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Abstract5

For graphs G and F , write G → (F )` if any coloring of the edges of G with ` colors yields6

a monochromatic copy of the graph F . Let positive integers h and d be given. Suppose S(h)
7

is obtained from a graph S with s vertices and maximum degree d by subdividing its edges h8

times (that is, by replacing the edges of S by paths of length h+ 1). We prove that there exits9

a graph G with no more than (log s)20hs1+1/(h+1) edges for which G→ (S(h))` holds, provided10

that s ≥ s0(h, d, `), where s0(h, d, `) is some constant that depends only on h, d, and `. We11

also extend this result to the case in which Q is a graph with maximum degree d on q vertices12

with the property that every pair of vertices of degree greater than 2 are distance at least h+ 113

apart. This complements work of Pak regarding the size Ramsey number of ‘long subdivisions’14

of bounded degree graphs.15

1 Introduction16

For graphs H and G and an integer `, we write H → (G)` if every coloring of the edges of H17

with ` colors contains a monochromatic copy of G. In the two-color case (` = 2), we omit the18

subscript and simply write H → G. For a graph G, the study of which graphs H have the19

property H → G is a major area of research in extremal combinatorics. One of the most well-20

known questions of this nature is to determine the Ramsey number r(G), which is the minimum21
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number of vertices in a graph H with the property H → G (naturally, in this definition, H can be22

restricted to be a complete graph). Analogously, the `-color Ramsey number is23

r`(G) := min
{
|V (H)| : H → (G)`

}
.

A variation of this problem, introduced by Erdős, Faudree, Rousseau, and Schelp [8] in 1978, asks24

for the minimum number of edges in a graph H with the property H → G. This is the size Ramsey25

number of G and is often denoted by r̂(G). Similarly, the `-color size Ramsey number of G is26

r̂`(G) := min
{
|E(H)| : H → (G)`

}
.

Trivially, r̂(G) ≤
(
r(G)
2

)
holds and a simple argument, attributed to Chvátal in [8], shows that27

equality holds for the case when G is the complete graph Kn: r̂(Kn) =
(
r(Kn)

2

)
. For many sparse28

graphs G, as we will see, the bound r̂(G) ≤
(
r(G)
2

)
is far from optimal.29

One of the first problems investigated regarding the size Ramsey number was to determine the30

behavior of the function r̂(Pn), where Pn is the path on n vertices. Erdős asked the following31

version of this question in [7]: Is it true that32

r̂(Pn)/n→∞ and r̂(Pn)/n2 → 0?

This was answered in the negative by Beck [2], who, using probabilistic methods, proved that r̂(Pn) ≤33

900n. This result was extended in [14], where it was established that cycles also have linear size34

Ramsey numbers (in fact, it was shown this even holds for the induced version of the size Ramsey35

number). Another extension by Friedman and Pippenger [10] established the linearity of the size36

Ramsey number for trees with bounded degree. More recently, Dellamonica [6] was able to de-37

termine asymptotically the size Ramsey number of general trees, confirming a conjecture of Beck.38

Other related results include [13, 16].39

A significant open problem is to determine the largest possible size Ramsey number of a graph40

of a given order and a given maximum degree. Letting ∆(G) denote the maximum degree of G, we41

define this function of interest by42

r̂(n, d) := max
{
r̂(G) : |V (G)| = n, ∆(G) ≤ d

}
.

In [3], Beck asked if r̂(n, d) is always linear in n for fixed d. This was settled in the negative by43

Rödl and Szemerédi [24], who established that44

r̂(n, 3) = Ω(n(log n)1/60).

Indeed, they constructed graphs Gn of order n and maximum degree 3 and argued that if H is any45
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graph with fewer than 10−1n(log n)1/60 edges, then H does not have the property H → Gn. In the46

same paper, it was conjectured that for all d there exists εd > 0 such that47

n1+εd ≤ r̂(n, d) ≤ n2−εd . (1)

The upper bound in (1) was subsequently proved by Kohayakawa, Rödl, Schacht, and Szemerédi48

in [19]. The lower bound in (1), however, remains open and closing the rather large remaining49

gap between the upper and lower bounds for r̂(n, d) is of considerable interest. For further results50

on size Ramsey numbers, see [9, 21, 22, 23], or the more general recent survey on graph Ramsey51

theory [5].52

Subdivisions of Graphs53

For a graph S and positive integer h, the h-subdivision of S, denoted S(h), is the graph obtained54

by replacing each edge of S with a path on h internal vertices as demonstrated in Figure 1 for the55

case h = 2. Having in mind that the size Ramsey number of trees is quite well-understood and56

that much regarding the size Ramsey number of bounded degree graphs remains open, we believe57

it is of interest to investigate the size Ramsey number of subdivisions.58

(a) A graph S (b) The subdivided graph S(2)

Figure 1: A graph and its subdivision

The size Ramsey number of ‘long’ subdivisions of bounded degree graphs, which are subdivided59

graphs S(h) where h > c log |S(h)| and the maximum degree of S is bounded, were studied by60

Pak [20] in 2002. Pak conjectured that r̂(S(h)) is linear in terms of |S(h)| for such subdivisions and,61

by using results on mixing times of random walks on expanders, proved this conjecture up to a62

polylogarithmic factor.63

Our main result relates to the size Ramsey number of ‘short’ subdivisions of bounded degree64

graphs, which are subdivided graphs S(h) where h and the maximum degree of S are fixed and65

the number of vertices |V (S)| is relatively large. To state a more general form of this result, we66

introduce the following definition.67

Definition 1 (Universal Size Ramsey Number). For h, d, `, s ∈ Z+, define the universal size Ram-68

sey number USR(h, d, `, s) to be the smallest number of edges in a graph H that has the following69

universal Ramsey property:70

H → (S(h))` for every graph S on s vertices with maximum degree d.71
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Theorem 2. For any h, d, ` ∈ Z+, there exists s0 such that for all s ≥ s0,72

USR(h, d, `, s) ≤ (log s)20hs1+1/(h+1). (2)

A corollary of Theorem 2 is that for any h ≥ 1 and d ≥ 1, there exists s0 such that if S is any73

graph on s ≥ s0 vertices with maximum degree d,74

r̂(S(h)) ≤ (log s)20hs1+1/(h+1).

A short counting argument yields the following lower bound.75

Theorem 3. For all h, d, `, s ∈ Z+ with d ≥ 3,76

USR(h, d, `, s) ≥ USR(h, d, 1, s) ≥ s1+1/(h+1)−2/d(h+1)+o(1), (3)

where o(1)→ 0 as s→∞.77

The first inequality in (3) is trivial. The second inequality gives a lower bound for the number78

of edges in any graph H that contains S(h) as a subgraph for every graph S of maximum degree d79

on s vertices. Observe that for large d, the exponent in (2) is close to the exponent in (3).80

We will also show that the proof of Theorem 2 can be extended to give the following more81

general theorem.82

Theorem 4. For any h, d, ` ∈ Z+, there exists a constant q0 such that the following holds. If Q83

is a graph with maximum degree at most d on q ≥ q0 vertices with the property that every pair of84

vertices of degree greater than 2 are distance at least h+ 1 apart, then85

r̂`(Q) ≤ (log q)20hq1+1/(h+1).

We believe that the power of the logarithm in both Theorems 2 and 4 could be substantially86

reduced, although our method does not allow for the dependency of the power of the logarithm on h87

to be removed. For the sake of celerity of presentation, we have opted not to make any attempt to88

optimize this power. We do believe, however, that removing the dependency on h or removing the89

logarithm entirely would be of interest. We also ask the following.90

Question 5. For every integer d, does there exist a constant cd such that91

r̂(S(h)) ≤ cdhs1+1/(h+1)

for every integer h and for every graph S on s vertices with maximum degree d?92

4



Notation93

We use fairly standard notation, including the following. For a graph H and vertex subsets X194

and X2, we let EH(X1, X2) be the the set of edges between X1 and X2 and eH(X1, X2) =95

|EH(X1, X2)|. When unambiguous, we omit the subscript. Unless explicitly noted otherwise, a96

subgraph need not be induced. Also, as is standard, we omit floors and ceilings that do not affect97

the asymptotic nature of our calculations.98

Organization99

The rest of this paper is organized as follows. Section 2 introduces an Existence Lemma (Lemma 12),100

a Coloring Lemma (Lemma 9), and an Embedding Lemma (Lemma 14), and then establish Theo-101

rem 2 based upon these lemmas. The proofs of these lemmas are deferred to Sections 4, 3, and 5102

respectively. Section 6 addresses Theorem 3. Section 7 addresses Theorem 4.103

2 Proof of Theorem 2104

The proof of Theorem 2 is based on an Existence Lemma (Lemma 12), a Coloring Lemma (Lemma 9),105

and an Embedding Lemma (Lemma 14). The Existence Lemma will establish the existence of106

a sparse graph G that has several properties including being a member of a class of graphs107

called I(N, p) (Definition 8). The Coloring Lemma will establish that, since G ∈ I(N, p), any `-108

coloring of the edges of G yields a monochromatic subgraph H that is a member of a class109

of graphs called H(h, n, ε, q) (Definition 7). For appropriate parameters, we will have that the110

graph H ∈ H(h, n, ε, q) is also in a class of graphs called J (h, n, δ) (Definition 13). For any111

graph S on s vertices that has maximum degree d, the Embedding Lemma will then establish that,112

since H is in J (h, n, δ), the graph S(h) can be embedded into H. These lemmas together will113

be used to establish that G → (S(h))` for any graph S on s vertices with maximum degree d, as114

desired. The objective of this section is to introduce the terminology required to state these three115

lemmas and then to prove Theorem 2.116

The following class describes graphs obtained from blowing up the cycle Ch+1 by replacing each117

vertex by an independent set of size n and each edge by an arbitrary bipartite graph. In this118

definition and elsewhere, we say that H is a graph on
⊔h+1
i=1 Xi if X1, X2, . . . , Xh+1 are pairwise119

disjoint sets and V (H) =
⋃h+1
i=1 Xi. For notational convenience, we will index the sets Xi modulo120

h+ 1; in particular, we set Xh+2 := X1 and X0 := Xh+1.121

Definition 6. Let H(h, n) be the set of all graphs on
⊔h+1
i=1 Xi such that both the following hold:122

(i ) |Xi| = n for all i ∈ [h+ 1].123

(ii ) E(H) =
⊔h+1
i=1 EH(Xi, Xi+1).124
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The following subclass ofH(h, n) describes graphs where the bipartite graphs induced on (Xi, Xi+1)125

have density q and uniformly distributed edges.126

Definition 7. Let H(h, n, ε, q) be the set of all graphs H on
⊔h+1
i=1 Xi that are in H(h, n) and127

satisfy the following additional two properties:128

(iii) e(Xi, Xi+1) = qn2 for all i ∈ [h+ 1].129

(iv) For any integer i ∈ [h + 1] and vertex subsets X̂i ⊂ Xi and X̂i+1 ⊂ Xi+1 each of size130

|X̂i|, |X̂i+1| ≥ εn,131

(1− ε)q|X̂i||X̂i+1| ≤ e(X̂i, X̂i+1) ≤ (1 + ε)q|X̂i||X̂i+1|.

In the context of the random graph G(N, p), the next definition introduces a class of graphs132

having neither ‘dense bipartite patches’ nor ‘large bipartite holes’.133

Definition 8. Let I(N, p) be the set of N -vertex graphs G that have both the following properties:134

(i ) For all disjoint sets V1, V2 ⊂ V (G) with 1 ≤ |V1| ≤ |V2| ≤ pN |V1|,135

e(V1, V2) ≤ p|V1||V2|+ e2
√

6 ·
√
pN |V1||V2|.

(ii ) For all disjoint sets V1, V2 ⊂ V (G) with |V1|, |V2| ≥ N(logN)−1,136

(1/2) · p|V1||V2| ≤ e(V1, V2) ≤ 2 · p|V1||V2|.

