$\begin{array}{ccc} \text{MAT3458} - \text{\'ALGEBRA LINEAR II} \\ 3^{\underline{a}} \text{ Lista de Exercícios } - 2^{\underline{o}} \text{ semestre de 2021} \end{array}$

- 1. No \mathbb{R}^4 com o produto interno usual, considere o subespaço W = [(1,1,0,0,),(0,1,-1,1)].
 - (i) Determine bases ortonomais $B \in B'$ para $W \in W^{\perp}$, respectivamente.
 - (ii) Sendo $T: \mathbb{R}^4 \to \mathbb{R}^4$ o operador linear dado por $T(v) = \operatorname{proj}_W v$, determine a matriz de T em relação à base $B \cup B'$.
 - (iii) Quais são os autovalores de T? É T diagonalizável?
- 2. Considere \mathbb{R}^3 munido do produto interno usual e seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ o operador linear definido por T(x,y,z) = (x-2y,-2x+y,-z), para todos $x,y,z \in \mathbb{R}$. Está correto afirmar que
 - (a) T é simétrico.
 - (b) o polinômino característico de T possui uma única raiz real.
 - (c) T não é injetor.
 - (d) T possui três autovalores distintos.
 - (e) T possui dois autovalores distintos λ_1 e λ_2 tais que $\dim(V(\lambda_1)) = 1$ e $\dim(V(\lambda_2)) = 1$.
- 3. Considere o espaço vetorial \mathbb{R}^3 munido do seu produto interno canônico. Seja $T \colon \mathbb{R}^3 \to \mathbb{R}^3$ o operador linear tal que $[T]_B = \begin{pmatrix} 1 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$, em que $B = \{(1,0,0), (1,1,0), (1,1,1)\}$. Considere as seguintes afirmações:
 - (I) T não é simétrico, mas é diagonalizável.
 - (II) T é simétrico.
 - (III) T não é diagonalizável.

Está correto o que se afirma em

- (a) (I) e (III), apenas.
- (b) (II), apenas.
- (c) (II) e (III), apenas.
- (d) (I), (II) e (III).
- (e) (I), apenas.
- 4. Seja V um espaço vetorial de dimensão finita com produto interno. Seja W um subespaço de V e seja $T: V \to V$ o operador linear de V definido por $T(v) = \operatorname{proj}_W v$, para todo $v \in V$.
 - (i) Prove que $T^2 = T$.
 - (ii) Prove que $Ker(T) = W^{\perp} e Im(T) = W$.
 - (iii) Prove que existe uma base ortonormal B de V tal que $[T]_B = \begin{bmatrix} 1 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \vdots & & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \end{bmatrix}$

onde o número de 1's na diagonal é igual à dimensão de W.

(iv) Prove que T é um operador simétrico.

- 5. Seja V um espaço vetorial com produto interno \langle , \rangle e sejam $w_1, w_2 \in V$ vetores não nulos. Defina $T \colon V \to V$ por $T(v) = \langle v, w_1 \rangle w_2$, para todo $v \in V$. Prove que T é um operador simétrico se, e somente se, w_1 e w_2 são linearmente dependentes. (Sugestão: Para uma das implicações, use a desigualdade de Cauchy-Schwarz.)
- 6. Considere o espaço vetorial \mathbb{R}^2 munido do seu produto interno canônico e a base $\mathcal{B} = \{(-1,1), (1,2)\}$ de \mathbb{R}^2 . Considere as seguintes afirmações sobre o operador linear $T \colon \mathbb{R}^2 \to \mathbb{R}^2$ cuja matriz em relação à base $\mathcal{B} \not\in \begin{pmatrix} 4 & -1 \\ -1 & 1 \end{pmatrix}$:
 - (I) T é simétrico.
 - (II) T não é diagonalizável.
 - (III) T é diagonalizável, mas não é simétrico.

Assinale a alternativa correta.

