Álgebra Linear I - Poli - Prova 2 Gabarito

2014

Questão 1. Pela fórmula da projeção ortogonal,

$$\operatorname{proj}_{\vec{u}}(\vec{u} + \vec{v} + \vec{w}) = \frac{(\vec{u} + \vec{v} + \vec{w}) \cdot \vec{u}}{\|\vec{u}\|^2} \vec{u} = \frac{\vec{u} \cdot \vec{u} + \vec{v} \cdot \vec{u} + \vec{w} \cdot \vec{u}}{\|\vec{u}\|^2} \vec{u}$$

$$=\frac{\|\vec{u}\|^2+0+\|\vec{w}\|\|\vec{u}\|\cos(\pi/3)}{\|\vec{u}\|^2}\vec{u}=\frac{\|\vec{u}\|^2+4\|\vec{u}\|^2\frac{1}{2}}{\|\vec{u}\|^2}\vec{u}=3\vec{u},$$

logo $\lambda = 3$.

Questão 2. Como

$$\operatorname{proj}_{\vec{w}}\vec{v} = \frac{\vec{v} \cdot \vec{w}}{\|w\|^2} \vec{w} = \frac{a - b + c}{1^2 + (-1)^2 + 1^2} \vec{w} = \frac{a - b + c}{3} \vec{w},$$

se $\mathrm{proj}_{\vec{w}}\vec{v}=\vec{w}$ deduzimos $\frac{a-b+c}{3}=1,$ logo

$$a-b+c=3$$
.

Questão 3. Observa que um vetor diretor da reta (AB) é $\vec{u}=\overrightarrow{AB}=(1,-2,-1)$. Logo uma equação vetorial da reta é

$$X = A + t\vec{u} = (1, 2, 0) + t(1, -2, -1)$$

e como D pertence a (AB),

$$D = (1 + t, 2 - 2t, -t)$$

para algum t. Além disso \overrightarrow{CD} é ortogonal à reta (AB), ou seja $\overrightarrow{CD} \cdot \vec{u} = 0$. Como

$$\overrightarrow{CD} = (t-1, 1-2t, -t-2)$$

deduzimos

$$(t-1) - 2(1-2t) - (-t-2) = 0$$

 $\log 6t - 1 = 0 e t = 1/6$. Logo

$$D = (7/6, 10/6, -1/6)$$

e a soma das coordenadas de D vale 16/6 = 8/3.

Questão 4. Como $\overrightarrow{CA} = (1, 1, -3), \overrightarrow{CB} = (2, 0, -2), \overrightarrow{CD} = (-2, 0, -4),$ o produto misto $[\overrightarrow{CA}, \overrightarrow{CB}, \overrightarrow{CD}]$ vale

$$\begin{vmatrix} 1 & 2 & -2 \\ 1 & 0 & 0 \\ -3 & -2 & -4 \end{vmatrix} = - \begin{vmatrix} 2 & -2 \\ -2 & -4 \end{vmatrix} = 12$$

O volume do tetraedro é

$$V = \frac{1}{6}|12| = 2.$$

Questão 5. O volume vale $V = |[\overrightarrow{BA}, \overrightarrow{BC}, \overrightarrow{BD}]| = |(\overrightarrow{BA} \wedge \overrightarrow{BC}) \cdot \overrightarrow{BD}|$

Como \overrightarrow{AB} e \overrightarrow{AC} são paralelos ao plano de equação x-y+z=0, um vetor normal ao plano que contém A,B,C é (1,-1,1). Segue que $\overrightarrow{u}=\overrightarrow{BA}\wedge\overrightarrow{BC}$ também é paralelo ao vetor (1,-1,1). Logo o ângulo ϕ entre \overrightarrow{u} e \overrightarrow{BD} é $\pi/3$ (se \overrightarrow{u} e (1,-1,1)) têm mesmo sentido) ou $2\pi/3$ (se têm sentidos opostos).

Logo

$$V = |\vec{u} \cdot \overrightarrow{BD}| = ||\vec{u}|| ||\overrightarrow{BD}|| |\cos \phi| = \frac{1}{2} ||\vec{u}||.$$

Como

$$\|\vec{u}\| = \|\overrightarrow{BA} \wedge \overrightarrow{BC}\| = \|\overrightarrow{BA}\| \|\overrightarrow{BC}\| \operatorname{sen}(\pi/3) = 4\frac{\sqrt{3}}{2} = 2\sqrt{3},$$

temos que $V = \frac{1}{2}2\sqrt{3} = \sqrt{3}$.

