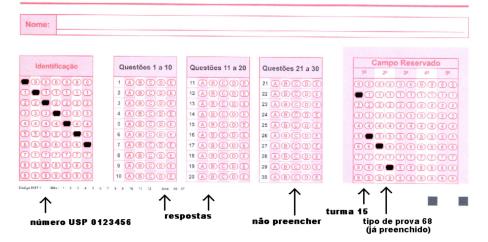
MAT2458 - Álgebra Linear para Engenharia II

Prova 1 - 11/09/2013

Nome:	NUSP:
Professor: _	_ Turma:

Instruções

- (1) A prova tem início às 7:30 e duração de 2 horas.
- (2) Não é permitido deixar a sala sem entregar a prova.
- (3) Todo material não necessário à prova (mochilas, bolsas, calculadoras, agasalhos, bonés, celulares, livros, etc.) deve ficar na frente da sala.
- (4) Sobre a carteira devem permanecer apenas lápis, caneta, borracha e documento de identidade com foto.
- (5) É permitida a entrada na sala até as 8:00 e não é permitida a saída da sala antes das 8:40.
- (6) As respostas devem ser transferidas para a folha óptica durante as 2 horas de prova (não há tempo extra para o preenchimento da folha óptica).
- (7) Só destaque o gabarito do aluno (última folha) quando for entregar a prova. Não esqueça de anotar o tipo de prova no gabarito do aluno (para que você possa depois conferir suas respostas com o gabarito oficial).
- (8) A folha óptica deve ser preenchida com caneta esferográfica azul ou preta.
- (9) Para o correto preenchimento da folha óptica siga o exemplo abaixo.



Notações: Nesta prova, se V é um espaço vetorial, o vetor nulo de V será denotado por 0_V e se v_1, \ldots, v_n são vetores de V, o subespaço vetorial de V gerado por eles será denotado por $[v_1, \ldots, v_n]$.

Se V estiver munido de um produto interno, S for um subespaço de V e para $v \in V$, a projeção ortogonal de v sobre S existir, ela será denotada por proj $_S v$.

Para um inteiro não negativo n, $P_n(\mathbb{R})$ denota o espaço vetorial de todos os polinômios de grau $\leq n$, incluindo o polinômio nulo. O espaço vetorial de todos os polinômios será denotado por $P(\mathbb{R})$.

Dado um intervalo I contido em \mathbb{R} , o espaço vetorial de todas as funções $f \colon I \to \mathbb{R}$ contínuas será denotado por $\mathscr{C}(I)$.

Questão 1. Sejam V e W subespaços vetoriais de dimensão finita de um espaço vetorial E. Considere as seguintes afirmações:

- (I) A soma V + W é direta se, e somente se, $\dim(V + W) = \dim V + \dim W$.
- (II) Se $\dim(V \cap W) = 1$, então a união de uma base de V com uma base de W é um conjunto gerador de V + W.
- (III) Se $\dim(V \cap W) = 0$, então a união de uma base de V com uma base de W é sempre um conjunto linearmente independente em E.

Está correto o que se afirma em

- **a.** (I) e (III), apenas.
- **b.** (I) e (II), apenas.
- **c.** (II), apenas.
- **d.** (I), (II) e (III).
- **e.** (II) e (III), apenas.

Questão 2. Considere a transformação linear $T: P_3(\mathbb{R}) \to P_3(\mathbb{R})$, definida por T(f) = f + f', para todo $f \in P_3(\mathbb{R})$, onde f' denota a derivada de f. É correto afirmar que

- **a.** $\dim(\operatorname{Ker} T) = 1$, e T é sobrejetora.
- **b.** *T* é injetora e sobrejetora.
- **c.** T é injetora, e dim(Ker T) = 1.
- **d.** $\dim(\text{Ker } T) = 1$, e $\dim(\text{Im } T) = 3$.
- **e.** T é injetora, e dim(Im T) = 2.

