ÓPICOS ABORDADOS NESTA AULA Introdução Definição Teoria No computadoi

Interpolação Polinomial Splines Cúbicos

Prof. Alexandre Lymberopoulos

Instituto de Matemática e Estatística Universidade de São Paulo

- MOTIVAÇÃO
- SPLINES
 - Splines Cúbicos
- ASPECTOS TEÓRICOS
 - Construção de um Spline
 - Minimalidade dos splines
 - Estimativas de erros na aproximação por Splines
- MATLAB
 - Rotinas no MATLAB

COMPARAÇÃO COM POLINÔMIOS DE LAGRANGE

 Dados n + 1 pontos do planos (que chamaremos de nós) podemos encontrar o único polinômio de grau n que interpola esses pontos.

- Dados n + 1 pontos do planos (que chamaremos de nós) podemos encontrar o único polinômio de grau n que interpola esses pontos.
 - Problema: polinômios de grau alto apresentam muita variação na concavidade.

- Dados n + 1 pontos do planos (que chamaremos de nós) podemos encontrar o único polinômio de grau n que interpola esses pontos.
 - Problema: polinômios de grau alto apresentam muita variação na concavidade.
 - Solução: usar polinômios de grau baixo em cada intervalo entre os nós.

- Dados n + 1 pontos do planos (que chamaremos de nós) podemos encontrar o único polinômio de grau n que interpola esses pontos.
 - Problema: polinômios de grau alto apresentam muita variação na concavidade.
 - Solução: usar polinômios de grau baixo em cada intervalo entre os nós.
- Isto chama-se aproximação por polinômios seccionados.

- Dados n + 1 pontos do planos (que chamaremos de nós) podemos encontrar o único polinômio de grau n que interpola esses pontos.
 - Problema: polinômios de grau alto apresentam muita variação na concavidade.
 - Solução: usar polinômios de grau baixo em cada intervalo entre os nós.
- Isto chama-se aproximação por polinômios seccionados.
- O mais simples é usar polinômios seccionados de grau 1.

- Dados n + 1 pontos do planos (que chamaremos de nós) podemos encontrar o único polinômio de grau n que interpola esses pontos.
 - Problema: polinômios de grau alto apresentam muita variação na concavidade.
 - Solução: usar polinômios de grau baixo em cada intervalo entre os nós.
- Isto chama-se aproximação por polinômios seccionados.
- O mais simples é usar polinômios seccionados de grau 1.
 - Problema: a função obtida pode não ser derivável nos nós.

- Dados n + 1 pontos do planos (que chamaremos de nós) podemos encontrar o único polinômio de grau n que interpola esses pontos.
 - Problema: polinômios de grau alto apresentam muita variação na concavidade.
 - Solução: usar polinômios de grau baixo em cada intervalo entre os nós.
- Isto chama-se aproximação por polinômios seccionados.
- O mais simples é usar polinômios seccionados de grau 1.
 - Problema: a função obtida pode não ser derivável nos nós.
 - Solução: usar polinômios seccionados de grau maior.

- Dados n + 1 pontos do planos (que chamaremos de nós) podemos encontrar o único polinômio de grau n que interpola esses pontos.
 - Problema: polinômios de grau alto apresentam muita variação na concavidade.
 - Solução: usar polinômios de grau baixo em cada intervalo entre os nós.
- Isto chama-se aproximação por polinômios seccionados.
- O mais simples é usar polinômios seccionados de grau 1.
 - Problema: a função obtida pode não ser derivável nos nós.
 - Solução: usar polinômios seccionados de grau maior.
- Polinômios de grau 2?

- Dados n + 1 pontos do planos (que chamaremos de nós) podemos encontrar o único polinômio de grau n que interpola esses pontos.
 - Problema: polinômios de grau alto apresentam muita variação na concavidade.
 - Solução: usar polinômios de grau baixo em cada intervalo entre os nós.
- Isto chama-se aproximação por polinômios seccionados.
- O mais simples é usar polinômios seccionados de grau 1.
 - Problema: a função obtida pode não ser derivável nos nós.
 - Solução: usar polinômios seccionados de grau maior.
- Polinômios de grau 2?
- Também não!

