
The Evolution of Random Subgraphs of the Cube

B. Bollobás1, 2, Y. Kohayakawa1, 2 and T.  Luczak1, 3

1 Department of Pure Mathematics and Mathematical Statistics,
University of Cambridge, 16 Mill Lane, Cambridge CB2 1SB, England

2 Department of Mathematics,
Louisiana State University, Baton Rouge, LA 70803, USA

3 Department of Discrete Mathematics,
Adam Mickiewicz University, ul. Matejki 48/49, Poznań, Poland

Abstract. Let (Qt)
M
0 be a random Qn-process, that is let Q0 be the empty spanning subgraph of the cube Qn

and, for 1 ≤ t ≤ M = nN/2 = n2n−1, let the graph Qt be obtained from Qt−1 by the random addition of an edge

of Qn not present in Qt−1. When t is about N/2, a typical Qt undergoes a certain ‘phase transition’: the component

structure changes in a sudden and surprising way. Let t = (1 + ε)N/2 where ε is independent of n. Then all the

components of a typical Qt have o(N) vertices if ε < 0, while if ε > 0 then, as proved by Ajtai, Komlós and Szemerédi,

a typical Qt has a ‘giant’ component with at least α(ε)N vertices, where α(ε) > 0. In this note we give essentially

best possible results concerning the emergence of this giant component close to the time of phase transition. Our

results imply that if η > 0 is fixed and t ≤ (1 − n−η)N/2 then all components of a typical Qt have at most nβ(η)

vertices, where β(η) > 0. More importantly, if 60(logn)3/n ≤ ε = ε(n) = o(1) then the largest component of a

typical Qt has about 2εN vertices, while the second largest component has order O(nε−2). Loosely put, the evolution

of a typical Qn-process is such that shortly after time N/2 the appearance of each new edge results in the giant

component acquiring 4 new vertices.

1. Introduction

Let H be a graph with m edges. A random H-process H̃ = (Ht)m0 is a Markov chain whose states are
spanning subgraphs of H. The process starts with the empty subgraph and for 1 ≤ t ≤ m the subgraph Ht

is obtained from Ht−1 by the random addition of an edge of H which is not present in Ht−1, all of such edges
being equiprobable. Thus Ht has exactly t edges and Hm = H. The Kn-processes are the usual random
graph processes G̃ = (Gt).

A random H-process is intimately related to two spaces of random subgraphs of H, namely G(H, p)
and G(H, t). These spaces are defined for 0 ≤ p ≤ 1 and 0 ≤ t ≤ m. A random element of the space G(H, p)
is a spanning subgraph of H obtained by selecting its edges from the edges of H with probability p, all such
selections being independent from one another. A random element of the space G(H, t) is simply a spanning
subgraph of H with t edges, all such subgraphs being equiprobable.
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Let us recall some of the major discoveries of Erdős and Rényi ([11] and [12]) concerning random graph
processes, that is Kn-processes. As is customary, given j ≥ 1 let us denote by Lj(G) the order of the jth
largest component of G; if G has fewer than j components we set Lj(G) = 0. Let c > 0 be a constant. Erdős
and Rényi proved that a.e. random graph process G̃ = (Gt) is such that if c < 1 then

L1(Gbcn/2c) = O(log n).

On the other hand, if c > 1 then a.e. such process satisfies

L1(Gbcn/2c) = (1− t(c) + o(1))n,

where t(c) is a certain decreasing function of c. Moreover, a.e. G̃ is such that Gbcn/2c has a ‘giant’ component:
one whose order is much greater than the order of any other component.

The following considerable refinements of the above results were proved in [3]. (We shall be very sketchy
and somewhat imprecise.) If t is not much greater than n/2, then

L1(Gt) = (1 + o(1))(4t− 2n)

for a.e. G̃, i.e. the giant component grows about four times as fast as the number of edges. As the process
continues, the larger components are swallowed up by the giant component at such a rate that the order
of the second largest component decreases. By time cn/2, where c > 1, the second largest component has
order O(log n) for a.e. G̃. The reader is referred to Chapters V and VI of [4] for a very detailed account of
these and other related results. Also, recent further improvements are given in [18].

The spaces G(H, p) and G(H, t) have not yet been studied systematically for arbitrary finite non-complete
graphs H. There is however a reasonable number of results (and very natural and challenging conjectures)
concerning these spaces for the n-dimensinal cube Qn. In this note we shall give some results concerning
Qn-processes that have the same flavour as the results about L1(Gt) mentioned above. Let us recall that the
n-dimensional cube Qn, or simply the n-cube, is the graph whose vertices are the subsets of [n] = {1, . . . , n},
two of them being adjacent in Qn if and only if their symmetric difference is a singleton. Thus Qn has N = 2n

vertices and M = nN/2 edges (throughout this note N and M will stand for these quantities). Note that Qn

is rather sparse.
Burtin was the first to study the space G(Qn, p). In [9], he showed that p = 1/2 is the critical value for

connectedness: for fixed values of p, a.e. Qp ∈ G(Qn, p) is disconnected if p < 1/2 while a.e. Qp ∈ G(Qn, p)
is connected if p > 1/2. Erdős and Spencer [13] (see also Toman [20]) analysed the case p = 1/2 and proved
that the probability that Q1/2 is connected tends to 1/e, thus

lim
n→∞

P (Qp ∈ G(Qn, p) is connected) =

 0 if p < 1/2
1/e if p = 1/2
1 if p > 1/2.

(For considerable refinements of these results, see [2], [5], and Dyer, Frieze and Foulds [10].) Now, Erdős
and Spencer also showed that all components of Qp ∈ G(Qn, p) are a.s. of order o(N) provided p = c/n
with c < 1 fixed. They conjectured that a ‘jump’ occurs at p = 1/n, i.e. when the average degree is one,
just as in the case of ordinary random graphs: for any fixed c > 1, if p = c/n then a.e. Qp ∈ G(Qn, p)
contains a component of order at least ηN , where η = η(c) > 0. Ajtai, Komlós and Szemerédi [1] proved
this conjecture and they also suggested a possible way of showing that the second largest component of such
a Qp is a.s. O(n), as conjectured by Erdős.

The main results in this note considerably improve our knowledge of the behaviour of the orders of the
largest and second largest components of a typical Qt ∈ G(Qn, t). Roughly speaking, we shall substantially
improve Erdős and Spencer’s remark on the order of the components before time N/2 and we shall show
that some of the results in [3] carry over to cube processes.

More precisely, we shall show that for a.e. Qp ∈ G(Qn, p) the largest component of Qp has order

−(1 + o(1))
n log 2

ε+ log(1− ε)
= (2 log 2 + o(1))nε−2, (1)
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where p = (1−ε)/n, and ε = ε(n) ≥ (log n)2/(log log n)
√
n is bounded away from 1. In ordinary random graph

processes G̃ = (Gt), the critical value for t is n/2 in the sense that the behaviour of L1(Gt) starts to change
suddenly at time t = n/2. Hence one might at first think that the critical time for Qn-processes Q̃ = (Qt)Mt=0

should be N/2. Our results concerning L1(Qp) will show that this is not the case; in fact, we shall see that (1)
is an upper bound for L1(Qp) for p = (1− ε)/(n− 1), ε > 0, and hence the critical time for Qn-processes is
at least (1 + 1/(n− 1))N/2 (see Section 8).

We shall see that for a.e. Qn-process a giant component emerges soon after time N/2. In fact, we shall
see that a.e. Q̃ = (Qt)M0 is such that for

t ≥
{

1 +
60(log n)3

n

}
N

2
,

the graph Qt contains a distinguished largest component whose order is much greater than the order of any
other component (see Theorem 25).

We shall also estimate the order of the giant component of Qt. We shall see that if t = N/2 + s
and 30N(log n)3/n ≤ s = o(N) then, as in the ordinary processes, the giant component grows four times as
fast as the number of edges. Indeed,

L1(Qt) = (4 + o(1))s

will turn out to hold a.s. in this case (see Theorem 28). Also, we shall see that in this range of s we almost
surely have

L2(Qt) = O(ε−2n),

where ε = ε(s) = 2s/N . Therefore the order of the second largest component decreases as s increases.
We shall also consider times t = cN/2 for constants c > 1. We shall see that then the giant component

is of order (η + o(1))N , where η = η(c) > 0 will be computed explicitly (see Theorem 29). It will in fact
turn out that η(c) = 1 − t(c), which shows another similarity between ordinary graph processes and cube
processes. These similarities between the two processes are at least at a first glance rather surprising since Qn

is a very sparse graph.
Finally, we present more precise results concerning the order of the second largest component of random

subgraphs of Qn. However, for the sake of simplicity we shall only look at Qp ∈ G(Qn, p), since the
computations involved in the proof of the corresponding results for Qt ∈ G(Qn, t) are fierce and not at all
enlightening. The main result here is that, for fixed k ≥ 2, the order of the kth largest component of Qp is

(1 + o(1))
n log 2

ε− log(1 + ε)
= (2 log 2 + o(1))nε−2,

where p = (1 + ε)/n and (log n)2/(log log n)
√
n ≤ ε ≤ 1 (cf. Theorem 32).

This note is organised as follows. We first give some preliminary lemmas in Section 2; some well-known
simple facts concerning branching processes are also briefly discussed in this section, as they will be used in
the proof of the estimate of the order of the giant component. In Section 3 we study the behaviour of L1(Qp)
for p < 1/(n − 1). In the subsequent sections we deal with p > 1/(n − 1). In Section 4 we prove that
shortly after time N/2 a gap in the sequence of the orders of the components develops in a.e. cube process.
In Section 5 we turn our attention to the problem of estimating the number of vertices that lie in large
components. The main results are given in Section 6. In Section 7 we give the results concerning the second
largest component of Qp (p > 1/(n− 1)). We close with some comments and open problems.

2. Preliminaries

We shall need to know reasonably precisely the number of certain subgraphs of the cube Qn, and it will also
be important for us to know the number of certain subtrees of the rooted n-regular infinite tree Tn. We shall
start this section with some lemmas that give us good enough estimates for these quantities.

