
Multidimensional Cube Packing∗

Y. Kohayakawa† F.K. Miyazawa‡ P. Raghavan§ Y. Wakabayashi†

September 12, 2002

Abstract

We consider the d-dimensional cube packing problem (d-CPP): given a list L of d-dimen-

sional cubes and (an unlimited quantity of) d-dimensional unit-capacity cubes, called bins, find

a packing of L into the minimum number of bins. We present two approximation algorithms

for d-CPP, for fixed d. The first algorithm has an asymptotic performance bound that can be

made arbitrarily close to 2− (1/2)d. The second algorithm is an improvement of the first and

has an asymptotic performance bound that can be made arbitrarily close to 2− (2/3)d. To our

knowledge, these results improve the bounds known so far for d = 2 and d = 3, and are the first

results with bounds that are not exponential in the dimension.

Key Words: Approximation algorithms, multidimensional bin packing, asymptotic perfor-

mance.

1 Introduction

We consider a generalization of the one-dimensional bin packing problem, called here d-dimensional

cube packing problem (d-CPP). This is the following problem. Given a list L of n d-dimensional

∗This research was partially supported by MCT/CNPq under PRONEX project 107/97 and CNPq
(Proc. 470608/01–3, 468516/00–0, 464114/00–4, 300334/93–1, 300301/98–7 and 304527/89–0).
†Instituto de Matemática e Estat́ıstica — Universidade de São Paulo. Rua do Matão, 1010 — 05508–090 — São

Paulo–SP — Brazil, {yoshi,yw}@ime.usp.br.
‡Instituto de Computação — Universidade Estadual de Campinas, Caixa Postal 6176 — 13084–971 — Campinas–

SP — Brazil, fkm@ic.unicamp.br.
§Verity, Inc., 892 Ross Drive, Sunnyvale, CA 94089, USA, pragh@verity.com.

1

cubes (possibly of different sizes) and d-dimensional unit-capacity cubes, called bins, find an or-

thogonal packing of L into the minimum number of bins. This problem is in fact a special case

of the d-dimensional bin packing problem (d-BPP), in which one has to pack d-dimensional paral-

lelepipeds into d-dimensional unit-capacity bins. Note that for d = 1 these problems coincide.

In 1989, Coppersmith and Raghavan [4] presented an online algorithm for d-BPP with asymp-

totic performance bound (3 ·2d+1)/4. This algorithm, when specialized to d-CPP, has asymptotic

performance bound (3/2)d− (3/4)d+ 1. In [13], Miyazawa and Wakabayashi presented approxima-

tion algorithms for 3-CPP that can be generalized to d-CPP with asymptotic performance bound

(4/3)d − (8/9)d + 1, which gives asymptotic peformance bounds close to 1.99 for 2-CPP and 2.67

for 3-CPP.

The most studied case is when d = 1. For this case there are asymptotic approximation schemes

due to Karmarkar and Karp [8] and Fernandez de la Vega and Lueker [6]. For a recent survey on

this case, see Coffman, Garey and Johnson [3]. For 2-BPP the algorithm with the best asymptotic

performance bound is due to Chung, Garey and Johnson [1], with bound 2.125. For 3-BPP Li

and Cheng [11] and Csirik and van Vliet [5] designed algorithms with asymptotic performance

bound 4.84. Their algorithms generalize to d-BPP giving algorithms with asymptotic performance

bound close to 1.691d. For a survey on approximation algorithms for packing problems we refer to

Coffman, Garey and Johnson [2].

We present two approximation algorithms for d-CPP. The first algorithm has an asymptotic

performance bound that can be made as close to 2− (1/2)d as desired. The second algorithm is an

improvement of the first one and has an asymptotic performance bound that can be made as close

to 2− (2/3)d as desired. For d = 2 and d = 3 the bounds are close to 14/9 and 46/27, respectively.

To our knowledge, these results improve the bounds known so far for d = 2 and d = 3, and are

the first results with bounds that are not exponential in the dimension. Recently, Seiden and Stee

[15] presented an algorithm for d = 2 with bound 14/9 + ε that uses an idea similar to the one

2

we present in this paper. It is most likely that the extended abstract [9], where we announced a

comparable result, with explicit formulas for general d and full description of our algorithms, was

unknown to those authors.

The remainder of this paper is organized as follows. In the next section we present the notation

and some definitions. In Section 3 we describe restricted versions of d-CPP. In Section 4 we present

our approximation algorithms for d-CPP. We close with some open problems.

2 Notation and definitions

Given a cube c, the size of c, denoted by s(c), is defined as the length of an edge of c. If L is a

list of cubes, then we denote by V (L) the total volume of the cubes in L. Throughout this paper

whenever we consider a list L to be packed into unit bins we suppose that all its cubes have size

at most 1.