- Dados n + 1 pontos do planos (que chamaremos de nós) podemos encontrar o único polinômio de grau n que interpola esses pontos.
 - Problema: polinômios de grau alto apresentam muita variação na concavidade.
 - Solução: usar polinômios de grau baixo em cada intervalo entre os nós.
- Isto chama-se aproximação por polinômios seccionados.
- O mais simples é usar polinômios seccionados de grau 1.
 - Problema: a função obtida pode não ser derivável nos nós.
 - Solução: usar polinômios seccionados de grau maior.
- Polinômios de grau 2?
- Também não!
- Se a derivada é pré-determinada nos nós mais extremos a existência da aproximação por polinômios seccionados de grau 2 fica comprometida.

 Tipicamente usa-se a aproximação por polinômios seccionados de grau 3 e ela é chamada de interpolação com spline cúbico.

- Tipicamente usa-se a aproximação por polinômios seccionados de grau 3 e ela é chamada de interpolação com spline cúbico.
- Se p(x) tem grau 3 então existem 4 constantes a determinar.

- Tipicamente usa-se a aproximação por polinômios seccionados de grau 3 e ela é chamada de interpolação com spline cúbico.
- Se p(x) tem grau 3 então existem 4 constantes a determinar.
 - Vantagem: isto permite que possamos garantir continuidade da função e até de sua derivada de segunda ordem, mesmo quando especificamos a derivada primeira da função a ser interpolada nos extremos do intervalo.

- Tipicamente usa-se a aproximação por polinômios seccionados de grau 3 e ela é chamada de interpolação com spline cúbico.
- Se p(x) tem grau 3 então existem 4 constantes a determinar.
 - Vantagem: isto permite que possamos garantir continuidade da função e até de sua derivada de segunda ordem, mesmo quando especificamos a derivada primeira da função a ser interpolada nos extremos do intervalo.
 - Desvantagem: as derivadas primeiras do spline não coincidem com a função original, mesmo nos nós.

• Se $f:[a,b] \to \mathbb{R}$ é uma função e é dado um conjunto de nós $a=x_0 < x_1 < \ldots < x_n = b$, um *spline cúbico interpolador* é um função $S:[a,b] \to \mathbb{R}$ satisfazendo

- Se $f:[a,b] \to \mathbb{R}$ é uma função e é dado um conjunto de nós $a=x_0 < x_1 < \ldots < x_n = b$, um *spline cúbico interpolador* é um função $S:[a,b] \to \mathbb{R}$ satisfazendo
 - S(x) é um polinômio cúbico, indicado por $S_j(x)$ no intervalo $[x_j, x_{j+1}]$, para cada $0 \le j \le n-1$;

- Se $f:[a,b] \to \mathbb{R}$ é uma função e é dado um conjunto de nós $a=x_0 < x_1 < \ldots < x_n = b$, um *spline cúbico interpolador* é um função $S:[a,b] \to \mathbb{R}$ satisfazendo
 - ① S(x) é um polinômio cúbico, indicado por $S_j(x)$ no intervalo $[x_j, x_{j+1}]$, para cada $0 \le j \le n-1$;

- Se $f:[a,b] \to \mathbb{R}$ é uma função e é dado um conjunto de nós $a=x_0 < x_1 < \ldots < x_n = b$, um *spline cúbico interpolador* é um função $S:[a,b] \to \mathbb{R}$ satisfazendo
 - S(x) é um polinômio cúbico, indicado por $S_j(x)$ no intervalo $[x_j, x_{j+1}]$, para cada $0 \le j \le n-1$;
 - ② $S(x_j) = f(x_j)$, para cada $0 \le j \le n$;

NO COMPUTADOR

NO COMPUTADOR

- Se $f:[a,b] \to \mathbb{R}$ é uma função e é dado um conjunto de nós $a=x_0 < x_1 < \ldots < x_n = b$, um *spline cúbico interpolador* é um função $S:[a,b] \to \mathbb{R}$ satisfazendo
 - S(x) é um polinômio cúbico, indicado por $S_j(x)$ no intervalo $[x_j, x_{j+1}]$, para cada $0 \le j \le n-1$;
 - ② $S(x_j) = f(x_j)$, para cada $0 \le j \le n$;

