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Abstract. The n-dimensional cube Qn is the graph whose vertices are the subsets of {1, . . . , n},
with two vertices adjacent if and only if their symmetric difference is a singleton. Clearly Qn

has diameter and radius n. Write M = n2n−1 = e(Qn) for the size of Qn. Let Q̃ = (Qt)
M
0 be a

random Qn-process. Thus Qt is a spanning subgraph of Qn of size t, and Qt is obtained from Qt−1

by the random addition of an edge of Qn not in Qt−1. Let t(k) = τ(Q̃; δ ≥ k) be the hitting time

of the property of having minimal degree at least k. We show that the diameter dt = diam(Qt)

of Qt in almost every Q̃ behaves as follows: dt starts infinite and is first finite at time t(1), it

equals n + 1 for t(1) ≤ t < t(2), and dt = n for t ≥ t(2). We also show that the radius of Qt

is first finite for t = t(1), when it assumes the value n. These results are deduced from detailed

theorems concerning the diameter and radius of the almost surely unique largest component of Qt

for t = Ω(M).
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1. Introduction

Let Qn be the n-dimensional cube, the graph whose vertices are the subsets of [n] =

{1, . . . , n} and where two such vertices are adjacent if and only if their symmetric difference

is a singleton. Note that both the diameter and the radius of Qn are n. Write N = 2n =

|Qn| for the order of Qn and M = n2n−1 = e(Qn) for the size of Qn. Let Q̃ = (Qt)M0 be a

random Qn-processes. This is a Markov chain whose states are spanning subgraphs of Qn

and Qt (1 ≤ t ≤ M) is obtained from Qt−1 by the addition of an edge of Qn not in Qt,

with this edge chosen uniformly at random from all the possibilities. We are interested in

the behaviour of Q̃ for large n; thus we use the terms ‘almost surely’ and ‘almost every’

to mean ‘with probability tending to 1 as n→∞’.

If P is a non-trivial monotone increasing property of spanning subgraphs of Qn we

let τP = τ(P ) = τ(Q̃;P ) be the hitting time of P in the process Q̃ = (Qt)M0 , that is

τP = τ(P ) = τ(Q̃;P ) = min{t : Qt has P}.

The events P we shall consider here are, amongst others, (i) the event {δ ≥ k} that the

minimal degree should be at least k, (ii) the event {diam < ∞} that the graph should

be connected, (iii) the event {rad ≤ r} that the radius should be at most r, and (iv) the

event {diam ≤ d} that the diameter should be at most d.

One of our main results implies that almost surely

τ(Q̃; δ ≥ 1) = τ(Q̃; connectedness) = τ(Q̃; diam ≤ n+ 1) = τ(Q̃; rad = n), (1)

and

τ(Q̃; diam = n) = τ(Q̃; δ ≥ 2). (2)

The fact that the hitting time of connectedness and τ(δ ≥ 1) almost surely coincide was

proved as a remark in [3], where the hitting time of the existence of a perfect matching

was shown to equal τ(δ ≥ 1) almost surely. Other results concerning matchings in random

subgraphs of the n-cube are due to Kostochka [13], who investigated in great detail the size

of the maximum matching in binomial random subraphs of Qn. (See also Kostochka [14]

for generalisations.)

It follows from the relations above that the diameter of Qt in a typical Q̃ = (Qt)M0
behaves in the following very simple way. At the beginning of the process the diameter is
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infinite and when the isolated vertices disappear it becomes finite for the first time, when it

assumes value n+1. Then it decreases to n = diam(Qn), its minimal possible value, exactly

when the vertices of degree 1 disappear. As to the radius of Qt, we see that it becomes

finite exactly when the isolated vertices disappear, when it assumes value n = rad(Qn).

The results above are obtained as simple corollaries to results concerning the almost

surely unique largest component, the ‘giant’ component (see [17, 18, 19], and for more so-

phisticated results see [1] and [5]), of Qt for t = Ω(M). These results, namely Theorem 10,

Corollary 11, and Theorem 13, describe in detail the behaviour of diam(Lt) and rad(Lt),

where Lt = Lt(Qt) is the giant component of Qt, as t = Ω(M) grows.

Roughly speaking, Corollary 11(i) states that for all fixed k, in a typical process,

diam(Lt) changes from n+ k to n+ k − 1 at a sharply defined time, namely tk = M(1−
2−1/k(1− (log n)/n)). The behaviour of diam(Lt) at around these critical values tk is also

obtained. (See Corollary 11(ii).) Note that the results above completely describe diam(Lt)

for any t = Ω(M). Theorem 13 shows that, perhaps a little surprisingly, the radius rad(Lt)

of Lt is rather stable. Indeed, that result says that almost surely rad(Lt) = n − 1 for

all Ω(M) = t < t(1) = τ(Q̃; δ ≥ 1).

Thus, typically, diam(Lt) decreases steadily as t increases while rad(Lt) stays constant

for a long while at n − 1, until it increases to n at time t(1). This is in sharp contrast

with the case of ordinary random graph processes G̃ = (Gt)t. Indeed, as proved by

Burtin (see [8, 9]), if t = (ω(log n)/n)
(
n
2

)
and ω = ω(n) → ∞ as n → ∞ then almost

surely diam(Gt) − 1 ≤ rad(Gt) ≤ diam(Gt). Thus, in the later stages of an ordinary

random graph process, the diameter as well as the radius of the evolving graph decrease

gradually. Questions concerning the diameter of ordinary random graphs Gp ∈ G(n, p)

and Gt ∈ G(n, t) have been extensively studied, and very precise results are now known

for a wide range of p and t. The interested reader is referred to [2, Chapter X], and to

Burtin [8, 9].

Finally, we remark that the radius and diameter of random subgraphs of Qn were

also studied in Mahrhold and Weber [12], Kostochka, Sapozhenko, and Weber [16], and

Sapozhenko and Weber [18]. However, the model studied by these authors is the one

known as the ‘mixed’ model, where the subgraph of Qn is chosen by the random deletion

of vertices and edges from Qn. The best results for this model given in the articles above

are the ones in [16], where the authors determine the radius of the giant component L up
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to an additive constant of 2, and the diamater of L up to an additive constant of 8. Let us

mention that this model is also studied in Dyer, Frieze, and Foulds [10], where connectivity

problems are investigated.

This note is organised as follows. In the next section we give the fundamental lemma,

Lemma 2, that is the key to many of our results. In Section 3 we give three preliminary

results, which are fully developed in the following two sections into our main theorems

concerning the diameter and the radius of the giant component of Qt. In the last section

we mention a problem closely related to the ones we address here.

2. The fundamental lemma

For the study of random Qn-processes it is often convenient to look first at the binomial

model Qp of a random subgraph of the cube Qn. As usual, given a graph H and 0 ≤ p ≤ 1,

we write G(H, p) for the space of random spanning subgraphs Hp of H such that every

edge of H belongs to Hp independently with probability p. For a set X and k ≥ 0 we

let X(k) denote the set of all k-subsets of X.

Our fundamental lemma, Lemma 2, will be proved in a slightly more general form

than needed in this paper. This is done because this version requires only a little more

work, and will be used in [7] to study connectivity properties of random subgraphs of Qn.

Before we proceed, recall that Qn has vertex set P([n]) = 2[n]. To state our result, we

shall denote by Qn[−l] a generic graph obtained from Qn by the deletion of some vertices

in such a way that both ∅ and [n] are left in Qn[−l] and, for every k (1 ≤ k ≤ n − 1), no

more than l vertices from [n](k) are missing.

Let us start with the following simple observation concerning Qn[−l].

Lemma 1. The graph Qn[−l] contains at least n! (1−O(l/n)) paths of length n joining ∅
and [n].

Proof. Let us call a path P = v0v1 . . . vs in Qn proper if v0 = ∅ and vs ∈ [n](s). Let ui
denote the number of proper paths of length i in Qn[−l]. Note that for 1 ≤ i < n we

have ui ≥ ui−1(n− i+ 1)− li!. Therefore

ui
(n)i

≥ ui−1

(n)i−1
− l
(
n

i

)−1

,
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where as usual (a)b = a(a− 1) · · · (a− b+ 1). Hence

un = un−1 ≥ n!
(

1− l
n−1∑
i=1

(
n

i

)−1)
≥ n!