The following lemma is a deterministic statement about the previous two classes of graphs.137

Lemma 9 (Coloring Lemma). For any ε ∈ R+ and h, ` ∈ Z+, there exist t, n1 ∈ Z+ such that, for138

all n ≥ n1,139

q := 4(log n)2n−1+1/(h+1), N := tn, and p := 4`q,140

every graph G ∈ I(N, p) has the following property. Any `-coloring of the edges of G yields disjoint141

vertex subsets X1, X2, . . . , Xh+1 ⊂ V (G) and a monochromatic subgraph H on
⊔h+1
i=1 Xi such that142

H ∈ H(h, n, ε, q).143

The Existence Lemma, which we state next, establishes that there exists a graph G on N144

vertices that exhibits several properties including being in I(N, p). Combined with the Coloring145

Lemma, this gives that, for appropriate parameters, any `-coloring of such a graph G will not only146

contain a monochromatic copy of some H ∈ H(h, n, ε, q), but one that inherits certain additional147

desirable properties which will be used to embed S(h). We now describe these additional properties.148

Definition 10 (Path Abundance). Let H be a graph on
⊔h+1
i=1 Xi with H ∈ H(h, n).149
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• For vertices u, v ∈ X1, a transversal path between u and v is an (undirected) path with150

endpoints u and v that has exactly h + 2 vertices and exactly one vertex from each Xi for151

all i ∈ [h+ 1] \ {1}.152

• H is (1− δ, log n)-path abundant if for at least (1− δ)
(
n
2

)
pairs of vertices {u, v} ∈

(
X1

2

)
, there153

are at least log n transversal paths between u and v that are pairwise edge-disjoint.154

Definition 11 (Cluster-Free). Let F be a graph and L ⊂
(
V (F )
2

)
be a set of pairs of vertices in F155

(which need not correspond to edges). Let V (L) :=
⋃
{u,v}∈L{u, v} and Z ⊂ V (F ) be a subset of156

vertices with Z ∩ V (L) = ∅.157

• An (L, Z, h, log n)-cluster is a set of paths PL such that:158

– For every P ∈ PL, the path P has exactly h+ 2 vertices.159

– For every path P ∈ PL, the endpoints u and v of P are such that {u, v} ∈ L.160

– For every P ∈ PL, the path P does not have an internal vertex in V (L).161

– For every {u, v} ∈ L, exactly log n paths in PL have endpoints u and v.162

– For every pair of paths P and P̂ in PL, the paths P and P̂ are edge-disjoint.163

– For every P ∈ PL, the path P has exactly one internal vertex in Z.164

• We say that F is (h, n)-cluster free if F does not contain an (L, Z, h, log n)-cluster for ev-165

ery L ⊂
(
V (F )
2

)
and Z ⊂ V (F ) with |L| ≤ n(log n)−6h and |Z| = h2|L|.166

It follows from this definition that the graph obtained by taking the union of the paths in167

an (L, Z, h, log n)-cluster has at most 2|L|+|Z|+|L|(log n)(h−1) vertices and exactly |L|(log n)(h+168

1) edges, as well as a very specific structure. Also, observe that if F is (h, n)-cluster free, then any169

subgraph F̂ of F will be (h, n)-cluster free as well.170

Lemma 12 (Existence Lemma). For all h, ` ∈ Z+ and δ ∈ R+, there exists ε ∈ R+ such that, for171

any t ∈ Z+, there exists n2 ∈ Z for which the following holds. For any n ≥ n2,172

q := 4(log n)2n−1+1/(h+1), N := tn, and p := 4`q,173

there exists a graph G on N vertices satisfying all of the following properties:174

(i ) Every vertex in G has degree at most (log n)3n1/(h+1).175

(ii ) G is (h, n)-cluster free.176

(iii ) G ∈ I(N, p).177

(iv ) For all disjoint subsets X1, X2, . . . , Xh+1 ⊂ V (G), every (not necessarily induced) subgraphs H178

on
⊔h+1
i=1 Xi with H ∈ H(h, n, ε, q) is (1− δ, log n)-path abundant.179
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Observe that if G is any graph satisfying property (iii) in the Existence Lemma then, by the180

Coloring Lemma, any `-coloring of G yields a monochromatic copy of some H ∈ H(h, n, ε, q).181

Moreover, if G also satisfies property (iv) in the Existence Lemma, then the monochromatic copy182

of H must be path abundant. Additionally, if G satisfies properties (i) and (ii) in the Existence183

Lemma, then the path abundant monochromatic H must also satisfy properties (i) and (ii) in184

the Existence Lemma. Such a graph H is described by the following definition. Note that this185

definition has no dependency on ε.186

Definition 13. Let J (h, n, δ) be the set of all graphs H on
⊔h+1
i=1 Xi that are in H(h, n) and satisfy187

all the following:188

(i ) Every vertex in H has degree at most (log n)3n1/(h+1).189

(ii ) H is (n, h)-cluster free.190

(iii ) H is (1− δ, log n)-path abundant.191

Our final lemma establishes that every H ∈ J (h, n, δ) has the desired universal property to192

slightly smaller graphs provided δ is sufficiently small.193

Lemma 14 (Embedding Lemma). For all h, d ∈ Z+, there exist δ ∈ R+ and n3 ∈ Z+ such that,194

for all n ≥ n3, the following holds. Every graph H on
⊔h+1
i=1 Xi with H ∈ J (h, n, δ) is universal to195

the set of graphs196 {
S(h) : |V (S)| = n

(log n)7h
and ∆(S) ≤ d

}
.

Proof of Theorem 2197

We will now prove our main result based upon the three lemmas we have stated.198

Proof of Theorem 2. Consider any h, d, ` ∈ Z+. Recall that Lemmas 14, 12, and 9 are quantified199

as follows.200

L14 : ∀h, d ∃δ, n3
L12 : ∀h, `, δ ∃ε ∀t ∃n2
L9 : ∀h, `, ε, ∃t, n1

A sequential application of Lemmas 14, 12, 9, and 12 yields201

δ := δL14(h, d), n3 := nL143 (h, d),

202

ε := εL12(h, `, δ),
203

t := tL9(h, `, ε), n1 := nL91 (h, `, ε),
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204

n2 := nL122 (h, `, δ, ε, t).

Set s0 := max{n1, n2, n3, et} and consider any s ≥ s0. Take205

n := (log s)8hs, N := nt, q := 4(log n)2n−1+1/(h+1), and p := 4`q.206

Observe that n ≥ s ≥ s0. From the Existence Lemma (Lemma 12), we obtain a graph G on N207

vertices that satisfies the properties (i)–(iv) in the Existence Lemma. We will now show that G208

has the desired universal Ramsey property. That is, consider any `-coloring of the edges of G.209

We will show that G contains a monochromatic copy of S(h) for every graph S with |V (S)| = s210

and ∆(S) ≤ d.211

Since G ∈ I(N, p), by the Coloring Lemma (Lemma 9), this coloring of G yields disjoint212

vertex subsets X1, X2, . . . , Xh+1 ⊂ V (G) and a monochromatic subgraph H on
⊔h+1
i=1 Xi with213

H ∈ H(h, n, ε, q). Since G also exhibits properties (i)–(iv) in the Existence Lemma, the monochro-214

matic subgraph H on
⊔h+1
i=1 Xi must be a member of the class J (h, n, δ). By the Embedding215

Lemma (Lemma 14), the monochromatic subgraph H is universal to the family of graphs {S(h) :216

|V (S)| = n(log n)−7h and ∆(S) ≤ d}. Since n = (log s)8hs was chosen so that s ≤ n(log n)−7h, this217

gives that H is also universal to {S(h) : |V (S)| = s and ∆(S) ≤ d}, as desired.218

Having established that G has the desired universal Ramsey property, we will now count the219

number of edges in G. Based upon the maximum degree in G being at most (log n)3n1/(h+1) (and220

using log n ≤ (log s)2, 1 + 1/(h+ 1) ≤ 3/2, and n ≥ 2t), the number of edges in G is at most221

(log n)3n1/(h+1)N ≤ (log n)4n1+1/(h+1) ≤ ((log s)2)4((log s)8h)3/2s1+1/(h+1) ≤ (log s)20hs1+1/(h+1).

This completes the proof of Theorem 2.222

3 Proof of the Coloring Lemma223

This section is devoted to proving Lemma 9. For the remainder of this section, fix ε ∈ R+ and224

h, ` ∈ Z+ and set225

q(n) := 4(log n)2n−1+1/(h+1) and p(n) := 4`q.226

We must show there exists an integer t so that for sufficiently large n and N := tn, any `-coloring227

of any graph G ∈ I(N, p) yields disjoint vertex subsets X1, X2, . . . , Xh+1 ⊂ V (G) and a monochro-228

matic subgraph H on
⊔h+1
i=1 Xi with H ∈ H(h, n, ε, q) (see Definitions 8 and 7).229

Our approach to finding a monochromatic subgraph H ∈ H(h, n, ε, q) will be to first find several230

intermediate classes of graphs. The main idea will be to first find a monochromatic subgraph H2231

(in the class H2 defined below) in which the number of vertices and edges are controlled but not232

yet exactly correct. We then transition to a subgraph H1 ⊂ H2 (in the class H1 defined below)233
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in which the number of vertices is precisely as desired and the number of edges is still controlled.234

Finally, we will obtain a subgraph H ⊂ H1 with H ∈ H(h, n, ε, q) in which both the number of235

vertices and the number of edges are exactly as desired.236

To define the intermediate classes of graphs, we need the following pair of definitions.237

Definition 15 ((η)-regular). For η ∈ R+, we say that the bipartite graph E(Xi, Xi+1) is (η)-regular238

if, for every X̂i ⊂ Xi and X̂i+1 ⊂ Xi+1 with |X̂i| ≥ η|Xi| and |X̂i+1| ≥ η|Xi+1|,239

(1− η)
e(X1, Xi+1)

|Xi||Xi+1|
≤ e(X̂i, X̂i+1)

|X̂i||X̂i+1|
≤ (1 + η)

e(X1, Xi+1)

|Xi||Xi+1|
.

Definition 16 (Density). We say that the bipartite graph E(Xi, Xi+1) has density240

di :=
e(Xi, Xi+1)

|Xi||Xi+1|
.

Definition 17 (Intermediate Graph Classes).241

• H2(h, n, ε2, q): A graph H2 on
⊔h+1
i=1 Wi is in H2(h, n, ε2, q) if, for some integer m satisfying242

4n ≤ m ≤ n log n, all the following hold:243

(i ) |Wi| = m for all i ∈ [h+ 1].244

(ii ) E(H2) =
⊔h+1
i=1 EH2(Wi,Wi+1).245

(iii ) For each i ∈ [h+ 1], the bipartite graph EH2(Wi,Wi+1) is (ε2)-regular.246

(iv ) For each i ∈ [h + 1], the bipartite graph EH2(Wi,Wi+1) has density di satisfying 2q ≤247

di ≤ 8`q.248

• H1(h, n, ε1, q): A graph H1 on
⊔h+1
i=1 Xi is in H1(h, n, ε1, q) if all the following hold:249

(i ) |Xi| = n for all i ∈ [h+ 1].250

(ii ) E(H1) =
⊔h+1
i=1 EH1(Xi, Xi+1).251

(iii ) For each i ∈ [h+ 1], the bipartite graph EH1(Xi, Xi+1) is (ε1)-regular.252

(iv ) For each i ∈ [h+1], the bipartite graph EH1(Xi, Xi+1) has density di satisfying (3/2)q ≤253

di ≤ 12`q.254

• H(h, n, ε, q): Recall that H(h, n, ε, q) was introduced in Definition 7. It follows from this255

definition that a graph H on
⊔h+1
i=1 Xi is in H(h, n, ε, q) if all the following hold:256

(i ) |Xi| = n for all i ∈ [h+ 1].257

(ii ) E(H) =
⊔h+1
i=1 EH(Xi, Xi+1).258

(iii ) For each i ∈ [h+ 1], the bipartite graph E(Xi, Xi+1) is (ε)-regular.259
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(iv ) For each i ∈ [h+ 1], the bipartite graph E(Xi, Xi+1) has density di satisfying di = q.260

We will now state three claims. The first claim (Claim 18) will establish that, for appropriate261

parameters, any `-coloring of any graph G ∈ I(N, p) contains a monochromatic subgraph H2 ∈262

H2(h, n, ε2, q). The next claim (Claim 19) will establish that, for appropriate parameters, any263

graph H2 ∈ H2(h, n, ε2, q) contains a subgraph H1 ∈ H1(h, n, ε1, q). The final claim (Claim 20)264

will establish that, for appropriate parameters, any graph H1 ∈ H1(h, n, ε1, q) contains a subgraph265

in H ∈ H(h, n, ε,q). These claims will then be used to prove the Coloring Lemma.266

Claim 18. For any ε2 ∈ R+, there exists t ∈ Z+ such that, for every sufficiently large integer n267

and N := tn, every graph G ∈ I(N, p) has the following property. Any `-coloring of the edges268

of G yields disjoint vertex subsets W1,W2, . . . ,Wh+1 ⊂ V (G) and a monochromatic subgraph H2269

on
⊔h+1
i=1 Wi with H2 ∈ H2(h, n, ε2, q).270

Claim 19. For any ε1 ∈ R+, there exist ε2 ∈ R+ such that, for every sufficiently large integer n271

the following holds. Every graph H2 on
⊔h+1
i=1 Wi with H2 ∈ H2(h, n, ε2, q) contains vertex subsets272