Given a list L of cubes, and an algorithm A, we denote by A(L) the number of bins used by

algorithm A when applied to L, and by OPT(L) the number of bins used by an optimal packing of

L. If P is a packing of L, we denote the number of bins used in P by |P|. Some of our algorithms

partition the input list L into sublists L1, . . . , Lk and then apply specialized algorithms for each

sublist Li generating a partial packing Pi. We denote the packing obtained by the union of these

packings by P1 ∪ . . . ∪ Pk. We say that an algorithm A has asymptotic performance bound α if

there exists a constant β such that A(L) ≤ α · OPT(L) + β for all input lists L. If β = 0, we

also say that α is an absolute performance bound for algorithm A. We note that 2-CPP cannot

be approximated within 2 − ε in the absolute sense, unless P = NP (see [7], where this result is

deduced from [10]). This and other negative results in terms of the absolute performance bounds

make the asymptotic performance analyses of approximation algorithms for bin packing problems

attractive.

3

3 Restricted d-CPP

Before considering the general problem, we present algorithms for restricted instances of d-CPP,

to be used as subroutines.

3.1 Restricted sizes and types

First, we consider instances that admit a constant upper bound k on the number of different cube

sizes and each cube size is at least ε. We denote the set of such instances by Iε,k,d.

In what follows we show that in this case an optimal solution can be obtained in polynomial

time by an enumeration process.

Given a list L ∈ Iε,k,d, denote by D(L) = (s1, s2, . . . , sk) the list of different sizes in the list L

and by M(L) = (m1,m2, . . . ,mk) the list of the multiplicities mi of the cubes with size si.

There are infinitely many ways of packing a list of cubes into a bin, but the number of different

configurations is bounded if we consider only “canonical” packings. We say a packing P is canonical

if no cube in P can be shifted to a “lower” position in any dimension, without overlapping cubes.

Each configuration in a bin of a canonical packing is called a canonical pattern. With this in mind,

we can compute all possible positions Pd(L) in a bin where a cube of L can be packed. We set

p(L) := {p := b1s1 + b2s2 + · · · + bksk : 0 ≤ p ≤ 1, 0 ≤ bi ≤ mi}, and define Pd(L) as the set

p(L)d = p(L)× . . .× p(L).

Claim 3.1 For a given list L in Iε,k,d, the cardinality of Pd(L) is bounded by a value that depends

only on k, ε and d.

Proof. Since each cube of L has size at least ε, we have bi ≤ b1/εc for all i. Thus we can conclude

that (b1/εc+ 1)k is an upper bound on p(L). Therefore, we have |Pd(L)| ≤ (b1/εc+ 1)kd.

For L ∈ Iε,k,d, let ρε,k,d(L) denote the number of all possible canonical patterns of L. The

following result is immediate.

4

Claim 3.2 The value ρε,k,d(L) is bounded by a value that depends only on k, ε and d.

Proof. Note that the number of canonical patterns for L consisting of exactly i cubes is bounded

by

ki
(
|Pd(L)|

i

)
.

Therefore,

ρε,k,d(L) ≤ k

(
|Pd(L)|

1

)
+ k2

(
|Pd(L)|

2

)
+ · · ·+ kε

−d
(
|Pd(L)|
ε−d

)
,

and the result follows.

Let Rε,k,d denote the algorithm that generates all possible canonical packings and chooses a

packing using the smallest number of bins.

Lemma 3.3 Let ε, k and d be fixed positive numbers and L an instance of d-CPP with L ∈ Iε,k,d.

Then L can be packed optimally in polynomial time by the algorithm Rε,k,d.

Proof. Suppose L has n cubes. Since we can have at most n bins of each pattern, the number of

different packings is bounded by the polynomial (n+ 1)ρ, where ρ := ρε,k,d(L).

3.2 Restricted size

In this section, we consider instances where we only have restriction on the minimum size of a

cube. We denote by Iε,d the set of all instances consisting of cubes with size greater than ε.

We shall make use of the linear rounding technique presented by Fernandez de la Vega and

Lueker [6] to obtain an asymptotic approximation scheme Rε,d for instances in Iε,d.

Given two instances X and Y for d-CPP, we write X � Y if there is an injection f : X → Y

such that s(c) ≤ s(f(c)) for all c ∈ X. Denote by X the instance with precisely |X| cubes with

size equal to the size of the largest cube in X. Clearly, X � X. The following claim is immediate.

5

Claim 3.4 If X and Y are two instances for d-CPP with X � Y , then OPT(X) ≤ OPT(Y).

We are now ready to describe the algorithm Rε,d.