Let k, ` and m be given. For a vertex v ∈ Qn, let Cv(k, `,m) denote the family of connected subgraphs C
of Qn that contain v, have order |C| = |V (C)| = k, size e(C) = |E(C)| = `, and such that the number of
edges e(Qn[V (C)]) induced by V (C) in Qn is m. Let us write c(k, `,m) = |Cv(k, `,m)|.
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Lemma 1. For all n, k, ` and m satisfying 1 ≤ k − 1 ≤ ` ≤ m ≤ nk −m, we have

c(k, `,m) ≤ (nk −m)nk−m

``(nk −m− `)nk−m−`
≤ 3(nk)1/2

(
nk −m

`

)
.

Proof. Let us set p = `/(nk−m); note that 0 ≤ p ≤ 1. Given Qp ∈ G(Qn, p), let us denote by Cv = Cv(Qp)
the connected component of Qp that contains v. Then the probability that Cv is a member of Cv(k, `,m)
equals

c(k, `,m)p`(1− p)nk−m−`.

Our estimate on c(k, `,m) follows from the fact that this probability is less than 1.

Let Tn be the infinite n-regular rooted tree. Let us denote by t(k, n) the number of subtrees of Tn that
contain the root of Tn and have order k.

Lemma 2. For all n, k ≥ 2, we have

t(k, n) =
n

k − 1

(
k(n− 1)
k − 2

)
.

Proof. Let us for simplicity write tk for t(k, n). Let us delete the edges of Tn independently with probabil-
ity 1− p. The probability that, in the random graph thus obtained, the component T pn of the root v0 of Tn
is of order k is tkpk−1(1− p)nk−2k+2, and hence we have that∑

k≥1

tkp
k−1(1− p)nk−2k+2 = 1, (2)

provided p is such that T pn is finite with probability 1. Let us write X` = X`(T pn) for the number of vertices
of Tn at distance ` from v0 that belong to T pn . Then if p ≤ 1/2n and ` ≥ 1 we have that

P(|Cv| =∞) ≤ P(X` ≥ 1) ≤ E(X`) ≤ 2−`,

and hence P(|Cv| = ∞) = 0. Therefore (2) holds for all 0 ≤ p ≤ 1/2n. Equivalently, we have that for
all 0 ≤ x ≤ 1/2n

f(x) =
∑
k≥1

tky
k, (3)

where f(x) = x(1 − x)−2 and y = x(1 − x)n−2. We can now use the Lagrange inversion formula to
find tk = t(k, n) explicitly. Indeed, let ϕ(x) = (1 − x)−(n−2), and note that both ϕ and f are analytic in a
neighbourhood of 0. Since x = yϕ(x), there is a function ξ(y), analytic in a neighbourhood of y = 0, such
that x = ξ(y). In fact, The Lagrange inversion formula tells us that if g(y) = f(ξ(y)) then

g(y) = f(0) +
∑
k≥1

yk

k!
[
Dk−1

(
(D f(x))(ϕ(x))k

)]
x=0

where D = d/dx. Simple computations show that

(D f(x))(ϕ(x))k = (1 + x)(1− x)−k(n−2)−3

=
∑
j≥0

{(
k(n− 2) + 2 + j

j

)
−
(
k(n− 2) + 1 + j

j − 1

)}
xj

and hence

Dk−1
[
(D f(x))(ϕ(x))k

]∣∣∣
x=0

= (k − 1)!
{(

k(n− 1) + 1
k − 1

)
−
(
k(n− 1)
k − 2

)}
= (k − 1)!

kn

k − 1

(
k(n− 1)
k − 2

)
,
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where for the second equality we need that k ≥ 2. Thus

g(y) = y +
∑
k≥2

n

k − 1

(
k(n− 1)
k − 2

)
yk, (4)

and the result follows by comparing (3) and (4). Indeed, the power-series on the right-hand side of (3) defines
an analytic function g′(y) of y in a neighbourhood of y = 0, and moreover we have that g′(y) = f(ξ(y))
for all small enough non-negative real y. Since by definition g(y) = f(ξ(y)), we have that the zeros of the
analytic function g − g′ are not isolated, and hence we have that g = g′.

Standard estimates for the binomial coefficients imply the following.

Corollary 3. For k ≥ 3 and n ≥ 2 we have that t(k, n) ≤ (3/2kn)(en)k. Moreover, if k = k(n) → ∞
as n→∞, we have that

t(k, n) = (1 + o(1))
n

k
√

(2πk)
(k(n− 1))k(n−1)

(k − 2)k−2(kn− 2k + 2)kn−2k+2

= (1 + o(1))
1

k
√

(2πk)
(n− 1)k(n−1)+1

(n− 2)kn−2k+2

Note that in Tn the root has n descendants while all the other vertices have n−1 descendants. Let T ′n−1

be the rooted (n − 1)-ary tree, i.e. the infinite rooted tree all whose vertices have n − 1 descendants. The
tree T ′n−1 is in a sense more natural than Tn, but when studying Qp it will be clear that Tn is the tree we
should look at, since there is a canonical projection map Tn → Qn once we distinguish a vertex of Qn, where
the root of Tn should be mapped to.

Let t′(k, n) be the number of subtrees of T ′n−1 containing the root of T ′n−1 and having order k. Then it
is intuitively clear that t(k, n) and t′(k, n) should be essentially the same if both k and n are large. Let us
remark that one may easily compute t′(k, n) by using a beautiful lemma of Raney (see Theorem 2.1 in [19]).

Indeed, this lemma implies that given a cyclic sequence of k non-negative integers not larger than n−1,
adding up to k− 1, there is a unique place where we can break the sequence so that every initial segment of
the sequence obtained in this way add up to at least the length of the segment. On the other hand, such a
sequence corresponds to a unique rooted plane tree that can be embedded in T ′n−1. (Given such a tree, visit
the vertices following a breadth-first search from the root, visiting the descendants of a vertex from left to
right, say. Let us write down the number of descendants of the vertex v when we first visit v. The sequence
obtained in this way determines the tree.)

Therefore kt′(k, n) is the number of cyclic sequences satisfying the condition given above, where each
sequence is counted with multiplicity, which corresponds to the number of embeddings that the tree corre-
sponding to the sequence admits. Hence we have that

t′(k, n) =
1
k

(
k(n− 1)
k − 1

)
,

since the number of such cyclic sequences counted with multiplicity is the coefficient of xk−1 in

(1 + x)k(n−1) =
{n−1∑
i=0

(
n− 1
i

)
xi
}k
.

Let us now go back to Tn. As in the proof of Lemma 2, let us consider Tp ∈ G(Tn, p) and let us again
denote by T pn the component of the root of Tn in Tp. We shall be interested in the probability Pk(n, p) =
P(|T pn | = k) that T pn has order k.
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Lemma 4. Let k = k(n)→∞ as n→∞ and 0 < p = p(n) < 1. Then

Pk(n, p) = (1 + o(1))
(p(n− 1))k−1

k
√

(2πk)

{
(n− 1)(1− p)

(n− 2)

}nk−2k+2

.

Proof. We clearly have that Pk(n, p) = t(k, n)pk−1(1− p)nk−2k+2, and the result follows from Corollary 3.

We shall also be interested in the probability P0 = P(|T pn | <∞) that T pn is finite. It is clear that

P0 =
∑
k≥1

t(k, n)pk−1(1− p)nk−2k+2

= (1− p)n +
∑
k≥2

n

k − 1

(
k(n− 1)
k − 2

)
pk−1(1− p)nk−2k+2,

and hence we know P0 exactly. However, in order to gain a better insight into the behaviour of the order
of T pn , we shall look at certain branching processes. It will turn out that by using some very basic facts about
such processes, we shall be able to derive the asymptotic behaviour of P0 rather easily. More importantly, we
shall see that our results on Qp are rather natural if we keep branching processes in mind. Let us remark that
the use of branching processes in the theory of random graphs goes back to Füredi [14], and that Karp [16]
has successfully used them to study random directed graphs.

Let us now very briefly give the relevant definitions and some well-known facts concerning branching
processes. For the proofs of the results that we shall use, we refer the reader to the monograph by Harris [15]
and to Kolchin [17], Chapter 2. The branching processes we shall be interested in will always be homogeneous,
discrete-time processes. Let Z be an integer, non-negative random variable with distribution pi = P(Z = i)
(i ≥ 0). A Galton–Watson branching process whose particles generate Z offspring at a time is a Markov
chain (Zt)∞t=0 that may be described as follows. We start at time t = 0 with one particle, that is Z0 = 1;
then at time t ≥ 1, each of the Zt−1 particles in generation t− 1 generates Z offspring, independently from
all the others. The total number of offspring generated then is Zt. The most basic fact about such processes
is that they are unstable in the sense that with probability 1 a process (Zt)∞0 is either such that Zt = 0 for
large enough t, or else Zt →∞ as t→∞. In the former case, we say that (Zt)∞0 dies out .

In studying the probability that a particular process should die out, it is useful to consider the generating
function of the distribution of Z. Let us write

f(s) =
∞∑
i=1

pis
i.

Let us write π for the probability that our process does not die out, and π′ = 1− π for the probability that
it does die out. Then one can show that f(π′) = π′, and in fact, if E(Z) > 1 then π′ is the unique solution
of f(s) = s strictly between 0 and 1.

We shall need to consider binomial branching processes; that is, processes for which the offspring of a
particle are generated according to a binomial distribution. Let 0 < p = p(n) < 1 be given. We again denote
the number of offspring of a particle by Z. In our process Πm = Πm(p) (m ≥ 1) the r.v. Z obeys the law

P(Z = i) =
(
m

i

)
pi(1− p)m−i. (5)

Let the probability that the process Πm does not die out be πm = πm(p). We shall also make use of the
following branching process Π0 = Π0(p). We start with one particle that generates offspring according
to (5) with m = n, and all other particles generate offspring according to the same law except that we now
have m = n− 1. Let the probability that Π0 does not die out be π0 = π0(p).

We may look at the branching process Π0(p) defined above in the following way. Let Zt = Zt(T pn) be
the number of vertices of T pn at distance t from the root of Tn. Then it is a simple observation that (Zt)∞t=0
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is a Markov chain that behaves in the same way as Π0(p). Thus Pk(n, p) = P(|T pn | = k) is the probability
that Π0(p) ends up with total progeny k and P0 = P(|T pn | < ∞) = π′0(p) = 1 − π0(p). Hence we may
estimate P0 by estimating π0(p). In order to estimate π0(p) we shall compare Π0(p) with Πn−1(p) and Πn(p).

