Q1. Considere o subespaço S de $M_2(\mathbb{R})$ definido por:

$$S = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{R}) : a + 2b + 2c + 2d = 0 \text{ e } a + 2b + c + 2d = 0 \right\}.$$

Assinale a alternativa correspondente a uma base de $M_2(\mathbb{R})$ em que os primeiros vetores formam uma base de S:

(a)
$$\left\{ \begin{pmatrix} -2 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -2 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \right\};$$

(b)
$$\left\{ \begin{pmatrix} 8 & 12 \\ -6 & 1 \end{pmatrix}, \begin{pmatrix} 4 & -4 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} -2 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \right\};$$

$$(c) \ \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\};$$

$$(d) \ \left\{ \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix}, \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} -2 & 1 \\ 0 & 0 \end{pmatrix} \right\};$$

(e)
$$\left\{ \begin{pmatrix} -2 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -2 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 1 & 0 \end{pmatrix} \right\}.$$

 ${\bf Q2.}$ Sejam Vum espaço vetorial e Sum subespaço de V. Considere as seguintes afirmações:

- (I) se V tem dimensão finita, então toda base de S está contida numa base de V;
- (II) dados $u_1, \ldots, u_k \in V$, se todo elemento de S é combinação linear dos vetores u_1, \ldots, u_k , então S é o subespaço gerado por $\{u_1, \ldots, u_k\}$;
- (III) se q é o número de elementos de um conjunto de geradores de V e p é o número de elementos de um subconjunto linearmente independente de V, então $p \leq q$.

Assinale a alternativa correta:

- (a) apenas as afirmações (I) e (III) são necessariamente verdadeiras;
- (b) apenas as afirmações (II) e (III) são necessariamente verdadeiras;
- (c) apenas a afirmação (III) é necessariamente verdadeira;
- (d) apenas as afirmações (I) e (II) são necessariamente verdadeiras;
- (e) todas as afirmações são necessariamente verdadeiras.

Q3. A soma das coordenadas do vetor $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ relativamente à base:

$$\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 2 & -1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \right\}$$

do espaço vetorial $M_2(\mathbb{R})$ é igual a:

- (a) 2;
- (b) 0;
- (c) -1;
- (d) -2;
- (e) 1.

Q4. Seja V um espaço vetorial de dimensão maior ou igual a 5 e sejam $A = \{v_1, v_2, v_3\}$ e $B = \{w_1, w_2\}$ subconjuntos de V. Suponha que $A \cup B$ gere V. Assinale a alternativa correta:

- (a) o subespaço $[v_1, v_2, v_3] \cap [w_1, w_2]$ tem dimensão maior ou igual a 1;
- (b) o conjunto A é linearmente independente;
- (c) o conjunto $A \cup B$ pode ser linearmente dependente;
- (d) a interseção $A \cap B$ pode não ser vazia;
- (e) w_1 pertence ao subespaço gerado por A.

Q5. Sejam S_1 e S_2 subespaços de um espaço vetorial V. Pode-se afirmar que:

- (a) $S_1 \cup S_2$ é um subespaço de $S_1 + S_2$;
- (b) $S_1 + S_2$ é um subespaço de $S_1 \cap S_2$;
- (c) $S_1 \cup S_2$ é um subespaço de V;
- (d) $S_1 \cap S_2$ não é um subespaço de S_1 ;
- (e) S_1 e S_2 são subespaços de $S_1 + S_2$.

Q6. Considere o subespaço S de \mathbb{R}^4 definido por:

$$S = [(1, -2, 1, 3), (2, 1, -1, -2), (0, -5, 3, 8), (-1, -3, 2, 4), (5, 0, -1, -1)].$$

Uma base para S é:

- (a) $\{(1,-2,1,3),(2,1,-1,-2),(0,-5,3,8),(-1,-3,2,4)\}$;
- (b) $\{(2,1,-1,-2),(0,-5,3,8),(5,0,-1,-1)\};$
- (c) $\{(2,1,-1,-2),(0,-5,3,8),(-1,-3,2,4),(5,0,-1,-1)\};$
- (d) $\{(1,-2,1,3),(2,1,-1,-2),(5,0,-1,-1)\};$
- (e) $\{(1,-2,1,3),(2,1,-1,-2),(-1,-3,2,4)\}.$