Algorithm Rε,d(L)

Input: L ∈ Iε,d

1. If L contains < 2/εd+1 cubes, find an optimal packing exhaustively and return this

packing. Otherwise, let L = (c1, . . . , cn) be the input list sorted in non-increasing

order of size.

2. Set q := bnεd+1c and partition L into groups G0, G1, . . . , Gk such that

G0 � G1 � · · · � Gk,

where |Gi| = q for all i = 0, . . . , k − 1,

and |Gk| ≤ q.

3. Let P0 be the packing obtained by placing each cube of G0 into a different bin

4. Let J :=
⋃k
i=1Gi and Ĵ :=

⋃k
i=1Gi.

5. Let P̂ be the packing of Ĵ generated by the algorithmRε,k,d; and let P1 be the packing

of J corresponding to Ĵ .

6. Return P0 ∪ P1.

Lemma 3.5 For all input list L ∈ Iε,d, we have

Rε,d(L) ≤ (1 + ε) OPT(L).

Furthermore, Rε,d is a polynomial time algorithm.

6

Proof. It suffices to consider the case in which n ≥ 2/εd+1. In step 2 we partition the sorted list

L into k + 1 groups Gi each of which consists of q = bnεd+1c cubes, except perhaps for the last

group, which may have fewer cubes. Note that k+ 1 = dn/bεd+1nce ≤ d2/εd+1e and, therefore, the

number of different cube types in list Ĵ is bounded by a value that depends only on ε and d. Since

Gi � Gi−1 (i = 1, . . . , k) we have Ĵ � L. From Lemma 3.3 and Claim 3.4, we have

|P1| = |P̂| = OPT(Ĵ) ≤ OPT(L). (1)

The packing of G0 uses at most q bins, therefore

|P0| ≤ q = bnεd+1c ≤ nεd+1 ≤ ε V (L) ≤ εOPT(L). (2)

From inequalities (1) and (2), we have

Rε,d(L) = |P0|+ |P1| ≤ OPT(L) + εOPT(L) ≤ (1 + ε) OPT(L),

as required.

We now turn to an algorithm that will be used only in the improved version of our algorithm

(see Section 4.2). This algorithm, which we call R′1/3,d, is designed for the special case in which

all cubes have size greater than 1/3 and is optimal. We observe that R′1/3,d is a generalization for

d-CPP of an algorithm presented by Ferreira, Miyazawa and Wakabayashi [7] for 2-CPP.

Algorithm R′1/3,d(L)

Input: L ∈ I1/3,d

7

1. Partition the list L into the two sublists

L′ := {c ∈ L : s(c) > 1/2} and L′′ := L \ L′.

2. Sort the cubes in L′ in non-decreasing order of their sizes. Let L′ = (c′1, . . . , c
′
n′).

3. Sort the cubes in L′′ in non-increasing order of their sizes. Let L′′ = (c′′1, . . . , c
′′
n′′).

We have

1
3
< · · · ≤ s(c′′1) ≤ 1

2
< s(c′1) ≤ · · ·

4. Call the subroutine SR1/3,d with parameters (L′, L′′).

Subroutine SR1/3,d(L′, L′′)

(a) If L′ = ∅ and L′′ = ∅ then return ∅;

(b) else if L′ = ∅ then generate a packing P placing the firstm := min{2d, n′′}

cubes of L′′ into one bin;

(c) else if L′′ = ∅ then generate a packing P placing the cube c′1 into one

bin;

(d) else if s(c′1) + s(c′′1) > 1 then generate a packing P placing m :=

min{2d, n′′} cubes of L′′ into one bin;

(e) else generate a packing P placing the cube c′1 and m := min{2d−1, n′′}

cubes of L′′ into one bin.

(f) Remove from L′ and L′′ the cubes that have been packed.

(g) Return P ∪ SR1/3,d(L′, L′′).

First we prove that the packing generated by the algorithm R′1/3,d has a very simple structure.

Indeed, we show that the bins generated by this algorithm, except for possibly one, may have only

three different configurations.

8

Lemma 3.6 Let L ∈ I1/3,d be an instance for d-CPP, L′ := {c ∈ L : s(c) > 1
2 } and L′′ := L \L′.

Then the algorithm R′1/3,d applied to L generates a packing where each bin, except for possibly one,

has one of the following configurations.

C1 : configuration consisting of 1 cube of L′ and 2d − 1 cubes of L′′.

C2 : configuration consisting of exactly 1 cube of L′.

C3 : configuration consisting of 2d cubes of L′′.

Proof. Note that each call of the subroutine SR1/3,d generates a one-bin packing and then packs

the remaining cubes recursively. Let us then analyse steps (b)–(e) of this subroutine, where a

packing into one bin is generated.