Questão 6. (I) falso:

$$(\vec{u} \wedge \vec{v}) \cdot \vec{w} = [\vec{u}, \vec{v}, \vec{w}] = -[\vec{v}, \vec{u} \, \vec{w}] = -(\vec{v} \wedge \vec{u}) \cdot \vec{w} = -\vec{w} \cdot (\vec{v} \wedge \vec{u}).$$

ou aplicar a regra dos 3 dedos e ver que se $\{\vec{u}, \vec{v}, \vec{w}\}$ é positiva então $\{\vec{w}, \vec{v}, \vec{u}\}$ é negativa.

(II) falso:

$$(\vec{w}-4\vec{v})\wedge\vec{u}=\vec{w}\wedge\vec{u}-4\vec{v}\wedge\vec{u}=-\vec{u}\wedge\vec{w}+4\vec{u}\wedge\vec{v}=-2\vec{t}+4\vec{t}=2\vec{t}$$

(III) falso: a fórmula correta é

$$\|\vec{u} \wedge \vec{v}\|^2 + (\vec{u} \cdot \vec{v})^2 = \|\vec{u}\|^2 \|\vec{v}\|^2$$

Questão 7. Calcula-se

$$\overrightarrow{AB} = (1, 1, 0),$$

e como $\overrightarrow{AD} = (2, 1, 2)$, tem-se

$$\overrightarrow{AC} = \frac{\vec{u} \cdot \overrightarrow{AD}}{\|\overrightarrow{AD}\|^2} \overrightarrow{AD} = \frac{(-2, -1, -1) \cdot (2, 1, 2)}{9} (2, 1, 2) = -\frac{7}{9} (2, 1, 2).$$

Logo a área do triângulo de vértices A, B, C vale

$$a = \frac{1}{2} \|\overrightarrow{AB} \wedge \overrightarrow{AC}\| = \frac{7}{18} \|(1,1,0) \wedge (2,1,2)\| = \frac{7}{18} \|(2,-2,1)\| = \frac{7}{18} 3 = \frac{7}{6}.$$

Questão 8. (I) falso: se $\vec{u} = 2\vec{v} + 2\vec{w}$ então \vec{u} é combinação linear de \vec{v} e \vec{w} , logo os três vetores são coplanares e o produto misto deve valer 0.

(II) verdadeiro: $[\vec{u}, \vec{v}, \vec{w}] = (\vec{u} \wedge \vec{v}) \cdot \vec{w}$. Como \vec{w} é ortogonal a \vec{u} e a \vec{v} , ele é paralelo a $\vec{u} \wedge \vec{v}$, ou seja faz um ângulo ϕ de 0 ou π com ele; logo o produto scalar $(\vec{u} \wedge \vec{v}) \cdot \vec{w}$ deles vale

$$[\vec{u}, \vec{v}, \vec{w}] = \|\vec{u} \wedge \vec{v}\| \|\vec{w}\| \cos(\phi) = \pm \|\vec{u} \wedge \vec{v}\| \|\vec{w}\|.$$

Como \vec{u} e \vec{v} são ortogonais (fazem um ângulo $\theta = \pi/2$),

$$\|\vec{u} \wedge \vec{v}\| = \|\vec{u}\| \|\vec{v}\| \operatorname{sen}\theta = \|\vec{u}\| \|\vec{v}\|.$$

Logo

$$|[\vec{u}, \vec{v}, \vec{w}]| = ||\vec{u} \wedge \vec{v}|| ||\vec{w}|| = ||\vec{u}|| ||\vec{v}|| ||\vec{w}||.$$

(III) verdadeiro: propriedade clássica do produto misto ou do determinante quando troca-se colunas.

$$[\vec{u}, \vec{v}, \vec{w}] = -[\vec{v}, \vec{u}, \vec{w}] = [\vec{v}, \vec{w}, \vec{u}].$$

Questão 9. O vetor diretor da primeira reta é: $\begin{pmatrix} \alpha \\ 1 \\ 1 \end{pmatrix} \land \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1-\alpha \\ -\alpha-1 \end{pmatrix}$.