Q7. Seja V um espaço vetorial de dimensão 3 e seja $\{v_1, v_2, v_3\}$ uma base de V. Considere o conjunto $A = \{v_1, v_1 + v_2, v_1 + v_2 + v_3\}$. Pode-se afirmar que:

- (a) A não gera V;
- (b) A é uma base de V;
- (c) A é linearmente dependente;
- (d) o subespaço gerado por A tem dimensão 2;
- (e) $\dim([v_1, v_1 + v_2] \cap [v_1 + v_2, v_1 + v_2 + v_3]) = 2.$

Q8. Seja $c \in \mathbb{R}$ e considere o subconjunto A de \mathbb{R}^4 definido por:

$$A = \{(1,0,-1,1), (0,-1,1,1), (2,1,c,1)\}.$$

Temos que o conjunto A está contido numa base de \mathbb{R}^4 se, e somente se:

- (a) $c \neq -3$;
- (b) $c \neq -4$;
- (c) $c \neq 1$;
- (d) $c \neq 0$;
- (e) $c \neq -1$.

Q9. Considere as funções $f_i: \mathbb{R} \to \mathbb{R}, i = 1, 2, \dots, 6$, definidas por:

$$f_1(x) = 1$$
, $f_2(x) = \cos x$, $f_3(x) = \sin x - \cos x$, $f_4(x) = \sin(2x)$, $f_5(x) = 2\sin x$, $f_6(x) = \cos(2x)$,

para todo $x \in \mathbb{R}$. Seja V o espaço vetorial de todas as funções $f: \mathbb{R} \to \mathbb{R}$. A dimensão do subespaço $[f_1, f_2, f_3, f_4, f_5, f_6]$ de V é igual a:

- (a) 6;
- (b) 3;
- (c) 2;
- (d) 5;
- (e) 4.

- **Q10.** Sejam S_1 e S_2 subespaços de um espaço vetorial V. Sejam \mathcal{B}_1 e \mathcal{B}_2 bases de S_1 e de S_2 , respectivamente. Considere as seguintes afirmações:
 - (I) $\mathcal{B}_1 \cap \mathcal{B}_2$ é uma base de $S_1 \cap S_2$;
 - (II) $\mathcal{B}_1 \cup \mathcal{B}_2$ é uma base de $S_1 + S_2$;
 - (III) toda base de V contém alguma base de S_1 .

Assinale a alternativa correta:

- (a) apenas a afirmação (I) é necessariamente verdadeira;
- (b) apenas a afirmação (II) é necessariamente verdadeira;
- (c) nenhuma das afirmações é necessariamente verdadeira;
- (d) apenas as afirmações (II) e (III) são necessariamente verdadeiras;
- (e) apenas a afirmação (III) é necessariamente verdadeira.
- **Q11.** Seja V um espaço vetorial e considere as seguintes afirmações:
 - (I) se A é um conjunto de geradores de V e se $u \in V$ não pertence a A, então o conjunto $A \cup \{u\}$ é linearmente dependente;
 - (II) se V tem dimensão finita e igual a n, então todo subconjunto de V com n elementos é linearmente independente;
 - (III) se $A = \{u_1, \ldots, u_p\}$ e $B = \{v_1, \ldots, v_q\}$ são subconjuntos linearmente independentes de V tais que $[u_1, \ldots, u_p] \cap [v_1, \ldots, v_q] = \{0\}$, então o conjunto $A \cup B$ é linearmente independente.

Assinale a alternativa correta:

- (a) apenas a afirmação (I) é necessariamente verdadeira;
- (b) apenas as afirmações (I) e (II) são necessariamente verdadeiras;
- (c) todas as afirmações são necessariamente verdadeiras;
- (d) apenas as afirmações (II) e (III) são necessariamente verdadeiras;
- (e) apenas as afirmações (I) e (III) são necessariamente verdadeiras.