Xi ⊂Wi and a subgraph H1 ⊂ H2 on
⊔h+1
i=1 Xi such that H1 ∈ H1(h, n, ε1, q).273

Claim 20. For any ε ∈ R+, there exist ε1 ∈ R+ such that, for all sufficiently large n, the following274

holds. Every graph H1 on
⊔h+1
i=1 Xi with H1 ∈ H1(h, n, ε1, q) has a monochromatic subgraph H on275 ⊔h+1

i=1 Xi such that H ∈ H(h, n, ε, q).276

The proofs of Claims 18, 19, and 20 will be provided in Subsections 3.1, 3.2, and 3.3 respectively.277

We will now show how these claims establish the Coloring Lemma. Recall that we have already278

fixed ε, h, and ` and defined q(n) and p(n) at the beginning of this section. Fix279

ε1 := εC20
1 (ε), ε2 := εC19

2 (ε1), and tC18 := t(ε2).280

Let n be any sufficiently large integer and define N := tn. Consider any `-coloring of any graph G ∈281

I(N, p). Claim 18 yields disjoint vertex subsets W1,W2, . . . ,Wh+1 ⊂ V (G) and a monochromatic282

subgraph H2 on
⊔h+1
i=1 Wi with H2 ∈ H2(h, n, ε2, q). Claim 19 gives vertex subsets Xi ⊂ Wi and a283

subgraph H1 ⊂ H2 on
⊔h+1
i=1 Xi such that H1 ∈ H1(h, n, ε1, q). Claim 20 gives that the graph H1284

on
⊔h+1
i=1 X̂i contains a subgraph H on

⊔h+1
i=1 Xi with H ∈ H(h, n, ε, q). This completes the proof285

of the Coloring Lemma.286

3.1 Proof of Claim 18287

This whole subsection is devoted to the proof of Claim 18. Consider any ε2 ∈ R+. We must288

show that there exists t ∈ Z+ such that, for every sufficiently large integer n and N := tn,289

every graph G ∈ I(N, p) has the following property. Any `-coloring of the edges of G yields a290

monochromatic subgraph in H2(h, n, ε2, q).291

Let r`(Kh+1) denote the `-color Ramsey number for Kh+1, i.e., the least integer j such that292

every `-coloring of the edges of the complete graph Kj yields a monochromatic copy of Kh+1. Set293
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r := r`(Kh+1), εreg := min{1/r2, ε2/2`}, and kmin := r.294

Observe that every graph on k ≥ kmin vertices with at least (1 − εreg)
(
k
2

)
edges contains a copy295

of Kr. Having defined εreg and kmin and having fixed the integer ` at the beginning of this section,296

we will procure the integers kmax, N0, and D0 from the sparse regularity lemma. Its statement297

requires the following definition.298

Definition 21 ((η, ρ)-regular). We say that the bipartite graph E(Xi, Xi+1) is (η, ρ)-regular if, for299

every X̂i ⊂ Xi and X̂i+1 ⊂ Xi+1 with |X̂i| ≥ η|Xi| and |X̂i+1| ≥ η|Xi+1|,300 ∣∣∣∣∣e(X1, Xi+1)

|Xi||Xi+1|
− e(X̂i, X̂i+1)

|X̂i||X̂i+1|

∣∣∣∣∣ ≤ ηρ. (4)

The following is a suitable variant of Szemerédi’s regularity lemma for sparse graphs [17, 18]301

(see also [12, 25]).302

Fact 22 (Sparse Regularity Lemma). For every εreg ∈ R+ and integers kmin, ` ∈ Z+, there ex-303

ist kmax, N0, D0 ∈ Z+ such that the following holds. Consider any integer N ≥ N0 and real304

number p with pN ≥ D0, and any set of graphs G1, G2, . . . , G` on the same vertex set [N ] that305

each satisfy property (i) in the definition of I(N, p) (Definition 8). Then there exists an integer k306

satisfying kmin ≤ k ≤ kmax and a vertex partition [N ] = V1 ∪ V2 · · · ∪ Vk that has the following307

properties.308

• For all i ∈ [k], we have |Vi| = N/k.309

• For at least (1− εreg)
(
k
2

)
of the pairs {i, j} ∈

(
[k]
2

)
, all the bipartite graphs EG`′ (Vi, Vj), where310

`′ ∈ [`], are (εreg, p)-regular.311

Having obtained kmax, N0, and D0 from the above lemma, set312

t := 4kmax.

Let n be any integer large enough so that N = nt ≥ N0 and pN = 4t(log n)2n1/(h+1) ≥ D0.313

Consider any graph G ∈ I(N, p) and any `-coloring of G. Our goal is to show that this arbitrary314

edge coloring of G yields a monochromatic subgraph in H2(h, n, ε2, q).315

Observe that this coloring corresponds to a partition of E(G) into subgraphs G1, G2, . . . , G`316

which each inherit property (i) in the definition of I(N, p). Hence, by the Sparse Regularity Lemma,317

there exists an integer k satisfying kmin ≤ k ≤ kmax and a vertex partition V (G) = V1 ∪ V2 · · · ∪ Vk318

into classes of size m := N/k such that for at least (1 − εreg)
(
k
2

)
of the pairs {i, j} ∈

(
[k]
2

)
, the319

bipartite graph E(Vi, Vj) is (εreg, p)-regular with respect to every color class.320

Define an auxiliary cluster graph on [k] by joining vertex i to vertex j if the bipartite graph E(Vi, Vj)321

is (εreg, p)-regular with respect to every color class. The cluster graph has k ≥ kmin vertices and at322

least (1− εreg)
(
k
2

)
edges, implying that the cluster graph contains a copy of Kr.323
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Define a coloring of this copy of Kr in the cluster graph with the color set [`] as follows. Color324

the edge ij with color `′ ∈ [`] if the bipartite graph E(Vi, Vj) has density at least 2q in color `′.325

Edges may be colored with multiple colors, but every edge will receive at least one color because326

condition (ii) in the definition of I(n, p) guarantees that the bipartite graph E(Vi, Vj) has density327

at least (1/2)p = 2`q. By the definition of the Ramsey number r, this `-coloring of Kr contains a328

monochromatic copy of Kh+1, and hence a monochromatic copy of the cycle Ch+1 in some color `′.329

This corresponds to sets W1,W2, . . . ,Wh+1 of size m = N/k so that, for each i ∈ [h+1], the bipartite330

graph EG`′ (Wi,Wi+1) is (εreg, p)-regular with density di satisfying 2q ≤ di ≤ 8`q, where the upper331

bound on di follows from condition (ii) in the definition of I(n, p). Observe that m = N/k ≥332

N/kmax = 4n and that m ≤ N < n log n. To complete the proof, we must only demonstrate that333

every (εreg, p)-regular graph E(Wi,Wi+1) having density di satisfying 2q ≤ di ≤ 8`q is also (ε2)-334

regular. To this end, consider any subsets Ŵi ⊂ Wi and Ŵi+1 ⊂ Wi+1 with |Ŵi|, |Ŵi+1| ≥ ε2m.335

Since E(Wi,Wi+1) is (εreg, p)-regular and |Ŵi|, |Ŵi+1| ≥ ε2m ≥ εregm, it follows from Definition 21336

that337 ∣∣∣∣∣e(W1,Wi+1)

|Wi||Wi+1|
− e(Ŵi, Ŵi+1)

|Ŵi||Ŵi+1|

∣∣∣∣∣ ≤ εregp.
Furthermore, since di ≥ 2q = p/2` and εreg ≤ ε2/2`, this gives that338 ∣∣∣∣∣e(W1,Wi+1)

|Wi||Wi+1|
− e(Ŵi, Ŵi+1)

|Ŵi||Ŵi+1|

∣∣∣∣∣ ≤ εregp ≤ ε2
2`

(2`di) = ε2
e(W1,Wi+1)

|Wi||Wi+1|
,

which implies339

(1− ε2)
e(W1,Wi+1)

|Wi||Wi+1|
≤ e(Ŵi, Ŵi+1)

|Ŵi||Ŵi+1|
≤ (1 + ε2)

e(W1,Wi+1)

|Wi||Wi+1|
.

This concludes the proof of Claim 18.340

3.2 Proof of Claim 19341

In this subsection we give the proof of Claim 19. Consider any ε1 ∈ R+. We must show that there342

exist ε2 ∈ R+ such that, for every sufficiently large integer n, every graph in H2(h, n, ε2, q) contains343

a subgraph in H1(h, n, ε1, q).344

Set β := 1/2 and ε̂1 := ε1/2. We obtain the positive real number ε2 and the constant c from345

the following lemma. Roughly speaking, the lemma asserts that most induced subgraphs of a (ε2)-346

regular bipartite graph can be made (ε1)-regular by the deletion of only a few vertices provided347

that ε2 � ε1. This basic idea of the lemma is shown in Figure 2.348

Fact 23 (Corollary 3.9 in [11]). For all 0 < β < 1 and ε̂1 > 0, there exists ε2, c > 0 such that349

the following holds for any (ε2)-regular bipartite graph Ei = E(Wi,Wi+1) with density di satisfying350

2n ≥ cd−1i .351
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Figure 2: Given an (ε2)-
regular bipartite graph Ei =
E(Wi,Wi+1), the induced bi-

partite graph EEi(Ŵi, Ŵi+1)
is in G if there exists small
subsets ACi ⊆ Ŵi and BC

i ⊆
Ŵi+1 such that, for Ai :=
Ŵi+1 \ ACi and Bi := Ŵi+1 \
BC
i , the induced bipartite

graph EEi(Ai, Bi) is (ε̂1)-
regular with appropriate den-
sity.

• Let G be the set of induced subgraphs EEi(Ŵi, Ŵi+1) ⊂ E(Wi,Wi+1) which have the following352

property: There exist Ai ⊂ Ŵi and Bi ⊂ Ŵi+1 with |Ai| ≥ (1 − ε̂1)|Ŵi| and |Bi| ≥ (1 −353

ε̂1)|Ŵi+1| such that the induced bipartite graph EEi(Ai, Bi) is (ε̂1)-regular with density d̂i354

satisfying (1− ε̂1)di ≤ d̂i ≤ (1 + ε̂1)di.355

Then the number of induced subgraphs EEi(Ŵi, Ŵi+1) with Ŵi ∈
(
Wi
2n

)
and Ŵi+1 ∈

(
Wi+1
2n

)
that are356

not in G is at most β2n
(|Wi|

2n

)(|Wi+1|
2n

)
.357

Having obtained ε2 and c from the above lemma, let n by any integer large enough so that 2n ≥358

cq−1. Now consider any graph H2 on
⊔h+1
i=1 Wi with H2 ∈ H2(h, n, ε2, q). For some fixed integer m359

satisfying 4n ≤ m ≤ n log n, we have that |Wi| = m for all i ∈ [h+1]. Recall that our aim is to show360

that there exist a collection of n element subsets {Xi ⊂Wi : i ∈ [h+1]} so that, for each i ∈ [h+1],361

the induced bipartite graph E(Xi, Xi+1) is (ε1)-regular with density between (3/2)q and 12`q.362

To this end, we first consider a random selection of 2n element subsets {Ŵi ⊂Wi : i ∈ [h+ 1]}.363

By the union bound and Fact 23 (applied with |Wi| = |Wi+1| = m and having β = 1/2), with364

probability at least 1− (h+ 1)(1/2)2n > 0, this random selection of subsets will have the property365

that, for each i ∈ [h + 1], the bipartite graph Ei := E(Ŵi, Ŵi+1) is in G (as defined in Fact 23).366

Hence, we may fix such a selection {Ŵi ⊂Wi : i ∈ [h+ 1]} of 2n element subsets such that each of367

the bipartite graphs Ei = E(Ŵi, Ŵi+1) are in G. Now, for each i ∈ [h+ 1] and associated bipartite368

graph Ei = E(Ŵi, Ŵi+1), we may find subsets Ai ⊂ Ŵi and Bi ⊂ Ŵi+1 with |Ai|, |Bi| ≥ (1− ε̂1)|2n|369

such that EEi(Ai, Bi) is (ε̂1)-regular with density d̂i satisfying (1 − ε̂1)di ≤ d̂i ≤ (1 + ε̂1)di. Thus370

for the set Ŵi, we have selected subsets Ai ⊂ Ŵi and Bi−1 ⊂ Ŵi with respect to the bipartite371

graphs Ei = E(Ŵi, Ŵi+1) and Ei−1 = E(Ŵi−1, Ŵi) respectively. For each Ŵi, let Xi be any subset372

of Ai ∩Bi−1 of size n.373

For each i ∈ [h+ 1], the bipartite graph E(Xi, Xi+1) is (ε1)-regular as desired since:374

• E(Xi, Xi+1) is a subgraph of the (ε̂1)-regular bipartite graph E(Ai, Bi).375
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• (1− ε̂1)2n ≤ |Ai| ≤ 2n and (1− ε̂1)2n ≤ |Bi| ≤ 2n.376

