- **Q1.** Seja V um espaço vetorial real de dimensão finita munido de um produto interno. Sejam $T:V\to V$ um operador linear simétrico e W um subespaço de V tal que $T(w)\in W$, para todo $w\in W$. Suponha que $W\neq V$ e que $v\in V$ é tal que $W^{\perp}=[v]$. Pode-se afirmar que:
- (a) v é um autovetor de T;
- (b) v é um autovetor de T se, e somente se, T(v) = -v;
- (c) v é um autovetor de T se, e somente se, T(v) = v;
- (d) v é um autovetor de T se, e somente se, T^2 é igual ao operador identidade de V:
- (e) v é um autovetor de T se, e somente se, $T^2 = T$.
- **Q2.** Considere o espaço vetorial \mathbb{R}^3 munido do seu produto interno usual e seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ um operador linear simétrico. Suponha que o polinômio característico de T seja $p_T(t) = -(t-2)^2(t-3)$ e que

$$Ker(T - 2I) = [(1, -1, 0), (1, 0, 1)],$$

onde I denota o operador identidade de $\mathbb{R}^3.$ Temos que T(2,2,-2) é igual a:

- (a) (-6,6,-6);
- (b) (6,6,-6);
- (c) (2,2,-2);
- (d) (-4, 4, -4);
- (e) (4, 4, -4).
- Q3. Considere a matriz:

$$A = \begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix}.$$

Temos que A^{60} é igual a:

- (a) $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$;
- (b) $\begin{pmatrix} \left(\frac{\sqrt{3}}{2}\right)^{60} & \left(-\frac{1}{2}\right)^{60} \\ \left(\frac{1}{2}\right)^{60} & \left(\frac{\sqrt{3}}{2}\right)^{60} \end{pmatrix}$;
- (c) $\left(\frac{\sqrt{3}}{2}\right)^{60} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$;
- $(d) \ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix};$
- (e) $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$.

Q4. Seja $a \in \mathbb{R}$ tal que a matriz

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 3 & a & 2 \end{pmatrix}$$

seja diagonalizável. Considere a solução X do sistema de equações diferenciais X'(t)=AX(t) satisfazendo a condição X(0)=(0,1,1). Se

$$X(t) = (x(t), y(t), z(t)),$$

então x(t) + y(t) + z(t) é igual a:

- (a) $3e^t e^{2t}$;
- (b) $2e^{2t}$;
- (c) $e^t + e^{2t}$;
- (d) $2e^t$;
- (e) $3e^{2t} e^t$.

Q5. Sejam $a, b, p, E, F, G \in \mathbb{R}$ e considere a cônica de equação:

$$ax^2 + by^2 + 2pxy + Ex + Fy + G = 0.$$

Suponha que a mudança de variáveis

$$\begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix}$$

transforme essa equação em:

$$2u^2 - v^2 + \alpha u + \beta v + \gamma = 0,$$

onde $\alpha, \beta, \gamma \in \mathbb{R}$. Considere a solução X do sistema de equações diferenciais

$$X'(t) = \begin{pmatrix} a & p \\ p & b \end{pmatrix} X(t)$$

que satisfaz a condição X(0)=(2,0). Temos que $2X(\ln 2)$ é igual a:

- (a) (15, 17);
- (b) (0,4);
- (c) (-3, -5);
- (d) (1,3);
- (e) (9,7).