Clearly, the bin generated in step (c) has configuration C2. In steps (b), (d) and (e), the bin

that is generated does not have one of the three configurations only when the value of m is n′′

and n′′ < 2d (in steps (b) and (d)) or n′′ < 2d − 1 (in step (e)). But this happens only once,

and after step (f) we have L′′ = ∅ and therefore the next bins to be generated, if any, will have

configuration C2.

Theorem 3.7 The algorithm R′1/3,d finds an optimal solution for d-CPP restricted to instances

L ∈ I1/3,d in polynomial time.

Proof. The algorithm R′1/3,d partitions the list L into two sublists L′ and L′′, sorts them and calls

the subroutine SR1/3,d. In each call, this subroutine generates a one-bin packing and then packs

the remaining cubes recursively.

Consider a call of the subroutine SR1/3,d with parameters (L′, L′′), and let B be the bin

generated in this call. We claim that there is an optimal packing P∗ of L′ ∪ L′′ that has a bin B∗

with the same cubes as B. This is clearly true if the packing of the bin B is generated in steps (a),

(b), or (c). (For step (b), it is crucial that the cubes have size greater than 1/3.)

Now suppose that B is generated in step (d). In this case, the largest cube c′′1 of L′′ cannot be

9

packed with the smallest cube of L′. Therefore, any optimal packing P∗ does not have c′′1 with any

other cube in L′. Let B∗ be the bin of P∗ containing the cube c′′1. Since B contains the largest

cubes of L′′, we can exchange the cubes of B∗, so that it ends up with the cubes packed in B. In

fact, if c ∈ B \B∗ and C∗ is the bin of P∗ containing c, then we can clearly exchange any cube in

B∗\B with cube c. Repeating this process, we obtain an optimal packing that has a bin containing

the same cubes as B.

The proof for the case in which B is generated in step (e) is analogous. The result follows by

induction.

4 Approximation algorithms for d-CPP

In this section we present two approximation algorithms for d-CPP. The first has asymptotic

performance bound that can be made as close to 2−(1/2)d as desired and the second has asymptotic

performance bound that can be made as close to 2− (2/3)d as desired.

Both algorithms use the NFDH (Next Fit Decreasing Height) algorithm as a subroutine, to be

described in what follows.

The algorithm NFDH generates t-dimensional strips (using dimensions 1, . . . , t) using (t − 1)-

dimensional strips (dimensions 1, . . . , t− 1) which are packed in non-increasing order of their size

(the size of a strip is the size of the largest cube in it). The (t− 1)-dimensional strips are packed

side by side in dimension t until a (t − 1)-dimensional strip cannot be packed (the sum of the

(t − 1)-dimensional strip sizes cannot be greater than 1). In this case, the (t − 1)-dimensional

strip starts a new t-dimensional strip. The 0-dimensional strips are the cubes themselves and the

d-dimensional strips are the packings generated into bins. For more details of NFDH, see [12].

The following result was proved by Meir and Moser [12] for the algorithm NFDH. We can derive

from it two corollaries which will be useful to prove the bounds for our algorithms.

10

Theorem 4.1 Let L be a list of d-dimensional cubes with maximum size s. Then L can be packed

by the algorithm NFDH into a d-dimensional a1 × a2 × · · · × ad parallelepiped if

V (L) ≤ sd + (a1 − s)(a2 − s) · · · (ad − s).

Corollary 4.2 Let P be the packing into unit bins obtained by applying the algorithm NFDH to

a list L consisting of d-dimensional cubes with maximum size ε. Then each sublist of cubes packed

in a bin used by P, except for possibly one, has volume greater than (1− ε)d.

Proof. Suppose P uses m bins, and let Li = (ci1, . . . , c
i
ni) be the sublist packed in the i-th bin.

Since the set Li ∪ {ci+1
1 }, for 1 ≤ i ≤ m − 1, could not be packed by the algorithm NFDH in the

i-th bin, we have V (Li ∪ {ci+1
1 }) > εd + (1− ε)d. Therefore,

V (Li) > εd + (1− ε)d − V (ci+1
1) ≥ (1− ε)d

for i = 1, . . . ,m− 1.

Corollary 4.3 Let P be the packing into unit bins obtained by applying the algorithm NFDH to

a list L of d-dimensional cubes. Then each sublist of cubes packed in a bin used by P, except for

possibly one, has volume at least (1/2)d.

Proof. Clearly, it suffices to analyse the sublists (packed in a bin) containing cubes with size at

most 1/2. Consider then a list consisting of these sublists. Applying Corollary 4.2 to this list the

result is immediate.

We now state a technical lemma [14] that will be useful in the proofs of Theorems 4.5 and 4.7.

Lemma 4.4 Suppose a, b, γ, δ are real numbers such that a > 0 and 0 < γ < δ < 1. Then

a+ b

max{a, γa+ δb}
≤ 1 +

1− γ
δ

.