• |Xi| = |Xi+1| = n.377

• ε̂1 = ε1/2.378

Also, E(Xi, Xi+1) has density between (3/2)q and 12`q since:379

• E(Xi, Xi+1) is a subgraph of the (ε̂1)-regular bipartite graph E(Ai, Bi) of density d̂i satisfy-380

ing (1− ε̂2)2q ≤ d̂i ≤ (1 + ε̂2)8`q.381

• |Xi| ≥ ε̂1|Ai| and |Xi+1| ≥ ε̂1|Bi|.382

The proof of Claim 19 is complete.383

3.3 Proof of Claim 20384

This short section is devoted to the proof of Claim 20. Consider any ε ∈ R+. Take ε1 := ε/2 and385

let n be any sufficiently large integer. Consider any graph H1 on
⊔h+1
i=1 Xi with H1 ∈ H1(h, n, ε1, q).386

We must show that H1 has a monochromatic subgraph H on
⊔h+1
i=1 Xi with H ∈ H(h, n, ε, q).387

For each i ∈ [h+ 1], consider a random selection Ri ⊂ E(Xi, Xi+1) of qn2 edges. We claim that388

the random subgraph R :=
⋃
i∈[h+1]Ri will have the desired property R ∈ H(h, n, ε, q) with positive389

probability. Indeed, this probability can be easily bounded using the hypergometric distribution390

(See Lemma 34), keeping in mind that (3/2)qn2 ≤ e(Xi, Xi+1) ≤ 12`qn2. This establishes the391

existence of the desired subgraph H ∈ H(h, n, ε, q), and the proof of Claim 20 is complete.392

4 Proof of the Existence Lemma393

This section of the paper proves Lemma 12, which asserts the existence of a sparse graph G with394

certain properties. It suffices to prove the following lemma.395

Lemma 24. For all constants h, ` ∈ Z+ and any constant δ ∈ R+, there exists a constant ε ∈ R+
396

such that, for any constant t ∈ Z+,397

q := 4(log n)2n−1+1/(h+1), N := tn, and p := 4`q,398

an instance G of the random graph G(N, p) asymptotically almost surely has each of the following399

properties:400

(i ) Every vertex in G has degree at most (log n)3n1/(h+1).401

(ii ) G is (h, n)-cluster free (see Definition 11).402

(iii ) G ∈ I(N, p) (see Definition 8).403

15



(iv ) For all disjoint subsets X1, X2, . . . , Xh+1 ⊂ V (G), every (not necessarily induced) subgraphs H404

on
⊔h+1
i=1 Xi with H ∈ H(h, n, ε, q) is (1− δ, log n)-path abundant (see Definitions 7 and 10).405

In the statement of the previous lemma and elsewhere in this section, we say that a number406

is a constant if it does not depend on n and that a statement holds asymptotically almost surely407

(a.a.s.) if the probability the statement is true approaches 1 as n→∞.408

The first subsection contains Claims 25, 26, and 29, which respectively establish that proper-409

ties (i), (ii), and (iii) in Lemma 24 each hold a.a.s. Notice that these properties do not depend410

upon ε. The second and most substantial subsection will establish a lemma (Lemma 31) derived411

from a result in [11]. In Subsection 4.3, Claim 42 will then use this lemma to establish the existence412

of an ε for which the property (iv) in Lemma 24 holds a.a.s. These claims together constitute a413

proof of Lemma 24.414

4.1 Properties (i), (ii), and (iii) in Lemma 24415

In this subsection, we prove Claims 25, 26, and 29, which correspond to properties (i), (ii), and (iii)416

in Lemma 24.417

Claim 25. For any constants h, t, ` ∈ Z+, let N := tn and p := 4` (log n)2 n−1+1/(h+1). Then a.a.s.418

the random graph G(N, p) has maximum degree less than (log n)3n1/(h+1).419

Proof. It is a well-known fact that the random graph G(N, p) a.a.s. has maximum degree less420

than 2pN for all p� (log n)/n, say. Moreover,421

2pN = 2 · 4`(log n)2n−1+1/(h+1) · tn < (log n)3n1/(h+1),

and the proof is complete.422

Claim 26. For any constants h, t, ` ∈ Z+, let N := tn and p := 4`(log n)2n−1+1/(h+1). Then a.a.s.423

the random graph G(N, p) is (h, n)-cluster free.424

Proof. Recall the definition of an (L, Z, h, log n)-cluster given in Definition 11. It follows that in425

the complete graph on N vertices, each (L, Z, h, log n)-cluster is defined by:426

• Specifying a size of L for L.427

• Picking a set L of L pairs of vertices.428

• Picking a set Z of vertices.429

• For each {u, v} ∈ L, picking a set of log n paths, each of which can be specified by:430

– Picking a vertex in Z to appear in the interior of the path.431
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– Picking h− 1 other vertices to appear in the interior of the path.432

– Ordering the h internal vertices on the path.433

It follows that in G(N, p), the expected number of (L, Z, h, log n)-clusters for L ⊂
(
[N ]
2

)
and Z ⊂434

[N ] with |L| ≤ n(log n)−6h and |Z| = h2|L| is bounded above for sufficiently large n by435

n(logn)−6h∑
L=1

(
N2

L

)(
N

h2L

)
·
(
h2L ·

(
N

h− 1

)
· h!

)(logn)L

p(logn)(h+1)L

≤
n(logn)−6h∑

L=1

N3h2L ·
(
hh+2LNh−1ph+1

)(logn)L
≤

n(logn)−6h∑
L=1

N3h2L ·
(
hh+2 · n(log n)−6h · (nt)h−1 · (4`(log n)2)h+1n−h

)(logn)L
=

n(logn)−6h∑
L=1

N3h2L ·
(
hh+2th−1(4`)h+1(log n)2−4h

)(logn)L
≤

n∑
L=1

N3h2L ·
(

1

log n

)(logn)L

≤
n∑

L=1

(
(nt)3h

2

(log n)logn

)L
≤ n · (nt)3h

2

(log n)logn
,

which goes to 0 as n → ∞. Since the expected number of forbidden (L, Z, h, log n)-clusters436

that G(N, p) contains goes to 0, a.a.s. G(N, p) is (h, n)-cluster free.437

Before we state the next claim, we introduce a definition and an external lemma that are needed438

in its proof.439

Definition 27. We say that a graph G is (p, a)-uniform if440

∣∣e(V1, V2)− p|V1||V2|∣∣ ≤ a√p|V (G)||V1||V2|

for all disjoint sets V1, V2 ⊂ V (G) such that 1 ≤ |V1| ≤ |V2| ≤ p|V (G)||V1|.441

Fact 28 (Lemma 3.8 in [14]). For every p = p(N), 0 < p ≤ 1, a.a.s. the random graph G(N, p)442

is (p, e2
√

6)-uniform.443

Claim 29. For any constants h, t, ` ∈ Z+, N := tn and p := 4`(log n)2n−1+1/(h+1), a.a.s. the444

random graph G(N, p) is in I(N, p).445

Proof. By Fact 28 stated above, a.a.s. we have that446

e(V1, V2) ≤ p|V1||V2|+ e2
√

6 ·
√
pN |V1||V2|,
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for all disjoint sets V1, V2 ⊂ V (G(N, p)) with 1 ≤ |V1| ≤ |V2| ≤ pN |V1|. This is exactly the first447

condition given in the definition of I(N, p). The other condition given in the definition of I(N, p)448

states that a.a.s.449

(1/2) · p|V1||V2| ≤ e(V1, V2) ≤ 2 · p|V1||V2|

for all disjoint sets V1, V2 ⊂ V (G(N, p)) with |V1|, |V2| ≥ N(logN)−1. This can easily be established450

by the union bound.451

4.2 Proof of Lemma 24452

For the remainder of this subsection, let X1, X2, . . . , Xh+1 be fixed (labeled) sets each of size n.453

The following class of graphs describes the graphs on
⊔h+1
i=1 Xi that do not have the desired path454

abundance property.455

Definition 30. Let B(h, n, ε, q, δ) be the set of all graphs B on
⊔h+1
i=1 Xi such that B ∈ H(h, n, ε, q)456

and B is not (1− δ, log n)-path abundant.457

Lemma 31. For any constant h ∈ Z+ and any constants δ, β ∈ R+, there exist constants ε, n4 ∈ R+
458

such that, for any n ≥ n4 and q := 4(log n)2n−1+1/(h+1), we have that459

|B(h, n, ε, q, δ)| ≤ βqn2

(
n2

qn2

)h+1

.

In Subsection 4.3, Lemma 31 will be used to establish Claim 42, which states that the random460

graph G(N, p) a.a.s. has the property that it does not contain any selection of disjoint vertex461

subsets X1, X2, . . . , Xh+1 and subgraph B on
⊔h+1
i=1 Xi with B ∈ B(h, n, ε, q, δ). In other words,462

Claim 42 implies that a.a.s. G(N, p) has the property that for every section of disjoint vertex463

subsets X1, X2, . . . , Xh+1 and subgraph H on
⊔h+1
i=1 Xi, the graph H is (1− δ, log n)-path abundant464

if H ∈ H(h, n, ε, q), which is exactly property (iv) in Lemma 24. Keep in mind that although465

Claim 42 concerns any selection of disjoint vertex subsets X1, X2, . . . , Xh+1 in G(N, p), for the time466

being in this section we are only counting the graphs in B(h, n, ε, q, δ) on already determined vertex467

sets X1, X2, . . . , Xh+1.468

Essentially, we are trying to show that all but exponentially few graphs on
⊔h+1
i=1 Xi inH(h, n, ε, q)469

(see Definition 7) have the property that almost all pairs of vertices in X1 are joined by log n470

transversal paths. The key external lemma we will use establishes that all but exponentially few471

graphs in H(h, n, ε̂, q/4 log n) (again see Definition 7) have the property that most pairs of vertices472

in X1 are connected by at least one path. This lemma will be related to the result we are trying to473

prove by a double counting argument in which a set F of ‘bad families’ of graphs (see Definition 35)474

is considered. We now introduce not only the key external lemma and a related definition, but also475

the standard Hypergeometic Bound. This will be followed by a proof of Lemma 31.476

Definition 32 (Path Dense). A graph H on on
⊔h+1
i=1 Xi with H ∈ H(h, n) is (1 − η)-path dense477
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if at least (1 − η)
(
n
2

)
pairs of vertices {u, v} ∈

(
X1

2

)
are joined by at least one transversal path478

(transversal paths are defined in Definition 10).479

The next lemma is a corollary of Lemma 5.9 in [11]. (To obtain Fact 33 below, one sets480

the parameters in Lemma 5.9 as follows: ` = h + 2, β = β̂, δ = δ/4, γ = δ/4, ν = δ/2, q =481

4(log n)2n−1+1/(h+1), m = qn2/(4 log n) and noticing that nh+2 � mh+1.)482

Fact 33. For any β̂, δ ∈ R+, there exists ε̂ ∈ R+ so that, for q = 4(log n)2n−1+1/(h+1), m :=483

qn2/(4 log n), and sufficiently large n, the total number of graphs E on
⊔h+1
i=1 Xi with E ∈ H(h, n, ε̂,m/n2)484

that are not (1− δ/2)-path dense is at most485

β̂m
(
n2

m

)h+1

. (5)

The following is a well-known bound on the hypergeometic distribution (see, e.g., Theorem 2.10486

and Equation (2.12) in [15]).487

Fact 34 (Hypergeometic Bound). Let Y be a set and Ŷ be a subset of Y . Suppose that M ⊂ Y is488

a subset of size m chosen at random from Y and let the random variable X denote the number of489

elements in M ∩ Ŷ . Then490

Pr

(∣∣∣∣∣X − m|Ŷ |
|Y |

∣∣∣∣∣ ≤ t
)
≥ 1− 2 exp

{
−2t2

|Y |

}
.

We will now prove Lemma 31.491

Proof of Lemma 31. Consider any h ∈ Z+ and β, δ ∈ R+. Let q = 4(log n)2n−1+1/(h+1). We must492

show that there exists an ε ∈ R+ such that for sufficiently large n we have493

|B(h, n, ε, q, δ)| ≤ βqn2

(
n2

qn2

)h+1

.

Making use of Fact 33, set494

β̂ := β2

92(h+1) , ε̂ := εF33(β̂, δ), ε := ε̂/2, and m := qn2

4 logn .495

As mentioned before, the fundamental idea in our proof is to relate the bound in Fact 33496

to |B(h, n, ε, q, δ)| by counting the number of ‘bad families,’ which are defined as follows.497

Definition 35 (Bad Family). We call a set of graphs F = {E1, E2, . . . , E4 logn} a bad family if498

both the following hold:499

• Every E ∈ F is a graph on
⊔h+1
i=1 Xi with E ∈ H(h, n, ε̂,m/n2).500

• Fewer than half of the graphs E ∈ F are (1− δ/2)-path dense.501
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Let F be the set of all bad families of graphs.502

Proposition 36. We have503

|F| ≤

(
β̂m
(
n2

m

)h+1
)2 logn((

n2

m

)h+1
)2 logn

.