 ${\bf Q6.}$ Seja fixado um sistema de coordenadas ortogonal no plano. Considere a equação:

$$x^2 - 2axy + y^2 - 1 = 0,$$

onde $a \in \mathbb{R}$. Assinale a alternativa correta:

- (a) se a > 0, então o conjunto solução dessa equação não é uma elipse;
- (b) se a>2, então o conjunto solução dessa equação é um par de retas concorrentes;
- (c) se $0 < a < \frac{1}{2}$, então o conjunto solução dessa equação é uma elipse;
- (d) se $\frac{1}{2} < a < 2$, então o conjunto solução dessa equação é uma hipérbole;
- (e) existe a>0 tal que o conjunto solução dessa equação é uma parábola.
- Q7. O polinômio característico da matriz

$$A = \begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

é $p_A(t) = -(t-2)^2(t+1)$ e o autoespaço de A correspondente ao autovalor 2 é [(-1,1,0),(1,0,1)]. Considere a quádrica de equação:

$$x^{2} + y^{2} + z^{2} - 2xy + 2xz + 2yz + 2x - 2y + 1 = 0.$$

Se $\alpha \in \mathbb{R}$ é tal que

$$2u^2 + 2v^2 - w^2 = \alpha$$

é uma equação reduzida para essa quádrica, então α é igual a:

- (a) 0;
- (b) -1;
- (c) 1;
- (d) -2;
- (e) 2.

Q8. Seja fixado um sistema de coordenadas ortogonal no plano. Seja $d \in \mathbb{R}$ e considere a equação:

$$9x^2 + 6y^2 - 4xy - 12x - 4y - 8 + d = 0.$$

Se d < 14, então o conjunto solução dessa equação é:

- (a) o conjunto vazio;
- (b) um par de retas concorrentes;
- (c) uma parábola;
- (d) uma hipérbole;
- (e) uma elipse.

Q9. Seja $A \in M_4(\mathbb{R})$ uma matriz tal que 1+i seja um autovalor de A e tal que o autoespaço de A correspondente a esse autovalor seja igual a:

$$[(1, i, 0, 0), (0, 0, 1, 2 - i)].$$

Considere a solução X do sistema de equações diferenciais X'(t) = AX(t) satisfazendo a condição X(0) = (0, 1, 0, 1). Temos que $X(\pi)$ é igual a:

- (a) $e^{\pi}(0,-1,0,-1)$;
- (b) $e^{\pi}(1,0,-1,0);$
- (c) $e^{2\pi}(0,1,0,-1)$;
- (d) $e^{\pi}(-1, -1, 0, 0)$;
- (e) $e^{2\pi}(-1,0,0,1)$.

Q10. Seja $T: \mathbb{C}^2 \to \mathbb{C}^2$ um operador linear e seja $A = [T]_{\operatorname{can}}$ a matriz que representa T em relação à base canônica do espaço vetorial complexo \mathbb{C}^2 . Suponha que A tenha entradas reais e que $\operatorname{Ker}(T-(2+i)\mathrm{I})=[(i,1)]$, onde I denota o operador identidade de \mathbb{C}^2 . Temos que $\det(A)$ é igual a:

- (a) 0;
- (b) -5;
- (c) -1;
- (d) 5;
- (e) 1.

Q11. Seja V um espaço vetorial real de dimensão finita munido de um produto interno e seja $T:V\to V$ um operador linear simétrico tal que $T^2=T$. Denote por I o operador identidade de V. Pode-se afirmar que:

- (a) $\left(\operatorname{Ker}(T)\right)^{\perp}$ não é um autoespaço de T;
- (b) $(\text{Ker}(T))^{\perp}$ é igual a Ker(T);
- (c) $(Ker(T))^{\perp}$ é igual a Ker(T+I);
- (d) $(Ker(T))^{\perp}$ é igual a Ker(T I);
- (e) $(\operatorname{Ker}(T))^{\perp}$ é igual a V.

Q12. Sejam n um inteiro positivo, $T:\mathbb{C}^n\to\mathbb{C}^n$ um operador linear e seja $A=[T]_{\operatorname{can}}$ a matriz que representa T em relação à base canônica do espaço vetorial complexo \mathbb{C}^n . Suponha que a matriz A tenha entradas reais. Seja $\lambda=a+bi\in\mathbb{C}$ um autovalor de T, onde $a,b\in\mathbb{R}$ e $b\neq 0$. Seja $w=u+vi\in\mathbb{C}^n$ um autovetor de T correspondente ao autovalor λ , onde $u,v\in\mathbb{R}^n$. Considere as seguintes afirmações:

- (I) T tem pelo menos um autovalor real;
- (II) T é diagonalizável;
- (III) no espaço vetorial real $\mathbb{R}^n,$ o conjunto $\{u,v\}$ é linearmente independente.