NO COMPUTADOR

- Se $f:[a,b] \to \mathbb{R}$ é uma função e é dado um conjunto de nós $a=x_0 < x_1 < \ldots < x_n = b$, um *spline cúbico interpolador* é um função $S:[a,b] \to \mathbb{R}$ satisfazendo
 - S(x) é um polinômio cúbico, indicado por $S_j(x)$ no intervalo $[x_j, x_{j+1}]$, para cada $0 \le j \le n-1$;
 - ② $S(x_j) = f(x_j)$, para cada $0 \le j \le n$;

- Se $f:[a,b] \to \mathbb{R}$ é uma função e é dado um conjunto de nós $a=x_0 < x_1 < \ldots < x_n = b$, um *spline cúbico interpolador* é um função $S:[a,b] \to \mathbb{R}$ satisfazendo
 - S(x) é um polinômio cúbico, indicado por $S_j(x)$ no intervalo $[x_j, x_{j+1}]$, para cada $0 \le j \le n-1$;
 - ② $S(x_j) = f(x_j)$, para cada $0 \le j \le n$;

 - Vale uma das seguintes propriedades

NO COMPUTADOR

- Se $f:[a,b] \to \mathbb{R}$ é uma função e é dado um conjunto de nós $a=x_0 < x_1 < \ldots < x_n = b$, um *spline cúbico interpolador* é um função $S:[a,b] \to \mathbb{R}$ satisfazendo
 - S(x) é um polinômio cúbico, indicado por $S_j(x)$ no intervalo $[x_j, x_{j+1}]$, para cada $0 \le j \le n-1$;
 - ② $S(x_j) = f(x_j)$, para cada $0 \le j \le n$;

 - Vale uma das seguintes propriedades
 - $S''(x_0) = S''(x_n) = 0$ (chamado *spline natural* ou de *contorno livre*);

- Se $f:[a,b] \to \mathbb{R}$ é uma função e é dado um conjunto de nós $a=x_0 < x_1 < \ldots < x_n = b$, um *spline cúbico interpolador* é um função $S:[a,b] \to \mathbb{R}$ satisfazendo
 - S(x) é um polinômio cúbico, indicado por $S_j(x)$ no intervalo $[x_j, x_{j+1}]$, para cada $0 \le j \le n-1$;
 - ② $S(x_j) = f(x_j)$, para cada $0 \le j \le n$;
 - $S_{j+1}(x_{j+1}) = S_j(x_{j+1})$, para cada $0 \le j \le n-2$;

 - Vale uma das seguintes propriedades
 - $S''(x_0) = S''(x_n) = 0$ (chamado *spline natural* ou de *contorno livre*);
 - $S'(x_0) = f'(x_0)$ e $S'(x_n) = f'(x_n)$ (chamado *spline restrito*);

- Se $f:[a,b] \to \mathbb{R}$ é uma função e é dado um conjunto de nós $a=x_0 < x_1 < \ldots < x_n = b$, um *spline cúbico interpolador* é um função $S:[a,b] \to \mathbb{R}$ satisfazendo
 - **⑤** S(x) é um polinômio cúbico, indicado por $S_j(x)$ no intervalo $[x_j, x_{j+1}]$, para cada 0 ≤ $j \le n-1$;
 - ② $S(x_j) = f(x_j)$, para cada $0 \le j \le n$;

 - Vale uma das seguintes propriedades
 - $S''(x_0) = S''(x_n) = 0$ (chamado *spline natural* ou de *contorno livre*);
 - $S'(x_0) = f'(x_0)$ e $S'(x_n) = f'(x_n)$ (chamado *spline restrito*);
 - O nome contorno livre deve-se ao fato desse spline ter a forma de uma haste flexível se esta fosse forçada a passar pelos nós dados;

- Se $f:[a,b] \to \mathbb{R}$ é uma função e é dado um conjunto de nós $a=x_0 < x_1 < \ldots < x_n = b$, um *spline cúbico interpolador* é um função $S:[a,b] \to \mathbb{R}$ satisfazendo
 - S(x) é um polinômio cúbico, indicado por $S_j(x)$ no intervalo $[x_j, x_{j+1}]$, para cada $0 \le j \le n-1$;
 - ② $S(x_j) = f(x_j)$, para cada $0 \le j \le n$;

 - $S_{j+1}''(x_{j+1}) = S_j''(x_{j+1})$, para cada $0 \le j \le n-2$;
 - Vale uma das seguintes propriedades
 - $S''(x_0) = S''(x_n) = 0$ (chamado *spline natural* ou de *contorno livre*);
 - $S'(x_0) = f'(x_0)$ e $S'(x_n) = f'(x_n)$ (chamado *spline restrito*);
 - O nome contorno livre deve-se ao fato desse spline ter a forma de uma haste flexível se esta fosse forçada a passar pelos nós dados;
 - Splines restritos dão aproximações melhores que os naturais, mas exigem mais informação sobre função a ser interpolada.