Proof. To verify Proposition 36, we use that for each F ∈ F , there are 2 log n graphs E ∈ F504

in H(h, n, ε̂,m/n2) that are not (1 − δ/2)-path dense. By Fact 33, the number of graphs of this505

type is at most as in (5). This readily yields the bound in Proposition 36.506

The next definition refers toH(h, n, 1,m/n2), which is the set of graphs inH(h, n) on
⊔h+1
i=1 Xi in507

which all of the bipartite graph (Xi, Xi+1) have m/n2 edges (i.e., the choice of ε = 1 in Definition 7508

imposes no uniformity restriction).509

Definition 37 (Associated Family). For each graph B ∈ B(h, n, ε, q, δ), we call the set of edge-510

disjoint graphs A = {E1, E2, . . . , E4 logn} an associated family to B if both the following hold:511

• Every E ∈ A is a graph o on
⊔h+1
i=1 Xi with E ∈ H(h, n, 1,m/n2).512

• B =
⋃4 logn
i=1 Ei.513

Since for each B ∈ B(h, n, ε, q, δ) an associated family A is obtained by partitioning the qn2514

edges in each of the h + 1 bipartite graphs into 4 log n classes of size m, it follows that each B is515

associated to516 (
qn2

m,m, . . . ,m

)h+1

((4 log n)!)−1

associated families. Moreover, no two distinct graphs B1, B2 ∈ B(h, n, ε, q, δ) will yield a common517

associated family. The next claim gives a lower bound for the size of F and will be proved by518

establishing that, for each B ∈ B(h, n, ε, q, δ), half of its associated families are bad families.519

Proposition 38. We have520

|F| ≥ |B(h, n, ε, q, δ)|1
2

(
qn2

m,m, . . . ,m

)h+1

((4 log n)!)−1.

Proof. As discussed before the proposition, it suffices to show that at least half the associated521

families for any B ∈ B(h, n, ε, q, δ) are bad families. Hence, to prove Proposition 38, it suffices to522

show the following two subpropositions.523

Subproposition 39. For everyB ∈ B(h, n, ε, q, δ) and every associated familyA = {E1, E2, . . . , E4 logn},524

fewer than half of the graphs E ∈ A are (1− δ/2)-path dense.525

Subproposition 40. For every B ∈ B(h, n, ε, q, δ), at least half the associated families A =526

{E1, E2, . . . , E4 logn} have the property that all E ∈ A are in H(h, n, ε̂,m/n2).527
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Proof of Subproposition 39. We prove the contrapositive by arguing that if at least 2 log n of the528

graphs E ∈ A are (1−δ/2)-path dense, then B is (1−δ, log n)-path abundant. To this end, fix a set529

of 2 log n graphs E ∈ A that are (1−δ/2)-path dense. For each of theses graphs, fix one transversal530

path for each of the (1− δ/2)
(
n
2

)
pairs of vertices {u, v} ∈

(
X1

2

)
that are joined by traversal paths.531

Let P be the set of paths obtained by this process, so that532

|P| = (2 log n)(1− δ/2)

(
n

2

)
. (6)

Also, observe that each pair of vertices {u, v} ∈
(
X1

2

)
is joined by at most 2 log n paths in P. Now533

suppose that exactly α
(
n
2

)
pairs of vertices in

(
X1

2

)
are joined by at least log n transversal paths534

in P. It follows that535

|P| ≤ α
(
n

2

)
2 log n+ (1− α)

(
n

2

)
log n. (7)

From (6) and (7),536

(2 log n)(1− δ/2)

(
n

2

)
≤ α

(
n

2

)
2 log n+ (1− α)

(
n

2

)
log n,

which implies537

2− δ ≤ 2α+ (1− α),

giving that α ≥ 1− δ. This establishes that B is (1− δ, log n)-path abundant, completing the proof538

of Subproposition 39.539

Proof of Subproposition 40. Consider any B ∈ B(h, n, ε, q, δ). For any X̂i ⊂ Xi and X̂i+1 ⊂ Xi+1540

each of size |X̂i|, |X̂i+1| ≥ ε̂n ≥ εn, by definition of B(h, n, ε, q, δ) we have that541 ∣∣∣eB(X̂i, X̂i+1)− q|X̂i||X̂i+1|
∣∣∣ ≤ εq|X̂i||X̂i+1|,

or equivalently542 ∣∣∣∣∣eB(X̂i, X̂i+1)

4 log n
− q

4 log n
|X̂i||X̂i+1|

∣∣∣∣∣ ≤ ε q

4 log n
|X̂i||X̂i+1|. (8)

Now if M is a random subgraph on m = qn2/(4 log n) edges of the bipartite graph EB(Xi, Xi+1)543

on qn2 edges, then the hypergeometric bound stated in Lemma 34 (applied with Y = EB(Xi, Xi+1)544

and Ŷ = EB(X̂i, X̂i+1)) gives that545 ∣∣∣∣∣eM (X̂i, X̂i+1)−
eB(X̂i, X̂i+1)

4 log n

∣∣∣∣∣ ≤ ε q

4 log n
|X̂i||X̂i+1| (9)
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holds with probability at least546

1− 2 exp

{
−2(εq|X̂i||X̂i+1|/4 log n)2

qn2

}
≥ 1− 2 exp

{
− ε6qn2

8(log n)2

}
≥ 1− 2 exp

{
−2−1ε6n1+

1
h+1

}
.

From the triangle equality applied to (8) and (9) (and fact that ε+ ε = ε̂), this gives547 ∣∣∣∣eM (X̂i, X̂i+1)−
q

4 log n
|X̂i||X̂i+1|

∣∣∣∣ ≤ ε̂ q

4 log n
|X̂i||X̂i+1| (10)

with probability at least548

1− 2 exp
{
−2−1ε6n1+1/(h+1)

}
. (11)

Now consider a random partition ofB into an associated familyA = {E1, E2, . . . , E4 logn}. The asso-549

ciated family A will have the desired property that all of the graphs E ∈ A are in H(h, n, ε̂,m/n2) =550

H(h, n, ε̂, q/(4 log n)) if inequality (10) is satisfied for every choice of M = Ej for j ∈ [4 log n], every551

choice of i ∈ [h + 1], and every choice of X̂i ⊂ Xi and X̂i+1 ⊂ Xi+1. It follows from (11) and the552

union bound that this will occur with probability at least553

1− (4 log n) · (h+ 1) · 2n · 2n · 2 exp
{
−2−1ε6n1+1/(h+1)

}
,

which tends to 1 as n→∞. This establishes that a random partition of B into an associated family554

A = {E1, E2, . . . , E4 logn} will have the property that all of the graphs E ∈ F are inH(h, n, ε̂,m/n2)555

with probability at least 1/2 for sufficiently large n. It follows that at least half of the associated556

families A = {E1, E2, . . . , E4 logn} to any B ∈ B(h, n, ε, q, δ) have the property that all of the557

graphs E ∈ F are in H(h, n, ε̂,m/n2), which completes the proof of Subproposition 40.558

Hence, we have proved Proposition 38.559

We now return to the proof of Lemma 31, recalling that we would like to show560

|B(h, n, ε, q, δ)| ≤ βqn2

(
n2

qn2

)h+1

.

Propositions 38 and 36, which we have already established, together give that561

|B(h, n, ε, q, δ)| ≤

(
β̂m
(
n2

m

)h+1
)2 logn((

n2

m

)h+1
)2 logn

· 2
(

qn2

m,m, . . . ,m

)−(h+1)

(4 log n)!.

Thus to establish Lemma 31, it suffices to prove the following.562
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Proposition 41. We have563

β̂2m logn

(
n2

m

)4(h+1) logn

· 2
(

qn2

m,m, . . . ,m

)−(h+1)

(4 log n)! ≤ βqn2

(
n2

qn2

)h+1

.

Proof. Keeping in mind that qn2 = 4(log n)m, β̂ = β29−2(h+1),
(
a
b

)
≤ ( eab )b,

(
a

b,b,...,b

)
≥
(
a
be

)a
, and564 (

a
b

)b ≤ (ab), we see that565

β̂2m logn

(
n2

m

)4(h+1) logn

· 2
(

qn2

m,m, . . . ,m

)−(h+1)

· (4 log n)!

≤
(

β2

92(h+1)

)2m logn(
n2e

m

)m4(h+1) logn

· 2
(
qn2

me

)−qn2(h+1)

· (4 log n)!

= βqn
2

(
n2e

9m

)4(h+1)m logn

· 2
(
me

qn2

)qn2(h+1)

· (4 log n)!

= 2βqn
2

(
n2e

9m
· me
qn2

)qn2(h+1)

· (4 log n)!

≤ βqn2

(
n2

qn2

)qn2(h+1)

·
(
e2

9

)qn2(h+1)

2(4 log n)!

≤ βqn2

(
n2

qn2

)qn2(h+1)

≤ βqn2

(
n2

qn2

)h+1

,

which establishes Proposition 41.566

This completes the proof of Lemma 31.567

4.3 Property (iv) in Lemma 24568

In this subsection, we will prove Claim 42, which correspond to property (iv) in Lemma 24.569

Claim 42. For all constants h, ` ∈ Z+ and δ ∈ R+, there exists a constant ε ∈ R+ such that the570

following holds. For any constant t ∈ Z+,571

q := 4(log n)2n−1+1/(h+1), N := tn, and p := 4`q,572

the random graph G(N, p) a.a.s. has the following property. For any selection of disjoint subsets573

X1, X2, . . . , Xh+1 ⊂ V (G), every (not necessarily induced) subgraphs H on
⊔h+1
i=1 Xi with H ∈574

H(h, n, ε, q) is (1− δ, log n)-path abundant.575

Proof. Consider any h, ` ∈ Z+ and δ ∈ R+. Let576

β := (24`)−(h+1).

By Lemma 31, we may now fix577
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ε := εL31(h, δ, β) and n4 := nL314 (h, δ, β),578

and without loss of generality assume that ε < 1/2. Now consider any integer t ∈ Z+.579

To show that a.a.s. every subgraph H ∈ H(h, n, ε, q) appearing in G(N, p) is (1 − δ, log n)-580

path abundant, as we previously remarked, it suffices to show that a.a.s. G(N, p) does not contain581

disjoint subsets X1, X2, . . . , Xh+1 ⊂ V (G) and a subgraph B on
⊔h+1
i=1 Xi with B ∈ B(h, n, ε, q, δ).582

By Lemma 31, for all n ≥ n4, the expected total number of subgraphs B ∈ B(h, n, ε, q, δ) appearing583

in G(N, p) over all choices of subsets is bounded above by584

(
N

(h+ 1)n

)
((h+ 1)n)! · βqn2

(
n2

qn2

)(h+1)

· pqn2(h+1)

≤ N (h+1)n · βqn2

(
en2

qn2(h+ 1)

)qn2(h+1)

pqn
2(h+1)

≤ 2(h+1)n logN ·

(
β1/(h+1)e(4`q)

q(h+ 1)

)qn2(h+1)

≤ 2(h+1)n logN ·
(
β1/(h+1)e4`

)qn2(h+1)

≤ 2(h+1)n log tn ·
(

1

2

)qn2

,

which tends to 0 as n→∞. Therefore the probability that G(N, p) contains disjoint vertex subsets585

X1, X2, . . . , Xh+1 ⊂ V (G) and a subgraph B on
⊔h+1
i=1 Xi with B ∈ B(h, n, ε, q, δ) also tends to 0586

as n→∞, completing the proof of Claim 26.587

5 Proof of the Embedding Lemma588

In this section, we prove Lemma 14, which states that for certain parameters every J ∈ J (h, n, δ)589

(see Definition 13) is universal to the set of graphs {S(h) : |V (S)| = n(log n)−7h and ∆(S) ≤ d}.590

The proof will be divided into two subsections, which are preceded by the following sketch of the591

proof.592

Consider any graph J ∈ J (h, n, δ) on
⊔h+1
i=1 Xi and any graph S with |V (S)| = n(log n)−7h593

and ∆(S) ≤ d. Our aim will be to find a mapping φ : V (S)→ X1 such that each edge uv ∈ E(S)594

can be paired with a transversal path (see Definition 10) between φ(u) and φ(v). Observe that595

if the set of transversal paths selected are internally vertex-disjoint, this will correspond to an596

embedding of the subdivided graph S(h) into J . Roughly speaking, this will be accomplished by597

first finding an embedding φ : V (S) → X1 and associating each edge uv ∈ E(S) with not one598

associated transversal path, but a family of many transversal paths between φ(u) and φ(v). This599

will be done so that all the paths in all the associated families are edge-disjoint. We then will select600
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one path from each associated family to obtain the desired collection of internally vertex-disjoint601

paths.602

We will now elaborate upon this sketch. For the graph J , we say that two vertices u, v ∈ X1603

are (log n)-path connected if u and v are joined by at least log n pairwise edge-disjoint transversal604

paths in J . Since J is (1− δ, log n)-path abundant (see Definition 10), at least (1− δ)
(
n
2

)
pairs of605

vertices in X1 are (log n)-path connected (see Definition 10). Define an auxiliary graph A by606

V (A) := X1 and E(A) := {uv : u and v are (log n)-path connected in J}.