11

4.1 First Algorithm

Now we are ready to describe the first algorithm of this section, called A′ε,d, which depends on a

parameter ε. This parameter is used to subdivide the list L into two sublists: one consisting of

“large” cubes (size greater than ε) and the other consisting of “small” cubes. For the large cubes

we use the asymptotic approximation scheme presented in Section 3.2, and for the small cubes we

use the algorithm NFDH. In order to obtain bounds for the volume of the large cubes we also use

the algorithm NFDH.

Algorithm A′ε,d(L)

1. Partition the list L into the two sublists

L′ := {c ∈ L : s(c) > ε} and L′′ := L \ L′.

2. Generate a packing P ′1 of L′ using the algorithm Rε,d.

3. Generate a packing P ′2 of L′ using the algorithm NFDH.

4. Let P ′ be a packing in {P ′1,P ′2} that uses the least number of bins.

5. Generate a packing P ′′ of L′′ using algorithm NFDH.

6. Return P ′ ∪ P ′′.

Theorem 4.5 For fixed values of d and ε the algorithm A′ε,d runs in polynomial time. Furthermore,

we have

A′ε,d(L) ≤ αε,dOPT(L) + 2,

where αε,d → 2− (1/2)d as ε→ 0.

Proof. Since the algorithms Rε,d and NFDH are polynomial time algorithms, A′ε,d is also a poly-

nomial time algorithm. Let us analyse the performance of A′ε,d.

12

Let n′ := |P ′| − 1 and n′′ := |P ′′| − 1. ¿From steps 3 and 4 and Corollary 4.3, we have

V (L′) ≥ 1
2d

(|P ′2| − 1) ≥ 1
2d

(|P ′| − 1) ≥ 1
2d
n′. (3)

¿From step 5 and Corollary 4.2, we have

V (L′′) ≥ (1− ε)d(|P ′′| − 1) ≥ (1− ε)dn′′. (4)

¿From inequalities (3) and (4) and the fact that the volume of the cubes in L is a lower bound

for the optimum packing, we conclude that

OPT(L) ≥ V (L) = V (L′) + V (L′′) ≥ 1
2d
n′ + (1− ε)dn′′. (5)

The packing P ′1 of sublist L′ is generated by an asymptotic approximation scheme (see Lemma 3.5).

Since from step 4 the packing P ′ of L′ is such that |P ′| ≤ |P ′1|, we have

OPT(L) ≥ OPT(L′) ≥ 1
1 + ε

|P ′| ≥ n′

1 + ε
. (6)

¿From inequalities (5) and (6), we have

OPT(L) ≥ max
{

n′

1 + ε
,

1
2d
n′ + (1− ε)dn′′

}
. (7)

Since A′ε,d(L) = |P ′|+ |P ′′|, we obtain

A′ε,d(L) = (n′ + 1) + (n′′ + 1)

=
n′ + n′′

OPT(L)
OPT(L) + 2

≤ αε,dOPT(L) + 2,

13

where αε,d = (n′ + n′′)/(max{n′/(1 + ε), (1/2d)n′ + (1− ε)dn′′}) (see (7)). From Lemma 4.4, we

conclude that limε→0 αε,d ≤ 2− (1/2)d.

Proposition 4.6 The asymptotic performance bound 2− (1/2)d of the algorithm A′ε,d is tight.

Proof. Let L′ be a list of n′ cubes of size 1/2 + ξ, where n′ is a large integer and ξ is a small real

such that ξ < ε and 1/ξ is an integer. Let L′′ be a list of n′′ := d(1− 1/2d)n′e/ξd cubes of size ξ.

Consider a packing P of a list L := L′ ∪ L′′ generated by the algorithm A′ε,d. The algorithm

A′ε,d packs L′ and L′′ separately. For L′ the algorithm uses at least n′ bins. For L′′, the algorithm

generates a packing using d(1− (1/2)d)n′e bins. That is, A′ε,d(L) = n′ + d(1− (1/2)d)n′e.

On the other hand, an optimal packing of L can be found using n′ + 1 bins. Therefore, the

ratio A′ε,d(L)/OPT(L) can be made as close to 2− (1/2)d as desired.

4.2 Improved Algorithm

In this section we present an algorithm that is an improvement of A′ε,d. This algorithm has an

asymptotic performance bound that can be made as close to 2 − (2/3)d as desired. We call this

algorithm Aε,d.

In the previous section we presented an algorithm that partitions the input list L into two

sublists L′ and L′′ and generates a packing consisting of two parts. Part (i), for the list L′ (of the

cubes with size greater than ε), consists of an almost optimal packing but possibly with a poor

bound for the volume occupation in each bin. Part (ii), for the list L′′ (of the cubes with size at

most ε), consists of a packing with a good bound for the volume occupation.