- (a) Apenas a afirmação (II) é verdadeira.
- (b) Apenas as afirmações (I) e (II) são verdadeiras.
- (c) Apenas a afirmação (III) é verdadeira.
- (d) Nenhuma das afirmações é verdadeira.
- (e) Apenas a afirmação (I) é verdadeira.
- 7. Suponha que \mathbb{R}^2 esteja munido de um produto interno $\langle \, , \, \rangle$ e que a base $\mathcal{B} = \{(1,-1),(1,-2)\}$ seja ortonormal em relação a $\langle \, , \, \rangle$. Seja $T \colon \mathbb{R}^2 \to \mathbb{R}^2$ o operador linear cuja matriz em relação à base canônica é $\begin{pmatrix} 0 & -3 \\ 0 & 5 \end{pmatrix}$, e seja \mathcal{C} a base de \mathbb{R}^2 dada por $\mathcal{C} = \left\{ \begin{pmatrix} \frac{1}{\sqrt{5}}, 0 \end{pmatrix}, \begin{pmatrix} \frac{3}{\sqrt{5}}, -\frac{5}{\sqrt{5}} \end{pmatrix} \right\}$. Em relação ao produto interno $\langle \, , \, \rangle$, pode-se afirmar corretamente que
 - (a) T não é simétrico, \mathcal{C} não é ortonormal e $[T]_{\mathcal{C}}$ é diagonal.
 - (b) T não é simétrico, \mathcal{C} é ortonormal e $[T]_{\mathcal{C}}$ é diagonal.
 - (c) T é simétrico, C é ortonormal e $[T]_{C}$ não é diagonal.
 - (d) T é simétrico, C é ortonormal e $[T]_{C}$ é diagonal.
 - (e) T é simétrico, \mathcal{C} não é ortonormal e $[T]_{\mathcal{C}}$ é diagonal.
- 8. Considere \mathbb{R}^4 munido do produto interno usual, e seja $T \colon \mathbb{R}^4 \to \mathbb{R}^4$ um operador linear satisfazendo as seguintes condições:
 - os únicos valores próprios de T são 2 e 2;
 - T é simétrico;
 - V(2) = [(0,1,1,0), (0,0,0,1), (1,0,0,1)].

Então, T(3, -2, 2, 3) é igual a

- (a) (6,4,4,6)
- (b) (-4, 6, 6, -4)
- (c) (6,4,-4,6)
- (d) (-6, -4, 4, 6)
- (e) (4,6,6,4)
- 9. No \mathbb{R}^4 com o produto interno usual, seja $T \colon \mathbb{R}^4 \to \mathbb{R}^4$ o operador linear que satisfaz

$$[T]_{\mathsf{can}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 1 \\ 0 & 1 & 2 & 1 \\ 0 & 1 & 1 & 2 \end{bmatrix},$$

onde can denota a base canônica de \mathbb{R}^4 .

- (i) Mostre que T é diagonalizável.
- (ii) Ache uma base ortonormal B de \mathbb{R}^4 tal que $[T]_B$ seja diagonal.
- (iii) Ache uma matriz real invertível M tal que $M^{-1}[T]_{\mathsf{can}}M$ seja diagonal.
- 10. Seja $T \colon \mathbb{R}^3 \to \mathbb{R}^3$ a transformação linear definda por

$$T(x, y, z) = (4x + 2y + 2z, 6x + 2z, 12x + 4y + 2z),$$

para todo $(x, y, z) \in \mathbb{R}^3$.

- (i) Ache uma base de \mathbb{R}^3 formada por autovetores de T.
- (ii) Considerando \mathbb{R}^3 com o produto interno usual, mostre que não existe uma base ortogonal formada por autovetores de T. (Se ortogonalizarmos a base encontrada em (i) não obteremos uma base formada por autovetores de T. Por quê?)
- 11. Seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ um operador linear cujos valores próprios são 2, -3 e 0 e tal que V(-3) = [(1,1,1)] e V(2) = [(1,0-1)]. Sabendo que $M^{\rm t}[T]_{\sf can}M$ é diagonal, onde can indica a base canônica de \mathbb{R}^3 e

$$M = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\ 0 & \frac{1}{\sqrt{3}} & \frac{-2}{\sqrt{6}} \\ \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \end{bmatrix},$$

responda ao que se pede.