(
1−O

(
l

n

))
,

as required.

The cornerstone of our paper is Lemma 2 below, which states that the probability that

two large sets of vertices should not be connected by a short path in Q[−l]
p ∈ G(Qn[−l], p) is

superexponentially small. The proof we give for this result is based on a simple ‘splitting’

argument for the (large) probability p and the second moment method. Independently,

Fill and Pemantle [11] have used the second moment method to prove results of this nature

in Qn; in particular, they determined the oriented first-passage time between two vertices

furthest apart in Qn using an ‘enhanced’ second moment method. (For improvements of

some results in [11], see [4]). Lemmas in the spirit of Lemma 2 below may also be found in

Sapozhenko [17], Sapozhenko and Weber [18], and Toman [19]. With Lemma 2 in hand, the

proof of the main results will follow a rather natural course, although we shall encounter

several technical dificulties on the way.

In the proof below and in the sequel, we only assume our inequalities to be valid for

large enough n.

Lemma 2. Let l ∈ N be fixed, and suppose that 0 < ε = ε(n) ≤ 1 and that (log log n)/n <

p = p(n) < 1. Then, for all S ⊂ [n](1) and T ⊂ [n](n−1) with |S|, |T | ≥ n(1+ε)/2, the

probability that in Q
[−l]
p ∈ G(Qn[−l], p) there is no S—T path of length n − 2 is bounded

from above by exp{−εpn(log n)/ log log n}.

Proof. Let P = {P : P an S—T path in Qn[−l] of length n− 2}, and let s = |S| and t =

|T |. For each v′ ∈ [n](1) and v′′ ∈ [n](n−1) such that v′ ⊂ v′′, the graph induced by all

vertices w ∈ Qn[−l] such that v′ ⊂ w ⊂ v′′ can be identified with Q(n−2)[−l], so from

Lemma 1 we get

u = |P| ≥ (st− s)(n− 2)!(1−O(l/n)) ≥ 1
3
st(n− 2)! ≥ n!/3n1−ε.

Let ω = ω(n) with log log n ≤ ω = o(n) be fixed. Set p0 = ω/n. We shall first study

the space G(Qn[−l], p0), and, to emphasize this fact, we shall write Ep0 for the expectation

and Pp0 for the probability in this space.
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Let X = X(Q[−l]
p0 ) be the number of paths in P that are present in Q

[−l]
p0 . Then

µ = Ep0(X) = upn−2
0 ≥ n!

3n1−ε

(ω
n

)n−2

≥ 1
n1−ε

(ω
e

)n
,

and hence µ is rather large. We shall now compute the variance σ2 = σ2(X) = Var(X)

of X and show that σ2 = O(µ2/ωnε). Let us first note that the second factorial moment

of X is

E2(X) = Ep0(X(X − 1)) =
∑
P∈P

∑
P 6=Q∈P

Pp0(P, Q ⊂ Q[−l]
p0 )

=
∑

1
Pp0(P, Q ⊂ Q[−l]

p0 ) +
∑

2
Pp0(P, Q ⊂ Q[−l]

p0 ),

where
∑

1 indicates sum taken over all ordered pairs (P,Q) ∈ P × P of edge-disjoint

paths P and Q, that is such that E(P ) ∩ E(Q) = ∅, and
∑

2 indicates sum over all the

other pairs (P,Q). Clearly

∑
1

Pp0(P, Q ⊂ Q[−l]
p0 ) =

∑
1

Pp0(P ⊂ Q[−l]
p0 )Pp0(Q ⊂ Q[−l]

p0 ) ≤ (Ep0(X))2.

Let us now estimate the sum over ordered pairs of edge-intersecting paths (P,Q). For k ≥ 1

and P ∈ P let PP,k = {Q ∈ P : |E(P ) ∩ E(Q)| = k}, and set

Sk =
∑
P∈P

∑
Q∈PP,k

Pp0(P, Q ⊂ Qp0) ≥
∑
P∈P

∑
Q∈PP,k

Pp0(P, Q ⊂ Q[−l]
p0 ).

In order to estimate Sk we shall give bounds on NP,k = |PP,k| for fixed P ∈ P.

For any Q ∈ PP,k there is an integer vector i = i(Q) = (ij)k1 with 1 ≤ i1 < · · · <
ik ≤ n − 2 such that the ijth edge of P and Q coincide for all 1 ≤ j ≤ k. Moreover,

given i = (ij)k1 as above, there are at most

Ni = i1!(n− ik − 1)!
k−1∏
j=1

(ij+1 − ij − 1)!

paths Q ∈ P such that the ijth edge of P and Q coincide.

Let i = (ij)k1 as above be given. Define a = a(i) = (aj)k0 by setting

aj =

{
i1 if j = 0
ij+1 − ij − 1 if 1 ≤ j ≤ k − 1
n− ik − 1 if j = k.
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Note that then a0, ak ≥ 1, aj ≥ 0 (1 ≤ j ≤ k − 1) and
∑k

0 aj = n− k. Moreover

Ni =
k∏
0

aj = (n− k)!
(

n− k
a0, . . . , ak

)−1

≤ (n− k)!.

Thus we have that

NP,k ≤
(
n− 2
k

)
(n− k)!, (3)

and this crude bound will suffice for k ≥ n/10. Let us now assume that k < n/10. We

shall estimate NP,k in this range of k more carefully.

Let us write NP,k = N
(1)
P,k + N

(2)
P,k, where N

(1)
P,k is the number of paths Q ∈ PP,k

such that if i = i(Q) and a = a(i) = (aj)k0 then aj ≤ n − 3k for all 0 ≤ j ≤ k, and

naturally N (2)
P,k = NP,k −N (1)

P,k.

Now, if max0≤j≤k aj ≤ n− 3k, then

k∏
0

aj ≤ (n− 3k)! max
{ k−1∏

0

bj :
∑
j

bj = 2k
}
≤ (n− 3k)!(2k)!,

and so

N
(1)
P,k ≤

(
n− 2
k

)
(n− 3k)!(2k)!. (4)

To estimate N
(2)
P,k, note that if Q ∈ PP,k is counted in N

(2)
P,k then, for i = i(Q), the

vector a = a(i) = (aj)k0 is such that there is a unique j0 (0 ≤ j0 ≤ k) with aj0 ≥ n−3k+1,

since
∑
j aj = n − k and k < n/10. The number of such vectors a = (aj)k0 with

∑k
0 aj =

n− k is (k + 1)
(
3k−1
k

)
. Thus

N
(2)
P,k ≤ (k + 1)

(
3k − 1
k

)
(n− k − 1)!. (5)

Therefore, putting together (3), (4) and (5), we have that for all k ≥ 1

Sk ≤ u
(
n− 2
k

)
(n− k)!p2(n−2)−k

0

and if k < n/10 then

Sk ≤ u
{(

n− 2
k

)
(n− 3k)!(2k)! + (k + 1)

(
3k − 1
k

)
(n− k)!

}
p
2(n−2)−k
0 .
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Hence, recalling that µ = Ep0(X) = upn−2
0 and u ≥ n!/3n1−ε, we see that

µ−2
∑

k≥n/10

Sk ≤
3n1−ε

n!

∑
k≥n/10

(
n− 2
k

)
(n− k)!p−k0

≤ 3n1−ε
∑

k≥n/10

1
k!pk0

≤ 4n1−ε
(

10e
ω

)n/10
,

and

µ−2
∑

1≤k<n/10

Sk ≤
3n1−ε

n!

 ∑
1≤k<n/10

(
n

k

)
(n− 3k)!(2k)!p−k0

+
∑

1≤k<n/10

(k + 1)23k−1(n− k − 1)!p−k0


≤ 3n1−ε

 ∑
1≤k<n/10

k!
(n− k)2kpk0

(
2k
k

)
+

∑
1≤k<n/10

(k + 1)23k

(n)k+1pk0


≤ 3n1−ε

∑
1≤k<n/10

{
kk22k

(7n/10)2k(ω/n)k
+
k + 1
n

(
8

(9n/10)(ω/n)

)k}

≤ 3n1−ε
∑

1≤k<n/10

{(
9k
nω

)k
+
k + 1
n

(
9
ω

)k}

≤ 3n1−ε
(

10
nω

+
19
nω

)
≤ 90
ωnε

.

