MAT349 - Introdução à Lógica http://www.ime.usp.br/mat/349

Gláucio Terra

glaucio@ime.usp.br

Departamento de Matemática

IME - USP

Uma *teoria formal F* consiste de:

Uma *teoria formal F* consiste de:

1. Um conjunto enumerável de símbolos, chamados símbolos de F; uma seqüência finita de tais símbolos chama-se uma expressão de F.

Uma *teoria formal F* consiste de:

- 1. Um conjunto enumerável de símbolos, chamados símbolos de F; uma seqüência finita de tais símbolos chama-se uma expressão de F.
- 2. Um subconjunto do conjunto das expressões de F, chamado fórmulas de F.

3. Um conjunto de fórmulas de F, chamadas axiomas de F.

- 3. Um conjunto de fórmulas de F, chamadas axiomas de F.
- 4. Um conjunto finito de relações R_1, \ldots, R_n no conjunto das fórmulas de F, chamadas regras de inferência.

Seja F uma teoria formal. Uma *demonstração* ou *prova em F* é uma seqüência A_1, \ldots, A_n de fórmulas de F tais que, para $1 \le i \le n$, A_i é um axioma de F ou é conseqüência das fórmulas anteriores por meio de uma das regras de inferência de F.

Seja F uma teoria formal. Uma *demonstração* ou *prova em F* é uma seqüência A_1, \ldots, A_n de fórmulas de F tais que, para $1 \le i \le n$, A_i é um axioma de F ou é conseqüência das fórmulas anteriores por meio de uma das regras de inferência de F.

Um teorema de F é uma fórmula A tal que existe uma demonstração em F (chamada demonstração de A) cujo último termo é A.

Axiomatizaveis/Nao-Axiomatizáveis, Decidíveis/Não-Decidíveis

 Uma teoria formal F diz-se axiomatizável se existir um "procedimento efetivo" para testar se uma dada fórmula é um axioma de F.

Axiomatizaveis/Nao-Axiomatizáveis, Decidíveis/Não-Decidíveis

- Uma teoria formal F diz-se axiomatizável se existir um "procedimento efetivo" para testar se uma dada fórmula é um axioma de F.
- Uma teoria formal F diz-se decidível se existir um "procedimento efetivo" para testar se uma dada fórmula é um teorema de F.

Diz-se que uma fórmula A de F pode ser deduzida ou que é uma conseqüência de um conjunto M de fórmulas de F se existir uma seqüência A_1, \ldots, A_n de fórmulas de F tal que $A_n = A$ e, para $1 \le i \le n$, uma das seguintes condições é verificada:

Diz-se que uma fórmula A de F pode ser deduzida ou que é uma conseqüência de um conjunto M de fórmulas de F se existir uma seqüência A_1, \ldots, A_n de fórmulas de F tal que $A_n = A$ e, para $1 \le i \le n$, uma das seguintes condições é verificada:

1. A_i é um axioma de F;

Diz-se que uma fórmula A de F pode ser deduzida ou que é uma conseqüência de um conjunto M de fórmulas de F se existir uma seqüência A_1, \ldots, A_n de fórmulas de F tal que $A_n = A$ e, para $1 \le i \le n$, uma das seguintes condições é verificada:

- 1. A_i é um axioma de F;
- 2. A_i pertence a M;

Diz-se que uma fórmula A de F pode ser deduzida ou que é uma conseqüência de um conjunto M de fórmulas de F se existir uma seqüência A_1, \ldots, A_n de fórmulas de F tal que $A_n = A$ e, para $1 \le i \le n$, uma das seguintes condições é verificada:

- 1. A_i é um axioma de F;
- 2. A_i pertence a M;
- 3. A_i é consequência das fórmulas anteriores da sequência por meio de uma das regras de inferência de F.

• Uma tal sequência chama-se $\frac{demonstração}{demonstração}$ ou $\frac{demonstração}{demonstração}$

- Uma tal sequência chama-se $\frac{demonstração}{demonstração}$ ou $\frac{demonstração}{demonstração}$
- As fórmulas de M chamam-se hipóteses ou premissas da prova.

- Uma tal sequência chama-se demonstração ou prova de A a partir de M.
- As fórmulas de M chamam-se *hipóteses* ou *premissas* da prova.
- NOTAÇÃO: $M \vdash A$.