We shall also consider Poisson branching processes; that is, Galton–Watson processes in which the
particles generate offspring according to a Poisson distribution. Let us denote by ΠP(λ) (λ > 0) the branching
process in which the particles generate Z offspring at a time where

P(Z = i) = e−λλi/i! ,

for i ≥ 0. Let us denote by πP = πP(λ) the probability that ΠP(λ) does not die out.
Note that the generating functions associated with the branching processes Πm = Πm(p) and ΠP =

ΠP(λ) are
fm(s) = (1− (1− s)p)m

and
gλ(s) = e(s−1)λ,

respectively. In particular, if p = λ/m and λ is bounded then

fm(s) = gλ(s)eO(1/m).

The next lemma gives us estimates for the various probabilities of death for the various branching processes
defined above.

Lemma 5.
(i) For all 0 ≤ p ≤ 1, we have πn−1(p) ≤ π0(p) ≤ πn(p).

(ii) If λ > 1 is fixed then πP(λ) is the unique solution of

x+ e−λx = 1

in the interval 0 < x < 1.
(iii) Let p = λ/n where λ = 1 + ε and 0 < ε = ε(n) = o(1). Then

πn(p) =
2nε
n− 1

+O(ε2).

In particular, if m = n− k then

πm(p) = 2ε+O(ε/n) +O(k/n) +O(ε2),

and hence if k = o(εn) then πm(p) = (1 + o(1))π0(p).

We may finally state our estimates for π0(p).

Corollary 6. Let p = λ/n.
(i) If λ > 1 is fixed then π0(p) = (1 + o(1))πP(λ).

(ii) Let λ = 1 + ε where 0 < ε = ε(n) = o(1). Then, if m = n− k and k = o(εn),

π0(p) = (1 + o(1))πm(p) = (2 + o(1))ε

We close this section with two lemmas concerning graph-theoretic properties of the cube Qn. The first
one is the following compact form of the edge-isoperimetric inequality in the cube Qn, which will be used
often in the sequel (see [7]).

Lemma 7. Let A ⊂ Qn be a non-empty set of k vertices of Qn. Then the number of edges induced by A
in Qn is at most (k/2) log2 k.

The following lemma gives us an upper estimate for the number of cycles of the n-cube that contain a
fixed vertex and have a given length.
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Lemma 8. Let v ∈ Qn be a vertex of the cube and ` ≥ 2. The number of cycles of length 2` in Qn

containing v is at most (
2`
`

)
`!n`. (6)

Moreover, if ` ≥ n/32 then the number of such cycles is at most 2−n/11n(n− 1)2`−1.

Proof. We may clearly assume that v is the empty set. Given a cycle C of length 2` containing v, say

C : v = v0, v1, . . . , v2` = v,

let us associate with it the sequence
s(C) = (ε1i1, . . . , ε2`i2`),

where vj 4 vj−1 = {ij} and

εj =
{

+1 if vj = vj−1 ∪ {ij}
−1 if vj = vj−1 \ {ij},

j = 1, . . . , 2`. Clearly, if C 6= C ′ then s(C) 6= s(C ′), and therefore we may bound the number of such cycles
by finding an upper bound for the number of possible sequences s(C).

Note that a sequence s(C) has exactly ` positive entries, and that the absolute values of these entries
are chosen from [n]. Also, the set of absolute values of the negative entries equals the corresponding set of
the positive ones. Hence the number of such sequences is clearly bounded by (6), which completes the proof
of the first part of our lemma.

Let us now assume that ` ≥ n/32. We shall now prove our bound by considering a random walk W0

starting at v = v0 = ∅. More precisely, let

W0 : v0, v1, . . . , v2`

be a random walk in Qn defined as follows. The vertex v1 is chosen at random from the neighbours of v0,
each with probability 1/n. For 2 ≤ i ≤ 2` the vertex vi is chosen from the neighbours of vi−1, but it is not
allowed to be vi−2, and hence it is one n − 1 vertices, all such vertices being equiprobable. Note that to
prove our estimate it suffices to show that the probability that v2` = v0 is at most 2−n/11.

Let B0 be the closed Hamming ball of radius r = bn/32c centred at v0, i.e.

B0 = {v ∈ Qn : d(v, v0) ≤ n/32}.

The probability that our random walk W0 stays in B0 and v2` = v0 is at most(
2`
`

)
(1/32)` = 2−3` ≤ 2−3n/32 ≤ 2−n/11/2,

since in such a case there are ` steps among the 2` steps in W0 which are ‘towards’ v0. More precisely, for `
indices i (1 ≤ i ≤ 2`) we have |vi| = |vi−1|−1, but this event occurs with probability at most (r/n)` ≤ (1/32)`.

Let us now assume that W0 does go out of B0 but v2` = v0. Set

i0 = min{i : vj ∈ B0, j ≥ i}.

Then clearly |vi0 | = r = bn/32c and the number of remaining steps in W0 is t = 2`− i0 ≥ r. Amongst these,
exactly t0 = (t+ r)/2 must be towards v0 = ∅. Now, the probability that this event happens is at most

∑
t≥r

(
t

t0

)
(r/(n− 1))(1/32)t0−1 = 2−5r/2

∑
t≥r

2−3t/2 = 21−4r ≤ 2−n/11/2,

and hence P(v2` = v0) ≤ 2−n/11, which completes the proof.
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3. The subcritical phase

In this section we shall study the behaviour of the largest component of Qp ∈ G(Qn, p) for p < 1/(n − 1).
We start with a result that tells us that, in this range of p, all components of Qp are very small indeed.
We remark that the upper bound on ε in the result below is merely a technical restriction, and it suffices to
assume that ε should be bounded away from 1, say.

Theorem 9. Let p = (1 − ε)/(n − 1), where 0 < ε = ε(n) ≤ 1/2. Then a.e. Qp ∈ G(Qn, p) contains no
components of order larger than

k0 = − n log 2
ε+ log(1− ε)

+
log(1− (1− ε)eε)
ε+ log(1− ε)

. (7)

Proof. We start by noticing the following. Let Cv be the component of v in Qp, and T pn be the component
of the root of Tn in Tp ∈ G(Tn, p). Then

P(|Cv| ≤ k) ≥ P(|T pn | ≤ k) =
∑

1≤`≤k

P`(n, p).

Indeed, we may generate Cv by the following iterative procedure. At stage k, we test which of the edges
of Qn incident to the vertices of Cv, at distance k from v and going to vertices not in the component so far,
are present in our random graph. Then, at each stage, for every vertex there are at most n− 1 cube edges
to test, and our claim follows, since if we generate T pn with the analogous procedure, for every such vertex
the number of Tn-edges to test is exactly n− 1.

It follows from the claim above that the probability that v belongs to a component of order larger
than k0 is at most

P0 = 1−
∑

1≤k≤k0

Pk(n, p).

Since p(n − 1) = 1 − ε < 1, we see that
∑
k≥1 Pk(n, p) = 1 (cf. the proof of Lemma 2). Hence P0 =∑

k>k0
Pk(n, p). Thus the expected number of vertices in components of order k > k0 is, by Lemma 4, at

most

N
∑
k≥k0

k−3/2(1−ε)k−1

(
1 +

ε

n− 2

)k(n−2)+2

≤ 4Nk−3/2
0

∑
k≥k0

[(1− ε)eε]k ≤ 4Nk−3/2
0

[(1− ε)eε]k0

1− (1− ε)eε
= o(1),

and hence a.e. Qp contains no component of order larger than k0.

Our task for the rest of this section is to show that the above theorem is sharp. We shall be able to
show that the largest component of Qp (p = (1− ε)/(n− 1)) is essentially as given in (7), provided ε > 0 is
not too small.

Let k ≥ 1 and v ∈ Qn be fixed. We shall need to know the probability that v belongs to a component of
order k in Qp ∈ G(Qn, p). Here and in the sequel, we shall denote by Cv = Cv(Qp) the connected component
of v in Qp ∈ G(Qn, p). Thus we shall be interested in the probability that |Cv| = k. Now, this probability
may be estimated by running a probabilistic algorithm that, intuitively speaking, generates a spanning tree
of Cv.

Let us consider Algorithm I, given in Figure 1. This algorithm generates a tree Tv ⊂ Qn by a certain
breadth-first search. Since the n edges incident to a fixed vertex of the cube are in one-to-one correspondence
with the elements of [n], there is a natural ordering on these edges induced by the ordering on [n]. Algorithm I
is based on the breadth-first search where the edges are searched in this order.

Clearly, the probability that the component Cv ⊂ Qp is of order k equals the probability that the tree Tv
generated by Algorithm I is of order k. The proof of Lemma 10 below will be based on this simple fact.

9



begin
Tv := v; R := ∅
insert v into a queue Q;
while Q not empty do begin
w := 1st element of Q;
delete w from Q;
let w1, . . . , wm be the neighbours of w in Qn

not contained in Tv, in their natural order;
for i = 1, . . . ,m do begin
R := R ∪ {wwi};
with probability p do begin

add the edge wwi and the vertex wi to Tv;
put wi at the back of Q
end

end
end;

Output Tv
end

Figure 1. Algorithm I

So far we have considered Tn merely as a rooted tree, but let us now fix a labelling of the edges of Tn
with elements of [n] with the property that every vertex of Tn is incident to an edge of every label. In
other words, we are now looking at Tn with a fixed proper edge-colouring with colours from [n]. Recalling
that the edges incident to a fixed vertex of Qn are in one-to-one correspondence with [n], given a vertex v
of Qn, there is a natural homomorphism of graphs τv : Tn → Qn taking the root of Tn to v. The lemma
below connects, via τv, the component Cv of v in Qp to T pn , the component of the root of Tn in a random
subgraph Tp ∈ G(Tn, p).

Lemma 10. Let n ≥ 2, k ≥ 1, and 0 < p < 1. For all vertices v ∈ Qn we have that

P(|Cv| = k) ≥ P(τv(T pn) is acyclic and |T pn | = k). (8)

Proof. Let T0 ⊂ Qn be a subtree of Qn that contains v. Clearly Algorithm I can generate T0 in a unique
way, and hence there is an integer K = K(T0) ≥ 0 such that

P(Tv = T0) ≥ P(Tv = T0)(1− p)K = P(T pn = T ′0),

where T ′0 ⊂ Tn is the unique subtree of Tn containing the root of Tn such that τv(T ′0) = T0. On the other
hand,

P(|Cv| = k) =
∑

P(Tv = T0),

where the sum is over all subtrees T0 ⊂ Qn of order k that contain v. Therefore the probability that the
vertex v belongs to a component of order k is at least∑

P(T pn = T ′0), (9)

where the sum is over all subtrees T ′0 ⊂ Tn that contain the root of Tn, have order k, and are such
that τv(T ′0) ⊂ Qn is acyclic. But (9) is exactly the right-hand side of (8), and hence the proof is com-
plete.