Q12. No conjunto $V = \mathbb{R}^2$, considere as operações \oplus e \odot definidas por:

$$(a_1,b_1) \oplus (a_2,b_2) = (a_1+a_2-1,b_1+b_2-1), \quad \alpha \odot (a,b) = (\alpha a,0),$$

para todos $(a_1, b_1), (a_2, b_2), (a, b) \in \mathbb{R}^2$ e todo $\alpha \in \mathbb{R}$. Assinale a alternativa correta:

- (a) o conjunto V, munido das operações \oplus e \odot , não é um espaço vetorial pois não satisfaz precisamente duas das oito propriedades que aparecem na definição usual de espaço vetorial;
- (b) o conjunto V, munido das operações \oplus e \odot , não é um espaço vetorial pois não satisfaz precisamente uma das oito propriedades que aparecem na definição usual de espaço vetorial;
- (c) o conjunto V, munido das operações \oplus e \odot , não é um espaço vetorial pois não satisfaz precisamente *quatro* das oito propriedades que aparecem na definição usual de espaço vetorial;
- (d) o conjunto V, munido das operações \oplus e \odot , não é um espaço vetorial pois não satisfaz precisamente $tr\hat{e}s$ das oito propriedades que aparecem na definição usual de espaço vetorial;
- (e) o conjunto V, munido das operações \oplus e \odot , é um espaço vetorial.

Q13. Seja $a \in \mathbb{R}$ e considere os polinômios:

$$p_1(t) = 1 - 2t + 3t^2$$
, $p_2(t) = -2 + t + t^2$, $p_3(t) = -5 + 4t - t^2$

e $q(t) = a - t + (13 + a)t^2$. Pode-se afirmar que:

- (a) $q \in [p_1, p_2, p_3]$ se, e somente se, a = -4;
- (b) $q \notin [p_1, p_2, p_3];$
- (c) $q \in [p_1, p_2, p_3]$ se, e somente se, $a = \frac{4}{3}$;
- (d) $q \in [p_1, p_2, p_3];$
- (e) $q \in [p_1, p_2, p_3]$ se, e somente se, $a = \frac{7}{3}$.

Q14. Sejam $a, b \in \mathbb{R}$ e considere o subconjunto A de $P_2(\mathbb{R})$ definido por:

$$A = \{1 + ax, b + x + x^2, 2 + 2x + 2ax^2\}.$$

Temos que A é linearmente independente se, e somente se:

- (a) $a \neq 0$ ou $b \neq 0$;
- (b) $ab + 1 \neq 2a$;
- (c) $a^2b + 1 \neq 2a$;
- (d) $a + b \neq a^2$;
- (e) $a \neq 0$ e $b \neq 0$.

Q15. Considere os subespaços S_1 e S_2 de $M_2(\mathbb{R})$ definidos por:

$$S_1 = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{R}) : b + 2c + 3d = 0 \right\},$$
$$S_2 = \left\{ \begin{pmatrix} \alpha & 0 \\ \beta & 0 \end{pmatrix} : \alpha, \beta \in \mathbb{R} \right\}.$$

Assinale a alternativa correta:

- (a) $\dim(S_1 + S_2) = 3 \text{ e } \dim(S_1 \cap S_2) = 1;$
- (b) $\dim(S_1 + S_2) = 2 \text{ e } \dim(S_1 \cap S_2) = 2;$
- (c) $S_1 + S_2 = M_2(\mathbb{R}) \text{ e dim}(S_1 \cap S_2) = 1;$
- (d) $S_1 + S_2 = M_2(\mathbb{R}) \text{ e dim}(S_1 \cap S_2) = 2;$
- (e) $\dim(S_1 + S_2) = 3$ e $\dim(S_1 \cap S_2) = 2$.

Q16. Considere as seguintes afirmações:

- (I) para qualquer $A \in M_n(\mathbb{R})$, vale que $\{X \in M_n(\mathbb{R}) : AX = XA\}$ é um subespaço de $M_n(\mathbb{R})$;
- (II) se $A = \{u_1, \dots, u_q\}$ é um subconjunto linearmente dependente de um espaço vetorial, então todo elemento de A é combinação linear dos outros elementos de A;
- (III) dados um espaço vetorial V, vetores distintos $u_1, u_2, u_3 \in V$ e um escalar $\alpha \in \mathbb{R}$, se o conjunto $\{u_1, u_2, u_3\}$ é linearmente independente, então o conjunto $\{u_1, u_2 + \alpha u_1, u_3\}$ também é linearmente independente.

Assinale a alternativa correta:

- (a) todas as afirmações são verdadeiras;
- (b) apenas a afirmação (I) é verdadeira;
- (c) apenas as afirmações (I) e (III) são verdadeiras;
- (d) apenas a afirmação (II) é verdadeira;
- (e) apenas a afirmação (III) é verdadeira.