Propriedades da Noção de Consequência

- 1. Se $\Gamma \subset \Delta$ e $\Gamma \vdash A$, então $\Delta \vdash A$.
- 2. $\Gamma \vdash A$ se, e somente se, existe um $\Delta \subset \Gamma$ *finito* tal que $\Delta \vdash A$.
- 3. Se $\Delta \vdash A$ e, para cada fórmula B de Δ , $\Gamma \vdash B$, então $\Gamma \vdash A$.

1. Os símbolos de L são: \neg , \rightarrow , (,), e um conjunto enumerável de letras a_1, a_2, a_3, \ldots , chamadas *letras proposicionais*.

- 1. Os símbolos de L são: \neg , \rightarrow , (,), e um conjunto enumerável de letras a_1, a_2, a_3, \ldots , chamadas *letras proposicionais*.
- 2. As *fórmulas* de L são definidas indutivamente por:
 - (a) as letras proposicionais são fórmulas;
 - (b) se A é uma fórmula, então $\neg A$ é uma fórmula;
 - (c) se A e B são fórmulas, então $A \rightarrow B$ é uma fórmula.

- 1. Os axiomas de L são (onde A, B, C são fórmulas de L):
 - (I) $A \rightarrow (B \rightarrow A)$;
 - (II) $[A \rightarrow (B \rightarrow C)] \rightarrow [(A \rightarrow B) \rightarrow (A \rightarrow C)]$
 - (III) $(\neg B \rightarrow A) \rightarrow [(\neg B \rightarrow \neg A) \rightarrow B]$
- 2. A única regra de inferência de L é a regra modus ponens (MP):

$$\frac{A, A \to B}{B}$$

- 1. Os axiomas de L são (onde A, B, C são fórmulas de L):
 - (I) $A \rightarrow (B \rightarrow A)$;
 - (II) $[A \to \overline{(B \to C)}] \to [(A \to B) \to \overline{(A \to C)}]$
 - (III) $(\neg B \rightarrow \neg A) \rightarrow [(\neg B \rightarrow A) \rightarrow B]$
- 2. A única regra de inferência de L é a regra modus ponens (MP):

$$\frac{A, A \to B}{B}$$

Definições de Novos Conectivos

1.
$$A \vee B \doteq \neg A \rightarrow B$$
.

2.
$$A \wedge B \doteq \neg (A \rightarrow \neg B)$$
.

3.
$$A \leftrightarrow B \doteq (A \rightarrow B) \land (B \rightarrow A)$$
.

TEOREMA $\vdash A \rightarrow A$

$$A_1$$
: $[A \rightarrow ((A \rightarrow A) \rightarrow A)] \rightarrow [(A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow A)]$, pelo axioma (II)

$$A_1$$
: $[A \rightarrow ((A \rightarrow A) \rightarrow A)] \rightarrow [(A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow A)]$, pelo axioma (II)

$$A_2$$
: $A \to ((A \to A) \to A)$, pelo axioma (I)

$$A_1$$
: $[A \rightarrow ((A \rightarrow A) \rightarrow A)] \rightarrow [(A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow A)]$, pelo axioma (II)

$$A_2$$
: $A \to ((A \to A) \to A)$, pelo axioma (I)

$$A_3$$
: $(A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow A)$, por (MP) de A_1 e A_2

$$A_1$$
: $[A \rightarrow ((A \rightarrow A) \rightarrow A)] \rightarrow [(A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow A)]$, pelo axioma (II)

$$A_2$$
: $A \to ((A \to A) \to A)$, pelo axioma (I)

$$A_3$$
: $(A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow A)$, por (MP) de A_1 e A_2

$$A_4$$
: $A \to (A \to A)$, pelo axioma (I)

$$A_1$$
: $[A \rightarrow ((A \rightarrow A) \rightarrow A)] \rightarrow [(A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow A)]$, pelo axioma (II)

$$A_2$$
: $A \to ((A \to A) \to A)$, pelo axioma (I)

$$A_3$$
: $(A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow A)$, por (MP) de A_1 e A_2

$$A_4$$
: $A \to (A \to A)$, pelo axioma (I)

$$A_5$$
: $A \rightarrow A$ por (MP) de A_3 e A_4 .

Exercícios

1.
$$\vdash (\neg A \rightarrow A) \rightarrow A$$

2.
$$A \rightarrow B, B \rightarrow C \vdash A \rightarrow C$$

3.
$$A \rightarrow (B \rightarrow C) \vdash B \rightarrow (A \rightarrow C)$$

4.
$$\vdash (\neg B \rightarrow \neg A) \rightarrow (A \rightarrow B)$$