It should be clear that our general aim is to show that, for values of k comparable with k0 in (7), the
probability that |Cv| = k is not very far off from the probability that |T pn | = k. In view of Lemma 10 above,
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it suffices to show that the restriction that τv(T pn) ⊂ Qn should be acyclic is not a very strong one for these
values of k. Thus our next task is to analyse the probability that τv(T pn) is acyclic. Since this probability
clearly does not depend on v ∈ Qn, let us assume that v = ∅ and write τ0 for τ∅.

In the sequel we shall use the fact that we may generate T pn by looking at Π0(p). Recall from Section 2
that these two random objects are very closely related. Indeed, we may clearly regard Π0(p) as a random
rooted tree Tbp (the ‘genealogical tree’), and hence we may generate T pn by first generating Tbp and then
choosing a random rooted embedding h : Tbp → Tn. The following lemma is immediate.

Lemma 11. Let n ≥ 2, k ≥ 1, ∆ ≥ 2, and 0 < p < 1. We have that

P(τ0(T pn) is acyclic and |T pn | = k)
≥ P(τ0h(Tbp) is acyclic

∣∣ |Tbp| = k, ∆(Tbp) ≤ ∆)
× P(|Tbp| = k and ∆(Tbp) ≤ ∆).

Let a rooted tree T be given. We shall now estimate the probability that a random rooted embedding h :
T → Tn is such that τ0h(T ) ⊂ Qn is acyclic. Our estimate will be in terms of the order |T | of T and of the
maximal degree ∆(T ) of T .

Lemma 12. Let k = k(n) ≤ n3 and 2 ≤ ∆ = ∆(n) ≤
√

(n/32 log n). Then

P(τ0h(Tbp) is acyclic
∣∣ |Tbp| = k, ∆(Tbp) ≤ ∆) = 1−O(k∆4/n2).

Proof. Fix a rooted tree T0 of order k with ∆(T0) ≤ ∆. We shall show that a random embedding h of T0

in Tn is such that τ0h(T0) is acyclic with probability 1−O(k∆4/n2).
Pick a random h, and assume that τ0h(T0) is not acyclic. We claim that, for some 2 ≤ ` ≤ k/2, there is a

cycle C = C2` in τ0h(T0) and a path P = P 2`+1 in T0 such that τ0h(P ) = C. In order to see this, let us first
fix an ordering e1, . . . , ek−1 of the edges of T0 satisfying the the property that any initial segment e1, . . . , ei
of it induces a subtree Ti = T0[{e1, . . . , ei}] of T0. Let i0 be the minimal i for which τ0h(Ti) contains a
cycle C. Let v1 ∈ T0 be the vertex added to Ti0−1 by the edge ei0 to obtain Ti0 . Let v2 ∈ Ti0−1 be such
that τ0h(v2) = τ0h(v1). Then if we take P to be the path connecting v1 and v2 in Ti0 ⊂ T0, we have
that τ0h(P ) = C, as claimed.

Fix a cycle C = C2` and a path P = P 2`+1 as above, and let v be the vertex of P that is nearest to the
root of T0. Let T1 be the subtree of T0 induced by the descendants of v, and let its root be v. Clearly, our
random embedding h is such that τ0h(T1) contains a cycle that goes through τ0h(v). Suppose we show that

P(τ0h(T1) contains a cycle through v0 = ∅) = O(∆4/n2), (10)

for all rooted trees T1 or order at most k and ∆(T1) ≤ ∆. Then it follows that the probability that a random
embedding h of T0 is acyclic is at least 1−O(k∆4/n2), which is the claim of our lemma.

Let us now proceed to prove (10). Let us assume that τ0h(T1) contains a cycle C = C2` of length 2`.
Let P = P 2`+1 ⊂ T1 be a path in T1 that contains the root and projects to C by τ0h. The probability
that τ0h does map P onto C is n−1(n − 1)−2`+1, and hence the probability in (10) is bounded from above
by

P0(`) = α(T1, `)β(n, `)(n− 1)−2`, (11)

where α(T1, `) is the number of paths P = P 2`+1 in T1 that have order 2` + 1 and contain the root of T1,
and β(n, `) is the number of 2`-cycles in Qn containing v0 = ∅. We shall analyse three ranges of ` in order
to estimate P0(`).

Case 1. 2 ≤ ` ≤ n/12∆2

It is easily checked that α(T1, `) ≤ 4(`+ 1)∆2`. Hence, by (11) and Lemma 8, we have that

P0(`) ≤ 4(`+ 1)∆2`

(
2`
`

)
`!n`(n− 1)−2` ≤ c`

(
4∆2`

en

)`
,

11



for some absolute constant c. Hence the probability that τ0h(T1) contains a cycle of length 2` (2 ≤ ` ≤
n/12∆2) going through v0 = ∅ is at most

bn/12∆2c∑
`=2

P0(`) ≤
bn/12∆2c∑

`=2

c`

(
4∆2`

en

)`
≤ 4c

(
8∆2

en

)2

= O(∆4/n2).

Case 2. n/12∆2 ≤ ` ≤ n/9
Clearly α(T1, `) ≤ k2. Hence, by (11),

P0(`) ≤ k2

(
2`
`

)
`!n`(n− 1)2` ≤ ck2

(
4`
en

)`
,

for some absolute constant c. Hence the probability that τ0h(T1) contains a cycle of length 2` (n/12∆2 ≤
` ≤ n/9) going through v0 = ∅ is at most

∑
n/12∆2≤`≤n/9

P0(`) ≤
∑

n/12∆2≤`≤n/9

ck2

(
4`
en

)`

≤ 2ck2

(
4dn/12∆2e

en

)dn/12∆2e

= O
[
k2(2e∆2)−n/12∆2

]
.

Case 3. n/9 ≤ ` ≤ k/2
By Lemma 8, we know that in this range of ` we have that β(n, `) ≤ 2−n/11n(n − 1)2`−1. Then P0(`) ≤
k22−n/11, and this completes the proof of (10).

As remarked above, relation (10) implies the assertion of the lemma.

We now need to show that T pn tends to have very small maximal degree. Given a rooted tree T , let us
write d+(v) for the number of direct descedants of v ∈ T , i.e. for the number of vertices adjacent to v which
are further away from the root than v. Also, let ∆d(T ) = supv∈T d+(v). Let t(k,∆0, n) denote the number
of trees T0 ⊂ Tn that contain the root of Tn, have order k, and are such that ∆d(T0) ≥ ∆0.

Lemma 13. Let k = k(n)→∞ as n→∞ and ∆0 = ∆0(n) ≥ 1. Then

t(k,∆0, n)/t(k, n) = O
[
k5/2(e/∆0)∆0

]
. (12)

Moreover, if 0 < p = p(n) < 1, then

P(∆d(T pn) ≥ ∆0

∣∣ |T pn | = k) = O
[
k5/2(e/∆0)∆0

]
. (13)

Proof. Note that, for a fixed value of p, when randomly selecting T pn all trees T k ⊂ Tn of order k that contain
the root of Tn are equiprobable. Therefore

P(∆d(T pn) ≥ ∆0

∣∣ |T pn | = k) = t(k,∆0, n)/t(k, n),

and hence (12) and (13) are equivalent. Furthermore, to prove our lemma it is enough to show that (13)
holds for a single value of p.

Let us fix p0 = 1/(n− 1). Note that

P(∆d(T p0n ) ≥ ∆0 and |T p0n | ≤ k) ≤
∑

∆≥∆0

kP(Sn−1,p0 = ∆)

≤
∑

∆≥∆0

k

(
n− 1

∆

)
p∆

0 ≤ 2k(e/∆0)∆0 . (14)
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On the other hand, by Lemma 4, we have that

Pk(n, p0) = P(|T p0n | = k) = (1 + o(1))(2πk3)−1/2, (15)

if k = k(n)→∞. Relation (13) follows from (14) and (15).

Let us remark that a stronger form of Lemma 13 may be proved by invoking Raney’s lemma, mentioned
in Section 2. For our purposes, the result above will suffice. Putting together Lemmas 10 to 13, we have the
following.

Corollary 14. Let 0 < p = p(n) < 1, k = k(n) ≤ n3, and 8(log n)/ log log n ≤ ∆ = ∆(n) ≤
√

(n/32 log n).
Then

P(|Cv| = k) ≥ (1−O(k∆4/n2))Pk(n, p)/2.

We are finally ready to prove a lower bound for the order of the largest component of Qp ∈ G(Qn, p),
where p = (1− ε)/n and ε > 0 is not too small.

Theorem 15. Let p = (1−ε)/(n−1), where (log n)2/(log log n)
√
n < ε = ε(n) ≤ 1. Then a.e. Qp ∈ G(Qn, p)

contains at least N1/2 log log logn vertices in components of order at least

− n log 2
ε+ log(1− ε)

(
1− 2

log log log n

)
.

Proof. Let X = X(Qp) be the number of rooted components of order

k0 = −
⌊

n log 2
ε+ log(1− ε)

(
1− 1

log log log n

)⌋
.

Note that k0 ≤ n3. By letting

∆ =
⌊

9 log n
log log n

⌋
,

Lemma 4, Corollary 14, and some easy calculations imply that the expectation E(X) of X is at least
2N1/2 log log logn. In order to prove our lemma, we shall show that X is highly concentrated around its
expectation. We shall estimate the variance σ2 = σ2(X) of X and then apply Chebyshev’s inequality.

Given a connected subgraph C of Qn and a vertex v ∈ C, let us write Cv for the ordered pair (C, v). Note
that X =

∑
XCv , where the summation ranges over all Cv with |C| = k0. Let us first estimate E[X(X−1)].