For each uv ∈ E(A), let Πuv be a fixed set of log n pairwise edge-disjoint transversal paths in J607

with endpoints u and v. We say the distinct edges e1, e2 ∈ E(A) are incompatible if there exist608

paths πe1 ∈ Πe1 and πe2 ∈ Πe2 such that πe1 and πe2 have an edge in common. Define the609

incompatibility function f : E(A)→ P(E(A)) by610

f(e1) := {e2 : e1 and e2 are incompatible}.

Given this set-up, the proof has two steps:611

• Find a graph embedding φ : S → A such that φ(e1) 6∈ f(φ(e2)) for every e1, e2 ∈ E(S).612

• For each edge e ∈ E(S), select a path πφ(e) ∈ Πφ(e) so that for all pairs of edges e1, e2 ∈ E(S),613

the paths πφ(e1) and πφ(e2) are internally vertex-disjoint.614

The key to the first of these two steps is the following lemma. Although stated in a general context,615

when we apply the lemma the function f will be the incompatibility function defined above.616

Lemma 43. Let d and n be positive integers. Let A be a graph such that:617

(i ) |V (A)| = n.618

(ii ) Every vertex in A has degree at least (1− 1/6d)n.619

Let S be a graph such that:620

(iii) |V (S)| ≤ n/6.621

(iv) Every vertex in S has degree at most d.622

Let f : E(A)→ P(E(A)) be a function that maps each edge e ∈ E(A) to a set of edges f(e) ⊂ E(A)623

such that:624

(v) |f(e)| ≤ n/63d4 for all e ∈ E(A).625

(vi) e1 ∈ f(e2) if and only if e2 ∈ f(e1).626
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(vii) e 6∈ f(e) for all e ∈ E(A).627

Then there is an embedding φ : S → A such that628

φ(E(S)) ∩ f(φ(E(S))) = ∅, (12)

where f(φ(E(S))) :=
⋃
e∈φ(E(S)) f(e).629

To select a system of internally vertex-disjoint paths πφ(e) ∈ Πφ(e) for the edges e ∈ S, we630

will make use of J being (h, n)-cluster free, that for distinct edges e1, e2 ∈ S the families πφ(e1)631

and πφ(e2) consist of pairwise edge-disjoint paths, and the following result of Aharoni and Haxell.632

Fact 44 ([1]). Let X be a finite set and let Π̂1, . . . , Π̂m ⊂
(
X
h

)
be families of h-subsets of X.633

Suppose that, for every non-empty L ⊂ [m], there are more than h(|L| − 1) pairwise disjoint h-sets634

in
⋃
l∈L Π̂l. Then there exist π̂1, . . . , π̂m with π̂i ∈ Π̂i for every i ∈ [m] such that π̂i∩π̂j = ∅ for every635

distinct i, j ∈ [m]. We call {π̂i : i ∈ [m]} a system of disjoint representatives for {Π̂i : i ∈ [m]}.636

The remaining part of this section is divided into two subsections. The first subsection contains637

a proof of Lemma 43 and the second subsection contains a proof of Lemma 14 based upon Lemma 43638

and Fact 44.639

5.1 Proof of Lemma 43640

This whole subsection is devoted to the proof of Lemma 43. Let n, d, A, S, and f be as in the641

statement of Lemma 43. To prove the lemma, we introduce some terminology and then present an642

embedding algorithm.643

Definition 45 (Dangerous Vertex).644

• We call edges e1 and e2 in E(A) incompatible if e1 ∈ f(e2).645

• We call a pair of incident edges xy, yz ∈ E(A) that are incompatible a useless P3. We call y646

the center vertex of the useless P3 and the pair x, z the end vertices of the useless P3.647

• We call a pair of vertices {u, v} ∈
(
V (A)
2

)
a dangerous pair if u, v are the end vertices of at648

least n/6
(
d
2

)
useless P3.649

• We call a vertex v ∈ V (A) a dangerous vertex if it is in at least n/6d2 dangerous pairs.650

We now work to obtain an upper bound for the number of dangerous vertices in A. Recalling651

that each edge is incompatible with at most n/63d4 other edges, the number of useless P3 is at652

most653

n

63d4
·
(
n

2

)
≤ n3

2163d4
.
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It follows that the number of dangerous pairs of vertices is at most654

n3

2163d4
·

6
(
d
2

)
n
≤ n2

2262d2
.

Finally, the number of dangerous vertices is at most655

2 · n2

2262d2
· 6d2

n
≤ n

12
. (13)

Set J0 to be the set of dangerous vertices in A.656

Definition 46 (Guilty Vertex). Suppose S′ is an induced subgraph of S, A′ is an induced subgraph657

of A, and φ′ is an embedding of the graph S′ into A′.658

• We call e ∈ E(A′) a forbidden edge if e ∈ f(φ′(E(S′))).659

• We will call a vertex v ∈ φ′(V (S′)) guilty by association, or simply guilty, if v is incident to660

at least n/6d forbidden edges.661

That is, a forbidden edge in A is incompatible with an edge that has already been used in the662

embedding, and a vertex is guilty by association if it is incident to too many forbidden edges.663

Definition 47 (Safe and Legal Embeddings). Suppose S′ is an induced subgraph of S, the graph664

A′ is an induced subgraph of the graph A, and φ′ is an embedding of the graph S′ into the graph A′.665

• We say that the embedding φ′ is legal if φ′(E(S′)) ∩ f(φ′(E(S′))) = ∅.666

• We say vertices s1, s2 in S are P3-connected if s1v, s2v ∈ E(S) for some v ∈ V (S).667

• We say that the embedding φ′ is safe if none of the pairs {φ′(s1), φ′(s2)} of vertices in A is668

dangerous for vertices s1, s2 ∈ V (S′) that are P3-connected in S.669

That is, an embedding is legal if it has not used any pair of incompatible edges, and an em-670

bedding is safe if for each s ∈ S and any pair of vertices s1, s2 ∈ N(s), the embedding φ′ has not671

mapped s1 and s2 onto a dangerous pair of vertices.672

Before formally stating our embedding algorithm, we present the main idea, which is as follows.673

We keep a set J of ‘jailed’ vertices. We initially send all the dangerous vertices to jail. We then674

construct a legal and safe partial embedding φ′ of an induced subgraph S′ ⊂ S into A \ J by675

sequentially embedding vertices. As edges are added to the embedding, however, the number of676

forbidden edges may increase and already embedded vertices may become guilty by association.677

This is problematic because guilty vertices may prevent the embedding from being extended in a678

legal manner later. To resolve this, whenever guilty vertices appear in A′, we send them to jail679

and remove them from the embedding. (Therefore, the domain S′ of the partial embedding φ′ may680

decrease in size as the algorithm progresses.) We will show that not too many vertices end up in jail681
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and that when no guilty vertices are present, a legal and safe embedding can always be augmented682

to form a larger legal and safe embedding.683

684

Algorithm: Initially take685

S′ := ∅, J := J0, A′ := A \ J,686

and set φ′ : S′ → A′ to be the empty function. As we proceed through the algorithm, we will update687

these sets and this function.688

STEP 1 : If there exists a vertex v ∈ φ′(V (S′)) that is guilty in the current embedding, replace J689

by J ∪ {v}, replace S′ by S′ \ {φ′−1(v)}, update the function φ′ by removing the pair (φ′−1(v), v),690

update A′ to A \ J , and repeat STEP 1. Otherwise, go to STEP 2.691

STEP 2 : Arbitrarily pick a vertex s ∈ V (S) \ V (S′) and extend φ′ to s by mapping s to some692

vertex v ∈ V (A′) \ φ(V (S′)) so that the new embedding is both legal and safe. Also, replace S′693

by S′ ∪ {s} and add (s, v) to φ′. If S′ = S, terminate the algorithm; otherwise, go to STEP 1.694

695

We make the following observations about this algorithm:696

• Once a vertex is placed into J , it will always remain in J .697

• The set of dangerous pairs and the set of dangerous vertices are both fixed from the beginning698

and do not change.699

• Extending an embedding by adding a new vertex (and up to d edges) may make a vertex v ∈700

φ′(V (S′)) guilty.701

• At the start of STEP 2, there are no guilty vertices and the current embedding is both legal702

and safe.703

It remains to show that STEP 2 is always possible and that the algorithm will successfully terminate.704

This will be accomplished by the following two facts.705

Proposition 48. The size of the set J will never reach n/6.706

Proof. Towards contradiction, consider the first moment in the execution of the algorithm at707

which |J | = n/6. Let B be the set of edges that were forbidden at any point in time up to708

this stopping point. That is, B is the set of edges that appeared in f(φ′(E(S′))) for any partial em-709

bedding φ′ the algorithm considered over its run time. We will reach a contradiction by considering710

the size of B.711

To obtain an upper bound for the size of B, notice that whenever a vertex was added to the712

embedding, up to d edges were added to the embedding as well, and thus at most d · n/(63d4)713
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forbidden edges were added to B for each vertex embedded. Since the number of vertices added to714

the embedding is at most715

|J | − |J0|+ |S| ≤
n

6
+
n

6
≤ n

3
,

it follows that716

|B| ≤ n

3
· d · n

63d4
≤ n2

63d3
. (14)

We now obtain a lower bound for the size of B. Notice that each guilty vertex that was added to J717

was incident to at least n/6d forbidden edges in A′. Moreover, since vertices in J remain in J , this718

set of n/6d forbidden edges will never again appear in A′. This gives719

|B| ≥ (|J | − |J0|) ·
n

6d
≥
(n

6
− n

12

)
· n

6d
=

n2

72d
. (15)

Equalities (14) and (15) yield the contradiction720

n2

72d
≤ |B| ≤ n2

63d3
,

completing the proof of Proposition 48.721

Proposition 49. STEP 2 is always possible.722

Proof. Arbitrarily pick a vertex s ∈ V (S) \ V (S′) to extend the embedding to. We must find a723

vertex v ∈ A′ so that extending φ′ to include the pair (s, v) will produce an embedding that is724

both legal and safe. We will now list six cases in which such a vertex v ∈ A will not produce725

an embedding that is both legal and safe. Cases 1, 2, and 3 correspond to the map not being an726

embedding into A′; Case 4 corresponds to the embedding using an edge incompatible with an edge727

already used (and thus not being legal); Case 5 corresponds to the embedding using two new edges728

that are incompatible with each other (and thus not being legal); and Case 6 corresponds to the729

embedding not being safe.730

1. The vertex v belongs to φ′(S′).731

2. The vertex v belongs to J .732

3. For some s′ ∈ S′ with ss′ ∈ E(S), the edge φ(s′)v is not in E(A).733

4. For some s′ ∈ S′ with ss′ ∈ E(S) and e′ ∈ E(S′), the edge φ(s′)v is in f(φ(e′)) .734

5. For some s1, s2 ∈ S′ with ss1, ss2 ∈ E(S), the edges φ(s1)v and φ(s2)v are incompatible.735

6. For some s′ ∈ S′ that is P3-connected in S to s, the pair {φ′(s′), v} is dangerous.736

Observe that if none of (1)–(6) holds, then extending φ to include (s, v) will produce an em-737

bedding that is both legal and safe.738
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The number of vertices in A in Cases 1 and 2 is at most739

|S|+ |J | ≤
(n

6
− 1
)

+
n

6
≤ 2n

6
− 1.

To count the number of vertices in A in Case 3, observe that s has at most d neighbors in S′. Hence,740

there are at most d choices for s′. Also, from hypothesis each s′ is not adjacent to at most n/6d741

vertices. Hence, the number of vertices in Case 3 at most742

d · n
6d
≤ n

6
.

Similarly, to count the number of vertices in A in Case 4, again recall that s has at most d neighbors743

in S′. Also for each such neighbor s′, it follows from the fact that φ′(s′) is not guilty by association744

that φ(s′) is incident to at most n/6d forbidden edges. Hence, the total number of vertices in Case 4745

is at most746

d · n
6d

=
n

6
.

To count the number of vertices in A in Case 5, observe that there are are at most
(
d
2

)
choices for s1747

and s2, and for any choice of s1, s2, since the embedding is safe, there are at most n/6
(
d
2

)
vertices v748

that are part of a useless P3 with φ′(s1) and φ′(s2). Hence the total number of vertices in Case 5749

is at most750 (
d

2

)
· n

6
(
d
2

) ≤ n

6
.