The algorithm Aε,d uses the small cubes of part (ii) to fill the bins of part (i) with poor

volume occupation. Since these bins may have very complex item allocation we first reorganize the

bins with very poor volume occupation in such a way as to have a packing with a more tractable

configuration. After this reorganization and the packing of small items, we have one of the following

14

two situations. Either we have packed all the small cubes into bins of part (i), or else we were not

able to pack all the small cubes in the non-occupied space of the bins in part (i).

As we shall see, in the first case, we generate an almost optimal packing. In the second case,

we obtain a better volume bound for the (newly generated) bins of part (i) and this leads us to an

improvement of the final bound.

Let us describe the main steps of the algorithm. In step 1 we subdivide the input list into two

sublists, L′ and L′′, as in the previous algorithm. In step 2 we use an asymptotic approximation

scheme to obtain a packing P ′ for the sublist L′. In step 3 we separate the bins of P ′ with poor

volume occupation and in step 4 we reorganize these bins so as to get all bins, except for perhaps

one, with good volume occupation, or bins with only one large cube and poor volume occupation.

In step 5 we pack the small cubes of sublist L′′ into the remaining space of the bins with only one

large cube.

Algorithm Aε,d(L)

1. Partition the list L into the two sublists

L′ := {c ∈ L : s(c) > ε} and L′′ := L \ L′.

2. Generate a packing P ′ of the sublist L′ using algorithm Rε,d.

3. Let P ′1 consist of all bins of packing P ′ with volume occupation less than (2/3)d, and

let P ′2 consist of the remaining bins of P ′. Let L′1 be the cubes in P ′1.

4. Generate a new packing P̂ ′1 of L′1 as follows

4.1 Let Si := {c ∈ L′1 : s(c) ∈
(

1
i+1 ,

1
i

]
}, for i = 1, . . . , 8 and

let S9 := {c ∈ L′1 : s(c) ≤ 1
9}.

4.2 Generate a packing P12 of S1 ∪ S2 using the algorithm R′1/3,d, and let U be the

set of bins in P12 with configuration C2.

15

4.3 For i = 3, . . . , 8, repeat the following steps

4.3.1 If U is empty, pack (up to) id cubes of Si in a new bin B.

4.3.2 If U is not empty then

Let B be a bin in U ;

If i ∈ {3, 4, 5} then let m := id − (i− 1)d else let m := id − (i− 2)d;

Pack (up to) m cubes of Si (around the unique cube in B);

Update Si;

Remove B from U .

4.4 Pack the cubes in S9, as follows

4.4.1 Subdivide the empty space of each bin B ∈ U (around the unique cube in

B) into 3d− 2d smaller bins with size 1/3. Let U ′ be the set of these smaller

bins.

4.4.2 Pack the cubes of S9 into bins of U ′ using the algorithm NFDH. Remove

the used bins of U ′. Use new unit bins if necessary.

5. Pack the cubes of L′′ into bins U ′ using the algorithm NFDH. Use new unit bins if

necessary.

6. Return the generated packing P.

Theorem 4.7 For fixed values of d and ε the algorithm Aε,d runs in polynomial time. Furthermore,

we have

Aε,d(L) ≤ αε,dOPT(L) + 9,

where αε,d → 2− (2/3)d as ε→ 0.

Proof. From steps 2 and 3 and Lemma 3.5, we have

|P ′1|+ |P ′2| = |P ′| ≤ (1 + ε)OPT(L), (8)

16

where P ′1 consists of the bins of P ′ with volume occupation less than (2/3)d.

In step 4, the packing P ′1 of L′1 is reorganized in such a way that all bins with volume occupation

less than (2/3)d will end up with volume occupation at least (2/3)d.

In step 4.2 the algorithm R′1/3,d generates an optimal packing P12 of S1 ∪ S2 which contains

bins with configurations C1, C2 or C3, described in Lemma 3.6.

The bins of P12 with configuration C1 (containing 1 cube with volume at least 1/2d and 2d− 1

cubes with volume at least 1/3d) have volume occupation at least 1/2d + (2d − 1)1/3d, which is

greater than (2/3)d. The bins of P12 with configuration C3 (containing 2d cubes with volume at

least 1/3d) have volume occupation at least (2/3)d.

Therefore, the only bins of P12 with volume occupation less than (2/3)d are the bins with con-

figuration C2. These are exactly the bins U taken in step 4.2. Note that any bin with configuration

C2 has exactly one cube with size less than 2/3 and therefore we have space for packing smaller

cubes around it. The packing of the remaining cubes of L′1 into these spaces is accomplished in

steps 4.3 and 4.4. Moreover, we show that, after these steps, the only bins with volume occupation

less than (2/3)d that could remain have configuration C2, except perhaps for a constant number

of bins.