Clearly
E[X(X − 1)] =

∑
E(XCvXDw ),

where the summation ranges over all ordered pairs (Cv, Dw), Cv 6= Dw, |C|, |D| = k0. Let us break the
sum into three parts, according to the type of pair (Cv, Dw). Let us write s1 =

∑
1 E(XCvXDw ), where

∑
1

indicates that the sum ranges over pairs (Cv, Dw) where C = D; let us write s2 =
∑

2 E(XCvXDw ), where
∑

2

ranges over pairs (Cv, Dw) such that the distance between C and D is at least two; and finally let us write s3

for the rest of the sum.
We easily see that

s1 ≤ k0

∑
Cv

E(XCv ) ≤ n3E(X), (16)

and that
s2 =

∑
2

E(XCv )E(XDw ) ≤ (E(X))2
. (17)

Let us now look at the sum s3 =
∑

3 E(XCvXDw ), where the sum ranges over pairs (Cv, Dw) for which the
distance between C and D is at most 1. Clearly we may assume that this distance is 1. For each such pair,
choose an arbitrary edge e of Qn joining C to D. Note that

P(C and D are both components of Qp)
= P(C ∪D ∪ e is a component of Qp)(1− p)/p
≤ nP(C ∪D ∪ e is a component of Qp).
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Let Z be the random variable counting the number of quadruples (C, v, w, e) where C is a component of Qp of
order 2k0, v and w are vertices in C and e is an edge in C. Let X ′ count the number of rooted components Cv

of Qp with |C| = 2k0. Note that then

Z ≤ 2k2
0(log 2k0)X ′ ≤ 7n6(log n)X ′.

Now, by computations analogous to the ones in the proof of Theorem 9, we see that E(X ′) = o(αn) for some
absolute constant 0 < α < 1. Hence

s3 ≤ nE(Z) ≤ 7n7(log n)E(X ′) = o(1). (18)

Writing µ = E(X), we see from (16), (17) and (18) that

σ2(X) ≤ (1 + n3)µ+ o(1),

and hence σ2/µ2 ≤ 2n3/µ. The result now follows from Chebyshev’s inequality.

Corollary 16. Let p = (1 − ε)/n where ε = ε(n) ≥ (log n)2/(log log n)
√
n is bounded away from 1. Then

a.e. Qp ∈ G(Qn, p) is such that

L1(Qp) = − n log 2
ε+ log(1− ε)

(
1 +O

(
1

log log log n

))
.

4. A gap in the sequence of components

In this section we shall prove a lemma that will be important in the proof of the fact that there is a unique
giant component in Qp ∈ G(Qn, p) if p is a little larger than 1/n. This lemma will concern the orders of
the various components of Qp. Roughly speaking, it will tell us that if p is a little larger than 1/n every
component of Qp tends to be either very large or quite small, and hence there is a ‘gap’ in the sequence of
the orders of the components of Qp. Let us start with a simple lemma. For brevity, let us call a component
of a graph G a k-component if it has order k. Also, in what follows we write Sm,p for a random variable
with binomial distribution with parameters m and p.

Lemma 17. Let 0 < p < 1 and k ≥ 1 be such that (log n)2pk log k ≥ 1. Let m1 = b(k/2) log2 kc. Then the
probability that a vertex of Qp ∈ G(Qn, p) belongs to a k-component of size at least k + be(log n)pm1c is at
most

exp
{
−1

2
(log n)(log log n)pk log k

}
.

Proof. We shall make use of Algorithm I from Section 3. Let v ∈ Qn be fixed. Note that we can generate
the component Cv of v in Qp in the following way. We first run Algorithm I and get a tree Tv ⊂ Qn as
output. Then we look at the edges E(Qn[V (T )]) induced by V (Tv) in Qn in turn, and decide which ones
should be added to Tv to form Cv. More specifically, we run the following probabilistic algorithm on Tv.

Cv := Tv;
for all e ∈ E(Qn[V (Cv)]) \R do

with probability p do add e to Cv;
Output Cv

The output Cv is the component of v in Qp. Let `1 = k + be(log n)pm1c. Now, the probability that a
vertex v of Qp belongs to a k-component Cv of size e(Cv) at least `1 is∑

T

P(Tv = T and e(Cv) ≥ `1) =
∑
T

P(e(Cv) ≥ `1 | Tv = T )P(Tv = T ),
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where the sum ranges over trees T ⊂ Qn that contain v and have order k. The conditional probability above
is P(Sm,p ≥ 1 + be(log n)pm1c), where m = |E(Qn[V (Cv)]) \R|. Hence, by standard estimates for the tail of
the binomial distribution and the edge-isoperimetric inequality in Qn, this probability is at most

P (Sm1,p ≥ e(log n)pm1) ≤ exp {−(log n)(log log n)pm1}

≤ exp
{
−1

2
(log n)(log log n)pk log k

}
,

as required.

We are now ready to prove the main result of this section.

Lemma 18. Let C ≥ 1 and D ≥ 125 be fixed. Let ε0 = 4C(log n)3/n.
(i) If p = (1 + ε)/n, where ε0 ≤ ε = ε(n) ≤ 1, then the following assertions hold.

(a) A.e. Qp has no k-component with Dn/ε2 ≤ k ≤ nC logn.
(b) A.e. Qp is such that the total number of vertices in k-components, n/20ε ≤ k ≤ dDn/ε2e, is at

most N/n.
(ii) For any 0 ≤ t = t(n) ≤ M = nN/2, let εt = ε(t) = 2t/N − 1. Then a.e. cube process (Qt)M0 is such

that, for any t0 = d(1 + ε0)N/2e ≤ t ≤ N , the graph Qt has no k-component with Dn/ε2t ≤ k ≤ nC logn.
Moreover, a.e. such process is such that for t ≥ t0 every component of Qt has order smaller than n3 or
larger than nC logn.

Proof. We shall consider the two spaces G(Qn, p) and G(Qn, t) for certain p and t. Let Ep denote expectation
in the first space and Et in the second. Let us write Xk = Xk(G) for the number of rooted k-components of
the graph G. Clearly Xk counts the total number of vertices of G that belong to k-components. Let us now
start the proof of (i).

(i) We shall consider two cases according to the size of ε.

Case 1. ε ≥ 2(log n)(7C/n)1/2

By Corollary 3 and the edge-isoperimetric inequality in Qn, for k ≥ 3,

Ep(Xk) ≤ Nt(k, n)pk−1(1− p)kn−k log2 k

≤ 3N
2kn

(en)k
(

1 + ε

n

)k−1(
1− 1 + ε

n

)kn−k log2 k

≤ Nek(1 + ε)k exp
{
−k(1 + ε)

(
1− log2 k

n

)}
. (19)

Therefore

log Ep(Xk) ≤ n(log 2) + k + k log(1 + ε)− k(1 + ε)
(

1− log2 k

n

)
≤ n(log 2) + k + k

(
ε− ε2

2
+
ε3

3

)
− k(1 + ε)

(
1− log2 k

n

)
≤ n(log 2)− kε2

2
+
kε3

3
+

2k log2 k

n
.

Let us now assume that k ≤ nC logn. Then

log Ep(Xk) ≤ n(log 2)− kε2/42. (20)

We can now prove (a) using (20). Indeed, if k ≥ Dnε−2 > 112(log 2)nε−2, then

log Ep(Xk) ≤ −5(log 2)n/3,
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and hence
bnC log nc∑
dDnε−2e

Ep(Xk) ≤ nC logn2−5n/3, (21)

which proves (a).
To prove (b), we simply note that (20) tells us that

dDnε−2e∑
dn/20εe

Ep(Xk) ≤ exp
{
−n1/2

}
N.

Case 2. ε ≤ 2(log n)(7C/n)1/2

Let Xk,`,m = Xk,`,m(G) denote the number of rooted k-components C of G that have size e(C) = ` and are
such that the number e(Qn[V (C)]) of edges induced by V (C) in Qn is m. Let m1 = m1(k) = b(k/2) log2 kc.
Then, by the edge-isoperimetric inequality in Qn,

Xk =
m1∑

m=k−1

m∑
`=k−1

Xk,`,m.

We shall assume throughout the proof that n/20ε ≤ k ≤ nC logn. Write X(1)
k,m for the number of rooted

k-components of size less than `1 = k + be(log n)pm1c that span m edges in Qn, and X
(2)
k,m for the rest

of Xk,m =
∑
`Xk,`,m. Since, by Lemma 1,

Ep(Xk,`,m) = Nc(k, `,m)p`(1− p)nk−m−`

≤ 3N(nk)1/2

(
nk −m

`

)
p`(1− p)nk−m−`,

the expected number Ep(X(1)
k,m) of vertices in k-components spanning m edges in Qn with size less than `1

is at most 3N(nk)1/2P(Snk−m,p < `1). Let us write µ = E(Snk−m,p) = p(nk −m). Note that

µ− (k + e(log n)pm1) ≥ k
(
ε− p log2 k

2
− e

2
(log n)p log2 k

)
≥ kε/2,

and also that 2k ≥ µ ≥ k. Therefore

P(Snk−m,p < `1) ≤ P(|Snk−m,p − µ| ≥ εµ/4) ≤ exp
{
−1

3
· ε

2

16
· k
}

= exp(−ε2k/48),

and hence
Ep(X(1)

k,m) ≤ 3N(nk)1/2 exp(−ε2k/48). (22)

On the other hand, Lemma 17 tells us that∑
m

Ep(X(2)
k,m) ≤ N exp

{
−1

2
(log n)(log log n)pk log k

}
. (23)

We are now ready to conclude the proof of our lemma in this case.
Let us deal with (a) first. Let k be such that Dn/ε2 ≤ k ≤ nC logn. By (22),

Ep(X(1)
k,m) ≤ 3N(nk)1/2 exp{−(D/48)n} ≤ e−5n/2N (24)

and, by (23), ∑
m

Ep(X(2)
k,m) ≤ N exp

{
−1

2
(log n)2(log log n) · 1

n
· Dn
ε2

}
≤ e−3nN. (25)
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Thus
bnC log nc∑
k=dDn/ε2e

m1∑
m=k−1

{
Ep(X(1)

m,k) + Ep(X(2)
m,k)

}
= o(1),

and hence a.s. Qp has no k-components with Dn/ε2 ≤ k ≤ nC logn.
Let us now prove (b). Let k be such that n/20ε ≤ k ≤ dDn/ε2e. By (22),

Ep(X(1)
k,m) ≤ 3N(nk)1/2 exp

{
−(log n)3/240

}
≤ Nn−(logn)2/241, (26)

and also, by (23),

∑
m

Ep(X(2)
k,m) ≤ N exp

{
−1

2
(log n)2(log log n) · 1

n
· n

20ε

}
≤ exp

{
−n1/2

}
N. (27)

Therefore, by (26) and (27),

dDn/ε2e∑
k=dn/20εe

m1∑
m=k−1

{
Ep(X(1)

k,m) + Ep(X(2)
k,m)

}
≤ Nn− logn,

which implies (b). This completes the proof of Case 2, and hence the proof of (i) is complete. Let us now
turn to the proof of (ii).