Finally, to count the number of vertices that are in Case 6, observe that in the graph S, the vertex s751

is distance two away from at most d2 other vertices. Since each of the images of these vertices is752

not dangerous, the images are each in at most n/6d2 dangerous pairs. Hence, the total number of753

vertices v ∈ A that are in Case 6 is at most754

d2 · n
6d2

=
n

6
.

In conclusion, there must be at least755

n−
(

2n

6
− 1

)
− 4 · n

6
≥ 1

vertices v ∈ A such that the map obtained by extending φ′ to include (s, v) will produce both a756

legal and safe embedding. Proposition 49 is proved.757

This concludes the proof of Lemma 43.758
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5.2 Proof of Lemma 14759

Consider any pair of positive integers h and d. We will make use of the following simple fact.760

Fact 50. For every ν > 0 there exist δ > 0 and n6 such that for every integer n ≥ n6 the following761

holds. If A is a graph on n vertices with at least (1 − δ)
(
n
2

)
edges, then there exists a subgraph Â762

with |V (Â)| ≥ (1− ν)n and with minimum degree at most (1− ν)|V (Â)|.763

With ν := 1/6d, choose δ and n6 in accordance with the previous fact. Choose n3 ≥ n6 so764

that the second inequality in (17) below is satisfied for all n ≥ n3. Now consider any n ≥ n3,765

any J ∈ J (h, n, δ), and any graph S with |V (S)| = n(log n)−7h and ∆(S) ≤ d. We must show766

that S(h) ⊆ J .767

As at the beginning of Section 5, define the auxiliary graph A by768

V (A) := X1 and E(A) := {uv : u and v are (log n)-path connected in J}.

Let Â be a subgraph of A on n̂ vertices such that n̂ ≥ n/2 and every vertex in Â has degree at769

least (1− 1/6d)n̂, guaranteed by Fact 50. Also, for each uv ∈ E(Â), let Πuv be a fixed set of log n770

transversal paths between u and v in J that are pairwise edge-disjoint. As before, we say that a771

pair of distinct edges e1, e2 ∈ E(A) are incompatible if there exist paths πe1 ∈ Πe1 and πe2 ∈ Πe2772

such that πe1 and πe2 have an edge in common and define773

f(e1) := {e2 : e1 and e2 are incompatable}.

We will use Lemma 43 to embed S into Â. With the set-up above, all the hypotheses other774

than (v) in Lemma 43 are clearly satisfied. To verify (v), observe that, since J has maximum775

degree (log n)3n1/(h+1), the number of transversal paths any edge e ∈ E(J) can be in is at most776 (
(log n)3n1/(h+1)

)h
≤ (log n)3hnh/(h+1). (16)

Moreover, since for every e ∈ E(A) the family Πe has exactly log n edge-disjoint paths,777

f(e) ≤ (log n) · (h+ 1) · (log n)3hnh/(h+1) <
n/2

63d4
, (17)

where the second inequality follows from n ≥ n3. Thus, by Lemma 43, there exists an embedding φ778

of S into Â such that the image of E(S) under φ contains no pair of incompatible edges.779

Finally, to select a system of internally pairwise vertex-disjoint paths from the families {Πφ(e) :780

e ∈ E(S)}, the result of Aharoni and Haxell (Fact 44) will be used. Take X :=
⋃h+1
i=2 Xi, and set781

Π̂e := {V (π) ∩X : π ∈ Πe},
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so that each element in Π̂e is a set of vertices in X that corresponds to the interior of a path in Πe.782

Thus a system of disjoint representatives for the set of families {Π̂φ(e) : e ∈ E(S)} corresponds to783

an embedding of S(h) into J . Clearly,784

|{Π̂φ(e) : e ∈ E(S)}| = |E(S)| ≤ dn(log n)−7 ≤ n(log n)−6. (18)

We claim that the hypothesis of Fact 44 holds. Towards contradiction, assume that there exists785

a set L of L ≤ n(log n)−6 edges in φ(E(S)) ⊆ A such that there are at most h(L − 1) pairwise786

disjoint h-sets in
⋃
l∈L Π̂l. Let Γ be a maximum set of pairwise disjoint h-sets in

⋃
l∈L Π̂l. Let Z787

be the vertices in Γ. Observe788

|Z| ≤ h(L− 1) · h ≤ h2L.

However, one may check that
⋃
l∈LΠl is an (L, Z, h, log n)-cluster of paths in the graph J . This789

contradicts the fact that J is (h, n)-cluster free (property (iv) in Definition 13). This contradiction790

establishes that the hypothesis of the Aharoni–Haxell theorem holds, and therefore the set of791

families {Π̂φ(e) : e ∈ E(S)} has a set of disjoint representatives, yielding an embedding of S(h)
792

into J . This completes the proof of Lemma 14.793

6 Proof of Theorem 3794

For brevity, we shall refer to graphs on n vertices that have maximum degree at most d as (n, d)-795

graphs. In this section, we show that if H is a graph that contains a copy of S(h) for every796

(n, d)-graph S, then H has at least n1+1/(h+1)−2/d(h+1)+o(1) edges. Hence, for fixed integers h ≥ 1797

and d ≥ 2,798

USR(h, d, 1, n) ≥ n1+1/(h+1)−2/d(h+1)+o(1),

which is the statement in Theorem 3.799

The proof is based upon the following external lemma.800

Fact 51 ([4], Corollary II.4.17, p. 52). Let d ≥ 2 be a fixed integer and suppose that dn is even.801

The number Ld(n) of d-regular graphs on n labeled vertices satisfies802

Ld(n) = (1 + o(1))
√

2e−(d
2−1)/4

(
dd/2

ed/2d!

)n
ndn/2.

Proof of Theorem 3. Let L≤d(n) be the number of labeled (n, d)-graphs (recall that (n, d)-graphs803

have maximum degree at most d). Fact 51 gives that, for any fixed d ≥ 2,804

L≤d(n) ≥ 2(d/2+o(1))n logn. (19)

We now let U≤d(n) be the number of unlabeled (n, d)-graphs, and let U
(h)
≤d (n) be the number of805
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unlabeled h-subdivisions of such graphs.806

We claim that807

U
(h)
≤d (n) ≥ 2(d/2−1+o(1))n logn. (20)

Indeed, first observe that, from (19), we have808

U≤d(n) ≥ 1

n!
· 2(d/2+o(1))n logn ≥ 1

nn
· 2(d/2+o(1))n logn ≥ 2(d/2−1+o(1))n logn.

Second, observe that if two distinct unlabeled (n, d)-graphs S1 and S2 both have each edge sub-809

divided h times, then the resulting graphs S
(h)
1 and S

(h)
2 are distinct unlabeled graphs. Together,810

these observations establish (20).811

To complete the proof of Theorem 3, we use the fact that if H is a graph on m edges that812

contains a copy of every unlabeled h-subdivision of (n, d)-graphs, then it must be the case that813

nd(h+1)/2∑
i=0

(
m

i

)
≥ U (h)

≤d (n) ≥ 2(d/2−1+o(1))n logn. (21)

If m ≤ nd(h+1), then the left hand side of (21) is at most 2nd(h+1), which yields a contradiction to814

the inequality in (21). We therefore suppose that m ≥ nd(h+ 1). Then, using that every binomial815

coefficient in (21) is at most
(

m
nd(h+1)/2

)
and that

(
n
a

)
≤ (en/a)n, we have816

nd(h+1)/2∑
i=0

(
m

i

)
≤ 1

2
nd(h+ 1) ·

(
em

nd(h+ 1)/2

)nd(h+1)/2

. (22)

From equations (21) and (22), we have817

1

2
nd(h+ 1) ·

(
em

nd(h+ 1)/2

)nd(h+1)/2

≥ 2(d/2−1+o(1))n logn,

or, equivalently,818 (m
n

)nd(h+1)/2
≥ 2(d/2−1+o(1))n logn.

This implies that819

m

n
≥ 2(1/(h+1)−2/((h+1)d)+o(1)) logn,

giving the desired bound of820

m ≥ n1+1/(h+1)−2/((h+1)d)+o(1).

821
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7 Proof Sketch of Theorem 4822

To prove Theorem 4, we must show that for any integers h, d and `, there exists a constant q0 such823

that the following holds. If Q is a graph of maximum degree at most d on q ≥ q0 vertices with the824

property that every pair of vertices of degree greater than 2 are distance at least h+ 1 apart, then825

r̂`(Q) ≤ (log q)20hq1+1/(h+1).826

To accomplish this, we first define the ‘super-subdivision’ of a graph. We then show that for any827

graph Q as in Theorem 4, there exists a graph S such that the super-subdivision of S contains Q as828

a subgraph. It will then suffice to demonstrate how our main Theorem 2 concerning subdivisions829

can be extended to super-subdivisions.830

Definition 52 (Super-subdivision S(∗)). Give a graph S and integers h and d, we define the (h, d)-831

super-subdivision S(∗) of S to be the graph obtained by replacing each edge uv in S by a system832

of d(h + 1) mutually internally vertex-disjoint paths from u to v, of which exactly d paths have833

length k for each k ∈ {h+ 1, h+ 2, . . . , 2h+ 1}.834

As the reader will have noticed, our notation S(∗) for the (h, d)-super-subdivision of S does not835

contain the parameters h and d explicitly. This will not cause any confusion, as these two parameter836

will always be fixed in our discussion. In fact, we shall always use the simpler term super-division837

in lieu of (h, d)-super-subdivision. Also, notice that |E(S(∗))| = d((3h+ 2)/2)|E(S)|.838

Proposition 53. Let Q be any graph with |V (Q)| = q and ∆(Q) ≤ d with the property that every839

two vertices of degree greater than 2 are distance at least h+ 1 apart. Then there exists a graph S840

with |V (S)| ≤ q and ∆(S) ≤ d such that Q ⊂ S(∗).841

Proof. For vertices x1, x2 ∈ Q, let distQ(x1, x2) be the minimum number of edges in a path with842

endpoints x1 and x2. Let X be a maximal subset of vertices in Q that satisfies both of the following843

properties:844

• All vertices of degree greater than 2 are contained in X.845

• All pairs of vertices x1, x2 ∈ X satisfy distQ(x1, x2) > h.846

Now construct a graph S by taking V (S) = X and joining vertices x1, x2 ∈ S if distQ(x1, x2) <847

2h+ 2. It follows that ∆(S) ≤ ∆(Q) and that Q ⊆ S(∗).848

In view of Proposition 53, to establish Theorem 4 it suffices to establish the following lemma.849

Lemma 54. For any h, d, ` ∈ Z+, there exists a constant s0 such that for every graph S with |V (S)| =850

s ≥ s0 and ∆(S) ≤ d,851

r̂`(S
(∗)) ≤ (log s)20hs1+1/(h+1).

To prove Lemma 54, we consider another way of obtaining the super-subdivision S(∗) from the852

graph S. Begin by fixing a proper edge coloring χ : E(S) → [d + 1], which exists since ∆(S) ≤ d.853
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For integers i ∈ [d + 1], j ∈ [d], and k ∈ {h + 1, h + 2, . . . , 2h + 1}, let Mi,j,k := χ−1(i); it follows854

that Mi,j,k = Mi,j′,k′ for all j, j′ ∈ [d] and k, k′ ∈ {h+ 1, h+ 2, . . . , 2h+ 1}. Define the multiset of855

matchings856

M :=
{
Mi,j,k : i ∈ [d+ 1], j ∈ [d], k ∈ {h+ 1, h+ 2, . . . , 2h+ 1}

}
.

We construct S(∗) on V (S) by the following procedure. For every Mi,j,k ∈M and every xy ∈Mi,j,k,857

add a path of length k between x and y. Consequently, for any xy ∈ E(S), there are d paths of858

length k between x and y for each k ∈ {h+ 1, h+ 2, . . . , 2h+ 1}. It follows that the resulting graph859

is the super-subdivision S(∗) of S.860

Since the full proof is notationally cumbersome, we first demonstrate the main ideas in the861

context of two propositions that allows for simpler notation. These propositions consider the862

simpler case where the multiset M of multiple matchings is replaced by a pair of matchings.863

Definition 55 (S(M1,M2,k1,k2)). Let S be a graph and M1,M2 ⊂ E(S) be not necessarily disjoint864

matchings with M1 ∪M2 = E(S). Let k1 and k2 be integers. Define S(M1,M2,k1,k2) to be the graph865

on V (S) obtained by adding a path of length k1 between x and y for every edge xy ∈ M1 and a866

path of length k2 between x and y for every edge xy ∈M2. (Since M1 and M2 need not be disjoint,867

some edges in E(S) may be replaced by two paths.)868

Proposition 56. For any h, ` ∈ Z+, there exists a constant s0 such that if S is a graph with |V (S)| =869

s ≥ s0 and M1 and M2 are matchings such that M1 ∪M2 = E(S), then870

r̂`(S
(M1,M2,h+1,h+2)) ≤ (log s)20hs1+1/(h+1).