• Cada secção do spline, S_j , para $0 \le j \le n-1$, tem a forma

$$S_j(x) = a_j + b_j(x - x_j) + c_j(x - x_j)^2 + d_j(x - x_j)^3.$$

• Cada secção do spline, S_i , para $0 \le j \le n-1$, tem a forma

$$S_j(x) = a_j + b_j(x - x_j) + c_j(x - x_j)^2 + d_j(x - x_j)^3.$$

• Lembrando que $S_j(x_j) = a_j = f(x_j)$, $S_{j+1}(x_{j+1}) = S_j(x_{j+1})$ e chamando $x_{j+1} - x_j = h_j$ temos

$$a_{j+1} = a_j + b_j h_j + c_j h_j^2 + d_j h_j^3, 0 \le j \le n-1.$$
 (1)

• Cada secção do spline, S_j , para $0 \le j \le n-1$, tem a forma

$$S_j(x) = a_j + b_j(x - x_j) + c_j(x - x_j)^2 + d_j(x - x_j)^3.$$

• Lembrando que $S_j(x_j) = a_j = f(x_j)$, $S_{j+1}(x_{j+1}) = S_j(x_{j+1})$ e chamando $x_{j+1} - x_j = h_j$ temos

$$a_{j+1} = a_j + b_j h_j + c_j h_j^2 + d_j h_j^3, 0 \le j \le n-1.$$
 (1)

• Definindo $b_n = S'(x_n)$ e lembrando que $S'_{j+1}(x_{j+1}) = S'_j(x_{j+1})$ temos

$$b_{j+1} = b_j + 2c_jh_j + 3d_jh_j^2, 0 \le j \le n-1.$$
 (2)

• Cada secção do spline, S_i , para $0 \le j \le n-1$, tem a forma

$$S_j(x) = a_j + b_j(x - x_j) + c_j(x - x_j)^2 + d_j(x - x_j)^3.$$

• Lembrando que $S_j(x_j) = a_j = f(x_j)$, $S_{j+1}(x_{j+1}) = S_j(x_{j+1})$ e chamando $x_{j+1} - x_j = h_j$ temos

$$a_{j+1} = a_j + b_j h_j + c_j h_j^2 + d_j h_j^3, 0 \le j \le n-1.$$
 (1)

• Definindo $b_n = S'(x_n)$ e lembrando que $S'_{j+1}(x_{j+1}) = S'_j(x_{j+1})$ temos

$$b_{j+1} = b_j + 2c_jh_j + 3d_jh_j^2, 0 \le j \le n-1.$$
 (2)

• Definindo $c_n = S''(x_n)/2$ e lembrando que $S''_{j+1}(x_{j+1}) = S''_j(x_{j+1})$ temos

$$c_{j+1} = c_j + 3d_jh_j, 0 \le j \le n-1.$$
 (3)

MAIS CONTAS...

• Isolando d_j em (3) e substituindo em (1) e (2), para cada $0 \le j \le n$ obtemos

$$a_{j+1} = a_j + b_j h_j + \frac{h_j^2}{3} (2c_j + c_{j+1}),$$
 (4)

$$b_{j+1} = b_j + h_j(c_j + c_{j+1}).$$
 (5)

MAIS CONTAS...

• Isolando d_j em (3) e substituindo em (1) e (2), para cada $0 \le j \le n$ obtemos

$$a_{j+1} = a_j + b_j h_j + \frac{h_j^2}{3} (2c_j + c_{j+1}),$$
 (4)

$$b_{j+1} = b_j + h_j(c_j + c_{j+1}).$$
 (5)

Isolando b_i em (4) obtemos

$$b_j = \frac{1}{h_j}(a_{j+1} - a_j) - \frac{h_j}{3}(2c_j + c_{j+1}). \tag{6}$$

e trocando j por j-1 temos

$$b_{j-1} = \frac{1}{h_{j-1}}(a_j - a_{j-1}) - \frac{h_{j-1}}{3}(2c_{j-1} + c_j). \tag{7}$$

UM POUCO MAIS...

