MAT2454 - Cálculo Diferencial e Integral para Engenharia II $2^{\underline{a}} \ {\rm lista} \ {\rm de \ exercícios} \ {\rm -2011}$

1. Ache as derivadas parciais de primeira ordem das funções:

(a)
$$f(x,y) = \arctan\left(\frac{y}{x}\right)$$
 (b) $f(x,y) = \ln(1 + \cos^2(xy^3))$

2. Seja $f:\mathbb{R}\to\mathbb{R}$ uma função derivável. Calcule as derivadas parciais de primeira ordem de:

(a)
$$u(x,y) = f\left(\frac{x}{y}\right)$$
 (b) $u(x,y) = f(ax + by)$, sendo $a \in b$ constantes.

3. Dada a função $f(x,y)=x(x^2+y^2)^{-\frac{3}{2}}\operatorname{e}^{\operatorname{sen}\,(x^2y)},$ ache $\frac{\partial f}{\partial x}(1,0).$

Sugestão: Neste caso, usar a definição de derivada parcial é menos trabalhoso do que aplicar as regras de derivação.

4. Verifique que a função $u(x,y)=\ln\sqrt{x^2+y^2}$ é solução da equação de Laplace bidimensional

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0.$$

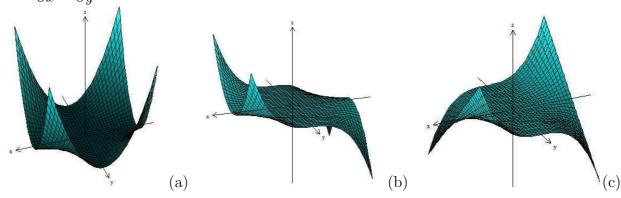
5. Sejam f e g funções de $\mathbb R$ em $\mathbb R$, deriváveis até $2^{\underline a}$ ordem.

(a) Mostre que
$$u(x,t) = f(x+ct) + g(x-ct)$$
 satisfaz a equação $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$.

(b) Mostre que u(x,y)=xf(x+y)+yg(x+y) é solução da equação

$$\frac{\partial^2 u}{\partial x^2} - 2\frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y^2} = 0.$$

6. As superfícies abaixo são os gráficos de uma função $f: \mathbb{R}^2 \to \mathbb{R}$ e de suas derivadas parciais $\frac{\partial f}{\partial x}$ e $\frac{\partial f}{\partial y}$. Identifique cada superfície e justifique sua resposta.



7. Sejam $f(x,y)=(x^2+y^2)^{\frac{2}{3}}$ e $g(x,y)=|xy|^{\frac{5}{4}}$. Mostre que f e g são de classe \mathcal{C}^1 em \mathbb{R}^2 .

8. Seja
$$f(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^4} + \operatorname{sen}(x+3y), & \text{se} \quad (x,y) \neq (0,0); \\ 0, & \text{se} \quad (x,y) = (0,0). \end{cases}$$

- (a) Mostre que as derivadas parciais $\frac{\partial f}{\partial x}$ e $\frac{\partial f}{\partial y}$ existem em todos os pontos.
- (b) f é contínua em (0,0)?
- (c) f é diferenciável em (0,0)?

9. Seja
$$f(x,y) = \begin{cases} \frac{x^3}{x^2 + y^2}, & \text{se } (x,y) \neq (0,0); \\ 0, & \text{se } (x,y) = (0,0). \end{cases}$$

- (a) Mostre que f é contínua em (0,0).
- (b) Calcule $\frac{\partial f}{\partial x}(0,0)$ e $\frac{\partial f}{\partial y}(0,0)$.
- (c) É f diferenciável em (0,0)?
- (d) São $\frac{\partial f}{\partial x}$ e $\frac{\partial f}{\partial y}$ contínuas em (0,0)?

10. Considere
$$f(x,y) = \begin{cases} (x^2 + y^2) \operatorname{sen}\left(\frac{1}{\sqrt{x^2 + y^2}}\right), & \text{se } (x,y) \neq (0,0); \\ 0, & \text{se } (x,y) = (0,0). \end{cases}$$

- (a) Mostre que f é diferenciável em (0,0).
- (b) As derivadas parciais $\frac{\partial f}{\partial x}$ e $\frac{\partial f}{\partial y}$ são contínuas em (0,0)?