Thus σ2(X)/µ2 = O(1/ωnε) and by Chebyshev’s inequality we have Pp0(X = 0) =

O(1/ωnε).

We now turn to the original space G(Qn[−l], p), where p = p(n) is as given. Write H for

a fixed H = Qn[−l]. Let us generate a random spanning subgraph G of H by letting G =⋃K
1 Hp0 , where K = bpn/ωc, ω = ω(n) = log log n, p0 = ω/n, and the Hp0 ∈ G(H, p0)

are chosen independently. Note that p ≥ Kp0, and hence it suffices to prove the claimed

upper bound for G. By the inequality above, the probability that there is no S—T path

of length n − 2 in G is at most {O(1/ωnε)}K ≤ exp{−εpn(log n)/ log log n}, completing

the proof of our lemma.

Before we can apply Lemma 2, we need to deal with some technical details concerning

the distribution of the neighbours of most vertices in Qp ∈ G(Qn, p). We start by intro-

ducing some further notation and terminology. A subcube of Qn is a subgraph induced
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in Qn by a set of the form

QS,A = Q(S,A) = {x ∈ Qn : x ∩ S = A},

where A ⊂ S ⊂ [n]. In the sequel we shall denote the subcube induced by QS,A by QS,A =

Q(S,A) as well, since this will not cause any confusion. The dimension dimQS,A of QS,A
is n−|S|. Given x, y ∈ Qn define the subcube 〈x, y〉 = Q ((x4 y)c, x ∩ y), where uc = [n]\u
and as usual 4 denotes symmetric difference. In particular, if x ⊂ y then 〈x, y〉 equals the

‘interval’ [x, y] in Qn = P([n]) regarded as a partial order under inclusion, that is

〈x, y〉 = [x, y] = {z ∈ Qn : x ⊂ z ⊂ y}.

In what follows, given a subcube Q = 〈x, y〉, we may apply the automorphism u ∈ Qn 7→
x4 u ∈ Qn of Qn to translate Q so that it is mapped onto the interval [∅, x4 y]. In other

words, it will suffice to consider subcubes Q = 〈x, y〉 with x = ∅. Now let G ⊂ Qn be a

spanning subgraph of Qn, and let u, v ∈ Qn be given. Let Q = 〈u, v〉 and let G′ = G[Q]

be the graph induced by the vertices of Q = 〈u, v〉 in G. As usual, denote the degree of

a vertex z ∈ G′ by dG′(z). Then, we say that Q = 〈u, v〉 is (u, v)-good for G if dG′(u),

dG′(v) ≥ m2/3, where m = dimQ is the dimension |u4 v| of Q.

In the sequel, if J is a graph and x, y ∈ J , we write dJ(x, y) for the distance between x

and y in J . In particular, if x, y ∈ Qn, then dQn(x, y) = |x4 y| = dim 〈x, y〉. Moreover,

as usual, if z ∈ J , then Γ(z) = ΓJ(z) is the set of neighbours of z in J , and if Z ⊂ V (J),

then Γ(Z) = ΓJ(Z) =
⋃
z∈Z ΓJ(z). We may now state a simple technical lemma.

Lemma 3. Let x, y ∈ Qn with dQn(x, y) ≥ n/5 be fixed, and suppose Nx ⊂ ΓQn(x),

Ny ⊂ ΓQn(y) are such that |Nx|, |Ny| ≥ 2n2/3. Let 1/ log log n ≤ p = p(n) < 1, and

write Pxy for the following property concerning Qp ∈ G(Qn, p).

(Pxy) There is a vertex x0 ∈ Nx and y0 ∈ Ny ∪ ΓQp
(Ny) such that dQn(x0, y0) ≤

dQn(x, y) + 1 and 〈x0, y0〉 is (x0, y0)-good for Qp.

Then the probability that Pxy holds is at least 1− exp{−Ω(n4/3/ log log n)}.

Proof. We shall analyse two cases. For convenience, considering the automorphism u ∈
Qn 7→ x4 u ∈ Qn of Qn, we may and shall assume that x = ∅. Since dQn(x, y) ≥ n/5 ≥
2n2/3, one of the following two cases must occur.
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Case 1. |[x, y] ∩Nx| ≥ n2/3

Choose ` = bn2/3c vertices x1, . . . , x` in [x, y]∩Nx. Clearly there are ` vertices y1, . . . , y` ∈
Ny such that xi ⊂ yi for all 1 ≤ i ≤ `. Note that dQn(xi, yi) = |xi 4 yi| = |yi \ xi| ≤
|y| = dQn(x, y). Let us consider the subcubes Qi = [xi, yi]. Then the probability of

the event Ai that Qi should not be (xi, yi)-good for Qp ∈ G(Qn, p) is at most 2P(X ≤
m

2/3
i ) = exp{−Ω(n/ log log n)}, where X is a binomial random variable with parameters p

and mi = dimQi. The events Ai (1 ≤ i ≤ `) are independent and so we have that the

probability that Pxy fails is exp{−Ω(n`/ log log n)} = exp{−Ω(n5/3/ log log n)}.

Case 2. |Nx \ [x, y]| ≥ n2/3

Let Nx \ [x, y] = {x1, . . . , x`} where ` = |Nx \ [x, y]| ≥ n2/3. We shall analyse two subcases.

Suppose xj = x ∪ {ej} = {ej} (1 ≤ j ≤ `). Now let N+
y = Ny ∩ {z ∈ Qn : |z| =

|y|+ 1}, and similarly N−y = Ny ∩ {z ∈ Qn : |z| = |y| − 1}. Suppose N+
y = {y+

1 , . . . , y
+
r },

where y+
i = y ∪ {fi} (1 ≤ i ≤ r). Let I = {ej : 1 ≤ j ≤ `} ∩ {fi : 1 ≤ i ≤ r}. Now,

if |I| ≥ n2/3 then Case 2(a) below holds. On the other hand, if |I| < n2/3, then |N−y ∪
({fi : 1 ≤ i ≤ r} \ {ej : 1 ≤ j ≤ `}) | ≥ n2/3, and Case 2(b) holds.

Case 2(a) There are `′ ≥ n2/3 vertices y1, . . . , y`′ ∈ N+
y such that for all 1 ≤ i ≤ `′ there

is a j = j(i) (1 ≤ j ≤ `) such that xj ⊂ yi.

Note that j = j(i) is uniquely defined for each i, that is the map i 7→ j = j(i) is injective.

Let us consider the cubes Qi = [xj(i), yi] (1 ≤ i ≤ `′), and note that as in Case 1 above

the probability that Pxy fails is exp{−Ω(n5/3/ log log n)}.

Case 2(b) There are `′ ≥ n2/3 vertices y1, . . . , y`′ ∈ Ny such that xj 6⊂ yi for any 1 ≤ i ≤ `′

and 1 ≤ j ≤ `.

Let 1 ≤ i ≤ `′. We shall say that the vertices yi ∪ {ej} ∈ ΓQn(yi) (1 ≤ j ≤ `) are

i-suitable. Note that the number of i-suitable vertices is clearly `. Let p0 = p/2 and

pick Qp0 ∈ G(Qn, p0) randomly. The probability of the event Bi that ΓQp0
(yi) should not

contain at least n1/3 i-suitable vertices is at most

P(S`,p0 < n1/3) ≤ 2
(

`

bn1/3c

)
(1− p/2)`−n

1/3
= exp{−Ω(n2/3/ log log n)},

where S`,p0 is a binomial random variable with parameters ` and p0. The events Bi are in-

dependent and hence clearly the probability that no Bi occurs is exp{−Ω(n4/3/ log log n)}.
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Suppose Bi0 occurs. Let y′1, . . . , y
′
`′′ be the i0-suitable vertices adjacent to yi0 in Qp0 .