We prove the previous statement considering the packing of each sublist Si, i = 3, . . . , 8. First,

let us consider the packing of the cubes in S3. Suppose that U contains at least one bin B. In

this case, we can pack at least 3d − (3− 1)d cubes around the unique cube in B. This is possible

because each cube of S3 has size at most 1/3 and the cube in B has size at most 2/3. Since each

cube of S3 has volume at least 1/4d and the cube in B has volume at least 1/2d, the bins B ∈ U

after receiving the cubes of S3 will have volume occupation

Voc(B) ≥ 1
2d

+ (3d − 2d)
1
4d
≥
(

2
3

)d
.

17

This holds for all such bins B, except perhaps for the last one. If during the packing of cubes in S3

the set U becomes empty, then the algorithm packs the remaining cubes of S3 by placing 3d cubes

in each new unit bin. In this case, each bin B of this type has volume occupation

Voc(B) ≥ 3d
1
4d
≥
(

2
3

)d
,

except perhaps for the last one.

The analysis for the packing of the sublists S4, . . . , S8 is analogous. We can prove a volume

occupation of (2/3)d for each rearranged bin of U , except perhaps for one bin in each of these

sublists. For the new bins we can also guarantee the same volume occupation.

Let us consider the packing of the cubes in S9 into the remaining bins of U . Suppose there is a

bin B in U . Since the unique cube placed (so far) in B has size at most 2/3, we can partition the

empty space inside B into 3d − 2d smaller bins of size 1/3. The set of these small bins is denoted

by U ′, and in step 4.4.2 the algorithm NFDH is used to pack the cubes of S9 into these bins (inside

B). From Corollary 4.2, the algorithm NFDH generates packings into bins B′ ∈ U ′ with volume

occupation at least (1/3− 1/9)d. Since we have 3d − 2d bins of U ′ inside each bin B of U , the bins

B after being filled with cubes of S9 will have a volume occupation

Voc(B) ≥ 1
2d

+ (3d − 2d)
(

1
3
− 1

9

)d
≥ 1

2d
+

2d

3d
− 4d

9d
>

(
2
3

)d
.

If during the packing of cubes in S9 the set U ′ becomes empty, then the algorithm packs the

remaining cubes of S9 into new unit bins. From Corollary 4.2, each bin B of this type has volume

occupation

Voc(B) >
(

1− 1
9

)d
>

(
2
3

)d
.

From the previous inequalities, we can conclude that, after step 4, the only bins in U which have

18

volume occupation less than (2/3)d are the remaining bins of configuration C2, except perhaps for

8 bins (one for each sublist Si, i = 2, . . . , 9).

At this point, we can conclude the following: If all cubes of S3, . . . , S9 were packed inside bins

of U , then the packing P̂ ′1 does not use more bins than the optimal packing P12, and therefore the

packing P̂ ′1 is also optimal. That is

|P̂ ′1| ≤ |P ′1|. (9)

If the set U becomes empty in some iteration, we have obtained a packing of L′1 with volume

occupation of at least (2/3)d in each bin, except perhaps for the last. Since the bins of the packing

P ′1 have volume occupation less than (2/3)d, we can conclude that the packing P̂ ′1 has at most 8

bins more than the packing P ′1. That is,

|P̂ ′1| ≤ |P ′1|+ 8. (10)

From inequalities (9), (10) and (8), we have

|P̂ ′1|+ |P ′2| ≤ (1 + ε)OPT(L) + 8. (11)

At last, we have to consider the packing of the cubes in L′′ generated in step 5. The cubes of

this sublist is first packed by the algorithm NFDH into the remaining bins of U ′, which are inside

the bins of P̂ ′1 with configuration C2. If necessary, new unit bins are used. The analysis of this

step is divided into two cases:

Case 1. All cubes of L′′ have been placed inside the bins of U ′. In this case, we have not used any

new unit bin and, therefore,

|P| = |P̂ ′1|+ |P ′2| ≤ (1 + ε)OPT(L) + 8. (12)

19

Case 2. New unit bins have been used in the packing of L′′. In this case, each bin B of U has been

“filled” with cubes in L′′. From Corollary 4.2, the bin B has volume occupation

Voc(B) > (1− ε)d >
(

2
3

)d
.

Let
̂̂P ′1 be the packing P̂ ′1 with the bins of configuration C2 filled with cubes of L′′, and P̂ ′′ be

the packing of the remaining cubes in L′′ into new unit bins. Denote the set of cubes packed

in P̂ ′′ as L̂′′. Since the packing
̂̂P ′1 and the packing P̂ ′1 have the same number of bins and the

packing P ′1 is an asymptotically optimal packing, the packing
̂̂P ′1 is also an asymptotically

optimal packing.