- (i) Encontre a expressão de T(x, y, z).
- (ii) É T inversível? Justifique.
- (iii) É v = (1, -2, 1) um vetor próprio de T? Justifique.
- 12. No \mathbb{R}^3 com o produto interno usual, seja $T \colon \mathbb{R}^3 \to \mathbb{R}^3$ o operador linear dado por

$$T(x, y, z) = (x - 2y, -2x + y, -z),$$

para todo $(x, y, x) \in \mathbb{R}^3$.

- (i) Verifique que T é simétrico.
- (ii) Determine uma matriz M tal que $M^{t}[T]_{can}M$ seja diagonal.
- 13. Sejam U um espaço vetorial de dimensão finita munido de um produto interno, $T:U\to U$ um operador linear e u e v autovetores de T associados respectivamente a autovalores distintos λ e μ . Considere as seguintes afirmações:
 - (I) Se dim U=3 e dim $V(\lambda)=2$, então T é diagonalizível.
 - (II) Se T é simétrico, então $V(\lambda) = V(\mu)^{\perp}$.
 - (III) Se $\langle u, v \rangle = 0$, então T é simétrico.

Está correto o que se afirma em

- (a) (II) e (III), apenas.
- (b) (I), (II) e (III).
- (c) (I) e (III), apenas.
- (d) (I) e (II), apenas.
- (e) (I), apenas.
- 14. No \mathbb{R}^3 com o produto interno usual, encontre uma base ortonormal formada por autovetores do operador simétrico T cuja matriz em relação à base canônica é

(i)
$$\begin{bmatrix} -3 & 1 & 1 \\ 1 & -1 & -3 \\ 1 & -3 & -1 \end{bmatrix}$$
 (ii)
$$\begin{bmatrix} -1 & 1 & -1 \\ 1 & -1 & 1 \\ -1 & 1 & -1 \end{bmatrix}$$

- 15. No \mathbb{R}^3 com o produto interno usual, seja $T \colon \mathbb{R}^3 \to \mathbb{R}^3$ um operador linear simétrico cujos autovalores são -2 e 3. Sabendo que $\mathrm{Ker}(T+2I) = \big[(1,1,1),(-1,0,1)\big]$, encontre $[T]_{\mathsf{can}}$, onde can denota a base canônica de \mathbb{R}^3 .
- 16. Considere as seguintes afirmações sobre um operador linear T em um espaço vetorial V de dimensão finita com produto interno:
 - (I) Se existe uma base ortogonal de V formada por autovetores de T, então T é simétrico.
 - (II) Se T é simétrico e $u,v\in V$ são autovetores de T associados a um autovalor λ , então u é ortogonal a v.
 - (III) T é simétrico se, e somente se, T é diagonalizável.

Está correto apenas o que se afirma em

- (a) (I) e (III).
- (b) (III).
- (c) (I) e (II).
- (d) (I).
- (e) (II).
- 17. Sejam E um espaço vetorial com produto interno e $T\colon E\to E$ um operador linear simétrico. Considere as seguintes afirmações:
 - (I) Se B é uma base ortogonal de E, então a matriz $[T]_B$ é simétrica.
 - (II) Se λ_1 e λ_2 são autovalores distintos de T e A_1 e A_2 são conjuntos ortogonais de vetores de E tais que $A_1 \subset \operatorname{Ker}(T-\lambda_1 I)$ e $A_2 \subset \operatorname{Ker}(T-\lambda_2 I)$, então a união $A_1 \cup A_2$ é um conjunto ortogonal.
 - (III) Se B é uma base de E tal que a matriz $[T]_B$ é diagonal, então B é ortonormal.

Assinale a alternativa correta.

