplectic foliations one obtains the follow-
ing stateent.

Theorem 5.4. The following assertions are equivalent.
(A1) KS

1(M) contains a trivial couple (�, [k�
1]).

(A2) M admits symplectic structures.

5.4. Riemannian geometry

Here I am intersted in (eventually singular) foliations with prescrbed structure for leaves.

Proposition 5.5. Let r be the Levi-Civita connection of a geodesically complete positive
Riemannian structure (M, g. Assume that the following inequalities hold

0 < rb(M,r) < dim(M).

Then M admits a foliations F with the following properties.
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(p4.1) Up to finite covering, every n-dimensional leave endowed with the induced metric
is isometric to the canonical flat cylinder over the flat torus

(Tk
⇥ Rn�k, g0)

The metric g0 is given by the Euclidean metric of Rn .

((p4.2) Further the leaves of F of orbits a locally e↵ective action of a finite dimensional
simply connected Lie group.
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6. 2ndWORKSHOP OF THE SAO PAULO JOURNAL OF MATHEMATICAL
SCIENCES.

J-L KOSZUL IN SAO PAULO, HIS WORK AND LEGACY
University of Sao Paulo
13-14 November 2019

Ce qui reste par contre u mystère absolu pour moi c’est ce qui signifie au juste Gé-
mométrie de l’Information. Et quand en plus elle est Hessienne, cela n’arrange rien.
Notez que je suis habitué depuis longtemps à voir naître des terminologies bizzares et
à assister à des détournements de sens audacieux, voire criminels.
J-L Koszul to M-N Boyoym, 3 February 2012

O que permanece, no entanto, um mistério absoluto para mim é o que significa ao certo
Geometria da InformaÃğao. E quando, além disso, ela é Hessiana, isso nao ajuda em nada.
Note que tenho o habito de longa data de ver nascer terminologias estranhas e de assistir a
desvios de significado audciosos, ou até criminosos
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7. What is called the Geometry of Koszul

An important part of works of Koszul has been devoted to the Geometry of bounded do-
mains. I go to focus on a tarticular those between those, which impacts the refoundattion of
the theory of statistical models of measurable sets. I go to overview the following subjects.

A- A�nely flat Geometry.

(A.1) The a�ney flat Geometry.
Complete atltas whose local chart changes are a�ne transformations

(A.2) The locally flat Geometry.
Curvature free and torsion free gauge structure in tangent vector bundle

(A.3) The completeness of locally flat structures.
Developping mapping sends universal covering onto the Euclidean space

(A.4) The deformations of locally flat structures.
A long history. The point set topolog. Hyperbolicity and rigidity problem.
A theorem of Koszul)

(A.5) The existence of locally flat structures.
A long history. Many and long e↵orts. Koszul-Milnor-Matsushima-Vinberg
and al. Recently brought in completion.
The main via the Hessian di↵erential operator r2

B- Main contributions of Jean- Louis Koszul.

(B.1) A�ne representaions of Lie groups.
Pour ce qui est representations a�ne

(B.2) Non rigidity of hyperbolic locally flat structures.
Every locally flat hyperbolic manifold admits non trivial deformation: Koszul.
Proof based on the point set topology

(B.3) The Hessian Geometry.
Riemannaian Hessian defect rb(M, g). A�ne Hessian defect (rb(M,r). Absolute
Hessian defect rb(M)

(B.4) The Hessian Geometry and the hyperbolicity.
Handled with the (algebraic) topology of Koszul. See the versus KV cohomology
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(B.5) The geometry of convex domains
Many best reference exist. Also other talks in the workshop

(B.5) Characteristic invariants of convex cones.
Large impacts: Fisher information. Lie group theory of heat

C- The theory of deformation of mathematical structures.

(C.1) Algebraic strtuctures:
Gerstenhaber. Nijenhuis Richardson,Piper

(C.2) Analytic structures.
Kodaira,Koszul, Kuranishi, Spencer and many others

(C.3) Geometric structures.