Now, the final packing P consists of two parts: an almost asymptotically optimal packinĝ̂P ′1 ∪ P ′2,

|̂̂P ′1 ∪ P ′2| ≤ (1 + ε)OPT(L) + 8,

with volume occupation of (2/3)d in each bin, except perhaps in 9 bins; and the packing P̂ ′′

containing the remaining cubes of L′′ into unit bins. From Corollary 4.2, we have

|P̂ ′′| ≤ 1
(1− ε)d

V (L̂′′) + 1.

Proceeding as in the proof of Theorem 4.5, we may conclude that

Aε,d(L) ≤ αε,dOPT(L) + 9,

where αε,d = (n′ + n′′)/max{1/(1 + ε)n′, (2/3)dn′ + (1− ε)dn′′}. From Lemma 4.4, we have

limε→0 αε,d ≤ 2− (2/3)d.

Finally, note that all steps of the algorithm Aε,d can be implemented to run in polynomial time.

20

Proposition 4.8 The asymptotic performance bound 2− (2/3)d of algorithm Aε,d is tight.

Proof. The proof of this result is similar to the proof of Proposition 4.6. Consider a list L := L′∪L′′,

such that L′ has n′ cubes of size 2/3 + ξ and L′′ has n′′ := d(1 − (2/3)d)n′e/ξd cubes of size ξ,

where n′ is a large integer and ξ is a small real; we omit the details.

5 Open problems

We believe the following problems should be tackled.

Problem 5.1 Is there an asymptotic approximation scheme for d-CPP?

Problem 5.2 Prove better bounds of inapproximability in the absolute sense for the d-dimensional

case.

References

[1] F. R. K. Chung, M. R. Garey, and D. S. Johnson. On packing two-dimensional bins. SIAM

Journal on Algebraic and Discrete Methods, 3:66–76, 1982.

[2] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson. Approximation algorithms for bin

packing - an updated survey. In G. Ausiello, M. Lucertini, and P. Serafini, editors, Algorithms

design for computer system design, pages 49–106. Spring-Verlag, New York, 1984.

[3] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson. Approximation algorithms (ed. D.

Hochbaum), chapter Approximation algorithms for bin packing - a survey. PWS, 1997.

[4] D. Coppersmith and P. Raghavan. Multidimensional on-line bin packing: algorithms and

worst-case analysis. Operations Research Letters, 8(1):17–20, 1989.

21

[5] J. Csirik and A. van Vliet. An on-line algorithm for multidimensional bin packing. Operations

Research Letters, 13:149–158, 1993.

[6] W. Fernandez de la Vega and G. S. Lueker. Bin packing can be solved within 1 + ε in linear

time. Combinatorica, 1(4):349–355, 1981.

[7] C. E. Ferreira, F. K. Miyazawa, and Y. Wakabayashi. Packing of squares into squares. Pesquisa

Operacional, 19(2):223–237, 1999.

[8] N. Karmarkar and R. M. Karp. An efficient approximation scheme for the one dimensional

bin packing problem. In Proc. 23rd Ann. Symp. on Foundations of Computer Science, pages

312–320, Los Angeles, 1982. IEEE Computer Society.

[9] Y. Kohayakawa, F.K. Miyazawa, P. Raghavan, and Y. Wakabayashi. Multidimensional cube

packing. In Electronic Notes of Discrete Mathematics, volume 7. Elsevier Science, 2001. Pre-

sented at the Brazilian Symposium on Graphs and Combinatorics.

[10] J. Y-T. Leung, T. W. Tam, C. S. Wong, G. H. Young, and F. Y. L. Chin. Packing squares

into a square. Journal of Parallel and Distributed Computing, 10:271–275, 1990.

[11] K. Li and K-H. Cheng. A generalized harmonic algorithm for on-line multidimensional bin

packing. TR UH-CS-90-2, University of Houston, January 1990.

[12] A. Meir and L. Moser. On packing of squares and cubes. J. Combinatorial Theory Ser. A,

5:116–127, 1968.

[13] F. K. Miyazawa and Y. Wakabayashi. Cube packing. In Proc. 4th Latin American Theoretical

INformatics., volume 1776 of Lecture Notes in Computer Science, pages 58–67, Punta del

Este, Uruguay, 2000. Springer-Verlag.

22

[14] F. K. Miyazawa and Y. Wakabayashi. Parametric on-line algorithms for packing rectangles

and boxes. European Journal on Operational Research, to appear.

[15] S. S. Seiden and R. Stee. New bounds for multi-dimensional packing. In Proceedings of the

13th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 486–495, 2002.

23