- (a) Todas as afirmações são verdadeiras.
- (b) Apenas a afirmação (II) é verdadeira.
- (c) Apenas as afirmações (I) e (II) são verdadeiras.
- (d) Apenas a afirmação (I) é verdadeira.
- (e) Apenas a afirmação (III) é verdadeira.
- 18. Seja V um espaço vetorial de dimensão finita munido de um produto interno e sejam $T: V \to V$ e $S: V \to V$ operadores lineares. Considere as seguintes afirmações:
 - (I) Se T e S são operadores simétricos, então o operador T+S é diagonalizável.
 - (II) Se T é um operador simétrico invertível, então o operador T^{-1} também é simétrico.
 - (III) T é invertível se, e somente se, 0_V não é um autovalor de T.

Assinale a alternativa correta.

- (a) Apenas as afirmações (I) e (II) são necessariamente verdadeiras.
- (b) Todas as afirmações são necessariamente verdadeiras.
- (c) Apenas as afirmações (I) e (III) são necessariamente verdadeiras.
- (d) Apenas as afirmações (II) e (III) são necessariamente verdadeiras.
- (e) Apenas a afirmação (I) é necessariamente verdadeira.

19. A respeito das matrizes

$$A = \begin{pmatrix} 1 & 2 & -1 & 2 \\ 2 & 4 & 0 & 1 \\ -1 & 0 & 3 & 1 \\ 2 & 1 & 1 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 1 & 3 & 0 & 0 \\ -1 & 1 & 0 & -1 \\ 2 & 4 & 2 & 0 \end{pmatrix} \quad \text{e} \quad C = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 1 & -1 \\ 0 & 0 & -1 & 0 \\ 0 & -1 & -3 & 2 \end{pmatrix},$$

pode-se afirmar corretamente que

- (a) apenas A e B são diagonalizáveis.
- (b) apenas $B \in C$ são diagonalizáveis.
- (c) apenas A e C são diagonalizáveis.
- (d) as três são diagonalizáveis.
- (e) nenhuma delas é diagonalizável.
- 20. Considere o espaco vetorial \mathbb{R}^3 munido do produto interno

$$\langle (x_1, y_1, z_1), (x_2, y_2, z_2) \rangle = 3x_1x_2 + x_1y_2 + y_1x_2 + y_1y_2 + 2z_1z_2,$$

para todos $(x_1, y_1, z_1), (x_2, y_2, z_2) \in \mathbb{R}^3$. Se $T: \mathbb{R}^3 \to \mathbb{R}^3$ é o operador linear simétrico (com respeito ao produto interno dado) cujo polinômio característico é $p(t) = (2-t)(t-1)^2$ e T(1,1,0) = (2,2,0), então, para todo $(x, y, z) \in \mathbb{R}^3$,

- (a) $T(x,y,z) = (\frac{5}{3}x + \frac{1}{3}y, \frac{2}{3}x + \frac{4}{3}y, z).$
- (b) $T(x,y,z) = (\frac{5}{2}x + \frac{1}{2}y + z, \frac{2}{2}x + \frac{4}{2}y z, z).$
- (c) $T(x,y,z) = (\frac{2}{3}x + \frac{4}{3}y, \frac{5}{3}x + \frac{1}{3}y, x y + z).$
- (d) $T(x,y,z) = (\frac{2}{3}x + \frac{4}{3}y + z, \frac{5}{3}x + \frac{1}{3}y z, x y + z).$
- (e) $T(x,y,z) = (\frac{7}{2}x \frac{1}{2}y, \frac{5}{2}x + \frac{1}{2}y, z).$
- 21. Estabeleça uma correspondência entre as equações

e as cônicas

- (a) conjunto vazio
- (b) um ponto
- (c) uma reta

(f) elipse

- (d) duas retas paralelas (e) duas retas concorrentes
- (g) hipérbole
- (h) parábola
- (i) circunferência
- 22. Reconheça as seguintes cônicas dadas pelas suas equações em relação a um sistema ortogonal de coordenadas.
 - (i) $4x^2 4xy + 7y^2 + 12x + 6y 9 = 0$
 - (ii) $x^2 2xy + y^2 2x 2y + 1 = 0$
 - (iii) $x^2 + 4y^2 + 3\sqrt{3}xy 1 = 0$
 - (iv) $7x^2 + 6xy y^2 + 28x + 12y + 28 = 0$
- 23. Reconheça as seguintes quádricas dadas pelas suas equações em relação a um sistema ortogonal de coordenadas.
 - (i) 2xy + z = 0
 - (ii) $x^2 + y^2 2z^2 + 4xy 2xz + 2yz x + y + z = 0$
 - (iii) $x^2 + y^2 + z^2 4yz = 1$
 - (iv) $11x^2 + 11y^2 + 14z^2 + 2xy + 8xz 8yz 12x + 12y + 12z = 6$