Proof. We will make three claims that are similar to the Coloring Lemma, Existence Lemma, and871

Embedding Lemma used in the proof of Theorem 2. Before stating the first of these claims, we872

introduce a couple definitions, the second of which is demonstrated in Figure 3.873

Definition 57 (Ch+1,h+2). Let Ch+1,h+2 be the graph on 2h+ 2 vertices obtained from a copy of874

the cycle Ch+1 with cyclically ordered vertices x11, x
1
2, . . . , x

1
h+1 and a copy of the cycle Ch+2 with875

cyclically ordered vertices x21, x
2
2, . . . , x

2
h+2 and with x1 := x11 = x21.876

Definition 58 (Incomplete Blowup of Ch+1,h+2). An incomplete blowup H of Ch+1,h+2 is obtained877

by replacing each vertex xij with a independent set Xi
j of n vertices and each edge by a (not nec-878

essarily complete) bipartite graph. Also, define H1 := H[
⋃
α∈[h+1]X

1
α] and H2 := H[

⋃
α∈[h+2]X

2
α].879

Recall that in the proof of Theorem 2 the class H(h, n, ε, q) was the set of incomplete blowups880

of Ch+1 in which the bipartite graphs had exactly qn2 edges and were (ε, q)-regular (as in Defini-881

tion 21). We now define an analogous concept.882

Definition 59. Let H∗(h, n, ε, q) be the set of all graphs that are incomplete blowups of Ch+1,h+2883

where every edge in Ch+1,h+2 corresponds to an (ε, q)-regular bipartite graph with exactly qn2884

edges.885
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Figure 3: An incomplete blowup of Ch+1,h+2 for h = 3.

The next claim is analogous to the Coloring Lemma.886

Claim 60. For any ε ∈ R+ and h, ` ∈ Z+, there exist t, n1 ∈ Z+ such that for all n ≥ n1,887

q := 4(log n)2n−1+1/(h+1), N := tn, and p := 4`q,888

every graph G ∈ I(N, p) has the following property. Any `-coloring of the edges of G yields a889

monochromatic subgraph H ∈ H∗(h, n, ε, q).890

Proof. In the proof of the Coloring Lemma (Lemma 9), we defined a cluster graph that had vertices891

corresponding to the vertex classes obtained from an application of the Regularity Lemma and892

edges corresponding to pairs that exhibited regularity. The edges of the cluster graph were `-893

colored by the majority color in the corresponding partition. We previously argued that the cluster894

graph contained a monochromatic clique of size h + 1 (and hence a copy of Ch+1). By taking t895

sufficiently larger and an appropriate modification of the parameters in the proof, we can instead896

find a monochromatic clique of size 2h + 2, and hence a copy of Ch+1,h+2. This will yield a897

monochromatic H ∈ H∗(h, n, ε, q).898

Our next claim will be analogous to the Existence Lemma. To state it, we first need a modified899

notion of path abundance.900

Definition 61 (Transversal Paths for H∗). Let H be a partial blowup of Ch+1,h+2.901

• For a pair of vertices u, v ∈ X1
1 , a transversal path between u and v in H1 is the same as902

described in Definition 10.903

• For a pair of vertices u ∈ X2
1 and v ∈ X2

h+2, a transversal path between u and v in H2 is a904

path P of length h+ 1 with exactly one vertex in X2
i for each i ∈ [h+ 2].905
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Definition 62 (Path Abundance for H∗). Let H be a partial blowup of Ch+1,h+2. We say that906

the graph H is (1− δ, log n)-path abundant if both of the following hold:907

• The graph H1 is path abundant (as defined in Definition 10).908

• The graph H2 has the property that for at least (1 − δ)n2 pairs of vertices u ∈ X2
1 and v ∈909

X2
h+2, there are at least log n transversal paths between u and v that are pairwise edge-910

disjoint (as defined in Definition 61).911

We now state the next claim that is analogous to the Existence Lemma.912

Claim 63. For all h, ` ∈ Z+ and δ ∈ R+, there exists ε ∈ R+ such that for any t ∈ Z+ there913

exists n2 ∈ Z such that the following holds. For any n ≥ n2 and914

q := 4(log n)2n−1+1/(h+1), N := tn, and p := 4`q,915

there exists a graph G on N vertices satisfying all of the following properties:916

(i ) Every vertex in G has degree at most (log n)3n1/(h+1).917

(ii ) G is (h, n)-cluster free.918

(iii ) G ∈ I(N, p).919

(iv ) Every (not necessarily induced) subgraph H ∈ H∗(h, n, ε, q) of G is (1−δ, log n)-path abundant.920

Proof. Properties (i)–(iii) are the same as in the Existence Lemma and the modified notion of path921

abundance in Property (iv) is proved analogously.922

After stating one more definition, we state a claim analogous to the Embedding Lemma.923

Definition 64. Let J ∗(h, n, δ) be the set of all graphs J that are partial blowups of Ch+1,h+2 such924

that:925

(i ) Every vertex in J has degree at most (log n)3n1/(h+1).926

(ii ) J is (n, h)-cluster free (as defined in Definition 11).927

(iii ) J is (1− δ, log n)-path abundant (as defined in Definition 62).928

(iv ) There is a matching of size (1− δ)n between X2
h+2 and X2

1 .929

As in the proof of Theorem 2, the Coloring Lemma and Existence Lemma together yield a930

monochromatic H ∈ J ∗(h, n, δ). Note that the additional Property (iv) follows from the fact931

that H ∈ H∗(h, n, ε, q) and hence the bipartite graph of H induced between X2
h+2 and X2

1 is (ε, p)-932

regular. The next claim is analogous to the Embedding Lemma.933
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Claim 65. For all h ∈ Z+, there exist δ ∈ R+ and n3 ∈ Z+ such that for all n ≥ n3 the following934

holds. Every graph H ∈ J ∗(h, n, δ) is universal to the set of graphs935 {
S(M1,M2,h+1,h+2) : |V (S)| = n

(log n)7h

}
.

Proof. The proof of this claim follows the lines of the argument used to establish the Embedding936

Lemma where S(h) was embedded into J ∈ J (h, n, δ). Recall that the main steps in this argument937

were:938

• Considering an auxiliary graph A with vertex set X1 where vertices x, y ∈ X1 were joined939

if x and y were path connected (i.e., if there was a set Πxy of log n edge-disjoint transversal940

paths between x and y).941

• Defining an incompatibility function f : E(A)→ P(E(A)) where each edge was incompatible942

with certain other edges.943

• Finding an embedding φ of S into A such that f(φ(E(S))) ∩ φ(E(S)) = ∅.944

• Showing that for every edge xy ∈ φ(E(S)), a path πxy ∈ Πxy could be selected so that the945

set of paths selected {πxy : xy ∈ φ(E(S))} were pairwise internally vertex-disjoint. This946

corresponded to embedding S(h) into J .947

The proof of Claim 65 is similar, so we only mention where it differs. We begin by fixing a948

matching Γ between X2
h+2 and X1 of size at least (1− δ)n. For a vertex v ∈ X1, denote the vertex949

it is matched to in X2
h+2 under Γ by v̂. Now fix an ordering v1, v2, . . . , vn of the vertices in X1.950

Given this setup, we introduce the following definition.951

Definition 66 (Path Linked). For i < j, the vertices vi, vj ∈ X1 are path linked in H2 (see952

Definition 58) if vi and v̂j are path connected (i.e., if there exists a set Πij of log n edge-disjoint953

transversal paths between vi and v̂j). If vj is not incident to an edge in Γ, then v̂j is not defined954

and vi and vj are not path linked. This concept is illustrated in Figure 4.955

Observe that since most pairs of vertices vi ∈ X1 and v̂j ∈ X2
h+2 are path connected, most956

pairs of vertices vi, vj ∈ X1 are path linked. Now, for all path linked pairs vi ∈ X1 and vj ∈ X1,957

fix a set Π2
ij of log n edge-disjoint transversal paths between vi and v̂j in H2. Also, as in the958

original proof, fix a set Π1
ij of edge-disjoint transversal paths in H1 for all path linked pairs vi ∈ X1959

and vj ∈ X1. The proof now continues to follow the lines of the argument used to establish the960

Embedding Lemma with the following modifications:961

• Define A by joining two vertices if and only if they are path connected in H1 and path linked962

in H2. Observe that, as before, A will be an ‘almost complete’ graph.963
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Figure 4: Vertices vi, vj ∈ X2
1 are path linked in H2 if there are many edge-disjoint paths between vi

and v̂j .

• Define the edges vivj and vkvl in A to be incompatible if either of the following two conditions964

are met:965

– There exist paths πij ∈ Π1
ij and πkl ∈ Π1

kl such that πij and πkl have an edge in common.966

(This is the same notion of incompatibility as used in the proof of the Embedding967

Lemma.)968

– There exist paths πij ∈ Π2
ij and πkl ∈ Π2

kl such that πij and πkl have an edge in common.969

• As before, we find an embedding φ of S into A such that f(φ(E(S))) ∩ φ(E(S)) = ∅. This is970

possible since S has bounded degree, the graph A is almost complete, and each edge is still971

incompatible with at most o(n) other edges.972

• Finally, for each edge xy ∈ φ(M2), we select a path πxy ∈ Π2
xy of length h+ 1 so that the sets973

of paths chosen {πxy : xy ∈ φ(M2)} are pairwise vertex-disjoint. Appending the appropriate974

matching edge in Γ to each path gives the desired set of paths of length h+2 in H2. The paths975

of length h+ 1 are found in H1 in the same manner as in our previous proof, considering M1.976

This completes the proof of Claim 65.977

We have now proved three claims analogous to the Coloring Lemma, Existence Lemma, and978

Embedding Lemma. The proof of Proposition 56 now follows the lines of the proof of Theorem 2.979

980

Our second proposition describes how the situation changes if the edges in the matching M are981

divided one additional time.982
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Proposition 67. For any h, ` ∈ Z+, there exists a constant s0 such that every graph S with |V (S)| =983

s ≥ s0 satisfies984

r̂`(S
(M1,M2,h+1,h+3)) ≤ (log s)20hs1+1/(h+1).

Proof. The proof of this proposition differs from the previous proof as follows. In place of Ch+1,h+2,985

we take Ch+1,h+3, where the vertices are labeled x11, x
1
2, . . . , x

1
h+1 and x21, x

2
2, . . . , x

2
h+3 with x1 :=986

x11 = x21. We also require that ‘almost perfect matchings’ exist in both of the bipartite graphs987

(X2
h+1, X

2
h+2) and (X2

h+2, X
2
1 ).988

We now begin the embedding process by fixing two such perfect matchings. These matchings989

together yield a collection of disjoint paths P3 on three vertices that cover almost all vertices990

in X2
h+1 ∪X2

h+2 ∪X2
1 . For a vertex v ∈ X1 which is covered by one of these paths of length two,991

define the vertex v̂ ∈ X2
h+1 to be the corresponding vertex it is joined to in X2

1 under our fixed992

collection of P3s. The remaining part of the proof is analogous to the proof of Claim 65.993

Having demonstrated the main idea of Lemma 54 in Propositions 56 and 67, we now briefly994

remark on how the proof of Lemma 54 differs.995

Proof of Lemma 54. Previously in Propositions 56 and 67, the two matchings were accommodated996

by replacing Ch+1 by Ch+1,h+2 and Ch+1,h+3 respectively. Here, we will ‘append’ a cycle of length k997

for each of the matchings Mi,j,k ∈M. More formally, let C∗ be the graph obtained by the following998

process. Take d(d+1) disjoint cycles of each of the lengths k ∈ {h+1, h+2, . . . , 2h+1}, for a total999

of d(d+ 1)(h+ 1) cycles. From these cycles, C∗ results by identifying one common vertex from all1000

the cycles.1001

Propositions 56 and 67 has already demonstrated the main ideas involved embedding matchings1002

in two cycles simultaneously. These ideas easily generalize to d(d+ 1)(h+ 1) matchings associated1003

to finite lengths of at least h+ 1.1004
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graphs of bounded degree, Adv. Math. 226 (2011), no. 6, 5041–5065.1046

[20] I. Pak, Mixing time and long paths in graphs, Proceedings of the 13th annual ACM-SIAM1047

Symposium on Discrete Algorithms (SODA 2002), 2002, pp. 321–328.1048

[21] O. Pikhurko, Asymptotic size Ramsey results for bipartite graphs, SIAM J. Discrete Math. 161049

(2002), no. 1, 99–113 (electronic).1050

[22] , Size Ramsey numbers of stars versus 4-chromatic graphs, J. Graph Theory 42 (2003),1051

no. 3, 220–233.1052

[23] D. Reimer, The Ramsey size number of dipaths, Discrete Math. 257 (2002), no. 1, 173–175.1053
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