We know that `′′ ≥ n1/3. For each 1 ≤ k ≤ `′′ let 1 ≤ j = j(k) ≤ ` be the unique j

such that xj ⊂ y′k. Note that then k 7→ j = j(k) is an injective map. Consider the

subcubes Qk = [xj(k), y′k] for 1 ≤ k ≤ `′′ and add edges to Qp0 independently, each with

probability p/2. It follows that the probability that Pxy should fail for Qp ∈ G(Qn, p)

is exp{−Ω(n4/3/ log log n)}.

Therefore in Case 2 we again have that the probability that the condition Pxy fails is

as small as required.

3. Preliminary results

In this section, we apply Lemmas 2 and 3 to show that if p is not too small, then a.e. Qp ∈
G(Qn, p) is such that any two of its vertices of large degree are connected by a path of length

at most n. We also show that this holds for a.e. Qt ∈ G(Qn, t), where as usual G(Qn, t) is

the space of all spanning subgraphs of Qn with t edges, all such graphs being equiprobable.

Let x, y ∈ Qn be fixed. For all 0 ≤ d ≤ n and 0 < p = p(n) < 1, write Gx,y,d(Qn, p)
for the conditional probability space obtained from G(Qn, p) by conditioning on the event

{dQp
(x), dQp

(y) ≥ d}. We now use Lemmas 2 and 3 to show the following result concern-

ing Gx,y,d(Qn, p). We remark that an analogous result for random Boolean functions may

be found in Sapozhenko [17].

Lemma 4. Suppose 3/ log log n ≤ p = p(n) < 1 and d = d(n) = 2n2/3. Let x, y ∈ Qn

be two fixed vertices in Qn. Then, with probability 1 − exp{−Ω(n log log n)}, in the

space Gx,y,d(Qn, p) we have

dQp
(x, y) = dQn(x, y) if dQn(x, y) ≥ n− n2/3,

dQp
(x, y) ≤ dQn(x, y) + 4 if dQn(x, y) ≥ n/5, (6)

dQp
(x, y) ≤ 0.8n if dQn(x, y) ≤ n/5.

Proof. We may and shall assume that x = ∅. Let S ⊂ ΓQn(x), T ⊂ ΓQn(y) be fixed and

suppose 0 < p < 1. Let GS,T (Qn, p) be the space obtained from G(Qn, p) by conditioning

on the event {ΓQp
(x) = S, ΓQp

(y) = T}. To prove our lemma, it is enough to show that

if |S|, |T | ≥ 2n2/3 then, for Qp ∈ GS,T (Qn, p) we have that dQp
(x, y) satisfies (6) with
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probability 1 − exp{−Ω(n log log n)}. Let us then fix S and T as above, and proceed to

prove this assertion.

Let p0 = p1 = p2 = 1/ log log n. Without loss of generality x = ∅. We analyse three

cases.

Case 1. dQn(x, y) = |y| ≥ n− n2/3

Set S′ = S∩[x, y], T ′ = T∩[x, y]. Then |S′|, |T ′| ≥ n2/3, and hence we may apply Lemma 2

to [x, y]. We conclude that in Qp0 ∈ GS,T (Qn, p0) there is an x–y path of length dQn(x, y)

with probability 1− exp{−Ω(n log log n)}.

Case 2. n/5 ≤ dQn(x, y) = |y| < n− n2/3

Let Nx = S, Ny = T , and pick Qp0 ∈ GS,T (Qn, p0) randomly. According to Lemma 3, we

know that property Pxy holds with probability 1 − exp{−Ω(n4/3/ log log n)}. Hence we

may and shall assume that Pxy does hold for Qp0 . Let x0 and y0 be as in Lemma 3. We

know pick Qp1 ∈ GS,T (Qn, p1) randomly, and apply Lemma 2 to 〈x0, y0〉. Thus we find

that in Qp0 ∪Qp1 there is an x–y path of length at most dQn(x, y) + 4 with probability 1−
exp{−Ω(n log log n)}.

Case 3. dQn(x, y) = |y| < n/5

Pick Qp0 ∈ GS,T (Qn, p0). Let Z = {z ⊂ [n] \ y : |z| = dn/5e}. Then dQn(x, z) =

dn/5e, and n/5 ≤ dQn(y, z) ≤ n/2. Moreover, the random variables dQp0
(z) (z ∈ Z)

are independent and are such that dQp0
(z) ≥ 2n2/3 with probability 1− o(1). Thus, with

probability 1−exp{−cn} for some c > 1, there is a vertex z ∈ Qn such that n/5 ≤ dQn(x, z),

dQn(y, z) ≤ n/2, and dQp0
(z) ≥ 2n2/3. We now pick Qpi ∈ GS,T (Qn, pi) (i = 1, 2), and

argue as in Case 2.

Lemma 4 has the following immediate corollary.

Corollary 5. Suppose 3/ log log n ≤ p = p(n) < 1. Let A0 be the event that all x,

y ∈ Qp ∈ G(Qn, p) with dQp(x), dQp(y) ≥ 2n2/3 are such that (6) in Lemma 4 holds. Then

the probability that Qp ∈ G(Qn, p) satisfies A0 is 1− exp{−Ω(n log log n)}.

Proof. For x, y ∈ Qn, let A(x, y) be the event that (6) from Lemma 4 holds in Qp for x

and y. Then

P(A0 fails) ≤ P(∃x, y ∈ Qn : A(x, y) fails, dQp
(x), dQp

(y) ≥ 2n2/3)
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≤ 22n max
x,y

P
(
A(x, y) fails, dQp(x), dQp(y) ≥ 2n2/3

)
= 22n max

x,y
P
(
A(x, y) fails

∣∣ dQp
(x), dQp

(y) ≥ 2n2/3
)

× P
(
dQp

(x), dQp
(y) ≥ 2n2/3

)
= exp{−Ω(n log log n)}.

We now consider Qn-processes Q̃ = (Qt)M0 , and show that vertices of large degree

in Qt are a.s. connected by a short path as long as t is not too small.

Corollary 6. Almost every random Qn-process Q̃ = (Qt)M0 is such that, for every t =

t(n) ≥ 4M/ log log n and every two vertices x, y ∈ Qn such that both of them have at

least 3n2/3 neighbours in Qt, we have

dQt(x, y) = dQn(x, y) if dQn(x, y) ≥ n− n2/3,

dQt(x, y) ≤ dQn(x, y) + 4 if dQn(x, y) ≥ n/5, (7)

dQt(x, y) ≤ 0.8n if dQn(x, y) ≤ n/5.

Proof. This result is a straightforward consequence of Corollary 5. Let 4M/ log log n ≤
t = t(n) ≤ M be fixed and p = p(n) =

(
1− ((log n)/M)1/2

)
t/M . Then µ = pM =(

1− ((log n)/M)1/2
)
t = (1 + o(1))t, and, from standard estimates for binomial random

variables,

P
(
|e(Qp)− µ| ≥

1
2

(
log n
M

)1/2

µ

)
≤ exp

{
− 1

4
· log n

log log n

}
= o(1),

where e(Qp) denotes the number of edges in Qp.

In particular,

t− 2(M log n)1/2 ≤ e(Qp) ≤ t (8)

holds for every 4M/ log log n ≤ t ≤ M with probability 1 − exp{−(log n)/4 log log n}.
Let Gc(Qn, p) be the conditional probability space obtained from G(Qn, p) conditioning on

the event given in (8). Note that if A is any event concerning Qp ∈ G(Qn, p), then Pc(A) ≤
(1+o(1))P(A), where Pc denotes the probability in Gc(Qn, p). Let A0 be the event that (6)

is satisfied for all x, y ∈ Qp with dQp
(x), dQp

(y) ≥ 2n2/3. Then, by Corollary 5,

Pc(A0) = 1− (1 + o(1)) exp{−Ω(n log log n)} = 1− exp{−Ω(n log log n)}.
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Now, we may generate Qt ∈ G(Qn, t) by first picking Qp ∈ Gc(Qn, p), and then randomly

adding t′ = t−e(Qp) new edges to Qp. One may check that Qt′ ∈ G(Qn, t′) is such that its

maximal degree ∆(Qt′) satisfies ∆(Qt′) ≤ n2/3 with probability 1− exp{−Ω(n4/3/ log n)}.
Thus Qt satisfies the property that (7) of our lemma holds for all x, y ∈ Qt with dQt

(x),

dQt
(y) ≥ 3n2/3 with probability 1− exp{−Ω(n log log n)}. Thus such a property holds for

all Qt in Q̃ = (Qt)M0 with t ≥ 4M/ log log n with probability 1−M exp{−Ω(n log log n)} =

1− exp{−Ω(n log log n)}.