D- Theory of deformation and theory of cohomolgy.
A conjecture of Gerstenhaber:
Infinitesimal deformation : = cocycle.
Infinitesimal trivial deformation : = coboudary.
Rigidity : = Open orbite: = cohomology vanishing theorem

(D.1) Deformation and Extension of associative algebras.
The cohomology of Hochschild

(D.2) Deformation and Extension of Lie algebras.
The cohomology of Chevalley-Eilenberg.

(D.3) Deformation and Formal integrability of Geometric structures.
The cohomology of Koszul-Spencer.

E- A conjecture of Muray Gerstenhaber.
Every restrict theory of deformation generates its proper theory of cohomology

E- The deformation locally structures.

(E.1) The approach of J-L Koszul
Point set topology

(E.2) The pionnering work of Albert Nijenhuis.
Commutator Lie algebras of Vinberg agebra: CE cohomology
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(E.3) Versus deformation and extension of KV algebras:cohomology.

8. What is called the topology of Koszul

F - Theory of KV cohomology and its impacts.
(F.1) The notion of Koszul-Vinberg algebra.
(F.2) Two-sided KV-modules.
(F.3) The KV complex

�KV F (X1 ⌦ .. ⌦ Xq+1 = ⌃
q
1(�1)i[rXi F (.. ⌦ X̂i ⌦ ..)

+rF (..⌦X̂i⌦..X̂q+1⌦Xi )Xq+1

�⌃j,iF (..X̂i ⌦ .. ⌦ rXi XjÅtimes..)]

(F.4) The total KV complex.

��F (X1 ⌦ .. ⌦ Xq+1) = ⌃q+1
1 (�1)i[rXi F (.. ⌦ X̂i ⌦ ..)

+rF (..⌦X̂Xi⌦..⌦X̂q+1⌦Xi )Xq+1

�⌃j,iF (.. ⌦ X̂i ⌦ .. ⌦ rXi Xj ⌦ ..)]

(F.5) Relationships with the cohomology of Hochschild.
The Poisson structures.

(F.6) Relationships with the de Rham cohomology

The di↵erential topology.

(F.6.1) g(rg
X Y, Z ) = Xg(Y, Z ) � g(Y,rX Z

(F.6.2) r
g
X �(Y ) � �(rX Y ) = 0

(F.6.3) 0! ⌦r2 (M)! J(r,rg)! Sr2 (M)! O

(F.6.4) 0! H2
dR(M)! H2

� (r)! Sr2 (M)! O
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9. Geometry of Koszul and the Information Geometry

(G.1) The local theory of statistical models.

(G.2) The homological theory of statistical models.

(G.3) The topology of Koszul as the source of the information geometry.

(G.4) The Geometry of Koszul as a golbal vanishing theorem in the topology of Koszul.

(G.5) The local theory of statistical models as a local vanishinh theorem in the topology
of Koszul.

10. A graph representation of the information geometry

(H.1) Random Hessian structure.

(H.2) The Lemma of Poincaré versus KV cohomology.

(H.3) The probability densities.

(H.4) The Fisher information.

(H.5) Relationships with the di↵erential topology.

Fisher information g

�-connections r�

Xg(Y, Z ) � g(r�
X Y, Z ) � g(Y,r��

X Z ) = 0

11. The source of the information geometry is the topology of Koszul

One represents this feature by a rooted tree whose root is a random KV cohomology class
[Q].

DT—– CIG ———————- AIG
R

pr2log(p)���������
R

plog(p)

[E, �, M, p]

[M,h]

[M, �]

[E, �, M, Q]

[E, �, M, [Q]]
Topology of Koszul: Homological data.
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Topology of Koszul

[Q]

Q

�

h

p

R
p log(p)

AIG
R

pr2 log(p)

CIGDT

Local reading the tree above.

dKV Q = 0, KV random KV cocycle.

Q = dKV �, KV Poincaré Lemma.

� = ddRh, de Rham Poincaré Lemma.

p = exp(h)R
exp(h)

, Weak Jensen inequality.

E =
R

plog(p), entropy function.

g =
R

pr2log(p), Fisher information.

DT : Di↵erential Topology.

CIG : Classical Information Geometry.

AIG : Applied Information Geometry.

So the classical information geometry is a leaf of a rooted tree whose root lies in the
Tpology of Koszul.
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