• Trocando j por j-1 em (5) e substituindo (7) e (6) nela obtemos, para cada $1 \le j \le n-1$,

$$h_{j-1}c_{j-1}+2(h_{j-1}+h_j)c_j+h_jc_{j+1}=\frac{3}{h_j}(a_{j+1}-a_j)-\frac{3}{h_{j-1}}(a_j-a_{j-1}).$$
 (8)

UM POUCO MAIS...

• Trocando j por j-1 em (5) e substituindo (7) e (6) nela obtemos, para cada $1 \le j \le n-1$,

$$h_{j-1}c_{j-1}+2(h_{j-1}+h_j)c_j+h_jc_{j+1}=\frac{3}{h_j}(a_{j+1}-a_j)-\frac{3}{h_{j-1}}(a_j-a_{j-1}).$$
 (8)

 As equações acima produzem um sistema linear cujas incógnitas são somente os c_j, uma vez que h_j e a_j são dados iniciais do problema.

UM POUCO MAIS...

• Trocando j por j-1 em (5) e substituindo (7) e (6) nela obtemos, para cada $1 \le j \le n-1$,

$$h_{j-1}c_{j-1}+2(h_{j-1}+h_j)c_j+h_jc_{j+1}=\frac{3}{h_j}(a_{j+1}-a_j)-\frac{3}{h_{j-1}}(a_j-a_{j-1}).$$
 (8)

- As equações acima produzem um sistema linear cujas incógnitas são somente os c_j, uma vez que h_j e a_j são dados iniciais do problema.
- Veremos a seguir que o sistema obtido com as equações em (8) é sempre possível e determinado tanto no caso de um spline natural como no de um spline restrito.

O seguinte resultado garante a unicidade do spline natural.

TEOREMA

Seja $f:[a,b] \to \mathbb{R}$ e $a=x_0 < x_1 < \ldots < x_n$ um conjunto dado de nós. Então f admite um único spline natural S com esses nós.

O seguinte resultado garante a unicidade do spline natural.

TEOREMA

Seja $f: [a, b] \to \mathbb{R}$ e $a = x_0 < x_1 < \ldots < x_n$ um conjunto dado de nós. Então f admite um único spline natural S com esses nós.

Demonstração:

O seguinte resultado garante a unicidade do spline natural.

TEOREMA

Seja $f: [a,b] \to \mathbb{R}$ e $a=x_0 < x_1 < \ldots < x_n$ um conjunto dado de nós. Então f admite um único spline natural S com esses nós.

- Demonstração:
 - $S''(x_0) = S''(x_n) = 0, \text{ donde } c_n = S''(x_n) = 0 \text{ e}$ $2c_0 + 6d_0(x_0 x_0) = S''(x_0) = 0, \text{ ou seja } c_0 = 0.$

O seguinte resultado garante a unicidade do spline natural.

TEOREMA

Seja $f: [a,b] \to \mathbb{R}$ e $a=x_0 < x_1 < \ldots < x_n$ um conjunto dado de nós. Então f admite um único spline natural S com esses nós.

- Demonstração:
 - ① $S''(x_0) = S''(x_n) = 0$, donde $c_n = S''(x_n) = 0$ e $2c_0 + 6d_0(x_0 x_0) = S''(x_0) = 0$, ou seja $c_0 = 0$.
 - Esses valores junto com as equações (8) produzem um sistema Ax = b possível determinado.

As matrizes envolvidas no sistema anterior são

$$A = \begin{bmatrix} 1 & 0 & 0 & \dots & \dots & 0 \\ h_0 & 2(h_0 + h_1) & h_1 & \ddots & \ddots & \vdots \\ 0 & h_1 & 2(h_1 + h_2) & h_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & h_{n-2} & 2(h_{n-2} + h_{n-1}) & h_{n-1} \\ 0 & \dots & \dots & 0 & 0 & 1 \end{bmatrix}, X = \begin{bmatrix} c_0 \\ c_1 \\ \vdots \\ c_n \end{bmatrix}$$

е

$$b = \begin{bmatrix} \frac{3}{h_1}(a_2 - a_1) - \frac{3}{h_0}(a_1 - a_0) \\ \vdots \\ \frac{3}{h_{n-1}}(a_n - a_{n-1}) - \frac{3}{h_{n-2}}(a_{n-1} - a_{n-2}) \\ 0 \end{bmatrix}$$

O seguinte resultado garante a unicidade do spline restrito.