24. Fixado um sistema ortogonal de coordenadas no plano, considere as seguintes afirmações a respeito da equação

$$ax^2 - 2xy + ay^2 - 1 = 0,$$

- em que a é um número real não nulo:
- (I) Se 0 < a < 1, então a equação define uma hipérbole.
- (II) Se a > 1, então a equação define uma elipse.
- (III) Se a=1, então a equação define um par de retas paralelas.
- Está correto o que se afirma em
- (a) (I) e (II), apenas.
- (b) (I), (II) e (III).
- (c) (I) e (III), apenas.
- (d) (II) e (III), apenas.
- (e) (III), apenas.
- 25. Para os itens abaixo, considere fixado um sistema ortogonal de coordenadas em E^3 .
 - (i) Determine uma equação para a superfície formada pelos pontos P=(x,y,z) cuja distância até a origem é igual a $\sqrt{2}$ vezes a distância de P ao eixo Oz. Que superfície é essa? Reconheça a curva dada pela interseção dessa superfície com o plano y=1.
 - (ii) Determine uma equação para a superfície formada pelos pontos P=(x,y,z) cuja distância ao ponto Q = (0, -1, -2) é igual a $\sqrt{2}$ vezes a distância de P à reta $r : \begin{cases} z = 2y \\ x = 0 \end{cases}$. Determine uma equação reduzida dessa superfície. Que superfície é essa? Reconheça e encontre uma equação para a curva dada pela interseção dessa superfície com o plano z=0.
 - (iii) Refaça o item anterior, considerando Q = (0, -1, -1) e $r : \begin{cases} z = y \\ x = 0 \end{cases}$
- 26. Seja dado $k \in \mathbb{R}$. A equação $5x^2 + 9y^2 + 6z^2 + 4yz 10x + 4y + 12z = k$, nas incógnitas x, y, z, não tem solução se
 - (a) k = -11.
 - (b) k = 0.
 - (c) k = 11.
 - (d) k = 22.
 - (e) k = -22.
- 27. O objetivo deste exercício é encontrar uma função $f : \mathbb{R} \to \mathbb{R}$ tal que $f + f' = \sin x + e^x$.
 - (i) Seja $F = \{\cos x, \sin x, e^x\}$. Mostre que F é linearmente independente em $\mathcal{F}(\mathbb{R})$.
 - (ii) Seja V o subespaço de $\mathcal{F}(\mathbb{R})$ gerado por F. Mostre que $T: V \to V$ definida por T(f) = f + f'é linear.
 - (iii) Escreva a matriz A de T na base F e as coordenadas na base F da função g definida por $g(x) = \operatorname{sen} x + e^x$.
 - (iv) Determine a matriz A^{-1} .
 - (v) Ache f em V tal que $f + f' = \operatorname{sen} x + e^x$. Resolva a equação diferencial $y + y' = \operatorname{sen} x + e^x$.
- 28. (M. Barone Jr, Álgebra Linear, p. 243) Consideremos dois tanques: o tanque A contem inicialmente 100 l de água e 15 kg de sal; o tanque B contem inicialmente 100 l de água e 5 kg de sal. Um mecanismo permite a vazão do tanque A para o tanque B e vice-versa; a velocidade de vazão é constante e igual a 5 l/min. Suponhamos que, em cada instante t, as soluções nos tanques A e Bestejam perfeitamente homogeneizadas, a quantidade de sal no tanque A é x(t) e no tanque B é y(t).