Assinale a alternativa correta:

- (a) apenas a afirmação (II) é necessariamente verdadeira;
- (b) apenas a afirmação (III) é necessariamente verdadeira;
- (c) apenas as afirmações (I) e (III) são necessariamente verdadeiras;
- (d) todas as afirmações são necessariamente verdadeiras;
- (e) apenas a afirmação (I) é necessariamente verdadeira.
- **Q13.** Seja $A \in M_3(\mathbb{R})$ uma matriz simétrica tal que

$$A \begin{pmatrix} -3 & 1\\ 0 & 1\\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0\\ 0 & 0\\ 0 & 0 \end{pmatrix}$$

e suponha que A possua um autovalor não nulo $\lambda \in \mathbb{R}$. O autoespaço de A correspondente ao autovalor λ é igual a:

- (a) [(1,-1,3)];
- (b) [(11,0,0)];
- (c) $\{0\}$;
- (d) [(-2,1,1)];
- (e) [(-3,0,1),(1,1,0)].

Q14. Seja (x(t), y(t)) a solução do sistema de equações diferenciais

$$\begin{cases} x'(t) = 3x(t) + 4y(t), \\ y'(t) = 4x(t) + 9y(t), \end{cases}$$

satisfazendo a condição (x(0), y(0)) = (-2, 1). Temos que x(t) + 2y(t) é igual a:

- (a) 0;
- (b) $e^{-t} + 3e^{11t}$;
- (c) $2e^t + e^{-11t}$;
- (d) $e^t + 2e^{3t}$;
- (e) $e^{-t} + 2e^t$.

Q15. Seja V um espaço vetorial real de dimensão finita munido de um produto interno. Seja W um subespaço não nulo de V tal que $W \neq V$ e seja $T: V \to V$ o operador linear definido por:

$$T(v) = -v + 2\operatorname{proj}_W v,$$

para todo $v \in V$. Considere as seguintes afirmações:

- (I) o operador T é simétrico;
- (II) os autovalores de T são 1 e -1;
- (III) os autovalores de T são 2 e 1.

Assinale a alternativa correta:

- (a) apenas as afirmações (I) e (III) são necessariamente verdadeiras;
- (b) apenas a afirmação (II) é necessariamente verdadeira;
- (c) apenas a afirmação (I) é necessariamente verdadeira;
- (d) apenas as afirmações (I) e (II) são necessariamente verdadeiras;
- (e) apenas a afirmação (III) é necessariamente verdadeira.

- **Q16.** Seja n um inteiro positivo e sejam $A, M \in M_n(\mathbb{R})$. Considere as seguintes afirmações:
 - (I) se A é simétrica e $M^{\rm t}AM$ é diagonal, então $M^{\rm t}M$ é igual à matriz identidade;
 - (II) se $M^{\rm t}M$ é igual à matriz identidade, então as colunas de M constituem uma base ortonormal de \mathbb{R}^n com respeito ao produto interno usual;
 - (III) se A é diagonalizável sobre \mathbb{R} , então existe uma matriz $P \in M_n(\mathbb{R})$ com $\det(P) = 1$ tal que $P^{-1}AP$ seja uma matriz diagonal.

Assinale a alternativa correta:

- (a) apenas as afirmações (II) e (III) são necessariamente verdadeiras;
- (b) apenas a afirmação (II) é necessariamente verdadeira;
- (c) apenas as afirmações (I) e (II) são necessariamente verdadeiras;
- (d) apenas as afirmações (I) e (III) são necessariamente verdadeiras;
- (e) apenas a afirmação (III) é necessariamente verdadeira.