TEOREMA

Sejam $f: [a,b] \to \mathbb{R}$ e $a=x_0 < x_1 < \ldots < x_n$ um conjunto dado de nós. Então f admite um único spline restrito S com esses nós satisfazendo S'(a) = f'(a) e S'(b) = f'(b).

O seguinte resultado garante a unicidade do spline restrito.

TEOREMA

Sejam $f: [a,b] \to \mathbb{R}$ e $a = x_0 < x_1 < ... < x_n$ um conjunto dado de nós. Então f admite um único spline restrito S com esses nós satisfazendo S'(a) = f'(a) e S'(b) = f'(b).

Demonstração:

O seguinte resultado garante a unicidade do spline restrito.

TEOREMA

Sejam $f:[a,b] \to \mathbb{R}$ e $a=x_0 < x_1 < \ldots < x_n$ um conjunto dado de nós. Então f admite um único spline restrito S com esses nós satisfazendo S'(a)=f'(a) e S'(b)=f'(b).

- Demonstração:
 - \bullet $b_0 = S'(x_0) = f'(a)$, donde, usando (6) com j = 0 temos

$$2h_0c_0+h_0c_1=\frac{3}{h_0}(a_1-a_0)f'(a).$$

analogamente temos

$$2h_{n-1}c_{n-1}+2h_{n-1}c_n=3f'(b)-\frac{3}{h_{n-1}}(a_n-a_{n-1}).$$

O seguinte resultado garante a unicidade do spline restrito.

TEOREMA

Sejam $f:[a,b] \to \mathbb{R}$ e $a=x_0 < x_1 < \ldots < x_n$ um conjunto dado de nós. Então f admite um único spline restrito S com esses nós satisfazendo S'(a)=f'(a) e S'(b)=f'(b).

- Demonstração:
 - **1** $b_0 = S'(x_0) = f'(a)$, donde, usando (6) com j = 0 temos

$$2h_0c_0+h_0c_1=\frac{3}{h_0}(a_1-a_0)f'(a).$$

analogamente temos

$$2h_{n-1}c_{n-1} + 2h_{n-1}c_n = 3f'(b) - \frac{3}{h_{n-1}}(a_n - a_{n-1}).$$

Essas equações junto com as equações (8) produzem um sistema Ax = b possível determinado.

 As matrizes envolvidas no sistema anterior são as mesmas do caso dos splines naturais, exceto a primeira e última linhas de A e b que são respectivamente

$$A_0 = \begin{bmatrix} 2h_0 & h_0 & 0 & \dots & 0 \end{bmatrix}$$

 $A_n = \begin{bmatrix} 0 & \dots & 0 & h_{n-1} & 2h_{n-1} \end{bmatrix}$

е

$$b_0 = \frac{3}{h_0}(a_1 - a_0) - 3f'(a)$$

$$b_n = 3f'(b) - \frac{3}{h_{n-1}}(a_n - a_{n-1}).$$

• Considere V o espaço vetorial de todas as funções de classe $C^2([a,b])$ que interpolam os pontos $(x_0,y_0),\ldots,(x_n,y_n)$.

• Considere V o espaço vetorial de todas as funções de classe $C^2([a,b])$ que interpolam os pontos $(x_0,y_0),\ldots,(x_n,y_n)$.

TEOREMA

• Considere V o espaço vetorial de todas as funções de classe $C^2([a,b])$ que interpolam os pontos $(x_0,y_0),\ldots,(x_n,y_n)$.

TEOREMA

Se $s \in V$ é o spline cúbico natural então $||s''||_2 \le ||f''||_2$ para toda $f \in V$.

Demonstração:

• Considere V o espaço vetorial de todas as funções de classe $C^2([a,b])$ que interpolam os pontos $(x_0,y_0),\ldots,(x_n,y_n)$.

TEOREMA

- Demonstração:
 - Se $f \in V$, então existe $g \in C^2([a,b])$, com $g(x_i) = 0, 0 \le i \le n$ tal que f(x) = s(x) + g(x).