(ii) For 0 ≤ t ≤ M = nN/2 let p = p(t) = t/M . Clearly, if ε = εt is as defined in assertion (ii) of our
lemma then p = (1 + ε)/n. Let us first note that, for any r.v. X,

Ep(X) =
M∑
m=0

(
M

m

)
pm(1− p)M−mEm(X)

≥
(
M

t

)
pt(1− p)M−tEt(X)

≥ (1/3)M−1/2Et(X). (28)

We shall now estimate the sum
∑
t0≤t≤N

∑
k Ep(Xk) by breaking it into two parts. Let ε1 = 2(log n)(7C/n)1/2,

and set t1 = b(1 + ε1)N/2c. Now, by (21),

N∑
t=t1

bnC log nc∑
k=dDnε−2e

Ep(Xk) ≤ NnC logn2−5n/3 ≤ nC logn2−2n/3 = o(M−1/2).

On the other hand, we recall that

Xk =
m1∑

m=k−1

{
Ep(X(1)

k,m) + Ep(X(2)
k,m)

}
,

and hence, by using (24) and (25), we see that

t1∑
t=t0

bnC log nc∑
k=dDnε−2e

Ep(Xk) ≤ NnC logn
{
nC logn+3Ne−5n/2 +Ne−3n

}
= o(M−1/2).

Thus, by (28), we have that
N∑
t=t0

bnC log nc∑
k=dDnε2e

Et(Xk) = o(1),
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begin
Hp(v) := v;
insert v into a queue Q;
while Q not empty do begin
w := 1st element of Q;
delete w from Q;
let w1, . . . , wn−1−u be the first n− 1− u neighbours

of w in Qn at distance at least 5 from w in Hp(v);
for i = 1, . . . , n− 1− u do

with probability p do begin
add the edge wwi and the vertex wi to Hp(v);
if Hp(v) is not acyclic

or ∆(Hp(v)) > log n or |Hp(v)| = n0

then Output Hp(v) and Halt
else put wi at the back of Q

end
end;

Output Hp(v)
end

Figure 2. Algorithm II

as required.
Let us turn to the second statement in (ii). It suffices to consider the range N < t ≤M = nN/2, since

we know that the statement holds for t0 ≤ t ≤ N . Now, in the range N ≤ t ≤M , relation (19) applies, and
we have that

Ep(Xk) ≤ N
{

(1 + ε) exp
(
−ε+ (1 + ε)

log2 k

n

)}k
,

and hence, if k ≤ nC logn and ε ≥ 1, we have that

Ep(Xk) ≤ N
[
(1 + ε)e−(1+o(1))ε

]k
,

and so Ep(Xk) ≤ N(3/4)k, say. We now simply note that

M∑
t=N

bnC log nc∑
k=n3

Ep(Xk) ≤
M∑
N

nC lognN(3/4)n
3
≤ n1+C lognN2(3/4)n

3
= o(M−1/2),

and hence, by (28),
M∑
N

bnC2c∑
n3

Et(Xk) = o(1).

5. The vertices in the large components

Let a constant C ≥ 1 be fixed. Let us call a component of Qp ∈ G(Qn, p) large if it has order at least nC logn,
and small if it has order less than n3. In most of this section, we shall be dealing with the problem of
estimating the total number of vertices in large components of Qp. In order to carry out this estimation, we
shall consider the binomial branching processes that we introduced in Section 2.

Let n0 ≥ 1 be fixed and let u = blog nc2. Recall that we consider the edges incident to a fixed vertex v
of Qn ordered by the ordering induced by the natural ordering on [n]. Thus the neighbours of v are also
naturally ordered. Let us now consider Algorithm II, given in Figure 2.
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Note that this probabilistic algorithm simulates, up to a certain point, the binomial branching pro-
cess Πn−1−u(p). Moreover, roughly speaking, it may be thought of as an algorithm for generating the
component Cv of v in Qp. It must be noted however that certain edges of Qn are examined twice in this
algorithm, and hence have probability p + (1 − p)p of belonging to Hp(v). In the next lemma, we analyse
the behaviour of Algorithm II.

Lemma 19. Let v be any vertex of Qn, 1/n ≤ ε = ε(n) ≤ 1, p = (1 + ε)/n, and n0 = dn/20εe.
(i) The probability that Hp(v) is acyclic, is such that ∆(Hp(v)) ≤ log n, and has order strictly smaller

than n0 is at most 1− πn−1−u(p).
(ii) The probability that Hp(v) contains a cycle or contains a vertex of degree greater than log n is at

most O(1/n).
(iii) The probability that Hp(v) contains n0 vertices and is acyclic is at least

πn−1−u(p) +O(1/n).

Proof. (i) We only output an Hp(v) such that |Hp(v)| < n0, ∆(Hp(v)) ≤ log n and furthermore is acyclic if
the queue became empty in our generation of Hp(v). This corresponds to our simulation of the branching
process Πn−1−u(p) having died out, which happens with probability 1− πn−1−u(p).

(ii) Let us first estimate the probability that Hp(v) contains a vertex of degree greater than log n and is
acyclic. Clearly this happens only if, when running Algorithm II, for some vertex w ∈ Hp(v) exactly blog nc
neighbours of w are added to Hp(v) in the for loop. But this happens with probability at most

P(Sn−1−u,p ≥ blog nc) ≤ P(Sn−1−u,p ≥ (2/3) log n) ≤ n−(log logn)/3e.

Let us now estimate the probability that Hp(v) contains a cycle. The probability that Hp(v) contains
a cycle of length 2` is at most

⌈ n

20ε

⌉(2`
`

)
n``!

4
n

(
2
n

)2`−1

≤ 1
6
· n
ε

(
16`
en

)`
≤ n2

(
16`
en

)`
,

where the unexpected term 4/n comes from the fact that the last edge added to form the cycle might
have been checked twice by Algorithm II. Thus the probability that Hp(v) contains a cycle of length 2`
with 3 ≤ ` ≤ n/32 is at most

∑
3≤`≤n/32

n2

(
16`
en

)`
≤ 2n2

(
48
en

)3

= O(1/n).

The probability that Hp(v) contains a cycle of length 2`, n/32 < ` ≤ n/40ε, is at most

⌈ n

20ε

⌉
2−n/11n2`2

(
1 + ε

n

)2`

≤ n

9ε
2−n/11e2`ε ≤ n22−n/11en/20.

Hence the probability that Hp(v) contains a 2`-cycle with n/32 < ` ≤ n/40ε is exponentially small.
(iii) This follows from (i) and (ii).

It is intuitively clear that the probability that Algorithm II generates an Hp(v) of order n0 is a lower
bound for the probability that Cv has order at least n0. Indeed, as remarked above, Algorithm II essentially
generates the component Cv of v in Qp, except for the fact that certain edges of Qn are examined twice
in the while loop, and hence these edges are more likely to be in Hp(v) than they are likely to be in Qp.
However, these edges are always edges whose deletion does not disconnect Cv, and hence they are irrelevant
as far as the order |Cv| of Cv is concerned. We make this statement precise in the proof of the corollary
below.
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for i = 1, . . . , n− 1− u do
if wi /∈ Hp(v) then

with probability p do begin
add the edge wwi and the vertex wi to Hp(v);
if ∆(Hp(v)) > log n or |Hp(v)| = n0

then Output Hp(v) and Halt
else put wi at the back of Q

end

Figure 3. The for loop for Algorithm III

Corollary 20. Let p = (1+ ε)/n where 1/n ≤ ε = ε(n) ≤ 1. Let v be a fixed vertex of Qn and denote by Cv
the connected component of Qp ∈ G(Qn, p) that contains v. The probability that |Cv| ≥ n0 = dn/20εe is at
least πn−1−u(p) +O(1/n).

Proof. Let us consider a third probabilistic algorithm, Algorithm III, which is very similar to Algorithm II,
except that it never examines an edge more than once. In fact, Algorithm III may be obtained from
Algorithm II by replacing the for loop in Algorithm II by the for loop in Figure 3.

For clarity, let us denote the output of Algorithm III by H ′p(v). Clearly

P(|Cv| ≥ n0) ≥ P(|H ′p(v)| = n0).

On the other hand, for any tree T0 ⊂ Qn containing v, with ∆(T0) ≤ log n and |T0| = n0,

P(H ′p(v) = T0) ≥ P(H ′p(v) = T0)(1− p)K = P(Hp(v) = T0),

where K = K(T0) ≥ 0 depends only on the tree T0 (cf. the proof of Lemma 10). Thus, by summing over all
such trees T0, we see that

P(|H ′p(v)| = n0) ≥ P(|Hp(v)| = n0),

and the result follows from Lemma 19(iii).

We can now estimate from below the number of vertices in large components. We know from Lemma 18(i)
that, provided p is a little larger than 1/n, a.s. every component of Qp ∈ G(Qn, p) is either small or large.
We shall first estimate from above the number of vertices in components of the former type.

Lemma 21. Let p = (1 + ε)/n where 1/n ≤ ε = ε(n) ≤ 1. Then a.e. Qp ∈ G(Qn, p) is such that the number
of vertices in components of order smaller than n0 = dn/20εe is at most{

1− πn−1−u(p) +O

(
1
n

)}
N.

Proof. By Corollary 20, if X = X(Qp) is the number of vertices in components of order smaller than n0 =
dn/20εe, then its expectation E(X) is at most (1 − πn−1−u(p) + O(1/n))N . To prove our lemma, we shall
show that X is highly concentrated around its expectation. We shall estimate the variance σ2 = σ2(X) of X
and then apply Chebyshev’s inequality. We shall estimate the variance by the same method we used in the
proof of Theorem 15.

Given a connected subgraph C of Qn and a vertex v ∈ C, let us write Cv for the ordered pair (C, v). Note
that X =

∑
XCv , where the summation ranges over all Cv with |C| < n0. Let us first estimate E[X(X−1)].