- (i) Mostre que x(t) e y(t) são soluções do sistema $\begin{cases} x' = -0.05x + 0.05y \\ y' = 0.05x 0.05y \end{cases}$ satisfazendo x(0) = 0.05x + 0.05y15 e y(0) = 5. Determine a solução deste sistema
- (ii) Após quantos minutos haverá 13 kg de sal no tanque A?
- 29. Ache a solução geral do sistema $X^{\prime}(t)=AX(t),$ nos casos abaixo.

(i)
$$A = \begin{bmatrix} 2 & 1 & 1 \\ 3 & 0 & 1 \\ 6 & 2 & 1 \end{bmatrix}$$
 (ii) $A = \begin{bmatrix} -14 & 6 & 12 \\ -14 & 4 & 14 \\ -11 & 6 & 9 \end{bmatrix}$

30. Ache a solução dos seguintes sistemas:

(i)
$$\begin{cases} x' = -3x + 4y \\ y' = -x + 2y \end{cases} \quad x(0) = 2, y(0) = 11.$$

(i)
$$\begin{cases} x' = -3x + 4y \\ y' = -x + 2y \end{cases} \quad x(0) = 2, y(0) = 11.$$
(ii)
$$\begin{cases} x' = 2x + z \\ y' = x + y + z \\ z' = x - y + 3z \end{cases} \quad x(0) = 1, y(0) = -3, z(0) = -2.$$

31. (M. Barone Jr, Álgebra Linear, p. 255) Consideremos o sistema não-homogêneo

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -\frac{4}{50} & \frac{3}{50} \\ \frac{2}{50} & -\frac{3}{50} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \tag{\dagger}$$

- (i) Determine uma solução particular do sistema (†) da forma $X_0(t)=(a,b)$, em que $a \in b$ são números reais.
- (ii) Determine a solução geral Z(t) do sistema homogêneo associado

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -\frac{4}{50} & \frac{3}{50} \\ \frac{2}{50} & -\frac{3}{50} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

- (iii) Verifique que a solução geral do sistema (†) é dada por $X(t) = X_0(t) + Z(t)$.
- (iv) Encontre a solução particular do sistema (†) que verifica as condições iniciais x(0) = 37, y(0) =3

Respostas

(ii)
$$\left\{ (1,0,0,0), \left(0,\frac{1}{\sqrt{2}},0,\frac{-1}{\sqrt{2}}\right), \left(0,\frac{-1}{\sqrt{6}},\frac{2}{\sqrt{6}},\frac{-1}{\sqrt{6}}\right), \left(0,\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}}\right) \right\}$$

(iii) As respostas vão variar. Use (ii) para montar uma tal matriz M. Uma outra matriz é $M = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 2 & 1 \\ 0 & -1 & -1 & 1 \end{bmatrix}.$

$$M = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 2 & 1 \\ 0 & -1 & -1 & 1 \end{bmatrix}.$$

10. (i)
$$\{(1,0,-3),(0,-1,1),(1,1,2)\}$$

11. (i)
$$[T]_{\mathsf{can}} = \begin{bmatrix} 0 & -1 & -2 \\ -1 & -1 & -1 \\ -2 & -1 & 0 \end{bmatrix}$$
; (ii) Não; (iii) Sim

12. As respostas vão variar; uma possibilidade é
$$M=\begin{bmatrix}0&\frac{1}{\sqrt{2}}&\frac{1}{\sqrt{2}}\\0&\frac{1}{\sqrt{2}}&-\frac{1}{\sqrt{2}}\\1&0&0\end{bmatrix}.$$

14. (i)
$$\left\{ \left(0, \frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right), \left(\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right), \left(\frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}\right) \right\}$$

(ii)
$$\left\{ \left(\frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right), \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0 \right), \left(\frac{1}{\sqrt{6}}, \frac{-1}{\sqrt{6}}, \frac{-2}{\sqrt{6}} \right) \right\}$$

15.
$$[T]_{\text{can}} = \frac{1}{6} \begin{bmatrix} -7 & -10 & 5 \\ -10 & 8 & -10 \\ 5 & -10 & -7 \end{bmatrix}$$