11. Seja
$$f(x,y) = \begin{cases} \frac{x^2 \operatorname{sen}((x^2 + y^2)^2)}{x^2 + y^2}, & \operatorname{se}(x,y) \neq (0,0); \\ 0, & \operatorname{se}(x,y) = (0,0). \end{cases}$$

- (a) Verifique que f é contínua em (0,0).
- (b) Determine $\frac{\partial f}{\partial y}(x,y)$, para todo $(x,y) \in \mathbb{R}^2$.
- (c) A função $\frac{\partial f}{\partial y}$ é contínua em (0,0)? Justifique sua resposta.
- (d) A função f é diferenciável em (0,0)? Justifique sua resposta.

12. Seja
$$f(x,y) = \begin{cases} xy \frac{x^2 - y^2}{x^2 + y^2}, & \text{se } (x,y) \neq (0,0); \\ 0, & \text{se } (x,y) = (0,0). \end{cases}$$

(a) Verifique que $\frac{\partial f}{\partial x}(0,y) = -y$ para todo y, e que $\frac{\partial f}{\partial y}(x,0) = x$, para todo x.

(b) Verifique que
$$\frac{\partial^2 f}{\partial x \partial y}(0,0) = 1$$
 e que $\frac{\partial^2 f}{\partial y \partial x}(0,0) = -1$.

13. Determine o conjunto de pontos de \mathbb{R}^2 onde f não é diferenciável, sendo:

(a)
$$f(x,y) = \sqrt[3]{x^3 + y^3}$$
 (b) $f(x,y) = x|y|$ (c) $f(x,y) = e^{\sqrt{x^4 + y^4}}$ (d) $f(x,y) = \cos(\sqrt{x^2 + y^2})$

- 14. Mostre que não existe nenhuma função diferenciável $f: \mathbb{R}^2 \to \mathbb{R}$ cujo gradiente é dado por: $\nabla f(x,y) = (x^2y,y^2), \forall (x,y) \in \mathbb{R}^2$.
- 15. Calcule $\frac{\partial w}{\partial t}$ e $\frac{\partial w}{\partial u}$ pela regra da cadeia e confira os resultados por meio de substituição seguida de aplicação das regras de derivação parcial.

(a)
$$w = x^2 + y^2$$
; $x = t^2 + u^2$, $y = 2tu$.

(b)
$$w = \frac{x}{x^2 + y^2}$$
; $x = t \cos u$, $y = t \sin u$.

(c)
$$w = x^2 + y^2 + z$$
; $x = tu$, $y = t + u$, $z = t^2 + u^2$.

- 16. O raio de um cilindro circular está decrescendo à taxa de 1,2cm/s enquanto sua altura está crescendo à taxa de 3cm/s. Qual a taxa de variação do volume do cilindro no instante em que o raio vale 80 cm e a altura vale 150 cm?
- 17. Um carro A está viajando para o norte a 90km/h e um carro B está viajando para o oeste a 80km/h. O carro A está se aproximando e o carro B está se distanciando da intersecção das duas estradas. Em um certo instante, o carro A está a 0,3km da intersecção e o carro B a 0,4km. Neste instante, estão os carros se aproximando ou se distanciando um do outro? A que velocidade?
- 18. Sejam $f: \mathbb{R}^2 \to \mathbb{R}$, diferenciável em \mathbb{R}^2 , com $\nabla f(-2, -2) = (a, -4)$ e

$$g(t) = f(2t^3 - 4t, t^4 - 3t).$$

Determine a para que a reta tangente ao gráfico de g no ponto de abscissa 1 seja paralela à reta y = 2x + 3.

19. Seja f(x,y) uma função de classe \mathcal{C}^2 e sejam a,b,c,d constantes tais que $a^2+b^2=1,\,c^2+d^2=1$ e ac+bd=0. Seja g(u,v)=f(au+bv,cu+dv). Mostre que: $\frac{\partial^2 g}{\partial u^2}(u,v)+\frac{\partial^2 g}{\partial v^2}(u,v)=\frac{\partial^2 f}{\partial x^2}(au+bv,cu+dv)+\frac{\partial^2 f}{\partial u^2}(au+bv,cu+dv).$

20. Seja v(r,s) uma função de classe \mathcal{C}^2 em \mathbb{R}^2 e defina u(x,t)=v(x+ct,x-ct), onde c é constante. Verifique que

$$u_{tt}(x,t) - c^2 u_{xx}(x,t) = w(x+ct, x-ct),$$

onde $w(r, s) = -4c^2 v_{rs}(r, s)$.