Clearly
E[X(X − 1)] =

∑
E(XCvXDw ),

where the summation ranges over all ordered pairs (Cv, Dw), Cv 6= Dv, |C|, |D| < n0. Let us break the
sum into three parts, according to the type of pair (Cv, Dw). Let us write s1 =

∑
1 E(XCvXDw ), where

∑
1
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indicates that the sum ranges over pairs (Cv, Dw) where C = D; let us write s2 =
∑

2 E(XCvXDw ), where
∑

2

ranges over pairs (Cv, Dw) such that the distance between C and D is at least two; and finally let us write s3

for the rest of the sum.
Now, we easily see that

s1 ≤ n0

∑
Cv

E(XCv ) ≤ n2E(X), (29)

and that
s2 =

∑
2

E(XCv )E(XDw ) ≤ (E(X))2
. (30)

Let us now look at the sum s3 =
∑

3 E(XCvXDw ), where the sum ranges over pairs (Cv, Dw) for which the
distance between C and D is at most 1. Clearly we may assume that this distance is 1. For each such pair,
choose an arbitrary edge e of Qn joining C to D. Note that

P(C and D are both components of Qp)
= P(C ∪D ∪ e is a component of Qp)(1− p)/p
≤ nP(C ∪D ∪ e is a component of Qp).

Let Z be the random variable counting the number of quadruples (C, v, w, e) where C is a component of Qp
of order at most 2n0−2, v and w are vertices in C and e is an edge in C. Let X ′ count the number of rooted
components Cv of Qp with |C| ≤ 2n0 − 2 < 2n0. Note that then

Z ≤ 2n2
0(log 2n0)X ′ ≤ n4(log n)X ′.

Hence
s3 ≤ nE(Z) ≤ n5(log n)E(X ′) ≤ n5(log n)N. (31)

To finish the proof, we shall need a lower bound for µ = E(X). It turns out that the following extremely
crude bound suffices. If X1 counts the number of isolated vertices of Qp, then

µ = E(X) ≥ E(X1) = N(1− p)n ≥ Ne−pn/2 ≥ N/e1/2.

We now note that (29), (30) and (31) imply that
σ2

µ2
≤ (1 + n2)µ+ n5(log n)N

µ2
≤ e1/2(1 + n2)/N + en5(log n)/N = O(n5(log n)/N),

and the lemma follows from Chebyshev’s inequality.

In the lemma below we show that the upper bound for the total number of vertices in small components
given in Lemma 21 is sharp.

Lemma 22. Let p = (1 + ε)/(n − 1), where 0 < ε = ε(n) ≤ 1. Then a.e. Qp ∈ G(Qn, p) contains at
least (1− π0(p) +O(N−1/3))N vertices in components of order at most 4n/ε2.

Proof. We shall again use the fact that the probability that a fixed vertex of the cube belongs to a component
of order at most k is at least as large as the probability that |T pn | is at most k (cf. the proof of Theorem 9).
Let k0 = b4n/ε2c.

We claim that
P(|T pn | ≤ k0) = P(|T pn | <∞) + o(e−n) = 1− π0(p) + o(e−n). (32)

Indeed, by Lemma 4 we have that

P(k0 ≤|T pn | <∞) =
∑
k≥k0

Pk(n, p)

≤
∑
k≥k0

[
(1 + ε)e−ε

]k ≤ ∑
k≥k0

exp{−kε2/3} = o(e−n),

which proves the claim. From (32), we see that the expected number of vertices in components of order at
most k0 is at least {1− π0(p) + o(e−n)}N . The method used in the proof of Lemma 21 can now be used to
complete the proof of this lemma.

We can now give our estimate for the total number of vertices in large components of Qp ∈ G(Qn, p).
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Corollary 23. Let C ≥ 1 be fixed and ε0 = 4C(log n)3/n.
(i) If p = (1 + ε)/n, where ε0 ≤ ε = ε(n) ≤ 1, then a.e. Qp ∈ G(Qn, p) is such that the total number of

vertices in components of order at least nC logn is (1 + o(1))π0(p)N .
(ii) If t = b(1 + ε)N/2c, where ε0 ≤ ε = ε(n) ≤ 1, then a.e. Qt ∈ G(Qn, t) is such that the total number of

vertices in components of order at least nC logn is (1 + o(1))π0(p)N , where p = (1 + ε)/n.

Proof. (i) This follows from Lemmas 18(i), 21, and 22. Indeed, by Lemma 21 we know that the total number
of vertices in k-components (k < n/20ε) is at most {1 − πn−1−u(p) + O(1/n)}N , and by Lemmas 18(i)(b)
and 22 the number of such vertices is at least {1 − π0(p) + O(1/n)}N . Now, by Lemmas 18(i)(a) and (b),
we conclude that the total number of vertices in k-components (k ≥ nC logn) is (1 + o(1))π0(p)N .

(ii) This follows from (i) by convexity.

In Corollary 23 above, we established that if ε > 0 is not too small then fairly many vertices of Qp ∈
G(Qn, p), where p = (1 + ε)/n, belong to large components. In the final lemma in this section, we shall turn
our attention to the distribution of such vertices in Qn. We shall see that Corollary 23 easily implies that
these vertices are in a sense extremely well distributed in the cube.

Lemma 24. Let C ≥ 2 be fixed and set p = (1 + ε0)/n where ε0 = 4C(log n)3/n. Then a.e. Qp ∈ G(Qn, p)
is such that every vertex of Qn is at Hamming distance at most log2 n from a component of order at
least nC logn.

Proof. Let v0 be a fixed vertex of Qn. Let us estimate from above the probability that v0 fails to be at
distance at most s = blog2 nc from a component of order at least nC logn. Without loss of generality we may
assume that v0 is the empty set. Let k = 2s and let Qi (1 ≤ i ≤ `) be ` =

(
k
s

)
disjoint subcubes of dimension

m = n − k which are at Hamming distance s from v0. For instance, we may let Qi be the subcube of Qn

induced by
{v ∈ Qn : v ∩ [k] = Si},

where Si is the ith s-subset of [k] = {1, . . . , k} in some fixed ordering on [k](s). Let vi ∈ Qi be a vertex at
distance s from v0. Note that

1 + ε0
n

=
1 + ε0
m

(
1− k

n

)
≥ 1 + (1 + o(1))ε0

m
.

Therefore, by Corollary 23, the probability that vi belongs to a component of Qp of order at least mC logm ≥
n(C/2) logn is (2 + o(1))ε0. Hence the probability that v0 fails to be at distance at most s from a vertex in a
component of order at least n(C/2) logn is, rather crudely, at most

(1− ε0)` ≤ exp
{
− log n

n

(
k

s

)}
= o(2−n).

Our lemma now follows from Markov’s inequality, and the fact that in a.e. Qp a component of order at
least n(C/2) logn has in fact order at least as large as nC logn, by Lemma 18(i)(a).

6. The emergence of the giant component

We are now ready to prove the main results of this note. We start by showing that a.e. Qt ∈ G(Qn, t) has
one large component only, provided t is a little larger than N/2.

Theorem 25. Let C ≥ 12 be fixed. Then a.e. cube process Q̃ = (Qt)M0 is such that, for every

t ≥ t1 =
⌊{

1 +
5C(log n)3

n

}
N

2

⌋
,
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the graph Qt has a unique component of order at least nC logn and all the others have order smaller than n3.

Proof. Let us say that a component of Qt is large if it has order at least nC logn and small if it has order
smaller than n3. Let ε0 = 4C(log n)3/n and t0 = d(1 + ε0)N/2e. Lemma 18(ii) states that a.e. Q̃ = (Qt)M0
is such that if t ≥ t0 then every component of Qt is either small or large. Therefore our theorem will follow
if we prove that for a.e. such Q̃, for some t0 ≤ t ≤ t1, all large components of Qt0 belong to the same
component in Qt.

By Lemma 24, we may assume that every vertex of Qn is at distance at most s = blog2 nc from a large
component of Qt0 . Let us fix such a graph H = Qt0 , and show that with the addition of very few edges
almost surely all large components of H merge into a single component. More precisely, let p0 = n−2, and
randomly pick Q0 ∈ G(Qn, p0). Let us consider G = H ∪Q0. Note that G has a.s. at most t0 + 2N/3n < t1
edges, and hence our theorem follows if we show that a.s. all large components of H belong to a single
component in G.

Let the number of large components in H be `. Assume that we can split the large components of H into
two classes such that there are no paths in G, and hence in Q0, between vertices that belong to components
in different classes. Let the number of components in one of the classes be k, and assume that k ≤ `/2. Let
the set of the vertices in the components in one class be S, and the corresponding set for the other class
be T . Clearly we have that |S| and |T | are at least as large as knC logn.

Recall that all vertices of Qn are at distance at most s from S ∪ T . Let S′ and T ′ form a partition
of the vertex-set of the cube such that S ⊂ S′, T ⊂ T ′, and every vertex of S′ (resp. T ′) is at distance
at most s from S (resp. T ). We shall now make use of the following result related to vertex-isoperimetric
inequalities in Qn (see [8]). For any subset A ⊂ Qn of the vertices of the cube, let δ−(A) denote the elements
in A that are adjacent to elements in Ac = Qn \ A, the complement of A. Similarly, let δ+(A) = δ−(Ac).
For 1 ≤ a ≤ N , let δ−(a) = min δ−(A) and δ+(a) = min δ+(A) where we take the minimum over all
subsets A ⊂ Qn with |A| = a. Then for any A ⊂ Qn there exists a matching between A and Ac, and hence
between δ−(A) and δ+(A), of size at least min{δ−(a), δ+(a)}. In particular, the size of the matching is at
least (1/

√
n) min{|A|, |Ac|}. Thus Qn has a matching between S′ and T ′ of size at least knC logn−1/2. From

such a matching, we can obtain a collection of at least u = knC logn−1/2−2s/2s edge-disjoint paths of Qn

between S and T , all of them of length at most 2s + 1. By our assumption on G, none of these paths are
paths in Q0. Note that this happens with probability at most P0 = (1 − p2s+1

0 )u. However, the number of
partitions of the large components of H into two classes with one of them having k members is clearly at
most (

N/nC logn

k

)
.

Therefore
b`/2c∑
k=1

P0

(
N/nC logn

k

)
≤
b`/2c∑

1

[
N exp(−p2s+1

0 u)
]k ≤ b`/2c∑

1

(Ne−n)k = o(1),

completing the proof that a.e. Q0 is such that all large components of H belong to a single component
in G = H ∪Q0.