O vetor diretor da segunda reta é: $\begin{pmatrix} 1 \\ -2 \\ \beta \end{pmatrix} \land \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -2 - \beta \\ -1 + \beta \\ 3 \end{pmatrix}.$

As retas são ortogonais se, e somente se, os vetores diretores das retas são ortogonais. Logo se, e

somente se,
$$0 = \begin{pmatrix} 2 \\ 1 - \alpha \\ -\alpha - 1 \end{pmatrix} \bullet \begin{pmatrix} -2 - \beta \\ -1 + \beta \\ 3 \end{pmatrix} = -4 - 2\beta - 1 + \beta + \alpha - \alpha\beta - 3\alpha - 3 = -8 - \beta - 2\alpha - \alpha\beta.$$

Questão 10. O vetor diretor da reta r é: $\vec{d} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \land \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \\ 2 \end{pmatrix}$.

O vetor normal do plano π é: $\vec{n} = \begin{pmatrix} 1 \\ -3 \\ -1 \end{pmatrix}$.

A reta é paralela ao plano se, e somente se, \vec{d} e \vec{n} são ortogonais. Mas isso é verdade pois $\vec{n} \cdot \vec{d} = 0$.

Para decidir se r está contida em π . Escolhemos um ponto qualquer de r. Por exemplo, o ponto P(6,0,-2) (que foi obtido fazendo y=0 nas equações que definem r e resolvendo o sistema em x e y).

O ponto P não é de π , pois as coordenadas de P não satisfazem x-3y-z=1. De fato $6-3\cdot 0-(-2)\neq 1$.

Questão 11. (I) Falso. $[\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{n}] = 0$, é equivalente a $[\overrightarrow{n}, \overrightarrow{AB}, \overrightarrow{AC}] = \overrightarrow{n} \cdot (\overrightarrow{AB} \wedge \overrightarrow{AC}) = 0$. Como $\overrightarrow{AB} \wedge \overrightarrow{AC}$ é o vetor normal de π , temos que de fato a condição $[\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{n}] = 0$ diz que os planos π e π' são perpendiculares.

(II) Verdadeiro. \overrightarrow{AB} e \overrightarrow{BC} são dois vetores não colineares e paralelos ao plano π . Logo $\overrightarrow{AB} \wedge \overrightarrow{BC}$ é um vetor normal de π . Como é normal a \overrightarrow{n} , temos que os planos π e π' são paralelos. A condição

 $[\overrightarrow{AB},\overrightarrow{AC},\overrightarrow{AD}]=0$ quer dizer que os vetores $\overrightarrow{AD},$ \overrightarrow{AB} e \overrightarrow{AC} são coplanares, logo D, um ponto de π' está em π . Assim π e π' são planos paralelos com um ponto em comum. Portanto são o mesmo plano.

(III) Verdadeiro. $\overrightarrow{AB} \wedge \overrightarrow{AC}$ é um vetor normal ao plano π . Dois planos são paralelos se, e somente se, os vetores normais são paralelos. E são perpendiculares se, e somente se, os vetores normais são ortogonais. Como o ángulo entre os vetores normais é 45 graus, temos que os planos não são nem paralelos nem perpendiculares.

Questão 12. O vetor diretor da reta procurada é paralelo ao vetor $\begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix} \land \begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ -1 \end{pmatrix}$.

Logo as únicas três alternativas são as retas com um vetor diretor paralelo a esse, isto é (a), (d), (e). Falta provar qual dessas retas contém o ponto P(1, 2, -1).

A reta (d) não contém o ponto P pois o sistema 1 = 4 + t, -1 = 3 + t é incompatível.

A reta (e) não contém o ponto P pois o sistema 1 = 4 - 3t, -1 = 2 - 3t é incompatível.

A reta (a) contém o ponto P(1, 2, -1) como se comprova para t = 1.