21. Seja u = u(x,y) função de classe \mathcal{C}^2 em \mathbb{R}^2 e defina $v(r,\theta) = u(r\cos\theta, r\sin\theta)$. Verifique que

$$\frac{\partial^2 v}{\partial r^2}(r,\theta) + \frac{1}{r} \frac{\partial v}{\partial r}(r,\theta) + \frac{1}{r^2} \frac{\partial^2 v}{\partial \theta^2}(r,\theta) = \Delta u(r\cos\theta, r\sin\theta),$$

sendo Δu , por definição, dado por $\Delta u = u_{xx} + u_{yy}$.

22. Seja f = f(x, y) função de classe \mathcal{C}^2 em \mathbb{R}^2 . Se $u(s, t) = f(e^s \cos t, e^s \sin t)$, mostre que

$$\left[\frac{\partial f}{\partial x}(e^s \cos t, e^s \sin t)\right]^2 + \left[\frac{\partial f}{\partial y}(e^s \cos t, e^s \sin t)\right]^2 = e^{-2s} \left[\left(\frac{\partial u}{\partial s}(s, t)\right)^2 + \left(\frac{\partial u}{\partial t}(s, t)\right)^2\right]$$

e que

$$\frac{\partial^2 f}{\partial x^2}(\mathbf{e}^s \cos t, \mathbf{e}^s \sin t) + \frac{\partial^2 f}{\partial y^2}(\mathbf{e}^s \cos t, \mathbf{e}^s \sin t) = \mathbf{e}^{-2s} \left[\frac{\partial^2 u}{\partial s^2}(s, t) + \frac{\partial^2 u}{\partial t^2}(s, t) \right].$$

23. Seja f=f(x,y) uma função de classe \mathcal{C}^2 e seja $g:\mathbb{R}^2 \to \mathbb{R}$ dada por

$$g(u,v) = uf(u^2 - v, u + 2v)$$

- (a) Determine $\frac{\partial^2 g}{\partial u \partial v}$ em função das derivadas parciais de f.
- (b) Sabendo que 3x + 5y = z + 26 é o plano tangente ao gráfico de f, $\frac{\partial^2 f}{\partial r \partial u}(1,4) =$ $\frac{\partial^2 f}{\partial x^2}(1,4) = 1 \text{ e } \frac{\partial^2 f}{\partial u^2}(1,4) = -1, \text{ calcule } \frac{\partial^2 g}{\partial u \partial v}(-2,3).$
- 24. Seja $F(r,s)=G(\mathrm{e}^{rs},r^3\cos(s)),$ onde G=G(x,y) é uma função de classe \mathcal{C}^2 em \mathbb{R}^2 .
 - (a) Calcule $\frac{\partial^2 F}{\partial r^2}(r,s)$ em função das derivadas parciais de G.
 - (b) Determine $\frac{\partial^2 F}{\partial r^2}(1,0)$ sabendo que $\frac{\partial G}{\partial u}(t^2+1,t+1)=t^2-2t+3$.
- 25. Ache a equação do plano tangente e a equação da reta normal a cada superfície no ponto indicado:
 - (a) $z = e^{x^2 + y^2}$, no ponto (0, 0, 1) (b) $z = \ln(2x + y)$, no ponto (-1, 3, 0) (c) $z = x^2 y^2$, no ponto (-3, -2, 5) (d) $z = e^x \ln y$, no ponto (3, 1, 0)