• Considere V o espaço vetorial de todas as funções de classe $C^2([a,b])$ que interpolam os pontos $(x_0,y_0),\ldots,(x_n,y_n)$.

TEOREMA

- Demonstração:
 - Se $f \in V$, então existe $g \in C^2([a,b])$, com $g(x_i) = 0, 0 \le i \le n$ tal que f(x) = s(x) + g(x).
 - 2 Logo f''(x) = s''(x) + g''(x) e

• Considere V o espaço vetorial de todas as funções de classe $C^2([a,b])$ que interpolam os pontos $(x_0,y_0),\ldots,(x_n,y_n)$.

TEOREMA

- Demonstração:
 - Se $f \in V$, então existe $g \in C^2([a,b])$, com $g(x_i) = 0, 0 \le i \le n$ tal que f(x) = s(x) + g(x).
 - 2 Logo f''(x) = s''(x) + g''(x) e
 - $\|f''\|_2^2 = \|s''(x) + g''(x)\|_2^2 = \|s''(x)\|_2^2 + \|g''(x)\|_2^2 + 2\langle s'', g'' \rangle_2,$ onde

• Considere V o espaço vetorial de todas as funções de classe $C^2([a,b])$ que interpolam os pontos $(x_0,y_0),\ldots,(x_n,y_n)$.

TEOREMA

- Demonstração:
 - Se $f \in V$, então existe $g \in C^2([a,b])$, com $g(x_i) = 0, 0 \le i \le n$ tal que f(x) = s(x) + g(x).
 - ② Logo f''(x) = s''(x) + g''(x) e
 - $\|f''\|_2^2 = \|s''(x) + g''(x)\|_2^2 = \|s''(x)\|_2^2 + \|g''(x)\|_2^2 + 2\langle s'', g'' \rangle_2,$ onde

• Considere V o espaço vetorial de todas as funções de classe $C^2([a,b])$ que interpolam os pontos $(x_0,y_0),\ldots,(x_n,y_n)$.

TEOREMA

- Demonstração:
 - ① Se $f \in V$, então existe $g \in C^2([a,b])$, com $g(x_i) = 0, 0 \le i \le n$ tal que f(x) = s(x) + g(x).
 - 2 Logo f''(x) = s''(x) + g''(x) e
 - $\|f''\|_2^2 = \|s''(x) + g''(x)\|_2^2 = \|s''(x)\|_2^2 + \|g''(x)\|_2^2 + 2\langle s'', g'' \rangle_2,$ onde

 - **1** Logo $||s''||_2 \le ||f''||_2$.

NO COMPUTADOR

EFICIÊNCIA NA APROXIMAÇÃO

 O seguinte resultado fornece estimativa para o erro máximo entre o spline e a função interpolada.

TEOREMA

Sejam $f:[a,b]\to\mathbb{R}$ de classe C^4 tal que

$$\max_{x \in [a,b]} \left\{ f^{(4)}(x) \right\} = M$$

e S o spline restrito que interpola f nos pontos

$$a = x_0 < x_1 \dots < x_n = b$$
. Então

$$\max_{x \in [a,b]} \left\{ f(x) - s(x) \right\} \le \frac{5M}{384} \max_{0 \le j \le n-1} \{h_j\}.$$

 O MATLAB possui uma rotina pronta chamada spline que faz tanto splines naturais como restritos.

- O MATLAB possui uma rotina pronta chamada spline que faz tanto splines naturais como restritos.
- Um spline natural que ajusta 10 pontos igualmente espaçados entre 0 e 10 para a função $f(x) = \sin(x)$ obtêm-se fazendo

- O MATLAB possui uma rotina pronta chamada spline que faz tanto splines naturais como restritos.
- Um spline natural que ajusta 10 pontos igualmente espaçados entre 0 e 10 para a função $f(x) = \sin(x)$ obtêm-se fazendo
- x=0:10; y=sin(x);

- O MATLAB possui uma rotina pronta chamada spline que faz tanto splines naturais como restritos.
- Um spline natural que ajusta 10 pontos igualmente espaçados entre 0 e 10 para a função $f(x) = \sin(x)$ obtêm-se fazendo
- $x=0:10; y=\sin(x);$
- xx=0:0.01:10; yy=spline(x,y,xx);