4. The diameter of a random subgraph of the n-cube

In this section we shall study the behaviour of the diameter of the almost surely unique

largest component L = L(Qt) of Qt ∈ G(Qn, t) when t = Ω(M). In fact, our main results

will be ‘global’ ones, in the sense that they will concern random Qn-processes Q̃ = (Qt)M0 ,

and they will describe the behaviour of diam(L) as t = Ω(M) grows.

It follows from Corollary 6 that to estimate the diameter of the largest component L

of Qt from above it is enough to show that each vertex in L of small degree is within a

small distance from some vertex of large degree. Our argument below makes this statement

precise. To formulate and prove our results, we need to introduce some further definitions.

Lemmas 7, 8, and 9 that follow are technical results needed in the proof of one of the main

results of this section, Theorem 10.

Let H be a spanning subgraph of Qn, and let P1 = x0x1 . . . x`1 , P2 = y0y1 . . . y`2 be

two paths in Qn such that y0 = xc
0 = [n] \ x0 and 1 ≤ k = `1 + `2. We sometimes refer to

the pair (P1, P2) with P1, P2 as above as a k-pair . We say that (P1, P2) is a k-stretching

pair in H if (i) P1 and P2 are paths in H and, moreover, (ii) the only edges of H incident

to any of x1, . . . , x`1 are the ones of P1 and, similarly, the only edges of H incident to any

of y1, . . . , y`2 are the ones of P2.

The idea here is as follows. Suppose (P1, P2) above is a k-stretching pair. Clearly we

have dH(x0, y0) ≥ dQn(x0, y0) = n, and the two paths P1, P2 ‘stretch out’ from the ‘core’

of H, giving two vertices in H that are apart. Indeed, we certainly have that dH(x`1 , y`2) ≥
n+`1+`2 = n+k. Thus the existence of k-stretching pairs is an obstruction for the property

of having diameter less than n+ k. Our main aim is to show that a.s. this is the only such

obstruction for any fixed k.
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We remark that the very basic idea that stretching pairs are related to the diameter

and radius can also be found in Kostochka, Sapozhenko, and Weber [16], although in [16]

the exact relationship as given in our Theorem 10 below is not established.

Before we proceed, we need a few more definitions. Let P1 = x0x1 . . . x`1 , P2 =

y0y1 . . . y`2 form a k-pair of paths of Qn. If P1 and P2 satisfy (ii) above, we say that (P1, P2)

is a potentially k-stretching pair in H. If (P1, P2) is potentially k-stretching but not k-

stretching, that is (i) does not hold, then we say that it is strictly potentially k-stretching .

Finally, if (P1, P2) above is k-stretching in H and furthermore dH(x0), dH(y0) ≥ n/ log n,

then we say that (P1, P2) is a proper k-stretching pair.

For k = 1, 2, . . . , let S(s)
k (respectively S(p)

k ) denote the property that a spanning

subgraph of Qn has at least t ≥ M(1 − 2−1/(k+1)) edges and contains no k-stretching

pair (respectively, no potentially k-stretching pair). Clearly S(p)
k is an increasing property,

whereas S(s)
k is not. Our next result shows that S(s)

k is however ‘almost surely increasing’,

and furthermore a threshold function for S(p)
k is also a threshold function for S(s)

k . For k ≥ 1

and a Qn-process Q̃ = (Qt)M0 , let t(a)k = t
(a)
k (Q̃) be the hitting time of property S(a)

k ,

where a = s,p. Thus

t
(a)
k = t

(a)
k (Q̃) = min{t ≥M(1− 2−1/(k+1)) : Qt has S(a)

k }.

Lemma 7. Let k ≥ 1 be fixed and let ω = ω(n)→∞ be such that ω ≤ log n for all n ≥ 1.

Then almost every random Qn-process Q̃ = (Qt)M0 satisfies the following.

(i) We have

M

(
1− 1

21/k

(
1− log n− ω

n

))
≤ t(s)k ≤ t

(p)
k ≤M

(
1− 1

21/k

(
1− log n+ ω

n

))
. (9)

(ii) For a = s and p, the graph Qt has property S(a)
k whenever t ≥ t(a)k .

(iii) If M(1− 2−1/(k+1)) ≤ t < t
(s)
k then there is a proper k-stretching pair in Qt.

Proof. (i) Suppose t = (1 − 2−1/k(1 − (log n + C)/n))M , where C = C(n) = o(
√
n), and

set p = p(n) = t/M . Let X(s)
k = X

(s)
k (Qt) and X

(p)
k = X

(p)
k (Qt) denote the number

of ordered pairs P1, P2 of Qn-paths such that (P1, P2) is k-stretching and, respectively,

potentially k-stretching in Qt. Let us estimate E(X(s)
k ). To this end, let us first fix a
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k-pair (P1, P2) of paths of Qn. Note that for this pair to be a k-stretching pair in Qt, we

need that certain k edges of Qn should be in Qt, and that certain k1 = kn + O(1) edges

of Qn should not be in Qt. (Here and in the sequel, the constants implicit in the O-, Ω-,

and Θ-notation are allowed to depend on k.) Thus, the probability that (P1, P2) should

be a k-stretching pair in Qt is(
M − k − k1

t− k

)/(
M

t

)
=

(M − t)k
(M)k+k1

· t!
(t− k)!

= (1 + o(1))
(

1− t

M

)k1 ( t

M

)k
= (1− p)k1pk = Θ

(
(1− p)kn

)
.

The number of k-pairs of paths in Qn is clearly Θ(2nnk), and so we get

E(X(s)
k ) = Θ

(
2nnk(1− p)kn

)
= Θ

(
e−kC

)
, (10)

where for the last equality we use that C = o(
√
n). Similar calculations give that E(X(p)

k ) =

Θ
(
e−kC

)
. Now the upper bound in (9) follows from (10) and Markov’s inequality.

To see the lower bound for t(s)k , let us suppose that C = C(n)→ −∞ and as above C =

o(
√
n). Let us show that the number X = X(Qt) of k-stretching pairs (P1, P2) in Qt ∈

G(Qn, t) with P1 a path of length k, and P2 a trivial path, is concentrated around its

expectation. Let P = x0x1 . . . xk be a k-path in Qn. We write E′(P ) for the edges

of Qn that have at least one endpoint in {x1, . . . , xk}. Also, we write XP = XP (Qt)

for the indicator function for the event that (P1, x
c
0) should be a k-stretching pair in Qt.

Then X =
∑
P XP , where the sum extends over all paths P ⊂ Qn of length k. Note that

E2(X) = E(X(X − 1)) ≤ (E(X))2 + S,

with S =
∑
P,Q P(XPXQ = 1), where the sum is over all pairs (P,Q) of distinct k-paths

in Qn such that E′(P ) ∩ E′(Q) 6= ∅. It can be easily checked that if XPXQ = 1 then at

least k + 1 vertices in V (P ) ∪ V (Q) have degree at most 2. Thus

P(XPXQ = 1) = O
(
n2(k+1)(1− p)n(k+1)

)
= O

(
2−n(1+1/k)nk+1e(k+1)C

)
,

and hence

S = O
(
2nn2k+1

)
max P(XPXQ = 1)→ 0, (11)

where the maximum is naturally taken over all pairs (P,Q) of distinct k-paths in Qn such

that E′(P ) ∩ E′(Q) 6= ∅.
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Thus Var(X) = o(E(X)2) since C = C(n) → −∞, and so by Chebyshev’s inequality

we have that X = (1 + o(1))E(X) almost surely. Therefore a.e. Qt ∈ G(Qn, t) is such

that X = Θ(e−kC) when C = C(n) → −∞ and C = C(n) = o(
√
n). Moreover, note

that (11) above implies that a.s. any two k-stretching pairs (P, xc
0) and (Q, yc

0) in Qt,

where P = x0x1 . . . xk and Q = y0y1 . . . yk, are such that E′(P ) ∩ E′(Q) = ∅. To prove

the lower bound for t(s)k , let us consider a Qn-process Q̃ = (Qt)M0 as a process where

random edges of Qn are successively deleted from the evolving graph Qt. Let again t =

(1 − 2−1/k(1 − (log n + C)/n))M , where C = C(n) → −∞ and C = C(n) = o(
√
n), and

condition on X = X(Qt) = Θ(e−kC) → ∞. We claim that a.s. at least one k-stretching

pair (P, xc
0) present in Qt will still be present in Qt′ , where t′ = dM(1− 2−1/(k+1))e. Note

that Qt′ is obtained from Qt by the random deletion of a certain number of edges. Note

also that the probability that no edge in E(P ) is deleted in this process, where (P, xc
0) is

a fixed stretching pair in Qt, is bounded away from 0. Since X → ∞, our claim follows,

and the lower bound for t(s)k is proved.