- 26. Determine o plano que passa por (1, 1, 2) e (-1, 1, 1) e é tangente ao gráfico de f(x, y) = xy. Existe mesmo só um?
- 27. Determine a equação do plano que passa pelos pontos (0,1,5) e (0,0,6) e é tangente ao gráfico de $g(x,y)=x^3y$.
- 28. Determine $k \in \mathbb{R}$ para que o plano tangente ao gráfico de $f(x,y) = \ln(x^2 + ky^2)$ no ponto (2,1,f(2,1)) seja perpendicular ao plano 3x + z = 0.
- 29. Seja $f: \mathbb{R} \to \mathbb{R}$ uma função derivável. Mostre que todos os planos tangentes à superfície $z = xf\left(\frac{x}{y}\right)$ passam pela origem.
- 30. Se $f(x,y) = x^2 + 4y^2$, ache o vetor gradiente $\nabla f(2,1)$ e use-o para achar a reta tangente à curva de nível 8 de f no ponto (2,1). Esboce a curva de nível, a reta tangente e o vetor gradiente.
- 31. Seja r a reta tangente à curva $x^3 + 3xy + y^3 + 3x = 18$ no ponto (1,2). Determine as retas que são tangentes à curva $x^2 + xy + y^2 = 7$ e paralelas à reta r.
- 32. Seja $f: \mathbb{R}^2 \to \mathbb{R}$ uma função diferenciável em \mathbb{R}^2 . Fixado um certo $P = (x_0, y_0) \in \mathbb{R}^2$, sabe-se que o plano tangente ao gráfico de f no ponto $(x_0, y_0, f(x_0, y_0))$ tem equação -2x + 2y z + 3 = 0. Determine, entre as curvas abaixo, uma que **não pode** ser a curva de nível de f que contém o ponto P:

(a)
$$\gamma(t) = \left(-\frac{1}{t}, t\right);$$
 (b) $\gamma(t) = \left(\frac{t^5}{5}, -\frac{2t^3}{3} + 3t\right);$ (c) $\gamma(t) = (t^2, t^3 + t).$

33. Seja $f: \mathbb{R}^2 \to \mathbb{R}$, f com derivadas parciais contínuas em \mathbb{R}^2 e tal que 2x + y + z = 7 é o plano tangente ao gráfico de f no ponto (0, 2, f(0, 2)). Seja

$$g(u, v) = u f(\text{sen}(u^2 - v^3), 2u^2v).$$

Determine $a \in \mathbb{R}$ para que o plano tangente ao gráfico de g no ponto (1, 1, g(1, 1)) seja paralelo ao vetor (4, 2, a).

34. Seja $f: \mathbb{R}^2 \to \mathbb{R}$ uma função diferenciável tal que as imagens das curvas $\gamma(t) = (2, t, 2t^2)$ e $\mu(t) = (2t^2, t, 2t^4)$ estejam contidas no gráfico de f. Determine o gradiente de f no ponto (2, 1).

- 35. O gradiente de $f(x,y) = x^2 + y^4$ é tangente à imagem da curva $\gamma(t) = (t^2,t)$ em um ponto $P = \gamma(t_0)$ com $t_0 > 0$. Considere a curva de nível de f que contém P. Encontre a equação da reta tangente a essa curva no ponto P.
- 36. Sabe-se que a curva $\gamma(t) = (t^2+1, t^3+t^2+t)$ é uma curva de nível da função diferenciável $f: \mathbb{R}^2 \to \mathbb{R}$, com $f(\gamma(t)) = 2$, $\forall t \in \mathbb{R}$. Admita que existem 2 pontos $(x_0, y_0) \in \text{Im}\gamma$ com a propriedade de que o plano tangente ao gráfico de f em $(x_0, y_0, 2)$ é paralelo ao plano x + y z = 0. Encontre esses 2 pontos.
- 37. Ache a derivada direcional máxima de f no ponto dado e dê a direção em que ela ocorre.