Questão 3. Seja E um espaço vetorial de dimensão finita com produto interno e seja Y um subespaço vetorial de E. Considere as seguintes afirmações:

- (I) Para qualquer $x \in E$, existem únicos $y \in Y$ e $z \in Y^{\perp}$ tais que x = y + z.
- (II) Se dim Y=3 e dim $Y^{\perp}=2$, então existe uma transformação linear $T\colon E\to E$ tal que Ker $T=Y^{\perp}$ e Im T=Y.
- (III) Se dim Y=1 e dim E=4, então existe uma transformação linear $T\colon E\to E$ tal que $\operatorname{Ker} T=\operatorname{Im} T=Y$.

Está correto o que se afirma em

- a. (II) e (III), apenas.
- **b.** (I), (II) e (III).
- **c.** (I), apenas.
- **d.** (I) e (III), apenas.
- e. (I) e (II), apenas.

Questão 4. Considere o espaço vetorial $M_2(\mathbb{R})$ munido do produto interno usual, ou seja,

$$\left\langle \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} \right\rangle = aa' + bb' + cc' + dd'$$

para todos $a,a',b,b',c,c',d,d'\in\mathbb{R}$. Seja $T\colon M_2(\mathbb{R})\to M_2(\mathbb{R})$ uma transformação linear que satisfaz

$$T\begin{pmatrix} 1 & -2 \\ -1 & 3 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \quad T\begin{pmatrix} -1 & 0 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

 \mathbf{e}

$$\operatorname{Im} T = \left[\begin{pmatrix} 4 & 1 \\ 2 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 2 & -3 \\ 2 & -2 \end{pmatrix} \right].$$

Assinale a alternativa correta acerca de *T*.

- **a.** Ker $T = (\text{Im } T)^{\perp}$.
- **b.** $(\operatorname{Im} T)^{\perp} \subset \operatorname{Ker} T$, mas $\operatorname{Ker} T \neq (\operatorname{Im} T)^{\perp}$.
- **c.** Ker $T \subset \text{Im } T$, mas Ker $T \neq \text{Im } T$.
- **d.** Ker $T \subset (\operatorname{Im} T)^{\perp}$, mas Ker $T \neq (\operatorname{Im} T)^{\perp}$.
- **e.** Ker $T = \operatorname{Im} T$.

Questão 5. Considere as seguintes afirmações acerca de um espaço vetorial E com produto interno \langle , \rangle :

- (I) Se $\{e_1, \ldots, e_n\}$ é uma base ortonormal de E e se, dado $x \in E$, temos $\langle x, e_i \rangle = 0$, para todo $i = 1, \ldots, n$, então $x = 0_E$.
- (II) Se Y e Z são subespaços vetoriais de E tais que $E=Y\oplus Z$, então $Z=Y^\perp$ e $Y=Z^\perp$.
- (III) Se Y e Z são subespaços vetoriais de E tais que $E = Y \oplus Z$, e se B e C são bases ortonormais de Y e de Z, respectivamente, então $B \cup C$ é uma base ortonormal E.

Está correto o que se afirma em

- a. (I) e (II), apenas.
- **b.** (I) e (III), apenas.
- c. (II) e (III), apenas.
- **d.** (I), apenas.
- e. (III), apenas.

Questão 6. Assinale a alternativa que contém a definição de uma função T que **NÃO** é uma transformação linear.

- **a.** $T: M_2(\mathbb{R}) \to M_2(\mathbb{R})$ dada por $T(A) = AA^t$, para toda $A \in M_2(\mathbb{R})$, onde A^t denota a matriz transposta de A.
- **b.** $T: \mathbb{R}^3 \to \mathbb{R}^3$, dada por $T(x,y,z) = \operatorname{proj}_Y(x,y,z)$, para todo $(x,y,z) \in \mathbb{R}^3$, onde $Y = \{(x,y,z) \in \mathbb{R}^3 \mid x+y+z=0\}$.
- **c.** $T: \mathbb{R}^2 \to \mathbb{R}^2$, dada por T(x,y) = (x+2y, x-4y), para todo $(x,y) \in \mathbb{R}^2$.
- **d.** $T: P(\mathbb{R}) \to P(\mathbb{R})$, dada por T(p) = 2p + p', para todo $p \in P(\mathbb{R})$, onde p' denota a derivada de p.
- **e.** $T: \mathscr{C}([0,2]) \to \mathbb{R}$, dada por $T(f) = f(1) + \int_0^2 f(t)dt$, para toda $f \in \mathscr{C}([0,2])$.

