MAT349 - Introdução à Lógica http://www.ime.usp.br/mat/349

Gláucio Terra

glaucio@ime.usp.br

Departamento de Matemática IME - USP

DEFINIÇÃO Seja K uma teoria de 1a. ordem que possui um símbolo predicativo binário "=". Diz-se que K é uma teoria de 1a. ordem com igualdade se as seguintes fórmulas forem teoremas de K:

A6
$$(\forall x_1)x_1 = x_1$$

A7 $x = y \rightarrow (\mathcal{B}(x, x) \rightarrow \mathcal{B}(x, y))$ se y livre para x em $\mathcal{B}(x, x)$ e $\mathcal{B}(x, y)$ se obtém de $\mathcal{B}(x, x)$ por substituição de algumas das ocorrências livres de x por y.

Proposição Em toda teoria com igualdade, tem-se:

- 1. $\vdash t = t$ (para qualquer termo t)
- 2. $\vdash t = s \rightarrow s = t$ (para quaisquer termos $s \in t$)
- 3. $\vdash t = s \rightarrow (s = r \rightarrow t = r)$ (para quaisquer termos r, s e t)

PROPOSIÇÃO Seja K uma teoria de 1a. ordem na qual (A6) é um teorema e (A7) vale para todas as fórmulas atômicas $\mathcal{B}(x,x)$ nas quais não figuram constantes individuais. Então K é uma teoria com igualdade, i.e. (A7) vale para quaisquer fórmulas $\mathcal{B}(x,x)$.

Proposição Seja K uma teoria de 1a. ordem na qual (A6) é um teorema e as seguintes condições são satisfeitas:

1. O esquema (A7) vale para todas as fórmulas atômicas $\mathcal{B}(x,x)$ nas quais não figuram símbolos funcionais ou constantes individuais, e $\mathcal{B}(x,y)$ é obtida de $\mathcal{B}(x,x)$ pela substituição de uma única ocorrência de x por y.

2. $\vdash x = y \rightarrow f_j^n(z_1, \dots, z_n) = f_j^n(w_1, \dots, w_n)$, onde f_j^n é um símbolo funcional qualquer, z_1, \dots, z_n são variáveis e $f_j^n(w_1, \dots, w_n)$ é obtida a partir de $f_j^n(z_1, \dots, z_n)$ pela substituição de uma única ocorrência de x por y.

Então K é uma teoria com igualdade.

Exemplos

- A teoria elementar dos grupos é uma teoria com igualdade.
- Idem para a teoria elementar dos corpos e para a teoria elementar dos corpos ordenados.

Exercícios

Mostre que, em toda teoria de 1a. ordem com igualdade:

- 1. $\overline{x} = y \rightarrow f(x) = f(y)$ onde f é qualquer símbolo funcional unário.
- **2.** $(\forall x)(\exists y)x = y$
- 3. $(\forall x) (\mathcal{B}(x) \leftrightarrow (\forall y)(x = y \rightarrow \mathcal{B}(y)))$ se y não ocorre em $\mathcal{B}(x)$