Corollary 26. Let C ≥ 12 be fixed and t = b(1 + ε)N/2c, where 5C(log n)3/n ≤ ε = ε(n) ≤ 1. Then
a.e. Qt ∈ G(Qn, t) has a unique component of order at least nC logn and all other components of Qt are of
order at most 125ε−2n.

Proof. This is immediate from Lemma 18(ii) and Theorem 25.

Corollary 27. Let C ≥ 12 be fixed and p = (1 + ε)/n, where ε = ε(n) ≥ 5C(log n)3/n is bounded away
from 1. Then a.e. Qp ∈ G(Qn, p) has a unique component of order at least nC logn and all other components
of Qp are of order at most 125ε−2n.

Proof. Let us say that a subgraph of Qn satisfies property A if it has a unique component of order at
least nC logn and all other of components are of order at most 125ε−2n. Corollary 26 states that there is a
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function ψ(n) = o(1) such that for all 5C(log n)3/n ≤ ε = ε(n) ≤ 1

P(Qt fails A) ≤ ψ(n).

Thus if s = ω(n)N1/2 and ω(n)→∞, then

P(Qp fail A) =
M∑
t=0

(
M

t

)
pt(1− p)M−tP(Qt fails A)

≤
∑

|t−pM |≤s

(
M

t

)
pt(1− p)M−tP(Qt fails A)

+
∑

|t−pM |>s

(
M

t

)
pt(1− p)M−t

≤ ψ(n) + o(1) = o(1)

Theorem 25 tells us that a unique large component emerges sometime soon after time N/2. Let us now
invoke the lemmas in Section 5 to give an estimate for the order of this giant component.

Theorem 28. Let t = N/2 + s. If 30N(log n)3/n ≤ s = o(N) then a.e. Qt ∈ G(Qn, t) is such that

L1(Qt) = (4 + o(1))s

and

L2(Qt) ≤ 125ε−2n,

where ε = ε(n) = 2s/N .

Proof. This follows from Lemma 6(iii), Corollary 23(ii), and Corollary 26.

Theorem 29. Let 1 < c ≤ 2 be a constant and set t = bcN/2c. Let η = η(c) be the unique solution
of x+ e−cx = 1 in the interval 0 < x < 1. Then a.e. Qt ∈ G(Qn, t) is such that

L1(Qt) = (η + o(1))N,

and furthermore

L2(Qt) ≤
[

log 2
c− 1− log c

+ o(1)
]
n.

Proof. The statement concerning L1(Qt) follows Lemma 5(ii), Corollary 23(ii), and Corollary 26. The
inequality concerning L2(Qt) can be proved by calculations similar to the ones in the proof of Lemma 18.
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7. The second largest component

This section will be devoted to prove a lower bound for the order of the second largest component. To
simplify the computations, we shall deal with Qp ∈ G(Qn, p) instead of Qt ∈ G(Qn, t). Let us start with the
following simple lemma.

Lemma 30. Let p1 and p2 be such that p2n < 1 < p1n and p1(1−p1)n = p2(1−p2)n. Let v be a fixed vertex
of Qn and let ρ(p, k) denote the probability that v is contained in a component of order k in Qp ∈ G(Qn, p).
Then

p2

p1
≤ ρ(p1, k)
ρ(p2, k)

≤
(

1− p2

1− p1

)k log2 k

.

Proof. We are interested in estimating ρ(p, k) = P(|Cv| = k), where Cv = Cv(Qp) is the component of Qp
containing v. We shall again use Algorithm I from Section 3, which randomly generates a tree Tv ⊂ Qn.
Let ρT (p, k) be the probability that we generate a fixed tree T ⊂ Qn by Algorithm I. Then

ρ(p, k) = P(|Cv| = k) =
∑

ρT (p, k),

where the sum ranges over all trees T ⊂ Qn which contain v and have order k. Also,

ρT (p, k) = pk−1(1− p)kn−2m+α,

where m = m(T ) is the number of edges induced by V (T ) in Qn, and α = α(T ) is the number of such
edges checked by the Algorithm I in the generation of T . By the edge-isoperimetric inequality in Qn we have
that m ≤ (k/2) log2 k. Thus 2m− α ≤ k log2 k.

Hence

ρT (p1, k)
ρT (p2, k)

=
pk−1

1 (1− p1)nk−2m+α

pk−1
2 (1− p2)nk−2m+α

=
p2

p1

(
1− p2

1− p1

)2m−α

≤
(

1− p2

1− p1

)k log2 k

.

Also, as clearly 2m− α ≥ m ≥ k − 1 ≥ 0, we have that

ρT (p1, k)
ρT (p2, k)

≥ p2

p1
.

The result now follows by summing over all trees T ⊂ Qn of order k containing v.

We are now ready to prove a precise bound for the order of the second largest component of Qp ∈
G(Qn, p), where p is a little larger than 1/n.

Theorem 31. Let p = (1 + ε)/n where (log n)2/(log log n)
√
n ≤ ε = ε(n) ≤ 1. Then a.e. Qp ∈ G(Qn, p) has

at least N1/2 log log logn components of order at least

n log 2
ε− log(1 + ε)

(
1 +O

(
1

log log log n

))
. (33)

Moreover, the second largest component of a.e. Qp is of order at most (33).

Proof. Let X(p, k) = Xp,k(Qp) be the number of rooted k-components of Qp. Let p′ be such that p′(1−p′)n =
p(1− p)n and p′n < 1. Note that if p′ = (1− ε′)/n, then

ε′ + log(1− ε′) = log(1 + ε)− ε+O(1/n).
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Moreover, since (
1− p′

1− p

)k log2 k

≤
(

1 +
3ε
n

)k log2 k

≤ exp
(

3εk log2 k

n

)
,

we have that for some absolute constant c > 0

cE [X(p′, k)] ≤ E [X(p, k)] ≤ exp
(

3εk log2 k

n

)
E [X(p′, k)] . (34)

Now, for some integer k+ satisfying

k+ = − n log 2
ε′ + log(1− ε′)

(
1 +O

(
1

log log log n

))
=

n log 2
ε− log(1 + ε)

(
1 +O

(
1

log log log n

))
,

computations analogous to the ones in te proof of Theorem 9 show that∑
k≥k+

E[X(p′, k)] = o(N−1/ log log logn). (35)

By (34) and (35) we have that

b125n/ε2c∑
k=k+

E[X(p, k)] ≤ exp
{

1125 log2 n

ε

}
N−1/ log log logn = o(1),

and hence a.e. Qp has no k-component with k+ ≤ k ≤ 125n/ε2. On the other hand, by Corollary 27 a.e. Qp
has no component of order larger than 125n/ε2 besides the giant, and hence L2(Qp) < k+.

Furthermore, as in the proof of Theorem 15, for some integer k− satisfying

k− = − n log 2
ε′ + log(1− ε′)

(
1 +O

(
1

log log log n

))
=

n log 2
ε− log(1 + ε)

(
1 +O

(
1

log log log n

))
,

we have that E [X(p′, k)] ≥ (1−o(1))N1/2 log log logn. We can now complete the proof by applying Chebyshev’s
inequality, after estimating the variance with the method used in the proof of Lemma 21.

Let us close this section with the following theorem, in which we have compiled our main results
concerning the component structure of Qp.

Theorem 32. Let p = (1 + ε)/n where 60(log n)3/n ≤ ε = ε(n) ≤ 1. Then a.e. Qp ∈ G(Qn, p) is such that

L1(Qp) = (1 + o(1))π0(p)N.

Moreover, if ε ≥ (log n)2/(log log n)
√
n and k ≥ 2 is a fixed integer then a.e. Qp is such that

Lk(Qp) =
n log 2

ε− log(1 + ε)

(
1 +O

(
1

log log log n

))
.

Proof. This follows from Corollary 23(i), Theorem 25, and Theorem 31.
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8. Concluding remarks and open problems

From Theorems 9 and 25, we know that the critical time for Qn-processes is somewhere in the interval {1 +
1/(n− 1)}N/2 ≤ t ≤ {1 +O((log n)3/n)}N/2. As remarked in the introduction, it is a little surprising that
the critical point should not be N/2, when the average degree is 1. Indeed, that is the case for ordinary
random graph processes. However, this is duly explained by the fact that the ‘reason’ why the value t = n/2
is important for ordinary processes is that the corresponding value of p is 1/(n−1). The proofs of the results
given in this note indicate that p = 1/(n− 1) might again be the critical probability for Qp ∈ G(Qn, p).

On the other hand, the proof of Theorem 9 is rather crude since the only facts we used about Qn were
that it is n-regular and that it has order N = 2n. One can probably do better and show that a similar result
to Theorem 9 holds for values of p slightly larger than 1/(n− 1). In any case, it would be most interesting
to determine the ‘critical probability’ and to investigate the order of the largest component of Qp at that
point.

The proof of Theorem 24 is rather simple-minded, and probably it is there where one might want to
put in some work to improve our results. Indeed, we believe that by improving both Theorem 24 and the
argument in Theorem 25 one might be able to prove the following.

Conjecture 33. There is a constant C > 0 for which the following holds. Let t = N/2+s. If (C log n)N/2n ≤
s = o(N) then a.e. Qt ∈ G(Qn, t) is such that

L1(Qt) = (4 + o(1))s

and
L2(Qt) = (c+ o(1))ε−2n,

where ε = ε(s) = 2s/N and c > 0 is an absolute constant.

In [6], we investigate a problem closely related to the one studied in this note. We prove the existence
of a phase transition in the component structure of the subgraph of Qn induced by a random set of vertices.
Let a random induced subgraph Qp of the cube Qn be chosen by letting P(v ∈ V (Gp)) = p, all such events
being independent. Let p = (1 + ε)/n. Weber [21] observed that if ε < 0 is independent of n then a.s. all the
components of Qp have order O(n).

We prove the result analogous to the Ajtai, Komlós and Szemerédi theorem: if ε > 0 is fixed then
a.s. the largest component of Qp has order about ηpN , where η = η(ε) > 0 is computed explicitly. We also
show that a.s. the second largest component has order O(n10). It is very likely that there is a unique giant
component even when ε depends on n in such a way that εn → ∞ at a reasonable rate. It would be very
interesting to determine whether results similar to the main results of this note could be proved for Qp.
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