(ii) Let us now consider property S(a)
k for Qt (t ≥ t

(a)
k ). Since S(p)

k is increasing,

trivially Qt contains no potentially k-stretching pairs for t ≥ t
(p)
k . As remarked earlier,

property S(s)
k is not increasing and hence we need to do a little work to deduce that S(s)

k

a.s. holds for t ≥ t(s)k . Set

t0 = M

(
1− 1

21/k

(
1− log n− log log n

n

))
,

and note that E(X(p)
k ) = E(X(p)

k (Qt0)) = Θ
(
(log n)k

)
. Also, as shown above, almost

surely t(s)k ≥ t0, and hence we may condition on this event.

Since by Markov’s inequality almost every Q̃ = (Qt)M0 is such that X(p)
k (Qt0) ≤

(log log n)(log n)k, we may condition on Q̃ satisfying this property. We claim that almost

surely no strictly potentially k-stretching pair (P1, P2) of Qn-paths in Qt0 is k-stretching

in Qt for t ≥ t0. Clearly, this proves that a.s. Qt contains no k-stretching pair for t ≥ t(s)k ,

as required. To check the claim, fix a strictly potentially k-stretching pair (P1, P2) in Qt0 .

Suppose, as usual, P1 = x0x1 . . . x`1 and P2 = y0y1 . . . y`2 , where x0 = yc
0 = [n] \ y0.

Note that (P1, P2) will become k-stretching in some Qt (t > t0) only if one of the edges

of Qn in E(P1) ∪ E(P2) not present in Qt0 is added to our evolving graph before any

other edge incident to x1, . . . , x`1 , y1, . . . , y`2 . Now, clearly |E(P1) ∪ E(P2)| = k, and the

total number of edges of Qn incident to x1, . . . , x`1 , y1, . . . , y`2 is kn + O(1). Thus the
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probability that an edge of E ((P1) ∪ E(P2)) \ E(Qt0) should be added to our evolving

graph before any other edge incident to the xi and yj is is O(1/n). Hence the probability

that a strictly potentially k-stretching pair in Qt0 will ever turn into a k-stretching pair is

at most O
(
(log log n)(log n)k/n

)
. This shows that Qt in Q̃ = (Qt)M0 has no k-stretching

pair if t ≥ t(s)k almost surely, as required.

(iii) This follows from second moment calculations analogous to the ones in (i). We

omit the details.

The result above tells us that the critical values of t for the existence of stretching

and potentially stretching pairs are tk = bM(1− 2−1/(k+1)(1− (log n)/n))c. We now look

more closely at Qt when t is near such values.

Lemma 8. Let k ≥ 1 be fixed. Suppose t = M(1− 2−1/k(1− (log n+C)/n)), where C =

C(n)→ c as n→∞. Let λ = 4 · 2−1/k(1− 2−1/k)k(1 + (k − 1)2−1−1/k)e−ck. Then

lim
n→∞

P(t(s)k ≤ t) = exp{−λ}. (12)

Proof. Let X(s)
k = X

(s)
k (Qt) count the number of k-stretching pairs in Qt. Then calcula-

tions similar to the ones in the proof of Lemma 7 concerning the random variable X =

X(Qt) show that, for any fixed r ≥ 1, we have limn→∞ Er(X(s)
k ) = λr. Thus X(s)

k converges

in distribution to a Poisson random variable with mean λ. (See, for instance, Theorem 20

in Chapter I of [2].) Thus (12) follows.

We now give a brief sketch of the calculations. Let p = t/M . Below we consider

k-pairs (P,Q), where as usual P = x0 . . . x`1 , Q = y0 . . . y`2 . Let us write X(P,Q) for the

0–1 indicator r.v. of the event that (P,Q) should be a k-stretching pair in Qt. To avoid

double counting of the pair {P,Q}, in the k-pairs below we assume that, say, 1 ∈ x0. It

is easy to see that the total number of such k-pairs is (1 + o(1))2n−1(k + 1)nk. Among

these, (1 + o(1))2nnk pairs (the ones with `1 or `2 = 0) are such that E(X(P,Q)) = (1 +

o(1))pk(1− p)nk−2k+1, and for the remaining (1 + o(1))2n(k − 1)nk we have E(X(P,Q)) =

(1 + o(1))pk(1− p)nk−2k+2. Hence E(X(s)
k ) =

∑
(P,Q) E(X(P,Q)) = λ+ o(1) as n→∞.

Now we fix r ≥ 2. To estimate the rth factorial moment Er(X(s)
k ), we consider r-

tuples U = 〈(P1, Q1), . . . , (Pr, Qr)〉 of k-pairs. In the sequel, we write
∑∗ to denote sum

over all r-tuples U as above with all the r entries distinct, and
∑′ for sum over all such

r-tuples with at least one pair of repeated entries. Also, if Pi = x
(i)
0 . . . x

(i)

`
(i)
1

and Qi =
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y
(i)
0 . . . y

(i)

`
(i)
2

form a k-pair (Pi, Qi) (i ∈ {1, 2}), then we say that (P1, Q1) and (P2, Q2) are

distant if all the distances between a vertex in V (P1)∪V (Q1) and a vertex in V (P2)∪V (Q2)

are at least log log n. Below we write
∑

1 to denote sum over r-tuples U with the (Pi, Qi)

(1 ≤ i ≤ r) pairwise distant, and
∑

2 to denote sum over r-tuples U with r distinct entries

and with at least a pair of entries that are not distant. Then

Er(X(s)
k ) =

∑∗
E(X(P1,Q1) · · ·X(Pr,Qr))

=
∑

1
E(X(P1,Q1) · · ·X(Pr,Qr)) +

∑
2

E(X(P1,Q1) · · ·X(Pr,Qr))

=
∑

1
E(X(P1,Q1)) · · ·E(X(Pr,Qr)) +

∑
2

E(X(P1,Q1) · · ·X(Pr,Qr)).

Moreover, clearly {E(X(s)
k )}r =

∑
U E(X(P1,Q1)) · · ·E(X(Pr,Qr)). To show that Er(X(s)

k ) =

λr + o(1), it suffices to show that

(i)
∑′ E(X(P1,Q1)) · · ·E(X(Pr,Qr)) = o(1),

(ii)
∑

2 E(X(P1,Q1)) · · ·E(X(Pr,Qr)) = o(1),

(iii)
∑

2 E(X(P1,Q1) · · ·X(Pr,Qr)) = o(1).

Now note that (i) and (ii) follow easily from the fact that
∑′ and

∑
2 are sums

over a ‘small’ number of k-pairs U . To finish the proof, note that (iii) may be checked

by considering the number of vertices of degree at most two in
⋃
i V (Pi) ∪

⋃
j V (Qj), as

in the proof of (11). Indeed, for each r-tuple U , we consider a maximal subsequence of

k-pairs
〈
(Pi1 , Qi1), . . . , (Pir′ , Qir′ )

〉
of pairwise distant entries (1 ≤ i1 < · · · < ir′ ≤ r), and

note that ifX(P1,Q1) · · ·X(Pr,Qr) = 1 then there are at least r′k+1 vertices of degree at most

two in
⋃
i V (Pi) ∪

⋃
j V (Qj). However, the number of such U is at most 2nr

′
nO(log logn),

and hence (iii) follows (cf. (11)).