Questão 7. Seja V um espaço vetorial de dimensão finita com produto interno e seja S um subespaço vetorial de V. Assinale a alternativa correta acerta do operador linear $T\colon V\to V$ definido por $T(v)=\operatorname{proj}_S v$, para todo $v\in V$.

- **a.** Ker T = S e Im $T = S^{\perp}$.
- **b.** Ker T = Im T = S.
- **c.** $V \neq \operatorname{Ker} T + \operatorname{Im} T$ e $\operatorname{Ker} T \cap \operatorname{Im} T \neq \{0_V\}$.
- **d.** Ker $T \cap \operatorname{Im} T = \{0_V\}$ e $V \neq \operatorname{Ker} T + \operatorname{Im} T$.
- **e.** Ker $T = S^{\perp}$ e Im T = S.

Questão 8. Seja E um espaço vetorial com produto interno \langle , \rangle e seja $\| \|$ a norma associada. Considere as seguintes afirmações:

- (I) $-\|x\|\|y\| \le \langle x, y \rangle$ para todos x, y em E.
- (II) $\langle x, y \rangle \le ||x|| ||y||$ para todos x, y em E.
- (III) Se x e y são vetores não nulos de E que satisfazem $\langle x,y\rangle=0$, então $\{x,y\}$ é linearmente independente.

Está correto o que se afirma em

- a. (I) e (II), apenas.
- **b.** (I), (II) e (III).
- c. (II), apenas.
- **d.** (I) e (III), apenas.
- e. (II) e (III), apenas.

Questão 9. Se $T: \mathbb{R}^3 \to \mathbb{R}^4$ é a transformação linear definida por

$$T(x,y,z) = (x,2x + y - z, -x, x + y + z),$$

para todo $(x, y, z) \in \mathbb{R}^3$, então dim $(\operatorname{Im} T)$ e dim $(\operatorname{Ker} T)$ são iguais a, respectivamente,

- **a.** 3 e 1.
- **b.** 2 e 1.
- **c.** 3 e 0.
- **d.** 1 e 2.
- **e.** 2 e 0.

Questão 10. Considere o espaço vetorial $\mathscr{C}([-\pi,\pi])$ munido do produto interno

$$\langle f, g \rangle = \int_{-\pi}^{\pi} f(t)g(t)dt,$$

para todos $f,g\in \mathscr{C}([-\pi,\pi])$. Então, a melhor aproximação afim g (ou seja, da forma g(t)=at+b, com $a,b\in\mathbb{R}$) da função $f(t)=\sin t$ em $[-\pi,\pi]$ é

- **a.** $g(t) = -\frac{1}{\pi^2}t$ **b.** $g(t) = \frac{3}{\pi^2}t$ **c.** $g(t) = \frac{2}{\pi^2}t \frac{1}{\pi}$ **d.** $g(t) = -\frac{2}{\pi^2}t + \frac{1}{\pi}$ **e.** $g(t) = \frac{1}{\pi^2}t$

Questão 11. Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ a transformação linear tal que T(2,3) = (4,6) e T(1,1) = (2,-1). Se T(x,y) = (a,b), então a+b é igual a

- **a.** -7x 8y.
- **b.** 11x 8y.
- **c.** 11x + 8y.
- **d.** -11x 8y.
- **e.** -7x + 8y.

Questão 12. Seja $T \colon P_3(\mathbb{R}) \to M_2(\mathbb{R})$ a transformação linear definida por

$$T(a+bt+ct^2+dt^3) = \begin{pmatrix} 2a+5b-c & -a-3b+c+d \\ a+2c+5d & 3a+7b-c+d \end{pmatrix},$$

para todos $a,b,c,d\in\mathbb{R}$. Então, $\dim(\ker T)$ e $\dim(\operatorname{Im} T)$ são iguais a, respectivemente,

- **a.** 2 e 2.
- **b.** 3 e 1.
- **c.** 1 e 3.
- **d.** 0 e 4.
- **e.** 1 e 2.