Questão 13. O vetor diretor de r é $\vec{d} = \begin{pmatrix} 1 - 0 \\ 3 - 5 \\ 1 - 1 \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}$. O vetor normal do plano π é

$$\vec{n} = \begin{pmatrix} 2\\1\\-1 \end{pmatrix}.$$

O vetor diretor da reta procurada é ortogonal a \vec{n} , pois está contida em π , e é ortogonal a \vec{d} , pois é perpendicular a r. Assim o vetor diretor da reta procurada é $\vec{e} = \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} \land \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix} = \begin{pmatrix} -2 \\ -1 \\ -5 \end{pmatrix}$.

Como a reta procurada passa pelo ponto (1,3,1), temos que uma equação vetorial da reta é:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix} + t \begin{pmatrix} -2 \\ -1 \\ -5 \end{pmatrix}.$$

Para t=2 obtemos que o ponto (-3,1,-9) pertence a essa reta.

Questão 14. Como a reta está contida em π , temos que o vetor diretor da reta $\vec{d} = \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}$ é

ortogonal ao vetor normal $\vec{n} = \begin{pmatrix} a+3 \\ -2 \\ -(1+a) \end{pmatrix}$ de π . Portanto $0 = \vec{d} \cdot \vec{n} = a+3+2-3-3a = 2-2a$.

Como a reta está contida em π , temos que $(a+3)(3+\lambda)-2(-\lambda)-(1+a)(5+3\lambda)=b$. Usando que a=1, obtemos que b=2. Assim temos que $a^2+b^2=5$.

Questão 15. O vetor diretor da primeira reta (vamos chamar ela de r) é: $\vec{d} = \begin{pmatrix} 4 \\ -4 \\ -2 \end{pmatrix}$.

O vetor diretor da segunda reta (vamos chamar ela de s) é: $\vec{e} = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} \land \begin{pmatrix} 1 \\ -1 \\ 4 \end{pmatrix} = \begin{pmatrix} 6 \\ -6 \\ -3 \end{pmatrix}$.

Vemos que $\vec{e} = \frac{3}{2}\vec{d}$. Logo os vetores diretores são paralelos, e portanto as retas são paralelas.

A distância de r a s então é a distância de um ponto de s à reta r. Seja P(-1,6,0) um ponto de s (obtido fazendo z=0 e resolvendo o sistema em $x \in y$). Consideremos os pontos A(-2,4,2) e (2,0,0) de r. Então

$$d(r,s) = d(r,P) = \frac{\|\overrightarrow{AB} \wedge \overrightarrow{AP}\|}{\|\overrightarrow{AB}\|}.$$

$$\overrightarrow{AB} \wedge \overrightarrow{AP} = \begin{pmatrix} 4 \\ -4 \\ -2 \end{pmatrix} \wedge \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix} = \begin{pmatrix} 12 \\ 6 \\ 12 \end{pmatrix}. \quad \|\overrightarrow{AB}\| = \begin{pmatrix} 4 \\ -4 \\ -2 \end{pmatrix}.$$

$$d(r,s) = d(r,P) = \frac{\|\overrightarrow{AB} \wedge \overrightarrow{AP}\|}{\|\overrightarrow{AB}\|} = \frac{\sqrt{12^2 + 12^2 + 12 \cdot 3}}{\sqrt{4^2 + 4^2 + 4}} = \frac{\sqrt{12 \cdot 3 \cdot 9}}{\sqrt{4 \cdot 9}} = 3.$$

Questão 16. Dado um ponto $P(x_0, y_0, z_0)$ e um vetor $\vec{n} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$, a equação geral do plano que passa por P e que tem vetor normal \vec{n} é $a(x-x_0)+b(y-y_0)+c(z-z_0)=0$.

O vetor normal do plano é
$$\vec{n} = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} \wedge \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \\ -3 \end{pmatrix}$$
.

A equação geral do plano π é : x-1-2(y+2)-3(z-1)=0. Logo x-2y-3z-2=0. Agora podemos aplicar a fórmula $d(P,\pi)=\frac{|ax_0+by_0+cz_0+d|}{\sqrt{a^2+b^2+c^2}}$ para a distância de um ponto $P(x_0,y_0,z_0)$ a um plano π : ax+by+cz+d=0. Assim, a distância pedida do ponto ao plano é $\frac{|1-2\cdot 1-3\cdot 3-2|}{\sqrt{1^2+(-2)^2+(-3)^2}}=\frac{12}{\sqrt{14}}$.