Before we can prove the main result of this section, we need to introduce one final

piece of terminology. Suppose T1, T2 ⊂ Qn are two subtrees of Qn, and x0, y0 ∈ Qn

are such that dQn(T1, x0) = dQn(T2, y0) = 1. Thus x0 /∈ T1 but x0 is adjacent in Qn to

some vertex of T1, and similarly for y0 and T2. Suppose further that |T1| + |T2| ≥ k + 1,

and dQn(x0, y0) ≥ n− k for some integer k ≥ 1. Let us say in this case that (T1, T2;x0, y0)

is a (k + 1)-system in Qn. Let H ⊂ Qn be a spanning subgraph of Qn. Then we say

that the (k + 1)-system (T1, T2;x0, y0) is a weakly (k + 1)-stretching system in H if all

vertices x ∈ V (T1) ∪ V (T2) have degree dH(x) < 3n2/3 in H. We then have the following

simple lemma.
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Lemma 9. Let k ≥ 1 be fixed. Suppose p = 1 − 2−1/k and t = bpMc. Then a.e. Qp ∈
G(Qn, p) and a.e. Qt ∈ G(Qn, t) contains no weakly (k + 1)-stretching system.

Proof. Fix a (k + 1)-system (T1, T2;x0, y0) in Qn. The probability that this is a weakly

(k + 1)-stretching system in Qp is clearly at most

P0 =
{

P(Sn−k,p < 3n2/3)
}k+1

,

where Sn−k,p is a binomial random variable with parameters n−k and p. Indeed, we need

at least k+1 vertices of V (T1)∪V (T2) to have degree less than 3n2/3, and for any vertex z

in V (T1) ∪ V (T2) there are at least n − k edges of Qn incident to z that are not incident

to any other vertex of V (T1) ∪ V (T2). Now, if ` = b3n2/3c, then

P(Sn−k,p < 3n2/3) ≤ 2
(
n− k
`

)
(1− p)n−k−`

≤ 4(en1/3)3n
2/3

2−(n−3n2/3)/k ≤ n2n2/3
2−n/k.

Thus, since the number of (k+1)-systems in Qn is at most O(2nn2(k+1)), we have that Qp ∈
G(Qn, p) contains a weakly (k + 1)-stretching system with probability

O(2nn2(k+1))P0 = O
(

2nn2(k+1)(1+n2/3)2−n(1+1/k)
)

= o(1),

as required. The statement for Qt ∈ G(Qn, t) follows by the monotonicity of the property

in question.

Let us say that a spanning subgraph H ⊂ Qn of Qn satisfies property Dk if H

has e(H) ≥M(1−2−1/(k+1)) edges, it has a unique component L = L(H) of largest order,

and moreover L has diameter diam(L) ≤ n+ k− 1. For a random Qn-process Q̃ = (Qt)M0 ,

let

t
(d)
k = t

(d)
k (Q̃) = min{t ≥M(1− 2−1/(k+1)) : Qt has Dk}.

We can now state and prove the main result of this section.

Theorem 10. Let k ≥ 1 be fixed. For a.e. random Qn-process Q̃ = (Qt)M0 we have t
(d)
k =

t
(s)
k , and Qt has property Dk for all t ≥ t(d)

k .

Proof. First recall that a.e. Qn-process Q̃ = (Qt)M0 is such that Qt has a unique largest

component, the ‘giant’ component, if, say, t ≥ 2M/n (cf. [1, 5]). Moreover, it is easy
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to check that, quite crudely, almost every Q̃ is such that if t ≥ M/ log log log n then Qt

has, apart from the largest component L, only components of order O(log log n). Let us

condition on our Qn-process having the properties above.

Now, if M(1 − 2−1/(k+1)) ≤ t = t(n) < t
(s)
k , and P1 = x0x1 . . . x`1 , P2 = y0y1 . . . y`2

form a proper k-stretching pair, then both x0 and y0 belong to the giant component of Qt,

and moreover dQt
(x`1 , y`2) ≥ n+ k. Thus t(d)

k ≥ t(s)k almost surely.

Let us now turn to the reverse inequality. Suppose t ≥ t(s)k = t
(s)
k (Q̃). We may assume

that t(s)k ≥ (1 − 2−1/k)M , and hence that Qt does not contain weakly (k + 1)-stretching

systems either. According to Corollary 6, we may and shall assume that (7) of that lemma

holds for all x, y ∈ Qt with dQt
(x), dQt

(y) ≥ 3n2/3. Let x, y ∈ Qt belong to the giant

component of Qt. We claim that dQt
(x, y) ≤ n+ k − 1.

Case 1. dQt
(x), dQt

(y) ≥ 3n2/3

From the assumption that (7) holds for Qt, in this case we have dQt(x, y) ≤ n.

For the next two cases, let us consider the set W of vertices of Qt that have degree

less than 3n2/3, and let H = Qt[W ] be the graph induced by W in Qt.

Case 2. dQt
(x) < 3n2/3, and dQt

(y) ≥ 3n2/3

Let T ⊂ H = Qt[W ] be a spanning tree of the component Cx of x in H. There is a

vertex x0 ∈ L such that dQt
(x0, T ) = 1, and consequently such that dQt

(x0) ≥ 3n2/3.

Thus dQt
(x, y) ≤ dQt

(x, x0) + dQt
(x0, y) ≤ |T | + n. So we may assume that |T | ≥ k,

since otherwise we are done. However, as Qt does not contain weakly (k + 1)-stretching

systems, we must have |T | = k, and moreover T = Cx and T must be a path with x

as one endpoint and the other endpoint must be adjacent to x0 in Qt. We conclude

that Qt contains an induced path P = x0x1 . . . xk, where xk = x. We may also assume

that dQt
(x0, y) = n, and hence that dQn(x0, y) = n. Since there are no k-stretching pairs

in Qt, there is a vertex z ∈ Qn, z 6= x0, . . . , xk, adjacent in Qt to some xi (1 ≤ i ≤ k). But

then dQt(z) ≥ 3n2/3, and dQt(z, y) ≤ n− 1. Thus dQt(x, y) ≤ n+ k − 1, as required.

Case 3. dQt
(x), dQt

(y) < 3n2/3

Let C1 and respectively C2 be the components of x and y in H = Qt[W ]. Let Ti ⊂ Ci

be a spanning tree of Ci (i = 1, 2). There are vertices x0, y0 ∈ Qn such that dQt
(x0),

dQt
(y0) ≥ 3n2/3, and dQt

(x0, T1) = dQt
(y0, T2) = 1. Note that |T1|, |T2| ≤ k, and

hence if dQn(x0, y0) ≤ n − k − 1 we are done. So we assume that dQn(x0, y0) ≥ n − k.
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Since (T1, T2;x0, y0) cannot be a weakly (k + 1)-stretching system in Qt, we have |T1| +
|T2| ≤ k, and as dQt

(x, y) ≤ |T1| + |T2| + dQt
(x0, y0), we assume that |T1| + |T2| = k.

In fact, we may assume that T1 = C1, and T1 together with x0 forms an x0–x path P1,

and similarly T2 = C2, and T2 together with y forms a y0–y path P2. Also, we may

assume dQt
(x0, y0) = dQn(x0, y0) = n. Since (P1, P2) is not a k-stretching pair in Qt,

there is a vertex z ∈ Qn, z /∈ Pi, adjacent to some vertex in Ti in Qt, for i = 1, say.

However dQt(z) ≥ 3n2/3, and dQn(z, y0) < n, and so dQt(x, y) ≤ dQt(x, z) + dQt(z, y) ≤
n+ k − 1, as required.

This finishes the proof of our result.

We can now explicitly describe the behaviour of the diameter of the largest component

of Qt as t = Ω(M) increases.

Corollary 11. Let k ≥ 1 be fixed. (i) If ω = ω(n) → ∞ as n → ∞, then a.e. random

Qn-process Q̃ = (Qt)M0 is such that if

M

(
1− 1

21/k

(
1− log n+ ω

n

))
≤ t ≤M

(
1− 1

21/(k−1)

(
1− log n− ω

n

))
then there is a unique largest component L = L(Qt) in Qt and diam(L) = n+ k − 1.