- O MATLAB possui uma rotina pronta chamada spline que faz tanto splines naturais como restritos.
- Um spline natural que ajusta 10 pontos igualmente espaçados entre 0 e 10 para a função $f(x) = \sin(x)$ obtêm-se fazendo
- x=0:10; y=sin(x);
- xx=0:0.01:10; yy=spline(x,y,xx);
- plot(x,y,'o',xx,yy,'b',xx,sin(xx),'g');

- O MATLAB possui uma rotina pronta chamada spline que faz tanto splines naturais como restritos.
- Um spline natural que ajusta 10 pontos igualmente espaçados entre 0 e 10 para a função $f(x) = \sin(x)$ obtêm-se fazendo
- x=0:10; y=sin(x);
- xx=0:0.01:10; yy=spline(x,y,xx);
- plot(x,y,'o',xx,yy,'b',xx,sin(xx),'g');
- Um spline restrito que ajusta os mesmos pontos para a função $f(x) = \sin(x)$, com a condição s'(0) = m e s'(10) = n obtêm-se fazendo

- O MATLAB possui uma rotina pronta chamada spline que faz tanto splines naturais como restritos.
- Um spline natural que ajusta 10 pontos igualmente espaçados entre 0 e 10 para a função $f(x) = \sin(x)$ obtêm-se fazendo
- x=0:10; y=sin(x);
- xx=0:0.01:10; yy=spline(x,y,xx);
- plot(x,y,'o',xx,yy,'b',xx,sin(xx),'g');
- Um spline restrito que ajusta os mesmos pontos para a função $f(x) = \sin(x)$, com a condição s'(0) = m e s'(10) = n obtêm-se fazendo
- z=[m y n];

- O MATLAB possui uma rotina pronta chamada spline que faz tanto splines naturais como restritos.
- Um spline natural que ajusta 10 pontos igualmente espaçados entre 0 e 10 para a função $f(x) = \sin(x)$ obtêm-se fazendo
- x=0:10; y=sin(x);
- xx=0:0.01:10; yy=spline(x,y,xx);
- plot(x,y,'o',xx,yy,'b',xx,sin(xx),'g');
- Um spline restrito que ajusta os mesmos pontos para a função $f(x) = \sin(x)$, com a condição s'(0) = m e s'(10) = n obtêm-se fazendo
- v z=[m y n];
- zz=spline(x,z,xx);

- O MATLAB possui uma rotina pronta chamada spline que faz tanto splines naturais como restritos.
- Um spline natural que ajusta 10 pontos igualmente espaçados entre 0 e 10 para a função $f(x) = \sin(x)$ obtêm-se fazendo
- x=0:10; y=sin(x);
- xx=0:0.01:10; yy=spline(x,y,xx);
- plot(x,y,'o',xx,yy,'b',xx,sin(xx),'g');
- Um spline restrito que ajusta os mesmos pontos para a função $f(x) = \sin(x)$, com a condição s'(0) = m e s'(10) = n obtêm-se fazendo
- o z=[m y n];
- zz=spline(x,z,xx);
- plot(x,y,'o',xx,zz,'b',xx,sin(xx),'r');

VÔO DO PATO

 Os seguintes dados foram obtidos a partir de pontos do perfil das costas de um pato ao longo de um vôo

Х	У	Х	У	Х	У
0.9	1.3	4.4	2.15	10.5	1.4
1.3	1.5	4.7	2.05	11.3	0.9
1.9	1.85	5	2.1	11.6	0.7
2.1	2.1	6	2.25	12	0.6
2.6	2.6	7	2.3	12.6	0.5
3	2.7	8	2.25	13	0.4
3.9	2.4	9.2	1.95	13.3	0.25

VÔO DO PATO

 Os seguintes dados foram obtidos a partir de pontos do perfil das costas de um pato ao longo de um vôo

Х	У	Х	у	Х	У
0.9	1.3	4.4	2.15	10.5	1.4
1.3	1.5	4.7	2.05	11.3	0.9
1.9	1.85	5	2.1	11.6	0.7
2.1	2.1	6	2.25	12	0.6
2.6	2.6	7	2.3	12.6	0.5
3	2.7	8	2.25	13	0.4
3.9	2.4	9.2	1.95	13.3	0.25

 Determine o polinômio interpolador de grau 20, bem como o spline natural e o restrito (estime valores para as derivadas nos extremos) para esse conjunto de dados.