Questão 13. Dado um espaço vetorial *V*, sabe-se que uma função

$$\langle , \rangle \colon V \times V \to \mathbb{R}$$

é um produto interno se, e somente se, estiverem satisfeitas:

- (i) $\langle u, v \rangle = \langle v, u \rangle$, para todos $u, v \in V$;
- (ii) $\langle u+v,w\rangle=\langle u,w\rangle+\langle v,w\rangle$, para todos $u,v,w\in V$;
- (iii) $\langle \lambda u, v \rangle = \lambda \langle u, v \rangle$, para todo $\lambda \in \mathbb{R}$ e todos $u, v \in V$; e
- (iv) para todo $u \in V$, $\langle u, u \rangle \geq 0$ e $\langle u, u \rangle = 0_V$ se, e somente se, $u = 0_V$.

Se $V=\mathbb{R}^2$, a respeito da função $\langle\;,\;\rangle\colon\mathbb{R}^2\times\mathbb{R}^2\to\mathbb{R}$, dada por

$$\langle (\alpha_1, \alpha_2), (\beta_1, \beta_2) \rangle = \det \begin{pmatrix} \alpha_1 & \alpha_2 \\ \beta_1 & \beta_2 \end{pmatrix},$$

para todos (α_1, α_2) , $(\beta_1, \beta_2) \in \mathbb{R}^2$, é correto afirmar que \langle , \rangle

- **a.** é um produto interno em \mathbb{R}^2 .
- **b.** não satisfaz (i) nem (iv).
- c. não satisfaz (ii) nem (iv).
- **d.** satisfaz (i) e (ii), apenas.
- e. satisfaz (ii) e (iv), apenas.

Questão 14. Considere o espaço vetorial $P_2(\mathbb{R})$ munido do produto interno

$$\langle p,q\rangle = \int_0^1 p(t)q(t)dt,$$

para todos $f,g \in P_2(\mathbb{R})$. Considere, em $P_2(\mathbb{R})$, o seguinte subespaço vetorial:

$$V = \{ p \in P_2(\mathbb{R}) : p(1) = p(-1) \}.$$

Então, uma base ortonormal de V é

- **a.** $\left\{1, \frac{3\sqrt{5}}{2}t^2\right\}$.
- **b.** $\left\{1, \frac{3\sqrt{5}}{2}\left(t^2 \frac{1}{3}\right)\right\}$.
- **c.** $\{1, 2t, \frac{3\sqrt{5}}{2}(t^2 \frac{1}{3})\}.$
- **d.** $\left\{\frac{3\sqrt{5}}{2}, 2t, t^2 \frac{1}{3}\right\}$.
- **e.** $\left\{\frac{3\sqrt{5}}{2}, t^2 \frac{1}{3}\right\}$.

Questão 15. Considere as afirmações abaixo.

- (I) Existe um operador linear $T\colon \mathbb{R}^3 \to \mathbb{R}^3$ que é injetor mas não é sobrejetor.
- (II) Existe uma transformação linear $T\colon P_4(\mathbb{R})\to M_{2\times 3}(\mathbb{R})$ sobrejetora.
- (III) Para todo n>0, existe uma transformação linear $T\colon \mathscr{C}([0,1])\to\mathbb{R}^n$ injetora.

A respeito dessas afirmações, é correto afirmar que

- a. apenas (II) e (III) são falsas.
- **b.** apenas (III) é falsa.
- c. apenas (I) e (III) são falsas.
- **d.** apenas (II) é falsa.
- e. (I), (II) e (III) são falsas.

Questão 16. Sejam V e W os subespaços vetoriais de $P_3(\mathbb{R})$ definidos por

$$V = [1 + t^2, t + t^2, 1 - t]$$
 e $W = [t, t^3]$.

Então, $\dim(V \cap W)$ e $\dim(V + W)$ são iguais a, respectivamente,

- **a.** 1 e 4.
- **b.** 0 e 4.
- **c.** 2 e 2.
- **d.** 0 e 3.
- **e.** 1 e 3.

Gabarito do Aluno

Nome:	NUSP:	
Tipo de prova:		

	a	b	c	d	e
Questão					
1					
2					
3					
4					
5					
6					
7					
8				H	H
9				H	H
10					
11					
12					
13	\vdash		\vdash	H	\vdash
14					
15	H		\vdash	H	\vdash
	\vdash			H	
16					