 (a) $f(x,y) = xe^{-y} + 3y$, (1,0); (b) $f(x,y) = \ln(x^2 + y^2)$, (1,2);
- 38. Seja f uma função diferenciável em \mathbb{R}^2 e considere os pontos $A(1,3),\,B(3,4),\,C(2,4)$ e
- 38. Seja f uma função diferenciavel em \mathbb{R}^2 e considere os pontos A(1,3), B(3,4), C(2,4) e D(6,15). Sabe-se que a derivada direcional de f em A na direção e sentido do versor $\overrightarrow{AB}/||\overrightarrow{AB}||$ é $3\sqrt{5}$ e que a derivada direcional de f em A na direção e sentido do versor $\overrightarrow{AC}/||\overrightarrow{AC}||$ é $\sqrt{8}$. Encontre o vetor gradiente $\nabla f(1,3)$ e a derivada direcional de f em A na direção e sentido do versor $\overrightarrow{AD}/||\overrightarrow{AD}||$.
- 39. Mostre que $f(x,y) = \sqrt[3]{x^2y}$ é contínua em (0,0) e tem todas as derivadas direcionais em (0,0). É f diferenciável em (0,0)?
- 40. Seja f uma função diferenciável em \mathbb{R}^2 tal que $\gamma(t)=(t+1,-t^2), \ \forall t\in\mathbb{R}$ é uma curva de nível de f. Sabendo que $\frac{\partial f}{\partial x}(-1,-4)=2$, determine a derivada direcional de f no ponto (-1,-4) e na direção e sentido do vetor $\vec{u}=(3,4)$.
- 41. Seja $f(x,y) = \begin{cases} \frac{x^3 + y^3}{x^2 + y^2}, & \text{se } (x,y) \neq (0,0); \\ 0, & \text{se } (x,y) = (0,0). \end{cases}$
 - (a) Calcule o gradiente de f no ponto (0,0).
 - (b) Mostre que $\frac{d}{dt}f(\gamma(t)) \neq \nabla f(\gamma(t)) \cdot \gamma'(t)$ em t = 0, onde $\gamma(t) = (-t, -t)$.
 - (c) Seja $\vec{u}=(m,n)$ um vetor unitário (isto é, $m^2+n^2=1$). Use a definição de derivada direcional para calcular $\frac{\partial f}{\partial \vec{u}}(0,0)$.
 - (d) É f diferenciável em (0,0)? Justifique.
- 42. Sabe-se que $f: \mathbb{R}^2 \to \mathbb{R}$ é diferenciável em \mathbb{R}^2 e que o gráfico de f contém as imagens de ambas curvas $\gamma(t) = \left(-\frac{t}{2}, \frac{t}{2}, \frac{t}{2}\right)$ e $\sigma(u) = \left(u+1, u, u+2+\frac{1}{u}\right), \ u \neq 0$. Determine

$$\frac{\partial f}{\partial \vec{u}}\left(\frac{1}{2}, -\frac{1}{2}\right)$$
, onde $\vec{u} = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$.

- 43. Seja $f(x,y) = (xy)^{1/3}$.
 - (a) Determine as derivadas parciais de f nos pontos (x, y) tais que $xy \neq 0$.
 - (b) Calcule as derivadas parciais de f em (0,0).
 - (c) Se a e b são números reais não-nulos, existem as derivadas parciais $f_x(0,b)$ e $f_y(a,0)$?
 - (d) Determine os pontos em que f é diferenciável. Justifique.
- 44. A curva de nível 1 da função diferenciável $f: \mathbb{R}^2 \to \mathbb{R}$ pode ser parametrizada por $\gamma(t) = (t, 2t^2), t \in \mathbb{R}$. A curva $\sigma(u) = (-u, u^3, u^6 u^5 2u^4 + 1), u \in \mathbb{R}$ tem sua imagem contida no gráfico de f.
 - (a) Determine o vetor tangente à curva σ no ponto (-2, 8, 1).
 - (b) Determine o vetor tangente à curva γ no ponto (-2,8).
 - (c) Calcule o gradiente de f em (-2,8).
- 45. Seja $F: \mathbb{R} \to \mathbb{R}$ dada por

$$F(x) = \int_{a(x)}^{b(x)} f(x, t) dt$$

sendo $a,b:\mathbb{R}\to\mathbb{R}$ funções deriváveis e $f:\mathbb{R}^2\to\mathbb{R}$ uma função de classe \mathcal{C}^1 . Mostre que

$$F'(x) = \int_{a(x)}^{b(x)} \frac{\partial f}{\partial x}(x,t) dt + f(x,b(x)) b'(x) - f(x,a(x)) a'(x)$$

46. Calcule F'(x) para:

(a)
$$F(x) = \int_0^x e^{\frac{x^2 - t^2}{2}} dt$$

(c) $F(x) = \int_{\cos x}^{\cos x} \sin(x^2 t^2) dt$

(b)
$$F(x) = \int_0^1 \frac{x}{x^2 + t^2} dt$$

RESPOSTAS

1) (a)
$$\frac{\partial f}{\partial x}(x,y) = -\frac{y}{x^2+y^2}; \quad \frac{\partial f}{\partial y}(x,y) = \frac{x}{x^2+y^2}.$$

2) (a)
$$\frac{\partial u}{\partial x}(x,y) = \frac{1}{y} f'\left(\frac{x}{y}\right); \frac{\partial u}{\partial y}(x,y) = -\frac{x}{y^2} f'\left(\frac{x}{y}\right).$$

$$(b)\frac{\partial u}{\partial x}(x,y) = af'(ax + by); \frac{\partial u}{\partial y}(x,y) = bf'(ax + by).$$

3)
$$-2$$
 8) (b) Não é contínua em $(0,0)$. (c) Não é diferenciável em $(0,0)$.