(ii) Suppose C = C(n)→ c as n→∞, and t = t(n) = M(1−2−1/k(1−(log n+C)/n)).

As in Lemma 8, let λ = 4 · 2−1/k(1 − 2−1/k)k(1 + (k − 1)2−1−1/k)e−ck. Then a.s. Qt ∈
G(Qn, t) has a unique largest component L = L(Qt) and, conditional on this event,

lim
n→∞

P(diam(L) = n+ k − 1) = e−λ

and

lim
n→∞

P(diam(L) = n+ k) = 1− e−λ.

Proof. Statement (i) follows from Lemma 7 and Theorem 10. Statement (ii) follows from

Lemma 8 and Theorem 10.

An immediate consequence of Corollary 11 is the following. Let Q̃ = (Qt)M0 be a

Qn-process, and let k ≥ 1 be an integer. Write t(k) = t(k)(Q̃) for the hitting time of the

property {δ ≥ k}, that is

t(k) = t(k)(Q̃) = τ(Q̃; δ ≥ k) = min{t : δ(Qt) ≥ k}.
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Corollary 12. In almost every random Qn-process Q̃ = (Qt)M0 , we have

(i) t(1) = τ(Q̃; δ ≥ 1) = τ(Q̃; diam ≤ n+ 1),

(ii) t(2) = τ(Q̃; δ ≥ 2) = τ(Q̃; diam ≤ n).

Proof. Let us first recall that, as proved in [3], the graph Qt in Q̃ = (Qt)M0 almost always

becomes connected at time t = t(1). Thus statements concerning the largest component

of Qt from that time onwards are in fact statements about Qt itself.

Now, almost surely t(1) ≥ (1−ω/n)M/2 for any ω = ω(n)→∞, and hence t(s)2 ≤ t(1)

almost always. Therefore, by Theorem 10, almost surely (i) holds.

To see the statement concerning τ(Q̃; diam ≤ n), note first that a spanning sub-

graph H ⊂ Qn of Qn contains a 1-stretching pair if and only if it has a vertex of degree 1.

Thus almost surely t(s)1 (Q̃) = t(2): if M/ log log log n ≤ t < t(2) then almost surely there is

a vertex of degree 1 in Qt, and hence t(s)1 ≥ t(2), and moreover if t = t(2) then there cannot

be a 1-stretching pair in Qt, and hence t(s)1 ≤ t(2). Thus we have t(1) ≤ t(2) = t
(s)
1 , and

hence again by Theorem 10 almost surely (ii) holds.

5. The radius of a random subgraph of the n-cube

In this section we turn our attention to the radius rad(L) of the giant component of Qt
(t = Ω(M)) in a typical random Qn-process Q̃ = (Qt)M0 . As mentioned in the introduction,

unlike in ordinary random graph processes, the radius of the evolving graph in a typical

Qn-process is rather stable, as the following result shows.

Theorem 13. Let 0 < ε < 1/2 be a constant. Then almost every random Qn-process Q̃ =

(Qt)M0 is such that, for every t = t(n) with t0 = bεMc ≤ t < t(1), there is a unique largest

component L = L(Qt) in Qt and rad(L) = n− 1.

Proof. We claim that almost surely, for each vertex x of the giant component L of Qt0 ,

there exists a vertex y that also belongs L, and such that dQn(x, y) = n−1. Indeed, notice

first that if y has degree at least log n in Qt0 , then y belongs to the giant component of Qt0 ,

as the second largest component of Qt0 has order O(1). To see the claim, it now suffices

to note that, almost surely, for any z ∈ Qn, there is a vertex y ∈ ΓQn(z) with degree at

least log n in Qt0 . Thus almost surely, for every t ≥ t0, the radius rad(Lt) of the largest

component Lt of Qt is at least n− 1.
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Let us now show that almost surely rad(Lt) ≤ n − 1 for all t ≥ t0. Almost every

random Qn-process Q̃ = (Qt)M0 is such that if t = t(1) − 1, then Qt has a unique isolated

vertex z0 = z0(Q̃). In what follows, we condition on Q̃ having this property. Let z ∈ Qn

be fixed, and let us further condition on the event that {z0(Q̃) = z}. It suffices to show

that, under these conditions, almost surely rad(Lt) ≤ n − 1 for t ≥ t0, and hence let us

now verify this assertion.

Let Gz(Qn, t) and respectively Gz(Qn, p) be the spaces obtained from G(Qn, t) and

G(Qn, p) by conditioning on the event that z should be an isolated vertex. We now note

that Qt0 in Q̃ = (Qt)M0 is simply a random element from Gz(Qn, t0), and therefore we

turn to this latter space. However, let us first set p = p(n) =
(
1− ((log n)/M)1/2

)
ε, and

consider Gz(Qn, p). Let A0 be as in Corollary 5. Then

P(Qp ∈ Gz(Qn, p) fails A0) ≤ P(Qp ∈ G(Qn, p) fails A0)/P(dQp
(z) = 0)

= exp{−Ω(n log log n)}(1− p)−n = exp{−Ω(n log log n)},
and hence a.e. Qp ∈ Gz(Qn, p) satisfies A0. It is also easily seen that the vertex x = zc =

[n] \ z and all vertices y 6= z of Qn within Qn-distance n/ log n from z have degree at

least 3n2/3 in Qp ∈ Gz(Qn, p).
As in the proof of Corollary 6, we may generate an element from Gz(Qn, t0) by first

generating an element Qp from Gz(Qn, p), and then adding a suitable number of random

edges to Qp. Proceeding this way, and using the above fact about property A0, we may

show that a.e. Qt0 ∈ Gz(Qn, t0) is such that (i) any two vertices x, y of degree at least 3n2/3

in Qt0 are such that (7) of Corollary 6 holds, and moreover (ii) the vertex x = zc and

all vertices y 6= z within Qn-distance n/ log n from z have degree at least 3n2/3. Let k =

d1/ log2(1/(1 − ε))e. From Lemma 9 we know that a.e. Qt0 ∈ Gz(Qn, t0) is such that

(iii) Qt0 contains no weakly (k + 1)-stretching systems.

It is now enough to notice that if (i), (ii), and (iii) above hold for Qt0 , then for any

graph H with Qt0 ⊂ H ⊂ Qn in which dH(z) = 0 we have that dH(x, y) ≤ n−1 for x = zc

and any y ∈ H distinct from z, as long as x and y belong to the same component in H.

One can read out the following corollary from the above result.

Corollary 14. Almost every random Qn-process Q̃ = (Qt)M0 is such that

t(1) = τ(Q̃; δ ≥ 1) = τ(Q̃; rad ≤ n).
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6. Concluding remarks

Let Q̃ = (Qt)M0 be a random Qn-process. It is known that if t is a little larger than t0 =

M/n almost surely there is a unique largest component in Qt and moreover this component

is of much larger order than the other components (see [1] and [5]). This component is

usually referred to as the ‘giant’ component. One very interesting problem we have not

dealt with in this note is that of the determination of the diameter of the giant component

of Qt for t a little larger than t0. This problem might be harder than the problems we

have addressed here: it is likely that finer methods than the ones used in the proof of

Lemma 2 might need to be developed. Quite possibly, these methods would be based on

the Kruskal–Katona theorem, or more generally on isoperimetric inequalities for the cube,

or the martingale method. In particular, it would be interesting to settle the following

specific question.

Problem 15. In a typical random Qn-process Q̃ = (Qt)M0 , is ever the diameter of a

component of Qt superpolynomial?

This question concerns Qt for t close to t0; there are numerous interesting problems

about Qt for larger t, beyond the hitting time of connectedness. In a sequel [7] we shall

study Qt in this range. In particular, we shall prove a result implying that for almost every

cube process the hitting time of k-connectedness is equal to the hitting time of minimal

degree at least k. We shall also study the ‘mixed model’ for random subgraphs of Qn.

Here a random subgraph Qpv,pe of the cube is chosen by independently deleting vertices

and edges from Qn with probabilities 1− pv and 1− pe respectively. We shall prove some

results that are analogous to the ones in this paper, and thereby we shall answer some

questions of Kostochka, Sapozhenko and Weber [15]. (See also [16].)
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