23. (i) parabolóide hiperbólico; (ii) parabolóide hiperbólico; (iii) hiperbolóide de uma folha; (iv) elipsóide

25. (i) é um cone de equação
$$z^2=x^2+y^2$$
. A curva é uma hipérbole de equação $z^2-x^2=1$;

- (ii) é um cone de equação $5x^2 + 3y^2 3z^2 8yz 10y 20z = 25$ e equação reduzida $x''^2 + y''^2 z''^2 = 25$ 0. A curva é uma elipse de equação $15x^2 + 9(y - \frac{5}{3})^2 = 100$;
- (iii) é um cone de quação $x^2 2yz 2z 2y = 2$ e equação reduzida: $x''^2 + y''^2 z''^2 = 0$. A curva é uma parábola de equação $x^2 - 2y = 2$.

26. (e)

$$27. \text{ (iii) } A = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}, \ g = (0,1,1)_F; \ \text{(iv) } A^{-1} = \begin{bmatrix} 1/2 & -1/2 & 0 \\ 1/2 & 1/2 & 0 \\ 0 & 0 & 1/2 \end{bmatrix}; \ \text{(v) } [f]_F = A^{-1}[g]_F, \\ \log o \ f = (-1/2,1/2,1/2)_F = -\frac{1}{2}\cos x + \frac{1}{2}\mathrm{sen} \ x + \frac{1}{2}e^x. \ \text{As soluções da equação diferencial são } \\ y = -\frac{1}{2}\cos x + \frac{1}{2}\mathrm{sen} \ x + \frac{1}{2}e^x + Ke^{-x}, K \in \mathbb{R}.$$

28. (i) $\begin{cases} x(t)=10+5e^{-0.1t}\\ y(t)=10-5e^{-0.1t} \end{cases}$; (ii) a proximadamente 5 minutos

29. (i)
$$X(t) = (x(t), y(t), z(t))$$
, com
$$\begin{cases} x(t) = C_1 e^{-t} + C_3 e^{5t} \\ y(t) = C_2 e^{-t} + C_3 e^{5t} \\ z(t) = -3C_1 e^{-t} - C_2 e^{-t} + 2C_3 e^{5t} \end{cases}$$
 ($C_1, C_2, C_3 \in \mathbb{R}$)
$$(ii) \ X(t) = (x(t), y(t), z(t)), \text{ com} \begin{cases} x(t) = C_1 e^{-2t} + C_3 e^{4t} \\ y(t) = -2C_2 e^{-3t} + C_3 e^{4t} \\ z(t) = C_1 e^{-2t} + C_2 e^{-3t} + C_3 e^{4t} \end{cases}$$
 ($C_1, C_2, C_3 \in \mathbb{R}$)

(ii)
$$X(t) = (x(t), y(t), z(t))$$
, com
$$\begin{cases} x(t) = C_1 e^{-2t} + C_3 e^{4t} \\ y(t) = -2C_2 e^{-3t} + C_3 e^{4t} \\ z(t) = C_1 e^{-2t} + C_2 e^{-3t} + C_3 e^{4t} \end{cases}$$
 $(C_1, C_2, C_3 \in \mathbb{R})$

30. (i)
$$\begin{cases} x(t) = 14e^t - 12e^{-2t} \\ y(t) = 14e^t - 3e^{-2t} \end{cases}$$
; (ii)
$$\begin{cases} x(t) = 2e^t - e^{2t} \\ y(t) = -2e^t - e^{2t} \\ z(t) = -2e^t \end{cases}$$

31. (i)
$$X_0(t) = \left(25, \frac{50}{3}\right)$$
; (ii) $Z(t) = C_1 e^{-0.02t}(1, 1) + C_2 e^{-0.12t}(-3, 2)$ $(C_1, C_2 \in \mathbb{R})$; (iv)
$$\begin{cases} x(t) = 3e^{-0.02t} + 9e^{-0.12t} + 25 \\ y(t) = 3e^{-0.02t} - 6e^{-0.12t} + \frac{50}{3} \end{cases}$$