9) (b)
$$\frac{\partial f}{\partial x}(0,0) = 1$$
 e $\frac{\partial f}{\partial y}(0,0) = 0$. (c) Não.

d) Nenhuma das derivadas parciais é contínua em (0,0). 10) (b) Não

11) (b)
$$\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{4x^2y(x^2+y^2)^2\cos((x^2+y^2)^2)-2x^2y\sin((x^2+y^2)^2)}{(x^2+y^2)^2} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$$

- (c) Sim. (d) Sim.
- 13) (a) f não é diferenciável em nenhum ponto da reta y = -x.
- (b) f não é diferenciável nos pontos da forma (a, 0) com $a \neq 0$.
- (c) f é diferenciável em \mathbb{R}^2 pois é de classe C^1 em \mathbb{R}^2 . (d) O mesmo que o item (c).
- 16) $-9600\pi \text{ cm}^3/\text{s}$ 17) Distanciando-se a 10km/h. 18) a=3 23) b) 21.

$$24)(a)\frac{\partial^2 F}{\partial r^2} = s^2 e^{2rs} \frac{\partial^2 G}{\partial x^2} + 6r^2 e^{rs} s \cos s \frac{\partial^2 G}{\partial x \partial y} + 9r^4 \cos^2 s \frac{\partial^2 G}{\partial y^2} + s^2 e^{rs} \frac{\partial G}{\partial x} + 6r \cos s \frac{\partial G}{\partial y}; \quad (b)0.$$

25) (a)
$$z = 1; X = (0, 0, 1) + \lambda(0, 0, 1), \lambda \in \mathbb{R}$$
.

(b)
$$2x + y - z - 1 = 0$$
; $X = (-1, 3, 0) + \lambda(2, 1, -1), \lambda \in \mathbb{R}$.

(c)
$$6x - 4y + z + 5 = 0$$
; $X = (-3, -2, 5) + \lambda(6, -4, 1), \lambda \in \mathbb{R}$.

$$(d)e^3y - z - e^3 = 0; X = (3, 1, 0) + \lambda(0, e^3, -1), \lambda \in \mathbb{R}.$$

26)
$$x + 6y - 2z - 3 = 0$$
 (sim, só um) 27) $6x - y - z + 6 = 0$ 28) $k = 8$

30)
$$\nabla f(2,1) = (4,8)$$
 e a reta é $x + 2y - 4 = 0$. 31) $X = (\pm 1, \pm 2) + \lambda(5, -4), \lambda \in \mathbb{R}$.

32) (c) 33)
$$a = -4$$
 34) $(1,4)$ 35) $X = (\frac{1}{4}, \frac{1}{2}) + \lambda(-1,1), \ \lambda \in \mathbb{R}.$

36)
$$(2,-1)$$
 e $(10/9,-7/27)$. 37) (a) $\sqrt{5}$, $(1,2)$; (b) $\frac{2}{\sqrt{5}}$, $(\frac{1}{5},\frac{2}{5})$.

- 38) $\nabla f(1,3) = (11,-7)$ e a derivada direcional pedida é -29/13.
- 39) f não é diferenciável em (0,0). 40) 4/5 41) (d) Não é. 42) $-\frac{3\sqrt{2}}{2}$

43) (a)
$$f_x(x,y) = \frac{y}{3(xy)^{2/3}}$$
; $f_y(x,y) = \frac{x}{3(xy)^{2/3}}$ (b) $f_x(0,0) = f_y(0,0) = 0$

(c) não existem. (d) f é diferenciável no conjunto $\{(x,y)|xy\neq 0\}$.

44-c)
$$\nabla f(-2, 8) = (96, 12)$$